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Summary

This thesis comprises three essays. The first two make use of individual-level data on

British workers from the British Household Panel Survey to study different aspects of non-

standard employment.

The first essay, co-authored with Mark Bryan, presents estimates of the implicit monetary

value that workers attach to non-standard work. We employ and compare two alternative

methods to measure workers’ willingness to pay for four non-standard working arrange-

ments: flexitime, part-time, night work, and rotating shifts. The first method is based on

job-to-job transitions within a job search framework, while the second is based on estimat-

ing the determinants of subjective well-being. We find that the results of the two methods

differ, and relate them to conceptual differences between utility and subjective wellbeing

proposed recently in the happiness literature.

The second essay builds on economic theories of consumption and saving choices to invest-

igate whether workers expect temporary work to be a stepping stone towards better jobs,

or a source of uncertainty and insecurity. The evidence provided shows that temporary

work entails both expected improvements in future earnings, and uncertainty. Households’

consumption and saving choices are used to assess which of these two effects is prevail-

ing, providing an alternative empirical approach to measure the consequences of temporary

work for workers’ welfare. The results suggest that a stepping stone effect towards better

jobs is present and, more importantly, is perceived by individuals and internalized in their

behaviour.

nally, the last essay has a specific focus on econometric methods. A Monte Carlo experi-

ment is used to investigate the extent to with the Poisson RE estimator is likely to produce

results similar to ones obtained using the Poisson FE estimator when the random effects as-

sumption is violated. The first order conditions of the two estimators differ by a term that

tends to zero when the number of time periods (T), or the variance of the time-constant

unobserved heterogeneity (V), tend to infinity. Different data generating processes are em-
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ployed to understand if this result is likely to apply in common panel data where both

characteristics are finite. As expected, the bias of RE estimates decreases with T and V.

However, the same does not hold for the estimated coefficient on the time invariant dummy

variable embedded in the conditional mean, which remains substantially biased. This raises

a note of caution for practitioners.
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Chapter 1

Non standard work: what’s it worth?

Comparing alternative measures of

workers’ marginal willingness to pay

Introduction

A job is about much more than earning a wage. Jobs differ widely in characteristics such

as the type of work they involve, the number of hours required, the timing of shifts and

the amount of flexibility. In a competitive labour market, compensating wage differentials

should arise that equalise workers’ utility across jobs - so that wages are higher for jobs

with undesirable characteristics and lower for jobs with good characteristics (Rosen, 1987).

In principle, compensating differentials estimated from hedonic wage regressions can then

be used to infer how much workers are willing to pay in order to avoid (or to gain) a par-

ticular characteristic: their marginal willingness to pay (MWP). In practice, there are sub-

stantial challenges to identifying hedonic equations because workers and firms are matched

endogenously (Lang and Kahn, 1990), there may be unobserved confounding factors such

as individual ability, and labour markets may deviate from the competitive ideal (Hwang
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et al., 1998). As a result, two alternative methods have become increasingly popular. The

first, based on revealed preference, looks at job transitions to see whether workers leave

bad jobs at a faster rate than good jobs. The second method, based on workers’ assessments

of their well-being, compares reported well-being in good and bad jobs.

In this paper we compare these two methods in estimating the MWP for non-standard work

arrangements in the British labour market. We find that they deliver substantially differ-

ent results, which we argue derive from the distinct conceptual basis of each measure.

Performing further tests, we conclude that our findings are consistent with a recent liter-

ature arguing that people trade off their well-being against other objectives when making

choices. Thus the value (MWP) of non-standard work expressed through job choices is

different from its value in terms of subjective well-being, and this distinction should be

explicitly recognised when presenting MWP estimates.

Our work makes several contributions. Methodologically, we provide a comparison of

the two alternative MWP measures, estimated using the same sample of individuals (thus

our results are informative of the likely differences in MWP estimates that researchers

may find in practice). In addition we link differences in the two measures to conceptual

differences between utility and subjective wellbeing that have been validated in recent

experimental studies. We thereby contribute to the debate about the measurability of utility

and the empirical value of indicators of subjective well-being. An implication of the new

literature on utility and subjective wellbeing is that there is not a single representation of

MWP: utility trade-offs (revealed by choices) need not be the same as wellbeing trade-

offs . We find, for example, that a part-time job would deliver the same amount of job

satisfaction as a full-time job even if workers had to sacrifice most or all of their income;

however workers tend to quit part-time jobs with earnings that are substantially less than

pro-rata. This indicates that earnings matter to part-time employees (as revealed by their

quitting behaviour) over and above their level of job satisfaction. We similarly find some

evidence that workers require a smaller premium to compensate them for the dissatisfaction
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of working at night than is required to stop them from quitting night work. Overall, we

provide new evidence about workers’ preferences over the amount and timing of the work

they do, suggesting that workers care particularly about their number of weekly hours and

about working rotating or night shifts.

We are aware on another contribution in the literature related to ours. Akay et al. (2015)

compare the income-leisure preferences revealed by labour supply choices with prefer-

ences implied by SWB equations. They conclude that preferences coincide on average, al-

though they differ among some sub-populations who may be subject to choice constraints

or optimisation errors. Our work differs on some dimensions. While the focus in Akay

et al. (2015) is on income-leisure preferences, we provide estimates of MWP for a wider

set of job attributes. More importantly, we derive revealed preferences based MWP from

job search model which implies dynamic optimization, rather than a static labour supply

model. Similarly to the authors we do find similarities between the two approaches, at

least with respect to the sign on the implied MWP. However the test we present in Section

1.5 suggests a stronger conclusion about conceptual differences between SWB-based and

revealed-preferences based measures of MWP.

The chapter is structured as follows. Section 1.1 presents the background of the paper,

providing a brief introduction for the two methodologies. Section 1.2 introduces non stand-

ard working arrangements, the data we use for the empirical analysis, and presents some

descriptive statistics. Sections 1.3 and 1.4 present, respectively, the revealed preferences

approach and the SWB approach, describing the respective theoretical frameworks and es-

timation approaches. Results are also presented. A possible explanation for our different

findings is discussed in Section 1.5. Section 1.6 concludes.
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1.1 Background

The work of Rosen (1974) laid the foundations for the study of hedonic markets, in which

the prices of differentiated products reflect the characteristics embodied in those products.

Applying these ideas to labour markets, Rosen (1987) showed that in a perfectly compet-

itive setting with many firms and workers, each job characteristic is priced in an implicit

market. In such an environment workers choose their job, defined as a wage and a set of

characteristics, by maximizing their utility subject to the constraint of the hedonic wage

curve. In equilibrium, differences in the wages of otherwise homogeneous workers can

be interpreted as equalizing differences that compensate workers (at the margin) for ac-

cepting specific undesirable job characteristics (or “penalise” them for enjoying desirable

characteristics). Since Rosen’s early work many researchers have attempted to measure

these compensating differentials using hedonic wage equations. However, it has proved

remarkably difficult to find compensating differentials that are consistent with reasonable

expectations about workers’ MWP: estimates are often insignificant, or of unexpected sign.

A common explanation is that more productive workers select into jobs with better char-

acteristics, thus biasing estimates of wage differentials towards zero, but even studies that

control for unobserved productivity using individual fixed effects often fail to find plausible

compensating differentials (Brown, 1980). More generally, identification of wage differen-

tials from hedonic equations is a challenge owing to the endogenous matching of workers

and firms (Lang and Kahn, 1990).1

Compensating differentials may also be difficult to find in the real world if labour markets

are not be perfectly competitive. The theory of compensating differentials assumes a fric-

tionless labour market in which workers have full information about available jobs and can

move costlessly - to prevent a worker quitting a job, any disamenity must be fully com-

1Rosen (1974, 1987) stressed that wage differentials only identify the preferences of those agents who are
on the margin of choice. For instance most workers in clean jobs would require more than the equilibrium
wage differential to work in a dirty job (this is why they chose a clean job) and vice versa. So the wage
differential will not generally equal average MWP. Only if workers have identical preferences will the wage
differential equal MWP.
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pensated by a higher wage. But in a labour market with search frictions or costly mobility,

wages will not necessarily compensate for job disamenities (Hwang et al., 1998; Lang and

Majumdar, 2004). Job quality may vary among identical workers, with “good” jobs pay-

ing both higher wages and having better characteristics. Thus hedonic prices in a frictional

labour market may diverge from workers’ MWP.

Given the difficulties of measuring MWP using hedonic wage regressions, two alternat-

ive methods have become popular. The first, developed by Gronberg and Reed (1994),

is explicitly embedded in an environment of incomplete information and search frictions.

The idea behind their approach is that the utility trade-off between wage and other job at-

tributes influences job durations: workers will stay longer in jobs with higher wages and

good attributes. Job separations in such a framework are then informative about work-

ers’ preferences for wage and job attributes. Gronberg and Reed estimate workers’ MWP

for various job attributes applying duration analysis to job spell data from the National

Longitudinal Survey Youth Cohort. The same approach is followed by others, including

Van Ommeren et al. (2000), who demonstrate the validity of this approach even in the case

of a more general characterization of the search environment with respect to the one ad-

opted by Gronberg and Reed (1994), and estimate workers’ MWP for commuting using

Dutch panel data.

The second method of measuring MWP is based on the idea that if we were able to observe

workers’ utility on the job, then we could directly estimate the effects of wages and job

attributes. In the absence of measures of utility, researchers have turned to data on self-

reported subjective wellbeing (SWB) as a proxy for utility. This has led to a stream of

research in areas ranging from health to labour economics that uses the so-called income

compensation methodology to value non-financial goods in terms of the amount of income

required to hold SWB (utility) constant 2. The appealing simplicity of this approach comes

at the cost of strong assumptions about the relationship between utility and SWB indicators,

2See Dolan et al. (2011) for a survey.
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which we discuss in detail in section 1.5. Nevertheless, following the SWB approach,

workers’ MWP for job amenities can be estimated from an equation to explain SWB as a

function of the wage, job amenities and other controls.

The measure of SWB that we focus on is job satisfaction. Hamermesh (1977) pioneered its

use as an economic variable and many other studies have since shown that job satisfaction

is a predictor of job quits (see among others Freeman 1978; Clark 2001; Lévy-Garboua et

al. 2007; Green 2010). While many economists are still sceptical that job satisfaction, and

SWB more in general, can be taken as a proxy for utility, Hamermesh (2001) concludes

that even given the limitations outlined by many authors, job satisfaction might still be

regarded as a key indicator of how workers perceive their job as a whole in relationship to

different opportunities in the labour market.

We estimate workers’ MWP for non-standard working arrangements in Britain using both

the job search approach and the SWB method. In both cases we use the most recent tech-

niques from the applied literature - thus our results are informative of the likely differences

in MWP estimates that researchers may find in practice. Estimates under the job search ap-

proach are obtained using mixed proportional hazard models with exponential parametriz-

ations and allowing for unobserved heterogeneity. Estimates following the SWB approach

are obtained using job satisfaction equations allowing for individual fixed effects. We find

that estimates obtained differ across the two methodologies, suggesting that that two meas-

ures correspond to distinct concepts. We explore theoretically the differences between the

two approaches building on recent contributions to the life satisfaction literature.

1.2 Non standard work and the British Household Panel

Survey

Standard work is generally identified with the traditional “9-to-5” five days workweek.

However, alternative working schedules are widespread in modern labour markets. Dif-

ferences between standard and non-standard workers emerge not only with respect to total
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amount of hours spent at the workplace, but even in respect of the time of the day people

usually work. Moreover, new types of working agreements allowing for higher schedule

flexibility, like flexitime, are increasingly available.

We focus on the following dimensions of non-standard work: short or long hours, working

at night, rotating shifts, and flexible work. In order to capture variability in the total amount

of hours spent at work, following Booth and van Ours (2008), we define a set of dummies

which identify jobs characterized by, respectively, 1-15, 16-30, 31-48, and more than 49

weekly hours. This classification takes into account the potential effects of some features

of the British welfare system on labour supply choices. The first category has a cut-off at

15 hours because workers below this threshold are not eligible for main work-contingent

benefits and tax credits, but are entitled to other forms of income support. With respect to

the second category, 30 hours per week is the threshold generally used in the literature to

identify part-time work, and is also the minimum amount of hours required to be eligible

for in-work benefits for individuals aged 25-59. Lastly, 48 hours a week is the maximum

number of hours individuals are allowed to work according to the “working time directive”.

Individuals who choose to work to work more than 48 hours need to opt-out from working

time regulations.

Focusing on the time of the day people actually work, we identify three categories: people

working during the daytime, at night, and in rotating shifts. Finally we identify those jobs

characterized by flexible arrangements, defining a dummy for flexitime contracts - the most

common type of flexible agreement - and a dummy for the residual categories (annualised

hours, term time only, job share, nine day fortnight, 4 1/2 day week, zero hours contract).

Working fewer hours is generally associated with an increased work-life balance, while the

opposite holds true for working schedules which entail long hours. A similar argument can

be made regarding flexible agreements. They are designed to give workers more control

over the working schedule by allowing them to “fine-tune” the time they spend on the job

with respect to their out-of-work life. In contrast, night shifts and rotating shifts are likely
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to be perceived by workers as “bad” working conditions. Indeed, working at night, or being

subject to rotating shifts, may adversely affect the work-life balance of workers given the

low level of flexibility they allow for.

Our empirical analysis is carried out using data from British Household Panel Survey

(BHPS), a nationally representative longitudinal study run between 1991 and 2008. The

original BHPS sample covers roughly 10,000 individuals in 5,500 households in Great

Britain.3 The information collected within the survey spans a variety of topics both at

the household and individual level, including household composition, individual socio-

demographic characteristics, employment status and history, values, health, time use, and

satisfaction.

The richness of details about individuals’ job makes the BHPS a perfect source of inform-

ation for the task of this analysis. Specifically, every year individuals are asked to report a

variety of characteristics of their current job, including monthly earnings, number of hours

worked, times of day individuals usually work, particular flexible agreements (from inter-

view wave 9), overall level of job satisfaction, and satisfaction with specific job facets -

pay, hours of work, security, promotions prospects, relations with supervisor, use of own

initiative.

Importantly, BHPS data also contains information about individual labour market spells

(both employment and non-employment spells), including their start date and the reason

for the end of the terminated spell. This latter characteristic is fundamental in our setup,

given it allows to disentangle voluntary job quits from separations which happened for

3Between 1991 and 2008 four extension samples have been added to the original 1991 sample: ECHP
extension (waves 7-11), Welsh extension (waves 9-18), Scottish extension waves (waves 9-18), Northern
Ireland extension (waves 11-18). By referring to the BHPS in this paper we refer to the full BHPS sample,
including these extensions. Since longitudinal weights (accounting for differential non-response, including
attrition) are available only for the original 1991 sample, all the regressions in this paper are unweighted. This
might raise concerns about the potential bias induced by unequal sampling probabilities and non-response.
As stated by Solon et al. (2015), regression estimates are biased if sampling and non-response are not in-
dependent of the dependent variable conditional on the explanatory variables. The inclusion of region and
wave dummies in all regression models should address the issue of unequal probabilities due to the extension
samples. Non-response, instead, is not issue to the extent that, conditional on the set of covariates, data are
missing completely at random.
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other reasons.

Information about the current activity at the time of interview is recorded separately from

information about inter-wave labour market spells (covering the time span between Septem-

ber a year before and the interview date). These two sources can be combined using the

sequence of start dates (measured to the nearest month) in order to obtain continuous-time

spell data for consistent individual work-life histories. An example, using wave 10 of the

survey, helps to better understand how information about spells is recorded in the BHPS.

Interviews for wave 10 were held between September 2000 and May 2001. At the time of

interview respondents were asked if their current labour force status began after 1 Septem-

ber 1999. If so, they were asked information about each of the (potentially multiple) spells

between 1 September 1999 and the date of the interview, including the start date of each of

these spells. If an individual was also interviewed in 1999, the start date of the oldest recor-

ded spell after 1 September 1999 overrides the start date of the current status in 1999, and

the start date of the subsequent spell provides its end date. In order to deal with issues of

recall bias, overlapping dates, and seam effects, we combined inter-wave job histories and

main-interview data using a revised and updated version of the code developed by Mare

(2006) (see also Halpin, 1997). The resulting dataset contains both multiple spells per

individual, and multiple observations per spell (i.e. a spell can span multiple interviews).

Since our objective is to estimate a model for job-to-job transitions, after having obtained

a dataset of consecutive labour market spells, we include in our estimation sample only job

spells (i.e. we exclude unemployment and inactivity spells). Consistently with previous

literature, we further restrict our estimation sample to individuals aged 16-65 who: i) are

in paid employment ii) are not in full-time education or further education; iii) are not self-

employed; iv) have no missing values in any of the relevant characteristics.

We also exclude short job spells starting after the interview date, and ending before the

subsequent one (i.e. job spells that do not span an interview date). These spells are ex-

cluded because information about most dimensions of non-standard work is recorded only
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for the current job at the time of interview. As a result, only spells that can be matched

with interview dates can provide useful information.

Imposing the above restriction, we obtain an estimation of 5,130 individuals in 12,330

spells. However when we focus of flexitime and other flexible agreements we are con-

strained to use only the last nine waves of the BHPS in which the relevant information was

collected (3,384 individuals in 6,184 spells).

Descriptive statistics for the full set of variables we use in our models are presented in table

1. Average log monthly earnings are approximately £1,340. While the majority of workers

in our sample (64%) is characterized by the “traditional” working schedule of approxim-

ately 40 hours per week, the fraction of individuals working short and long hours is far

from negligible. 1-15 hours schedules are present in 5% of our sample, “standard” part-

time (16-30 hours) and long hours (49 + hours) are present in, respectively, 15% and 16%

of cases. 9% of individuals has jobs which entail working at night, while the rotating shifts

characterize 7% of the sample. Flexitime is the most spread form of flexible arrangements,

15%4.

These fractions are fairly stable across waves, although the share of individuals working

long hours is decreasing after 1998 (year of the introduction of the working time directive)

, and a gradual increase characterizes the fraction of individuals working 16-30 hours after

2002.

Not surprisingly, data shows some degree of heterogeneity in the prevalence of non-standard

work between men and women. More specifically, the incidence of part-time work, meas-

ured as the fraction of individuals working either 1-15 hours or 16-30 hours, is much more

pronounced for women than men, while the opposite holds true for long hours, and to some

degree for rotating shifts. No heterogeneity is, instead, present with respect to flexible work

arrangements and night work.

Overall job satisfaction is derived from individuals’ answers to the following question: “All

4The fraction is calculated on the 9-18 waves sample.
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things considered, how satisfied or dissatisfied are you with your present job overall?”. It

is measured on a Likert-type scale ranging from 1, “not satisfied at all”, to 7, “completely

satisfied”, and exhibits a sample mean equal to 5.36.

Table 2 shows the distribution in our sample of the reason why the job spell was terminated

which allows to disentangle voluntary job to job transitions (“left for better job”) from

separations which happened for other reasons (all the remaining categories). It is worth

noting that voluntary job quits are the most frequent type of separation in the data, account

for the 25% of them.
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Table 1.1: Descriptive statistics

VARIABLES Mean Std. Dev. Min Max
Log of real monthly earnings 7.19 0.71 2,81 8,93
Hours: 1-15 0.05 0.22 0 1
Hours: 16-30 0.15 0.35 0 1
Hours: 31-48 0.64 0.48 0 1
Hours: 49+ 0.16 0.37 0 1
Night shifts 0.09 0.28 0 1
Rotating shifts 0.07 0.26 0 1
Flexitime* 0.15 0.36 0 1
Other flexible agreements* 0.03 0.18 0 1
Female 0.50 0.50 0 1
Pre-school children 0.11 0.31 0 1
Age 38.26 11.78 16 65
Never married 0.30 0.46 0 1
Married 0.59 0.49 0 1
Separated 0.10 0.30 0 1
Widowed 0.01 0.11 0 1
Education: primary\lower secondary 0.16 0.37 0 1
Education: upper secondary 0.46 0.50 0 1
Education: higher education 0.38 0.49 0 1
Occup.: large employers & higher management 0.04 0.20 0 1
Occup.: higher professional 0.07 0.26 0 1
Occup.: lower management & professional 0.29 0.45 0 1
Occup.: intermediate 0.19 0.39 0 1
Occup.: lower supervisory & technical 0.12 0.33 0 1
Occup.: semi-routine 0.16 0.37 0 1
Occup.: routine 0.13 0.33 0 1
Firm size: <25 0.34 0.47 0 1
Firm size: 25-99 0.25 0.43 0 1
Firm size: 100-499 0.24 0.43 0 1
Firm size: >499 0.17 0.38 0 1
Union recognition at the workplace 0.49 0.50 0 1
Job satisfaction: overall 5.36 1.30 1 7
Observations 33,959

Notes: Regional (20), Industry (9), and Wave (18) dummies are excluded for brevity. *Statistics for
Flexitime and Other flexible arrangements are to waves 7-18 (16,092 observations)
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Table 1.2: Reason for leaving the current job

Reason for leaving the job N. of ended spells % of ended spells
Promoted 2,261 24.26
Left for a better job 2,334 25.04
Redundant 1,150 12.34
Dismissed 161 1.73
Temp. job ended 433 4.65
Retirement 373 4.00
Stopped for health reasons 255 2.74
Stopped for family reasons 303 3.25
Other 2,050 22.00

9,320 100.00

Total N. of spells % of total spells
Ended spells 9,320 75.59
Ongoing spells 3,010 24.41
Total 12,330 100

1.3 Deriving MWP from job-to-job transitions

A methodology to estimate MWP from job durations was first developed by Gronberg and

Reed (1994). The basic idea is that in a dynamic search environment differences in job

durations are informative about the relative weights of job characteristics in workers’ util-

ity functions. Extending Gronberg and Reed’s methodology, Van Ommeren et al. (2000)

describe how the theoretical model applies under a more generic search environment, and

calculate workers’ MWP for commuting using Dutch data. In the same spirit Van Ommeren

and Fosgerau (2009) compare MWP for commuting time obtained using job moving beha-

viour with estimates obtained using workers’ search behaviour as an identification strategy.

Other applications include estimation of MWP to avoid night shifts - Manning (2003) -

and estimation of MWP for job attributes using data on maternity leave in Germany - Felfe

(2012). Bonhomme and Jolivet (2009) use job durations to estimate MWP for non-wage

characteristics. Using data from the European Community Household Panel (ECHP) they

find significant MWP for most job amenities, but they demonstrate that the estimates differ

from those implied by a cross-sectional regression of wages on non-wage characteristics.
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Dale-Olsen (2006) uses Norwegian matched employer-employee data to estimate MWP

for safety comparing hedonic wage, quit and job duration models, while Dey and Flinn

(2008) estimate the MWP for health insurance coverage using US data from Survey of

Income and Program Participation (SIPP).

1.3.1 Theoretical framework

Under the assumption of a perfectly competitive labour market, a standard cross-section

hedonic wage regression is able to represent a long-run equilibrium relationship between

wage and non-wage characteristics. However, Hwang et al. (1998) demonstrate how es-

timates of MWP derived from hedonic wage regressions are likely to be biased within a

dynamic framework characterized by job search and an equilibrium wage dispersion. They

show that, if firms differ in the cost of providing non-wage characteristics, those firms

which face higher costs will offer lower wages and worse working conditions in equilib-

rium. Firm heterogeneity would act as an unobservable disturbance term in a hedonic wage

regression, and it would likely be correlated with job characteristics of interest. This would

bias estimates of workers’ MWP for amenities and disamenties. Gronberg and Reed (1994)

develop and apply a new methodology in order to estimate workers’ MWP starting from a

simple model of on-the-job search, as developed by Mortensen (1987).

Suppose that individuals have jobs characterized by (w,X) - the wage, w , and a set of

non-wage characteristics, X . While on their job, they receive new job offers from firms.

New offers arrive according to a Poisson process at rate λ . On the other side, workers face

a probability of being laid off, δ , at each point in time. This latter involuntary separation

rate is assumed to be independent of wage and job characteristics within the model. This

assumption, although rather restrictive, is crucial in order to estimate workers’ MWP. Job

offers at every point in time are random draws from the joint cumulative distribution of

wage and job attributes, F(w∗,X∗), faced by workers of given productivity in the labour

market. Workers are assumed to know both the arrival rate λ , and the joint cumulative

distribution F(w∗,X∗), but the timing of realization, and the characteristics of the specific
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offer are unknown. Every job delivers to the worker the instantaneous utility flow u(w,X),

which depends on both the wage and non-wage characteristics. Job mobility is driven by

dynamic optimization, this is to say that workers decide whether to change their job when

facing a new offer by maximizing the expected present value of utility over an infinite

horizon. Defining V (w,X) to be the expected present value of utility of the current job with

characteristics w and X , and V (w∗,X∗) the value function of the alternative potential offer,

workers accept a new job when:

V (w∗,X∗)>V (w,X) (1.1)

Given that, according to the model, the search environment does not change when accept-

ing a new offer, the only change within the value function is the instantaneous utility flow

u(w,X). The condition expressed by equation (1.1) is, then, equivalent to:

u(w∗,X∗)> u(w,X) (1.2)

The total exit rate out of the current job can be expressed as:

θ(w,X) = δ +λ [1−F (u(w,X))] (1.3)

The above expression describes the total exit rate as the sum of the probability of an in-

voluntary separation plus the probability of quitting. The latter can be further decomposed

into two components, namely the probability of receiving a new offer, λ , and the probabil-

ity that the offer received is acceptable for the worker, [1−F (u(w,X))]. F (u(w,X)) is the

cumulative distribution of the random variable u(w∗,X∗) obtained from the joint distribu-

tion F(w∗,X∗), evaluated at the current job values, (w,X). It represents the probability that

the offer delivers an higher instantaneous utility, triggering a job-to-job transition.

Differentiating equation (1.3) with respect to w, and the generic job attribute x within the

vector X we get:
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∂θ(w,X)

∂w
=−λ

∂F (u(w,X))

∂u(w,X)

∂u(w,X)

∂w
(1.4)

∂θ(w,X)

∂x
=−λ

∂F (u(w,X))

∂u(w,X)

∂u(w,X)

∂x
(1.5)

Taking the ratio of these two terms:

∂θ(w,X)/∂x
∂θ(w,X)/∂w

=
∂u(w,X)/∂x
∂u(w,X)/∂w

(1.6)

The right-hand side of the above equation describes workers’ MWP, i.e. the rate at which a

worker would be willing to trade the wage against a generic non-wage attribute x. Given δ

does not depend on w and X by assumption, MWP can be obtained by looking at the ratio

of marginal effects of x and w on the hazard rate for job-to-job transitions.

1.3.2 Reduced-form duration model specification

In our empirical specification we assume that the length of a job spell up to a job-to-job

transition follows an exponential distribution with a constant hazard rate, h(w,X), which

depends on current job characteristics. Following Van Ommeren et al. (2000) we assume

this hazard rate has an exponential parametrization, and can be written as follows:

h(t|νi,Zi) = exp(Z′iβ ) ·νi (1.7)

where Zi is a vector of individual and job characteristics, including the vector Xi - and

νi, an unobserved random variable capturing worker heterogeneity. The inclusion of νi

in the model is crucial in order to get consistent estimates of the parameter vector β , as

pointed out by Lancaster (1990). The sample we use in order to estimate the duration

model for job-to-job transitions consists of 5,130 individuals in 12,717 spells, using waves

1-18 of the BHPS. When we focus on flexitime and other flexible agreements, however,

we are constrained to use data only for waves 9-18 in which the relevant information was
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collected. Our data consist of both multiple spells and multiple observations within each

spell - each observation corresponding to a wave of the BHPS. The vector Zi includes

a range of controls: age, gender, education level, family status, union recognition at the

workplace, firm size, industry, regional, and social group dummies. Since a job spell may

span more than one interview date, job attributes and individual characteristics are allowed

to vary annually within the spell (as in Van Ommeren et al. 2000). A spell is defined as the

length of time until a voluntary job-to-job transition.

Following Van Ommeren et al. (2000), job spells terminated for reasons other than a vol-

untary quit, as well as those spells which are ongoing at the time of the last interview, are

treated as right-censored observations of the duration until a job-to-job transition, Left-

censoring is, in principle, not an issue given our estimation sample contains only spells for

which start dates are available that can be matched with interview dates.

Although treating other types of transitions as uninformative censoring might seem restrict-

ive from an empirical perspective, this choice is driven by the assumptions of the search

model. If the hazard rate for these transitions is allowed to depend on w and X , the search-

theoretical predictions on the effect of w and X on the job-to-job transition rate would be

violated.

Intuitively, MWP can be recovered from partial effects of job attributes on transition rates

only to extent that current job attributes enter the model solely via the instantaneous utility

flow, and not through other parameters of the search environment.

Duration models of the type expressed by equation (1.7) are knows as parametric “shared

frailty model” (Gutierrez, 2002 and Cleves et al., 2008). The frailty term νi reflects worker-

specific heterogeneity in duration variation. The duration unconditional on νi is then ob-

tained by integrating out this component, assuming that it follows a Gamma distribution

with mean 1 and variance θ (to be estimated from the data). The model is estimated

via Maximum Likelihood. Kaplan-Meier estimates of the empirical survivor function by

groups defined by our characteristics of interest are presented in Appendix 1.
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One caveat to bear in mind concern the interpretation of the estimated effects of job attrib-

utes on the hazard rate of job-to-job transitions. The suggested estimation method corrects

only for time invariant heterogeneity among workers, which is independent on observable

characteristics. This leaves open issues such as sorting into jobs with specific job attributes

which cannot be tackled with random effects models. To the extent that sorting into jobs

depends on individual preferences potentially correlated with the decision to move to an-

other job, conditional on observable characteristics, the coefficients of the duration model

will provide a biased estimate of the true causal effect of the job attributes on the hazard

rate of job-to-job transitions. There is, however, no clear indication about the direction of

this bias.

1.3.3 Estimates of MWP from duration model

Tables 1.3 and 1.4 present, respectively, the estimated coefficients of our duration models

and the associated MWP. Estimated MWP are obtained according to the following formula:

MWPx = exp

(
− β̂x

β̂lnw

)
−1 (1.8)

where β̂x is the coefficient associated with the dummy indicating the generic non-wage

attribute x, and β̂lnw is the coefficient associated with the log of real monthly earnings.

We derive MWP after making two modifications to the methodology presented above.

First, as is standard in the MWP durations literature (see Van Ommeren et al. 2000; Gron-

berg and Reed 1994) the wage enters Zi in the hazard function in log form. This leads

naturally to an expression for MWP as a percentage of wages, which may be preferred to

a measure in monetary units. Second, it is necessary to alter the formula for MWP implied

by equation (1.6) given the discrete nature of the job characteristics under consideration.

Let xi take value 1 if a job characteristic is present and 0 otherwise.

We then define the MWP as the (percentage or proportionate) amount of wages which a

worker would be prepared to give up in order to enjoy an amenity; or the amount they
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would need to receive in order to accept a disamenity.

Consider the two wages (w0 and w1) which hold utility, and hence the hazard rate, constant,

first without the characteristic and then with it:

h(t|ν ,Z, ln(w0),x = 0) = h(t|ν ,Z, ln(w1),x = 1) (1.9)

where Z now includes all characteristics except ln(w) and x (the i subscript is dropped for

simplicity). If x represents an amenity, then w1<w0 and vice versa if it is a disamenity.

From equation (1.7), we can write:

exp(Z′β +βlnwln(w0)) ·ν = exp(Z′β +βlnwln(w1)+βx) ·ν (1.10)

which simplifies to:

βlnwln(w0) = βlnwln(w1)+βx· (1.11)

Hence, the difference in log wages is:

ln(w1)− ln(w0) = ln(w1/w1) =−βx/βlnw (1.12)

which is equivalent to the proportionate change of:

MWPx =
w1−w0

w0
=

(
− βx

βlnw

)
−1 (1.13)
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Table 1.3: Duration model for job-to-job transitions: estimated coefficients

Waves 1-18 Waves 9-18
(1) (2) (3) (4)

Real monthly earnings (log) -0.604*** -0.337*** -0.558*** -0.190**
[0.046] [0.057] [0.072] [0.087]

Hours: 1-15 -0.842*** -0.208 -0.807*** -0.007
[0.135] [0.134] [0.217] [0.210]

Hours: 16-30 -0.513*** -0.091 -0.564*** 0.031
[0.083] [0.082] [0.122] [0.119]

Hours: 49 + 0.251*** 0.105* 0.218** 0.150
[0.065] [0.062] [0.102] [0.095]

Work at Night 0.324*** 0.176** 0.280** 0.137
[0.076] [0.071] [0.111] [0.102]

Rotating Shifts 0.037 0.097 -0.169 0.010
[0.092] [0.087] [0.165] [0.154]

Flexitime -0.082 0.069
[0.105] [0.099]

Other Flexible -0.196 0.056
[0.160] [0.162]

Additional controls no yes no yes
Observations 33,959 33,959 16,092 16,092
Number of individuals 5,130 5,130 3,384 3,384
Number of spells 12,330 12,330 6,184 6,184

Notes: Standard errors in parenthesis; *** p<0.01, ** p<0.05, * p<0.1. Additional controls included in all
equations: gender dummy; age; age squared; family status dummies (3); dependent children dummy; edu-
cation dummies (2); firm size dummies (3); union at the workplace dummy; region dummies (17); industry
dummies (8) occupation dummies (6); wave dummies (17). The full set of results is provided in the Appendix
1

The first two columns of table 1.3 use observations from waves 1-18 of the BHPS. We

refer to these results when considering the effects of working hours, rotating shifts and

night shifts. The last two columns show evidence from waves 9-18 of the BHPS in which

the relevant information concerning flexible agreements was collected. We refer to this

evidence when considering flexitime and other flexible agreements. In column 1 quits are

modelled as a function of our key explanatory job characteristics only. They are all highly

statistically significant with the exception of rotating shifts. However, when we include

relevant individual and other job-related attributes (including a full set of dummies for

regions, industry and socio-economic status) in column 2, the magnitude of the coefficients
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associated with the key explanatory variables dramatically drop, with only night shifts and

overtime remaining significant at conventional levels. Looking at the sign of coefficients

in this column, they are (more or less) in line with our expectations. Workers with high

monthly earnings or short hours are more likely to have longer durations before they quit

for a better job. The opposite holds true for workers working long hours, working at night

or in shifts. The coefficients on the control variables (presented in appendix) indicate that

job durations are longer for women, people with low levels of education and for those jobs

where unions are recognized at the workplace. Conversely individuals experiencing shorter

durations before a job-to-job transition are those with higher levels of education, single or

separated. Focusing on flexitime and other flexible agreements, coefficients in column 3

and 4 suggest that these types of job are associated with shorter durations, however the

estimates are very imprecise.

All the models have been also estimated allowing for gender heterogeneity of the effects

of the different characteristics, by interacting the main characteristics of interest with a

dummy variable for gender. We also considered a triple interaction term with the indicator

variable for dependent children, potentially important for part-time women. While the

main effects remained significant, none of these interactions turned out to be statistically

significant in our analysis.

We now turn to MWP for non-standard work implied by these coefficients (table 1.4).

MWP is interpreted as the percentage of the real monthly earnings that workers are willing

to trade off, on average, for each of our job characteristics of interest, in order to hold

utility fixed. Standard errors are obtained using the delta method.
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Table 1.4: MWP estimates using job-to-job transitions

MWP S.E.

Hours: 1-15 -0.460** 0.185

Hours: 16-30 -0.237 0.173

Hours: 49+ 0.367 0.25

Work at Night 0.688* 0.389

Rotating Shifts 0.335 0.346

Flexitime 0.436 0.787

Other Flexible 0.340 1.158
Notes: *** p<0.01, ** p<0.05, * p<0.1. MWP’s are ex-
pressed as fraction of real mothly earnings. MWP’s for
each characteristic are obtained using coefficients from
table 1.3, column 2. MWP’s for Flexitime and Other
Flexible are obtained using coefficients from the same
table, column 4. Standard Errors are obtained using Delta
Method

Statistically significant MWP are found only for night shifts, and for those jobs at the

low extreme of the weekly hours distribution: less than 15 weekly hours per week. Our

estimates suggest that “traditional” full time workers would be willing to take a monthly

earnings cut of 46% if their hours were cut to 15 hours per week or less (or alternatively

they would not be willing to work more than 15 hours per week if their monthly earnings

were reduced by 46%). This results, together with the (non-significant) positive MWP for

long hours, may be interpreted as a signal of workers’ preference for short hours. They

do not, on the face of it, seem implausible: a reduction from 40 to 15 hours (10hours)

represents a 63% (75%) reduction in working time, while an increase to 50 hours (55 hours)

is a 25% (38%) increase. Thus, the required earnings changes are roughly proportional to

the hours changes. Looking at night shifts, our evidence suggest that this job characteristic

is perceived by workers as a strong disamenity requiring a compensation of almost 70% of

the monthly wage. This figure is in line with the 90% found by Manning (2003) using UK

LFS data.
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1.4 Deriving MWP from job satisfaction

We now illustrate the alternative methodology for calculating workers’ MWP for non

standard working arrangements. This methodology is an application to the labour mar-

ket case of the income compensation, or satisfaction, approach, using a specific measures

of subjective well-being (SWB) - job satisfaction in our case - as a proxy for utility. As we

show, MWP can then be identified from a job satisfaction equation including earnings and

non-monetary characteristics.

This methodology has been increasingly applied by many authors in different fields, ran-

ging from health, environmental, to labour economics. Ferrer-i-Carbonell and Van Praag

(2002) use SWB data for Germany to estimate income compensations for chronic diseases.

Ferreira and Moro (2010), Luechinger (2009), Luechinger and Raschky (2009), Frey et al.

(2010) use the same methodology to value environmental attributes. Ferrer-i-Carbonell

and van den Berg (2007) provide a monetary evaluation of informal care in Holland us-

ing SWB data. Clark and Oswald (2002), and Oswald and Powdthavee (2007) calculate

income compensations for a variety of life events, like partner loss or divorce in, respect-

ively, the US and the UK. Blanchflower and Oswald (2004), after investigating well-being

trends in the UK and the US, use SWB data to estimate the average compensation for un-

employment. Di Tella et al. (2001) use a similar methodology to calculate the trade-offs

between macro-level unemployment and inflation using life satisfaction data. Stutzer and

Frey (2008), and Dickerson et al. (2012) calculate willingness to pay for commuting time

using SWB data for, respectively, Germany and the UK. Helliwell and Huang (2010) use

data data on job satisfaction to value non-financial job characteristics.

1.4.1 Theoretical framework

In standard modern microeconomic theory, observed choices are sufficient to reveal pref-

erences defined in terms of some underlying but unobserved utility function. But in recent

decades, spurred by the increased availability of subjective measure of well-being and ad-
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vances in psychological research, economists have started to re-consider a more direct

approach to measuring welfare which dates back to the hedonic notion of utility advanced

by Bentham 5. In their influential contribution, Frey and Stutzer (2002) state the following:

The insights gained from research on happiness throw new light on import-

ant issues analyzed in economics. Most important, they enlarge the scope

of empirical measurement and provide new tests for theories. Happiness is

not identical to the traditional concept of utility in economics. It is, how-

ever, closely related. On the one hand, the concept of subjective happiness is a

valuable complementary approach, which covers many more aspects of human

well-being than the standard concept of utility. On the other hand, subjective

well-being can be considered a useful approximation to utility, which econom-

ists have avoided measuring explicitly.

Following this approach the monetary value of a good is the amount of income required

to hold SWB constant following one-unit change in the amount of the good consumed. To

the extent that SWB measures approximate utility, income compensations and marginal

willingness to pay coincide, thus to apply this methodology we first need to identify a

relevant measure of SWB to proxy utility from the job. Overall job satisfaction is the ideal

candidate for the task given that its connections with workers’ behaviour on the labour

market have been widely documented in the literature.

If individual utility from the job depends on the wage and a set of non-wage job attributes,

and job satisfaction is a proxy for utility, the MWP for our job characteristics of interest can

be calculated as the monthly earnings increase (decrease) which is required to compensate

changes in the relevant job attribute in order to hold job satisfaction fixed.

We assume that:
5For a general survey of the new economics of happiness literature refer to: Frey and Stutzer (2010);

Van Praag and Ferrer-i Carbonell (2008)
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JS(w,X) = f (u(w,X)) (1.14)

where f (·) is a continuous, differentiable function.

From equation (1.14) it follows:

∂JS(w,X)/∂x
∂JS(w,X)/∂w

=

∂ f (u(w,X))

∂u(w,X)

∂u(w,X)

∂x
∂ f (u(w,X))

∂u(w,X)

∂u(w,X)

∂w

=

∂u(w,X)

∂x
∂u(w,X)

∂w

(1.15)

According to the above formula, MWP for the generic job attribute x is the ratio between

marginal effects of x and w on job satisfaction. Note that MWP can be identified under

weaker conditions than marginal satisfaction (utility) because MWP is the ratio of two

marginal utilities, and they differ from “marginal job satisfaction” by the same constant of

proportionality.

1.4.2 Estimation issues

Under the above identification assumption 1.14, all we have to do in order to calculate

workers’ MWP, is to estimate a standard equation for job satisfaction, and then calculate

the marginal effects of the wage and non-wage characteristics. As described in Ferrer-i-

Carbonell and Frijters (2004), we need to address two practical estimation issues.

On the one hand, It is well established in the literature that SWB measures are very sens-

itive to personality traits (e.g. the individual tendency to report high or low level of sat-

isfaction). This would generate an omitted variable bias in our SWB equation if these

personality traits are correlated with job attributes. The use of fixed effects should reduce

this bias to the extent the latter are time-invariant.

On the other hand we need to take into account interpersonal comparability of individual

SWB evaluations. Our ideal estimation framework should contain two key “ingredients”:
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a latent variable model accounting for ordinal comparability, and individual fixed effects

to control for the potential endogeneity bias. This can written as:

JS∗it = α +βlnwwit +β
′
xXit + γ

′Zit +νi + εit

JSit = k if λk ≤ JS∗it < λk+1 (1.16)

While there is general agreement in the literature about the crucial importance of unob-

served confounders when dealing with data on satisfaction, the potential consequences of

using OLS (rather than ordinal methods) to model SWB indicators are not clear cut. In

light of this ongoing discussion we decided to estimate our parameters of interest with

three different estimators: a naive ordered logit model with no FE, a linear FE model, and

the BUC estimator for FE ordered logit models developed by Baetschmann et al. (2015).

While we present as main results the ones obtained using the linear approximation, the

results obtained using the pooled ordered logit and the BUC estimator are presented in the

appendix.

1.4.3 Estimates of MWP from job satisfaction equation

Tables 1.5 and 1.6 present, respectively, the estimated coefficients of the satisfaction equa-

tion estimated using a linear model with fixed effects. The estimated coefficients are then

used to compute MWP according to equation 1.15. A similar argument to the one in section

1.3.3 can be used to go from equation 1.15 to 1.13, substituting h(·) with JS(·)
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Table 1.5: Job satisfaction, fixed effects OLS: estimated coefficients

Waves 1-18 Waves 9-18
(1) (2) (3) (4)

Real monthly earnings (log) 0.101*** 0.169*** 0.160*** 0.190***
[0.028] [0.033] [0.047] [0.052]

Hours: 1-15 0.276*** 0.350*** 0.220** 0.258**
[0.062] [0.065] [0.099] [0.101]

Hours: 16-30 0.157*** 0.194*** 0.154*** 0.158***
[0.038] [0.039] [0.057] [0.056]

Hours: 49 + -0.037 -0.045 -0.058 -0.060
[0.028] [0.028] [0.041] [0.041]

Work at Night -0.079** -0.070** -0.091* -0.088*
[0.036] [0.036] [0.051] [0.051]

Rotating Shifts -0.111** -0.115** -0.236*** -0.224***
[0.048] [0.049] [0.073] [0.074]

Flexitime 0.070* 0.053
[0.039] [0.038]

Other Flexible -0.078* -0.096**
[0.043] [0.045]

Additional Controls yes no yes no
Observations 33,959 33,959 16,092 16,092
Number of individuals 5,130 5,130 3,384 3,384

Notes: Standard errors in parenthesis; *** p<0.01, ** p<0.05, * p<0.1. Additional controls included in all
equations: gender dummy; age; age squared; family status dummies (3); dependent children dummy; edu-
cation dummies (2); firm size dummies (3); union at the workplace dummy; region dummies (17); industry
dummies (8) occupation dummies (6). The full set of results is provided in Appendix 1

The structure of table 1.5 follows table 1.3 . Results in the first two columns use data

from all waves of the BHPS, while the last 9 waves are used to derive results in last two

columns. In column 1 and 3 overall job satisfaction is modelled as a function of our key job

characteristics only, while the same set of covariates used in the previous duration analysis

is included in column 2 and 4

Estimated coefficients and implied MWP obtained using alternative estimators are presen-

ted in the appendix. Almost all the key job characteristics are significantly associated with

job satisfaction in column 1 and these associations are strengthened by the inclusion of the

full set of controls in column 2. Real monthly earnings, together with the two dummies

for short weekly hours have a positive effect on overall job satisfaction, suggesting a “sat-
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isfaction premium” for part-time work. In contrast, a negative effect is found for night and

rotating shifts. The effect of long hours is negative, as expected, although not statistically

significant. Our evidence suggests a positive although not significant effect of flexitime

and a negative and significant effect for other flexible arrangements. We also find the well

documented U-shaped effect of age on our subjective measure of well-being, and lower

levels of job satisfaction for never-married workers (the effects of other characteristics are

not significant).

Table 1.6 presents estimated MWP for each of the job characteristics of interest, interpreted

as the percentage of monthly earnings that a worker is willing to trade off for each job

characteristic considered, in order to hold job satisfaction (and by assumption utility) fixed.

Table 1.6: MWP estimates using job satisfaction, fixed effects OLS

MWP (%) S.E.

Hours: 1-15 -0.873*** 0.051

Hours: 16-30 -0.681*** 0.080

Hours: 49+ 0.302 0.217

Work at Night 0.512 0.340

Rotating Shifts 0.975 0.600

Flexitime -0.243 0.162

Other Flexible 0.658 [0.467
Notes: *** p<0.01, ** p<0.05, * p<0.1. MWP’s are ex-
pressed as fraction of real mothly earnings. MWP’s for each
characteristic are obtained using coefficients from table 1.5,
column 2. MWP’s for Flexitime and Other Flexible are
obtained using coefficients from the same table, column 4.
Standard Errors are obtained using Delta Method

The strong “satisfaction premium” for short hours translates in our context in very high

estimated MWP. According to our estimates “traditional” full time workers are willing to

take a monthly earnings cut of roughly 87% and 69% when moving to a job characterized

by, respectively, less than 15 hours and 16-30 hours per week. Compared to the results

obtained using job-to-job transitions, the estimated MWP are almost twice as large. We
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interpret the high statistical significance on the one hand, and the implausible magnitude on

the other, as the signal of some possible misinterpretation of the underlying methodology

which we discuss below. Among the remaining MWP for job attributes of interest, none of

them is statistically significant at conventional levels.

In order to explore the potential consequences stemming from linearization of the outcome

- implicit in our FE linear model for job satisfaction - we estimated the same model using

the BUC estimator proposed by Baetschmann et al. (2015). The results are presented in the

appendix, together with those obtained using a naïve pooled ordered logit which neglects

unobserved heterogeneity. Looking at the implied MWP, we found almost no difference

between the results presented above and the ones obtained using the BUC estimator, sug-

gesting that linearizing an intrinsically ordinal outcome when the focus is on ratio between

coefficients provides a good approximation. On the other hand, a comparison between

estimated MWP with and without fixed effects, confirms, the crucial importance of indi-

vidual unobserved heterogeneity when dealing with subjective measures of well-being, as

argued by Ferrer-i-Carbonell and Frijters (2004).

1.5 A comparison and some possible interpretations

How do the the two sets of estimated MWP compare? The signs of the MWP estimates

coincide for all the job characteristics of interest (except flexitime which is not significant)

but there are considerable differences in significance and magnitude. Looking at statistical

significance MWP for short hours are highly significant using the job satisfaction approach,

while MWP implied by the duration model coefficients are not, with the exception of the

MWP for 1-15 weekly hours. The same applies for the estimated MWP for night shifts

which is significant only in the duration estimates.

Do the differences in magnitude form systematic patterns? The job satisfaction approach

seems to amplify the effect of short hours. Using job delivers MWP lower magnitude,

although not significant or slightly significant, implying a more realistic pay penalty. One
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may be tempted to argue, then, that the satisfaction approach tends to overestimate coeffi-

cients on non-monetary characteristics relative to the money measure, resulting in overes-

timated MWP (Benjamin et al., 2012). This pattern, however, is not clear-cut. Indeed, our

estimated MWP for long hours derived using job satisfaction is relatively low in magnitude

compared to its duration counterpart, and the same holds true for night shifts.

The differences and similarities just outlined give reason to think that the estimated quant-

ities using the two approaches are linked but implicitly different. What emerges from the

comparison is a potential difference between the theoretical “object” we would like to es-

timate and its empirical counterpart. Drawing on recent advances in the literature that

distinguish between decision and experienced utility (Kahneman et al., 1997), we now link

together the three main “ingredients” of our measures of MWP: job mobility, utility, and

job satisfaction.

1.5.1 Some possible interpretations

On the one hand the duration approach is based on a on-the-job search model. Workers

change their job when facing a new job offer only if the expected value of the new job

is higher than the one of the current job. If workers choose those jobs which deliver the

highest level of utility among the available options, job-to-job transitions should reveal

impact of job characteristics on workers’ utility. The concept of utility used here is decision

utility, defined as the weight attributed to a given outcome in making a decision(Kahneman

et al., 1997).

On the other hand the satisfaction approach is based on a measure of experienced utility,

which is the actual wellbeing (in our case job satisfaction) associated with a given outcome

(Chetty, 2015). There is an ongoing and recently expanding debate in behavioural econom-

ics about the extent to which experienced and decision utility coincide (Chetty, 2015). In a

related study to ours, Akay et al. (2015) compare the income-leisure preferences revealed

by labour supply choices (based on static labour supply models) with preferences implied

by SWB equations. They conclude that preferences coincide on average, although they
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differ among some sub-populations who may be subject to choice constraints or optim-

isation errors. In the case of job search there appears to be considerable evidence that

job satisfaction is a good predictor of quitting behaviour (see among others Hamermesh,

1977; Freeman, 1978; Clark, 2001; Lévy-Garboua et al., 2007; Green, 2010). If workers

choose those jobs which deliver the highest level of (decision) utility among the available

options, and job satisfaction is a good predictor of such choices, then utility and job satis-

faction would appear to be closely linked. This represents a natural extension, to the job

domain, of the theoretical approach adopted by the subjective well-being literature, which

implicitly assumes that people make choices to maximise to SWB and that they are well

informed about the consequences of their choices in terms of SWB (Benjamin et al., 2012).

Job satisfaction can then be used as a proxy for utility and we can write

JS = g(U (w,X)) (1.17)

where, following our previous notation, w and X represent, respectively, wage and non

wage characteristics of the job and g(·) is a continuous, differentiable function. Differen-

tiating both JS (w,X) with respect to w and the generic element x within the vector X we

get:

JSx = gUUx

JSw = gUUw (1.18)

From which:
Ux

Uw
=

JSx

JSw
(1.19)

Looking at quits:

h(w,X) = f (U (w,X)) (1.20)
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From which:

hx = fUUx

hw = fUUw (1.21)

It would then follow:
Ux

Uw
=

hx

hw
=

JSx

JSw
(1.22)

From equation (1.22) it follows that the two methodologies should be able to estimate, in

theory, the same empirical quantity of interest. Our empirical analysis, however, suggests

that this is not the case using our data.

The second possibility we consider is that utility and SWB are distinct concepts. Workers

make choices which are assumed to maximize utility but do not necessarily lead to the

highest level of SWB. In this interpretation workers trade off SWB against other things they

care about. Benjamin et al. (2012) provide experimental evidence that when alternatives

differ in terms of money, subjects make choices that conflict with their SWB rankings of

outcomes. Glaeser et al. (2014) find that people move to cities where they will be less

happy but enjoy higher earnings or lower housing costs, and Adler et al. (2015) find that

considerable numbers of people prefer health to happiness. In this view, SWB can be

regarded as an argument in the utility function rather than a proxy for it.

For instance, it may be that job characteristics have both a direct impact on utility, and an

indirect impact mediated by job satisfaction. Worker’s utility could be re-written as:

U (w,X ,JS (w,X)) (1.23)

This is similar to the general theoretical formulation of Benjamin et al. (2012):

U (X ,H (X)) (1.24)
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with H(X) being SWB. The authors claim that, if people seek to maximize SWB alone

the vector of partial derivatives UX will equal zero. Using data on hypothetical choice

and SWB indicator, they show that in the equation ∆Uis = βH∆His +βX ∆Xis + εis, the null

hypothesis H0 : βX = 0 can be easily rejected. They use this as a test of the hypothesis that

SWB is an important argument of the utility function rather than being its representation.6

Translating this argument to the case of job satisfaction amounts to re-writing equation

(1.20) as:

h(w,X) = f (U (w,X ,JS (w,X))) (1.25)

If equation (1.25) embodies the true relation between job satisfaction and utility, rather

than equation (1.20), then the ratio
hx

hw
is no longer equal to

Ux

Uw
.

hw = fUUw + fUUJSJSw

= fU (Uw +UJSJSw) (1.26)

hx = fUUx + fUUJSJSx

= fU (Ux +UJSJSx) (1.27)

6Focusing on job satisfaction, Clark (2001) provides a theoretical justification for the inclusion of job
satisfaction measures inside an equation representing voluntary separations which seems in line, at least
implicitly, withBenjamin et al. (2012). Using his notation, Vi is the value function describing the utility
stream in job i. An individual will quit to job j if Vj −C > Vi, with C being a moving cost. He argues
that what’s inside Vi is not just the wage rate, but a set of characteristics, so that Vi = V (wi,hi,Zi), with wi
representing the wage, hi the number of hours worked, and Zi a set of job characteristics. Interestingly, he
suggests to use job satisfaction as a measure of “job quality” or “utility at work” within the Z vector of non
monetary characteristics. This implicitly defines job satisfaction an element of the utility function, a measure
of quality of the job match on the side of the worker, which can be traded off for something else that workers
care about.
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Looking at the ratio

hx

hw
=

fU (Ux +UJSJSx)

fU (Uw +UJSJSw)

=
Ux +UJSJSx

Uw +UJSJSw
(1.28)

If we believe this interpretation of job satisfaction, and the consequent representation of

the rate for voluntary separations in equation (1.25), the last equation implies the estimated

MWP we presented in table 2 need not to coincide with the marginal rate of substitution ,
Ux

Uw
, given we are not controlling for job satisfaction in that case.

Our empirical framework is different from the one in Benjamin et al. (2012) in that we

structurally interpret ratios of coefficients of a duration model for job quits rather than fo-

cusing on the impact of a set of explanatory variables in a random utility model for choices.

However, in the same spirit, we can verify whether the inclusion of job satisfaction in our

duration model changes the effect of our job characteristics of interest. Under the hypo-

thesis that the unique driver of workers’ voluntary separations is job satisfaction, we would

expect no explanatory power for job characteristics once job satisfaction is controlled for.

In contrast, if non monetary characteristics have both a direct impact on utility and an indir-

ect one mediated by job satisfaction, we would expect that the ones which are significant in

our specification for the hazard ratio of separation stay significant even after the inclusion

of job satisfaction. Our results are presented in table 1.7.

As expected, our findings confirm that job satisfaction is a good predictor of voluntary

quits. Its coefficient in our duration model is negative and highly statistically significant,

confirming the previously mentioned findings in the literature: people who are less satis-

fied of their jobs are more likely to quit. Second, focusing on our job characteristics of

interest we find that controlling for overall job satisfaction slightly changes the magnitude

of coefficients in the direction predicted by our satisfaction equation. Comparing the es-

timated coefficients in table 1.3 and table 1.3, however, we find that those characteristics
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which were significant before the inclusion of job satisfaction - monthly earnings, long

hours, and night shifts - are still significant when job satisfaction is added to the model

specification. Our evidence seems to suggests that the interpretation of job satisfaction as

an element of the utility function is preferable to the one under which it can be used as a

proxy for it. We regard this evidence as a further confirmation of the difference between

(decision) utility and subjective well-being.

Table 1.7: Duration model for job-to-job transitions adding job satisfaction: estimated
coefficients

Waves 1-18 Waves 9-18
(1) (2)

Real monthly earnings (log) -0.312*** -0.164*
[0.058] [0.088]

Hours: 1-15 -0.092 0.079
[0.134] [0.210]

Hours: 16-30 -0.042 0.080
[0.082] [0.119]

Hours: 49 + 0.113* 0.149
[0.062] [0.095]

Work at Night 0.155** 0.099
[0.071] [0.102]

Rotating Shifts 0.075 -0.006
[0.087] [0.154]

Flexitime 0.070
[0.099]

Other Flexible 0.058
[0.161]

Job Satisfaction: Overall -0.227*** -0.242***
[0.014] [0.022]

Additional Controls yes yes
Observations 33,959 16,092
Number of individuals 5,130 3,384
Number of spells 12,330 6,184

Notes: Standard errors in parenthesis; *** p<0.01, ** p<0.05, * p<0.1; Additional
controls included in all equations: gender dummy; age, age squared, family status
dummies (3), dependent children dummy, education dummies (2), firm size dum-
mies (3), union at the workplace dummy, region dummies (17), industry dummies
(8), occupation dummies (6); wave dummies (17). The full set of results is provided
in the appendix.
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1.6 Conclusions

The objective of this paper was to estimate and compare MWP for some job characteristics

using two different approaches. Our evidence suggests that estimates obtained differ across

the two methodologies. Drawing on the recent expanding literature on decision and exper-

ience utility, we presented a potential theoretical explanation of the possible differences

building on alternative interpretations of job satisfaction

We try to assess whether job satisfaction can be interpreted as a measure of job quality

on the workers’ side - hence an element of the utility function - rather than a proxy for

utility as suggested by the economics of happiness literature. In order to so we include job

satisfaction in our duration model for quits, and test the hypothesis that those coefficients

of our relevant job characteristics which were significant before the inclusion of job satis-

faction are still significant when we control for it. Our results show that some of our job

characteristics of interest are likely to have both a direct and indirect effect on the hazard

rate of separation. Under a structural interpretation of the duration model, this evidence

would suggest that job satisfaction stands as element of the utility function rather than its

representation.

Even if we cast legitimate doubts about a structural interpretation of the duration model

due to its necessary simplistic assumptions, the relationship we estimate between job-to-

job transitions and our job characteristics of interest do exist in the data. On the one hand

our results suggest that some job characteristics affect job-to-job transitions. On the other

hand the same characteristics have an impact on job satisfaction. Though job satisfaction

is confirmed to be a good predictor of voluntary job mobility, job characteristics are still

important in an equation for quits even when controlling for it. Job satisfaction seems not

to be the object that people seek to maximize when facing an alternative job offers. It helps

explaining quits, but it is not the only driver of job mobility. It is then better regarded as

one among several elements of the utility function. Job satisfaction, as well as any measure

of subjective well-being, refers to an experience. Borrowing Bentham’s words it refers to
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the feelings coming from the experience of a job. It is then likely that for a number of

reasons, well explained by Khaneman among others, what people actually choose is not

what delivers them the highest amount of pleasure. As a consequence, even in the lucky

case in which we are able to perfectly identify choices, they need not to coincide with what

people actually prefer from a hedonic perspective. This is to say that utility and well-being

are intrinsically connected concepts, but not the same “thing”.

Our results raise obvious questions about which measures of MWP should be preferred

(MWP in terms of decision utility or well-being?) as well as the implications for welfare

measurement and policy. Views differ on whether welfare should be assessed in terms

of decision or experience utility. Both Chetty (2015) and Glaeser et al. (2014) consider

situations of residential mobility but come to opposite conclusions about the use of SWB

measures. Chetty focuses on cases in which families fail to take full account of their own

(and their children’s) experience utility when deciding where to live. Optimal policy may

then be to use tools such as housing vouchers to nudge them into decisions that increase

their SWB. On the other hand Glaeser et al. (2014) argue that people knowingly choose less

SWB for more income and thus SWB is a poor measure of overall welfare, and relying on

it can lead to welfare-reducing policies. Similar considerations may apply to our divergent

measures of MWP of working hours or night shifts. Should they be valued by what workers

choose (knowingly?) or what makes them happy?

One thing appears certain: while economists model individual preferences are the main

drivers of choices, and regard utility an important theoretical construct which represents

them, we should give up the possibility of measuring it through SWB indicators. In light

of this, our estimated MWP will then remain what they actually are: a measure of trade

off between money and non-monetary characteristics in terms of job satisfaction. More

importantly, claiming that satisfaction is a proxy for utility becomes irrelevant once we

accept, as economists, the idea that subjective well-being indicators are welfare measure

per se. Job satisfaction describes one aspect of workers’ well-being which can be used, to
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some extent, to predict part of workers’ behaviour, but does not need to coincide with the

economists’ notion of utility.
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Chapter 2

Measuring the long-run effects of

temporary work using observed

consumption and saving choices

Introduction

Temporary jobs are generally regarded as undesirable jobs. They tend to be associated

with low levels of work-specific training and bad working conditions in terms of wage, in-

security, and schedules (Segal and Sullivan, 1997; Booth et al., 2002; Kahn, 2007). These

characteristics might negatively affect workers’ accumulation of firm-specific human cap-

ital, and motivation, resulting into poor career prospects. Another major detrimental con-

sequence for workers’ welfare is related to the level of employment stability associated to

temporary work, which is likely to reinforce the mechanism leading to low-pay traps and

precariousness. Supporting evidence shows that, after the termination of a temporary job,

individuals are likely to find a new temporary job or to become unemployed, especially if

the temporary work spell comes after an episode of unemployment (Boheim and Taylor,

2002; D’Addio and Rosholm, 2005; Gagliarducci, 2005; Guell and Petrongolo, 2007; Ar-
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ranz et al., 2010).

In contrast, some authors have provided evidence suggesting that temporary employment

can be better regarded as part of a transition towards better and stable jobs. Temporary jobs

might help unemployed individuals to gain some work experience and maintain or acquire

human capital, providing contacts with potential employers, thus serving as stepping stones

towards better and stable jobs, or an opportunity to re-gain employment after displacement.

Several contributions in the applied literature have tested the stepping stone hypothesis, but

the evidence remains mixed. In the US Addison and Surfield (2009) document a stepping

stone effect of temporary work, while Autor and Houseman (2010) find that temporary-

help jobs do not improve subsequent earnings and employment outcomes. Concerning

Europe,Booth et al. (2002), Hagen (2003) provide evidence in favour of the stepping stone

hypothesis for, respectively, UK, and Germany, while weaker evidence is found for the

Netherlands in de Graaf-Zijl et al. (2011). Blanchard and Landier (2002) conclude that the

excess turnover induced by the increase of temporary jobs had negative consequences for

the welfare of young workers in France. Similarly, Amuedo-Dorantes (2000) supports the

view of temporary work as a trap for Spanish workers rather than a stepping stone owing

to the detrimental effects of contractual persistence also observed by Arranz et al. (2010)

for Spain and Gagliarducci (2005) for Italy. Berton et al. (2011) document the coexistence

of both a stepping stone and a scarring effect of temporary work in Italy, with the former

depending on the specific type of contract and tenure with the firm.

The most common approach used in the applied literature to investigate the consequences

of temporary work for future employment outcomes has revolved around estimation of

various models for the conditional probability or the duration up to transitions to different

states, most commonly identified as a new temporary job, unemployment, and a perman-

ent job. While observing workers’ trajectories may provide a good ex-post measure of

how temporary work affects labour market transitions, it explicitly requires a long obser-

vational period, and, more importantly, is not informative about how workers perceive the
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consequences of temporary work for their welfare.

The objective of this paper is to tackle the issue from a different perspective, one that

specifically focuses on how workers’ internalize the potential welfare costs and (or) op-

portunities associated to temporary work. I propose a different empirical framework in

which consumption and saving choices are used as measures of future prospects. A sim-

ilar approach has been recently used by Browning and Crossley (2008) to investigate the

long-run costs of job loss. Given the difficulties in mapping observable short-run changes

in earnings after displacement into long-run welfare costs, the authors suggest a viable al-

ternative based on the idea that consumption changes should reflect agents’ expectations of

the long-run effects of displacement, and their willingness to self-insure against the shock.

In a similar manner, changes in consumption and saving patterns are used in this paper to

understand whether workers expect temporary work to be a stepping stone towards better

jobs, or a source of uncertainty and insecurity.

According to the permanent income hypothesis, individuals who expect their earnings to

permanently increase in the future, should adjust their optimal path by increasing consump-

tion, or, equivalently, decreasing saving. This is likely be the case if temporary jobs are

held by young individuals, and, more importantly, if a stepping stone effect towards better

and stable jobs exists and is perceived by individuals. However, the process that leads to

more desirable jobs can be far from smooth, and workers in temporary jobs might not be

able to perfectly foresee if their contract will be extended, converted, and if not, when they

will re-gain employment, inducing some degree uncertainty.

When individuals face income uncertainty, and have preferences characterized by prudence,

the precautionary motive provides an additional reason for saving other than expected de-

clines in income. As a consequence, individuals who are subject to higher uncertainty

lower consumption and accumulate savings in order to mitigate the consequences of po-

tential future losses. Among the sources of earnings uncertainty, the probability of being

unemployed in undoubtedly one of the most important, and has been used as measure of
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earnings risk in different empirical studies (i.e. Carroll et al., 2003). If temporary work

is associated with low employment continuity and workers in temporary jobs perceive a

greater unemployment risk, they should, in principle, self-insure against the perceived risk

by postponing consumption and saving more.

Using data from all the eighteen waves of the British Household Panel Survey (BHPS here-

after), I first document how temporary work relates to earnings, earnings growth, residual

earnings variability, and unemployment risk for household heads. Compared to perman-

ent employment, temporary work entails an income penalty, but also with higher income

growth in the short run. A simple test based on subjective expectations also suggests that

household heads correctly predict, on average, growth in future earnings.On the other hand,

temporary work increases the likelihood of future spells of unemployment, and entails a

higher variability of residual earnings growth, both of which are used as measures of un-

certainty.

In order to assess which of these two effects dominates, I estimate the reduced forms of

consumption and saving functions.

Once transitory income is accounted for, temporary work for the household head has no

significant effects on average household’s monthly saving and consumption. The evidence

provided indicates that, faced with a temporarily low income, households whose head is

currently employed in a temporary job, smooth consumption in anticipation of higher fu-

ture earnings, consistently with the permanent income hypothesis. Moreover, the lack of a

significant positive (negative) effect on saving (consumption), suggests that the increased

uncertainty associated to temporary work with respect to permanent employment, does not

result in a stronger precautionary motive for saving.

Everything considered, the results provided in the paper suggest that a stepping stone ef-

fect towards better jobs is present and, more importantly, is perceived by individuals and

internalized in their behaviour.

One potential source of endogeneity bias that can affect the results is due to the fact that
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individuals might, in principle, self-select into temporary jobs. As suggested by Lusardi

(1997) and Fuchs-Schündeln and Schündeln (2005), workers less averse to risk are more

prone to end up in jobs with higher risk of unemployment and higher earnings variability.

In order to mitigate the potential endogeneity bias I exploit the panel dimension of the data

by allowing unobserved heterogeneity in all the estimated equations. If self-selection is

driven by characteristics like risk aversion, not fully accounted for by the set of covariates,

allowing for unobserved heterogeneity helps mitigate the problem to the extent that these

characteristics are time-invariant. Moreover, fixed effects should be able to account, at

least partially, for differences in life-time earnings in estimates of saving and consumption

functions.

To the best of my knowledge, Barcelo’ and Villanueva (2010) is the only previous con-

tribution in the literature that looks at the relationship between temporary work and con-

sumption and saving. Although the work by the two authors is aimed at a different task,

and the analysis is based on cross-sectional data, (testing the existence of a precautionary

motive for saving in Spain using temporary work as a proxy for the risk of job loss), their

results are intrinsically related to the analysis in this paper. The evidence by the two au-

thors indicates the existence of precautionary savings for households whose head is in a

temporary job: the average stock of liquid wealth for households headed by male fixed-

term workers exceeds by 30% the one held by households with same characteristics except

for the contract type of the household’s head (open-ended). These findings, in the lights of

the ones in this paper, are suggestive of the intrinsic differences between the Spanish and

British labour market. Contrary to the UK, Spain is, indeed, one of the European countries

where the share of workers in temporary jobs grew the most during the 90s and 2000s, and

where temporary work has been constantly documented as a dead end in the literature.

The chapter is organized as follows. Section 2.1 reviews the literature on temporary work

in Britain. Section 2.2 provides a simple theoretical framework for consumption and sav-

ing under uncertainty. The data used are described in section 2.3. Section 2.4 illustrates
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how temporary work relates to earnings, earnings growth and expectation, unemployment

risk and earnings variability. Estimates of the reduced forms for saving and consumption

functions are presented in section 2.5. Section 2.6 concludes.

2.1 Temporary work in Britain

In the past twenty years Britain has been one of the OECD countries with the least strict em-

ployment protection legislation. This helps to explain why the share of employees covered

by temporary contracts has been quite small during the 90s and 2000s, especially if com-

pared with countries where two-tier reforms have been put in place to overcome labour

market rigidities (e.g. Italy, Spain, France) (Booth et al. 2002).

The analysis of Booth et al. (2002) focuses on the effect of temporary work for British

workers covering part of the time span under analysis in this paper. Using data from the first

seven waves of the British Household Panel Survey (1991-1997), the authors document

negative effects of temporary employment on job satisfaction, work-related training and

wages. However, the authors show that these costs are mainly transitory, suggesting a

stepping stone effect at least for fixed-term workers. The median male (female) fixed-term

worker transit to a stable job in 3 years (3 and a half years), with wages that partially

(men) or fully (women) catch up with those of individuals starting their careers in standard

employment. Seasonal workers, in contrast, face a low probability of moving to permanent

contracts.

However, notwithstanding the improving conditions of the British labour market in the

period considered in Booth et al. (2002), some evidence shows that temporary workers

are more likely to experience unemployment spells, and to exhibit feelings of job insec-

urity. Boheim and Taylor (2002) use BHPS data from 1991 to 1997 to analyse how un-

employment experience affects individuals’ future career. They show that job spells star-

ted after involuntary separations like the end of a temporary contract are more likely to

terminate with another involuntary separation or exit to unemployment. In a companion
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paper,Boheim and Taylor (2000), using the same data, document that among men (wo-

men) 53% (56%) of temporary jobs exits are followed by employment, while 39% (28%)

by unemployment, and 8% (16%) by inactivity. The fraction of temporary jobs ending in

unemployment raises to 45% (48%) when focusing on jobs started after unemployment.

Turning to subjective measures, Green and Heywood (2011) find that temporary jobs have

strong negative effects on satisfaction with job security. Similar results can be found in

Dawson and Veliziotis (2013). Green et al. (2000) using data from the Social Change

and Economic Life Initiative (1986) and Skills Survey (1997) documents a strong positive

association between temporary jobs and perceived job insecurity in all occupations.

2.2 Conceptual framework

The conventional theoretical framework used to analyse consumption and saving choices

is the life-cycle model developed by Modgliani (1954) and Friedman (1957). Since its

original formulation, the model has been enriched by several modifications in order to

relax part of its assumptions, and explain some “consumption puzzles”. Allowing for

uncertainty and prudence is one of the most important among these modifications.

When income is uncertain and agents’ preferences exhibit prudence, consumption and sav-

ing respond not only to expected changes in income, as predicted by the permanent income

hypothesis, but also to the degree of uncertainty. This creates an extra reason for saving

which is referred to as the precautionary motive (Leland 1968 and Sandmo 1970).1. All

these characteristics can be illustrated using a very simple, yet intuitive, model based on

Caballero (1990) and Weil (1993).

In this model, an infinitely living agent chooses the optimal consumption path to maximize

the expected present discounted value of future utility. The utility function is assumed to

1Kimball (1990) defines prudence as “the propensity to prepare and forearm oneself in the face of uncer-
tainty”, in the context of consumption and saving it “represents the intensity of the precautionary motive”.
From an algebraic perspective the existence of a precautionary motive is associated with convexity of the
marginal utility function, or, equivalently, the existence of a a positive third derivative, as shown by Leland
(1968) and Sandmo (1970). Kimball (1990) provides a measure of absolute and relative prudence using the
ratio between the third and and the second derivative of the utility function.
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be exponential with constant absolute risk aversion (CARA) to allow for prudence, and to

ensure a closed form solution for the consumption function. The maximization problem

can written as:

max
ct

Et

∞

∑
i=0

β
i
(
− 1

θ

)
exp(−θct+i) (2.1)

The income process is described by

yt = ρyt−1 +(1−ρ)ŷ+ εt (2.2)

The term ŷ represents the deterministic component of income, and corresponds to its long-

run average. The coefficient ρ governs the persistence of income shocks εt , which are

further assumed to follow a N
(
0,σ2) distribution. ε is the only source of uncertainty in

this setup. Under these assumptions, it can be shown that a closed form solution for the

consumption function exists and can be written as:

ct =
R−1
R−ρ

(
yt +

1−ρ

R−1
ŷ+wt

)
− θσ2

R−ρ
(2.3)

The RHS of the above equation is composed by two parts. The first component represents

the amount of consumption under certainty equivalence, which is to say the level of con-

sumption which would prevail in absence of uncertainty. The second part is what defines

the precautionary motive for saving. The optimal consumption path depends negatively on

the variance of the income process σ2, on the coefficient of relative prudence θ character-

izing the utility function, and the persistence of income shocks ρ .

Following Campbell (1987), and Wang (2003) it can be shown that, by imposing the budget

constraint, the consumption function can be alternatively re-written in terms of saving as:

st =
1−ρ

R−ρ
(yt− ŷ)+

θσ2

R−ρ
(2.4)
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The second component of the RHS in this latter equation, already seen with opposite sign in

the consumption function, tells us how saving react to uncertainty about future income. The

first component reflects, instead, the agent’s demand for savings due to expected change in

income. This is the level of saving which would prevail in absence of uncertainty (σ2 = 0).

It shows how savings can be generated due to the difference between the current and the

expected level of income, When yt > ŷ, agents expect that their income will fall in the

long run. This induce them to save a fraction of current income, which depends on the

persistence of the income shocks ρ . The lower the persistence of the income process, the

higher the marginal propensity to save out of current income. Conversely, when yt < ŷ,

agents expect that their income will raise, providing an incentive to borrow, or decrease

their level of savings.

Although the assumptions made about the utility function and the income process are quite

restrictive, the equations above convey an important intuition which will be of crucial

importance when interpreting the results in future sections: expectations and uncertainty

about future income have separate, and potentially opposite, effects on consumption and

saving choices.

2.3 Data description

The empirical analysis in this paper is based on all the eighteen waves of the British House-

holds Panel Survey (BHPS). The BHPS is a nationally representative longitudinal study

run between 1991 and 2008. The information collected within the survey spans a variety

of topics both at the household and individual level, including demographic, educational,

job-related, income characteristics2.

2Between 1991 and 2008 four extension samples have been added to the original 1991 sample: ECHP
extension (waves 7-11), Welsh extension (waves 9-18), Scottish extension waves (waves 9-18), Northern
Ireland extension (waves 11-18). By referring to the BHPS in this paper I refer to the full BHPS sample,
including these extensions. Since longitudinal weights (accounting for differential non-response, including
attrition) are available only for the original 1991 sample, all the regressions in this paper are unweighted. This
might raise concerns about the potential bias induced by unequal sampling probabilities and non-response.
As stated by Solon et al. (2015), regression estimates are biased if sampling and non-response are not in-
dependent of the dependent variable conditional on the explanatory variables. The inclusion of region and
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Focusing on the measure of saving, individual respondents are asked at each wave, the

following question regarding their saving behaviour: "Do you save any amount of your

income, for example by putting something away now and then in a bank, building society,

or Post Office account other than to meet regular bills?“. If the answer is positive, they are

asked to report the average monthly amount.

Concerning consumption, respondents are asked to report the average weekly expenditures

of the household for food and grocery. This information is recorded in twelve expenditure

bands ranging from 1 (10£ per week), to 12 (more than 150£ per week)3. Additional

information is also available at each wave concerning housing costs, either in the form

of mortgage repayments or rent, and households’ monthly expenditures on gas, oil and

electricity. On top of that, two additional questions have been added to the questionnaire

from wave 7 onwards about personal expenditures for leisure activities and outside meals.

Similar to food and grocery expenditures, this information is also recorded in bands. Since

consumption bands are quite “tiny” - roughly 10£ - the bands’ mid points are used as an

approximation in this paper. This is done to overcome the modelling difficulties connected

to the discrete nature of the variable.

It is evident from this discussion that consumption and saving information contained in the

BHPS provides a partial picture of how households allocate their resources. On the one

hand, only average active savings are measured. On the other hand, consumption inform-

ation is available only for sub-components of total expenditures. Finally, both measures

are subject measurement error due to under-reporting and recall bias. Notwithstanding

these limitations, these imperfect measures have been extensively used in the literature

(cite examples). Moreover, since consumption and saving are in principle related through

the budget constraint, estimation of both saving and consumption functions mitigates con-

wave dummies in all regression models should address the issue of unequal probabilities due to the extension
samples. Non-response, instead, is not issue to the extent that, conditional on the set of covariates, data are
missing completely at random.

3The only exception is wave one, in which households were required to put a precise figure in answer to
this question.
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cerns about how data reliability might affect the results, by providing a double test of the

same hypotheses.

Although information about saving, and some of the dimensions of consumption is relative

to individuals, saving decisions are likely to be taken at household level, as often argued in

the literature. For this reason, I follow the the standard approach in the applied literature

and consider the head of the household as the unit of observation.

As in previous literature, I restrict the sample to individuals who are constantly observed as

household heads, and whose the partner, if present, remains the same (this is the definition

of an “intact household” used, among others, by Carroll and Samwick 1997; Giavazzi and

McMahon 2012, and Guariglia 2001). Consumption and saving of head and partner are

aggregated accordingly. I further exclude household heads who are: i) younger than 20 or

older than 65, ii) never observed in employment, iii) self-employed. The resulting sample

consists of 22.992 obervation-years for 3.589 household heads.

The main variable of interest is this paper is an indicator variable for temporary work,

which takes value 1 if the household head reports to be in a temporary job - either fixed-

term or seasonal - at the time of interview, and zero otherwise. Table 2.1 summarizes the

characteristics of the full sample, and of the sub-sample of heads who report to be in a

temporary job at least once. While the fraction of heads in temporary jobs is equal to

3.5% of the sample, 22.4% of them report to be in a temporary job at least once during the

observation period. For these individuals, the average (median) time spent in temporary

work correspond to a fraction of 19% (12%) of the their total number of observations.

Descriptive statistics in the table also suggest that this sub-sample of heads does not differ

greatly from the the full sample for most of the considered characteristics.

The sample distribution of saving and consumption is summarized in table 2.2. All monet-

ary values are deflated using RPI, and are expressed in 2008 GBP. 51% of the households

report zero average monthly savings. The average (median) household’s real monthly sav-

ing flow is roughly equal to £140 (£44), raising to £245 (£150) when focusing on house-
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holds who report positive saving. The average (median) household saves 4.5% (1.8%) of

total earnings, while the average (median) saving household saves 7.8% (5.7%) of earn-

ings.

Household’s expenditures for food and grocery are labelled CONS1 in table 2.2. CONS2

refers, instead, to the sum of expenditures for food and grocery, housing, oil/gas/electricity,

leisure activities, and outside meals. Statistics for CONS2 are relative to waves 7-18 for

which the relevant information is available. The average (median) household consumes

£902£ (£837) in a month, of which £314 (£293) for food and grocery.

These figures compare quite well with diary-based data from the Expenditure and Food

Survey (EFS). Between 2002 and 2008 (2002 is the year in which the Family Expenditure

Survey was replaced by the Expenditure and Food Survey, and the COICOP classification

of expenditures introduced), the average household’s monthly expenditure for food and

grocery was £326. Aggregating items of the COICOP classification comparable to the

ones measured in the BHPS, the average expenditure - between 2002 and 2008 - for food

and grocery, housing (including bills), leisure (recreation and culture), and restaurants, is

equal £1017. This also suggests that the two variables CONS1 and CONS2 represent,

approximatively, 12% and 46% of total expenditures.4.

4EFS data used for these calculations are published by ONS in “Family Spending: 2015”, and are pub-
licly available for online consultation on ONS website.
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Table 2.1: Characteristics of the sample of household heads

Mean - Full Sample Mean - Temp. Work Mean - Full Sample Mean - Temp. Work
Temporary work 0.035 0.224 N. of dependent children in HH
Fraction of obs. period in temp.work 0.031 0.198 none 0.571 0.579
Female 0.281 .391 1 0.184 0.189
Age 2 0.181 0.166
<25 0.031 0.031 3+ 0.064 0.066
25-34 0.202 0.185 N. of adults in HH
35-44 0.312 0.301 1 0.247 0.276
45-54 0.289 0.297 2 0.543 0.517
55+ 0.166 0.185 3+ 0.210 0.207

Occupation: N. of ind. in paid work in HH
Large employers & higher management 0.059 0.029 none 0.025 0.055
Higher professional 0.079 0.074 1 0.388 0.405
Lower management & professional 0.269 0.232 2 0.483 0.446
Intermediate 0.123 0.136 3+ 0.104 0.094
Lower supervisory & technical 0.145 0.124 Log real monthly earnings (Head) 7.290 6.952
Semi-routine 0.144 0.157 4 Log real monthly earnings (Head - 1 yr.) 0.025 0.038
Routine 0.136 0.152 4 Log real monthly earnings (Head - 2 yrs.) 0.039 0.051
Unemployed 0.023 0.049 Unemployed in the 12 months after interview 0.042 0.099
Inactive 0.023 0.045 Log real monthly earnings (HH) 7.621 7.383

Family status Real monthly saving 150.401 122.645
Never married 0.168 0.204 Real monthly expenditures - CONS1 320.500 309.516
In union 0.692 0.644 Real monthly expenditures - CONS2 924.659 874.210
Separated 0.118 0.126
Widowed 0.023 0.025

Observations 22.992 3.631
Units 3.589 501

*Sample mean of CONS2 is relative to waves 7-18 (15,102 observations for 3.015 units)
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Table 2.2: Sample distribution of household’s saving and consumption

Saving (£/month) Consumption (£/month)
Decile Overall If saving CONS1 CONS2

1st 0 38.613 140.016 448.274
2nd 0 60.364 181.222 570.016
3rd 0 92.163 221.263 668.707
4th 5.431 120.729 265.531 764.486
5th 55.725 155.266 304.389 861.555
6th 104.782 217.256 337.949 963.691
7th 156.031 278.627 392.045 1,082.212
8th 252.213 378.319 442.527 1,233.837
9th 430.448 574.388 531.063 1,468.618

Mean 150.401 250.399 320.499 924.659
S.D. 249.676 280.619 153.629 430.447

Notes: CONS1 - food and grocery expenditures; CONS2 - food and gro-
cery expenditures, rent and mortgage repayments, oil/gas/electricity bills,
and expenditures for leisure and outside meals; The distribution of CONS2
is relative to waves 7-18.

2.4 Earnings and uncertainty

The objective of the analysis in this section is to investigate how temporary work relates

to earning and uncertainty by looking at the relationship between temporary work and

earnings, earnings growth, residual earnings variability, and unemployment risk.

2.4.1 Temporary jobs and earnings

In the consumption literature, labour earnings are assumed to follow a stochastic process,

which is, in turn, assumed to be known by individuals. Under these assumptions, estimates

of the the income process can be used, in principle, to provide a measure of expected

future earnings, as well as a proxy for the degree of uncertainty faced by individuals.

In the model sketched in section 2.2, as an example, the deterministic component of the

income process corresponds to its long-run average, and is the best guess that individuals

can make about their future level of earnings. As a consequence, a first way to look at
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the relationship between temporary work and expectations would be to estimate an income

process which explicitly accounts for temporary work. This would, however, require some

specific assumptions about the true structure of the stochastic process.

In order maintain some degree of agnosticism about the latter, a simpler, but still inform-

ative, approach is adopted here. I first estimate the following regression to describe the

evolution of labour earnings for each individual:

lnyit = β0 +βTW TWit +βX Xit +dt + ci +uit (2.5)

where lnyit is the log of average monthly labour earnings, and is derived from the measure

of individual annual labour income provided in the BHPS. The vector Xit contains a set

of individual demographic and work related time-varying characteristics, dt is a set of

time dummies, and ci represents individual unobserved heterogeneity. The main variable

of interest is TWit , the indicator variable for temporary work described in the previous

section.

The equation is estimated via fixed-effect OLS. The use of fixed effects allows to account

for time-constant unobservable determinants of earnings potentially known to individuals,

and offers an interpretive advantage. By focusing on within-indvidual variations, the coef-

ficient βTW tell us how, on average, earnings during a temporary job compare with earnings

during a permanent job for a given individual. The estimated βTW in table 2.3 (column 1) is

found statistically significant and equal to -0.3373, suggesting that temporary work entails

a severe earnings penalty with respect to permanent employment, equal to roughly 38%.

Turning to income changes, the following regression is used to test whether whether tem-

porary work is followed by earnings growth:

∆lnyt,t+ j = δ0 +δTW TWit +δX Xit +dt + ci + εit (2.6)

where ∆lnyt,t+ j is the change in log labour income between t and t + j (lnyt+ j− lnyt).
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The regression is separately estimated for 1-year-ahead ( j = 1), and 2-years-ahead ( j = 2)

variations.5

The conditioning set on the RHS of equation (2.6), like the one in equation (2.5), pur-

posely contains only information about individual characteristics at time t. It represents

a subset of the full information set available to agents, ΩF
it , to form expectations about

future changes in income. The earnings growth equation can, then, be interpreted as a

representation of rational expectations in which time invariant unobserved heterogeneity

complements the limited information set available to the econometrician, ΩE
it , by capturing

part of unobservable private information.

The estimated δTW for the case j = 1, and j = 2, are presented, respectively, in columns 2

and 3 of table 2.3. The results indicate that, on average, compared to permanent employ-

ment, temporary work is followed by a 11.2, and 13.8 percentage points higher earnings

growth within, respectively, 1 year, and 2 years.

A natural question is whether the rational expectations argument is likely to hold, which

is to say the extent to which realized changes in income correspond to what individu-

als expect. A partial answer to this question can be provided resorting to BHPS data on

subjective expectations reports. Respondents of the BHPS are asked every year to report

subjective expectations regarding their financial situation in the next year. The answers are

coded into four categories; “don’t know”, “same as now”, “better than now”, and “worse

than now”. The ordinal indicator variable for expectations reports, ERit , can be thought

as the representation of a latent continuous variable measuring expectations about future

changes in economic conditions.

I provide a simple test to check whether future income realizations are consistent with

5The use of a log specification for earnings might rise some concerns about the possibility of excluding
individuals who are unemployed and potentially experienced a spell of temporary work. The use of the BHPS
derived variable for annual earning mitigates the issue: even in the presence of an unemployment spell the
amount of annual labour earnings does not need to be zero if the unemployment spell did not cover the entire
year. In order to understand whether the issue is still likely to bias the results, the level equation has been
estimated without logs, and the growth equations have been estimated using the simple difference (∆yt,t+ j),
and a percentage difference which uses at the denominator the average between the begin and the end of the
period level to avoid the zero problem (((∆yt,t+ j)/(ȳit,t+ j)). The results are insensitive to such changes.
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individuals’ forecasts measured by their subjective expectations. The test is based on a

simple OLS regression of future income growth - ∆lnyt,t+ j - on the ordinal indicator vari-

able representing financial expectations ERit . The results of this test are provided in table

2.3.

Reassuringly enough, the test shows that the coefficients of interest are statistically signi-

ficant, and have the expected signs. Optimistic expectations are associated with positive

earnings growth, while the opposite holds true for expected worsening of future financial

conditions. Notwithstanding the limitations of subjective expectation reports ( i.e. the

phrasing of the expectations question only asks individuals to comment on how they will

be ‘financially’ in a year’s time and, hence, is relatively vague), the test confirms previ-

ous findings in Brown and Taylor (2006) about their forecasting accuracy, and mitigates

potential concerns about the applicability of the rational expectations argument mentioned

above.

Table 2.3: Temporary jobs and earnings

Earnings Earnings growth Subjective expectations test
ln(yit) ∆ ln yit,t+1 ∆ ln yit,t+2 ∆ ln yit,t+1

FE OLS FE OLS FE OLS FE OLS

(1) (2) (3) (4)

Temporary work -0.3373*** 0.1062*** 0.1298***
[0.020] [0.025] [0.031]

ERit = “worse” -0.0621***
[0.014]

ERit = “better” 0.0345***
[0.010]

Additional controls yes yes yes yes

Fixed effects yes yes yes yes

Observations 22,992 17,812 14,883 17,812
Units 3,589 3,317 2,798 3,317

Notes: Robust standart errors in brackets; Column (1) dependent variable is the log of annual labour earnings. Columns
(2)-(4) and (3)dependent variables are, respectively, the 1-year-ahead and 2-years-ahead change of log annual labour
earnings. Coefficients are estimated using fixed effect OLS. Additional controls included in all equations : age dum-
mies (5), occupation dummies (6), unemployment dummy, inactivity dummy, industry dummies (8), number of de-
pendent children, number of adults in the households, number of household’s members in paid employment (3), region
dummies (17), wave dummies (17). The full set of results is provided in Appendix 2
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2.4.2 Two different measures of uncertainty

In order to provide a picture of how temporary work relates to uncertainty, a measure for

the latter is needed. In the analysis below I focus on two alternative proxies for earnings

uncertainty commonly used in the applied literature: a measure of earnings variability

(Carroll and Samwick, 1997, 1998) and the probability of future unemployment (Carroll et

al., 2003).

The first of the two proxies is defined as the variability of the unexplained component of

earnings growth, and is measured as the squared residual from the earnings growth regres-

sion (1-year-ahead) presented above. Using the variability of unexplained earnings growth

as a proxy for uncertainty, however, presents some major drawbacks. Most importantly,

observed fluctuations in unexplained earnings, or earnings growth, partly reflect unob-

served heterogeneity or choices, and not only unavoidable risk (see, among others,Low et

al., 2010). While unobserved heterogeneity can be dealt with by exploiting the longitud-

inal dimension of the data, over-estimation of the level of uncertainty is still likely, due the

existence of superior information available to the agents. Guiso et al. (1992), and Domin-

itz (2001) propose a possible solutions to this second problem when detailed data about

subjective probabilistic expectations are available. In this case, subjective earnings uncer-

tainty can be indirectly measured as the variance of the subjective expected distribution of

earnings.

While the coarseness of BHPS data on subjective expectations prevents this type of ana-

lysis, individual expectations reports can still be used to mitigate, at least partially, the

issue. To the extent that these reports contain additional private information available to

agents, they can be used to “filter-out” this information from the estimated residuals of the

earnings growth regression (Ramos and Schluter, 2006). Following Ramos and Schluter

(2006), I first run a simple test to check whether the former condition is met. The test is

based on the following OLS regression:
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Table 2.4: Filtering out private information form estimated residuals

Estimated residual earnings growth
ε̂it

ERit= “worse than now” -0.0427***
[0.010]

ERit= “better than now” 0.0196***
[0.006]

Observations 17,812
Notes: Robust standart errors in brackets; The dependent variable is the estimated
residual from the earnings growth regression (1-year-ahead). The regression is es-
timated using OLS

ε̂it = π0 +πERit +νit (2.7)

where ε̂it is the estimated residual from the earnings growth equation, and ERit is the cat-

egorical variable representing expectation reports. If all the relevant information available

to agents when forming expectations is contained in the information set available to the

econometrician when estimating ∆lnyt,t+1, or if expectation reports are completely ran-

dom, the vector π̂ should be identically equal to zero. The results in table 2.4 below reject

this hypothesis. The coefficients of the dummies for each category are statistically signi-

ficant, and “well-behaved”, exhibiting opposite signs with respect to the baseline category

- “same as now”.

The first measure of of the two measure of uncertainty is, then, computed using the “squared

filtered residuals” as follows:

ν̂
2
it = (ε̂it− (π̂0 + π̂ERit))

2 (2.8)

Although the filtering procedure is undoubtedly a crude way to clean the residuals from

private information, panel A of figure 2.1 shows that the derived measure ν̂2
it is actually

capturing some subjective uncertainty. In the graph, the mean value of the variable is
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plotted against a categorical variable measuring workers’ satisfaction about job security

provided in the BHPS. The average values of the squared filtered residuals are decreasing

with increasing reported levels of satisfaction with security, measured on a Likert-type

scale from 1 to 7.

Panel B of the same figure compares, instead, the average values of the estimated measure

of uncertainty in two groups defined by, respectively, individuals currently employed in

temporary jobs, and with permanent contracts. Notwithstanding the potential limitations

of the chosen measure, the graph clearly shows that individuals in temporary jobs exhibit

a much higher degree of earnings uncertainty.6

In order to provide a more analytical picture, I estimate the following regression for the

squared filtered residuals:

ν̂
2
it = γ0 + γTW TWit + γxXit +dt +ξit (2.9)

Given individual fixed effects have been already partialled out from the residuals of the

earnings growth regression, they are excluded from the conditioning set of the above equa-

tion, which is estimated via OLS. The estimated γTW in table 2.5 (column 1) confirms

what already visible in the plots. Temporary work is significantly associated to higher

uncertainty. The conditional variance of the filtered residuals is 2.5 times larger for indi-

viduals in temporary work with respect to the baseline category represented by individuals

employed with a permanent contract.

Concerning the second of the proposed measures of uncertainty, the probability of ex-

periencing spells of unemployment is undoubtedly one of the most important among the

possible sources of income risk. Although unemployment does not appear in the income

process used for illustrative purposes in section 2.2, some authors have specifically used

unemployment risk as a measure of uncertainty to quantify the importance of the precau-

tionary motive for saving. Carroll et al. (2003), as a notable example, uses numerical

6Similar results are obtained if the sample mean is replaced by the median value in the two groups
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techniques to obtain a consumption function which explicitly depends on the probability

of job loss. The implications of Carroll’s model are quite similar to the ones described

in section 2.2. An increased unemployment risk lowers consumption and triggers assets

accumulation for precautionary reasons.

Similarly to what seen for the first measure of uncertainty, Panel A in figure 2.2 shows

the fraction of individuals currently employed who experience unemployment in the year

following the interview, conditional on the reported level of satisfaction with job security.

The graph clearly indicates a positive correlation between feelings of job insecurity and

future job loss.

Panel B in the same figure compares, instead, the unconditional probability of unemploy-

ment in the twelve month after the interview for individuals in temporary jobs and individu-

als with permanent contracts. Only 2.5% of individuals currently employed with perman-

ent contracts experience a spell of unemployment in the subsequent year, compared to the

12% of those in temporary jobs. Individuals in temporary jobs, however, can be potentially

very different from individuals in permanent jobs on several dimensions which are likely

to affect the probability of future unemployment spells. In order to account for these ob-

servable and unobservable differences, I estimate the following model for the conditional

probability of unemployment:

Pr (Uit+1 = 1|Zit) = F (λ0 +λTW TWit +λxXit +dt + ci + εit) (2.10)

where Zit is shorthand notation for the full conditioning set.

In the equation above, Uit+1is an indicator variable which takes value 1 if the individual

experiences a spell of unemployment in the twelve month after the interview. Only indi-

viduals currently employed are included in the estimation sample. The model is estimated

using a linear probability model with fixed effects, and a conditional fixed effect logit es-

timator. When the logit estimator is used, F (·) is the cumulative density function of the

logistic distribution. When the linear probability model is estimated F (·) is simply the
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identity function.

The linear probability model should provide a good approximation for the conditional

probability, and has the advantage of a straightforward interpretation of its coefficients

in terms of marginal effects. On the other hand, the conditional fixed effect logit estim-

ator accommodates both the discrete nature of the dependent variable and distribution-free

unobserved heterogeneity, but comes at the cost of the impossibility to compute average

partial effects.

The estimated λ̂TW for both estimators is reported in columns 2 and 3 of table 2.5. Tempor-

ary work is found to be a statistically significant predictor of future unemployment spells.

The estimated coefficient of the linear probability models implies that the probability of ex-

periencing a spell of unemployment in in the next twelve months is 4.6 percentage points

higher for individuals currently employed with a temporary contract. The effect, which

might seem small in absolute terms, is quite big if compared to the average unconditional

probability in the sample, roughly equal to 5%, implying a twofold increase.

The estimate obtained using the conditional logit estimator confirms the existence of a

positive and statistically significant effect of temporary work on the probability of future

unemployment. However, the impossibility to compute marginal effects prevents a com-

parison of magnitudes. 7

7The huge drop of sample size is due to the “conditional” nature of the estimator: only observations with
an actual change in the dependent variable contribute to the likelihood function.
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Figure 2.1: Squared filtered residuals
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Figure 2.2: Unemployment in the twelve months after the interview
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Table 2.5: Temporary work and uncertainty

Squared filtered residuals Unemp. prob. in the 12 month after interview
ν̂2

it Pr (Uit+1 = 1)

OLS FE OLS (LPM) FE Logit

(1) (2) (3)

Temporary work 0.3563*** 0.0542*** 1.1557***
[0.080] [0.009] [0.276]

Additional controls yes yes yes

Fixed effects no yes yes

Observations 17,812 17,320 2,472

Units 3,317 3,307 363
Notes: Robust standart errors in brackets; Column (1) dependent variable is the squared filtered residual from the earnings
growth equation (1-year-ahead). Column (2) and (3) dependent variable is a dummy variable taking value 1 is the indi-
viduals has experienced a spell of unemployment in the 12 months after the interview. dditional controls included in all
equations : age dummies (5), occupation dummies (6), unemployment dummy, inactivity dummy, industry dummies (8),
number of dependent children, number of adults in the households, number of household’s members in paid employment
(3), region dummies (17), wave dummies (17). The full set of results is provided in Appendix 2

2.5 Consumption and saving

The evidence provided in the previous section shows that household heads in temporary

work tend to have lower earnings, higher earnings growth, and higher uncertainty. Since

subjective expectations are consistent, on average, with future earnings growth, the results

also suggest that the latter is likely to be anticipated. As discussed in the introduction, this

mirrors the two contrasting effects of temporary work for workers’ welfare documented in

the literature. Whether a stepping stone towards better jobs effect is perceived by work-

ers, and, most importantly, it dominates over perceived insecurity about the future is the

question addressed in this section.

I exploit the insights from the simple model described in section 2.2: if earnings are tem-

porarily low, saving should decrease in order to smooth consumption in anticipation of

higher expected future income; higher uncertainty, in contrast, should translate into higher

saving for precautionary reasons. Consumption and saving choices can, then, be used to

68



assess which of these two effects dominates.

2.5.1 The saving function

As mentioned in section 2.3, the reduced form of the saving function is estimated using

data on household’s average monthly saving as in Guariglia (2001), Guariglia (2002), Rossi

(2009), Klemm (2012), and Giavazzi and McMahon (2012). 8

A major problem encountered when dealing with saving data is the likely mass point at

zero, leading to non-linearity of the conditional mean. The sample considered in this paper

is a clear example, with 51% of households reporting zero monthly savings.

A common approach in the applied literature is to estimate the conditional mean using a

Tobit estimator. However, the Tobit estimator comes at the cost of some restrictive as-

sumptions, namely normality and homoschedasticity. Using the OLS estimator on the log-

transformed data is another possible solution, but would would translate in discarding a big

fraction of the data. Transformations of the type ln(a+ y) would not solve the problem in

the latter case. They might solve the numerical one, but are likely to affect estimation in a

non-sensible way.

In order to overcome these difficulties, the reduced form of the saving function is estim-

ated using a Poisson Quasi Maximum Likelihood estimator. The choice of the estimator is

driven by some characteristics of Poisson QMLE which make it an ideal candidate for the

task: i) the estimator does not require the outcome to be Poisson-distributed in order to be

consistent (Wooldridge, 2010a; Cameron and Trivedi, 2009) ; ii) it does a good job in deal-

ing with big zero mass points (Silva and Tenreyro, 2011). On top of that, Poisson QMLE

is superior to other non-linear estimators in that it does not suffer the incidental parameters

8A common practice in the applied literature dealing with precautionary savings is to estimate reduced
form equations where assets holdings are regressed on a measure of risk. BHPS data, however, do not
contain information about the stock of wealth in a panel dimension. Information regarding wealth holdings
and outstanding debt is available only for 1995, 2000 and 2005. This makes it difficult to compare wealth
holdings among individuals who may have entered the labour market at different points in time. However,
saving flows and stocks of wealth are, in principle, connected through the budget constraint.Guiso et al.
(1992) suggest that focusing separately on the effects of uncertainty on the flow of savings and on the stock
wealth may serve as a double test of the theory of precautionary savings.
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problem, and allows fixed effect estimation of the saving function. The assumption ne-

cessary for the estimator to be consistent, other than non-negativity of the outcome, is an

exponential parametrization for the conditional mean of the saving flow. The latter can be

written as:

E (Sit |Zit) = exp(αs
TW TWit +α

s
X Xit + ci +dt) (2.11)

One limitation of this approach is that it assumes that the observed zeroes in the data are

actual zeroes (i.e. corner solutions) rather than the result of censoring. Since BHPS data

only contains information about active saving, it is not possible to verify if individuals

who report not to be active savers have actual negative savings. Classifying households

with negative saving as non-savers might lead to understate or overstate the magnitude of

the effect of temporary work. If households switch from positive/zero saving to negative

saving when the head is in a temporary job, estimates of the saving equation will provide

a lower-bound for the true consumption smoothing effect. If, instead, households react by

decreasing the amount of outstanding debt, but remaining under the zero-saving threshold,

misclassifying negative saving as zero will bias estimates against the existence of a precau-

tionary motive. In this latter case, however, estimates of the consumption equations should

be able to capture the precautionary response to the extent that the resources used to reduce

the amount of debt are diverted from expenditures measured in BHPS data.

The vector Xit in the equation above includes the same set of individual and household’s

characteristics used in the previous section. Additional regressors are a categorical vari-

able for housing tenure, household earnings (log) , earnings of the household head (log), a

dummy variable for benefit income in the household, a set of financial situation indicators

controlling for financial constraints, and the same set of indicators for subjective expecta-

tions about future economic conditions seen in section 2.4 - which are added here to help

controlling for standard life-cycle reason for saving.

On top of this set of controls, unobserved heterogeneity is accounted for via household
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head-specific fixed effects. As mentioned in the introduction, fixed effect estimation of

the saving function is important for two main reasons. On the one hand, if selection into

temporary jobs is guided by unobservable characteristics, like risk aversion, not fully ac-

counted for by the set of covariates, fixed effects should mitigate the self-selection problem

to the extent that these characteristics are time-invariant. On the other hand, fixed effects,

along other major determinants of life-time income, should be able to account, at least

partially, for permanent income. In this case, the inclusion of the current level of earnings

should approximate the effect of the transitory component of income. This latter consider-

ation will be further discussed when interpreting the results.

2.5.2 The consumption function

The empirical analysis of household’s consumption, revolves around the estimation of a

reduced form of the consumption function described in section 2.2. Following Miles (1997)

and Benito (2006) the reduced form to be estimated can be expressed as:

log(Cit) = α
c
0 +α

c
TW TWit +α

c
X Xit + ci +dt +υit (2.12)

The conditioning set in the RHS of the above equation is identical to the one described

earlier for the saving function, and the same arguments apply here. The dependent variable

requires, instead, some additional considerations. In the ideal setup, Cit would measure

all types of expenditures for each household at each time period, providing a picture of

the chosen consumption path. While the longitudinal structure of the BHPS allows to

follow individuals (and households) through time, availability of data about consumption

is, however, limited.

As anticipated in the data description, two alternative definitions of consumption are used,

and estimation of the consumption function is performed separately for each definition.

When the first variable - CONS1 - is used, Citcorresponds to household’s average monthly

expenditures on food and grocery. Given the latter are likely to be less income elastic than
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other categories of consumption, some concerns may rise about the actual responsiveness

of this type of expenditures to uncertainty about future earnings9. Put differently, one may

argue that, in times of uncertainty, it might be unlikely that households cut back on basic

needs. Although this could potentially bias the results against the existence of a precaution-

ary motive, Benito (2006), using the same BHPS data, finds significant evidence consistent

with the hypothesis that unemployment risk depresses food and grocery expenditures. The

estimated coefficient implies that a 1 percentage point increase in the probability of being

unemployed decreases current consumption by 0.7 percent.

In order to overcome this potential limitation, a second broader measure of non-durable

consumption is also provided, closer to the used by Guiso et al. (1992). In this second

case, Cit is the aggregation of food and grocery expenditures, rent/mortgage repayments,

oil/gas/electricity bills, expenditures for leisure activities, and expenditures for outside

meals. Part of this additional information is available, however, only for waves 7-18 of

the survey, so that the consumption function estimated using CONS2 is relative to a sub-

sample of observations.

Given the concerns about self selection of individuals in temporary jobs, the reduced forms

are estimated using an OLS estimator with household head-specific fixed effects, differ-

ently from Benito (2006). The use of the log-linear specification should not create estima-

tion troubles given virtually no zero is observed in the data.

2.5.3 Results and interpretations

The results in table 2.6 show that, compared to permanent employment, temporary work

for the head of the household is associated, on average, with roughly 15% less saving 10.

The magnitude of the effect is similar in all specifications but the ones in columns 3, 4, and

9Paluch et al. (2012), using data from the Family Expenditure Survey 1974-1993,show that the income
elasticity of expenditures for food and grocery ranges between 0.13 and 0.23 in the period considered.

10Given the nature of Poisson QMLE, the formula (eβ − 1)× 100 is used to calculate the effect of an
indicator variable, where β is the estimated coefficient. It represents the average percentage increase/decrease
in the dependent variable passing from 0 to 1. The effects of all indicator variables used in estimation
performed using Poisson QMLE are computed in the same way
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7. Notably, when household earnings are added to the set of controls, the coefficient on

the dummy variable for head of the household in temporary work drastically drops. The

non significance of the dummy in these two specifications, however, is not due to a lack

of precision. The estimated standard errors are, indeed, constant across specifications, if

not marginally lower in column 7. The results suggest, instead, that the lower level of sav-

ing initially associated to temporary work entirely driven by the lower level of transitory

income associated to temporary work. Once transitory income is accounted for in estim-

ation, no significant difference appear to exist between temporary work and permanent

employment in terms of savings accumulation.

This result can be interpreted in the light of the predictions from the simple model presen-

ted in section 2.2, combined with the evidence provided in section 2.4. From section

2.4 we know that temporary work entails a temporarily low earnings followed by an ex-

pected future increase. What equation 4 predicts is that, in absence of uncertainty, and

everything else being equal, this should induce households to save less to smooth consump-

tion between periods. The initially observed difference in saving associated to temporary

work, and its sensitivity to the inclusion of current earnings, suggest that this mechanism

is at play.

This interpretation, however, holds only to the extent that temporary work for the house-

hold head is uncorrelated with idiosyncratic shocks to savings potentially captured by

household earnings (e.g. partner’s labour supply and earnings). In order to address this

concern, the same equation is estimated using earnings of the head instead of household

earnings. Results in column 4 show that the coefficient on the temporary work dummy is

almost unchanged.

The lack of a significant positive effect of temporary work on saving, once earnings are ac-

counted for, further indicates that the higher uncertainty associated to temporary work doc-

umented in section 2.4, does not trigger savings accumulation for precautionary reasons.

More precisely, compared to permanent employment, temporary work is not associated to a
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stronger precautionary motive for saving. It is important to notice that the estimated saving

function does not embed a proxy for uncertainty in any of the presented specifications. The

objective, in fact, is not to test for the existence of precautionary savings, but to test whether

temporary employment entails extra saving for precautionary reasons. This test does not

require a proxy for risk. To the extent that the documented increased uncertainty translates

into extra saving compared to permanent employment, the temporary work dummy should

exhibit a positive coefficient once other potential determinants of saving are accounted for.

The results in table 2.6 clearly reject this hypothesis.

Estimates of the consumption functions provide further evidence of consumption smooth-

ing, and the absence of a stronger precautionary saving motive. If the interpretation sug-

gested above is correct, which is to say is if temporary work solely entails consumption

smoothing in anticipation of higher future earnings, then it should not have any effect on

households consumption which is almost insensitive to transitory variations of earnings.

This is what we empirically observe in the sample. Temporary work for the household

head is not statistically significant in all but one of the specifications presented in table 2.7.

It is worth noting that these conclusions crucially hinge on the ability to account of un-

observable determinants of consumption and saving potentially correlated with contract

type, and on the possibility to interpret current earnings as the transitory component of in-

come. The choice of fixed effect estimation of both the consumption and saving functions

is mainly driven by these considerations.

In a pure cross-section setup, differences in the amount of saving and consumption between

heads in temporary jobs and individual in permanent employment could, indeed, be due to

differences in permanent income, as well as to different attitudes towards risk, or differ-

ences in prudence and time preferences. In order to isolate the response of saving to trans-

itory variations in earnings we would need to first construct a credible proxy for long-run

income, and then compute transitory earnings as the difference between the observed level

and the predicted permanent component. To solve the endogeneity problem associated to
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unobservables would, instead, require some exogenous variation in the contract type.

Focusing on within variations, together with accounting for a rich set of controls for major

determinants of long-run income and resource accumulation, offers an alternative solution.

To the extent that the permanent income, as well the mentioned unobservables, remain

constant along the observation period, fixed effect estimation should be able to account

for their effect on the two outcomes. Current earnings should, then, pick up the desired

transitory component of income. While the latter measure is not free from measurement

error, this problem is also likely to plague commonly used estimates of permanent income,

which have been shown to be highly sensitive to the predictors used in estimation (Alan et

al. 2014).

Comparing the magnitude of the estimated coefficients of log earnings in the saving and

consumption equations helps to strengthen this interpretation. The coefficient reported in

last column of table 2.6 implies an elasticity of saving to household earnings roughly equal

to 0.65. Looking at the estimated consumption functions, the elasticity is instead, equal to

0.02 both for food and grocery expenditures, and the broader definition of consumption.

The asymmetric response of consumption and saving is consistent with the predictions of

the standard life-cycle model: consumption is nearly insensitive to variations in transitory

income, while saving is fully responsive to differences between current and permanent

income.

The coefficients of the remaining variables in table 2.6 and 2.7 are in line with what expec-

ted.

The indicator dummy for benefit income is included in estimation to account for the fact

that temporary workers are potentially more likely to receive some form of income support

given the lower level of income and the likelihood of unemployment spells. The presence

of a welfare safety net might, in principle, distort saving decisions, as shown by Engen and

Gruber (2001) for unemployment insurance in the US. Consistently with the “crowd-out”

effect found by the two authors, the results show that households who receive some income
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support in the form of benefits tend to save less, although the effect becomes insignificant

once household earnings are included. The decreased level of saving is also accompanied

by a positive effect on food and grocery expenditures, as can be seen in panel A of table

2.7.

The level on monthly saving, and consumption to a much lower extent, is shown to be

monotonically decreasing with worsening of the financial situation, the reference category

being heads of the household reporting to be “managing alright” or “comfortably”. The

variable is included in estimation as an and subjective measure of financial constraints. In

the last specification in table 2.6, financial situations reported to be “quite or very diffi-

cult”, and “just getting by” are associated with, respectively, 50% and 36% lower average

monthly saving. Financial constraints have a much lower, although still significant, effect

on consumption. The response is roughly equal to -2 % for for both food and grocery the

broader measure of consumption when the head reports mild financial difficulties (“just

getting by”). When severe financial difficulties are considered, the corresponding figure

ranges between -5% and -6% . The different response of saving and consumption to finan-

cial constraints can be seen as a further confirmation of consumption smoothing.

The sign of the coefficients for the two indicator variables measuring expectations regard-

ing future economic conditions are consistent with the permanent income hypothesis in

the saving equation. However, only the dummy for expected worsening of future eco-

nomic conditions attracts a statistically significant coefficient, indicating 6% more saving

on average. Concerning consumption, the coefficients imply a lower level of expenditures

associated to optimistic expectations. It is worth notice that, although this result is in con-

trast with predictions from the standard permanent income hypothesis, the estimated effect

- roughly 1% - is quite small.

76



Table 2.6: Saving function - coefficients of interest

Real monthly saving (1) (2) (3) (4) (5) (6) (7)
Head in temporary work -0.1679** -0.1676** -0.0674 -0.0666 -0.1631** -0.1516** -0.0540

[0.066] [0.066] [0.064] [0.066] [0.066] [0.065] [0.063]

Unemployment rate 0.0044 0.0049
[0.008] [0.008]

Log household earnings 0.6419*** 0.5950***
[0.044] [0.042]

Log head’s earnings 0.3262***
[0.039]

Benefit income dummy -0.0759** -0.0345
[0.034] [0.034]

Fin. Exp.: “worse” 0.0763*** 0.0665**
[0.029] [0.027]

Fin. Exp.: “better” -0.0176 -0.0025
[0.021] [0.020]

Fin. Sit.: “quite/very difficult” -0.6947*** -0.6100***
[0.104] [0.101]

Fin. Sit: “just getting by” -0.4476*** -0.4036***
[0.036] [0.034]

Additional controls yes yes yes yes yes yes yes
Fixed effects yes yes yes yes yes yes yes
Observations 20,023 20,023 20,023 20,023 20,023 20,023 20,023
Units 2,784 2,784 2,784 2,784 2,784 2,784 2,784

Notes: Robust S.E. in brackets; The dependent variable is the household’s real average monthly saving flow (£). Unit of observation is the head of the HH.
The equations are estimated using fixed effects Poisson QMLE. Additional controls included in all shown specifications: age dummies (5), occupation
dummies (6), unemployment dummy, inactivity dummy, industry dummies (8), number of dependent children, number of adults in the households, num-
ber of household’s members in paid employment (3), tenure dummies (3), region dummies (17), wave dummies (17). The full set of results is provided in
Appendix 2
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Table 2.7: Consumption functions - coefficients of interest

Panel A: CONS1 (1) (2) (3) (4) (5) (6) (7)
Head in temporary work -0.0249 -0.0251 -0.0191 -0.0193 -0.0264* -0.0242 -0.2301

[0.016] [0.016] [0.015] [0.015] [0.016] [0.016] [0.015]

Unemployment rate -0.0021 -0.0018
[0.002] [0.002]

Log total household earnings 0.0233*** 0.0235***
[0.008] [0.008]

Log head’s earnings 0.0168***
[0.006]

Benefit income dummy 0.0455*** 0.0489***
[0.008] [0.008]

Fin. Exp.: “worse” 0.0083 0.0080
[0.007] [0.007]

Fin. Exp.: “better” -0.0169*** -0.0164***
[0.005] [0.005]

Fin. Sit.: “quite/very difficult” -0.0514*** -0.0497***
[0.012] [0.012]

Fin. Sit: “just getting by” -0.0211*** -0.0202***
[0.006] [0.006]

Additional controls yes yes yes yes yes yes yes
Fixed effects yes yes yes yes yes yes yes
Observations 22,913 22,913 22,913 22,913 22,913 22,913 22,913
Units 3,585 3,585 3,585 3,585 3,585 3,585 3,585

Panel B: CONS2 (1) (2) (3) (4) (5) (6) (7)
Head in temporary work -0.0216 -0.0216 -0.0149 -0.0164 -0.0214 -0.0215 -0.0154

[0.013] [0.013] [0.013] [0.014] [0.013] [0.013] [0.013]

Unemployment rate 0.0003 0.0004
[0.002] [0.002]

Log total household earnings 0.0261*** 0.0239***
[0.006] [0.006]

Log head’s earnings 0.0157***
[0.005]

Benefit income dummy -0.0051 -0.0017
[0.007] [0.007]

Fin. Exp.: “worse” 0.0023 0.0017
[0.007] [0.007]

Fin. Exp.: “better” -0.0111** -0.0105**
[0.005] [0.005]

Fin. Sit.: “quite/very difficult” -0.0595*** -0.0573***
[0.011] [0.011]

Fin. Sit: “just getting by” -0.0206*** -0.0187***
[0.005] [0.005]

Additional controls yes yes yes yes yes yes yes
Fixed effects yes yes yes yes yes yes yes
Observations 15,102 15,102 15,102 15,102 15,102 15,102 15,102
Units 3,015 3,015 3,015 3,015 3,015 3,015 3,015

Notes: Robust S.E. in brackets; The dependent variable in panel A is the log of CONS1 - food and grocery expenditures. The dependent variable
in panel B is the log of CONS2 - obtained aggregating food and grocery expenditures, rent and mortgage repayments, oil/gas/electricity bills, and
expenditures for leisure and outside meals; Unit of observation is the head of the HH; In panel B only observation from waves 7-18 are used due
to availability of additional information about consumption; All specifications are estimated via fixed effects OLS estimator; Unit of observation is
the head of the HH. The equations are estimated using fixed; age dummies (5), occupation dummies (6), unemployment dummy, inactivity dummy,
industry dummies (8), number of dependent children, number of adults in the households, number of household’s members in paid employment (3),
tenure dummies (3), region dummies (17), wave dummies (17). The full set of results is provided in Appendix 278



2.6 Conclusions

The objective of this paper was to provide a new empirical approach to the consequences

of temporary work for workers’ welfare. Rather than focusing on transition rates observed

ex-post, as common practice in the literature, consumption and saving choices are used

as a measure of future prospects to understand whether temporary work is perceived by

workers as a stepping stone towards better jobs, or solely as a source of uncertainty and

insecurity.

Differently from the observation of workers’ trajectories, the proposed approach offers the

possibility to understand how workers perceive the consequences of temporary work for

their welfare, while providing an new method to contrast the stepping stone versus the dead

end effect.

The evidence provided in the paper indicates that, compared to permanent employment,

temporary work is associated with temporarily lower earnings, and higher expected income

growth. On the other hand, temporary work is also shown to entail a higher likelihood of

experiencing future spells of unemployment, and a higher variability of the unexplained

component of income growth, two commonly used measures of uncertainty.

In order to understand which of these two conflicting effects is prevailing, I resort to the

economic theory of consumption and saving choices. To the extent that individuals are

rational and forward-looking, saving and consumption can act as sufficient statistics for

agents’ expectations, and their willingness to insure against perceived uncertainty.

Estimates of the reduced forms for consumption and saving functions indicate that house-

holds whose head is currently employed in a temporary job, smooth consumption in anti-

cipation of higher future earnings, consistently with the permanent income hypothesis. The

initially observed lower level of saving associated with temporary work is, indeed, entirely

driven by a lower transitory income.

Overall, the results provided in the paper point to a stepping stone for temporary work,

consistently with previous evidence for Britain in Booth et al. 2002. Most importantly,

79



the evidence provided indicates that this effect is actually perceived by individuals, and

internalized in their behaviour.
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Chapter 3

Poisson regressions in panel data:

random effects or fixed effects, when is

that the question?

Introduction

The robustness properties of the Poisson Quasi Maximum Likelihood Estimator (QMLE)

are a well-established result in the econometrics literature. Wooldridge (1997), applying

the general results by Gourieroux, Monfort and Trognon (1984), shows that, other than cor-

rect specification of the conditional mean and non-negativity of the outcome, consistency

of Poisson QMLE does not require a Poisson distribution, nor even discreteness.

An important feature of the estimator, in the context of panel data, is that it does not suffer

the “incidental parameter problem” common to the vast majority of non-linear estimators.

This allows the practitioner to estimate models where time-constant unobserved hetero-

geneity is arbitrarily dependent on covariates. As it is always the case with fixed effect

estimators, however, one obvious limitation is the impossibility to estimate the effects of

time-invariant characteristics. Given the time-invariant variables cancel out in quasi de-
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meaning transformations, the relative coefficient can not be identified.

A readily-available option for the practitioner is to estimate the model using the Poisson

random effects Maximum Likelihood Estimator (MLE). This treats heterogeneity as a nuis-

ance parameter of the likelihood function, independent of covariates. Making a particular

parametric assumption about the distribution of the unobserved heterogeneity (a Gamma

distribution in the Poisson case) leads to a closed form solution for the joint likelihood of

the outcome, the covariates and unobserved heterogeneity. The latter can then be integ-

rated out under the assumption of independence. The possibility to estimate the effect of

time-invariant characteristics, however, comes at the cost of the strong assumption of inde-

pendence between covariates and unobserved heterogeneity. If this assumption is violated,

the estimator is inconsistent for the true parameter of the conditional mean.

However, some contributions in the empirical literature have noticed that, when the time

dimension of the panel gets bigger, the Poisson Random Effects (RE) and Fixed Effects

(FE) estimator tend to produce very similar results. This can be explained looking at the

first order conditions for the two estimators. As it will be described in the next section,

they differ by a term which is a function of the time dimension, T , and the variance of

the assumed (Gamma) distribution of unobserved heterogeneity, σ2
a . When T → ∞, or

σ2
a →∞, the FOC of the Poisson RE estimator are equivalent to the ones of the Poisson FE

estimator.

The objective of this paper is to investigate the applicability of this approximation in com-

mon panel data where the number of time periods if finite, although potentially large, and

the practitioner has no a priori knowledge about the distribution of unobserved heterogen-

eity. In order to do so I use a Monte Carlo study that combines various values of T and σ2
a

under different Data Generating Processes (DGP’s). Given that one of the main reasons

for using the RE estimator is the possibility to estimate the coefficients on time-constant

variables, a time-constant dummy is embedded in the conditional mean for the outcome in

each DGP, together with two time-varying variables. All the considered DGP’s allow for
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a non-zero correlation between the unobserved heterogeneity and each covariate, making

the RE estimator biased and inconsistent.

The results of the Monte Carlo experiments confirm that increasing the values of both

T and σ2
a decreases the bias of RE estimates. The estimated coefficients on the time-

varying variables obtained using the RE estimator are found to be very close to the ones

obtained using the FE estimator under reasonable values of T , although the goodness of

the approximation crucially depends on σ2
a .

The experiments, however, show that the estimated coefficient on the time-constant dummy

obtained using the RE estimator exhibits substantial bias in all the considered cases. This

result is important for practitioners. Given the similarity between the estimated coeffi-

cients on the time-varying variables obtained using the two estimators in some realistic

scenarios, an Hausman test might induce the practitioner to choose a RE parametrization.

The evidence provided indicates that the estimated coefficients on time-constant variables

should be interpreted with caution if these are suspected to be correlated with unobserved

heterogeneity.

The results also show that, with respect to the time-varying covariates, the efficiency gains

associated with RE estimation tend to vanish with increasing levels of T and σ2
a . The

coefficient on the time-constant dummy variable, however, exhibits increasing standard

errors leading to an identification problem in the limit.

The chapter is structured as follows: Section 3.1 provides a description of the two estimat-

ors. Section 3.2 presents the experimental design. the results of the Monte Carlo study are

presented in section 3.3. Section 3.4 concludes.

3.1 The two estimators

In order to describe the two estimators it is useful to start from the simplest parametric

framework which is standard in count data contexts. Count data models are extensively

used in a wide range of applications including models for healthcare utilization (measured
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as the number of doctor visits), models for firm’s level of innovation (proxied by the num-

ber of patents), fertility equations (number of children), and economic models of crime

(measured by the number of arrests or convictions). The basic Poisson regression model

with unobserved effects assumes that:

yit |xi,ai ∼ Poisson [ai λ (xit ,β )] (3.1)

where yit is the outcome, xit is a vector of individual characteristics with the associated

coefficient vector β , and ai represents time-invariant individual-specific unobserved het-

erogeneity. The conditional mean of the outcome can be written as:

E [yit |xit ,ai] = ai λ (xit ,β ) (3.2)

The most common parametrization of the mean function for the Poisson regression model

is the exponential, according to which:

λ (xit ,β ) = exp
(
x′itβ

)
(3.3)

It is clear from equation (3.2) that individual-specific heterogeneity, represented by ai,

enters the conditional mean multiplicatively , rather than additively as in the standard linear

case. However, given the exponential parametrization of the conditional mean, individual

effects can still be interpreted as intercept shifters. To see this, equation (3.2) can be re-

written according to:

ai exp
(
x′itβ

)
= exp

(
vi +x′itβ

)
where vi = ln(ai)

Depending on the assumptions made about the joint distribution of ai and xit , the paramet-

ers of the conditional mean can be consistently estimated with either the Poisson FE or
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Poisson RE estimator. They will now be described in turn.

3.1.1 Poisson FE

The Poisson FE estimator was first developed as a Conditional Maximum Likelihood Es-

timator (CMLE) by Hausman, Hall and Griliches (1984). The estimator is obtained using

an orthogonal re-parametrization, which exploits ηi≡∑
T
t=1 yit as a sufficient statistic for ai.

They show that, for yit ∼ Poisson [ai λ (xit ,β )], the joint density of yi1, . . . ,yiT , conditional

on ηi, can be re-written as a multinomial density:

f (yi|xi,β ,ηi) =
ηi!

∏
T
t=1 yit

×
T

∏
t=1

(
µit

∑
T
s=1 µis

)yit

where µit = ai exp(x′itβ ). The results is that ai, as well as any other time-constant variable,

cancels out in the ratio µit/∑
T
s=1 µis, so that the joint conditional density does not depend

on unobserved effects. The model is then estimated maximizing the resulting conditional

log-likelihood. Excluding the terms not depending on β , the latter can be written as:

L (β ) =
N

∑
i=1

`i (β )∝
N

∑
i=1

T

∑
t=1

yit ln
(

µit

∑
T
s=1 µis

)
(3.4)

It can be shown that differentiation of the conditional likelihood leads to FOC:

N

∑
i=1

T

∑
t=1

xit

(
yit−

ȳi

λ̄i
λit

)
= 0 (3.5)

Blundell, Griffith and Windmeijer (2002) show that the log-likelihood of Poisson CMLE

in equation (3.4) is proportional to the one that one would obtain using Poisson MLE that

treats ai as parameters to be estimated. Poisson FE MLE is obtained by maximization of

the concentrated log-likelihood (terms not involving β are dropped for simplicity):

Lc (β ) =
N

∑
i=1

`i (β , âi (β ))∝
N

∑
i=1

T

∑
t=1

yit ln
(

µit

∑
T
s=1 µis

)
(3.6)

In the above expression, âi (β ) is the ML estimator of ai obtained by differentiating and
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setting to to zero the log-likelihood associated with the joint density of yi1, . . . ,yiT , with

yit ∼ Poisson [µit ], and can be written as:

âi (β ) =
∑

T
t=1 yit

∑
T
t=1 λit

=
ȳi

λ̄i

Equation (3.6) leads to FOC identical to those in equation (3.5). This results shows that,

differently from the majority of non-linear estimators, Poisson FE does not suffer the incid-

ental parameters problem, i.e. inconsistent estimation of ai does not contaminate estimates

of β .

One important consideration about Poisson FE MLE and CMLE is that both estimators are

derived under the assumption that yit ∼ Poisson [ai λ (xit ,β )] (which I will refer to as the

“Poisson assumption”), and the assumption that yit and yis are independent conditional on

xi and ai for all r 6= t (which I will refer to as the “serial conditional independence assump-

tion”). However, as shown in Wooldridge (1999), the only requirement for consistency of

the estimator is correct specification of the conditional mean E [yit |xit ,ai]. Importantly the

distribution of the outcome need not be Poisson or discrete. Correct inference, however,

should be based on the usual robust variance matrix estimator when deviating from the

Poisson assumption or the serial conditional independence assumption.

Finally, it is worth noting that the same FOC in equation (3.5) can be obtained by apply-

ing a quasi-demeaning transformation to to equation (3.2). As shown by Cameron and

Trivedi (2013), the Poisson FE estimator can be, then, obtained as the method of moments

estimator that solves the sample analog of the moment conditions:

E
[

xit

(
yit−

ȳi

λ̄i
λit

)]
= 0

3.1.2 Poisson RE

The Poisson RE estimator considered in this study is the one introduced by Hausman,

Hall and Griliches (1984). The estimator treats unobserved heterogeneity, ai, as a random
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variable with a specified distribution, g(ai|π) depending on the parameter vector π . In-

dependence of unobserved heterogeneity on observables (which I will refer to as the “RE

assumption”) allows ai to be integrate out of the joint density f (yi|xi,β ,ai,π), giving an

unconditional (on ai) joint density:

f (yi|xi,β ,π) =

ˆ
[ f (yi|xi,β ,ai)]g(ai|π)dai =

ˆ [
∏

t
f (yit |xi,β ,ai)

]
g(ai|π)dai (3.7)

The integral has a closed form solution (leading to a marginal negative binomial model)

when the Poisson assumption and the serial conditional independence assumption are

maintained, together with:

ai ∼ Gamma(δ ,δ ) (3.8)

under which E [ai] = 1 and V [ai] = 1/δ .

The parameters β and δ are estimated by maximizing the log-likelihood associated with

joint unconditional density. The FOC characterizing the RE estimator can be expressed as:

N

∑
i=1

T

∑
t=1

xit

(
yit−λit

ȳi−δ/T
λ̄i−δ/T

)
= 0 (3.9)

3.1.3 Comparing the two estimators

Comparing equation (3.9) and equation (3.5), it can be noticed that the two sets of first

order conditions differ by the term δ/T that appears in equation (3.9) for the RE case.

Given the RE Poisson estimator is derived under the assumption of a Gamma distribution

for ai, the term δ is equal to the inverse of the unobserved heterogeneity variance, thus

δ/T = 1/σ2
a T . It follows immediately that the RE estimator for β is equivalent to the FE

estimator when 1/σ2
a T → 0, which is to say when either T → ∞, or σ2

a → ∞.

The similarity to OLS is striking. In this case the RE estimator is the FGLS estimator
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obtained by an OLS regression of (yit−θ ȳi) on (xit−θ x̄i), where:

θ = 1−
{

1/
[
1+T

(
σ

2
a/σ

2
u
)]}1/2

(3.10)

It is easy to see that when the term θ approaches unity, that is to say when T → ∞, or

σ2
a/σ2

u →∞, the FGLS estimator converges to the FE OLS estimator.1 Blundell and Wind-

meijer (1997) show this result using spatially-clustered data on hospital utilization, where

G - the cluster dimension - substitutes for T .

In a maximum likelihood framework, the role played by T and σ2
a can be better understood

from a Bayesian perspective. Following Arellano and Bonhomme (2011), given equation

(3.7), the generic RE ML estimator can be written as the solution to:

β̂
RE

= argmax
β

(
argmax

δ

N

∑
i=1

ln
ˆ

[ f (yi|xi,β ,ai)]g(ai|π)dai

)
(3.11)

From a Bayesian perspective the estimator coincides with the mode of the posterior distri-

bution (marginal likelihood) of β , where g(ai|π) is the (hierarchical) prior specification for

the individual effects. In the Poisson RE case, ai is assumed to follow a Gamma distribu-

tion characterized by hyperparameter δ , which is the natural conjugate prior for the Poisson

distribution. The intuition offered by the Bayesian perspective is that the contribution of

the prior to the posterior distribution of β depends on both T and σ2
a .

Concerning T , the log-likelihood function in equation (3.11) is a sum of T time-series

observations.When T increases, the informational content of the prior, g(ai|δ ), vanishes,

and its contributions to the posterior distribution becomes negligible with respect to the

log-likelihood.

A similar argument can be made for σ2
a based on two considerations. On the one hand,

Lancaster (2004) shows that assuming a flat uniform prior for vi = ln(ai), and integrat-

ing out ai leads to a posterior for β which is proportional to the conditional likelihood

1see, among others, Wooldridge (2010b)
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characterizing the Poisson FE estimator. On the other hand, the ML estimate of the δ

hyperparameter characterizing the Gamma prior of the Poisson RE estimator minimizes

the Kullback-Leibler distance between the postulated distribution and the population dis-

tribution of the individual effects (White, 1982). It seems plausible, then, to expect that

increasing values of σ2
a in the process generating the data would make the prior progress-

ively flatter. The uniform prior that leads to the FE estimator of β is the limiting case that

one would obtain using the conjugate proper Gamma prior when its precision goes to zero

(Lancaster, 2004).2

The objective of the Monte Carlo study, which will be illustrated in the next section, is to

understand the extent to which this result is likely to apply in common panel data where

both T and σ2
a are finite.

One important caveat to bear in mind concerns the applicability of the algebraic result in-

troduced above to the case of unbalanced panels, which is not considered in this study.

When the number of time periods available differ between individuals, the first order con-

ditions for the two estimators can be re-written as:

N

∑
i=1

Ti

∑
t=1

xit

(
yit−

ȳi

λ̄i
λit

)
= 0 (3.12)

N

∑
i=1

Ti

∑
t=1

xit

(
yit−λit

ȳi−δ/Ti

λ̄i−δ/Ti

)
= 0 (3.13)

where Ti is the number of observations available for individual i, and both ȳi and λ̄iare

computed using the relevant number of observations. In this case the ratio δ/Ti becomes

individual-specific, and possibly non-trivial for a fraction of individuals for which few time

periods are available.

Intuitively, the applicability of the results presented in this study will depend on how small

are the problematicTi compared to the values of T considered in the simulations. More

2Notice that a similar argument for both T and σ2
a can be made in the linear case when the individual

effects are assumed to follow a Normal distribution
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importantly, it will depend on the weight of these observations in the composition of the

sample. Since FOC are expressed as a sum over i, the higher is the fraction of cross-

sectional units with small values of Ti, the higher is their weight in the sum, hence the

divergence between the FOC of the two estimators.

A further complication arises when data are not randomly missing. In this latter case both

Poisson FE and Poisson RE estimators need to be adjusted to take into account of sample

selection. A more rigorous treatment of unbalanced panels, with missing at random and

missing not at random, is left for future work.

3.2 Experimental design

The Monte Carlo study comprises six different data generating processes. They share a

common structure which builds on Greene (2004) and Blundell et al. (2002). In all the

considered DGP’s the Poisson RE estimator is biased and inconsistent for the parameters

of the conditional mean, due to a non-zero correlation between unobserved heterogeneity

and the covariates.

Importantly, in order to investigate how close are the results obtained using the two estim-

ators under different values of T and σ2
a , each of the six DGP’s is simulated using: i) six

values of T : 2, 4, 6, 8, 10, 20; ii) four values of σ2
a : 0.1, 0.5, 1, 2.

While Greene (2004) and Blundell et al. (2002) consider a maximum number of time peri-

ods equal to 8 in their simulations, all the experiments in this study also include the case

T = 20. Given that common panel data applications make use of longitudinal studies span-

ning more than 8 years (see PSID 48 years , GSOEP 34 years , BHPS 18 years, to cite

some of the most commonly used in the applied literature), choosing a maximum value

of 20 time periods should provide a better picture of what practitioners are likely to find

in practice. Moreover, given the identified patterns are all monotonic in T , the results will

provide a clear indication of what is likely to happen in those cases in which more the panel

length exceeds 20 time periods.
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Contrary to the case of T , there is no a priori empirical guidance for the values of σ2
a that

guarantees practical applicability of the results. The true distribution of unobserved hetero-

geneity is, indeed, unknown to the practitioner. Although some insights about the empirical

distribution of the unobserved heterogeneity could be gained, in principle, by examining

the distribution of the estimated fixed effects, or through the estimated σ2
a obtained using

the random effect estimator, these methods can be potentially misleading. The estimated

individual effects are inconsistent unless T → ∞, and the estimated σ2
a is obtained un-

der the assumption of a Gamma distribution for the unobserved heterogeneity. Following

Blundell et al. (2002), I start by setting σ2
a = 0.5. After experimentation with each DGP

the remaining values are chosen in order to strike a balance between providing enough

variability in the ratio 1/σ2
a T , and avoiding extreme values of the variance-to-mean ratio

for Poisson distributed outcomes. The issue of practical applicability of the results with

respect to the parameter σ2
a will be further discussed later in the paper when the results of

the experiments are presented.

Large-N asymptotic properties of the two estimators are well-established in the literature,

and are not the focus of the simulation study in this paper. For this reason, N is kept fixed

and equal to 1,000 in all the DGP’s (this is the maximum value considered in Blundell et

al. 2002) . Having a large number of cross-section units is also a common feature of panel

data in which N is typically large, and T is fixed and small relative to N.

Combining the different values of T and σ2
a , I obtain 24 sub-DGP’s for each of the data

generating processes considered. As in Blundell et al. (2002), all the results presented

in this study are based on 1000 replications. In each replica, after generating the data

according to the relevant DGP, the model is estimated using the two estimators.

Since regression models often include a mix of continuous and dummy variables, this

feature is replicated in the experiments. In particular, all the considered DGP’s, the set

of explanatory variables comprises one time-varying continuous variable, cit , one time-

varying dummy variable, d1it , and one time-constant dummy variable d2i. Each of the
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three explanatory variables is correlated with unobserved heterogeneity. The choice not to

include a time-constant continuous variable is driven by the fact that this type of variables

are not frequently encountered in common panel data applications (a notable exception is

the inclusion of distance in gravity models commonly estimates using Poisson regressions).

It is worth to notice, however, that some differences exist in terms of the the bias of the RE

estimator for the coefficient on the time-constant variable, when data are simulated using a

continuous variable. A more detailed discussion of this issue is provided section (3.3).

3.2.1 DGP 1 - the benchmark case

Table 3.1 summarizes the characteristics of DGP 1, and provides a description of the gen-

eric structure of the data generating processes used throughout the Monte Carlo experi-

ment.

The first element randomly drawn in each of the 1000 replications is ai, a time-constant

variable, representing unobserved heterogeneity. In all DGP’s, except DGP 2, ai is drawn

from a Gamma
(

δ ,
1
δ

)
distribution.

The time-varying continuous variable cit , is then generated using an auto-regressive process

similar to Blundell et al. (2002). The variable is correlated with ai through the τ parameter.

The correlation is roughly equal to 0.5. The idiosyncratic component εit follows a Normal

distribution with zero mean and variance equal to a fraction of the unobserved heterogen-

eity variance. UnlikeBlundell et al. (2002), this is done to keep the correlation between cit

and ai fixed when increasing the variance of unobserved heterogeneity throughout the ex-

periment (as previously explained this does not apply to the time-constant dummy variable

d2i).

The time-varying dummy d1it , and the time-constant dummy d2i, are subsequently gen-

erated using a latent representation. More specifically, two continuous variable, l1it and

l2i, are generated at first as described in the table. The two latent variables are correlated

with ai both directly, and indirectly through, respectively, cit and c̄i. The two dummies,

d1it and d2i, take then a value of 1 when the respective latent variables are below the 40th
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percentile, and 0 otherwise. Correlation between d1it and ai, and between d2i and ai, is

about 0.35. The choice

The outcome variable yit is generated as a random draw from a Poisson distribution with

parameter λit depending on cit , d1it , d2i, and ai.

The values for true coefficients on cit , d1it , and d2i are all set equal to 0.5. Experimentation

with the data suggests that the results of the simulations are invariant to such choice. The

chosen parameters imply a semi-elasticity of 0.5 for cit (as in Blundell et al. (2002)), and a

proportionate change of 65% for d1it , and d2i.
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Table 3.1: DGP 1 description

yit ∼ Poisson(λit)

λit = exp(α +βccit +βd1d1it +βd2d2i)ai

α = βc = βd1 = βd2 = 0.5

ai ∼ Gamma
(

δ ,
1
δ

)
; δ =

1
σ2

a

cit = ρcit−1 + τai + εit

ci0 =
τ

1−ρ
ai +ϕi

εit ∼ N
(
0,σ2

ε

)
; σ2

ε = κcσ2
a ;

ϕi ∼ N
(

0,
σ2

ε

1−ρ2

)
ρ = 0.5; κc = 0.5

d1it = 1 [l1it ≤ l1p40]; l1p40 : Pr (l1it ≤ l1p40) = 0.4

l1it = γc
l1cit + γa

l1ai +νit

νit ∼ N
(
0,σ2

ν

)
; σ2

ν = κl1σ2
a

γc
l1 =−0.5; γa

l1 =−0.5; κl1 = 0.5

d2i = 1 [l2i ≤ p4]

l2i = γc
l2c̄i + γa

l2ai +ξi

ξi ∼ N
(

0,σ2
ξ

)
; σ2

ξ
= κl2σ2

a

γc
l2 =−0.5;γa

l2 =−0.5; κl2 = 0.5

.

3.2.2 DGP 2 - violation of the Gamma assumption

The RE estimator assumes that unobserved heterogeneity is uncorrelated with the other

covariates in the conditional mean, and that it is Gamma-distributed. In DGP 2 the lat-

ter assumption is violated, and a log-normal distribution is used instead, so that ln(ai) ∼

N
(
0,σ2

a
)
. In this case the integral in equation (3.7) does not have a closed form solution.
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Although estimates could be obtained using numerical integration, the model is estimated

using the “standard” Poisson RE estimator which is, then, misspecified for the distribution

of unobserved heterogeneity. The remaining characteristics of the DGP are identical to the

one described in table 3.1.

3.2.3 DGP 3/4 - violation of the conditional serial independence as-

sumption

Assuming that yit , yir are independent conditional on xi and ai for all r 6= t, enables the

second equality in equation (3.7). This assumption is violated in DGP 3 and DGP 4. In

order to allow for correctly specified, but conditionally serially correlated marginal distri-

butions, after generating the variables embedded in λit , the outcome y is generated using a

Gaussian copula, as in Kwak (2011). Using a copula to simulate departures from the con-

ditional serial independence assumption is computationally convenient since it requires to

specify the marginal distribution for each variable and and the intended dependence among

marginal distributions separately.

At first a multivariate vector is drawn from:

n =

[
n1 n2 ... nT

]
v NT (µ,Σ)

where:

µ =

[
0 0 ... 0

]

Σ =



1 ρy · · · ρT−1
y

ρy 1 · · · ρT−2
y

...
... . . . ...

ρT−1
y ρT−2

y . . . 1


The parameter ρ , which determines the degree of persistence in the process, is set equal to
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0.5 in DGP 3, and 0.9 in DGP 4. This allows us to investigate the consequences of a less

and more severe misspecification.

The multivariate normal implicitly defines a Gaussian copula:

Φ(n1,n2, ...,nT ) =C (Φ1 (n1) ,Φ2 (n2) , ...,ΦT (nT ))

In order to generate a Poisson multivariate vector with the same dependence structure, the

generic uniformly-distributed marginal CDF Φt (nt) is transformed using the inverse CDF.

Given the discrete nature of the Poisson distribution, an algorithm is used to obtain the in-

verse CDF based on the definition of the CDF inverse: F−1 (Φt (nt))= inf{y ∈ R : F (y)≥Φt (nt)}.

The algorithm is similar to the one described in Trivedi et al. (2007).

Given the presence of other covariates, and especially time-invariant heterogeneity, in the

process generating y, its dependence structure need not coincide with the one imposed by

the copula. In order to check whether the algorithm produces the desired structure of de-

pendence, pairwise correlation coefficients are calculated for the residual-like quantities

qit = yit −λit , rather than the original outcome. Table 3.2 compares the pairwise correl-

ations between nit and nit+k, with the one between qit and qit+k for the case T = 10, and

σ2
a = 1, as an illustrative example. The table shows the average pairwise correlations over

1000 replications, separately for ρ = 0.5 and ρ = 0.9.

Table 3.2: Average pairwise correlation of the original joint normals nit and qit = yit−λit

n1/q1 n2/q2 n3/q3 n4/q4 n5/q5 n6/q6 n7/q7 n8/q8 n9/q9 n10/q10

ρ = 0.5
n1 1 0.500 0.250 0.125 0.062 0.031 0.016 0.008 0.002 0.001
q1 1 0.472 0.232 0.114 0.057 0.029 0.016 0.007 0.002 -0.002

ρ = 0.9
n1 1 0.900 0.810 0.729 0.656 0.591 0.531 0.478 0.430 0.387
q1 1 0.859 0.762 0.681 0.610 0.548 0.493 0.444 0.397 0.357

Notes: the table compares the pairwise correlations between nit and nit+k, with the one between qit and qit+k. The res-
ults shown are the average correlations over 1000 replications of DGP 3 (ρ = 0.5) and DGP 4 (ρ = 0.9) for the case
T=10, and σ2

a = 1.
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3.2.4 DGP 5 - violation of the Poisson assumption

In DGP 5 the outcome yit is generated from an Exponential(λit) distribution, where

λit =
1

exp(α +βccit +βd1d1it +βd2d2i)ai

ai ∼ Gamma
(

δ ,
1
δ

)
The above parametrization guarantees that

E [yit |xit ,ai] = 1/λit = exp(α +βccit +βd1d1it +βd2d2i)ai

Given the adopted parametrization results in an exponential conditional mean, the Poisson

FE estimator retains consistency, although inference should be based on corrected standard

errors to take into account the failure of the equidispersion assumption (E [yit |xit ,ai] 6=

V [yit |xit ,ai]). However, the Poisson assumption (yit ∼ Poisson(λit)) made to obtain the

RE estimator is not valid, making the estimator misspecified for the distribution of the

outcome.

3.2.5 DGP 6 - violation of the conditional mean assumption

Finally, DGP 6 is designed to make the estimators both biased and inconsistent for the true

parameters of the conditional mean. In order to do so, the outcome is generated by a Tobit

model. The following table summarizes the characteristics of the DGP.
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Table 3.3: Description of DGP 6

yit = 1 [zit > 0]zit

zit = α t +β t
ccit +β t

d1d1it +β t
d2d2i + ln ai +ωit

ωit ∼ N (0,10)

α tob = 2.5; β tob
c = β tob

d1 = β tob
d2 = 0.5

ai ∼ Gamma
(

δ ,
1
δ

)
; δ =

1
σ2

a

cit , d1it , d2i generated as in DGP 1, but ln ai used instead of ai

Given the difference between the true conditional mean and the one underlying the con-

sidered estimators, true slope parameters cannot be compared to the estimated ones when

assessing the magnitude of the bias. Average partial effects (APE’s) could be used, in

principle, for the task at hand. However, neither the FE nor the RE estimator allow to com-

pute APE’s as they generally depend on unobserved heterogeneity. One advantage of the

exponential conditional mean parametrization is that the estimated parameters can be dir-

ectly interpreted as semi-elasticities (for continuous variables) and proportionate changes

(for dummy variables using the expression exp
(
β j
)
− 1) . Focusing on the latter could

be, then, a valuable practitioner-oriented alternative. The main drawback of this approach

is that these quantities are not constant in a Tobit model, but depend on the values of co-

variates and unobserved heterogeneity. In order to compute their “true value”, I adapt

the concept of average partial effects to semi-elasticities and proportionate changes. The

expression for the semi-elasticity of yit with respect to cit can be written as:

∂E [yit |xit ,ai]

∂cit
× 1

E [yit |xit ,ai]

In the Tobit model it can be shown that:

E [yit |xit ,ai] = Φ

(
x′itβ
σ

)
x′itβc +σφ

(
x′itβ
σ

)
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The partial effect of the continuous variable cit is, then, equal to:

∂E [yit |xit ,ai]

∂cit
= βcΦ

(
x′itβ
σ

)

while the partial effect of the dummy variable d jit is equal to the difference:

E [yit |xit ,ai,d jit = 1]−E [yit |xit ,ai,d jit = 0]

For the continuous variable cit , the value of the partial effect, and of the conditional mean, is

first computed for each panel unit and time periods using a single replica of the experiment

with N = 1,000,000. The “true average semi-elasticity” is, then, computed according to:

1
NT

N

∑
i=1

T

∑
t=1

(
∂E [yit |xit ,ai]

∂cit
× 1

E [yit |xit ,ai]

)
For the two dummy variables d1it and d2i, the “true average proportionate change” due to

the dummy switching form 0 to 1 is computed as:

1
NT

N

∑
i=1

T

∑
t=1

(
E [yit |xit ,ai,d jit = 1]−E [yit |xit ,ai,d jit = 0]

E [yit |xit ,ai,d jit = 0]

)

3.3 Results

Table 3.4 below presents the results of the Monte Carlo study for the benchmark case DGP

1. The tables shows, separately for each combination of T and σ2
a , the average bias and

the standard deviation of the sampling distribution of each estimator. The average bias is

computed according to3:

Biasβ =
1
R

R

∑
r=1

[(
β̂r/β0

)
−1
]

; R = 1000

3When DGP 6 is considered, the bias is computed according to
1
R

∑
R
r=1

[((
exp(β̂r)−1

)
/g(xit ,β0,ai

)
−1
]
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The average value of the absolute difference |β̂ FE − β̂ RE | is also presented for the coeffi-

cients of cit and d1it , the two time-varying variables.

To ease interpretation of the results, the average value of the absolute difference between

the two estimators is also plotted against T , for each value of σ2
a . The graphs are presented

separately for cit and d1it , in figure 3.1 and 3.2 for the benchmark case. Finally, figure

3.3 shows the average bias of the estimated coefficient on the time-invariant dummy d2i

obtained using the RE estimator.

The results in table 3.4 show that, as expected, the performance of the FE estimator is

almost insensitive to variations in σ2
a and T . The sampling distribution of the estimator is

always centered around the true values of the parameters βc and βd1. More importantly,

the results confirm the role played by σ2
a and T in determining the performance of the

RE estimator. The bias of the estimated coefficients of cit and dit obtained using the RE

estimator decreases with increasing values of T and σ2
a , as well as the distance between

the estimated coefficients, as can be seen in figures 3.1 and 3.2.

Focusing on the continuous variable cit , a visual inspection of the the plots in figure 3.1

shows that, while additional time periods makes the RE estimates move closer the ones

obtained using the FE estimator (for any given level of σ2
a ), the distance between the two

remains quite large when heterogeneity is heavily concentrated around its mean. As a

result, the estimator exhibits a poor performance in this latter case. More specifically, from

table 3.4, when σ2
a = 0.1, the RE estimator shows a substantial bias, equal to 17.5% of the

true value, in the extreme case of T = 20. Things get better, in this respect, when flatter

distributions of unobserved heterogeneity are considered. “Moderate” levels of σ2
a , i.e.

σ2
a = 0.5 and σ2

a = 1, lead to the average bias falling below 5% if the number of time

periods is higher than, respectively, 10 and 6. In the extreme case of σ2
a = 2, the bias of the

RE is constantly below 10%, reaching a minimum of 0.3% of the true value when T = 20.
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Figure 3.1: DGP 1 - cit : time-varying continuous variable. Mean value of the absolute
difference between the estimated coefficients from FE and RE estimators

Focusing on the time-varying dummy d1it , the results in table 3.4 and the plots in Figure

3.2 show a pattern similar to the one discussed for cit . Although a smaller distance between

the estimates provided by the two estimators, and a consequently lower level of bias for the

RE estimator, is observed in general, the distance is shown to be monotonically decreasing

in T and σ2
a . The better performance relative to the coefficient on cit is likely to be due to

the lower level of correlation between d1it and ai. Indeed, while the correlation between

d1it and unobserved heterogeneity is roughly constant and equal to 0.35, part of it is due

to the correlation between d1it and cit , which is accounted for in estimation.
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Figure 3.2: DGP 1 - d1it : time-varying dummy variable. Mean value of the absolute
difference between the estimated coefficients from FE and RE estimators

Finally, the results of the Monte Carlo experiment for the estimated coefficient on the time-

constant d2i reveal that, differently from what is seen for the two time-varying variables,

increasing values of T and σ2
a do not result in improved performance. The plots in fig-

ure 3.3 show that the bias of the estimated coefficient obtained using the RE estimator is

substantial in all cases, and increasing in T and σ2
a . This last result, however, should be

interpreted with caution. A comparison with the linear case can provide some intuitions

about these findings, given the striking similarities outlined in section 3.1. As described

above, the RE estimator in the linear case is obtained as an OLS regression of (yit−θ ȳi)

on (xit−θ x̄i). It can be shown that, when the RE assumption is violated, the RE estimate

of β j suffers an omitted variable bias, which can be expressed by:

Cov
((

x j,it−θ x̄ j,i
)
,(ai−θ āi)

)
V
(
x j,it−θ x̄ j,i

)
Whenx x j is time-constant, this simplifies to:
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Cov
(
x j,i,ai

)
V
(
x j,i
)

The absence of within variation has two major implications. On the one hand, the bias in

the RE estimates of β j does not depend on θ , and hence does not depend on T or σ2
a . On

the other hand, the variance of the de-meaned variable tends to zero when θ converges to

one, resulting in an identification problem.

When x j is a dummy variable, as in all the considered DGP’s, its total variance V
(
x j,i
)

is

fixed at p(1− p). However, if the variable is generated as described in section 3.2.1, its

covariance with ai is increases with increasing values of σ2
a . This is due to the fact that the

underlying latent variable is a linear function of ai. Since V
(
x j,i
)

is fixed and cannot be

re-scaled to take into account the increasing covariance, the omitted variable bias becomes

an increasing function of σ2
a .

Although the analogy with the linear case is not a formal proof of the reasons why these

patterns are observed in the experiment, when data are simulated using a time-constant

continuous variable, the resulting bias of the RE estimator is substantial but fixed for every

level of T and σ2
a .

The identification problem is also visible by examining the standard deviation of the sampling

distribution of the estimator. Table 3.4 shows that, differently from the case of d1it and cit

where the efficiency gains associated with RE estimation tend to vanish, increasing values

of σ2
a are associated with higher values of the empirical standard deviation of the estimated

coefficient.
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Figure 3.3: DGP 1 - d2i: time-constant dummy variable. Mean value of the bias of the
estimated coefficients from RE estimators (% of the true value)

Tables and graphs presented in appendix 3 show that the results presented for the bench-

mark case also hold for the alternative data generating processes. No significant deviations

from the described patterns emerged when considering different types of misspecification

of the RE estimator in DGP 2 to DGP 5, which reveals an overall robustness of the RE

estimator. Finally, when the exponential conditional mean assumption is violated in DGP

6, making both estimators biased and inconsistent, the FE estimator is found to be the one

with the highest average bias. In this case, however, increasing T and σ2
a makes the estim-

ates obtained using the two estimators become closer. As a consequence, the performance

of the RE estimator worsens and approaches that of the FE estimator. This “convergence at

the bottom” is quite surprising and deserves some further investigation, although it might

be related to the way data are generated.
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Table 3.4: DGP 1 - Results from Monte Carlo experiment

cit d1it d2i
FE RE FE RE RE

σ2
a T bias (%) SD bias (%) SD |β̂ FE

c − β̂ RE
c | bias (%) SD bias (%) SD |β̂ FE

d1 − β̂ RE
d1 | bias (%) SD

0.1 2 -0.007 0.090 0.742 0.049 0.375 0.001 0.036 0.200 0.028 0.100 0.281 0.030
4 -0.010 0.046 0.600 0.036 0.305 0.001 0.021 0.156 0.019 0.077 0.325 0.023
6 -0.000 0.033 0.486 0.030 0.243 -0.001 0.016 0.124 0.016 0.062 0.357 0.023
8 0.000 0.028 0.398 0.026 0.199 0.001 0.014 0.104 0.014 0.052 0.380 0.021

10 0.000 0.024 0.334 0.024 0.167 -0.000 0.012 0.087 0.012 0.044 0.396 0.020
20 -0.001 0.016 0.175 0.016 0.088 0.000 0.009 0.048 0.009 0.024 0.433 0.019

0.5 2 0.000 0.038 0.478 0.029 0.239 -0.000 0.035 0.256 0.033 0.128 0.706 0.044
4 -0.001 0.018 0.211 0.018 0.106 0.001 0.021 0.120 0.021 0.060 0.869 0.043
6 0.000 0.014 0.125 0.014 0.062 0.001 0.015 0.077 0.015 0.038 0.927 0.043
8 -0.001 0.011 0.086 0.011 0.043 -0.001 0.013 0.054 0.013 0.028 0.956 0.041

10 -0.001 0.009 0.065 0.009 0.033 0.001 0.012 0.045 0.012 0.022 0.974 0.040
20 0.000 0.006 0.029 0.006 0.015 -0.001 0.008 0.020 0.008 0.010 1.006 0.041

1 2 -0.000 0.023 0.268 0.024 0.134 -0.002 0.033 0.216 0.034 0.109 1.088 0.059
4 0.001 0.011 0.090 0.012 0.044 0.002 0.019 0.085 0.020 0.042 1.272 0.058
6 0.001 0.008 0.050 0.009 0.025 -0.003 0.015 0.048 0.015 0.025 1.322 0.057
8 -0.000 0.007 0.033 0.007 0.017 -0.001 0.013 0.035 0.013 0.018 1.349 0.059

10 -0.000 0.006 0.025 0.006 0.012 0.001 0.012 0.029 0.012 0.014 1.357 0.059
20 -0.000 0.004 0.011 0.004 0.005 0.000 0.008 0.014 0.008 0.007 1.382 0.060

2 2 -0.001 0.012 0.095 0.016 0.048 -0.002 0.032 0.150 0.034 0.076 1.619 0.086
4 -0.000 0.007 0.026 0.007 0.013 0.000 0.019 0.052 0.019 0.026 1.780 0.083
6 -0.000 0.004 0.014 0.005 0.007 0.001 0.015 0.032 0.015 0.016 1.811 0.081
8 -0.000 0.004 0.009 0.004 0.005 -0.001 0.012 0.021 0.012 0.011 1.824 0.080

10 0.000 0.003 0.007 0.003 0.003 -0.000 0.011 0.017 0.011 0.008 1.835 0.080
20 -0.000 0.002 0.003 0.002 0.001 0.000 0.007 0.008 0.007 0.004 1.849 0.081

Note: bias is calculated as percentage of the true value:
1
R

∑
R
r=1

[(
β̂r/β0

)
−1
]
; Number of replications R = 1000; Sample size for each replication N = 1000
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3.4 Conclusions

The objective of this paper was to investigate to what extent the Poisson RE estimator is

likely to produce results similar to ones obtained using the Poisson FE estimator when

the random effects assumption is violated. The obvious advantage of the RE estimator is

that it allows one to estimate the effect of time-invariant characteristics. The first order

conditions of the Poisson RE estimator converge to the ones of the Poisson FE estimator

when the number of time periods, T , or the variance of the time-constant unobserved het-

erogeneity, σ2
a , tends to infinity. In order to evaluate the goodness of the approximation in

common panel data situations, where both T and σ2
a are finite, I use a Monte Carlo study

that includes six different data generating processes.

The result of the experiments confirm the role played by the number of time periods and the

variance of the unobserved heterogeneity. The two estimators deliver very similar estimates

of the coefficients of time-varying variables for reasonable values of T . The goodness of

the approximation, however, crucially depends on σ2
a , a characteristic of the distribution of

unobserved heterogeneity that would be completely unknown to the practitioner.

The results for the time-constant dummy variable that included in all the data generating

processes are less comforting. The estimated coefficient is shown to be severely biased for

all choices of T and σ2
a . Given that estimating the effect of time-constant characteristics is

one of the main reasons why practitioners might prefer the RE estimator over the FE one,

this result is an important cautionary note. The evidence provided suggests that for some

reasonable values of T , the two estimators deliver very similar estimates of the coefficients

on time-varying variables. In such cases the Hausman test may justify the use of the RE

estimator if the interest is also on time-constant characteristics. If these characteristics are

suspected to be correlated with unobserved heterogeneity, however, the results suggest that

caution should be used when interpreting the associated coefficients.
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Appendix 1

Table A1.1: Duration model for job-to-job transitions - full estimates

Waves 1-18 Waves 9-18
Real monthly earnings (log) -0.337*** -0.312*** -0.190** -0.164*

[0.057] [0.058] [0.087] [0.088]
Hours: 1-15 -0.208 -0.092 -0.007 0.079

[0.134] [0.134] [0.210] [0.210]
Hours: 16-30 -0.091 -0.042 0.031 0.080

[0.082] [0.082] [0.119] [0.119]
Hours: 49 + 0.105* 0.113* 0.150 0.149

[0.062] [0.062] [0.095] [0.095]
Work at Night 0.176** 0.155** 0.137 0.099

[0.071] [0.071] [0.102] [0.102]
Rotating Shifts 0.097 0.075 0.010 -0.006

[0.087] [0.087] [0.154] [0.154]
Flexitime 0.069 0.070

[0.099] [0.099]
Other Flexible 0.056 0.058

[0.162] [0.161]
Job Satisfaction -0.227*** -0.242***

[0.014] [0.022]
Female -0.176*** -0.128** -0.152* -0.134*

[0.056] [0.057] [0.081] [0.081]
Age -0.021 -0.035** -0.059*** -0.070***

[0.015] [0.015] [0.022] [0.022]
Age² -0.000* -0.000 0.000 0.000

[0.000] [0.000] [0.000] [0.000]
Educ: Primary\Low. Sec. -0.079 -0.043 -0.034 -0.012

[0.072] [0.072] [0.112] [0.112]
Educ: Higher 0.335*** 0.301*** 0.349*** 0.315***

[0.055] [0.056] [0.080] [0.080]
Never married 0.014 -0.037 0.051 -0.005

[0.069] [0.069] [0.104] [0.104]
Separated 0.216*** 0.207** 0.439*** 0.410***

[0.081] [0.081] [0.114] [0.114]
Widowed -0.126 -0.121 0.066 0.040

[0.316] [0.317] [0.425] [0.425]
Dependent Children -0.113 -0.110 -0.057 -0.069

[0.072] [0.072] [0.114] [0.114]
Firm Size: <25 -0.069 -0.045 -0.146* -0.117

[0.057] [0.057] [0.084] [0.084]
Firm Size: 100 - 499 -0.058 -0.078 -0.065 -0.080

[0.064] [0.064] [0.094] [0.094]
Firm Size: >500 -0.116 -0.136* -0.147 -0.168
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Waves 1-18 Waves 9-18
[0.075] [0.076] [0.112] [0.112]

Union at the Workplace -0.389*** -0.404*** -0.391*** -0.406***
[0.055] [0.055] [0.081] [0.081]

Regional Dummies (17) yes yes yes yes
Industry Dummies (8) yes yes yes yes
Occupation Dummies (6) yes yes yes yes
Wave Dummies (17) (9) yes yes yes yes
Observations 33,959 33,959 16,092 16,092
Number of individuals 5,130 5,130 3,384 3,384
Number of spells 12,330 12,330 6,184 6,184
Notes: S.E. in brackets; *** p<0.01, ** p<0.05, * p<0.1.
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Figure A1.1: Kaplan-Meier estimates of the survivor function by job attributes of interest
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Table A1.2: Job satisfaction - full estimates

OLS FE Pooled Ordered Logit BUC
Waves 1-18 Waves 9-18 Waves 1-18 Waves 9-18 Waves 1-18 Waves 9-18

Real monthly earnings (log) 0.169*** 0.190*** 0.136*** 0.107* 0.328*** 0.406***
[0.033] [0.052] [0.045] [0.061] [0.064] [0.111]

Hours: 1-15 0.350*** 0.258** 0.809*** 0.663*** 0.688*** 0.538**
[0.065] [0.101] [0.105] [0.146] [0.136] [0.217]

Hours: 16-30 0.194*** 0.158*** 0.361*** 0.316*** 0.367*** 0.320***
[0.039] [0.056] [0.061] [0.079] [0.077] [0.123]

Hours: 49 + -0.045 -0.060 0.032 -0.018 -0.084 -0.113
[0.028] [0.041] [0.045] [0.063] [0.053] [0.085]

Work at Night -0.070** -0.088* -0.183*** -0.283*** -0.132* -0.173
[0.036] [0.051] [0.054] [0.072] [0.068] [0.106]

Rotating Shifts -0.115** -0.224*** -0.090 -0.104 -0.198** -0.473***
[0.049] [0.074] [0.069] [0.106] [0.088] [0.149]

Flexitime 0.053 0.026 0.109
[0.038] [0.064] [0.084]

Other Flexible -0.096** -0.019 -0.220**
[0.045] [0.084] [0.104]

Female 0.324*** 0.238***
[0.048] [0.061]

Age 0.015 0.015 -0.089*** -0.071*** 0.032 -0.103**
[0.032] [0.047] [0.011] [0.015] [0.067] [0.040]

Age² 0.000*** 0.001** 0.001*** 0.001*** 0.001*** 0.001**
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Educ: Primary\Low. Sec. 0.004 -0.274 0.300*** 0.153* 0.003 -0.330
[0.138] [0.527] [0.065] [0.092] [0.240] [0.763]

Educ: Higher -0.066 -0.220 -0.142*** -0.139** -0.124 -0.488
[0.066] [0.194] [0.047] [0.061] [0.131] [0.415]

Never married -0.158*** -0.125* -0.241*** -0.252*** -0.302*** -0.254
[0.050] [0.075] [0.059] [0.079] [0.095] [0.156]
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OLS FE Pooled Ordered Logit BUC
Waves 1-18 Waves 9-18 Waves 1-18 Waves 9-18 Waves 1-18 Waves 9-18

Separated -0.019 -0.065 -0.048 -0.179** -0.047 -0.140
[0.049] [0.070] [0.064] [0.087] [0.093] [0.146]

Widowed -0.087 -0.073 -0.064 -0.223 -0.201 -0.227
[0.130] [0.140] [0.158] [0.176] [0.290] [0.447]

Dependent Children 0.012 -0.035 -0.015 -0.170** 0.035 -0.073
[0.031] [0.047] [0.047] [0.071] [0.063] [0.103]

Firm Size: <25 0.031 -0.030 0.198*** 0.219*** 0.054 -0.072
[0.028] [0.040] [0.043] [0.059] [0.054] [0.085]

Firm Size: 100 - 499 0.004 -0.067 -0.060 -0.039 0.006 -0.140
[0.030] [0.043] [0.044] [0.061] [0.056] [0.087]

Firm Size: >500 0.016 -0.067 -0.067 -0.043 0.031 -0.138
[0.037] [0.051] [0.053] [0.068] [0.070] [0.102]

Union at the Workplace -0.015 -0.006 -0.138*** -0.126** -0.030 -0.004
[0.038] [0.063] [0.043] [0.058] [0.071] [0.118]

Regional Dummies (17) yes yes yes yes yes yes
Industry Dummies (8) yes yes yes yes yes yes
Occupation Dummies (6) yes yes yes yes yes yes
Wave Dummies (17), (9) yes yes yes yes yes yes
Observations 33,959 16,092 33,959 16,092 87,870 31,882
Number of individuals 5,130 3,384 5,130 3,384 3,903 2,294

Notes: S.E. in brackets; *** p<0.01, ** p<0.05, * p<0.1; the different number of observations in the last two columns is due to: i)individuals
with no change in the dependent variable across time do not contribute to the likelihood; ii) the estimation sample is obtained by expanding the
original sample a number of times equal to the possible cut-offs
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Table A1.3: MWP estimates using job satisfaction - alternative estimators

Pooled Ordered Logit BUC
MWP S.E. MWP S.E.

Hours: 1-15 -0.997*** 0.004 -0.877*** 0.052
Hours: 16-30 -0.930*** 0.055 -0.673*** 0.083
Hours: 49+ -0.212 0.274 0.292 0.212
Work at Night 2.827 2.255 0.495 0.336
Rotating Shifts 0.931 1.028 0.831 0.519
Flexitime -0.215 0.486 -0.234 0.168
Other Flexible 0.195 0.958 0.720 0.512

Notes: *** p<0.01, ** p<0.05, * p<0.1. MWP’s are expressed as fraction of real
mothly earnings. MWP’s for each characteristic are obtained using coefficients from
table A1.2, columns 3 and 5. MWP’s for Flexitime and Other Flexible are obtained us-
ing coefficients from the same tatable, columns 4 and 6; Standard Errors are obtained
using Delta Method
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Appendix 2

Table A2.1: Temporary work and earnings

Earnings Earnings growth Subj. Exp. Test
ln(yit) ∆ ln yit,t+1 ∆ ln yit,t+2 ∆ ln yit,t+1

FE OLS FE OLS FE OLS FE OLS
(1) (2) (3) (4)

Temporary work -0.3373*** 0.1062*** 0.1298***
[0.020] [0.025] [0.031]

ERit= “worse” -0.0621***
[0.014]

ERit = “better” 0.0345***
[0.010]

Age: <25 -0.3106*** 0.0166 0.0787 0.0155
[0.035] [0.042] [0.052] [0.042]

Age: 25-34 -0.0863*** -0.0137 0.0024 -0.0148
[0.016] [0.018] [0.023] [0.018]

Age: 45-54 -0.0013 0.0371** -0.0051 0.0347**
[0.015] [0.017] [0.021] [0.017]

Age: 55+ -0.0848*** 0.0621** 0.0354 0.0600**
[0.025] [0.029] [0.036] [0.029]

Large empl. / high. manag. 0.0562*** 0.0035 -0.0051 0.0041
[0.019] [0.021] [0.025] [0.021]

Higher professional 0.0052 -0.0002 0.0113 0.0018
[0.019] [0.022] [0.026] [0.022]

Intermediate -0.0746*** 0.0417** 0.0491** 0.0447**
[0.016] [0.018] [0.022] [0.018]

Lower superv./ tech. -0.0985*** -0.0002 0.0155 0.0013
[0.016] [0.019] [0.023] [0.019]

Semi-routine -0.1670*** 0.0355* 0.0738*** 0.0380*
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Earnings Earnings growth Subj. Exp. Test
ln(yit) ∆ ln yit,t+1 ∆ ln yit,t+2 ∆ ln yit,t+1

FE OLS FE OLS FE OLS FE OLS
(1) (2) (3) (4)

[0.017] [0.020] [0.025] [0.020]
Routine -0.2493*** 0.0226 0.1346*** 0.0240

[0.019] [0.022] [0.027] [0.022]
Unemployed -0.4212*** -0.5681*** 0.1462*** -0.5799***

[0.029] [0.039] [0.048] [0.039]
Inactive -0.7797*** -0.3915*** 0.3755*** -0.3979***

[0.029] [0.046] [0.054] [0.046]
Number of adults in HH 0.0187** -0.0050 0.0169 -0.0047

[0.009] [0.010] [0.013] [0.010]
Number of dependent children in HH -0.0125* 0.0081 0.0329*** 0.0061

[0.007] [0.009] [0.011] [0.009]
Number of individuals in work in HH 0.0139 0.0057 0.0065 0.0044

[0.009] [0.010] [0.013] [0.010]
Industry dummies (8) (8) (8) (8)
Region dummies (17) (17) (17) (17)
Wave dummies (17) (16) (15) (16)
Constant 7.3102*** -0.0889 -0.2315** -0.0900

[0.069] [0.083] [0.103] [0.083]
Observations 22,992 17,812 14,883 17,812
Units 3,589 3,317 2,798 3,317
Notes: S.E. in brackets; *** p<0.01, ** p<0.05, * p<0.1.
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Table A2.2: Temporary work and uncertainty

Sq. Filt. Res. Prob. Fut. Unemp Spell
ν̂2

it Pr (Uit+1 = 1)
OLS FE OLS (LPM) FE Logit
(1) (2) (3)

Temporary Work 0.3563*** 0.0542*** 1.1557***
[0.080] [0.009] [0.276]

Age: <25 0.0187 0.0159 1.1870*
[0.075] [0.015] [0.715]

Age: 25-34 -0.0275 0.0075 0.5721*
[0.032] [0.006] [0.323]

Age: 45-54 -0.0132 0.0046 0.2099
[0.027] [0.006] [0.288]

Age: 55+ -0.0422 0.0071 0.5608
[0.035] [0.010] [0.483]

Large empl. / high. manag. -0.0272** -0.0029 -0.1179
[0.013] [0.007] [0.393]

Higher professional 0.0057 -0.0042 -0.3915
[0.023] [0.008] [0.460]

Intermediate 0.0403** -0.0051 -0.2484
[0.018] [0.006] [0.281]

Lower superv./ tech. 0.0402 -0.0185*** -0.8141***
[0.025] [0.006] [0.286]

Semi-routine 0.0774*** -0.0329*** -1.2188***
[0.020] [0.007] [0.313]

Routine 0.1190*** -0.0222*** -0.8219***
[0.028] [0.008] [0.305]

Inactive 1.7196*** 0.0530*** 0.8466**
[0.426] [0.013] [0.431]

Unemployed 1.2292***
[0.214]

Number of adults in HH 0.0106 0.0057 0.2281
[0.016] [0.004] [0.168]

Number of dependent children in HH 0.0112 -0.0024 -0.1175
[0.013] [0.003] [0.146]

Number of individuals in work in HH -0.0273 0.0030 0.0945
[0.018] [0.004] [0.166]

Industry dummies (8) (8) (8)
Region dummies (17) (17) (17)
Wave dummies (16) (16) (16)
Constant 0.0772* 0.0042

[0.045] [0.012]
Observations 17,812 17,320 2,472
Units 3,317 3,307 363
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Table A2.3: Saving function: average monthly saving

(1) (2) (3) (4) (5) (6) (7)
Head in Temporary Work -0.1679** -0.1676** -0.0674 -0.0666 -0.1631** -0.1516** -0.0540

[0.066] [0.066] [0.064] [0.066] [0.066] [0.065] [0.063]
Age: <25 -0.3625*** -0.4079*** -0.1702 -0.2477** -0.3636*** -0.3660*** -0.2371*

[0.117] [0.142] [0.109] [0.110] [0.116] [0.116] [0.135]
Age: 25-34 -0.0260 -0.0345 0.0033 0.0028 -0.0272 -0.0281 -0.0109

[0.051] [0.052] [0.050] [0.050] [0.050] [0.050] [0.050]
Age: 45-54 -0.0188 -0.0190 -0.0350 -0.0242 -0.0234 -0.0053 -0.0253

[0.041] [0.041] [0.039] [0.040] [0.041] [0.041] [0.039]
Age: 55+ -0.0386 -0.0408 -0.0125 -0.0252 -0.0526 -0.0090 0.0015

[0.066] [0.066] [0.062] [0.064] [0.066] [0.065] [0.063]
Large empl. / high. manag. 0.0832** 0.0837** 0.0653* 0.0673* 0.0822** 0.0785** 0.0627*

[0.038] [0.037] [0.037] [0.037] [0.038] [0.037] [0.036]
Higher professional 0.0001 0.0004 0.0220 0.0184 -0.0021 -0.0007 0.0194

[0.050] [0.049] [0.046] [0.048] [0.049] [0.048] [0.045]
Intermediate -0.0299 -0.0297 0.0084 -0.0036 -0.0306 -0.0296 0.0055

[0.041] [0.041] [0.037] [0.039] [0.041] [0.041] [0.038]
Lower superv./ tech. -0.0054 -0.0055 0.0344 0.0204 -0.0083 -0.0028 0.0318

[0.042] [0.042] [0.041] [0.042] [0.042] [0.042] [0.041]
Semi-routine -0.0925* -0.0920* -0.0216 -0.0359 -0.0931* -0.0781 -0.0142

[0.049] [0.049] [0.045] [0.048] [0.049] [0.048] [0.045]
Routine -0.0456 -0.0451 0.0343 0.0253 -0.0481 -0.0398 0.0338

[0.059] [0.059] [0.058] [0.059] [0.059] [0.058] [0.057]
Unemployed -0.5244*** -0.5239*** -0.4016*** -0.4253*** -0.5264*** -0.3963** -0.3039**

[0.157] [0.157] [0.141] [0.145] [0.158] [0.159] [0.145]
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(1) (2) (3) (4) (5) (6) (7)
Inactive -0.3822*** -0.3826*** -0.2332** -0.2259** -0.3849*** -0.3176*** -0.1968**

[0.101] [0.101] [0.099] [0.098] [0.101] [0.100] [0.099]
Housing: owned outright 0.1662*** 0.1653*** 0.1852*** 0.1837*** 0.1682*** 0.1637*** 0.1811***

[0.047] [0.047] [0.045] [0.046] [0.047] [0.046] [0.044]
Housing: local authority rented 0.1864 0.1854 0.2709** 0.2177* 0.1852 0.2183* 0.2891**

[0.115] [0.115] [0.111] [0.115] [0.113] [0.117] [0.112]
Housing: rented 0.2200*** 0.2192*** 0.2747*** 0.2239*** 0.2150*** 0.2122*** 0.2595***

[0.075] [0.075] [0.072] [0.078] [0.075] [0.073] [0.070]
Number of adults in HH -0.1360*** -0.1360*** -0.1387*** -0.1462*** -0.1212*** -0.1201*** -0.1175***

[0.032] [0.032] [0.031] [0.031] [0.032] [0.031] [0.030]
Number of dependent children in HH -0.2169*** -0.2165*** -0.2114*** -0.2224*** -0.1939*** -0.1972*** -0.1834***

[0.028] [0.028] [0.026] [0.027] [0.030] [0.027] [0.028]
Number of individuals in work in HH 0.1640*** 0.1643*** 0.1188*** 0.1613*** 0.1515*** 0.1532*** 0.1068***

[0.030] [0.030] [0.030] [0.030] [0.031] [0.029] [0.029]
Industry dummies (8)

√ √ √ √ √ √ √

Region dummies (17)
√ √ √ √ √ √ √

Wave dummies (17)
√ √ √ √ √ √ √

Unemployment rate 0.0044 0.0049
[0.008] [0.008]

Log total household earnings 0.6419*** 0.5950***
[0.044] [0.042]

Log head’s earnings 0.3262***
[0.039]

Benefit income dummy -0.0759** -0.0345
[0.034] [0.034]

Fin. Exp.: “worse” 0.0763*** 0.0665**
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(1) (2) (3) (4) (5) (6) (7)
[0.029] [0.027]

Fin. Exp.: “better” -0.0176 -0.0025
[0.021] [0.020]

Fin. Sit.: “quite/very difficult” -0.6947*** -0.6100***
[0.104] [0.101]

Fin. Sit: “just getting by” -0.4476*** -0.4036***
[0.036] [0.034]

Observations 20,023 20,023 20,023 20,023 20,023 20,023 20,023
Units 2,784 2,784 2,784 2,784 2,784 2,784 2,784
Notes: S.E. in brackets; *** p<0.01, ** p<0.05, * p<0.1
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Table A2.4: Consumption function: CONS 1

(1) (2) (3) (4) (5) (6) (7)
Head in Temporary Work -0.0249 -0.0251 -0.0191 -0.0193 -0.0264* -0.0242 -0.2301

[0.016] [0.016] [0.015] [0.015] [0.016] [0.016] [0.015]
Age: <25 -0.1183*** -0.0977*** -0.1112*** -0.1134*** -0.1165*** -0.1172*** -0.0897***

[0.028] [0.034] [0.028] [0.028] [0.028] [0.028] [0.034]
Age: 25-34 -0.0382*** -0.0342*** -0.0369*** -0.0368*** -0.0370*** -0.0381*** -0.0320***

[0.011] [0.012] [0.011] [0.011] [0.011] [0.011] [0.012]
Age: 45-54 -0.0046 -0.0047 -0.0051 -0.0047 -0.0014 -0.0026 0.0003

[0.011] [0.011] [0.011] [0.011] [0.011] [0.011] [0.011]
Age: 55+ -0.0796*** -0.0787*** -0.0776*** -0.0783*** -0.0714*** -0.0770*** -0.0655***

[0.017] [0.017] [0.017] [0.017] [0.017] [0.017] [0.017]
Large empl. / high. manag. 0.0039 0.0038 0.0029 0.0029 0.0041 0.0030 0.0021

[0.012] [0.012] [0.012] [0.012] [0.012] [0.012] [0.012]
Higher professional 0.0057 0.0057 0.0058 0.0058 0.0065 0.0051 0.0059

[0.014] [0.014] [0.014] [0.014] [0.014] [0.014] [0.014]
Intermediate -0.0040 -0.0040 -0.0027 -0.0028 -0.0036 -0.0041 -0.0023

[0.011] [0.011] [0.011] [0.011] [0.011] [0.011] [0.011]
Lower superv./ tech. -0.0021 -0.0020 -0.0003 -0.0004 -0.0016 -0.0019 0.0005

[0.011] [0.011] [0.011] [0.011] [0.011] [0.011] [0.011]
Semi-routine 0.0063 0.0063 0.0092 0.0091 0.0064 0.0070 0.0100

[0.013] [0.013] [0.013] [0.013] [0.013] [0.013] [0.013]
Routine -0.0014 -0.0015 0.0028 0.0026 -0.0015 -0.0004 0.0037

[0.013] [0.013] [0.013] [0.013] [0.013] [0.013] [0.013]
Unemployed -0.0447** -0.0447** -0.0381* -0.0377* -0.0458** -0.0316 -0.0264

[0.021] [0.021] [0.021] [0.021] [0.021] [0.021] [0.021]
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(1) (2) (3) (4) (5) (6) (7)
Inactive -0.0604*** -0.0606*** -0.0485** -0.0475** -0.0615*** -0.0526** -0.0421*

[0.023] [0.023] [0.023] [0.023] [0.023] [0.023] [0.023]
Housing: owned outright 0.0117 0.0117 0.0139 0.0134 0.0111 0.0110 0.0128

[0.013] [0.013] [0.013] [0.013] [0.013] [0.013] [0.013]
Housing: local authority rented -0.0369* -0.0368* -0.0321 -0.0339 -0.0375* -0.0331 -0.0290

[0.022] [0.022] [0.021] [0.022] [0.021] [0.022] [0.021]
Housing: rented -0.0705*** -0.0702*** -0.0674*** -0.0688*** -0.0698*** -0.0705*** -0.0664***

[0.020] [0.020] [0.020] [0.020] [0.020] [0.020] [0.020]
Number of adults in HH 0.1494*** 0.1493*** 0.1498*** 0.1491*** 0.1435*** 0.1506*** 0.1446***

[0.007] [0.007] [0.007] [0.007] [0.007] [0.007] [0.007]
Number of dependent children in HH 0.1578*** 0.1575*** 0.1584*** 0.1580*** 0.1470*** 0.1592*** 0.1480***

[0.007] [0.007] [0.007] [0.007] [0.007] [0.007] [0.007]
Number of individuals in work in HH 0.0220*** 0.0219*** 0.0200*** 0.0218*** 0.0278*** 0.0209*** 0.0251***

[0.006] [0.006] [0.006] [0.006] [0.006] [0.006] [0.006]
Industry dummies (8)

√ √ √ √ √ √ √

Region dummies (17)
√ √ √ √ √ √ √

Wave dummies (17)
√ √ √ √ √ √ √

Unemployment rate -0.0021 -0.0018
[0.002] [0.002]

Log total household earnings 0.0233*** 0.0235***
[0.008] [0.008]

Log head’s earnings 0.0168***
[0.006]

Benefit income dummy 0.0455*** 0.0489***
[0.008] [0.008]

Fin. Exp.: “worse” 0.0083 0.0080
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(1) (2) (3) (4) (5) (6) (7)
[0.007] [0.007]

Fin. Exp.: “better” -0.0169*** -0.0164***
[0.005] [0.005]

Fin. Sit.: “quite/very difficult” -0.0514*** -0.0497***
[0.012] [0.012]

Fin. Sit: “just getting by” -0.0211*** -0.0202***
[0.006] [0.006]

Constant 5.1713*** 5.1769*** 4.9945*** 5.0474*** 5.1520*** 5.1858*** 4.9908***
[0.066] [0.066] [0.090] [0.081] [0.065] [0.066] [0.090]

Observations 22,992 22,992 22,992 22,992 22,992 22,992 22,992
Units 3,589 3,589 3,589 3,589 3,589 3,589 3,589
Notes: S.E. in brackets; *** p<0.01, ** p<0.05, * p<0.1134



Table A2.5: Consumption function: CONS 2

(1) (2) (3) (4) (5) (6) (7)
Temporary Work -0.0216 -0.0216 -0.0149 -0.0164 -0.0214 -0.0215 -0.0154

[0.013] [0.013] [0.013] [0.014] [0.013] [0.013] [0.013]
Age: <25 -0.1212*** -0.1239*** -0.1137*** -0.1162*** -0.1213*** -0.1198*** -0.1173***

[0.028] [0.034] [0.027] [0.027] [0.028] [0.027] [0.034]
Age: 25-34 -0.0317*** -0.0322*** -0.0300*** -0.0305*** -0.0317*** -0.0307*** -0.0298***

[0.011] [0.011] [0.011] [0.011] [0.011] [0.011] [0.011]
Age: 45-54 -0.0136 -0.0136 -0.0146 -0.0139 -0.0140 -0.0119 -0.0130

[0.010] [0.010] [0.010] [0.010] [0.010] [0.010] [0.010]
Age: 55+ -0.0580*** -0.0580*** -0.0578*** -0.0578*** -0.0590*** -0.0555*** -0.0558***

[0.016] [0.016] [0.016] [0.016] [0.016] [0.016] [0.016]
Large empl. / high. manag. 0.0227** 0.0227** 0.0219* 0.0222* 0.0225** 0.0220* 0.0213*

[0.011] [0.011] [0.011] [0.011] [0.011] [0.011] [0.011]
Higher professional 0.0186 0.0186 0.0189 0.0188 0.0185 0.0185 0.0188

[0.013] [0.013] [0.013] [0.013] [0.013] [0.013] [0.013]
Intermediate -0.0094 -0.0094 -0.0080 -0.0083 -0.0095 -0.0098 -0.0085

[0.010] [0.010] [0.010] [0.010] [0.010] [0.010] [0.010]
Lower superv./ tech. -0.0068 -0.0068 -0.0052 -0.0055 -0.0068 -0.0069 -0.0055

[0.010] [0.010] [0.010] [0.010] [0.010] [0.010] [0.010]
Semi-routine -0.0197* -0.0197* -0.0170 -0.0176 -0.0197* -0.0194* -0.0169

[0.012] [0.012] [0.011] [0.011] [0.012] [0.011] [0.011]
Routine -0.0071 -0.0070 -0.0035 -0.0045 -0.0071 -0.0076 -0.0043

[0.012] [0.012] [0.012] [0.012] [0.012] [0.012] [0.012]
Unemployed -0.0092 -0.0093 -0.0030 -0.0042 -0.0090 0.0032 0.0085

[0.027] [0.027] [0.027] [0.027] [0.027] [0.027] [0.026]
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(1) (2) (3) (4) (5) (6) (7)
Inactive -0.0444** -0.0444** -0.0359* -0.0364* -0.0443** -0.0360* -0.0285

[0.020] [0.020] [0.020] [0.020] [0.020] [0.020] [0.020]
Housing: owned outright -0.3839*** -0.3839*** -0.3814*** -0.3822*** -0.3838*** -0.3850*** -0.3827***

[0.015] [0.015] [0.015] [0.015] [0.015] [0.015] [0.015]
Housing: local authority rented -0.0611*** -0.0611*** -0.0567** -0.0592** -0.0611*** -0.0556** -0.0519**

[0.023] [0.023] [0.023] [0.023] [0.023] [0.023] [0.023]
Housing: rented -0.0722*** -0.0722*** -0.0679** -0.0703** -0.0722*** -0.0706*** -0.0669**

[0.027] [0.027] [0.027] [0.027] [0.027] [0.027] [0.027]
Number of adults in HH 0.1408*** 0.1408*** 0.1409*** 0.1405*** 0.1413*** 0.1418*** 0.1419***

[0.006] [0.006] [0.006] [0.006] [0.006] [0.006] [0.006]
Number of dependent children in HH 0.0673*** 0.0673*** 0.0677*** 0.0672*** 0.0683*** 0.0681*** 0.0688***

[0.006] [0.006] [0.006] [0.006] [0.006] [0.006] [0.006]
Number of individuals in work in HH 0.0632*** 0.0632*** 0.0615*** 0.0632*** 0.0626*** 0.0624*** 0.0606***

[0.006] [0.006] [0.006] [0.006] [0.006] [0.006] [0.006]
Industry dummies (8)

√ √ √ √ √ √ √

Region dummies (17)
√ √ √ √ √ √ √

Wave dummies (17)
√ √ √ √ √ √ √

Unemployment rate 0.0003 0.0004
[0.002] [0.002]

Log total household earnings 0.0261*** 0.0239***
[0.006] [0.006]

Log head’s earnings 0.0157***
[0.005]

Benefit income dummy -0.0051 -0.0017
[0.007] [0.007]

Fin. Exp.: “worse” 0.0023 0.0017
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(1) (2) (3) (4) (5) (6) (7)
[0.007] [0.007]

Fin. Exp.: “better” -0.0111** -0.0105**
[0.005] [0.005]

Fin. Sit.: “quite/very difficult” -0.0595*** -0.0573***
[0.011] [0.011]

Fin. Sit: “just getting by” -0.0206*** -0.0187***
[0.005] [0.005]

Constant 6.3862*** 6.3853*** 6.1906*** 6.2733*** 6.3889*** 6.4032*** 6.2227***
[0.074] [0.074] [0.086] [0.082] [0.074] [0.074] [0.087]

Observations 15,102 15,102 15,102 15,102 15,102 15,102 15,102
Units 3,015 3,015 3,015 3,015 3,015 3,015 3,015
Notes: S.E. in brackets; *** p<0.01, ** p<0.05, * p<0.1137



Appendix 3
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Figure A3.1: DGP 2 - cit : time-varying continuous variable. Mean value of the absolute
difference between the estimated coefficients from FE and RE estimators
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Figure A3.2: DGP 2 - d1it : time-varying dummy variable. Mean value of the absolute
difference between the estimated coefficients from FE and RE estimators
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Figure A3.3: DGP 2 - d2i: time-constant dummy variable. Mean value of the bias of the
estimated coefficients from RE estimators (% of the true value)
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Table A3.1: DGP 2 - Results from Monte Carlo experiment

cit d1it d2i
FE RE FE RE RE

σ2
a T bias (%) SD bias (%) SD |β̂ FE

c − β̂ RE
c | bias (%) SD bias (%) SD |β̂ FE

d1 − β̂ RE
d1 | bias (%) SD

0.1 2 0.007 0.091 0.767 0.049 0.380 0.001 0.039 0.197 0.029 0.098 0.278 0.031
4 0.004 0.044 0.616 0.036 0.306 -0.002 0.022 0.150 0.020 0.076 0.324 0.024
6 0.003 0.034 0.496 0.031 0.247 0.002 0.016 0.124 0.016 0.061 0.356 0.022
8 -0.002 0.028 0.403 0.027 0.202 0.001 0.014 0.102 0.014 0.050 0.377 0.021

10 -0.000 0.024 0.338 0.024 0.169 0.000 0.013 0.086 0.013 0.043 0.391 0.020
20 0.001 0.016 0.182 0.016 0.091 0.001 0.008 0.049 0.008 0.024 0.429 0.020

0.5 2 -0.002 0.036 0.485 0.027 0.243 0.005 0.038 0.253 0.035 0.124 0.634 0.044
4 0.001 0.018 0.236 0.019 0.117 0.000 0.021 0.125 0.021 0.062 0.786 0.042
6 0.001 0.013 0.145 0.014 0.072 -0.001 0.016 0.082 0.016 0.041 0.841 0.043
8 -0.001 0.011 0.101 0.011 0.051 -0.001 0.014 0.061 0.014 0.031 0.873 0.041

10 0.000 0.009 0.079 0.009 0.039 -0.001 0.012 0.048 0.012 0.024 0.894 0.042
20 -0.000 0.006 0.036 0.006 0.018 -0.000 0.009 0.024 0.009 0.012 0.921 0.040

1 2 -0.001 0.022 0.282 0.031 0.141 -0.000 0.035 0.234 0.035 0.117 0.895 0.061
4 0.001 0.010 0.107 0.015 0.053 -0.003 0.021 0.099 0.021 0.051 1.067 0.058
6 0.000 0.008 0.060 0.010 0.030 -0.000 0.016 0.064 0.016 0.032 1.127 0.061
8 0.001 0.006 0.042 0.007 0.021 0.001 0.013 0.048 0.013 0.023 1.149 0.058

10 0.000 0.005 0.031 0.006 0.016 -0.000 0.012 0.037 0.012 0.019 1.161 0.057
20 -0.000 0.004 0.014 0.004 0.007 0.001 0.008 0.019 0.008 0.009 1.190 0.057

2 2 0.001 0.011 0.101 0.028 0.050 0.003 0.033 0.204 0.034 0.100 1.239 0.089
4 0.000 0.005 0.030 0.009 0.015 0.001 0.019 0.080 0.019 0.039 1.376 0.084
6 0.000 0.004 0.017 0.006 0.008 0.000 0.015 0.049 0.015 0.025 1.403 0.082
8 0.000 0.003 0.011 0.004 0.005 -0.000 0.013 0.036 0.013 0.018 1.420 0.080

10 0.000 0.003 0.008 0.004 0.004 0.001 0.011 0.029 0.011 0.014 1.441 0.079
20 -0.000 0.002 0.003 0.002 0.002 0.000 0.008 0.014 0.008 -0.007 1.435 0.077

Note: bias is calculated as percentage of the true value:
1
R

∑
R
r=1

[(
β̂r/β0

)
−1
]
; Number of replications R = 1000; Sample size for each replication N = 1000
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Figure A3.4: DGP 3 - cit : time-varying continuous variable. Mean value of the absolute
difference between the estimated coefficients from FE and RE estimators
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Figure A3.5: DGP 3 - d1it : time-varying dummy variable. Mean value of the absolute
difference between the estimated coefficients from FE and RE estimators
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Figure A3.6: DGP 3 - d2i: time-constant dummy variable. Mean value of the bias of the
estimated coefficients from RE estimators (% of the true value)
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Table A3.2: DGP 3 - Results from Monte Carlo experiment

cit d1it d2i
FE RE FE RE RE

σ2
a T bias (%) SD bias (%) SD |β̂ FE

c − β̂ RE
c | bias (%) SD bias (%) SD |β̂ FE

d1 − β̂ RE
d1 | bias (%) SD

0.1 2 0.010 0.066 0.685 0.050 0.337 -0.000 0.027 0.172 0.025 0.086 0.295 0.034
4 0.003 0.040 0.453 0.037 0.225 -0.002 0.018 0.105 0.018 0.054 0.361 0.029
6 -0.003 0.032 0.330 0.031 0.166 -0.001 0.014 0.081 0.014 0.041 0.391 0.027
8 -0.002 0.029 0.267 0.028 0.135 0.001 0.012 0.069 0.012 0.034 0.409 0.026

10 0.003 0.025 0.230 0.025 0.114 -0.001 0.011 0.058 0.011 0.029 0.418 0.025
20 0.001 0.018 0.134 0.018 0.066 -0.000 0.008 0.036 0.008 0.018 0.442 0.022

0.5 2 0.003 0.027 0.436 0.026 0.217 0.001 0.026 0.228 0.027 0.114 0.729 0.048
4 0.001 0.017 0.176 0.017 0.088 0.001 0.016 0.100 0.016 0.049 0.893 0.045
6 -0.001 0.013 0.104 0.013 0.052 0.001 0.014 0.064 0.015 0.032 0.942 0.046
8 -0.001 0.011 0.073 0.011 0.037 0.001 0.012 0.048 0.013 0.023 0.966 0.044

10 0.000 0.010 0.057 0.010 0.028 -0.000 0.011 0.037 0.011 0.019 0.980 0.042
20 0.000 0.007 0.027 0.007 0.013 -0.000 0.008 0.019 0.008 0.010 1.008 0.042

1 2 -0.004 0.021 0.243 0.023 0.123 0.000 0.025 0.198 0.029 0.099 1.109 0.061
4 -0.004 0.013 0.074 0.014 0.039 0.003 0.017 0.076 0.017 0.036 1.292 0.061
6 -0.005 0.011 0.039 0.011 0.022 0.003 0.013 0.047 0.013 0.022 1.335 0.061
8 -0.004 0.011 0.026 0.011 0.015 0.002 0.012 0.034 0.012 0.016 1.356 0.061

10 -0.005 0.011 0.018 0.011 0.011 0.001 0.011 0.027 0.011 0.013 1.363 0.061
20 -0.004 0.008 0.006 0.009 0.005 0.001 0.008 0.013 0.008 0.006 1.385 0.060

2 2 -0.089 0.047 0.010 0.048 0.050 0.017 0.027 0.156 0.028 0.069 1.709 0.107
4 -0.092 0.037 -0.065 0.037 0.013 0.028 0.020 0.074 0.020 0.023 1.865 0.098
6 -0.094 0.033 -0.080 0.034 0.007 0.033 0.018 0.061 0.018 0.014 1.890 0.094
8 -0.090 0.032 -0.080 0.032 0.005 0.034 0.017 0.054 0.017 0.010 1.892 0.093

10 -0.094 0.031 -0.087 0.031 0.003 0.037 0.017 0.053 0.017 0.008 1.904 0.091
20 -0.094 0.027 -0.091 0.027 0.001 0.045 0.015 0.052 0.015 0.004 1.911 0.091

Note: bias is calculated as percentage of the true value:
1
R

∑
R
r=1

[(
β̂r/β0

)
−1
]
; Number of replications R = 1000; Sample size for each replication N = 1000
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Figure A3.7: DGP 4 - cit : time-varying continuous variable. Mean value of the absolute
difference between the estimated coefficients from FE and RE estimators
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Figure A3.8: DGP 4 - d1it : time-varying dummy variable. Mean value of the absolute
difference between the estimated coefficients from FE and RE estimators
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Figure A3.9: DGP 4 - d2i: time-constant dummy variable. Mean value of the bias of the
estimated coefficients from RE estimators (% of the true value)
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Table A3.3: DGP 4 - Results from Monte Carlo experiment

cit d1it d2i
FE RE FE RE RE

σ2
a T bias (%) SD bias (%) SD |β̂ FE

c − β̂ RE
c | bias (%) SD bias (%) SD |β̂ FE

d1 − β̂ RE
d1 | bias (%) SD

0.1 2 0.001 0.033 0.627 0.047 0.313 0.001 0.014 0.152 0.020 0.075 0.312 0.038
4 -0.003 0.023 0.309 0.025 0.156 -0.000 0.010 0.070 0.011 0.035 0.389 0.036
6 0.000 0.020 0.190 0.021 0.095 -0.001 0.009 0.044 0.009 0.022 0.427 0.035
8 -0.001 0.019 0.136 0.019 0.068 0.000 0.008 0.034 0.008 0.017 0.440 0.034

10 0.002 0.019 0.109 0.018 0.054 0.000 0.008 0.027 0.008 0.014 0.444 0.033
20 -0.001 0.016 0.058 0.016 0.029 0.000 0.006 0.016 0.006 0.008 0.459 0.029

0.5 2 0.001 0.014 0.399 0.021 0.199 -0.001 0.014 0.204 0.020 0.102 0.752 0.048
4 0.000 0.010 0.135 0.011 0.068 0.000 0.010 0.074 0.011 0.037 0.920 0.049
6 0.000 0.009 0.074 0.009 0.037 0.001 0.009 0.045 0.009 0.022 0.962 0.049
8 0.001 0.008 0.051 0.008 0.025 0.001 0.008 0.032 0.008 0.016 0.982 0.048

10 0.001 0.008 0.039 0.008 0.019 -0.000 0.007 0.025 0.008 0.012 0.996 0.048
20 -0.000 0.006 0.018 0.006 0.009 0.000 0.006 0.013 0.006 0.006 1.013 0.048

1 2 -0.003 0.015 0.223 0.020 0.113 0.001 0.014 0.181 0.020 0.090 1.131 0.064
4 -0.004 0.010 0.059 0.011 0.032 0.000 0.010 0.059 0.011 0.029 1.307 0.064
6 -0.003 0.009 0.031 0.010 0.017 0.002 0.009 0.036 0.009 0.017 1.345 0.064
8 -0.005 0.010 0.018 0.010 0.011 0.001 0.008 0.026 0.008 0.012 1.365 0.064

10 -0.005 0.010 0.012 0.010 0.008 0.002 0.008 0.021 0.008 0.010 1.373 0.065
20 -0.004 0.008 0.003 0.008 0.004 0.001 0.007 0.011 0.007 0.005 1.390 0.064

2 2 -0.089 0.046 0.003 0.048 0.046 0.018 0.018 0.146 0.021 0.064 1.724 0.108
4 -0.092 0.036 -0.070 0.037 0.011 0.027 0.015 0.067 0.015 0.020 1.871 0.099
6 -0.094 0.033 -0.082 0.034 0.006 0.033 0.015 0.056 0.015 0.012 1.895 0.097
8 -0.089 0.031 -0.082 0.032 0.004 0.034 0.015 0.050 0.015 0.008 1.896 0.095

10 -0.094 0.031 -0.089 0.031 0.003 0.038 0.015 0.050 0.015 0.006 1.910 0.094
20 -0.094 0.027 -0.092 0.027 0.001 0.045 0.014 0.051 0.014 0.003 1.913 0.093

Note: bias is calculated as percentage of the true value:
1
R

∑
R
r=1

[(
β̂r/β0

)
−1
]
; Number of replications R = 1000; Sample size for each replication N = 1000
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Figure A3.10: DGP 5 - cit : time-varying continuous variable. Mean value of the absolute
difference between the estimated coefficients from FE and RE estimators
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Figure A3.11: DGP 5 - d1it : time-varying dummy variable. Mean value of the absolute
difference between the estimated coefficients from FE and RE estimators
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Figure A3.12: DGP 5 - d2i: time-constant dummy variable. Mean value of the bias of the
estimated coefficients from RE estimators (% of the true value)
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Table A3.4: DGP 5 - Results from Monte Carlo experiment

cit d1it d2i
FE RE FE RE RE

σ2
a T bias (%) SD bias (%) SD |β̂ FE

c − β̂ RE
c | bias (%) SD bias (%) SD |β̂ FE

d1 − β̂ RE
d1 | bias (%) SD

0.1 2 -0.006 0.222 0.520 0.126 0.263 0.004 0.080 0.117 0.064 0.057 0.334 0.056
4 0.004 0.113 0.352 0.090 0.174 -0.002 0.046 0.078 0.043 0.040 0.382 0.041
6 0.005 0.082 0.276 0.072 0.136 0.004 0.035 0.069 0.033 0.033 0.406 0.034
8 -0.004 0.068 0.228 0.062 0.116 0.002 0.030 0.060 0.030 0.029 0.417 0.030

10 -0.000 0.057 0.203 0.053 0.101 -0.001 0.025 0.051 0.025 0.026 0.422 0.029
20 0.002 0.038 0.128 0.037 0.063 0.002 0.017 0.036 0.017 0.017 0.445 0.024

0.5 2 0.001 0.141 0.354 0.100 0.177 0.000 0.101 0.176 0.087 0.088 0.775 0.078
4 0.001 0.072 0.167 0.066 0.083 0.001 0.055 0.092 0.054 0.046 0.895 0.059
6 -0.004 0.053 0.101 0.051 0.052 0.002 0.042 0.065 0.041 0.032 0.938 0.055
8 0.001 0.045 0.076 0.045 0.038 -0.000 0.037 0.048 0.036 0.024 0.967 0.052

10 -0.004 0.039 0.055 0.038 0.029 0.000 0.031 0.039 0.031 0.019 0.981 0.047
20 -0.000 0.027 0.027 0.027 0.014 0.000 0.022 0.020 0.022 0.010 1.007 0.045

1 2 0.013 0.150 0.231 0.122 0.109 0.017 0.121 0.192 0.111 0.088 1.132 0.118
4 -0.002 0.083 0.079 0.079 0.041 0.005 0.070 0.081 0.069 0.038 1.285 0.092
6 -0.005 0.058 0.042 0.057 0.024 0.004 0.054 0.053 0.053 0.024 1.326 0.073
8 -0.004 0.047 0.028 0.047 0.016 -0.001 0.045 0.034 0.045 0.018 1.352 0.073

10 -0.001 0.045 0.023 0.045 0.012 0.004 0.040 0.031 0.040 0.014 1.360 0.068
20 -0.000 0.028 0.011 0.028 0.005 0.001 0.027 0.015 0.027 0.007 1.381 0.064

2 2 0.023 0.244 0.112 0.227 0.044 -0.003 0.177 0.137 0.168 0.070 1.701 0.437
4 0.001 0.122 0.028 0.120 0.014 0.008 0.101 0.062 0.100 0.027 1.789 0.197
6 -0.008 0.087 0.006 0.087 0.007 -0.002 0.077 0.030 0.076 0.016 1.825 0.132
8 -0.005 0.078 0.005 0.078 0.005 0.003 0.068 0.026 0.068 0.011 1.833 0.125

10 0.003 0.068 0.010 0.068 0.004 0.001 0.059 0.019 0.059 0.009 1.832 0.115
20 -0.005 0.047 -0.002 0.047 0.001 0.003 0.042 0.011 0.042 0.004 1.856 0.099

Note: bias is calculated as percentage of the true value:
1
R

∑
R
r=1

[(
β̂r/β0

)
−1
]
; Number of replications R = 1000; Sample size for each replication N = 1000
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Figure A3.13: DGP 6 - cit : time-varying continuous variable. Mean value of the absolute
difference between the estimated coefficients from FE and RE estimators
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Figure A3.14: DGP 6 - d1it : time-varying dummy variable. Mean value of the absolute
difference between the estimated coefficients from FE and RE estimators
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Figure A3.15: DGP 6 - d2i: time-constant dummy variable. Mean value of the bias of the
estimated coefficients from RE estimators (% of the true value)
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Table 3.5: DGP 6 - Results from Monte Carlo experiment

cit d1it d2i
FE RE FE RE RE

σ2
a T bias (%) SD bias (%) SD |β̂ FE

c − β̂ RE
c | bias (%) SD bias (%) SD |β̂ FE

d1 − β̂ RE
d1 | bias (%) SD

0.1 2 -1.084 0.149 0.082 0.081 0.151 -0.986 0.060 -0.751 0.046 0.032 -0.449 0.041
4 -1.018 0.076 -0.090 0.055 0.120 -1.000 0.035 -0.796 0.032 0.028 -0.379 0.030
6 -0.978 0.054 -0.158 0.043 0.107 -1.004 0.027 -0.814 0.025 0.026 -0.347 0.024
8 -1.006 0.046 -0.241 0.038 0.099 -0.993 0.022 -0.812 0.021 0.025 -0.328 0.021

10 -1.028 0.039 -0.298 0.034 0.095 -1.007 0.020 -0.835 0.019 0.023 -0.308 0.020
20 -1.005 0.026 -0.434 0.025 0.074 -0.996 0.014 -0.855 0.014 0.019 -0.276 0.015

0.5 2 -1.015 0.068 -0.187 0.038 0.114 -0.998 0.059 -0.612 0.047 0.055 0.030 0.043
4 -0.998 0.034 -0.394 0.026 0.083 -0.992 0.035 -0.705 0.032 0.041 0.177 0.036
6 -0.999 0.025 -0.505 0.021 0.068 -1.004 0.026 -0.760 0.024 0.035 0.262 0.030
8 -0.995 0.020 -0.579 0.019 0.057 -1.005 0.023 -0.792 0.022 0.031 0.315 0.027

10 -0.993 0.018 -0.630 0.017 0.050 -0.999 0.020 -0.811 0.020 0.027 0.333 0.023
20 -0.997 0.011 -0.775 0.011 0.030 -1.005 0.013 -0.885 0.013 0.017 0.423 0.021

1 2 -1.005 0.050 -0.353 0.029 0.097 -0.989 0.062 -0.575 0.052 0.064 0.347 0.051
4 -1.000 0.026 -0.582 0.021 0.062 -1.001 0.037 -0.736 0.034 0.041 0.588 0.039
6 -1.009 0.018 -0.704 0.016 0.045 -0.997 0.028 -0.793 0.027 0.032 0.696 0.035
8 -0.998 0.015 -0.759 0.014 0.035 -0.996 0.024 -0.832 0.023 0.026 0.754 0.033

10 -0.999 0.013 -0.803 0.012 0.029 -0.995 0.021 -0.857 0.021 0.022 0.775 0.030
20 -1.002 0.008 -0.900 0.008 0.015 -0.998 0.015 -0.921 0.015 0.012 0.862 0.029

2 2 -0.995 0.037 -0.562 0.024 0.076 -0.997 0.067 -0.651 0.058 0.065 0.569 0.060
4 -0.996 0.019 -0.776 0.017 0.039 -1.004 0.038 -0.825 0.037 0.034 0.909 0.050
6 -1.001 0.014 -0.859 0.013 0.025 -0.999 0.032 -0.877 0.031 0.023 1.015 0.045
8 -1.002 0.011 -0.898 0.011 0.018 -0.992 0.025 -0.899 0.025 0.018 1.060 0.044

10 -1.004 0.009 -0.924 0.009 0.014 -1.006 0.022 -0.931 0.022 0.014 1.109 0.042
20 -1.002 0.007 -0.965 0.007 0.007 -0.995 0.015 -0.958 0.015 0.007 1.160 0.039

Note: bias is calculated as percentage of the true value:
1
R

∑
R
r=1

[((
exp(β̂r)−1

)
/g(xit ,β0,ai)

)
−1
]
; The true value g(xit,βo,ai) is the true average semi-elasticity for cit , and the true

average proportionate difference for d1it and d2i. Number of replications R = 1000; Sample size for each replication N = 1000
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