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Introduction 

Volatility estimation and forecasting of financial assets, especially commodity assets such as crude 

oil, has been the focus of research in areas such as investment analysis, derivative securities pricing 

and risk management. Poon and Granger (2003) suggest that volatility forecasts can play the role 

of a “barometer for the vulnerability of financial markets and the economy”. In this thesis, I 

estimate volatility of crude oil futures and evaluate the volatility forecasting performances of 

alternative models for crude oil futures by employing high-frequency data in Chapter 1 and 

Chapter 2. In Chapter 3, I link the volatility of crude oil market with that of the US stock market, 

study the co-movements of the most traded commodity and the stock market of the largest 

capitalisation by employing Multi-GARCH model and wavelet method and evaluate the 

forecasting performance of Multi-GARCH model on the two financial assets.  

Comparatively, high frequency data/ intraday data contain more information than daily data on 

daily transactions and provide more accuracy on volatility estimation and forecast evaluation 

(Andersen & Bollerslev, 1998). Many studies advocate high frequency data (Koopman, 

Jungbacker & Hol, 2005; Marlik, 2005) and many studies evaluate the performance of different 

models on volatility forecasting (Andersen & Bollerslev, 1998; ABDL, 2001, 2003; Corsi, 2009; 

Engle & Gallo, 2006; Shephard & Sheppard 2010; Celik & Ergin 2014; Sevi, 2014). 

The literature on volatility forecasting by using high-frequency data covers 4 main aspects: 1. 

assessments of the standard volatility model at high frequencies, 2. model comparisons by using 

between high-frequency and daily data, 3.studies of the realised volatility, 4. data properties of 

specific assets/series. 

For the first aspect, there is still no consensus on whether other traditional time series models are 

able to capture the properties of high-frequency data or fit the intraday data. Researches supporting 
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that the traditional time series models are able to fit the intraday data include Rahman & Ang 

(2002); Pong et al. (2004); Chortareas et al. (2014) but some other studies document opposite 

evidence (Jones, 2003; Baillie et al., 2004).  

The second aspect of the volatility literature studies the virtues and drawbacks of using high-

frequency data and compares volatility forecast evaluation by between using intraday data and 

using daily data. Beltratti & Morana (1999) show that at half-hour frequency the coefficients of 

the GARCH volatility model are not very different from those estimated on the basis of an 

IGARCH model. Hol and Koopman (2002) indicate that an ARFIMA model fitted to the realised 

volatility outperforms other alternative models. Martens and Zein (2004) find that high-frequency 

data improve both the measurement accuracy and the forecasting performance and they show that 

long memory models improve the forecasting performance. Pong et al. (2004) find that the most 

accurate volatility forecasts are generated using high frequency returns rather than a long memory 

model specification.  

Many researches focus on realised volatility measure and its application. Since Andersen and 

Bollerslev (1998) demonstrate a dramatic improvement in the volatility forecasting performance 

of a daily GARCH model by using 5 min data as a volatility measure proxy, a great number of 

studies have focused on realised volatility forecasting and its properties. Andersen, Bollerslev, 

Diebold, and Labys (ABDL, 1999 and 2001) recommend forecasting the realised volatility by 

using the ARFIMA model and show that the realised volatility is a consistent estimator of the 

integrated volatility. The findings make contribution to the empirical basis of using the realised 

volatility in volatility forecasting directly. Tseng et al. (2009) find that realised range-based bi-

power variation (RBV), a replacement of realised variance which is immune to jumps, is a better 

independent variable for future volatility prediction and the jump components of realised-range 
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variance have little predictive power for oil futures contracts. Sevi (2014) studies the crude oil 

market with Heterogeneous Auto-Regressive model (HAR) and its variants of realised volatility 

and compare their performance in light with Diebold-Mariano test.  

For the fourth part in the literature, many studies focus on the properties of high-frequency data 

for some specific financial assets. First order negative autocorrelation, non-normal distributions, 

an increasing fat tail with an increasing frequency, and periodicity are documented as stylised 

properties in the literature (Dacorogna et al. 2001). Microstructure noise and optimal sampling 

frequency (Hansen & Lunde (2006), Bandi & Russel (2005)) are well discussed as a technical 

topic for high-frequency data as well. 

In this thesis, Chapter 1 assesses the standard volatility model at intraday frequency and makes 

model comparisons by using between high-frequency and daily data. Chapter 2 studies the realised 

volatility and compares the forecasting performance of realised volatility model and GARCH 

series model. The data properties of crude oil futures are determined in both chapters. 

Chapter 1 fills the gap in the literature by modelling and forecasting crude oil volatility at both 

daily and intraday frequencies. I use a number of GARCH-class models to describe several facts 

on volatility based on the work of Kang et al. (2009) and Wei et al. (2010). I also adopt several 

loss functions including SPA test (Hansen, 2005) to evaluate the forecasting performance among 

different models. I discuss whether high frequency data of crude oil futures fit GARCH family 

models in the last. I find that none of the GARCH-class models outperforms the others at intraday 

data frequency. Our finding is against the results in ABDL (2001), Corsi (2009), Martens and Zein 

(2004) and Chortareas et al. (2011) which all document that long memory specification in high-

frequency data can improve the forecasting power and accuracy significantly. EGARCH model is 

superior to other models when it comes to daily data and it is different from the finding of Kang et 
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al. (2009) in which FIGARCH performs well. 

My findings suggests that the traditional time series models are not good to fit intraday data. 

Therefore, new efforts should be made to find new models to forecast volatility in a high-frequency 

framework. I also find that the intraday crude oil returns are consistent with the stylised properties 

of other financial series such as stock market indices and exchange rates at high frequencies in 

many respects. It might reflect general features which all intraday data share. 

Since the univariate GARCH models are documented as not fit for intraday data in Chapter 1, in 

Chapter 2 I assess the performance of Heterogeneous Autoregressive model of Realised volatility 

(HAR-RV) on crude oil futures with the same data set as in Chapter 1. Corsi (2009) proposes HAR-

RV model and therefore introduces a way to specify and forecast volatility with the information of 

high-frequency data or intraday data in spite of the model’s simple structure. Sevi (2014) expands 

the HAR-RV model by decomposing volatility into continuous and jump components, positive and 

negative semi-variance and considering leverage effect. His analysis suggests the decomposition 

of realised variance improves the in-sample fit but fails to improve the out-of-sample forecast 

performance. Following Sevi (2014) I specify and forecast volatility of the most traded commodity 

in the world by using front-month WTI futures contract. Moreover, I compare the forecasting 

performance among HAR-RV series models and GARCH series models which are studied in 

Chapter 1. It is valuable to compare HAR-RV models with GARCH and FIGARCH models 

because HAR-RV model is not able to depict the long memory property of volatility due to its 

simplicity while FIGARCH model considers the long memory character by using fractional 

integration.  

In Chapter 2, I find that the decomposition of continuous components and signed jumps do not 

help to improve the in-sample fit. The in-sample fit of complicated HAR-RV models are as good 
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as the simple HAR-RV model proposed by Corsi (2009). Second, the information of in-sample fit 

of semi-variance decomposition is mixed. Third, the complicated model containing all the 

decomposed components outperforms simple models or is as good as models without decomposed 

components at worst for prediction comparison.  Last, the comparison between HAR series models 

and GARCH series models is inconclusive, which is against Andersen, Bollerslev, Christoffersen, 

and Diebold (2006, chap. 15), who find that even based on simple autoregressive structures such 

as the HAR provide much better results than GARCH-type models. 

After adding findings to the literature on volatility forecasting by using high-frequency data of one 

single asset-crude oil in terms of the four aspects mentioned above, I extend the study of volatility 

forecasting of crude oil futures, a single financial asset to multi-asset background. Studying 

relationship between the crude oil market and stock markets is an ongoing issue in the finance 

literature recently. A large group of researchers are working on the strength of cross market 

relationship. Recent studies concentrating on the linkage between the oil market and the US stock 

market include Hammoudeh et al. (2004), Kilian and Park (2009), Balcilar and Ozdemir (2012), 

Elyasiani et al. (2012), Fan and Jahan-Parvar (2012), Alsalman and Herrera (2013), Mollick and 

Assefa (2013), Conrad et al. (2014), Kang et al. (2014), Khalfaoui et al. (2015) and Salisu and 

Oloko (2015). Since the introduction of the wavelet method, wavelet tool has become a small 

branch of finance research. In Chapter 3, I use the DCC-GARCH and wavelet-based measures of 

co-movements to find out the relationship between the two financial assets in time and frequency 

domain features of the data and make forecasting evaluation of DCC-GARCH model under 

different time frequencies. To the knowledge of mine, there is no empirical paper studying the 

linkage between crude oil and stock market with high frequency data or intraday data. Chapter 3 

fills the gap in the existing literature. 
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In Chapter 3, I find that wavelet method helps to identify the long/short term investment behaviours 

at daily data frequency and that intraday data improve the forecast performance of traditional time 

series method. The findings of Chapter 3 have empirical implications in asset allocation and risk 

management for investment decisions such as the construction of dynamic optimal portfolio 

diversification strategies and dynamic value-at-risk methodologies. 
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Chapter 1. Forecasting Crude Oil Market Volatility by using GARCH models: Evidence of 

Using High Frequency Data and Daily Data 

 

Abstract 

We evaluate the performance of volatility estimation and forecast of West Texas Intermediate (WTI) 

crude oil futures based on intraday data and daily by employing a number of linear and nonlinear 

generalised autoregressive conditional heteroskedasticity (GARCH) class models. We assess the 

one-step out-of-sample volatility forecasts of the GARCH-class models by using different loss 

functions and the superior predictive ability (SPA) test for intraday data and daily data respectively. 

Our results indicate that the majority of GARCH series models except FIAPARCH model cannot 

provide satisfactory forecasting result of the volatility of WTI crude oil futures by using intraday 

data while EGARCH model for daily return data outperforms other models for WTI crude oil 

futures. 
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1. Introduction 

Volatility forecasting of financial assets including commodity is one of the heated topics in finance 

research. Poon and Granger (2003) suggest that volatility forecasts can play the role of a 

“barometer for the vulnerability of financial markets and the economy”. On the other hand, 

Modelling and forecasting crude oil volatility are important inputs into econometric models, 

portfolio selection models, and option pricing formulas. The access to high frequency data opens 

a new stage to volatility modelling and forecasting of returns of financial assets. In this paper, we 

assess the volatility forecasting performances of a number of GARCH class models for NYMEX 

WTI light crude oil futures by using high-frequency data and daily data respectively. 

Compared with traditional daily data—daily returns or daily volatility, high frequency data contain 

more information on daily transactions and provide more accuracy on volatility estimation and 

forecast evaluation (Andersen & Bollerslev, 1998). Many studies advocate high frequency data 

(Koopman, Jungbacker & Hol, 2005; Marlik, 2005) and a number of studies evaluate the 

performance of different models on volatility forecasting (Andersen & Bollerslev, 1998; ABDL, 

2001, 2003; Corsi, 2009; Engle & Gallo, 2006; Shephard & Sheppard 2010; Celik & Ergin 2014, 

Sevi, 2014). 

A lot of studies are conducted on foreign exchange volatility forecasting (ABDL, 2001, 2003; 

Martens, 2001; Chortareas et al. 2011) and the volatility forecasting on stock markets (Chernov et 

al. 2003; Celik & Ergin 2014) by employing high frequency or intraday data, but limited research 

has been done on forecasting the volatility of crude oil by employing high frequency data/ intraday 

data (Sevi 2014) to the best of our knowledge.  

Our study fills the gap in the literature by modelling and forecasting crude oil volatility at both 

daily and intraday frequencies. My work extends the previous research in three different ways. 
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First, based on the work of Kang et al. (2009) and Wei et al. (2010), I use a number of GARCH-

class models to describe several facts about volatility. Second, I adopt several loss functions 

including SPA test (Hansen, 2005) to evaluate the forecasting performance among different models. 

Third, we discuss whether the employment of high frequency data of crude oil futures fits GARCH 

family models. 

We find that most of the GARCH-class models cannot outperform the others when it comes to 

intraday data except FIAPARCH model. FIAPARCH model’s performance is in line with some 

research papers in the literature ABDL (2001), Corsi (2009), Martens and Zein (2004) and 

Chortareas et al. (2011) which all document that long memory specification in high-frequency data 

can improve the forecasting power and accuracy significantly. The different results for other 

complicated GARCH models stem from the more up-to-date data sample period used in this study. 

EGARCH model is superior to other models when it comes to daily data and it is different from 

the finding of Kang et al. (2009) in which FIGARCH performs well. 

Our findings provides a solid piece of evidence to the cons part in the discussion that whether the 

traditional time series models are good to fit intraday data. We find that the traditional volatility 

model cannot fit the data when we employ intraday data. After de-seasonalising the raw returns of 

the crude oil futures and putting in GARCH family models, it emerges that no GARCH model can 

produce satisfactory forecast results except FIAPARCH model. Thus, the new efforts should be 

made to find new models to forecast volatility in a high-frequency framework. 

We find that the intraday crude oil returns are consistent with the stylised properties of other 

financial series such as stock market indices and exchange rates at high frequencies in many 

respects. This becomes a piece of evidence that these properties are not limit to certain kinds of 

high-frequency data. It might reflect some general features which all intraday data share. 
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The paper proceeds as follows. Section 2 reviews some of the main findings in the volatility 

forecasting literature. Section 3 discusses the data and methodology I use. Section 4 introduces 

estimation results. Section 5 compares the out-of-sample forecast performance of alternative 

models. Section 6 concludes. 
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2. Literature Review 

2.1. Forecasting by using high-frequency data 

The literature on volatility forecasting by using high-frequency data covers 4 aspects mainly: 

1.studies of the realised volatility, 2. model comparisons by using between high-frequency and 

daily data, 3. assessments of the standard volatility model at high frequencies, and 4. data 

properties of specific assets/series. 

Since the true volatility is unobservable, daily squared returns are often used as a proxy measure 

of volatility. By using 5 min data as a new volatility measure, Andersen and Bollerslev (1998) 

demonstrate a dramatic improvement in the volatility forecasting performance of a daily GARCH 

model (foreign exchange). Since then, a great number of studies have focused on realised volatility 

forecasting and its properties. Andersen, Bollerslev, Diebold, and Labys (ABDL, 1999 and 2001) 

recommend forecasting the realised volatility by using the ARFIMA model and show that the 

realised volatility is a consistent estimator of the integrated volatility. ABDL (2001) show that if 

realised volatility is modelled directly by a parametric model rather than simply being used in the 

evaluation of other models’ forecasting behaviours, the realised volatility can improve forecasting 

when it comes to the ARFIMA model on foreign exchange rates. The findings above make 

contribution to the empirical basis of using the realised volatility in volatility forecasting directly 

but it is limited to foreign exchange rate.  

The second aspect of the volatility literature studies the virtues and drawbacks of using high-

frequency data and compares volatility forecast evaluation by between using intraday data and 

using daily data. Beltratti & Morana (1999) estimate volatility models on the basis of high 

frequency (half-hour) data for the Deutsche mark–US dollar exchange rate and compare the results 

to those obtained from volatility models estimated on the basis of daily data. Their high frequency 
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data cover 1996 (from January 1, 1996 to December 31,1996, excluding week-ends and holidays), 

containing 12576 observations excluding week-ends while the daily data they use start with 

December 31, 1972 and end with January 31, 1997, corresponding to 6545 observations. They 

apply MA(1)-GARCH(1,1), MA(1)-GARCH(2,1) and MA(1)-FIGARCH(1,d,1) models to two 

sets of data. They categorise high-frequency data into three kinds: raw returns, deterministically 

filtered returns and stochastically filtered returns and they apply GARCH model and FIGARCH 

model to the three kinds of returns respectively. They show that even at the high (half-hour) 

frequency the coefficients of the GARCH volatility model are not very different from those 

estimated on the basis of an IGARCH model. Marlik (2005) studies the foreign exchange volatility 

by using hourly data of the British pound and the euro vis-a-vis the U.S. dollar. The period to 

which the data correspond starts in December 2001 and ends in March 2002 and is approximately 

the same for both currencies. Put it in another way, the author uses hourly data covering four 

months. The author applies GARCH model, FIGARCH, EGARCH, FIEGARCH and SV models 

to the two currencies. Moreover the author just employs raw return of hourly data instead of filtered 

returns. They find that euro is considerably more volatile when compared to British pound. 

Martens (2001) studies volatility forecast of foreign exchange by using half-hour returns of several 

major exchange rates: the spot rate between the Deutsche mark and the US dollar (DEM/USD) 

and that of the Japanese yen and the US dollar (YEN/USD) for all of 1996. The author excludes 

the returns from Friday 21:00 GMT through to Sunday 21:00 GMT thus leaves 261 days each with 

48 half-hour returns in his research. The author sets July 1 through to December 31, 1996 as out-

of-sample forecast period for the daily volatility forecasts for the DEM/USD and YEN/USD 

exchange. GARCH models are applied to de-seasonalised returns and raw returns respectively. 

Martens and Zein (2004) find that high-frequency data improve both the measurement accuracy 
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and the forecasting performance and they show that long memory models improve the forecasting 

performance. Hol and Koopman (2002) use S&P 100 stock index to compare the predictive powers 

of realised volatility models and daily time-varying volatility models and their out-of-sample 

evaluation result indicate that an ARFIMA model fitted to the realised volatility outperforms other 

alternative models. Pong et al. (2004) compare exchange rate volatility forecasts obtained from an 

option implied volatility model, a short memory model (ARMA), a long memory model (ARFIMA) 

and a daily GARCH model. They find that the most accurate volatility forecasts are generated 

using high frequency returns rather than a long memory specification. 

It is proved that the realised volatility model is able to fit the intraday data and has a good 

performance, however, there is still no consensus on whether other traditional time series models 

are able to capture the properties of high-frequency data or fit the intraday data. Rahman & Ang 

(2002) study the intra-day return volatility process by employing NASDAQ stock data. Their data 

set consists of transaction prices, bid-ask spread, and trading volumes from January 1, 1999 to 

March 31, 1999, for a subset of thirty stocks from NASDAQ 100 Index. They calculate 5 minute 

returns for this sample period. They add trading volume to the regression of conditional variance 

equation of GARCH model and they find that a standard GARCH (1, 1) is able to describe the 

intraday volatility. Chortareas et al. (2014) find that the traditional volatility model could also be 

an alternative for volatility forecasting in a high-frequency framework and should be considered 

along with the newer models but some other research document opposite evidence (Jones, 2003). 

Baillie et al. (2004) use three spot exchange rates: the British pound (BP), Swiss franc (SF) and 

the Deutsche mark (DM) vis-a-vis the US dollar ($) to measuring non-linearity, long memory and 

self-similarity. They use two datasets from quite distinct periods where the underlying institutional 

dynamics are different, to see if the apparent data generating process remains stable. The first 
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dataset they use are recorded every hour from 0.00 a.m. (2 January 1986) through 11:00 a.m. (15 

July 1986) at Greenwich Mean Time (GMT). The second dataset contains every 30 min spot price 

for the complete 1996 calendar year for the DM–$, $–BP and SF–$ exchange rates. The sample 

period is from 00:30 GMT (1 January 1996) through 00:00GMT (1 January 1997). They filter the 

return series with two methods: non-linear deterministic method and stochastic methodology and 

they apply MA-FIGARCH model to the two filtered return series. They find that the estimates of 

the long memory parameter are remarkably consistent across time aggregations and currencies and 

are suggestive of self-similarity but it is found to be too weak to be exploitable for forecasting 

purposes. 

For the fourth part, many studies focus on the properties of high-frequency data for some specific 

financial assets. First order negative autocorrelation, non-normal distributions, an increasing fat 

tail with an increasing frequency, and periodicity are documented as stylised properties in the 

literature (Dacorogna et al. 2001). Microstructure noise and optimal sampling frequency (Hansen 

& Lunde (2006), Bandi & Russel (2005)) are well discussed as a technical topic for high-frequency 

data as well. 

2.2 Forecast the crude oil volatility with daily data 

Agnolucci (2009) compares the predictive ability of two approaches which can be used to forecast 

volatility: GARCH-type models where forecasts are obtained after estimating time series models 

and an implied volatility model where forecasts are obtained by inverting one of the models used 

to price options. He has estimated GARCH models by using daily returns from the generic light 

sweet crude oil future based on the West Texas Intermediate (WTI) traded at the NYMEX. Data 

on the price of the contract have been sourced from the Bloomberg database. The collected sample 

goes from 31/12/1991 to 02/05/2005. The WTI future contract quoted at the NYMEX is the most 
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actively traded instrument in the energy sector. He evaluates which model produces the best 

forecast of volatility for the WTI future contract, evaluated according to statistical and regression-

based criteria, and also investigates whether volatility of the oil futures are affected by asymmetric 

effects, whether parameters of the GARCH models are influenced by the distribution of the errors 

and whether allowing for a time-varying long run mean in the volatility produces any improvement 

on the forecast obtained from GARCH models. 

Kang et al. (2009) investigate the efficacy of volatility models for three crude oil markets — Brent, 

Dubai, and West Texas Intermediate (WTI) — with regard to its ability to forecast and identify 

volatility stylized facts, in particular volatility persistence or long memory.  The data they use are 

three crude oil spot prices (in US dollars per barrel) obtained from the Bloomberg databases. The 

datasets consist of daily closing prices over the period from January 6, 1992 to December 29, 2006, 

and the last one year's data are used to evaluate out-of-sample volatility forecasts. They assess 

persistence in the volatility of the three crude oil prices using conditional volatility models. The 

CGARCH and FIGARCH models are better equipped to capture persistence than are the GARCH 

and IGARCH models. The CGARCH and FIGARCH models also provide superior performance 

in out-of-sample volatility forecasts. They conclude that the CGARCH and FIGARCH models are 

useful for modelling and forecasting persistence in the volatility of crude oil prices. Wei et al. 

(2010) extend the work of Kang et al. (2009). They use a number of linear and nonlinear GARCH 

models to capture the volatility features of two crude oil markets: Brent and WTI. They also carry 

out superior predictive ability test (SPA test) and other loss functions to evaluate the forecasting 

power of different models. They use daily price data (in US dollars per barrel) of Brent and WTI 

from 6/1/1992 to 31/12/2009. 

Mohammadi and Su (2010) examine the usefulness of several ARIMA-GARCH models for 
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modelling and forecasting the conditional mean and volatility of weekly crude oil spot prices in 

eleven international markets over the 1/2/1997–10/3/2009 period with weekly data. In particular, 

they investigate the out-of-sample forecasting performance of four volatility models — GARCH, 

EGARCH and APARCH and FIGARCH over January 2009 to October 2009. Forecasting results 

are somewhat mixed, but in most cases, the APARCH model outperforms the others. Also, 

conditional standard deviation captures the volatility in oil returns better than the traditional 

conditional variance. Finally, shocks to conditional volatility dissipate at an exponential rate, 

which is consistent with the covariance-stationary GARCH models than the slow hyperbolic rate 

implied by the FIGARCH alternative. 

Hou and Suardi (2012) consider an alternative approach involving nonparametric method to model 

and forecast oil price return volatility considering the use of parametric GARCH models to 

characterise crude oil price volatility is widely observed in the empirical literature.  Focusing on 

two crude oil markets, Brent and West Texas Intermediate (WTI), they show that the out-of-sample 

volatility forecast of the nonparametric GARCH model yields superior performance relative to an 

extensive class of parametric GARCH models. The data which are sampled from 6 January 1992 

to 30 July 2010 are obtained from DataStream database service. The improvement in forecasting 

accuracy of oil price return volatility based on the nonparametric GARCH model suggests that this 

method offers an attractive and viable alternative to the commonly used parametric GARCH 

models.  

Though crude oil plays a vital role in commodity market and global economy, few research focus 

on forecasting the crude oil volatility based on high-frequency data and on how alternative models 

outperform others. Corsi (2009) and Sevi (2014) study the volatility estimation and forecasting of 

crude oil futures with intraday data with HAR-type model. This paper focuses on crude oil 
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volatility forecasting at high frequencies and the comparison of alternative GARCH-series models’ 

forecasting performance and thus, fills the gap in the existing literature.  
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3. Data and methodology 

3.1. Data and data properties 

The original data we obtain are 15 min price data of the NYMEX light, sweet (low-sulphur) crude 

oil futures contract provide by Tick Data. Crude oil futures is the world's most actively traded 

commodity, and the NYMEX light, sweet (low-sulphur) crude oil (WTI) futures contract is the 

world's most liquid crude oil futures, as well as the world's largest-volume futures contract trading 

on a physical commodity. The data I use span the period from 25th March 2009 to 25th March 2013, 

containing 1033 trading days. 

High frequency data contain more information on financial assets. Theoretically, the higher the 

frequency of the data, the more accurate the volatility estimation will be. While on the other hand, 

microstructure frictions, such as price discreteness and measurement errors may affect the 

effectiveness of high frequency data (ABDL, 1999; Bandi & Russell, 2005). I employ 15 minute 

data in this paper in order to mitigate microstructure effects of high frequency data, which is 

consistent with ABDE (2001). 

NYMEX light, sweet (low-sulphur) crude oil futures has open outcry trading from 9:00 to 14:30 

EST on weekdays. Investors can also trade oil futures via NYMEX electronic trading platform 

from 17:00 on Sunday to 17:15 the next day and from 18:00 to 17:15 (New York Time) on 

weekdays. The trading volumes on weekends are rather small therefore we remove weekend 

returns from the sample following the common practice in the literature (Chortareas et al. 2011; 

Celik & Ergin 2014). I obtain 89732 observations in total after the data is cleared. The daily data 

is used as a comparison.  

The intraday return series 𝑟𝑡,𝑚 is given as follow: 

𝑟𝑡,𝑚 = ln(𝑃𝑡,𝑚) − ln(𝑃𝑡,𝑚−1)                                                                                                                 (1) 
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Where 𝑃𝑡,𝑚 is the close-mid price at the 𝑚th time stamp on day t. Figure 1 shows the intraday 

prices of crude oil futures.  

The daily return 𝑟𝑡 is given as follows: 

𝑟𝑡 = ln(𝑃𝑡) − ln(𝑃𝑡−1)                                                                                                                  (2) 

Figure 2 shows the comparison between the intraday returns of NYMEX light, sweet (low-sulphur) 

crude oil futures return series and those of the daily returns. Figure 3 indicates the comparison 

between the realised volatility and the daily volatility. Figure 4 shows the distribution of the 15 

min returns and daily returns. Table 1 represents the descriptive statistics of the two intraday/daily 

return series. 
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Figure 1. Plots of 15 minute price series. 
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Figure 2. Plots of 15 minute return series and daily return series. 
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Figure 3. Plots of realised volatility and daily volatility. 
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Figure 4. The distribution of 15 min return data and the daily return data 
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Table 1. Summary statistics of 15 minute returns series and daily return series. 

 Mean ( ×

10−6) 

S.D ( ×

10−3) 

Skewness Kurtosis ADF GPH 

15min 

return 

6.21 2.046 0.070065 19.07676 -303.574 -0.005 

(0.003) 

Daily 

return 

550 19.646 -0.22522 4.674699 -34.0487 -0.056 (0.029) 

Notes: The table shows the descriptive statistics of the 15 min returns and daily returns of the crude 

oil futures. Both series are skewed and fat tailed distributed. The sample period is from 25th March 

2009 to 25th March 2013, containing 1033 trading days. The standard errors are in the parentheses 

in the last column. 
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Figure 2 shows that the movements of the 15 min returns and the daily returns are not consistent. 

High-frequency data carry more information thus several jumps in the daily returns are smoothed 

out in the 15 min returns. Figure 3 also indicates the inconsistence between the realised volatility 

which is constructed from the squared intraday returns and daily volatility which is equal to the 

squared daily returns. The movements of the two volatility proxies are not synchronised and the 

scalars of the two volatilities on the Y-axis are not the same. It is shown that the values of the 

realised volatility are much smaller than the values of the daily volatility. The distributions of the 

15 min returns present that the 15 min returns are much more leptokurtic than the daily returns.  

Numbers in Table 1 indicate features of 15 minute returns of crude oil and these of daily returns. 

The crude oil shares some stylised properties of high-frequency returns of other financial assets in 

the literature. The mean value of crude oil returns is approximately zero, which is common among 

financial assets. The skewness of crude oil intraday return is 0.07, suggesting the distribution leans 

leftward. The kurtosis is way larger than 3, indicating the distribution is fat tailed. The augmented 

Dickey-Fuller unit root test supports the rejection of the null hypothesis of a unit root at the 1% 

significance level, implying the return series is stationary. The p-value of the GPH test on the 15 

min returns is 0.0833, implying the non-rejection of the null hypothesis that the long memory 

parameter is zero. Meanwhile the statistics of the daily returns are different from the intraday 

returns. The mean and standard deviation are much larger than those of the 15 min returns and the 

skewness is negative rather than positive compared to the skewness of the 15 min returns. The 

negative skewness indicates the distribution of daily returns is rightward rather than leftward which 

is a feather of the 15 min returns. The negative value of the ADF test statistics implies the daily 

returns are stationary and the GPH test result indicates the long memory parameter is zero. 

Dacorogna et al. (2001) find that a well-documented stylised fact of high-frequency returns which 
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is the negative first order autocorrelation in the return. Figure 5 indicates the autocorrelation 

function of the 15 min return series of crude oil. The first order autocorrelation of the 15 min 

returns of crude oil is negative, which is consistent with the literature (Goodhart, 1989; Goodhart 

and Figliuoli, 1992; Goodhart et al. 1995). Literature documents that a large negative 

autocorrelation is followed by rather small autocorrelations in the subsequent lags which is caused 

by the bounce between the bid and ask prices. However, for the crude oil return, the first order 

autocorrelation is just -0.012, which is not large enough to dominate the subsequent lags. The 

coefficients of autocorrelations in the subsequent lags are close to zero and the P-values of the Q-

stat are almost zero for the following 12 lags thus the null hypothesis of no autocorrelation for 12 

lags cannot be rejected. However, considering the small amount of the first order autocorrelation, 

we will not take moving average into consideration when we construct the mean equation of the 

regression in the following parts of this paper.  
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Figure 5. The autocorrelation function of the 15 minute returns (12 lags) 
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Figure 6. The autocorrelation function of absolute 15 min returns for crude oil futures for 300 

lags. 
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Periodicity is another stylised fact of intraday volatility series. Figure 6 shows the autocorrelation 

function of absolute returns for crude oil futures. The U-shaped plot reveals the periodicity in a 

trading day. Crude oil is traded from Sunday to Friday 6:00 p.m. - 5:15 p.m. New York time/ET 

with a 45-minute break each day beginning at 5:15 p.m. thus there are 278 observations for each 

24 hours. One can observe that the U pattern recurs approximately at 92 lags, suggesting 

periodicity within one day. The autocorrelation peaks at the beginning and the end of the 24 hour 

grids and it bottoms in the midday. This finding is consistent with those of other studies (Andersen 

and Bollerslev, 1997; Barbosa, 2002; Dacorogna et al. 2001). There is no sign of disappearance of 

autocorrelation in the absolute returns in Figure 6.  

In brief, the return series of the 15 min crude oil in my study shares the stylised facts of high 

frequency financial returns well documented in the literature. It has a zero mean while it is fat 

tailed and marginally positive skewed. The return series exhibits small negative first order 

autocorrelation and it reveals that periodicity pattern exists in intraday volatility. 

3.2. Model estimation 

The volatilities of intraday returns have a strong periodicity in 1-day interval, which is 

demonstrated in the previous section. Martens et al. (2002) suggest that intraday periodic patterns 

do not fit the traditional time series models, (e.g., GARCH-type models) directly because the 

GARCH-type model are easily distorted by the pattern. Thus, we use the de-seasonalised filtered 

returns to estimate GARCH-type models instead of the original returns directly. According to 

Taylor and Xu (1997), we have 

�̃�𝑡,𝑛 =
𝑟𝑡,𝑛

𝑆𝑡,𝑛
  (𝑛 = 1,2, … , 𝑁)                                                                                                                         (3) 

where  𝑟𝑡,𝑛 is the 𝑛th intraday return on day t and 𝑆𝑡,𝑛 is the corresponding seasonality term, for N 

intraday periods. 𝑆𝑡,𝑛 is equal to the averaging the squared returns for each intraday period: 
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𝑆𝑡,𝑛
2 =

1

𝑇
∑ 𝑟𝑡,𝑛

2𝑇
𝑡=1    (𝑛 = 1,2, … , 𝑁)                                                                                                      (4) 

where T is the number of days in the sample. It’s an effective method to smooth the seasonality 

feature so we use the de-seasonalised returns in the following part of the paper.  

The intraday return series is nearly symmetric and has a high kurtosis thus I assume the returns 

series follows the symmetric student T distribution while for the symmetric student T distribution, 

𝐸|𝑧𝑡,𝑛−1| = 2
Γ(

1+𝑣

2
)√𝑣−2

√𝜋Γ(𝑣/2)
                                                                                                                         (5) 

where 𝑣 indicates the degree of freedom of the student T distribution and Γ(. ) is the Gama function. 

We employ a series of GARCH family models for two different time frequencies for volatility 

forecasting. Bollerslev (1986) proposes the GARCH model and Sadorsky (2006) demonstrates that 

the GARCH (1, 1) model works well for crude oil volatility. The standard GARCH (1, 1) model 

for intraday data is given by: 

�̃�𝑡,𝑛 = 𝜇 + 𝜀𝑡,𝑛 ,   𝜀𝑡,𝑛|Ω𝑡,𝑛−1~𝑇𝑣(0, ℎ𝑡,𝑛)  

ℎ𝑡,𝑛 = 𝜔 + 𝛼𝜀𝑡,𝑛−1
2 + 𝛽ℎ𝑡,𝑛−1                                                                                                                (6) 

where 𝜇  denotes the conditional mean, 𝜔 , 𝛼  and 𝛽  are the parameters of the variance equation 

with parameter restrictions 𝜔 > 0, 𝛼 > 0, 𝛽 > 0 and 𝛼 + 𝛽 < 1. The error term 𝜀𝑡,𝑛 based on the 

information set Ω𝑡,𝑛−1  follows a student’s T distribution 𝑇𝑣  with zero mean, variance ℎ𝑡,𝑛  and 

degree of freedom 𝑣. Considering the expected return of the intraday price is almost zero, the 

conditional mean 𝜇 will not be reported in the following parts of the paper while it is still in the 

regression. The daily GARCH model is given as follows: 

𝑟𝑡 = 𝜇 + 𝜀𝑡 ,   𝜀𝑡|Ω𝑡,𝑛−1~𝑇𝑣(0, ℎ𝑡)  

ℎ𝑡 = 𝜔 + 𝛼𝜀𝑡−1
2 + 𝛽ℎ𝑡−1 ,                                                                                                                      (7) 

The restrictions on parameters of the daily GARCH model are the same as these of the intraday 
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GARCH model. The error term of the daily GARCH model also follows a student’s T distribution 

𝑇𝑣 with zero mean, variance ℎ𝑡,𝑛 and degree of freedom 𝑣.  

Engle and Bollerslev (1986) introduced IGARCH model which captures infinite persistence in the 

conditional variance. The model setting of IGARCH model is similar to that of the GARCH model 

but with the parameter restriction 𝛼 + 𝛽 = 1 . We also apply IGARCH model to both intraday 

returns and daily returns. Thus for intraday returns, the IGARCH model is given as follows: 

�̃�𝑡,𝑛 = 𝜇 + 𝜀𝑡,𝑛 ,   𝜀𝑡,𝑛|Ω𝑡,𝑛−1~𝑇𝑣(0, ℎ𝑡,𝑛)  

ℎ𝑡,𝑛 = 𝜔 + 𝛼𝜀𝑡,𝑛−1
2 + 𝛽ℎ𝑡,𝑛−1                                                                                                                (8) 

𝑠. 𝑡. 𝛼 + 𝛽 = 1  

And the daily IGARCH model is expressed as: 

𝑟𝑡 = 𝜇 + 𝜀𝑡 ,   𝜀𝑡|Ω𝑡,𝑛−1~𝑇𝑣(0, ℎ𝑡)  

ℎ𝑡 = 𝜔 + 𝛼𝜀𝑡−1
2 + 𝛽ℎ𝑡−1 ,                                                                                                                      (9) 

𝑠. 𝑡. 𝛼 + 𝛽 = 1  

Cont (2001) presents the stylised facts of financial assets such as long memory volatility effect and 

asymmetric leverage effect and others. Many GARCH family models are developed to capture 

these stylised features of the financial assets. We will apply the following GARCH family models 

to estimate and forecast the volatility of crude oil futures to capture long memory volatility effect 

and asymmetric leverage effect. 

Glosten et al. (1993) construct the GJR model to capture the asymmetric leverage volatility effect, 

i.e., the negative shocks will have larger impact on the volatility of the time series. The GJR model 

for intraday returns is given as follows: 

�̃�𝑡,𝑛 = 𝜇 + 𝜀𝑡,𝑛 ,   𝜀𝑡,𝑛|Ω𝑡,𝑛−1~𝑇𝑣(0, ℎ𝑡,𝑛)  

ℎ𝑡,𝑛 = 𝜔 + [𝛼 + 𝛾𝐼(𝜀𝑡,𝑛−1 < 0)]𝜀𝑡,𝑛−1
2 + 𝛽ℎ𝑡,𝑛−1,                                                                             (10) 
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where 𝐼(. ) is an indicator function. If 𝜀𝑡,𝑛−1 is negative, then 𝐼(. ) = 1 and 𝐼(. ) = 0 if 𝜀𝑡,𝑛−1 is not 

negative. 𝛾  is the asymmetric leverage coefficient and it captures the leverage effect of the 

volatility. 

The GJR model setting for the daily returns is given as follows: 

𝑟𝑡 = 𝜇 + 𝜀𝑡 ,   𝜀𝑡|Ω𝑡,𝑛−1~𝑇𝑣(0, ℎ𝑡)  

ℎ𝑡 = 𝜔 + [𝛼 + 𝛾𝐼(𝜀𝑡−1 < 0)]𝜀𝑡−1
2 + 𝛽ℎ𝑡−1 ,                                                                                    (11) 

EGARCH model (Nelson, 1990) is another GARCH family model which captures the volatility 

leverage effect. Nelson argues that the nonnegative constraints in the linear GARCH model are too 

restrictive. To loosen the nonnegative constraints on parameters α and β of GARCH model, Nelson 

proposes the EGARCH model where no restrictions are placed on these parameters in the 

EGARCH model. The specification of EGARCH model for the intraday returns is  

�̃�𝑡,𝑛 = 𝜇 + 𝜀𝑡,𝑛 ,   𝜀𝑡,𝑛|Ω𝑡,𝑛−1~𝑇𝑣(0, ℎ𝑡,𝑛)  

log (ℎ𝑡,𝑛) = 𝜔 + 𝛼𝑧𝑡,𝑛−1 + 𝛾(|𝑧𝑡,𝑛−1| − 𝐸|𝑧𝑡,𝑛−1|) + 𝛽log (ℎ𝑡,𝑛−1),                                                (12) 

Where 𝑧𝑡,𝑛−1 depends on the assumption made on the unconditional density of 𝑧𝑡,𝑛−1 and 𝛾  is the 

asymmetric leverage coefficient to capture the volatility leverage effect.  

The EGARCH model for daily return is given as: 

�̃�𝑡,𝑛 = 𝜇 + 𝜀𝑡 ,   𝜀𝑡|Ω𝑡,𝑛−1~𝑇𝑣(0, ℎ𝑡)  

log (ℎ𝑡) = 𝜔 + 𝛼𝑧𝑡−1 + 𝛾(|𝑧𝑡−1| − 𝐸|𝑧𝑡−1|) + 𝛽log (ℎ𝑡−1),                                                            (13) 

GARCH models above capture short-term volatility features while fractionally integrated GARCH 

(FIGARCH) model (Baillie et al., 1996, 2004; Andersen and Bollerslev, 1997) captures the long 

memory properties of the volatility. The FIGARCH model assumes the finite persistence of 

volatility shocks (no such persistence exists in the GARCH framework), i.e., long-memory 

behaviour and a slow rate of decay after a volatility shock. Comparatively, an IGARCH model 
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implies the complete persistence of a shock, and apparently quickly fell out of favour. The 

FIGARCH(1,d,1) is reduced to a GARCH(1,1) if the fractional integration parameter d is 0 and it 

is reduced to an IGARCH(1,1) if d is 1. The FIGARCH (1, d, 1) model for intraday returns can be 

written as follows: 

�̃�𝑡,𝑛 = 𝜇 + 𝜀𝑡,𝑛 ,   𝜀𝑡,𝑛|Ω𝑡,𝑛−1~𝑇𝑣(0, ℎ𝑡,𝑛)   

ℎ𝑡,𝑛 = 𝜔 + 𝛽ℎ𝑡,𝑛−1 + [1 − (1 − 𝛽𝐿)−1(1 − 𝜑𝐿)(1 − 𝐿)𝑑]𝜀𝑡,𝑛
2  ,                                                      (14) 

where 0 ≤ 𝑑 ≤ 1 , 𝜔 > 0 , 𝜑 , 𝛽 < 1 .  𝑑  is the fractional integration parameter and  𝐿  is the lag 

operator. The fractional integration parameter 𝑑  allows autocorrelations to decay at a slow 

hyperbolic rate which characterises the long-memory feature. If 𝑑  is set between zero and one, 

FIGARCH model is able to describe intermediate ranges of persistence since it lies within d=1 

representing the complete integrated persistence of volatility shocks and d=0 representing the 

geometric decay. 

The FIGARCH specification for the daily return is given as follows: 

𝑟𝑡 = 𝜇 + 𝜀𝑡 ,   𝜀𝑡|Ω𝑡,𝑛−1~𝑇𝑣(0, ℎ𝑡)  

ℎ𝑡 = 𝜔 + 𝛽ℎ𝑡−1 + [1 − (1 − 𝛽𝐿)−1(1 − 𝜑𝐿)(1 − 𝐿)𝑑]𝜀𝑡
2                                                                (15) 

Based on FIGARCH, Tse (1998) introduces the fractionally integrated asymmetric power ARCH 

(FIAPARCH) model to capture long memory and asymmetry in volatility simultaneously. The 

FIAPARCH (1, d, 1) model for intraday returns is written as follows: 

�̃�𝑡,𝑛 = 𝜇 + 𝜀𝑡,𝑛 ,   𝜀𝑡,𝑛|Ω𝑡,𝑛−1~𝑇𝑣(0, ℎ𝑡,𝑛)   

ℎ𝑡,𝑛 = 𝜔(1 − 𝛽)−1 + [1 − (1 − 𝛽𝐿)−1(1 − 𝜑𝐿)(1 − 𝐿)𝑑](|𝜀𝑡,𝑛| − 𝛾𝜀𝑡,𝑛)𝛿 ,                                   (16) 

where 0 ≤ 𝑑 ≤ 1 , 𝜔, 𝛿 > 0 , 𝜑 , 𝛽 < 1  and  −1 < 𝛾 < 1 . FIAPARCH model is reduced to 

FIGARCH model if 𝛾 = 0 and 𝛿 = 2. 

FIAPARCH model for daily return is given as follows: 
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𝑟𝑡 = 𝜇 + 𝜀𝑡 ,   𝜀𝑡|Ω𝑡,𝑛−1~𝑇𝑣(0, ℎ𝑡)  

ℎ𝑡 = 𝜔(1 − 𝛽)−1 + [1 − (1 − 𝛽𝐿)−1(1 − 𝜑𝐿)(1 − 𝐿)𝑑](|𝜀𝑡| − 𝛾𝜀𝑡 )𝛿                                           (17) 

Davidson (2004) proposed the hyperbolic GARCH (HYGARCH) model, which nests both the 

GARCH and FIGARCH models as special cases. The HYGARCH model is covariance stationarity 

and it obeys hyperbolically decaying impulse response coefficients just like the FIGARCH model.  

The HYGARCH (1, d, 1) model for intraday returns is determined as follows: 

�̃�𝑡,𝑛 = 𝜇 + 𝜀𝑡,𝑛 ,   𝜀𝑡,𝑛|Ω𝑡,𝑛−1~𝑇𝑣(0, ℎ𝑡,𝑛)   

ℎ𝑡,𝑛 = 𝜔 + {1 − [1 − 𝛽𝐿]−1𝜑𝐿{1 + 𝑘[(1 − 𝐿)𝑑 − 1]}}𝜀𝑡,𝑛
2                                                                (18) 

where  0 ≤ 𝑑 ≤ 1, 𝜔 > 0, 𝑘 ≥ 0, 𝜑, 𝛽 < 1 and  𝐿 is the lag operator.  

The HYGARCH (1, d, 1) model for daily returns is defined as follows: 

𝑟𝑡 = 𝜇 + 𝜀𝑡 ,   𝜀𝑡|Ω𝑡,𝑛−1~𝑇𝑣(0, ℎ𝑡)   

ℎ𝑡 = 𝜔 + {1 − [1 − 𝛽𝐿]−1𝜑𝐿{1 + 𝑘[(1 − 𝐿)𝑑 − 1]}}𝜀𝑡
2                                                                     (19) 

In summary, we employ 7 GARCH family models to describe and forecast the volatility of the 

WTI crude oil futures by using intraday 15 min return series and daily return series respectively. 

3.3. Forecast and SPA test 

The crude oil observations are from 25th March 2009 to 25th March 2013 and we divide the whole 

sample into two subgroups: the in-sample data for volatility modelling covering from 25th March 

2009, to 1nd November 2012, and the out-of-sample data for model evaluation is from 2nd 

November 2012, to 25th March 2013, covering 100 trading days and containing 8595 observations. 

We use a rolling window method and produce one-step ahead volatility forecasts for intraday and 

daily model therefore, each step is one-day for daily data while it is 15 min each step for our high 

frequency data. This procedure is repeated 100 times in order to produce 100 daily volatility 

forecasts for daily out-of-sample evaluation and 8595 times to yield intraday volatility forecasts 
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for intraday out-of-sample evaluation. The rolling window estimation requires adding one new 

observation and dropping the most distant one therefore the sample size employed in estimating 

the models remains fixed and the forecasts do not overlap.  

Actual volatility (variance) is assessed using the squared returns and denoted as 𝜎𝑡
2. The volatility 

forecast obtained using a GARCH-class model is indicated by �̂�𝑡
2. Various forecasting criteria or 

loss functions can be considered to assess the predictive accuracy of a volatility model. However 

it is not obvious which loss function is more appropriate for the evaluation of volatility models. 

Hence, rather than making a single choice we use the following 9 different loss functions as 

forecasting criteria: 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝜎𝑡

2 − �̂�𝑡
2)2𝑛

𝑡=1                                                                                                                   (20) 

MedSE = 𝑀𝑒𝑑𝑖𝑎𝑛(𝜎𝑡
2 − �̂�𝑡

2)2                                                                                                            (21) 

𝑀𝐸 =
1

𝑛
∑ (𝜎𝑡

2 − �̂�𝑡
2)𝑛

𝑡=1                                                                                                                    (22) 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝜎𝑡

2 − �̂�𝑡
2|𝑛

𝑡=1                                                                                                                   (23) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝜎𝑡

2 − �̂�𝑡
2)2𝑛

𝑡=1                                                                                                              (24) 

𝐻𝑀𝐴𝐸 =
1

𝑛
∑ |

𝜎𝑡
2−�̂�𝑡

2

𝜎𝑡
2 |𝑛

𝑡=1                                                                                                                  (25) 

𝐴𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝜎𝑡
2−�̂�𝑡

2

(𝜎𝑡
2+�̂�𝑡

2)/2
|𝑛

𝑡=1                                                                                                          (26) 

𝑈 =
√

1

𝑛
∑ (𝜎𝑡

2−�̂�𝑡
2)

2𝑛
𝑡=1

√1

𝑛
∑ (𝜎𝑡

2)𝑛
𝑡=1 +√1

𝑛
∑ (�̂�𝑡

2)𝑛
𝑡=1

                                                                                                             (27) 

𝑙𝑜𝑔𝑙𝑜𝑠𝑠 = −
1

𝑛
∑ (𝜎𝑡

2 log(�̂�𝑡
2) + (1 − 𝜎𝑡

2)log (1 − �̂�𝑡
2))𝑛

𝑡=1                                                             (28) 

where n is the number of forecasting data. In the forecasting comparison part, the subscript 

indicating the observation number within a day is omitted because we do not make cross 
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comparison between same models in different time frequencies. The 9 loss functions are Mean 

Squared Error (MSE), Median Squared Error (MedSE), Mean Error (ME), Mean Absolute Error 

(MAE), Root Mean Squared Error (RMSE), Heteroskedastic Mean Squared Error (HMSE), Mean 

Absolute Percentage Error (MAPE), Adjusted Mean Absolute Percentage Error (AMAPE), Theil 

Inequality Coefficient (THEIL) and Logarithmic Loss Function (LL) respectively. Additional 

discussion of these criteria can be found in Brooks, Burke, and Persand (1997) for more details 

about these measures. 

When we use a particular loss function to compare two models, we cannot clearly conclude that 

the forecasting performance of model A is superior to that of model B. Such a conclusion cannot 

be made on the basis of just one loss function and just one sample. Recent research has focused on 

a testing framework for determining whether a particular model is outperformed by another one 

(e.g., Diebold and Mariano, 1995; White, 2000). Hansen (2005) extends the White framework 

known as the superior predictive ability (SPA) test. The SPA test has been shown to have good 

power properties and to be more robust than previous approaches. 

The SPA test can be used to compare the performance of two or more forecasting models at a time. 

Forecasts are evaluated using a pre-specified loss function and the “best” forecasting model is the 

one that produces the smallest expected loss. In a SPA test, the loss function relative to the 

benchmark model is defined as 𝑋𝑡,𝑙
(0,𝑖)

= 𝐿𝑡,𝑙
(0)

− 𝐿𝑡,𝑙
(𝑖)

, where 𝐿𝑡,𝑙
(0)

 is the value of the loss function 𝑙 at 

time 𝑡 for a benchmark model 𝑀0  and 𝐿𝑡,𝑙
(𝑖)

 is the value of the loss function 𝑙 at time 𝑡 for another 

competitive model 𝑀𝑖   for 𝑖 = 1, … , 𝐾 . The SPA test is used to compare the forecasting 

performance of a benchmark model against its K competitors. The null hypothesis that the 

benchmark or base model is not outperformed by any of the other competitive models is expressed 

as 𝐻0 : max
𝑖=1,…,𝐾

𝐸(𝑋𝑡,𝑙
(0,𝑖)

) ≤ 0.   It is tested with the statistic 𝑇𝑙
𝑆𝑃𝐴 = max

𝑖=1,…,𝐾
(√𝑛�̅�𝑖,𝑙/
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√ lim
𝑛→∞

𝑣𝑎𝑟(√𝑛�̅�𝑖,𝑙) ), where n is is the number of forecast data points and �̅�𝑖,𝑙 =
1

𝑛
∑ 𝑋𝑡,𝑙

(0,𝑖)𝑛
𝑡=1 . 

lim
𝑛→∞

𝑣𝑎𝑟(√𝑛�̅�𝑖,𝑙)   and the p-value of the 𝑇𝑙
𝑆𝑃𝐴  are obtained by using the stationary bootstrap 

procedure discussed by Politis and Romano (1994). Hansen (2005) summarises that the p-value of 

a SPA test indicates the relative performance of a base model 𝑀0  in comparison with alternative 

models 𝑀𝑖 . A high p-value indicates that we are not able to reject the null hypothesis that “the 

base model is not outperformed”. 
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4. Estimation results for different volatility models 

Table 2 and table 3 present the in-sample estimation results for the alternative volatility models 

presented in model framework section for two time frequencies. For each table, the upper part 

shows the values and standard errors of each parameter and the lower part presents the diagnostic 

results of the standardised residuals. 

After reading table 1, I conclude that 𝛽s in all the models are significant at 1% level. For IGARCH 

and EGARCH model, 𝛽s are much close to 1 (larger than 0.9) and 𝛽s in GARCH model and GJR 

model are also close to 1 (larger than 0.8). The large 𝛽s suggest the high persistence of volatility 

in the intraday data. The asymmetric leverage coefficients 𝛾s for intraday regression are significant 

in GJR, EGARCH and FIAPARCH models, indicating the leverage effect exists. The power 

coefficient 𝛿 in FIAPARCH model is close to 2 and it is significantly different from zero and I 

cannot reject the hypothesis that  𝛿 is 2 at 5% significance level while I reject the hypothesis that 

𝛿 is 1 at 1% level. That 𝛿 is close to 2 indicates that conditional variance is more fit for the intraday 

data than conditional standard deviation. The fractional difference parameter 𝑑s in FIGARCH, 

FIAPARCH and HYGARCH are all significant and the value is from 0.45 to 0.4725, suggesting a 

large degree of long-memory volatility in intraday returns. The value of degree of freedom of the 

student’s T distribution ranges from 5.99 to 6.09 and are all significant in all GARCH family 

models, suggesting the kurtosis of the returns.  

The lower part of Table 2 provides the diagnostic tests of the corresponding GARCH family 

models for 15 min intraday data. The log likelihood function values and AIC values are close to 

each other for alternative GARCH family models except EGARCH model. The log likelihood 

function value and the value of AIC of EGARCH are much lower than those of other GARCH 

family models. The Ljung-Box Q tests and ARCH tests results are quite mixed for intraday data. 
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The Ljung-Box Q-statistics of lag order 20 of the standardized residuals are all significant at 1% 

level in each model except IGARCH, rejecting the null hypothesis that there is no serial correlation 

in the standardized residuals; while the Ljung-Box Q-statistics of lag order 20 of the squared 

standardized residuals is not significant for FIGARCH model only. ARCH test results show that 

the standardized residuals still have heteroskedasticity feature except FIGARCH model and 

HYGARCH model.  

The daily return regression output and diagnostic tests are given in Table 2. Similar to the output 

of GARCH, IGARCH, GJR and EGARCH model output for intraday returns, 𝛽s in these models 

are very close to 1 and are significant at 1% level, indicating the volatility of daily data is persistent 

in WTI market. The asymmetric leverage coefficients 𝛾 s in GJR and EGARCH model is 

significant, suggesting the negative shocks will have a larger impact on the volatility than positive 

shocks. While 𝛾 in FIAPARCH is not significant. This result is consistent with Cheong (2009) and 

Wei et al. (2010). The value of the power coefficient 𝛿 in FIAPARCH model employing daily data 

is 1.997, which is very close to 2 and I do not reject the hypothesis that 𝛿 is 2 at the 5 % level. This 

result is similar to the FIAPARCH output of the intraday return, which present that conditional 

variance is more fit to the crude oil return than conditional standard deviation. The fractional 

difference parameter 𝑑s in FIGARCH and FIAPARCH are significant and the values are 0.258 and 

0.184 respectively. The results indicate the volatility of the crude oil contains long-memory 

character. All the parameters of HYGARCH model are not significant except the degree of freedom 

of the student’s T distribution thus the performance of HYGARCH is not fit for crude oil returns.  

The lower part of Table 3 provides the diagnostic tests of the corresponding GARCH family 

models for daily data. The log (L) and AIC values are much close to each other under the alternative 

GARCH family models. For GARCH family model employing daily data, The Ljung-Box Q-
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statistics of lag order 20 of the squared standardized residuals and ARCH tests indicate FIGARCH, 

FIAPARCH and HYGARCH outperform the other 4 models while the Ljung-Box Q-statistics of 

lag order 20 of the standardized residuals tell an opposite story. All the Q-statistics of the 

standardized residuals and the ARCH statistics except the ARCH statistics under EGARCH are 

not significant at 5% level, which indicates that the residuals have no autocorrelation and ARCH 

effect. 

Swanson et al. (2006) argue that we are supposed to choose a preferred model based on its 

forecasting performance rather than their in-sample fit. Therefore I carry out out-of-sample 

forecasting performance to evaluate alternative GARCH family models. 
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Table 2. Estimation results of different volatility models for intraday returns 

 

 

GARCH IGARCH GJR EGARCH FIGARCH FIAPARCH HYGARCH 

ω x 10^6 0.01221***  

(0.0028) 

0.02762 (0.0016) 0.0122*** 

(0.0028) 

0.0000 

(0.0166) 

0.0468*** 

(0.0086) 

0.0128*** 

(0.0025) 

0.0172 (0.0147) 

Α 0.1001***  

(0.0010) 

0.078083*** 

(0.0017381) 

0.100111*** 

(0.0010350) 

0.271113*** 

(0.0068354) 

   

Β 0.800025***  

(0.0021910) 

0.921917***  

(0.000286) 

0.800025*** 

(0.0021917)  

0.955319*** 

(0.00024038) 

0.452940*** 

(0.013664) 

0.400140*** 

(0.015277) 

0.448520*** 

(0.022339) 

d.o.f 6.011470***  

(0.015824) 

6.026217*** 

(0.14406) 

6.011470***      

(0.015394) 

5.999317*** 

(0.11790) 

6.089591***     

(0.060163) 

6.012063***     

(0.024139) 

5.997117***     

(0.15620) 

γ   0.010122***    

(0.0030080) 

-0.078280*** 

(0.0029402) 

0.270658*** 

(0.00024756) 

 0.010863*** 

(0.0019776) 

 

Log Alpha 

(HY) 

      0.016572 

(0.0090933) 

δ      2.000181***    

(0.0053816) 

 

φ     0.130278*** 

(0.0092180) 

0.099942*** 

(0.011534) 

0.126694 

(0.015074) 

d     0.472533***    

(0.0071312) 

0.450144***    

(0.0053950) 

0.464303*** 

(0.014638) 

        

Diagnostic        

Log(L) 335108.544 401539.058 335278.276 114588.408 328694.918 352379.885 393581.536 

AIC -8.260191 -9.897705 -8.264350 -2.824394 -9.862134 -8.685849 -9.701481 

Q(20) 494.876*** 

[0.0000000] 

16.2711   

[0.6996701] 

537.457***   

[0.0000000] 

55.5864***   

[0.0000335] 

67.4981***   

[0.0000005] 

491.552***   

[0.0000000] 

215.758***   

[0.0000000] 

Q2(20) 277.088*** 

[0.0000000] 

151.098***   

[0.0000000] 

282.397***   

[0.0000000] 

91.5607***   

[0.0000000] 

6.35074   

[0.9945546] 

217.559***   

[0.0000000] 

12.5546   

[0.8173234] 

ARCH(20) 17.410*** 

[0.0000] 

6.8890*** 

[0.0000] 

17.805*** 

[0.0000] 

11.552*** 

[0.0000] 

0.31674 [0.9984]   12.386*** 

[0.0000] 

0.63793 [0.8875]   

Notes: the numbers in parentheses are standard errors of the estimations. Log(L) is the logarithm maximum likelihood function value. 

AIC is the average Akaike information criterion. Q(20) and Q2(20) are the Ljung–Box Q-statistic of lag order 20 computed on the 

standardized residuals and squared standardized residuals, respectively. ARCH(20) is the non-heteroskedasticity statistic of order 20. P-

values of the statistics are reported in square brackets. ** and *** denote significance at the 5% and 1% levels, respectively. 
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Table 3. Estimation results of different volatility models for daily returns 

 

 

GARCH IGARCH GJR EGARCH 

 

FIGARCH FIAPARCH HYGARCH 

ω x 10^4 0.135486 

(0.075531) 

0.034278 

(0.039289) 

0.102000 

(0.055122) 

0.000544  

(12.998) 

0.535345 

(0.46157) 

0.485799 (1.9011) 0.055273 

(0.93261) 

α 0.065141** 

(0.026221) 

0.071372** 

(0.043119) 

0.008735 

(0.015840) 

0.020320 

(0.15456) 

   

β 0.901656*** 

(0.037753) 

0.928628***  

(0.008606) 

 

0.919959*** 

(0.028861)  

0.999308*** 

(0.0012490) 

0.192791 

(0.52391) 

-0.161725    

(0.54603) 

0.148453 

(0.69051) 

d.o.f 8.406655*** 

(2.0608) 

7.003380*** 

(1.6289) 

9.408019***      

(2.5921) 

6.759639*** 

(1.8483) 

8.372224***     

(2.0506) 

9.539912***     

(2.5541) 

8.206247***     

(2.0179) 

γ   0.089790***    

(0.033702) 

-0.068631 

(0.036998) 

0.4110*** 

(0.071263) 

 0.454404    

(0.34889) 

 

HY       0.360136 

(0.71845) 

δ      1.997314***    

(0.61248) 

 

φ     0.000000 

(0.56190) 

-0.255096    

(0.52410) 

0.000000 

(0.79986) 

d     0.258486***    

(0.062712) 

0.183622**    

(0.074691) 

0.151379 

(0.14814) 

        

Diagnostic        

Log(L) 2350.947 2347.775 2356.222 2307.596 2352.048 2357.519 2352.235 

AIC -5.028825 -5.024169 -5.037989 -4.931610 -5.029042 -5.036483 -5.0273 

Q(20) 27.9886   

[0.1096686] 

25.7596   

[0.1738983] 

28.2193   

[0.1043095] 

22.1826   

[0.3306860]   

28.5784   

[0.0963982] 

29.4656   

[0.0789886] 

28.3319   

[0.1017727] 

Q2(20) 17.7095   

[0.4749414] 

19.9536   

[0.3354371] 

20.0119   

[0.3321486] 

33.9349**   

[0.0128306] 

14.2030   

[0.7157638]   

17.1048   

[0.5159099]   

14.5209   

[0.6945593]   

ARCH(20) 1.0760  

[0.3695] 

1.1882 

[0.2562] 

1.1667  

[0.2760] 

1.7437**  

[0.0226] 

0.81558  

[0.6962]   

0.94017  

[0.5352] 

0.83414  

[0.6727]   

Notes: the numbers in parentheses are standard errors of the estimations. Log(L) is the logarithm maximum likelihood function value. 

AIC is the average Akaike information criterion. Q(20) and Q2(20) are the Ljung–Box Q-statistic of lag order 20 computed on the 

standardized residuals and squared standardized residuals, respectively. ARCH(20) is the non-heteroskedasticity statistic of order 20. P-

values of the statistics are reported in square brackets. ** and *** denote significance at the 5% and 1% levels, respectively.
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5. Forecast comparison 

Table 4 produces the one-step out-of-sample volatility forecasts valuation of alternative 

GARCH family models by employing intraday data. The out-of-sample period is from 2nd 

November 2012 to 25th March 2013, covering 100 trading days and containing 8595 

observations. There are 9 different forecast evaluations in table 1 and the performance of 

alternative models is different under different valuation criteria. FIGARCH performs best when 

it comes to mean squared error (MSE), mean error (ME) or root mean squared error (RMSE) 

while GARCH model outperforms other models if we stick to median squared error (MedSE), 

mean absolute error (MAE) or mean absolute percentage error (MAPE). FIAPARCH is the best 

under the criterion of adjusted mean absolute percentage Error (AMAPE). A look at Theil 

inequality coefficient (TIC) tells that Fractional GARCH models such as FIGARCH, 

FIAPARCH and HYGARCH outperform GARCH, IGARCH, GJR and EGARCH models and 

GARCH, IGARCH, GJR models are almost naïve guess considering their TIC values are close 

to 1. The TIC value of EGARCH is 1, which suggests that the forecast of EGARCH model is 

just naïve guesswork. To sum up, GARCH model performs well in terms of two criteria: mean 

absolute error and mean absolute percentage error; FIGARCH also performs well according to 

three criteria: mean squared error, mean error and root mean squared error. GJR performs the 

best under median squared error and logarithmic loss function, FIAPACH and HYGARCH 

perform well in adjusted mean absolute percentage error and Theil inequality coefficient 

respectively. The performance of EGARCH model is the worst among the models being 

compared.   
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Table 4. Forecast valuation of one-step out-of-sample volatility forecasts of alternative GARCH models of intraday data 

 GARCH IGARCH GJR EGARCH FIGARCH FIAPARCH HYGARCH 

MSE 3.256e-011 

(5) 

1.621e-008 

(6) 

3.254e-011 

(4) 

0.9929 

(7) 

2.951e-011 

(1) 

2.966e-011 

(2) 

3.02e-011 

(3) 

MedSE 2.438e-014 

(2) 

1.22e-008 

(6) 

2.241e-014 

(1) 

  1 

(7) 

2.588e-012 

(4) 

3.132e-013 

(3) 

4.529e-012 

(5) 

ME 1.395e-006 

(5) 

-0.0001099 

(6) 

1.388e-006 

(4) 

-0.9946 

(7) 

-2.33e-007 

(2) 

4.383e-007 

(3) 

-8.104e-007 

(1) 

MAE 1.462e-006 

(2) 

0.0001101 

(6) 

1.46e-006 

(1) 

0.9946 

(7) 

2.063e-006 

(4) 

1.698e-006 

(3) 

2.463e-006 

(5) 

RMSE 5.706e-006 

(5) 

0.0001273 

(6) 

5.704e-006 

(4) 

0.9964 

(7) 

5.432e-006 

(1) 

5.446e-006 

(2) 

5.495e-006 

(3) 

MAPE 243.5 

(1) 

2.166e+005 

(6) 

255.8 

(2) 

1.846e+009 

(7) 

 3231 

(4) 

1739 

(3) 

4331 

(5) 

AMAPE 0.6258 

(3) 

  0.9519 

(6) 

0.6242 

(2) 

  1 

(7) 

0.6685 

(4) 

0.6191 

(1) 

0.6962 

(5) 

TIC   0.9712 

(6) 

0.9497 

(4) 

0.9699 

(5) 

  1 

(7) 

0.7371 

(2) 

0.7687 

(3) 

0.6913 

(1) 

LL    8.35 

(2) 

48.05 

(6) 

8.318 

(1) 

251.6 

(7) 

13.23 

(4) 

10.85 

(3) 

15.25 

(5) 

Notes: Numbers in brackets indicate the performance ranking of alternative models under each loss function. 
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Table 5 presents the one-step out-of-sample volatility forecasts valuation of alternative 

GARCH family models by employing daily data. Contrary to the findings of alternative 

GARCH models employing intraday data, EGARCH model of daily data outperforms other 

models in terms of the most criteria. The Theil inequality coefficient of FIAPARCH model is 

less than that of EGARCH, which is the only loss function indicating daily EGARCH is 

outperformed by any other daily GARCH type model.   

The discussion above provide the performance of different models according to different 

criteria. To check the reliability and robustness of the forecasts, we refer to SPA test for more 

information. 
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Table 5. Forecast valuation of one-step out-of-sample volatility forecasts of alternative GARCH models of daily data 

 GARCH IGARCH GJR EGARCH FIGARCH FIAPARCH HYGARCH 

MSE 1.283e-007 

(5) 

1.687e-007 

(7) 

1.193e-007 

(3) 

7.732e-008 

(1) 

1.541e-007 

(6) 

1.038e-007 

(2) 

1.264e-007 

(4) 

MedSE 1.005e-007 

(5) 

1.344e-007 

(7) 

8.977e-008 

(3) 

3.08e-008 

(1) 

1.311e-007 

(6) 

7.374e-008 

(2) 

9.773e-008 

(4) 

ME -0.0002361 

(5) 

-0.0002889 

(7) 

-0.0002258 

(3) 

-9.15e-005 

(1) 

-0.0002782 

(6) 

-0.0001867 

(2) 

-0.0002305 

(4) 

MAE 0.0003113 

(5) 

0.0003627 

(7) 

0.0002996 

(3) 

0.0001929 

(1) 

0.0003502 

(6) 

0.000269 

(2) 

0.0003071 

(4) 

RMSE 0.0003582 

(5) 

0.0004108 

(7) 

0.0003455 

(3) 

0.0002781 

(1) 

0.0003926 

(6) 

0.0003223 

(2) 

0.0003555 

(4) 

MAPE 292.2 

(5) 

297.5 

(6) 

286.5 

(3) 

163 

(1) 

327.3 

(7) 

262.2 

(2) 

287.4 

(4) 

AMAPE 0.6887 

(5) 

0.7088 

(7) 

0.6834 

(3) 

0.6029 

(1) 

0.7075 

(6) 

0.6671 

(2) 

0.6865 

(4) 

TIC   0.553 

(4) 

0.5787 

(7) 

0.5432 

(2) 

0.5518 

(3) 

0.5681 

(6) 

0.54 

(1) 

0.5535 

(5) 

LL    10.51 

(5) 

11.14 

(7) 

10.32 

(3) 

8.258 

(1) 

11.07 

(6) 

9.803 

(2) 

10.44 

(4) 

Notes: Numbers in brackets indicate the performance ranking of alternative models under each loss function.
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Table 6. SPA test results evaluated by the MAE and MSE for intraday GARCH model 

 MAE MSE MAE MSE 

 Models t-statistics 

Benchmark Intraday 

GARCH 

Intraday 

GARCH 

- - 

Most 

Significant 

GJR GJR 5.87510 7.91513 

Best model GJR GJR 5.87510 7.91513 

Model_25% FIGARCH FIGARCH -3.64346 5.70474 

Median_50% HYGARCH HYGARCH -5.64952 5.13410 

Model_75% FIAPARCH FIAPARCH -11.38561 2.82256 

Worst model IGARCH IGARCH -20.01088 -9.61660 

SPA test p-value 
MAE MSE   

0.00000 0.00270   

Notes: Table 6 shows the SPA test results for different models. The benchmark model selected 

is the intraday GARCH model. The null hypothesis of the test is that the benchmark model is 

not inferior to the other candidate models. The test chooses the most significant model, the best 

model, models with performances of 75%, 50% and 25% relative to the benchmark model, and 

the worst model. P-values are reported in the last row. 

  



48 
 

Table 7. SPA test results evaluated by the MAE and MSE for intraday FIAPARCH model 

 MAE MSE MAE MSE 

 Models t-statistics 

Benchmark Intraday 

FIAPARCH 

Intraday 

FIAPARCH 

- - 

Most 

Significant 

FIGARCH HYGARCH 15.46191 0.60762 

Best model FIGARCH HYGARCH 15.46191 0.60762 

Model_25% HYGARCH FIGARCH 14.90305 -0.14373 

Median_50% GJR GJR 11.42375 -2.81174 

Model_75% GARCH GARCH 11.38561 -2.82256 

Worst model IGARCH IGARCH -17.79533 -11.18634 

SPA test p-value 
MAE MSE   

0.0000 0.32920   

Notes: Table 7 shows the SPA test results for different models. The benchmark model selected 

is the intraday FIAPARCH model. The null hypothesis of the test is that the benchmark model 

is not inferior to the other candidate models. The test chooses the most significant model, the 

best model, models with performances of 75%, 50% and 25% relative to the benchmark model, 

and the worst model. P-values are reported in the last row. 
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Table 8. SPA test results evaluated by the MAE and MSE for daily FIGARCH model 

 MAE MSE MAE MSE 

 Models t-statistics 

Benchmark Daily 

FIGARCH 

Daily 

FIGARCH 

- - 

Most 

Significant 

GJR HYGARCH 3.69650 2.83204 

Best model GJR HYGARCH 3.69650 2.83204 

Model_25% GARCH FIAPARCH 3.64346 0.14373 

Median_50% HYGARCH GJR -13.02806 -5.69430 

Model_75% FIAPARCH GARCH -15.46191 -5.70474 

Worst model IGARCH IGARCH -20.68853 -10.68270 

SPA test p-value 
MAE MSE   

0.00000 0.00000   

Notes: Table 8 shows the SPA test results for different models. The benchmark model selected 

is the daily FIGARCH model. The null hypothesis of the test is that the benchmark model is 

not inferior to the other candidate models. The test chooses the most significant model, the best 

model, models with performances of 75%, 50% and 25% relative to the benchmark model, and 

the worst model. P-values are reported in the last row. 
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Table 9. SPA test results evaluated by the MAE and MSE for daily EGARCH model 

 MAE MSE MAE MSE 

 Models t-statistics 

Benchmark Daily EGARCH Daily EGARCH - - 

Most 

Significant 

FIAPARCH FIAPARCH -10.10507 -4.69190 

Best model FIAPARCH FIAPARCH -10.10507 -4.69190 

Model_25% GJR GJR -11.52714 -5.02383 

Median_50% IGARCH HYGARCH -11.57345 -6.62125 

Model_75% HYGARCH FIGARCH -12.10224 -7.26162 

Worst model FIGARCH IGARCH -13.39979 -7.89615 

SPA test p-value 
MAE MSE   

0.49060 0.46160   

Notes: Table 9 shows the SPA test results for different models. The benchmark model selected 

is the daily EGARCH model. The null hypothesis of the test is that the benchmark model is not 

inferior to the other candidate models. The test chooses the most significant model, the best 

model, models with performances of 75%, 50% and 25% relative to the benchmark model, and 

the worst model. P-values are reported in the last row. 
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Selected SPA test results are illustrated in tables 6 to 9. Table 6 and Table 7 present the SPA 

results for intraday GARCH and FIAPARCH models respectively and Table 8 and Table 9 

present the SPA results for the daily FIGARCH and EGARCH models respectively. We carry 

out SPA test for different benchmark models and compare the volatility models under two pre-

determined loss function, Mean Squared Error (MSE) and Mean Absolute Error (MAE). I rank 

the models according to their performance against that of the benchmark model from the best 

to the worst by reading the t-statistics. P-value of SPA test is based on 10000 bootstrap samples 

in the empirical test. A high P-value suggests it is less likely to reject the null hypothesis that 

the base model is not outperformed by all of the other models.  

P-values From Table 6 and Table 7 are almost close to zero under either MSE or MAE, which 

present none of the volatility models outperforms the other models. The only exception is 

intraday FIAPARCH model. The P-value of SPA test under the loss function MSE is 0.3292, 

suggesting FIAPARCH is not outperformed by the other models. Comparatively, the SPA test 

results of daily models indicate EGARCH model outperforms the other volatility model. The 

P values from the SPA test results for other models as benchmark are close to zero, which is 

similar to those in the results in Table 6 and Table 8. Those results are not presented in this 

paper to avoid repeat results. Considering EGARCH model outperforms other models under 

different loss functions, we conclude daily EGARCH model is superior to other models. 

However, for volatility models employing intraday data, none of the GARCH-type models are 

superior to the others except FIAPARCH.  
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6. Conclusion 

In this article, we employ a greater number of GARCH-class models and many loss functions 

and carry out the superior predictive ability (SPA) test to estimate and compare the forecasting 

performance on the basis of intraday data and daily data. Several GARCH family models such 

as GJR, EGARCH, APARCH, FIGARCH, FIAPARCH, and HYGARCH capture long-memory 

volatility and/or the asymmetry leverage effect in volatility. We find that intraday FIAPARCH 

model is not outperformed by other models while other complicated GARCH series models do 

not pass the SPA test so we conclude that none of the GARCH-class models outperforms the 

others when it comes to intraday data except FIAPARCH model. The FIAPARCH model result 

is in line with some research papers in the literature such as ABDL (2001), Corsi (2009), 

Martens and Zein (2004) and Chortareas et al. (2011) which all document that long memory 

specification in high-frequency data can improve the forecasting power and accuracy 

significantly however other complicated GARCH models’ forecast performance are against the 

exiting literature. The data we use in this paper covers the post-crisis period (2009-2013) which 

are more up-to-date than the data covered in the existing literature and this is the root of the 

difference between this paper and the existing literature since we use the same or similar 

methodology and models as in the literature. EGARCH model is superior to other model when 

it comes to daily data and it is different from the finding of Kang et al. (2009) in which 

FIGARCH performs well. The difference of daily data model between this paper and Kang et 

al. lies in the different data sample as well since same/similar models are used in the two studies.  

Our findings provide a solid piece of evidence to the cons part in the discussion that whether 

the traditional time series models are good to fit intraday data. We find that the traditional 

volatility model cannot fit the data when we employ intraday data. After de-seasonalising the 

raw returns of the crude oil futures and putting in GARCH family models, it emerges that the 

majority of GARCH models cannot produce satisfactory forecast results except FIAPARCH 
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model. Thus, the new efforts should be made to find new models to forecast volatility in a high-

frequency framework. 

We find that the intraday crude oil returns are consistent with the stylised properties of other 

financial series such as stock market indices and exchange rates at high frequencies in many 

respects. This becomes a piece of evidence that these properties are not limit to certain kinds 

of high-frequency data. It might reflect some general features which all intraday data share. 

Agnolucci (2009) proposes the question “whether the comparison of volatility forecasting 

models is influenced by the criterion used in the exercise.”  Our findings indicate that the 

rankings of the performance of volatility models are different when different criteria are applied.  

The results of our paper suggest that economists and financial practitioners should not 

arbitrarily choose a volatility forecasting model by referring to the existing research. Which 

model can be trusted depends on not only the given data sample but also the correspondence 

of the particular forecasting purpose with the loss function considered.  
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Chapter 2. Forecasting Crude Oil Market Volatility by using HAR-RV models: 

Evidence of Using High Frequency Data 

 

Abstract 

The increasing availability of high-frequency data in recent years help scholars to have wider 

fields to specify and forecast volatility in financial markets. Realised volatility becomes a 

widely used tool due to the easy access of high-frequency data and the decomposition of jump 

and continuous components, the decomposition of positive jumps and negative jumps and the 

discussion of leverage effect may describe volatility better and produce more accurate volatility 

forecast. Based on Corsi (2009) and Sevi (2014) this study compares the in-sample 

specification and out-of-sample performance among a series of Heterogeneous Autoregressive 

(HAR) models from 25th March 2009 to 25th March 2013 by using front-month WTI futures 

contract. This study finds opposite results to Sevi (2014) and it indicates that the decomposition 

between jumps and the continuous components and negative and positive realised semi-

variances improves the in-sample fit and it improves the out-of-sample forecasting as well. 
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1. Introduction 

It is widely known that volatility specification and forecast is a barometer for the vulnerability 

of financial markets and the economy. Recent literature indicates that models employing high-

frequency data are able to provide more accurate prediction of volatility. Corsi (2009) proposes 

Heterogeneous Autoregressive model of Realised volatility (HAR-RV) and therefore 

introduces a way to specify and forecast volatility with the information of high-frequency data 

or intraday data in spite of the model’s simple structure and the absence of long-memory 

properties of volatility. Following Corsi (2009), Sevi (2014) expands the HAR-RV model by 

decomposing volatility into continuous and jump components, positive and negative semi-

variance and considering leverage effect. His analysis suggests the decomposition of realised 

variance improves the in-sample fit while the out-of-sample forecast performance is not 

improved. 

This paper extends Sevi’s (2014) work and there are several motivations to support the study. 

In the first place, following Sevi (2014) we specify and forecast volatility of the most traded 

commodity in the world by using front-month WTI futures contract. Second, we decompose 

volatility into continuous components following Andersen, Bollerslev and Diebold (2007) and 

jump components. Third, we compare the forecasting performance among HAR-RV series 

models and GARCH series models. HAR-RV model is not able to depict the long memory 

property of volatility due to its simplicity regardless of the decomposition mentioned in the 

paper while FIGARCH model considers the long memory character by using fractional 

integration. It is valuable to compare the simple and complicated HAR-RV models with 

GARCH and FIGARCH models and to rank their forecasting performance. Last, SPA test is 

utilised to compare the performance of models mentioned above.  

Our main findings are as follows: first, the decomposition of continuous components and 

signed jumps do not help to improve the in-sample fit. The in-sample fit of complicated HAR-
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RV models are as good as the genuine HAR-RV model by Corsi (2009). Second, the 

information of in-sample fit of the decomposition of variance into semi-variance is mixed. 

Third, when it comes to comparing the prediction ability, the complicated model containing all 

the decomposed components outperforms simple models or is as good as models without 

decomposed components at worst.  Last, the results of forecasting performance between HAR-

RV models and GARCH-type models are quite mixed. It indicates that the forecasting 

performance of GARCH model and FIGARCH model is better than HAR-RV models when it 

comes to DM test while the complicated HAR-CSJd outperforms GARCH models in SPA test. 

The layout of the paper is as follows: Section 2 reviews the literature and Section 3 provides 

data description. Section 4 presents HAR-RV series models and GARCH models we estimate 

in the paper and the decomposed components in HAR-RV models. Section 5 and 6 illustrates 

the in-sample fit and out-of-sample performance of HAR-RV series models respectively while 

Section 7 mainly compares the forecasting performance between some certain HAR-RV 

models and GARCH series models. Section 8 concludes the paper.   
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2. Literature review 

2.1. Forecasting the volatility of crude oil 

Since the introduction of GARCH model (Bollerslev, 1986), GARCH model and its variants 

have become the main stream models to specify the volatility of crude oil futures with daily 

data. Much research has been done to evaluate the forecasting performance among GARCH 

family models and other alternative models. Literature documents that volatility in oil returns 

is clustering and persistent and GARCH family models fit the data well (e.g. Adrangi et al., 

2001; Agnolucci, 2009; Aloui and Mabrouk, 2010; Cabedo and Moya, 2003; Charles and Darne, 

2014; Chkili et al., 2014; Fong and See, 2002; Giot and Laurent, 2003; Hou and Suardi, 2012; 

Kang et al., 2009; Kang and Yoon, 2013; Mohammadi and Su, 2010; Morana, 2001; Narayan 

and Narayan, 2007; Sadeghi and Shavvalpour, 2006; Sadorsky, 2006; Wei, et al., 2010).  

Sadorsky (2006) uses several different univariate and multivariate statistical models to estimate 

forecasts of daily volatility in a series of petroleum futures price returns. He finds the TGARCH 

model fits well for heating oil and natural gas volatility and the GARCH model fits well for 

crude oil and unleaded gasoline volatility.  Models like state space model, vector autoregressive 

model and bivariate GARCH do not outperform the single equation GARCH model. Most 

models outperform a random walk.  

Mohammadi and Su (2010) investigate the forecasting performance of four GARCH family 

models — GARCH, EGARCH and APARCH and FIGARCH over January 2009 to October 

2009 by employing weekly crude oil spot prices in eleven international markets. They find that 

the APARCH model outperforms the other models and shocks to conditional volatility dissipate 

at an exponential rate, which is consistent with the covariance-stationary GARCH models 

rather than at the slow hyperbolic rate implied by the FIGARCH alternative. This evidence is 

in line with Sadorsky and McKenzie (2008) but it is contrast to Kang et al (2009). Kang et al. 

e investigates the a series of volatility models for three crude oil markets and compare the 
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ability to forecast and identify volatility stylized facts, in particular volatility persistence and 

long memory. They find that The CGARCH and FIGARCH models fit the data better than the 

GARCH and IGARCH models when it comes to volatility persistence fitting and CGARCH 

and FIGARCH models also provide superior performance in out-of-sample volatility forecasts 

considering DM test results. This kind of contradiction may be due to different data frequency 

(weekly data vs. daily data) and different number of markets.  

Wei et al. (2010), Kang and Yoon (2013) extend the work of Kang et al (2009) respectively. 

Wei et al. employ more GARCH variants models to fit the data and compare their out-of-sample 

performance by using SPA test proposed by Hansen (2005). They find that no model can 

outperform all of the other models for either the Brent or the WTI market considering different 

loss functions. But APARCH GARCH or FIGARCH model which capture long-memory and/or 

asymmetric volatility, exhibit greater forecasting accuracy than standard GARCH model, 

especially in volatility forecasting over longer time horizons. Kang and Yoon (2013) focus on 

the long-memory properties of the same financial assets studied by Sadorsky (2006) by using 

a batch of long-memory models. They discover that their volatility models fit the daily data 

well but none of them is outperforming the others based on Diebold-Mariano test. Fong and 

See (2002) show the regime shift model outperforms GARCH model in-sample but the out-of-

sample performance is inconclusive. 
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2.2. Forecasting volatility by using realised volatility 

The existence of intraday/ high-frequency data has drawn researchers’ attention and high 

frequency finance has become a fast-growing field in the past few years. Volatility forecasting 

is one of the hot-discussed topics in high frequency finance due to the availability of high 

frequency data. 

Many researchers model and forecast volatility with intraday data (Andersen and Bollerslev, 

1997; Andersen, Bollerslev, Diebold and Labys, 2001; Koopman et al., 2005; Bollerslev, et al, 

2009; Chortareas et al., 2011; Sevi, 2014). A large branch of the literature is comparing 

volatility forecast by using high frequency data with that by daily data and some study also 

consider the option implied volatility (Martens, 2011; Koopman, 2002; Martens and Zen, 2004; 

Pong et al., 2004; Chortareas et al., 2011). Pong et al. (2004) compare the exchange rate 

volatility forecasts among an ARMA model, an ARFIMA model, a daily GARCH model and 

option implied volatility model. They find that the most accurate volatility forecasts are the 

model using high frequency returns. Martens and Zein (2004) document that high frequency 

data improve the measurement accuracy and the forecasting performance. High frequency data 

contains more information than daily data and it reflects more reality.  

Some scholars use intraday futures commodity data to study the property of commodity 

markets. Sevi (2014) studies the crude oil market with HAR and its variants of realised 

volatility and compare their performance in light with Diebold-Mariano test. Tseng et al. (2009) 

fit the HAR-CJ model using the realised-range proxy as an independent variable to replace 

realised variance and find that realised range-based bi-power variation (RBV), which is 

immune to jumps, is a better independent variable for future volatility prediction. Similar to 

the findings for financial markets, they also find that the jump components of realised-range 

variance have little predictive power for oil futures contracts. 
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3. Volatility estimation, jump specification and volatility modelling  

3.1. Volatility estimation by using intraday data 

 We focus on realised volatility computed by employing intraday returns. The standard choice 

for estimating realised volatility introduced by Andersen et al. (2001) is as follows: 

𝑅𝑉𝑡,𝑀 = ∑ 𝑟𝑡,𝑖
2𝑀

𝑖=1   (1) 

It shows that for a given day t, the realized variance is computed as the sum of squared intraday 

returns 𝑟𝑡,𝑖 at a given sampling frequency 1 𝑀⁄ . The sampling frequency is a key parameter to 

realised volatility. Using data with the highest possible frequency theoretically optimises the 

accuracy of the daily volatility estimation but a generally accepted practice is to consider 

intervals between 5 and 30 minutes (e.g., ABDL, 2003; Hol & Koopman, 2002; Martens, 2001). 

Therefore the sampling frequency in this paper is set as 15 minutes following the general 

principle.  

Theoretically, realised volatility has the following asymptotic character if the frequency goes 

to infinity: 

𝑅𝑉𝑡,𝑀 → ∫ 𝜎𝑠
2𝑑𝑠

𝑡

𝑡−1
+ ∑ 𝐾2(𝑡𝑖)

𝐽(𝑡)
𝑖=1      𝑖𝑛 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦  (2) 

This equation illustrates that volatility tends to the sum of a continuous and a jump component. 

Ideally, we would like to get the best estimate of the integrated volatility and leave out the 

discontinuous component, but the RV unavoidably aggregates both types of risk in the presence 

of jumps. Barndorff-Nielsen and Shephard (2004) have shown how to disentangle the 

continuous component and proposed a broader class of realized measures based on bipower 

variation which allows to estimate ∫ 𝜎𝑠
2𝑑𝑠

𝑡

𝑡−1
 robustly to jumps.  

𝐵𝑃𝑉𝑡,𝑀 = 𝜉1 ∑ |𝑟𝑡,𝑖||𝑟𝑡,𝑖+1|𝑀−1
𝑖=1   (3) 

where 𝜉1 = √2/𝜋 ≈ 0.79788. The BPV is a consistent estimator of integrated volatility, and 

it decomposes the realized variance into its diffusive and non-diffusive parts.  
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Although very popular, the 𝐵𝑃𝑉𝑡 is affected by small sample (upward) bias in the presence of 

discontinuities. If a given return contains a jump, then the jump effect will not vanish when 

multiplied by the preceding and following absolute return, and the estimator will not converge 

to the integrated volatility. To avoid this drawback, Andersen, Dobrev, and Schaumburg (2012) 

propose the median realized variance (MedRV) which has better properties in realistic settings. 

The MedRV estimator is given as follows: 

𝑀𝑒𝑑𝑅𝑉𝑡,𝑀 =
𝜋

6−4√3+𝜋
(

𝑀

𝑀−2
) ∑ 𝑚𝑒𝑑(|𝑟𝑡,𝑖−1|, |𝑟𝑡,𝑖|, |𝑟𝑡,𝑖+1|)2𝑀−1

𝑖=2    (4) 

This estimator is more robust to the occurrence of zero-returns. We decide to consider the 

MedRV as an alternative for our analysis and provide a comparison between the BPV and the 

MedRV estimators. Both 𝐵𝑃𝑉𝑡 and 𝑀𝑒𝑑𝑅𝑉𝑡 feasibly estimate the ∫ 𝜎𝑠
2𝑑𝑠

𝑡

𝑡−1
 in the presence of 

jumps. However, the evidence of the impact of discontinuities on volatility forecasts is 

contrasting. Andersen et al. (2007) find that they do not contribute to future volatility while 

Corsi et al. (2010) document an expected positive influence and attributes the puzzle to the 

small sample bias of 𝐵𝑃𝑉𝑡. One of the explanations to the puzzle is that positive jumps are 

averaged out by negative ones, therefore Barndorff-Nielsen et al. (2010) further decompose the 

realised volatility in two complementary components to capture and separate the sign effect of 

returns 

𝑅𝑆𝑉𝑡,𝑀
− = ∑ 𝑟𝑡,𝑖

2𝑀
𝑖=1 × 𝐼(𝑟𝑡,𝑖 < 0)  (5) 

𝑅𝑆𝑉𝑡,𝑀
+ = ∑ 𝑟𝑡,𝑖

2𝑀
𝑖=1 × 𝐼(𝑟𝑡,𝑖 > 0)  (6) 

Patton and Sheppard (2015) define signed jumps as the difference between positive and 

negative realized semi-variances based on the two estimators: 

Δ𝐽𝑡,𝑀 = 𝑅𝑆𝑉𝑡,𝑀
+ − 𝑅𝑆𝑉𝑡,𝑀

−   (7) 

Apart from semi-variance decomposition, we need to consider the jump components of the 

volatility ∑ 𝐾2(𝑡𝑖)
𝐽(𝑡)
𝑖=1  if they are statistically significant. We follow Huang and Tauchen (2005) 
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to detect the volatility jump diffusion. The test statistic at day t is as follows: 

𝑍𝐽𝐵𝑃𝑉(𝑡, 𝑀) =
√𝑀(𝑅𝑉𝑡,𝑀 − 𝐵𝑃𝑉𝑡,𝑀)𝑅𝑉𝑡,𝑀

−1

((𝜉1
−4 + 2𝜉1

−2 − 5)max {1, 𝑇𝑄𝑡,𝑀𝑅𝑉𝑡,𝑀
−2})2⁄     (8) 

where  𝑇𝑄𝑡,𝑀 is the realized tri-power quarticity.  

𝑇𝑄𝑡,𝑀 = 𝑀𝜉4/3
−3 ∑ |𝑟𝑡,𝑖|

4/3𝑀−1
𝑖=1 |𝑟𝑡,𝑖+1|

4/3
|𝑟𝑡,𝑖+2|

4/3
  and the estimator converges to integrated 

quarticity in probability. 𝑍𝐽𝐵𝑃𝑉 statistic follows the standard normal distribution. 

A similar test applies to MedRV estimator as well. The MedRV jump test statistic is given as 

follows: 

𝑍𝐽𝑀𝑒𝑑𝑅𝑉(𝑡, 𝑀) =
√𝑀(𝑅𝑉𝑡,𝑀 − 𝑀𝑒𝑑𝑅𝑉𝑡,𝑀)𝑅𝑉𝑡,𝑀

−1

(0.96max {1, 𝑀𝑒𝑑𝑅𝑄𝑡,𝑀𝑀𝑒𝑑𝑅𝑉𝑡,𝑀
−2})1/2⁄    (9) 

where  𝑀𝑒𝑑𝑅𝑄𝑡,𝑀 is an estimator of integrated quarticity given as follows: 

𝑀𝑒𝑑𝑅𝑄𝑡,𝑀 =
3𝜋

72−52√3+9𝜋
(

𝑀

𝑀−2
) ∑ 𝑚𝑒𝑑(|𝑟𝑡,𝑖−1|, |𝑟𝑡,𝑖|, |𝑟𝑡,𝑖+1|)4𝑀−1

𝑖=2    (10) 

We compare the performance of the two statistic to detect which provides an improvement in 

forecasting volatility.  

The jump component in the integrated volatility cannot be neglected if the ZJ test is significant 

and it is necessary to be taken into consideration in volatility modelling. The jump component 

for the BPV estimator is defined as follows: 

𝐽𝑡,𝛼(𝑀) = [𝑅𝑉𝑡,𝑀 − 𝐵𝑃𝑉𝑡,𝑀]  × 𝐼(𝑍𝐽𝐵𝑃𝑉(𝑡, 𝑀) > Φ𝛼)    (11) 

where I[.] is an indicator function taking value of 1 if the jump test statistic is larger than a 

critical value of standard normal distribution. The significance level is set as 95% in this study. 

Another jump component is taken into consideration in this paper as well which stands as: 

𝐶𝑡,𝛼(𝑀) = 𝐵𝑃𝑉𝑡,𝑀 × 𝐼(𝑍𝐽𝐵𝑃𝑉(𝑡, 𝑀) > Φ𝛼) + 𝑅𝑉𝑡,𝑀 × 𝐼(𝑍𝐽𝐵𝑃𝑉(𝑡, 𝑀) ≤ Φ𝛼)                  (12) 

𝐶𝑡,𝛼(𝑀) plays as a “switch” of 𝐵𝑃𝑉𝑡,𝑀 and 𝑅𝑉𝑡,𝑀 and ensures that the sum of the squared jump 

component and the continuous component equals the RV whenever jump components are 

significant or not. 
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3.2. Volatility model specification 

 Our empirical study is based on HAR model proposed by Corsi (2009). This model can be 

estimated by using standard ordinary least square (OLS) but still capture long memory feature 

of volatility. Corsi’s (2009) HAR-RV model is specified as:  

Model 1. HAR-RV 

𝑅𝑉𝑡+1,𝑡+ℎ = 𝛽0 + 𝛽1𝑅𝑉𝑡 + 𝛽5𝑅𝑉𝑡−1,𝑡−4 + 𝛽22𝑅𝑉𝑡−5,𝑡−21 + 𝜀𝑡   (13) 

where 𝑅𝑉𝑡+1,𝑡+ℎ indicates the average realised variance over the period [t+1, t+h], i.e. 

𝑅𝑉𝑡+1,𝑡+ℎ =
∑ 𝑅𝑉𝑡+𝑖

ℎ
𝑖=1

ℎ
   (14) 

and 𝜀𝑡 is the error term.  

HAR-RV model forecasts the realised volatility over the period [t+1, t+h] by using the one-day, 

one-week and one-month lagged averaged realised volatility. 

Apart from the original Corsi’s (2009) model, we employ a series of alternatives of HAR model 

to carry out the model specification and volatility forecast comparison afterwards. 

Model 2. HAR-RV-J 

The HAR-RV-J is introduced by Andersen, Bollerslev, and Diebold (2007). This model 

composes a jump component using the one-day lagged squared jump. ABD find that the 

coefficient of the jump component is negative and significant. The model is specified as follows: 

𝑅𝑉𝑡+1,𝑡+ℎ = 𝛽0 + 𝛽1𝑅𝑉𝑡 + 𝛽5𝑅𝑉𝑡−1,𝑡−4 + 𝛽22𝑅𝑉𝑡−5,𝑡−21 + 𝛽𝑆𝑄𝐽𝐽𝑡 + 𝜀𝑡   (15) 

Model 3. HAR-CJ 

HAR-CJ model is specified in ABD (2007) as well and continuous and squared jumps 

components are separated at different horizons in this model.  

𝑅𝑉𝑡+1,𝑡+ℎ = 𝛽0 + 𝛽𝐶1𝐶𝑡 + 𝛽𝑆𝑄𝐽1𝐽𝑡 + 𝛽𝐶5𝐶𝑡−1,𝑡−4 + 𝛽𝑆𝑄𝐽5𝐽𝑡−1,𝑡−4 + 𝛽𝐶22𝐶𝑡−5,𝑡−21 +

𝛽𝑆𝑄𝐽22𝐽𝑡−5,𝑡−21 + 𝜀𝑡    (16) 

Model 4. PS 
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The PS model is developed by Patton and Sheppard (2015) and this model decomposes the 

one-day lagged realised volatility into a positive and negative component.  

𝑅𝑉𝑡+1,𝑡+ℎ = 𝛽0 + 𝛽1
+𝑅𝑆𝑉𝑡

+ + 𝛽1
−𝑅𝑆𝑉𝑡

− + 𝛽5𝑅𝑉𝑡−1,𝑡−4 + 𝛽22𝑅𝑉𝑡−5,𝑡−21 + 𝜀𝑡   (17) 

Model 5. PSlev 

PSlev model is derived from PS model and it captures the leverage effect. PSlev model is 

developed by Patton and Sheppard (2011) as well 

𝑅𝑉𝑡+1,𝑡+ℎ = 𝛽0 + 𝛽1
+𝑅𝑆𝑉𝑡

+ + 𝛽1
−𝑅𝑆𝑉𝑡

− + 𝛾𝑅𝑉𝑡𝐼[𝑟𝑡<0] + 𝛽5𝑅𝑉𝑡−1,𝑡−4 + 𝛽22𝑅𝑉𝑡−5,𝑡−21 + 𝜀𝑡 

 (18) 

Model 6. HAR-RSV 

Patton and Sheppard (2011) argue that positive and negative realized semi-variances can have 

different forecasting power at different lags. 

𝑅𝑉𝑡+1,𝑡+ℎ = 𝛽0 + 𝛽1
+𝑅𝑆𝑉𝑡

+ + 𝛽1
−𝑅𝑆𝑉𝑡

− + 𝛽5
+𝑅𝑆𝑉𝑡−1,𝑡−4

+ + 𝛽5
−𝑅𝑆𝑉𝑡−1,𝑡−4

− + 𝛽22
+ 𝑅𝑆𝑉𝑡−5,𝑡−21

+ +

𝛽22
− 𝑅𝑆𝑉𝑡−5,𝑡−21

− + 𝜀𝑡    (19) 

Model 7. CG model 

Chen and Ghysels (2011) propose an alternative of the HAR-RSV model that includes the one-

day lagged squared jump component. It is specified as: 

𝑅𝑉𝑡+1,𝑡+ℎ = 𝛽0 + 𝛽1
+𝑅𝑆𝑉𝑡

+ + 𝛽1
−𝑅𝑆𝑉𝑡

− + 𝛽5
+𝑅𝑆𝑉𝑡−1,𝑡−4

+ + 𝛽5
−𝑅𝑆𝑉𝑡−1,𝑡−4

− + 𝛽22
+ 𝑅𝑆𝑉𝑡−5,𝑡−21

+ +

𝛽22
− 𝑅𝑆𝑉𝑡−5,𝑡−21

− + 𝛽𝑆𝑄𝐽𝐽𝑡 + 𝜀𝑡   (20) 

Model 8. HAR-RV-SJ 

Patton and Sheppard (2011) develop this model in favour of the HAR-CJ model. 

𝑅𝑉𝑡+1,𝑡+ℎ = 𝛽0 + 𝛽𝐽Δ𝐽𝑡 + 𝛽𝐶𝐶𝑡 + 𝛽5𝑅𝑉𝑡−1,𝑡−4 + 𝛽22𝑅𝑉𝑡−5,𝑡−21 + 𝜀𝑡  (21) 

Model 9. HAR-CSJ 

HAR-CSJ model is developed by Sevi (2014). He follows Patton and Sheppard (2011) and 

consider jumps over short period of time and the signs of the jumps. 

𝑅𝑉𝑡+1,𝑡+ℎ = 𝛽0 + 𝛽1𝐽Δ𝐽𝑡 + 𝛽1𝐶𝐶𝑡 + 𝛽5𝐽Δ𝐽𝑡−1,𝑡−4 + 𝛽5𝐶𝐶𝑡−1,𝑡−4 + 𝛽𝐽22Δ𝐽𝑡−5,𝑡−21 +



70 
 

𝛽22𝐶𝐶𝑡−5,𝑡−21 + 𝜀𝑡   (22) 

Model 10. HAR-RV-SJd 

HAR-RV-SJd is developed by Patton and Sheppard (2011). This model disentangles positive 

and negative signed jumps 

𝑅𝑉𝑡+1,𝑡+ℎ = 𝛽0 + 𝛽𝐽
+Δ𝐽𝑡𝐼[Δ𝐽𝑡>0] + 𝛽𝐽

−Δ𝐽𝑡𝐼[Δ𝐽𝑡<0] + 𝛽𝐶𝐶𝑡 + 𝛽5𝑅𝑉𝑡−1,𝑡−4 + 𝛽22𝑅𝑉𝑡−5,𝑡−21 + 𝜀𝑡 

 (23) 

Model 11. HAR-CSJd 

Sevi (2014) expands HAR-RV-SJd model and creates HAR-CSJd which disentangle between 

positive and negative signed jumps at various horizons: 

𝑅𝑉𝑡+1,𝑡+ℎ = 𝛽0 + 𝛽1𝐽
+ Δ𝐽𝑡𝐼[Δ𝐽𝑡>0] + 𝛽1𝐽

− Δ𝐽𝑡𝐼[Δ𝐽𝑡<0] + 𝛽1𝐶𝐶𝑡 + 𝛽5𝐽
+ Δ𝐽𝑡−1,𝑡−4𝐼[Δ𝐽𝑡−1,𝑡−4>0] +

𝛽5𝐽
− Δ𝐽𝑡−1,𝑡−4𝐼[Δ𝐽𝑡−1,𝑡−4<0] + 𝛽5𝐶𝐶𝑡−1,𝑡−4 + 𝛽22𝐽

+ Δ𝐽𝑡−5,𝑡−21𝐼[Δ𝐽𝑡−5,𝑡−21>0] +

𝛽22𝐽
− Δ𝐽𝑡−5,𝑡−21𝐼[Δ𝐽𝑡−5,𝑡−21<0] + 𝛽22𝐶𝐶𝑡−5,𝑡−21 + 𝜀𝑡    (24) 

In this model, Δ𝐽𝑡−1,𝑡−4 is not calculated as the difference between positive RSV and negative 

RSV over 4 days but as the sum of signed jump over the 4 days. 

For the purpose of forecasting comparison, we also illustrate GARCH model and FIGARCH 

model in this section. Bollerslev (1986) proposes the GARCH model and Sadorsky (2006) 

demonstrates that the GARCH (1, 1) model works well for crude oil volatility. The standard 

GARCH (1, 1) model is given by: 

𝑟𝑡 = 𝜇 + 𝜀𝑡 ,   𝜀𝑡|Ω𝑡,𝑛−1~𝑇𝑣(0, ℎ𝑡)        

ℎ𝑡 = 𝜔 + 𝛼𝜀𝑡−1
2 + 𝛽ℎ𝑡−1 ,                                                                                                            (25)     

where 𝜇 denotes the conditional mean, 𝜔, 𝛼 and 𝛽 are the parameters of the variance equation 

with parameter restrictions 𝜔 > 0, 𝛼 > 0, 𝛽 > 0 and 𝛼 + 𝛽 < 1. The error term 𝜀𝑡,𝑛 based on 

the information set Ω𝑡,𝑛−1 follows a student’s T distribution 𝑇𝑣 with zero mean, variance ℎ𝑡,𝑛 

and degree of freedom 𝑣. 

FIGARCH model (Baillie et al., 1996, 2004; Andersen and Bollerslev, 1997) captures the long 
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memory properties of the volatility. The FIGARCH model assumes the finite persistence of 

volatility shocks (no such persistence exists in the GARCH framework), i.e., long-memory 

behaviour and a slow rate of decay after a volatility shock. The FIGARCH (1, d, 1) model can 

be written as follows: 

𝑟𝑡 = 𝜇 + 𝜀𝑡 ,   𝜀𝑡|Ω𝑡,𝑛−1~𝑇𝑣(0, ℎ𝑡)  

ℎ𝑡 = 𝜔 + 𝛽ℎ𝑡−1 + [1 − (1 − 𝛽𝐿)−1(1 − 𝜑𝐿)(1 − 𝐿)𝑑]𝜀𝑡
2                                                            (26)          

where 0 ≤ 𝑑 ≤ 1, 𝜔 > 0, 𝜑, 𝛽 < 1.  𝑑 is the fractional integration parameter and  𝐿 is the lag 

operator. The fractional integration parameter 𝑑  allows autocorrelations to decay at a slow 

hyperbolic rate which characterises the long-memory feature. If 𝑑  is set between zero and one, 

FIGARCH model is able to describe intermediate ranges of persistence since it lies within d=1 

representing the complete integrated persistence of volatility shocks and d=0 representing the 

geometric decay. 
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4. Data description 

The original data I obtain are 15 min price data of the NYMEX light, sweet (low-sulphur) crude 

oil futures contract provide by Tick Data. Crude oil futures is the world's most actively traded 

commodity, and the NYMEX light, sweet (low-sulphur) crude oil (WTI) futures contract is the 

world's most liquid crude oil futures, as well as the world's largest-volume futures contract 

trading on a physical commodity. The data I use span the period from 25th March 2009 to 25th 

March 2013, containing 1033 trading days. 

High frequency data contain more information on financial assets. Theoretically, the higher the 

frequency of the data, the more accurate the volatility estimation will be. While on the other 

hand, microstructure frictions, such as price discreteness and measurement errors may affect 

the effectiveness of high frequency data (ABDL, 1999; Bandi & Russell, 2005). I employ 15 

minute data in this paper in order to mitigate microstructure effects of high frequency data, 

which is consistent with ABDE (2001). 

NYMEX light, sweet (low-sulphur) crude oil futures has open outcry trading from 9:00 to 

14:30 EST on weekdays. Investors can also trade oil futures via NYMEX electronic trading 

platform from 17:00 on Sunday to 17:15 the next day and from 18:00 to 17:15 (New York Time) 

on weekdays. The trading volumes on weekends are rather small and I remove weekend returns 

from the sample following the common practice in the literature (Chortareas et al. 2011; Celik 

& Ergin 2014). I obtain 89732 observations in total after I clear the data.  

The intraday return series 𝑟𝑡,𝑚 is given as follow: 

𝑟𝑡,𝑚 = ln(𝑃𝑡,𝑚) − ln(𝑃𝑡,𝑚−1)   (27) 

Where 𝑃𝑡,𝑚 is the close-mid price at the nth time stamp on day t. Figure 1 shows the intraday 

prices of crude oil futures.  

 

  



73 
 

Figure 1. Plots of 15 minute price series. 

 

Figure 2 shows the comparison between the intraday returns of NYMEX light, sweet (low-

sulphur) crude oil futures return series and those of the daily returns. Figure 3 indicates the 

comparison between the realised volatility and the daily volatility. Figure 4 shows the 

distribution of the 15 min returns and daily returns. Figure 5 illustrates autocorrelation function 

for the realised volatility and realised semi-variances. Table 1 represents the descriptive 

statistics of 15min return series.   
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Figure 2. Plots of 15 minute return series and daily return series. 
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Figure 3. Plots of realised volatility. 
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Figure 4. The distribution of 15 min return data and the daily return data 
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Figure 5. Sample autocorrelation for crude oil futures RV (top), positive RV (middle) and 

negative RV (bottom) 
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Table 1. Summary statistics of 5 minute returns series. 

 Mean (×

10−6) 

S.D ( ×

10−3) 

Skewness Kurtosis ADF GPH 

15 min 

return 

6.21 2.046 0.070065 19.07676 -303.574 -0.00545191 

(0.00314829) 

Notes: The standard errors are in the parentheses in the last column. 

Figure 2 shows that the movements of the 15 min returns are not consistent. High-frequency 

data carry more information thus several jumps in the daily returns are smoothed out in the 15 

min returns. Figure 3 also indicates the inconsistence between the realised volatility which is 

constructed from the squared intraday returns. The distributions of the 15 min returns presents 

that the 15 min returns are much more leptokurtic than the daily returns.  

Figures 1 indicate features of 15 minute returns of crude oil and these of daily returns. The 

crude oil shares some stylized properties of high-frequency returns of other financial assets in 

the literature. The mean value of crude oil returns is approximately zero, which is common 

among financial assets. The skewness of crude oil is 0.07, suggesting the distribution leans 

leftward. The kurtosis is way larger than 3, indicating the distribution is fat tailed. The 

augmented Dickey-Fuller unit root test supports the rejection of the null hypothesis of a unit 

root at the 1% significance level, implying the return series is stationary. The p-value of the 

GPH test on the 15 min returns is 0.0833, implying the non-rejection of the null hypothesis that 

the long memory parameter is zero. Meanwhile the statistics of the daily returns are different 

from the intraday returns. The mean and standard deviation are much larger those of the 15 min 

returns and the skewness is negative rather than positive compared to the skewness of the 15 

min returns. The negative skewness indicates the distribution of daily returns is rightward 

rather than leftward which is a feather of the 15 min returns. The negative value of the ADF 

test statistics implies the daily returns are stationary and the GPH test result indicates the long 

memory parameter is zero.  
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5. Model Estimation 

In this part, I estimate models for time horizon h=1 (daily horizon) and h=5 (weekly horizon). 

I follow ABD (2007) considering the authors estimate their models for h=1, h=5 and h=22.  

I first compare the R squared for the same model but for different horizon. Generally, R squared 

are larger when time horizon becomes longer except for HAR-RV-SJd model containing 

MedRV jump component whose R squared for h=5 is less that for h=1. However, the R-

squareds for different models and for the two horizons are not dramatically different from each 

other: all of them lie in the interval from 0.3 to 0.5. The highest R squared I obtain is from 

model HAR-CSJd containing MedRV jump component for time horizon h=5.  

Table 2 to Table 5 report the parameters of all models. Table 2 and Table 3 report models 

containing MedRV jumps and BPV jumps with h=5 respectively. Table 4 and Table 5 report 

models containing MedRV jump and BPV jumps with h=1 apiece. Jumps, signed jumps and 

signed semi-variances are the main features of this paper so their values and significance are 

discussed here. Moreover, BPV is down biased (Corsi et al. (2010)) therefore comparing the 

in-sample fitness between BPV models and MedRV models is also discussed here. 

The parameters of HAR-RV model are all significant at 5% level which is consistent to the 

empirical literature while the R squared of HAR-RV model here is much higher than that in 

ABD. For HAR-RV-J model, The R squared of HAR-RV-J model is only marginally higher 

than that of HAR-RV model but the parameters of the jump component is negative and highly 

significant regardless of MedRV jump or BPV jump. The sign of the jump component HAR-

RV-J model is negative and significant which is consistent with the finding in ABD and Sevi 

(2014). Therefore, squared jumps in the volatility will reduce the influence of previous and 

current volatility on future’s volatility and this kind of offsetting effect is significant. 

Significance of variables in HAR-CJ model is quite mixed. For HAR-CJ model containing 

MedRV jump component, the current continuous jump is highly significant but the squared 
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jump component is not. Some of the lagged jump components are not significant except the 1 

month lag continuous jump. For model with MedRV jump for h=1, the R squared does not 

increase a lot compared to the simply HAR-RV model and it is even smaller than that of HAR-

RV-J model. For model with BPV jump, continuous jumps are all significant while the squared 

jump components are not significant in most cases. This finding is consistent with the literature 

that the continuous component has most information about future volatility and the squared 

jump component does not have. Compare the performance of HAR-CJ model with MedRV and 

HAR-CJ with BPV, the R squared of the former one is higher than that of the latter for h=1 and 

h=5.  

The R squared of PS model is only slightly higher than the simple HAR-RV model therefore 

the decomposition between positive and negative semi-variance does not improve the 

regression fitness. The positive semi-variance for h=1 is not significant which is contrary to the 

finding in Sevi (2014) where all the semi-variances are highly significant but the finding is in 

favour of Patton and Sheppard (2011). The leverage effect component in PSlev model is not 

significant either suggesting the leverage effect does not impact future’s volatility. 

Coefficients in HAR-RSV and CG model are quite like those in HAR-CJ model. There exist 

some significant variables but the majority of the variables are insignificant. This piece of 

evidence contrasts with Sevi (2014) and it indicates the decomposition of the variance does not 

make contribution to the predicting of future’s volatility. The comparison of squared jump 

components in MedRV CG and BPV CG model is interesting: squared jump in CG with BPV 

is not significant while squared jump in CG with MedRV for h=5 is significant under 10% and 

squared jump in CG with MedRV for h=1 is significant under 5%. Significant as MedRV jump 

components are, the R squared of CG with the two jump components are almost the same. This 

piece of evidence suggests MedRV is superior to BPV but they two hardly contribute to 

explaining future’s volatility in oil market which is contrary to Sevi (2014). 
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The signed jump component is a main feature in HAR-RV-SJ model introduced by Patton and 

Sheppard (2011) but its performance in oil market is mixed. The signed jump component in 

HAR-RV-SJ model for h=1 is significant under 5% level but it is insignificant in HAR-RV-SJ 

model for h=5. Comparing the R squared from HAR-RV-SJ model with that from HAR-RV 

model, I conclude the signed jump component does not help forecast volatility.  

HAR-RV-SJd and HAR-CSJd contain the decomposed signed jumps and their corresponding 

weekly and monthly lags. The current negative signed jump are all significant while positive 

signed jump are insignificant in most cases. This is contrary to Sevi (2014). The significance 

of one-week lagged and one month lagged signed jumps are quite mixed indicating the noise 

it maintains. The R squared from HAR-CSJd is higher than that from other models but it may 

because the increased number of the explanatory variables or the new information the 

significant variables bring in.  

I conclude the in-sample fitness performance as follows. There is no outperforming model in 

terms of the explanatory power i.e. R squared. Squared jumps help to reduce future’s volatility 

to some extent. MedRV jump is more significant than BPV jump component but their 

contribution to volatility explanation is limited. The information of the decomposition of 

variance into semi-variance is mixed which is against Sevi’s (2014) finding that considering 

independently the squared jump component, the continuous component, signed jumps and 

realised semi-variances of both signs significantly help to improve the fit of the predictive 

regressions.
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Table 2. Parameters of the 11 models. Jump components here indicate MedRV jumps and time span h is 5. 

 HAR-RV HAR-RV-J HAR-CJ PS PSlev HAR-RSV CG HAR-RV-

SJ 

HAR-CSJ HAR-RV-

SJd 

HAR-CSJd 

𝛽0 1.15E-

04*** 

(6.122) 

1.13E-

04*** 

(6.019) 

5.35E-

05*** 

(2.623) 

1.11E-

04*** 

(6.108) 

1.10E-

04*** 

(6.051) 

1.09E-

04*** 

(5.904) 

1.10E-

04*** 

(5.861) 

1.13E-

04*** 

(6.073) 

5.74E-

05*** 

(2.575) 

1.06E-

04*** 

(6.140) 

3.91E-

0.5** 

(2.029) 

𝛽1 0.278*** 

(5.416) 

0.328*** 

(5.853) 

         

𝛽5 0.261*** 

(3.193) 

0.230*** 

(2.937) 

 0.266*** 

(3.460) 

0.274*** 

(3.351) 

  0.237*** 

(3.159) 

 0.250*** 

(3.201) 

 

𝛽22 0.166** 

(2.231) 

0.172** 

(2.303) 

 0.177** 

(2.384) 

0.179** 

(2.424) 

  0.183** 

(2.367) 

 0.178** 

(2.442) 

 

𝛽𝑆𝑄𝐽1  -0.246*** 

(-2.922) 

0.069 

(1.612) 

   -0.156* 

(-1.758) 

    

𝛽𝐶1   0.365*** 

(8.693) 

    0.318*** 

(6.076) 

0.367*** 

(8.718) 

0.266*** 

(4.629) 

0.247*** 

(6.138) 

𝛽𝑆𝑄𝐽5   0.152 

(0.848) 

        

𝛽𝐶5   0.0003 

(0.007) 

     0.0009 

(0.020) 

 -0.004 

(-0.101) 

𝛽𝑆𝑄𝐽22   0.357 

(1.160) 

        

𝛽𝐶22   0.609*** 

(4.462) 

     0.648*** 

(4.522) 

 0.588*** 

(4.547) 

𝛽1
+    0.124*** 

(2.975) 

0.126*** 

(2.731) 

0.112** 

(2.241) 

0.189** 

(2.506) 

    

𝛽1
−    0.423*** 

(4.335) 

0.358*** 

(2.730) 

0.422*** 

(4.423) 

0.413*** 

(4.629) 

    

𝛽5
+      0.128 

(0.490) 

0.128 

(0.492) 

    

𝛽5
−      0.420** 

(2.412) 

0.379** 

(0.028) 

    

𝛽22
+       0.291 

(0.979) 

0.268 

(0.894) 
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𝛽22
−       0.096 

(0.275) 

0.118 

(0.336) 

    

𝛾     0.047 

(1.233) 

      

Δ𝐽1        -0.065 

(-1.082) 

-0.019 

(-0.334) 

  

Δ𝐽1−          -0.336*** 

(-3.041) 

-0.296*** 

(-2.736) 

Δ𝐽1+          0.123** 

(2.485) 

0.111** 

(2.277) 

Δ𝐽5         -0.098 

(-0.583) 

  

Δ𝐽5−           -1.022*** 

(-3.949) 

Δ𝐽5+           0.638*** 

(3.407) 

Δ𝐽22         -0.09 

(-0.272) 

  

Δ𝐽22−           -0.873 

(-1.364) 

Δ𝐽22+           0.793 

(1.461) 

𝑅2 0.381 0.391 0.428 0.391 0.392 0.393 0.396 0.391 0.424 0.403 0.466 

Notes: Estimation is by OLS. Newey-West adjusted t-statistics are given in brackets. 

* Statistical significance at 10% level. 

** Statistical significance at 5% level. 

*** Statistical significance at 1% level. 

  



85 
 

 

Table 3. Parameters of the 11 models. Jump components here indicate BPV jumps and time span h is 5. 

 HAR-RV HAR-RV-

J 

HAR-CJ PS PSlev HAR-RSV CG HAR-RV-SJ HAR-CSJ HAR-RV-

SJd 

HAR-CSJd 

𝛽0 1.15E-

04*** 

(6.122) 

1.14E-

04*** 

(6.098) 

1.11E-

04*** 

(5.296) 

1.11E-

04*** 

(6.108) 

1.10E-

04*** 

(6.051) 

1.09E-04*** 

(5.904) 

1.09E-04*** 

(5.906) 

1.12E-04*** 

(6.119) 

1.08E-04*** 

(5.671) 

1.07E-04*** 

(6.176) 

9.85E-05*** 

(5.615) 

𝛽1 0.278*** 

(5.416) 

0.292*** 

(5.444) 

         

𝛽5 0.261*** 

(3.193) 

0.254*** 

(3.182) 

 0.266*** 

(3.460) 

0274*** 

(3.351) 

  0.263*** 

(3.411) 

 0.278*** 

(3.449) 

 

𝛽22 0.166** 

(2.231) 

0.162** 

(2.150) 

 0.177** 

(2.384) 

0.179** 

(2.424) 

  0.169** 

(2.203) 

 0.169** 

(2.298) 

 

𝛽𝑆𝑄𝐽1  -0.157** 

(-2.378) 

0.134** 

(8.674) 

   0.019 

(0.306) 

    

𝛽𝐶1   0.291*** 

(5.430) 

    0.283*** 

(5.706) 

0.281*** 

(6.087) 

0.232 

(3.925) 

0.219*** 

(4.042) 

𝛽𝑆𝑄𝐽5   0.271** 

(2.275) 

        

𝛽𝐶5   0.253*** 

(3.007) 

     0.260*** 

(3.022) 

 -0.214** 

(2.098) 

𝛽𝑆𝑄𝐽22   -0.098 

(-0.208) 

        

𝛽𝐶22   0.176** 

(2.044) 

     0.191** 

(2.109) 

 0.163 

(1.266) 

𝛽1
+    0.124*** 

(2.975) 

0.126*** 

(2.731) 

0.112** 

(2.241) 

0.107 

(1.585) 

    

𝛽1
−    0.423*** 

(4.335) 

0.358*** 

(2.730) 

0.422*** 

(4.423) 

0.424*** 

(4.390) 

    

𝛽5
+      0.128 

(0.490) 

0.129 

(0.492) 

    

𝛽5
−      0.420** 

(2.412) 

0.422** 

(2.388) 

    

𝛽22
+       0.291 

(0.979) 

0.294 

(0.996) 
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𝛽22
−       0.096 

(0.275) 

0.094 

(0.270) 

    

𝛾     0.047 

(1.233) 

      

Δ𝐽1        -0.099 

(-1.600) 

-0.106 

(-1.630) 

  

Δ𝐽1−          -0.311*** 

(-2.635) 

-0.329*** 

(-2.679) 

Δ𝐽1+          0.050 

(0.686) 

0.044 

(0.590) 

Δ𝐽5         -0.117 

(-0.646) 

  

Δ𝐽5−           -0.450 

(-1.449) 

Δ𝐽5+           0.091 

(0.428) 

Δ𝐽22         0.040 

(0.121) 

  

Δ𝐽22−           -0.121 

(-0.206) 

Δ𝐽22+           0.228 

(0.607) 

𝑅2 0.381 0.383 0.383 0.391 0.392 0.393 0.393 0.385 0.386 0.391 0.396 

Notes: Estimation is by OLS. Newey-West adjusted t-statistics are given in brackets. 

* Statistical significance at 10% level. 

** Statistical significance at 5% level. 

*** Statistical significance at 1% level. 
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Table 4. Parameters of the 11 models. Jump components here indicate MedRV jumps and time span h is 1. 

 HAR-RV HAR-RV-

J 

HAR-CJ PS PSlev HAR-RSV CG HAR-RV-SJ HAR-CSJ HAR-RV-

SJd 

HAR-CSJd 

𝛽0 7.41E-

05*** 

(5.227164) 

7.09E-

05*** 

(4.986) 

4.35E-

05** 

(2.368) 

6.53E-

05*** 

(4.863) 

6.43E-05*** 

(4.733) 

6.21E-05*** 

(3.621) 

6.27E-05*** 

(4.271) 

6.75E-05*** 

(4.780) 

4.87E-05** 

(2.454) 

5.57E-05*** 

(3.325) 

2.60E-0.5 

(1.423) 

𝛽1 0.395*** 

(3.669) 

0.494*** 

(4.780) 

         

𝛽5 0.267*** 

(2.711) 

0.205** 

(2.221) 

 0.278*** 

(3.178) 

0.287*** 

(3.212) 

  0.229*** 

(2.625) 

 0.251*** 

(2.798) 

 

𝛽22 0.157** 

(2.279) 

0.171** 

(2.520) 

 0.181*** 

(2.743) 

0.183*** 

(2.752) 

  0.187*** 

(2.754) 

 0.179 

*** 

(2.851) 

 

𝛽𝑆𝑄𝐽1  -0.491*** 

(-3.641) 

-0.004312 

(0.9538) 

   -0.302** 

(-2.226) 

    

𝛽𝐶1   0.549*** 

(7.727) 

    0.462*** 

(4.722) 

0.538*** 

(16.692) 

0.374*** 

(3.505) 

0.389*** 

(5.036) 

𝛽𝑆𝑄𝐽5   0.128 

(0.787) 

        

𝛽𝐶5   0.016 

(0.391) 

     0.0195 

(0.437) 

 0.006 

(0.167) 

𝛽𝑆𝑄𝐽22   0.621** 

(2.073) 

        

𝛽𝐶22   0.398*** 

(3.719) 

     0.458*** 

(6.040) 

 0.390*** 

(4.055) 

𝛽1
+    0.067 

(0.877) 

0.069 

(0.806) 

0.048 

(0.787) 

0.196* 

(1.722) 

    

𝛽1
−    0.704*** 

(3.778) 

0.188*** 

(3.354) 

0.702*** 

(12.087) 

0.685*** 

(4.087) 

    

𝛽5
+      0.016 

(0.108) 

0.015 

(0.063) 

    

𝛽5
−      0.525** 

(4.633) 

0.447*** 

(2.957) 

    

𝛽22
+       0.245 0.200     
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(0.858) (0.596) 

𝛽22
−       0.177 

(0.576) 

0.219 

(0.591) 

    

𝛾     0.054 

(0.995) 

      

Δ𝐽1        -0.195** 

(-2.157) 

-0.142*** 

(-2.785) 

  

Δ𝐽1−          -0.649*** 

(-3.228) 

-0.606*** 

(-2.906) 

Δ𝐽1+          0.121 

(1.446) 

0.121** 

(1.252) 

Δ𝐽5         -0.140 

(-1.319) 

  

Δ𝐽5−           -0.930*** 

(-3.312) 

Δ𝐽5+           0.467*** 

(2.496) 

Δ𝐽22         -0.073 

(-0.253) 

  

Δ𝐽22−           -1.359* 

(-1.847) 

Δ𝐽22+           1.347** 

(2.159) 

𝑅2 0.351 0.375 0.374 0.378 0.379 0.382 0.389 0.385 0.376 0.405 0.412 

Notes: Estimation is by OLS. Newey-West adjusted t-statistics are given in brackets. 

* Statistical significance at 10% level. 

** Statistical significance at 5% level. 

*** Statistical significance at 1% level. 
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Table 5. Parameters of the 11 models. Jump components here indicate BPV jumps and time span h is 1. 

 HAR-RV HAR-RV-

J 

HAR-CJ PS PSlev HAR-RSV CG HAR-RV-SJ HAR-CSJ HAR-RV-

SJd 

HAR-CSJd 

𝛽0 7.41E-

05*** 

(5.227164) 

7.14E-

05*** 

(5.158) 

7.01E-

05*** 

(4.675) 

6.53E-

05*** 

(4.863) 

6.43E-

05*** 

(4.733) 

6.21E-05*** 

(4.228) 

6.20E-05*** 

(4.223) 

6.63E-05*** 

(4.931) 

6.07E-05** 

(4.119) 

5.85E-05*** 

(4.472) 

4.81E-0.5*** 

(3.382) 

𝛽1 0.395*** 

(3.669) 

0.432*** 

(4.027) 

         

𝛽5 0.267*** 

(2.711) 

0.248*** 

(2.611) 

 0.278*** 

(3.178) 

0.287*** 

(3.212) 

  0.269*** 

(3.032) 

 0.298*** 

(3.207) 

 

𝛽22 0.157** 

(2.279) 

0.147** 

(2.124) 

 0.181*** 

(2.743) 

0.183*** 

(2.752) 

  0.168** 

(2.470) 

 0.169 

** 

(2.548) 

 

𝛽𝑆𝑄𝐽1  -0.491*** 

(-3.287) 

0.012 

(0.549) 

   -0.078** 

(-0.732) 

    

𝛽𝐶1   0.432*** 

(4.020) 

    0.405*** 

(4.070) 

0.399*** 

(4.174) 

0.313*** 

(2.670) 

0.295** 

(2.564) 

𝛽𝑆𝑄𝐽5   0.253 

(1.420) 

        

𝛽𝐶5   0.248** 

(2.523) 

     0.262*** 

(2.707) 

 0.227** 

(2.316) 

𝛽𝑆𝑄𝐽22   0.038 

(0.088) 

        

𝛽𝐶22   0.153** 

(2.030) 

     0.204** 

(2.466) 

 0.144 

(1.177) 

𝛽1
+    0.067 

(0.877) 

0.069 

(0.806) 

0.048 

(0.604) 

0.069 

(0.679) 

    

𝛽1
−    0.704*** 

(3.778) 

0.188*** 

(3.354) 

0.702*** 

(3.824) 

0.695*** 

(3.837) 

    

𝛽5
+      0.016 

(0.068) 

0.015 

(0.062) 

    

𝛽5
−      0.525** 

(3.418) 

0.518*** 

(3.356) 

    

𝛽22
+       0.245 0.230     
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(0.755) (0.695) 

𝛽22
−       0.177 

(0.491) 

0.186 

(0.513) 

    

𝛾     0.054 

(0.995) 

      

Δ𝐽1        -0.245** 

(-2.509) 

-0.256*** 

(-2.588) 

  

Δ𝐽1−          -0.633*** 

(-2.924) 

-0.656*** 

(-2.980) 

Δ𝐽1+          0.027 

(0.256) 

0.017 

(0.162) 

Δ𝐽5         -0.2098 

(-1.364) 

  

Δ𝐽5−           -0.558** 

(-2.046) 

Δ𝐽5+           -0.002 

(-0.012) 

Δ𝐽22         -0.0387 

(-0.105) 

  

Δ𝐽22−           -0.333 

(-0.539) 

Δ𝐽22+           0.274 

(0.734) 

𝑅2 0.351 0.359 0.359 0.378 0.379 0.382 0.382 0.375 0.377 0.388 0.393 

Notes: Estimation is by OLS. Newey-West adjusted t-statistics are given in brackets. 

* Statistical significance at 10% level. 

** Statistical significance at 5% level. 

*** Statistical significance at 1% level.
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6. Forecast evaluation 

6.1. Diebold-Mariano test 

Diebold and Mariano (1995) and West (1996) develop the Diebold–Mariano–White (DMW) 

statistic which compares the forecast ability of two competing models, requires a loss function 

that is a measure of the difference between the realised value and the forecast in a pseudo out-

of-sample forecasting environment. the loss function relative to the benchmark model is 

defined as 𝑋𝑡;𝑙
(𝐴,𝐵)

= 𝐿𝑡;𝑙
(𝐴)

− 𝐿𝑡;𝑙
(𝐵)

, where 𝐿𝑡,𝑙
(𝐴)

 is the value of the loss function 𝑙 at time 𝑡 for a 

benchmark model 𝑀𝐴  and 𝐿𝑡,𝑙
(𝐵)

 is the value of the loss function 𝑙 at time 𝑡 for the competitive 

model 𝑀𝐵 . 

Then, a DMW test of equal predictive accuracy is a simple Wald test that the expected value of 

this difference is zero. The DMW statistic is then given by: 

𝐷𝑀 =
�̅�𝑡=1,2,…,𝜏;𝑙

(𝐴,𝐵)

Σ̂𝜏/√𝜏
⁄                                                                                                                    (28) 

where Σ̂𝜏  is an estimator of the asymptotic standard deviation of Σ𝜏 = √𝑣𝑎𝑟[√𝜏�̅�𝑡=1,2,…,𝜏;𝑙
(𝐴,𝐵)

] 

and 𝜏  is the number of predictions for each forecast horizon. The statistic follows standard 

normal distribution and permits an easy comparison of pairs of models at each horizon. 

I compare the out-of-sample performances of the eleven models. I use Diebold-Mariano (DM) 

statistics to compare the forecast predictability of two competing models. The loss function I 

choose is mean squared error. 

I report DM statistics for the models in table 6 and 7. In table 6, the models containing jumps 

are MedRV jump models while models comprising jumps in Table 7 are BPV jump models. 

Table 6 and 7 are read in the following way: the statistic number compares the model whose 

name is in the headline with the model whose name is in the head column. Number in brackets 

indicates the P-value of the DM statistic. A negative statistic indicates the model in the head 
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column outperforms the one in the headline and the corresponding P-value indicates if the null 

hypothesis that the two forecasts have the same accuracy should be rejected or not.  

Table 6 indicates that HAR-RV model is significantly inferior to 5 models while HAR-CJ 

model significantly outperforms the most of the other model except HAR-CSJ and HAR-CSJd. 

HAR-CSJ model is superior to the most of the other model except HAR-CJ and HAR-CSJd. 

HAR-CSJd model’s performance is good as well because it outperforms the most of the model 

except HAR-CS and HAR-CSJ. Therefore, the best performing models in Table 6 are HAR-

CS, HAR-CSJ and HAR-CSJd.  

Table 7 tells a similar story when models comprising the BPV jumps. The simple HAR-RV is 

outperformed by many other models such as HAR-CJ, HAR-RSV, HAR-CSJ and HAR-CSJd. 

The performance of HAR-CJ model is no longer as good as the one comprising MedRV jumps 

while HAR-CSJ still outperforms the most of the alternative models. The best performing 

model in table 7 is HAR-CSJd model since its statistics compared by other models are all 

significantly positive.  

To summarise, whatever the jump component is BPV or MedRV, the HAR-CSJd outperforms 

the other models in most cases while the simple HAR-RV model’s forecast performance is 

inferior to many other models. HAR-CJ model containing MedRV jump performs well in it 

comes to forecasting while HAR-CJ model with BPV jump is at best as good as other 

alternative models. This finding is contrary to Sevi’s (2014) finding in that HAR-CSJd model 

in Sevi’s paper is not superior and HAR-RV model for long time horizon outperforms other 

models. 
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Table 6. DM statistic of the mean squared error of the forecast from alternative models 

 HAR-RV-J HAR-CJ PS Pslev HAR-RSV CG HAR-RV-SJ HAR-CSJ HAR-SJd HAR-CSJd 

HAR-

RV 

1.495751 

(0.134719) 

14.14831 

(1.91E-

45)*** 

0.882018 

(0.377767) 

1.369795 

(0.170751) 

1.694479 

(0.090174)* 

1.910731 

(0.056039)* 

0.701995 

(0.482682) 

13.95058 

(3.12E-

44)*** 

1.362478 

(0.173047) 

11.08730 

(1.45E-

28)*** 

HAR-

RV-J 

 13.90131 

(6.22E-

44)*** 

-0.280774 

(0.778884) 

0.442793 

(0.657916) 

0.780069 

(0.435350) 

1.531923 

(0.125541) 

-0.578522 

(0.562912) 

14.09908 

(3.85E-

45)*** 

1.014237 

(0.310470) 

11.08342 

(1.51E-

28)*** 

HAR-

CJ 

  -13.99564 

(1.66E-

44)***  

-13.76507 

(4.13E-43)*** 

-14.20714 

(8.27E-46)*** 

-13.81877 

(1.96E-43)*** 

-13.34241 

(1.31E-40)*** 

-0.588258 

(0.556359) 

-10.55009 

(5.07E-

26)*** 

0.578479 

(0.562940) 

PS 

 

   2.546691 

(0.010875)** 

1.982784 

(0.047392)** 

2.291278 

(0.021947)** 

-0.090465 

(0.927918) 

14.34648 

(1.12E-46) 

1.497145 

(0.134356) 

11.98837 

(4.09E-

33)*** 

PSlev     0.549769 

(0.582478) 

1.032055 

(0.302046) 

-0.868289 

(0.385236) 

14.10215 

(3.68E-

45)*** 

0.970639 

(0.331728) 

11.94907 

(6.57E-

33)*** 

HAR-

RSV 

     0.924649 

(0.355148) 

-1.155670 

(0.247816) 

14.78945 

(1.71E-

49)*** 

0.638495 

(0.523152) 

12.21870 

(2.47E-

34)*** 

CG       -2.492339 

(0.012690)** 

14.47823 

(1.66E-

47)*** 

0.434673 

(0.663800) 

11.79875 

(3.96E-

32)*** 

HAR-

RV-SJ 

       13.75686 

(4.63E-

43)*** 

1.488015 

(0.136747) 

11.24251 

(2.52E-

29)*** 

HAR-

CSJ 

        -11.04847 

(2.23E-

28)*** 

0.779782 

(0.435519) 

HAR-

RV-

SJd 

         10.34229 

(4.54E-

25)*** 

Notes: A positive test statistic indicates the model in the head line outperforms the one in the head column. P values are given in brackets. Models 

comprising jumps mentioned in this table are based on MedRV jump detection. Statistical significance at 10%, 5% and 1% are highlighted by *, 

** and *** respectively. 
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Table 7. DM statistic of the mean squared error of the forecast from alternative models. 

 HAR-RV-J HAR-CJ PS Pslev HAR-RSV CG HAR-RV-SJ HAR-CSJ HAR-SJd HAR-CSJd 

HAR-

RV 

3.611071 

(0.000305)*** 

13.73897 

(5.93E-

43)*** 

0.882018 

(0.377767) 

1.369795 

(0.170751) 

1.694479 

(0.090174)* 

1.641236 

(0.100748) 

0.921840 

(0.356612) 

3.041721 

(0.002352)*** 

1.143385 

(0.252879) 

2.826803 

(0.004702)*** 

HAR-

RV-J 

 17.48959 

(1.72E-

68)*** 

0.569771 

(0.568833) 

1.094689 

(0.273653) 

1.411304 

(0.158155) 

1.360301 

(0.173735) 

0.461938 

(0.644126) 

2.721476 

(0.006499)*** 

0.944735 

(0.344794) 

2.705716 

(0.006816)*** 

HAR-CJ   -0.867077 

(0.385900) 

-0.224705 

(0.822209) 

0.038122 

(0.969590) 

0.009350 

(0.992540) 

-1.679437 

(0.093067)* 

0.823914 

(0.409989) 

-0.102989 

(0.917972) 

1.761832 

(0.078098)* 

PS 

 

   2.546691 

(0.01088)** 

1.982784 

(0.047392)** 

1.909945 

(0.05614)* 

-0.788254 

(0.430548) 

3.161925 

(0.001567)*** 

0.980827 

(0.326678) 

4.211609 

(2.54E-05)*** 

PSlev     0.549769 

(0.582478) 

0.493379 

(0.621745) 

-1.922767 

(0.054509)* 

1.529238 

(0.126205) 

0.131664 

(0.895250) 

3.368621 

(0.000755)*** 

HAR-

RSV 

     -1.504959 

(0.132335) 

-2.217286 

(0.026604)** 

1.833882 

(0.066672)* 

-0.180615 

(0.856670) 

2.956664 

(0.003110)*** 

CG       -2.110406 

(0.034823)** 

1.823154 

(0.068280)* 

-0.150667 

(0.880238) 

2.996223 

(0.002733)*** 

HAR-

RV-SJ 

       5.296440 

(1.18E-07)*** 

1.122830 

(0.261510) 

3.790724 

(0.000150)*** 

HAR-

CSJ 

        -0.740147 

(0.459211) 

2.092357 

(0.036407)** 

HAR-

RV-SJd 

         4.359302 

(1.30E-05)*** 

Notes: A positive test statistic indicates the model in the headline outperforms the one in the head-column. P values are given in brackets. Models 

comprising jumps mentioned in this table are based on BPV jump detection. Statistical significance at 10%, 5% and 1% are highlighted by *, ** 

and *** respectively. 
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6.2. Superior Predictive Ability (SPA) test 

Apart from DM test, I carry out SPA test to detect the forecast superiority of the RV and RV 

jump models. The SPA test can be used to compare the performance of two or more forecasting 

models at a time. Forecasts are evaluated using a pre-specified loss function and the “best” 

forecasting model is the one that produces the smallest expected loss. In a SPA test, the loss 

function relative to the benchmark model is defined as 𝑋𝑡,𝑙
(0,𝑖)

= 𝐿𝑡,𝑙
(0)

− 𝐿𝑡,𝑙
(𝑖)

, where 𝐿𝑡,𝑙
(0)

 is the 

value of the loss function 𝑙 at time 𝑡 for a benchmark model 𝑀0  and 𝐿𝑡,𝑙
(𝑖)

 is the value of the 

loss function 𝑙  at time 𝑡  for another competitive model 𝑀𝑖   for 𝑖 = 1, … , 𝐾 . The SPA test is 

used to compare the forecasting performance of a benchmark model against its K competitors. 

The null hypothesis that the benchmark or base model is not outperformed by any of the other 

competitive models is expressed as 𝐻0 : max
𝑖=1,…,𝐾

𝐸(𝑋𝑡,𝑙
(0,𝑖)

) ≤ 0.   It is tested with the statistic 

𝑇𝑙
𝑆𝑃𝐴 = max

𝑖=1,…,𝐾
(√𝑛�̅�𝑖,𝑙/√ lim

𝑛→∞
𝑣𝑎𝑟(√𝑛�̅�𝑖,𝑙) ), where n is the number of forecast data points 

and �̅�𝑖,𝑙 =
1

𝑛
∑ 𝑋𝑡,𝑙

(0,𝑖)𝑛
𝑡=1 . lim

𝑛→∞
𝑣𝑎𝑟(√𝑛�̅�𝑖,𝑙)  and the p-value of the 𝑇𝑙

𝑆𝑃𝐴 are obtained by using 

the stationary bootstrap procedure discussed by Politis and Romano (1994). Hansen (2005) 

summarises that the p-value of a SPA test indicates the relative performance of a base model 

𝑀0  in comparison with alternative models 𝑀𝑖 . A high p-value indicates that we are not able 

to reject the null hypothesis that “the base model is not outperformed”. 

SPA test selects six models out of a number of alternative models and the six models are the 

most significant model, the best model, models with performance of 75%, 50% and 25% 

relative to the benchmark model and the worst performance model. Each model I employ will 

be regarded as a benchmark model so that the null hypothesis of the SPA test that the benchmark 

model is not inferior to other models can be tested.  

The following tables indicate the SPA test results for selected models. Models comprising 
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jumps in Table 8 to Table 10 are MedRV jump models while models containing jumps in Table 

11 to Table 13 are BPV jump models. The loss functions I choose are MSE and MAE and the 

P-value of the test is produced at the bottom of each table.  
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Table 8. SPA test results evaluated by the MAE and MSE for HAR-RV model with MedRV 

jump component 

 MAE MSE MAE MSE 

 Models t-statistics 

Benchmark HAR-RV HAR-RV - - 

Most Significant HAR-CSJd CG 12.28756 11.71140 

Best model HAR-CSJd HAR-CSJd 12.28756 11.18509 

Model_25% HAR-CSJ HAR-CSJ 4.41251 2.24168 

Median_50% HAR-RSV PSlev 2.76050 3.29203 

Model_75% HAR-RV-J HAR-RV-J 1.47870 2.58759 

Worst model HAR-RV-SJ HAR-RV-SJ -12.00076 -11.02174 

SPA test p-value 
MAE MSE   

0.0000 0.0000   

Notes: Table 8 shows the SPA test results for different models. The benchmark model selected 

is HAR-RV model with MedRV jump component. The null hypothesis of the test is that the 

benchmark model is not inferior to the other candidate models. The test chooses the most 

significant model, the best model, models with performances of 75%, 50% and 25% relative to 

the benchmark model, and the worst model. P-values are reported in the last row. 
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Table 9. SPA test results evaluated by the MAE and MSE for HAR-RV-J model with MedRV 

jump component 

 MAE MSE MAE MSE 

 Models t-statistics 

Benchmark HAR-RV-J HAR-RV-J - - 

Most Significant CG CG 13.20796 12.08039 

Best model HAR-RV-SJd HAR-CSJd 12.22289 11.03887 

Model_25% HAR-CSJ HAR-CSJ 4.14038 1.81780 

Median_50% HAR-RSV PSlev 2.10960 2.56997 

Model_75% HAR-RV HAR-RV -2.47174 -2.58759 

Worst model HAR-RV-SJ HAR-RV-SJ -13.28610 -10.58156 

SPA test p-value 
MAE MSE   

0.0000 0.0000   

Notes: Table 9 shows the SPA test results for different models. The benchmark model selected 

is HAR-RV-J model with MedRV jump component. The null hypothesis of the test is that the 

benchmark model is not inferior to the other candidate models. The test chooses the most 

significant model, the best model, models with performances of 75%, 50% and 25% relative to 

the benchmark model, and the worst model. P-values are reported in the last row. 
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Table 10. SPA test results evaluated by the MAE and MSE for HAR-CSJd model with 

MedRV jump component 

 MAE MSE MAE MSE 

 Models t-statistics 

Benchmark HAR-CSJd HAR-CSJd - - 

Most Significant HAR-RV-J HAR-RV-J -6.24035 -4.40787 

Best model HAR- RV-SJd HAR-RV-SJd -7.56712 -5.07985 

Model_25% HAR-RV-SJ HAR-RV-SJ -8.57026 -5.86700 

Median_50% PSlev PS -12.50230 -10.39378 

Model_75% HAR-RV HAR-RV -12.22289 -11.03887 

Worst model CG CG -17.01871 -14.00429 

SPA test p-value 
MAE MSE   

0.50650 0.52640   

Notes: Table 10 shows the SPA test results for different models. The benchmark model selected 

is HAR-CSJd model with MedRV jump component. The null hypothesis of the test is that the 

benchmark model is not inferior to the other candidate models. The test chooses the most 

significant model, the best model, models with performances of 75%, 50% and 25% relative to 

the benchmark model, and the worst model. P-values are reported in the last row. 
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Table 11. SPA test results evaluated by the MAE and MSE for HAR-RV model with BPV 

jump component 

 MAE MSE MAE MSE 

 Models t-statistics 

Benchmark HAR-RV HAR-RV - - 

Most Significant HAR-CJ HAR-CJ 22.96357 17.33296 

Best model HAR-CSJd HAR-CSJd 6.47564 6.07192 

Model_25% HAR-CSJ HAR-CSJ 4.71027 5.13676 

Median_50% HAR-RSV HAR-RSV 2.83639 3.15563 

Model_75% HAR-CJ HAR-CJ 22.96357 17.33296 

Worst model HAR-RV-J HAR-RV-J 11.74953 8.89234 

SPA test p-value 
MAE MSE   

0.0000 0.0000   

Notes: Table 11 shows the SPA test results for different models. The benchmark model selected 

is HAR-RV model with BPV jump component. The null hypothesis of the test is that the 

benchmark model is not inferior to the other candidate models. The test chooses the most 

significant model, the best model, models with performances of 75%, 50% and 25% relative to 

the benchmark model, and the worst model. P-values are reported in the last row. 
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Table 12. SPA test results evaluated by the MAE and MSE for HAR-CJ model with BPV 

jump component 

 MAE MSE MAE MSE 

 Models t-statistics 

Benchmark HAR-CJ HAR-CJ - - 

Most Significant HAR-CSJd HAR-CSJd 4.80494 4.48272 

Best model HAR-CSJd HAR-CSJd 4.80494 4.48272 

Model_25% HAR-CSJ HAR-CSJ 1.62682 1.98999 

Median_50% HAR-RSV HAR-RSV 0.56885 0.76741 

Model_75% HAR-RV-J HAR-RV-J -2.45372 -2.04172 

Worst model HAR-RV HAR-RV -14.21593 -12.48918 

SPA test p-value 
MAE MSE   

0.0000 0.0003   

Notes: Table 11 shows the SPA test results for different models. The benchmark model selected 

is HAR-CJ model with BPV jump component. The null hypothesis of the test is that the 

benchmark model is not inferior to the other candidate models. The test chooses the most 

significant model, the best model, models with performances of 75%, 50% and 25% relative to 

the benchmark model, and the worst model. P-values are reported in the last row. 
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Table 13. SPA test results evaluated by the MAE and MSE for HAR- CSJd model with BPV 

jump component 

 MAE MSE MAE MSE 

 Models t-statistics 

Benchmark HAR-CSJd HAR-CSJd - - 

Most Significant HAR-CSJ HAR-CSJ -3.32102 -2.94373 

Best model HAR-RV-SJd HAR-RV-SJd -4.56521 -3.14259 

Model_25% HAR-RV-SJ HAR-RV-SJ -6.34987 -5.81179 

Median_50% PSlev PSlev -7.43376 -7.42629 

Model_75% HAR-RV-J HAR-RV-J -4.80494 -4.48272 

Worst model HAR-RV HAR-RV -5.91385 -5.58171 

SPA test p-value 
MAE MSE   

0.4799 0.48510   

Notes: Table 13 shows the SPA test results for different models. The benchmark model selected 

is HAR-CSJd model with BPV jump component. The null hypothesis of the test is that the 

benchmark model is not inferior to the other candidate models. The test chooses the most 

significant model, the best model, models with performances of 75%, 50% and 25% relative to 

the benchmark model, and the worst model. P-values are reported in the last row. 
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Ranking information in Table. 8, 9, 11 and 12 is quite consistent. For each benchmark model, 

the ranking information from the best model to the worst model is almost the same in spite of 

some small changes. For MedRV models the worst performing model is HAR-RV-SJ in most 

cases and the worst performing model for BPV models is HAR-RV model. In most cases, HAR-

CSJd is the best performing model compared to other alternative models. The P-value of the 

SPA test support the null hypothesis that the HAR-CSJd model is not inferior to other model 

considering. For other benchmark models, the SPA test P-value is close to zero, indicating that 

the null hypothesis that the benchmark model is not inferior to other models is rejected. Those 

results are not presented in this paper to avoid repeat results. It illustrates that apart from HAR-

CSJd, other models are at least inferior to one of the competing models. The finding of SPA 

test is contrary to Sevi (2014) as well. Sevi’s finding suggests that the decompositions between 

jumps and the continuous components and negative and positive realised semi-variances do 

not improve the forecast performance for crude oil asset. However, HAR-CSJd mode, which 

is the most complicated model I employ at best outperforms simple model such as HAR-RV 

and other decomposition models or is as good as them at worst. Sevi (2014) studies data 

covering from January 1987 to December 2010 which is long and slightly dated. The sample 

in this study covers from 25th March 2009 to 25th March 2013. Though data in the two studies 

have overlapping part, the non-overlapping part outweigh the overlapping part. Since same 

HAR series models are utilised in the two studies, this contradiction stems from the difference 

of the two data samples.  

 

6.3. The comparison of forecasting performance between HAR models and GARCH models 

I choose two batches of models to compare their forecasting performance. One batch contains 

base HAR-RV model and the good performing model: HAR-CJ and HAR-CSJd model 

according to DM test and SPA test. The other batch has GARCH model and FIGARCH model 
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which takes long memory property into consideration. The forecast period is still from 3rd Nov. 

2012 to 25th Mar. 2013. To make the comparison applicable, I sum up the 5 min volatility 

within the same day to construct the realised volatility during this period and carry on the 

comparison the realised volatility from HAR models and GARCH family models. 

I report DM statistics for the models in Table 14 and 15. In table 14, the models containing 

jumps are BPV jump models while models comprising jumps in Table 15 are MedRV jump 

models. Table 14 and 15 are read in the following way: the statistic number compares the model 

whose name is in the headline with the model whose name is in the head column. Number in 

brackets indicates the P-value of the DM statistic. A negative statistic indicates the model in 

the head column outperforms the one in the headline and the corresponding P-value indicates 

if the null hypothesis that the two forecasts have the same accuracy should be rejected or not. 
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Table 14. DM statistic of the mean squared error of the forecast from alternative models (I).  

 HAR-CJ HAR-CSJd GARCH FIGARCH 

HAR-RV 13.73897 

(5.93E-43)*** 

2.826803 

(0.004702)*** 

27.3795 

(4.812E-165)*** 

12.5386 

(4.59E-36)*** 

HAR-CJ  1.761832 

(0.078098)* 

26.3004 

(1.897E-152)*** 

11.7888 

(4.458E-32)*** 

HAR-CSJd   20.9017 

(5.167E-97)*** 

8.9729 

(2.888E-19)*** 

GARCH    -45.2982 

(0.0000) *** 

Notes: Models comprising jumps mentioned in this table are based on BPV jump detection. A 

positive test statistic indicates the model in the head line outperforms the one in the head 

column. P values are given in brackets. Statistical significance at 10%, 5% and 1% are 

highlighted by *, ** and *** respectively. 
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Table 15. DM statistic of the mean squared error of the forecast from alternative models (II).  

 HAR-CJ HAR-CSJd GARCH FIGARCH 

HAR-RV 14.14831 

(1.91E-45)*** 

11.08730 

(1.45E-28)*** 

27.3795  

(4.812E-165)*** 

12.5386 

(4.59E-36)*** 

HAR-CJ  0.578479 

(0.562940) 

33.6754  

(1.325E-248) *** 

5.7032  

(1.17579E-08) *** 

HAR-CSJd   13.8765  

(8.793E-44) *** 

0.2667  

(0.789700154) 

GARCH    -45.2982  

(0.0000) *** 

Notes: Models comprising jumps mentioned in this table are based on MedRV jump detection. 

A positive test statistic indicates the model in the headline outperforms the one in the head-

column. P values are given in brackets. Statistical significance at 10%, 5% and 1% are 

highlighted by *, ** and *** respectively 

 

The comparison among HAR-RV, HAR-CJ and HAR-CSJd model has been discussed and the 

attention is given to the comparison between HAR-RV models and GARCH models. The HAR-

RV family models are not performing well when the GARCH model and FIGARCH model are 

added to the comparison batch. GARCH model and FIGARCH model outperform HAR-RV 

models according to DM test. GARCH model significantly outperforms HAR-RV, HAR-CJ, 

HAR-CSJd and FIGARCH model pairwise while FIGARCH model is only inferior to GARCH 

model while it still outperforms the representatives of HAR-RV family models. This is an 

interesting piece of evidence in that Andersen, Bollerslev, Christoffersen and Diebold (2006) 

find that the simple HAR model provide much better results than GARCH-type model. They 

say that the GARCH models only use daily data while HAR models employ more information 

contained in intraday day. However, the regression of GARCH model and FIGARCH model 
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in this paper is set with intraday return (5 min return) therefore the GARCH model and 

FIGARCH model also reflect the information which HAR-RV models have.  

The following tables present the selected SPA test results. Models comprising jumps in Table 

16 and Table 17 are BPV jump models while models containing jumps in Table 18 to Table 19 

are MedRV jump models. The loss functions I choose are MSE and MAE. The null hypothesis 

of SPA test is that the benchmark model is not inferior to other alternative models. The test 

produces the most significant model, the best model, models with performances of 75%, 50% 

and 25% relative to the benchmark model and the worst performing model. P-values of the test 

are illustrated at the bottom of each table. 
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Table 16. SPA test results evaluated by the MAE and MSE for HAR- CSJd model with BPV 

jump component 

 MAE MSE MAE MSE 

 Models t-statistics 

Benchmark HAR-CSJd HAR-CSJd - - 

Most Significant FIGARCH FIGARCH 2.87360 0.45580 

Best model FIGARCH FIGARCH 2.87360 0.45580 

Model_25% HAR-CJ HAR-CJ -4.80494 -4.48272 

Median_50% HAR-RV HAR-RV -6.47564 -6.07192 

Model_75% HAR-RV HAR-RV -6.47564 -6.07192 

Worst model GARCH GARCH -4.14656 -3.34757 

SPA test p-value 
MAE MSE   

0.0000 0.35940   

Notes: Table 16 shows the SPA test results for different models. The benchmark model selected 

is HAR-CSJd model with BPV jump component. The null hypothesis of the test is that the 

benchmark model is not inferior to the other candidate models. The test chooses the most 

significant model, the best model, models with performances of 75%, 50% and 25% relative to 

the benchmark model, and the worst model. P-values are reported in the last row. 
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Table 17. SPA test results evaluated by the MAE and MSE for FIGARCH model 

 MAE MSE MAE MSE 

 Models t-statistics 

Benchmark FIGARCH FIGARCH - - 

Most Significant HAR-CJ HAR-CJ -4.26269 -1.26024 

Best model GARCH GARCH -3.19604 1.90754 

Model_25% HAR-CJ HAR-CJ -4.26269 -1.26024 

Median_50% HAR-RV HAR-RV -4.67949 -1.57134 

Model_75% HAR-RV HAR-RV -4.67949 -1.57134 

Worst model HAR-CSJd HAR-CSJd -7.21755 -5.07617 

SPA test p-value 
MAE MSE   

0.47520 0.91600   

Notes: Table 17 shows the SPA test results for different models. The benchmark model selected 

is FIGARCH model. Candidate HAR series models are with BPV jump component. The null 

hypothesis of the test is that the benchmark model is not inferior to the other candidate models. 

The test chooses the most significant model, the best model, models with performances of 75%, 

50% and 25% relative to the benchmark model, and the worst model. P-values are reported in 

the last row. 
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Table 18. SPA test results evaluated by the MAE and MSE for HAR- CSJd model with 

MedRV jump component 

 MAE MSE MAE MSE 

 Models t-statistics 

Benchmark HAR-CSJd HAR-CSJd - - 

Most Significant FIGARCH FIGARCH -4.65927 -2.75550 

Best model HAR-CJ HAR-CJ -3.51678 0.537890 

Model_25% FIGARCH FIGARCH -4.65927 -2.75550 

Median_50% HAR-RV HAR-RV -6.24035 -4.40787 

Model_75% HAR-RV HAR-RV -6.24035 -4.40787 

Worst model GARCH GARCH -8.95971 -4.69843   

SPA test p-value 
MAE MSE   

0.51920 0.54940   

Notes: Table 18 shows the SPA test results for different models. The benchmark model selected 

is HAR-CSJd model with MedRV jump component. The null hypothesis of the test is that the 

benchmark model is not inferior to the other candidate models. The test chooses the most 

significant model, the best model, models with performances of 75%, 50% and 25% relative to 

the benchmark model, and the worst model. P-values are reported in the last row. 
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Table 19 SPA test results evaluated by the MAE and MSE for GARCH model 

 MAE MSE MAE MSE 

 Models t-statistics 

Benchmark GARCH GARCH - - 

Most Significant HAR-CJ FIGARCH 8.95971 5.02232 

Best model HAR-CJ HAR-CJ 8.95971 4.69843 

Model_25% FIGARCH FIGARCH 7.14033 5.02232 

Median_50% HAR-RV HAR-RV 5.36427 4.06353 

Model_75% HAR-RV HAR-RV 5.36427 4.06353 

Worst model HAR-CSJd HAR-CSJd 3.25576 2.19376 

SPA test p-value 
MAE MSE   

0.00000 0.00000   

Notes: Table 19 shows the SPA test results for different models. The benchmark model selected 

is GARCH model. Candidate HAR series models are with MedRV jump component. The null 

hypothesis of the test is that the benchmark model is not inferior to the other candidate models. 

The test chooses the most significant model, the best model, models with performances of 75%, 

50% and 25% relative to the benchmark model, and the worst model. P-values are reported in 

the last row. 
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SPA test results indicate that HAR-CSJd is not inferior to other models and FIGARCH model 

is not inferior to HAR-RV models if the jump components of HAR-RV models are bi-power 

variation. However, the SPA test performance of GARCH model is not as good as the DM test 

performance of GARCH model. The null hypothesis that GARCH model is not inferior to other 

models is rejected due to its low P value regardless of the jump component of HAR-RV models.  

In a nutshell, the results of forecasting performance between HAR-RV models and GARCH-

type models are quite mixed. It indicates that the forecasting performance of GARCH model 

and FIGARCH model is better than HAR-RV models when it comes to DM test while SPA test 

results are the other way round. 
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7. Conclusion 

This paper provides the comparison within empirical performance of a series HAR-type models 

and several GARCH-type models. In-sample analysis indicates that there is no outperforming 

model while squared jumps help to reduce future’s volatility to some extent. MedRV jump is 

more significant than BPV jump component but their contribution to volatility explanation is 

limited. The information of the decomposition of variance into semi-variance is mixed. The 

out-of-sample performance comparison presents the most complicated HAR-type model 

outperforms other simple HAR-type models while the comparison between GARCH-type 

models and HAR-type models is inconclusive, which is against Andersen, Bollerslev, 

Christoffersen, and Diebold (2006, chap. 15), who find that even based on simple 

autoregressive structures such as the HAR provide much better results than GARCH-type 

models. The forecast performance contradiction stems from the different data sample periods: 

the data sample span from March 2009 to March 2013, which is more up-to-date than data 

utilised the existing literature.  

One limit of our study is the comparison criteria we employ are not voluminous. The 

forecasting performance tests are limited to DM test and SPA test. Stepwise SPA test (Hsu et 

al., 2010), an improvement on the conservation of SPA test has already been introduced to the 

literature before the writing of the paper. Stepwise SPA (SSPA) test is not adopted in the thesis, 

which is a limitation in the paper. 

A potential extension of the current study is to study the linkage among different markets and 

assets based on HAR-type model or apply intraday data to multivariable GARCH models such 

as DCC model (Engle, 2002) or Correlated ARCH (Christodoulakis & Satchell, 2002). 
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Chapter 3. Co-movement Estimation and Volatility Forecasting of Crude Oil Market 

and US Stock Market: Evidence of MGARCH, Wavelet and High Frequency Data 

 

Abstract 

The study of cross market linkage between the crude oil markets and stock markets plays a 

fundamental role in modern finance background. We examine the relationship between WTI 

crude oil futures and S&P 500 stock index in the time–frequency space in this paper. The 

sample period in this paper starts from 8 Oct 2001 9:30 to 30 Oct 2015 16:00. We use the DCC-

GARCH and wavelet-based measures of co-movements to find out the relationship between 

the two financial assets in time and frequency domain features of the data. In the time series 

domain, intraday data are employed and the performances of intraday data and daily data are 

compared. A rolling window analysis is utilised to construct out-of-sample one-day-ahead 

forecast of dynamic conditional expected returns and variances. We find that wavelet method 

is instrumental to identify the long/short term investment behaviours with the help of daily data 

and intraday data improve the forecast performance of traditional time series method. The 

findings of this paper have empirical implications in asset allocation and risk management for 

investment decisions. 

 

1. Introduction 

Studying relationship between different markets, especially between the crude oil market and 

stock markets is an ongoing issue in the finance literature recently. Tang and Xiong (2012) find 

that the price co-movements between various commodities after 2004 have greatly increased 

and that the prices of non-energy commodities have become increasingly correlated with oil 

prices. Most of the recent work analysing cross markets co-movements has been based on time 

domain aspect of analysis and ignored frequency domain. Rua and Nunes (2009) claim that the 
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higher strength in the co-movements of stock returns at lower frequencies suggesting higher 

return from international diversification in the short-term relative to the long-term after 

studying stock markets. Cross markets movements are complex since it involves different 

investors with different term objectives. Therefore, the standard time series econometric 

method which considers the time components only usually loses one side of information. To 

be more specific, studies based on time series analysis lose frequency aspect information and 

studies based on frequency domain lose the time aspect information. Compared to previous 

contribution on cross market co-movements, we follow Uddin et al. (2013) and employ a 

balance between time and frequency aspect of the data. To be specific, we employ the wavelet 

approach, which allows us to study the frequency components of time series without losing the 

time information. This method helps us to discover cross market interactions which remain 

hidden in econometric methods. Another advantage is that the wavelet analysis approach is 

model-free. It makes wavelet method a powerful tool to compare with other time series or 

frequency based estimation methods which are based on estimation methods. Thus the wavelet 

application in the cross market co-movement can provide insights into changing patterns of 

cross market co-movements and it enables simultaneous assessment of short term and long 

term cross market co-movements and detects change in market linkages over time. 

The aim of this paper is to examine the strength of the co-movement between crude oil market 

and the US stock in the time and frequency space by resorting to wavelet analysis using daily 

data and intraday data from Oct 8th 2001 9:30 to Oct 30 2015 16:00 and make forecasting 

evaluation of DCC-GARCH model under different time frequencies. The wavelet method 

results are relatively easy to interpret and offer considerable amount of information on co-

movements and lead-lag relationships of the two markets containing time as well as frequency 

domain information. Moreover, the wavelet approach allows to evaluate co-movements across 

different investment horizons and to distinguish between short term and long term investors. 



121 
 

To relate our findings to the standard econometric literature, we connect our approach with the 

standard econometric approach of (Engle, 2002) dynamic conditional correlations from a 

multivariate DCC-GARCH model in order to measure the co-movements between the crude 

oil market and the US stock market. The research makes contribution to the literature in three 

aspects by detecting 1. Whether wavelet method fits the intraday data; 2. Whether traditional 

time series method fits intraday data well; 3. Do high-frequency data improve the forecasting 

performance of traditional time series method? We make contribution to the literature by 

answering the three questions above. 

The paper proceeds as follows.  Section 2 gives the literature review on 1. Cross market co-

movements of crude oil market and stock markets and 2. Volatility forecast on financial assets. 

Section 3 documents the data.  Section 4 explains the methodology, while Section 5 discusses 

empirical results. The final section discusses the key findings and concludes. 
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2. Literature Review 

2.1. Cross market co-movements of crude oil market and stock markets  

The discussion and analyse of the relationship between oil market and US stock market have 

been well documented in the literature. Hamilton (1983, 1985, 2003) in his seminal articles 

illustrates exogenous oil supply shocks may be a reason for recessions and periods of low 

economic growth. Several studies have analysed the relationship between oil and stock market 

since then. Huang et al. (1996) and Jones and Kaul (1996) are pioneers to explore the 

relationship by using empirical methods. Huang et al. (1996) investigate the dynamic 

interactions between futures prices of crude oil traded in the New York Mercantile Exchange 

(NYMEX) and US stock prices and they find that the return volatility spill-over from oil futures 

to stocks is very weak. On the contrary, Jones and Kaul (1996) find that US stock prices react 

significantly to oil shocks. 

Present researchers use different methodologies, different data frequencies and different 

proxies for oil market and US stock market to detect the relationship. Recent studies 

concentrating on the linkage between the oil market and the US stock market include 

Hammoudeh et al. (2004), Kilian and Park (2009), Balcilar and Ozdemir (2012), Elyasiani et 

al. (2012), Fan and Jahan-Parvar (2012), Alsalman and Herrera (2013), Mollick and Assefa 

(2013), Conrad et al. (2014), Kang et al. (2014), Khalfaoui et al. (2015) and Salisu and Oloko 

(2015). 

The main methodologies used in the literature are VAR type models and GARCH type models. 

A bunch of the researches model the linkage between oil market and the US stock market by 

employing VAR type model. (Kilian and Park (2009), Balcilar and Ozdemir (2012), Fan and 

Jahan-Parvar (2012), Alsalman and Herrera (2013), Kang et al. (2014)). Kilian and Park (2009) 

use a structural vector auto regression (SVAR) model on monthly data covering from January 

1973 to December 2006. The aggregate US stock return they utilise is constructed from 
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monthly returns on the Centre for Research in Security Prices (CRSP) value-weighted market 

portfolio and the oil price is based on the US refiner's acquisition cost of crude oil, as reported 

by the US Department of Energy. These variables are employed in real terms by deflating them 

with the US consumer price index (CPI). They find that the response of aggregate US real stock 

returns differ greatly depending on whether the increase in the price of crude oil is driven by 

demand or supply shocks in the crude oil market. They show that positive shocks to the global 

demand for industrial commodities cause both higher real oil prices and higher stock prices, 

which helps explain the resilience of the US stock market to the recent surge in the price of oil. 

They also find that oil demand and oil supply shocks combined account for 22% of the long-

run variation in US real stock returns. Following the work of Kilian and Park (2009), Kang et 

al. (2014) also utilize an SVAR model to investigate how the demand and supply shocks driving 

the global crude oil market affect US bond market returns and they use monthly data covering 

the period from January 1982 to December 2011. They follow Kilian and Park (2009) method 

to compute the real oil price but they use bond market instead of stock market. the US bond 

return were constructed from an index of US aggregate bond holdings and the real aggregate 

US bond return was measured by deflating its nominal term by the US CPI. Contrary to the 

findings of Kilian and Park (2009), they find that a positive oil market-specific demand shock 

is associated with significant decreases in US bond returns. In addition, their evidence shows 

that the demand and supply shocks driving the global crude oil market jointly account for 30.6% 

of the long run variation in US real bond returns. Balcilar and Ozdemir (2013) consider 

monthly data from February 1990 to July 2011 and they employ a Markov switching vector 

autoregressive (MS–VAR) model. They divide S&P500 index into different sub-groups such 

as Industry, Energy, Energy Equipment & Services, Oil and Gas and Consumable fuels, Oil 

and Gas Exploration and Production, Oil and Gas Storage and Transportation indexes. The oil 

futures price is used as a proxy for oil price. They do not find any lead–lag Granger causality, 
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but the results based on the MS–VAR model clearly show that oil futures price has strong 

regime prediction power for a sub-grouping of S&P 500 stock index during various sub-periods 

in the sample, while there is a weak evidence for the regime prediction power of a sub-grouping 

of S&P 500 stock indexes for oil futures. Fan and Jahan-Parvar (2012) employ WTI spot and 

NYMEX light sweet crude futures prices for oil price while the US stock returns were 

computed from average monthly value weighted returns on forty nine US industry level 

portfolios composing of NYSE, AMEX, and NASDAQ stocks. They employ both linear 

regression model and vector autoregressive (VAR) model with monthly data from January 1979 

to January 2009. They find that oil–price predictability is concentrated in relatively small 

number of industries. Alsalman and Herrera (2013) estimate a simultaneous equation model, 

which is a VAR model in essence, comprising of symmetric and asymmetric responses of stock 

returns to positive and negative oil price shocks by using monthly data from January 1973 to 

December 2009. Excess returns of all NYSE, AMEX, and NASDAQ stocks are used as proxies 

of US stock market and US composite refiners' acquisition cost as the proxy of crude oil market. 

Their in-sample evidence suggests that the increase of oil price helps to forecast aggregate US 

stock returns as well as industry-level returns one-year ahead.  

The studies using GARCH-type model to illustrate the connection between oil market and the 

US stock market include Hammoudeh et al. (2004), Elyasiani et al. (2011), Mollick and Assefa 

(2013), Conrad et al. (2014), Salisu and Oloko (2015). Hammoudeh et al. (2004) use two US 

markets of oil prices: the WTI spot and 1- to 4-month NYMEX futures prices and the proxies 

for the US Stocks are the S&P oil sector stock indices which include Oil Exploration and 

Production, Oil & Gas Refining & Marketing, Oil-Domestic Integrated, Oil-International 

Integrated, and the overall Oil Composite. They employ both univariate and multivariate 

ARCH/GARCH models with daily data for the period July 17, 1995 to October 10, 2001. They 

find that there are bi-directional interactions between the US oil stock returns and the spot 
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return and the futures return of crude oil. Elyasiani et al. (2011) employ daily data from 11 

December 1998 to 29 December 2006. The data they use are NYMEX crude oil futures and 

thirteen industry sectors market portfolio of NYSE, AMEX, and NASDAQ stocks. Using the 

ARCH and GARCH models, they find strong evidence to support the idea that oil price 

volatility contributes to a systematic risk at the industry level as nine of the thirteen sectors in 

question show significant relationships between oil-futures return distribution and industry 

excess return. These industries are affected by oil futures returns or oil futures return volatility, 

either or both. Mollick and Assefa (2013) employ the GARCH and MGARCH–DCC models 

using daily data from January 1999 to December 2011. They use S&P 500, Dow Jones, 

NASDAQ, and Russell 2000 indexes returns as proxies for US stock returns and WTI for oil 

price. They find that US stock returns are slightly and negatively affected by oil prices and by 

the exchange rate (USD/Euro) before the financial crisis. However, from mid- 2009 onwards, 

the stock returns are documented to be positively affected by oil prices and a weaker USD/Euro. 

Conrad et al. (2014) use a modified Dynamic Conditional Correlations–Mixed Data Sampling 

(DCC–MIDAS) specification proposed in Colacito et al. (2011) and further extended by Engle 

et al. (2013) to explore the relationship between the US stock market and crude oil market. 

They employ the daily returns of the CRSP value-weighted portfolio, which is based on all 

NYSE, AMEX and NASDAQ stocks and WTI oil data covering from January 1993 to 

November 2011. They find that variables that contain information on current and future 

economic activity are able to predictors of changes in the oil–US stock correlation. Salisu and 

Oloko (2015) use ARMA (1, 1)-BEKK-AGARCH (1, 1) model to model the relationship 

between crude oil market and US stock market. They use Daily data of Brent and WTI crude 

oil price and S&P 500 stock from 1 Feb. 2002 to 4 Apr. 2014. Their empirical evidence suggests 

a significant positive return spillover from US stock market to oil crude market and bi-

directional shock spillovers between the two markets. Both markets illustrate asymmetric 
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volatility effect and volatility spillover from oil market to stock market become more 

pronounced after a structural break which coincides with the time of global economic 

slowdown. 

New method is introduced into the literature on the linkage of oil market and stock market 

recently apart from the two mainstream methodologies mentioned above. Khalfaoui et al. (2015) 

introduce a new approach incorporating both multivariate GARCH models and wavelet 

analysis: wavelet-based MGARCH approach. By using daily oil price and daily stock market 

indices of G7 countries spanning from 2 June, 2003 to 7 February, 2012, they investigate the 

spill-over effects of volatility and shocks between oil prices and the G-7 stock markets. 

Equipped with a wavelet-based GARCH–BEKK approach, they find strong evidence of time-

varying volatility in all markets. Oil price and stock market prices are directly affected by their 

own news and volatilities and indirectly affected by the volatilities of other prices and wavelet 

scale. The results show also, that mean and volatility spillover effects were decomposed into 

many sub-spillovers on different time scales according to heterogeneous investors and market 

participants. Moreover, hedging ratios vary across scales. Recent papers introduce wavelet 

approaches to identify the relationships between stock markets and oil markets. Reboredo and 

River-Castro (2014) examine the relationship between oil and stock markets in Europe and the 

USA at the aggregate and sectoral levels using wavelet multi-resolution analysis. They find 

evidence of contagion and positive interdependence between these markets after 2008. Martín-

Barragán et al. (2015) investigate the impact of oil shocks and stock market crashes on 

correlations between stock and oil markets and they also find evidence of contagion, in 

particular during the 2008 and 2011 stock market falls which supports the results from 

Reboredo and River-Castro (2014). Madaleno and Pinho (2014) find the relationship between 

oil prices and sector stock returns is ambiguous and that that long run market dynamics are 

more uncertain.  
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Other studies investigating the crude oil market and non-US stock market include Park and 

Ratti (2008), Arouri et al. (2011, 2012) and Wang et al. (2013). 

Like the studies on the US, different methodologies such as vector autoregressive (VAR) model, 

vector error-correction model (VECM), univariate and multivariate GARCH-type models 

including the BEKK (Baba, Engle, Kraft and Kroner over parameterization), CCC (Constant 

Conditional Correlation) and DCC (Dynamic Conditional Correlation) are applied to non-US 

cases. Arouri et al. (2011) employ VAR (1)–GARCH(1,1) for stock markets in the Gulf 

Cooperation Council (GCC) countries and Arouri et al. (2012) employ the same model for the 

stock markets in Europe. Wang et al. (2013) use structural VAR model examine the relationship 

between oil prices and stock Oil price shocks and stock market activities between oil-importing 

and oil-exporting countries. 

In a nutshell, various empirical studies suggest that the choice of methodology, proxies of 

variables and country characters may affect the linkage between crude oil and stock market 

(Kilian and Park (2009), Balcilar and Ozdemir (2013), Fan and Jahan-Parvar (2012), Alsalman 

and Herrera (2013), Mollick and Assefa (2013), Conrad et al. (2014), Kang et al. (2014)) or 

daily data (Hammoudeh et al. (2004), Elyasiani et al. (2011), Salisu and Oloko (2015), 

Khalfaoui et al. (2015)). To the knowledge of the author, there is no empirical paper studying 

the linkage between crude oil and stock market with high frequency data or intraday data. This 

study fills the gap in the existing literature. 
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2. 2. Volatility forecast on financial assets. 

Since the true volatility is unobservable, daily squared returns are often used as a proxy measure 

of volatility. By using 5 min data as a new volatility measure, Andersen and Bollerslev (1998) 

demonstrate a dramatic improvement in the volatility forecasting performance of a daily 

GARCH model (foreign exchange). Since then, a great number of studies have focused on 

realized volatility forecasting and its properties. Andersen, Bollerslev, Diebold, and Labys 

(ABDL, 1999 and 2001) recommend forecasting the realised volatility by using the ARFIMA 

model and show that the realised volatility is a consistent estimator of the integrated volatility. 

ABDL (2001) show that if realised volatility is modelled directly by a parametric model rather 

than simply being used in the evaluation of other models’ forecasting behaviours, the realised 

volatility can improve forecasting when it comes to the ARFIMA model on foreign exchange 

rates. The findings above make contribution to the empirical basis of using the realised 

volatility in volatility forecasting directly.  

Kang et al. (2009) investigate the efficacy of volatility models for three crude oil markets — 

Brent, Dubai, and West Texas Intermediate (WTI) — with regard to its ability to forecast and 

identify volatility stylized facts, in particular volatility persistence or long memory.  The data 

they use are three crude oil spot prices (in US dollars per barrel) obtained from the Bloomberg 

databases. The datasets consist of daily closing prices over the period from January 6, 1992 to 

December 29, 2006, and the last one year's data are used to evaluate out-of-sample volatility 

forecasts. They assess persistence in the volatility of the three crude oil prices using conditional 

volatility models. The CGARCH and FIGARCH models are better equipped to capture 

persistence than are the GARCH and IGARCH models. The CGARCH and FIGARCH models 

also provide superior performance in out-of-sample volatility forecasts. They conclude that the 

CGARCH and FIGARCH models are useful for modelling and forecasting persistence in the 

volatility of crude oil prices. Wei et al. (2010) extend the work of Kang et al. (2009). They use 
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a number of linear and nonlinear GARCH models to capture the volatility features of two crude 

oil markets: Brent and WTI. They also carry out superior predictive ability test (SPA test) and 

other loss functions to evaluate the forecasting power of different models. They use daily price 

data (in US dollars per barrel) of Brent and WTI from 6/1/1992 to 31/12/2009. 

Mohammadi and Su (2010) examine the usefulness of several ARIMA-GARCH models for 

modeling and forecasting the conditional mean and volatility of weekly crude oil spot prices in 

eleven international markets over the 1/2/1997–10/3/2009 period with weekly data. In 

particular, they investigate the out-of-sample forecasting performance of four volatility models 

— GARCH, EGARCH and APARCH and FIGARCH over January 2009 to October 2009. 

Forecasting results are somewhat mixed, but in most cases, the APARCH model outperforms 

the others. Also, conditional standard deviation captures the volatility in oil returns better than 

the traditional conditional variance. Finally, shocks to conditional volatility dissipate at an 

exponential rate, which is consistent with the covariance-stationary GARCH models than the 

slow hyperbolic rate implied by the FIGARCH alternative. 
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3. Data Description 

The original data we obtain are 5 min price data of the crude oil futures and S&P 500 index. 

The NYMEX light, sweet crude oil futures contract data is provided by Tick Data and the 

intraday data of S&P 500 by Pi Trading. Crude oil futures is the world's most actively traded 

commodity, and the NYMEX light, sweet (low-sulphur) crude oil (WTI) futures contract is the 

world's most liquid crude oil futures, as well as the world's largest-volume futures contract 

trading on a physical commodity. S&P 500 index is one of the most commonly followed equity 

indices, and many consider it one of the best representations of the U.S. stock market, and a 

barometer for the U.S. economy. The time span in this study is from 8th Oct 2001 9:30 to 30 

Oct 2015 16:00, containing 3524 trading days. 

High frequency data contain more information on financial assets. Theoretically, the higher the 

frequency of the data, the more accurate the volatility estimation will be. While on the other 

hand, microstructure frictions, such as price discreteness and measurement errors may affect 

the effectiveness of high frequency data. We follow Andersen and Bollerslev (1998) who 

demonstrate a dramatic improvement in the volatility forecasting performance of a daily 

GARCH model. Bandi and Russell also (2005) propose a rule for the calculation of the optimal 

sampling frequency for the realised volatility. They suggest that for the US stock market, the 

optimal frequencies vary between 0.4 and 13.8 min. We employ 5 minute data in this paper 

which lies in the optimal frequency interval. 

NYMEX light, sweet (low-sulphur) crude oil futures has open outcry trading from 9:00 to 

14:30 EST on weekdays. Investors can also trade oil futures via NYMEX electronic trading 

platform from 17:00 on Sunday to 17:15 the next day and from 18:00 to 17:15 (New York Time) 

on weekdays. The trading volumes on weekends are rather small therefore we remove weekend 

returns from the sample following the common practice in the literature (Chortareas et al. 2011; 

Celik & Ergin 2014). I obtain 264878 observations in total after the data is cleared. The daily 
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data is used as a comparison.  

The intraday return series 𝑟𝑡,𝑚 is given as follow: 

𝑟𝑡,𝑚 = ln(𝑃𝑡,𝑚) − ln(𝑃𝑡,𝑚−1)                                                                                                                (1) 

Where 𝑃𝑡,𝑚 is the close-mid price at the 𝑚th time stamp on day t. Figure 1 and 2 show the 

intraday prices of crude oil futures and S&P 500 index respectively.  

The daily return 𝑟𝑡 is given as follows: 

𝑟𝑡 = ln(𝑃𝑡) − ln(𝑃𝑡−1)                                                                                                                             (2) 

Figure 1 and 2 illustrate the prices of crude oil futures and S&P 500 index respectively. Figure 

3 and 4 indicate the return series of intraday crude oil and stock market respectively. Figure 5 

and 6 show the return series of daily crude oil and stock market respectively.  
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Figure 1. Time series plot of crude oil futures 

 

 

 

Figure 2. Time series plot of S&P 500 index 
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Figure 3. Graph of intraday returns of crude oil 

 

 

Figure 4. Graph of intraday returns of stock market 
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Figure 5. Graph of daily returns of crude oil 

 

 

Figure 6. Graph of daily returns of stock market 
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Table 1. Descriptive statistics of intraday return series 

 Crude Oil S&P 500 

Mean 0.00000267 0.00000168 

Median 0.00000000 0.00000759 

S.D 0.002586 0.00129 

Skewness -1.070631 0.007958 

Kurtosis 213.85 119.1156 

Jarque- Bera 50700000 15400000 

Jarque- Bera  Probability 0.0000 0.0000 

Observations 273591 273591 

ADF -305.476 -273.95 

 

 

Table 2. Unconditional correlation for intraday returns 

correlation Crude Oil S&P 500 

Crude Oil 1  

S&P 500 -0.000276 

(-0.144296) 

1 

Notes: t ratio is reported in the round brackets. 
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Table 3. Descriptive statistics of daily returns 

 Crude Oil S&P 500 

Mean 0.0002 0.000181 

Median 0.0000 0.000348 

S.D 0.0236 0.01228 

Skewness -0.0975 -0.221472 

Kurtosis 7.4910 12.7275 

Jarque- Bera 3089.97 14499.59 

Jarque- Bera  Probability 0.0000 0.0000 

Observations 3523 3523 

ADF -33.087 -31.194 

 

Table 4. Unconditional correlation for daily returns 

correlation Crude Oil S&P 500 

Crude Oil 1  

S&P 500 0.233198 

(14.52387) 

1 

Notes: t ratio is reported in the round brackets. 
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Figure 7. The autocorrelation function of the 5 minute returns of crude oil (15 lags) 
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Figure 8. The autocorrelation function of absolute 5 min returns for crude oil futures for 300 

lags. 
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Figure 9. The autocorrelation function of the 5 minute returns of S&P 500 index (20 lags) 
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Figure 10. The autocorrelation function of absolute 5 min returns for S&P 500 futures for 300 

lags. 

 

From Table 1 we can summarise that intraday returns document extremely high kurtosis. The 

skewness of crude oil return is slightly negative while the stock market are positively skewed. 

The Jarque-Bera tests statistic on the two markets strongly reject the normal distribution 

hypothesis. The descriptive statistics of the daily data are different from that of intraday data. 

The kurtosis values of daily data from the two markets are comparatively lower than those from 

the intraday data of the two markets respectively and the two markets are negatively skewed 

under daily observation. The Jarque-Bera tests statistic on the two markets strongly reject the 

normal distribution hypothesis under daily observation as well. The distinct of unconditional 

correlations between 5 min observations (Table 2) and daily observations (Table 4) is also large. 

A small negative unconditional correlation (-0.000276) is observed under 5 min observation 

while a positive unconditional correlation (0.233198) is documented under daily observation. 
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The extremely large negative values of ADF test results indicate that all the return series do not 

reject the null hypothesis that there is no unit root in the series. 

Figure 3 to 6 show that the movements of the 5 min returns and the daily returns are not 

consistent. High-frequency data carry more information thus several jumps in the daily returns 

are smoothed out in the 5 min returns.  

Dacorogna et al. (2001) find that a well-documented stylised fact of high-frequency returns 

which is the negative first order autocorrelation in the return. Figure 7 and 9 indicate the 

autocorrelation function of the 5 min return series of crude oil and S&P 500 index respectively.  

The first order autocorrelation of the 5 min returns of crude oil and S&P 500 index are negative, 

which is consistent with the literature (Goodhart, 1989; Goodhart and Figliuoli, 1992; Goodhart 

et al. 1995). Literature tells that a large negative autocorrelation is followed by rather small 

autocorrelations in the subsequent lags which is caused by the bounce between the bid and ask 

prices. However, for the crude oil return, the first order autocorrelation is not large enough to 

dominate the subsequent lags. The coefficients of autocorrelations in the subsequent lags are 

close to zero and the P-values of the Q-stat are almost zero for the following 12 lags thus the 

null hypothesis of no autocorrelation for 12 lags cannot be rejected. For the stock market return, 

the first order autocorrelation is large enough to dominate the subsequent lags.  

Periodicity is another stylised fact of intraday volatility series. Figure 8 and 10 show the 

autocorrelation function of absolute returns for crude oil futures and stock market respectively.   
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The U-shaped plot reveals the periodicity in a trading day. One could clearly read that crude 

oil has more U-turns than stock market for the same time lag number. There is no sign of 

disappearance of autocorrelation in the absolute returns in Figure 8 and 10.  

In brief, the return series of the 5 min crude oil and stock market in my study share the stylised 

facts of high frequency financial returns well documented in the literature. It has a zero mean 

while it is fat tailed and marginally skewed. The return series of two assets exhibit negative 

first order autocorrelation and it reveals that periodicity pattern exists in intraday volatility of 

two assets. 
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4.  Methodology 

In this section we discuss the econometric methodology we will employ in our research work. 

First approach is DCC GARCH model. The second approach we use is wavelet analysis. In 

wavelet analysis we will rely on wavelet power spectrum, cross-wavelet analysis, wavelet 

coherency and phase differences. The wavelet power spectrum demonstrates the volatilities 

and spikes in the data series; cross-wavelet analysis can be interpreted as co-variance of time 

series analysis; wavelet coherency can be interpreted as correlation in the time series analysis; 

and phase difference provide the evidence of lead-lag relationship. Our both approaches has 

similarity in the sense that they show time-varying correlation over period of time. DCC 

GARCH approach shows time-varying correlation over period of time in two dimensions while 

cross-wavelet approach shows the same in three dimensions. The difference of the two 

approaches lies that DCC GARCH approach provides a single correlation coefficient for a point 

of time while wavelet coherency approach computes several correlation coefficients for a point 

of time by varying frequencies. 

4.1. Modelling dynamic conditional correlation 

The volatilities of intraday returns have a strong periodicity in 1-day interval, which is 

demonstrated in the previous section. Martens et al. (2002) suggest that intraday periodic 

patterns do not fit the traditional time series models, (e.g., GARCH-type models) directly 

because the GARCH-type model are easily distorted by the pattern. Thus, we use the de-

seasonalised filtered returns to estimate GARCH-type models instead of the original returns 

directly. According to Taylor and Xu (1997), we have 

�̃�𝑡,𝑛 =
𝑟𝑡,𝑛

𝑆𝑡,𝑛
  (𝑛 = 1,2, … , 𝑁)                                                                                                                (3) 

where  𝑟𝑡,𝑛 is the 𝑛th intraday return on day t and 𝑆𝑡,𝑛 is the corresponding seasonality term, 

for N intraday periods. 𝑆𝑡,𝑛  is equal to the averaging the squared returns for each intraday 

period: 
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𝑆𝑡,𝑛
2 =

1

𝑇
∑ 𝑟𝑡,𝑛

2𝑇
𝑡=1    (𝑛 = 1,2, … , 𝑁)                                                                                                   (4) 

where T is the number of days in the sample. It’s an effective method to smooth the seasonality 

feature so we use the de-seasonalised returns in the following part of the paper.  

The intraday return series is nearly symmetric and has a high kurtosis thus I assume the returns 

series follows the symmetric student T distribution while for the symmetric student T 

distribution, 

𝐸|𝑧𝑡,𝑛−1| = 2
Γ(

1+𝑣

2
)√𝑣−2

√𝜋Γ(𝑣/2)
                                                                                                              (5) 

where 𝑣 indicates the degree of freedom of the student T distribution and Γ(. ) is the Gama 

function. 

Most previous works assessing cross-market time-varying correlation employ the multivariate 

DCC model developed by Engle (2002). This model is suitable to assess co-movements 

between the markets we study because it allows us to infer the cross-market conditional 

correlations straightforwardly. 

Assume that stock market returns from the 𝑘 series are multivariate student T distributed with 

zero mean and conditional variance-covariance matrix 𝐻𝑡 , our multivariate DCC-GARCH 

model for intraday data can be presented as follows: 

{
�̃�𝑡,𝑛 = 𝜇𝑡 + 𝜀𝑡, 𝜀𝑡|𝐼𝑡−1 ∼ 𝑇𝑣(0, 𝐻𝑡) 

𝐻𝑡 = 𝐷𝑡𝑅𝑡𝐷𝑡
                                                                                                          (6) 

The DCC-GARCH model for daily data is expressed as: 

{
𝑟𝑡 = 𝜇𝑡 + 𝜀𝑡, 𝜀𝑡|𝐼𝑡−1 ∼ 𝑇𝑣(0, 𝐻𝑡) 

𝐻𝑡 = 𝐷𝑡𝑅𝑡𝐷𝑡
                                                                                                               (7) 

where 𝑟𝑡  and �̃�𝑡,𝑛  are the (𝑘 × 1)  vector of the returns; 𝜀𝑡  is a (𝑘 × 1)  vector of zero mean 

return innovations conditional on the information available at time 𝑡 − 1; 𝜇𝑖,𝑡 = 𝛽𝑖0 + 𝛽𝑖1𝑟𝑖,𝑡−1 

for market 𝑖 , 𝐷𝑡  is a (𝑘 × 𝑘)  diagonal matrix with elements on its main diagonal being the 

conditional standard deviations of the returns on each market in the sample and 𝑅𝑡is the (𝑘 ×
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𝑘) conditional correlation matrix. 𝐷𝑡 and 𝑅𝑡 are defined as follows: 

𝐷𝑡 = 𝑑𝑖𝑎𝑔(ℎ11,𝑡

1
2⁄

, … , ℎ𝑘𝑘,𝑡

1
2⁄

)                                                                                                                           (8) 

Where ℎ𝑖𝑖,𝑡 is chosen to be a univariate GARCH (1, 1) process; 

𝑅𝑡 = (𝑑𝑖𝑎𝑔𝑄𝑡)−1/2𝑄𝑡(𝑑𝑖𝑎𝑔𝑄𝑡)−1/2                                                                                                           (9) 

Where 𝑄𝑡 = (1 − 𝛼 − 𝛽)�̅� + 𝛼𝑢𝑡−1𝑢𝑡−1
′ + 𝛽𝑄𝑡−1  indicates a (𝑘 × 𝑘)  symmetric positive 

definite matrix with 𝑢𝑖,𝑡 = 𝜀𝑖,𝑡/√ℎ𝑖𝑖,𝑡 , �̅�  is the (𝑘 × 𝑘)  unconditional variance matrix of 𝑢𝑡 

and 𝛼 and 𝛽 are nonnegative scalar parameters satisfying 𝛼 + 𝛽 < 1. 

The equation of the conditional correlation coefficient 𝜌𝑖𝑗 between two markets 𝑖 and 𝑗 is given 

as follows: 

𝜌𝑖𝑗 =
(1−𝛼−𝛽)�̅�𝑖𝑗+𝛼𝑢𝑖,𝑡−1𝑢𝑗,𝑡−1+𝛽𝑞𝑖𝑗,𝑡−1

√(1−𝛼−𝛽)�̅�𝑖𝑗+𝛼𝑢𝑖,𝑡−1
2 +𝛽𝑞𝑖𝑖,𝑡−1√(1−𝛼−𝛽)�̅�𝑖𝑗+𝛼𝑢𝑗,𝑡−1

2 +𝛽𝑞𝑗𝑗,𝑡−1

                                                          (10) 

𝑞𝑖𝑗  indicates the element located in the 𝑖 th row and 𝑗 th column of the symmetric positive 

definite matrix 𝑄𝑡. The two-stage procedure is employed to estimate the regression output of 

the DCC-GARCH model. Univariate GARCH (1, 1) model is estimated for each market in the 

first stage and the standardised residuals obtained from the first stage are used to estimate the 

conditional correlations. 

The log-likelihood function is expressed as follows: 

𝐿 = −
1

2
∑ [𝑛𝑙𝑜𝑔(2𝜋) + 2𝑙𝑜𝑔|𝐷𝑡| + log(𝑅𝑡) + 𝑢𝑡

′ 𝑅𝑡
−1𝑢𝑡]𝑇

𝑡=1                                                            (11) 

4.2 Wavelet method  

A wavelet is a function with zero mean and that is localised in both frequency and time. A 

wavelet can be characterised by how localised it is in time Δ𝑡  and frequency Δ𝜔  or the 

bandwidth). One particular wavelet, the Morlet, is defined as follows: 

𝜓0(𝜂) = 𝜋−1 4⁄ 𝑒𝑖𝜔0𝜂𝑒−𝜂2 2⁄                                                                                                                          (12) 

Where 𝜔0  and 𝜂  are dimensionless frequency and time respectively. To maintain a good 
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balance e between time and frequency localisation, the frequency parameter 𝜔0 is set to be 6 

(see Foufoula-Georgiou, 1995; Grinsted, 2004; Rua and Nunes, 2009). 

The wavelet function is applied to be a bandpass filter to the time series. The continuous 

wavelet transform of a time series 𝑥𝑛, (𝑛 = 1,2, … , 𝑁) with uniform time steps 𝛿𝑡 is defined as 

the convolution of 𝑥𝑛  with the scaled and normalized wavelet (see Grinsted, 2004). The 

equation is written as follows: 

𝑊𝑛
𝑋(𝑠) = √

𝛿𝑡

𝑠
∑ 𝑥𝑛′𝜓0[(𝑛′ − 𝑛)

𝛿𝑡

𝑠
]𝑁

𝑛′=1                                                                                                       (13) 

The term |𝑊𝑛
𝑋(𝑠)|2  is defined as wavelet power. The complex argument of 𝑊𝑛

𝑋(𝑠)  is 

interpreted as the local phase. 

The wavelet coherency measure (WTC) is used to reveal how coherent the cross wavelet 

transform is in time frequency space and measure the extent of synchronisation of a pair of 

time series. Following Torrence and Webster (1998) we define the wavelet coherence of two 

time series as 

 𝑅𝑛
2(𝑠) =

|𝑆(𝑠−1𝑊𝑛
𝑋𝑌(𝑠))|

2

𝑆(𝑠−1|𝑊𝑛
𝑋(𝑠)|

2
)∙𝑆(𝑠−1|𝑊𝑛

𝑌(𝑠)|
2

)
                                                                                                            (14) 

Where S is a smoothing operator written as: 

𝑆(𝑊) = 𝑆𝑠𝑐𝑎𝑙𝑒(𝑆𝑡𝑖𝑚𝑒(𝑊𝑠(𝑠)))                                                                                                                       (15) 

where 𝑆𝑠𝑐𝑎𝑙𝑒 denotes smoothing along the wavelet scale axis and 𝑆𝑡𝑖𝑚𝑒 smoothing in time. It is 

natural to design the smoothing operator so that it has a similar footprint as the wavelet used. 

For the Morlet wavelet a suitable smoothing operator is given by Torrence and Webster (1998) 

𝑆𝑡𝑖𝑚𝑒(𝑊)|𝑠 = (𝑊𝑠(𝑠) ∙ 𝑐1

−𝑡2

2𝑠2
) |𝑠,                                                                                                                 (16) 

𝑆𝑡𝑖𝑚𝑒(𝑊)|𝑠 = (𝑊𝑠(𝑠) ∙ 𝑐2Π(0.6𝑠))|𝑠                                                                                                          (17) 

where 𝑐1 and 𝑐2 are normalization constants and Π is the rectangle function. The factor of 0.6 

is the empirically determined scale decorrelation length for the Morlet wavelet (Torrence and 
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Compo, 1998). The numerator is the absolute value squared of the smoothed cross-wavelet 

specturum and denominator represents the smoothed wavelet power spectra (Torrence and 

Webster 1999; Rua and Nunes 2009). The definition of 𝑅𝑛
2(𝑠)  closely resembles that of a 

traditional correlation coefficient, and it is useful to think of the wavelet coherency as a 

localised correlation coefficient in time frequency space. The value of 𝑅𝑛
2(𝑠) gives a quantity 

between 0 and unity, and the higher the value indicates higher co-movement between two 

markets. The robustness of this approach is that it enables us to identify area of co-movement 

between two series in the time frequency space and significance of the wavelet coherence 

measured by the Monte Carlo simulation methods (Torrence and Compo (1998). In this paper, 

we will employ the Wavelet Coherency measure, instead of the Wavelet Cross Spectrum 

employed by Aguiar-Conraria et al. (2008). 

4.3. Forecast 

We employ 15 min data to detect the forecasting performance of the two assets. The whole 

sample data observations are from 8 Oct 2001 9:30 to 30 Oct 2015 16:00 and we divide the 

whole sample into two subgroups: the in-sample data for volatility modelling covering from 8 

Oct 2001, to 4 Jun 2015, and the out-of-sample data for model evaluation is from 5 Jun 2015, 

to 30 Oct 2015, covering 100 trading days and containing 3200 observations (There are 32 

observations within a day for 15 min data). We use a rolling window method and produce one-

step ahead daily volatility forecasts for daily models and 32-step-ahead intraday volatility 

forecasts for intraday models. This procedure is repeated 100 times in order to produce 100 

daily volatility forecasts for evaluation out-of-sample. The rolling window estimation requires 

adding one new observation and dropping the most distant one therefore the sample size 

employed in estimating the models remains fixed and the forecasts do not overlap. 

Considering the true volatility is unobservable, we follow Andersen and Bollerslev (1998) and 

use a realised volatility series constructed from 5 min returns which we use in the model 
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estimation part as a proxy for the true volatility, i.e., 

𝜎𝑟𝑣,𝑚
2 = ∑ 𝑟𝑡,𝑚

2𝑀
𝑚=1                                                                                                                                           (18) 

where 𝑟𝑡,𝑛
2  are 5 min interval squared returns and 𝜎𝑟𝑣,𝑡

2  is the realised variance on day t.  

Actual volatility (variance) is assessed using the squared returns and denoted as 𝜎𝑡
2 . The 

volatility forecast obtained by using a GARCH-class model is indicated by �̂�𝑡
2 . Various 

forecasting criteria or loss functions can be considered to assess the predictive accuracy of a 

volatility model. However it is not obvious which loss function is more appropriate for the 

evaluation of volatility models. Hence, rather than making a single choice we use the following 

9 different loss functions as forecasting criteria: 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝜎𝑡

2 − �̂�𝑡
2)2𝑛

𝑡=1                                                                                                                (19) 

MedSE = 𝑀𝑒𝑑𝑖𝑎𝑛(𝜎𝑡
2 − �̂�𝑡

2)2                                                                                                         (20) 

𝑀𝐸 =
1

𝑛
∑ (𝜎𝑡

2 − �̂�𝑡
2)𝑛

𝑡=1                                                                                                                   (21) 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝜎𝑡

2 − �̂�𝑡
2|𝑛

𝑡=1                                                                                                             (22) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝜎𝑡

2 − �̂�𝑡
2)2𝑛

𝑡=1                                                                                                           (23) 

where n is the number of forecasting data. The 5 loss functions are Mean Squared Error (MSE), 

Median Squared Error (MedSE), Mean Error (ME), Mean Absolute Error (MAE), Root Mean 

Squared Error (RMSE. Additional discussion of these criteria can be found in Brooks, Burke, 

and Persand (1997) for more details about these measures. 

The actual volatility 𝜎𝑡
2  is set to be realised volatility  𝑟𝑡,𝑛

2   from 5 min data and volatility 

forecast obtained �̂�𝑡
2 for a single day is the realised volatility obtained from the 15 min data. 

Volatility forecast from daily data is conditional volatility obtained from daily DCC-GARCH 

model. We also compare the mean forecast. For the mean forecast performance of 15 min data, 

the actual mean series are the 15 min returns we employ in the paper and the forecasted values 

are obtained from the rolling window estimation procedure. We also compare the real daily 
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returns and the forecasted values from the one-day ahead rolling-window procedure.  
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5. Empirical Finds and Analysis 

5.1. The Empirical Findings of Wavelet analysis 

We present results of wavelet coherency and phase-relationship between crude oil market and 

the US stock market in this part. To report the results of the dynamics of cross-market return 

co-movement obtained by applying the cross-wavelet coherency approach we refer to multi-

colour graphs. The vertical axis represents the frequency and for intraday data, the unit is 5 

minutes. The time is depicted in horizontal axis (5 min as well for intraday return). For the 

daily return output, the vertical and horizontal axes are still indicating frequency and time 

respectively but the unit is changed to 1 day. The following figures present the estimated 

wavelet coherency and phase relationship between crude oil and the US stock market. The 

significance is obtained via Monte Carlo simulations. Contours denote wavelet-squared 

coherency, the thick black contour is the 5% significance level and outside of the thin line is 

the boundary affected zone. 
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Figure 11. Wavelet coherency of crude oil market and the US stock market by intraday data 
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Figure 12. Wavelet coherency of crude oil market and the US stock market by daily data 
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Figure 11. presents the Cross-wavelet coherency of co-movement between the crude oil market 

and S&P 500 stock index via intraday data and Figure 12. Documents the Cross-wavelet 

coherency of co-movement between the crude oil market and S&P 500 stock index via daily 

data. The thick blue contour designates the 95% confidence level estimated from Monte Carlo 

simulations using phase randomised surrogate series. The (downward pointing) cone of 

influence indicates the region affected by the edge effect due to finite-length time series (See 

Torrence and Compo “A Practical Guide to Wavelet Analysis”). The colour code for power 

ranges from blue (low correlation in volatility) to yellow (high correlation in volatility). The 

phase difference between the two series is indicated by arrows. Arrows pointing to the right 

mean that the returns of the two markets are in phase. Arrows pointing to the right –down 

indicate that crude oil is leading the co-movement towards the stock market and the arrows 

pointing to the right –up indicate that the stock market is leading the co-movement. Arrows 

pointing to the left illustrate that the two variables are out of phase. Arrows pointing to the left-

up indicate that the crude oil market is leading co-movement towards the stock market and the 

arrows pointing to the left- down indicate that the co-movement of the stock market is leading. 

The in-phase situation suggests that the two variables are having cyclical effect on each other 

and an out-of-phase situation shows that variable having anti-cyclical effect on each other. The 

following table provides a concise reading of arrows mentioned above.   
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Table 5. The reading of arrows in cross-wavelet coherency figures 

Arrow direction Interpretation 

Arrow pointing to the right In-phase (cyclical effect) in 

two markets 

Arrows pointing to the right 

–down 

The crude oil is leading the 

S&P 500 stock 

arrow pointing to the right –

up 

The S&P 500 is leading the 

crude oil  

Arrow pointing to the left Out-of-phase (anti-cyclical 

effect) in two markets 

Arrow pointing to the left-up The crude oil is leading the 

S&P 500 stock 

arrow pointing to the left- 

down 

The S&P 500 is leading the 

crude oil 

 

For intraday data, we could read that the wavelet coherency is only large at highest period (a 

yellow tape-shape at the bottom of Figure 11.) For the significant part within the cone, all the 

arrows are pointing down-right, indicating that the crude oil is leading the S&P 500 stock. 

However, since only a small tape-shape exists, the result implies that the wavelet coherency 

may not fit intraday data. 

Information from Figure 12 on the phases shows us that the relationship between the two 

markets is not homogeneous across scales/periods because it clearly documents that arrows are 

pointing left and right, up and down. Moreover, the cross wavelet coherency is high at low 

frequencies/large periods and coherence is not statistically significant at the highest 

scale/smallest period. The multi-colour settings of cross wavelet coherency provide us a 



155 
 

method to detect areas of varying co-movement among return series over time across 

frequencies. Strong co-movement in the time-frequency space suggests the fail of 

diversification. 

 

5.2. The Empirical Findings of DCC-GARCH model 

Table 6. illustrate the regression results for 5 min data on the full-sample data. The diagnostic 

tests on the standardised residuals of DCC-GARCH models are displayed in Table 7.   
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Table 6. The DCC-GARCH regression estimation results on intraday data 

 Crude oil S&P 500 

𝛽0 0.0000 

(0.1511) 

0.0000 

(1.698) 

𝛽1 -0.01596*** 

(-5.718) 

0.01214*** 

(3.031) 

𝜔0 2.06*10^(-10) 

(1.347) 

8.519*10^(-9)*** 

(3.151) 

𝜔1 0.00126*** 

(16.97) 

0.11544*** 

(7.885) 

𝜔2 0.99873*** 

(8790) 

0.889122*** 

(67.38) 

𝛼 0.001269 

(0.9817) 

𝛽 0.859617*** 

(13.04) 

𝜌 0.003258 

(1.31) 

D.o.f 3.625*** 

(349.9) 

Notes: P values are given in brackets. Statistical significance at 10%, 5% and 1% are 

highlighted by *, ** and *** respectively. 
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Table 7. Tests on the standardised residuals (intraday) 

 Skewness Kurtosis Jarque-Bera Q(50) 𝑄2(50) 

Crude Oil -0.99598 

(28.763) 

43.589 

(586.20 ) 

34411 

(1702) 

46.5694    

[0.6118] 

7.08599    

[0.9999] 

S&P 500 -0.31274 

(9.0316 ) 

12.224 

(176.55) 

31219 

(2796) 

31.9065    

[0.9783] 

25.9035 

[0.9981] 

AIC -20.523520 

H(50) 191.684    

[0.6510783] 

𝐻2(50) 183.630    

[0.7601109] 

Li(50) 191.729    

[0.6502248] 

𝐿𝑖2(50) 183.738    

[0.7583382] 

Notes: T ratio are given in round brackets. Ljung-Box test for autocorrelation of order of 50 on 

standardised residuals and squared standardised residuals are reported as 𝑄 (50) and 𝑄2 (50) 

respectively. Akaike Information Criteria is reported as AIC. Hosking's multivariate 

Portmanteau statistics on standardised residuals and squared standardised residuals with the 

order of 50 are reported as 𝐻 (50) and 𝐻2 (50) respectively. Li and McLeod's multivariate 

Portmanteau statistics on standardised residuals and squared standardised residuals with the 

order of 50 are reported as 𝐿𝑖(50) and 𝐿𝑖(50) respectively. P values of the corresponding tests 

are documented in square brackets.   
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Table 6. documents the parameter estimation of DCC-GARCH model on intraday data. The 

values of the coefficients prior to the lagged return terms in the mean equations are small but 

the coefficients are significant. All the coefficients in the variance equations but the constant 

term for crude oil are significant. The coefficients 𝜔1 representing the ARCH effect in the two 

equations respectively are negligible while coefficients 𝜔2  representing GARCH effect are 

quite large. The summation of ARCH and GARCH coefficients  𝛼 and 𝛽 is less than 1 for the 

variance and covariance equations, meeting the stationary conditions for the MGARCH model. 

The average time-varying conditional correlation 𝜌 is close to zero and insignificant while the 

degree of freedom on the T distribution in the regression is significant. 

Table 7. contains the results of tests on the standardised residuals from DCC-GARCH model 

on intraday data. The skewness of the standardised residuals from the model are slightly 

negative and the kurtosis of the standardised residuals are way less than that of the return series 

of the two financial assets. The Jarque-Bera test result on the standardised residuals indicates 

that the unconditional distribution of the standardised residuals do not pass the test. Lung-Box 

statistics are calculated to test the autocorrelation issue on the standardised residuals and 

squared standardised residuals with the lag of 50. The high values of probability in the 

parenthesis do not reject the no-autocorrealtion hypothesis. The robust tests on the standardised 

residuals suggest that the DCC-GARCH model specification in the paper is able to describe 

the dynamics of the conditional covariance matrix.   
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Table 8. The regression results on daily data 

 Crude oil S&P 500 

𝛽0 0.0005 

(1.487) 

0.0005*** 

(4.076) 

𝛽1 -0.0496*** 

(-2.664) 

-0.0605*** 

(-3.649) 

𝜔0 3.287*10^(-6) 

(2.064) 

1.7007*10^(-6)*** 

(3.706)  

𝜔1 0.0528*** 

(4.359) 

0.089199*** 

(7.620) 

𝜔2 0.9423*** 

(68.96) 

0.895797*** 

(70.55) 

𝛼 0.025019*** 

 (2.869) 

𝛽 0.970737*** 

(86.61) 

𝜌 0.215843*** 

(2.239) 

D.o.f 7.04*** 

(13.82) 

Notes: P values are given in brackets. Statistical significance at 10%, 5% and 1% are 

highlighted by *, ** and *** respectively. 
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Table 9. Robust tests on the standardised residuals 

 Skewness Kurtosis Jarque-Bera Q(50) 𝑄2(50) 

Crude Oil -0.14623 

(3.6179) 

4.8424 

(22.798) 

532.12 

(2453) 

42.4854 

[0.7658350] 

70.8812 

[0.0276024] 

S&P 500 -0.36899 

(9.1295)   

4.2991 

(16.076) 

341.36 

(5478) 

64.7970 

[0.0778162] 

42.5710 

[0.7628986] 

AIC -11.489503   

H(50) 215.983    

[0.2084192] 

𝐻2(50) 227.995 

[0.0707293] 

Li(50) 215.943    

[0.2089626] 

𝐿𝑖2(50) 228.042 

[0.0704391] 

Notes: T ratio are given in round brackets. Ljung-Box test for autocorrelation of order of 50 on 

standardised residuals and squared standardised residuals are reported as 𝑄 (50) and 𝑄2 (50) 

respectively. Akaike Information Criteria is reported as AIC. Hosking's multivariate 

Portmanteau statistics on standardised residuals and squared standardised residuals with the 

order of 50 are reported as 𝐻 (50) and 𝐻2 (50) respectively. Li and McLeod's multivariate 

Portmanteau statistics on standardised residuals and squared standardised residuals with the 

order of 50 are reported as 𝐿𝑖(50) and 𝐿𝑖(50) respectively. P values of the corresponding tests 

are documented in square brackets.  
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Table 8. documents the parameter estimation of DCC-GARCH model on daily data. Similar to 

the results on intraday data, the values of the coefficients prior to the lagged return terms in the 

mean equations are small but the coefficients are significant. All the coefficients in the variance 

equations but the constant term for crude oil are significant. The coefficients 𝜔1 representing 

the ARCH effect in the two equations respectively are negligible while coefficients 𝜔2 

representing GARCH effect are quite large. The summation of ARCH and GARCH coefficients  

𝛼  and 𝛽  is less than 1 for the variance and covariance equations, meeting the stationary 

conditions for the MGARCH model. What is contrary to the regression on the intraday data is 

the conditional correlation. The average time-varying conditional correlation for daily data is 

0.22 and significant while that for intraday data is 0.003 and insignificant. The existing 

literature does not have a clear explanation for the correlation difference between the 

performance of DCC-GARCH model on intraday data and daily data.  

Table 9. contains the results of tests on the standardised residuals from DCC-GARCH model 

on daily data. The skewness of the standardised residuals from the model are slightly negative 

and the kurtosis of the standardised residuals are less than that of the return series of the two 

financial assets. The Jarque-Bera test result on the standardised residuals indicates that the 

unconditional distribution of the standardised residuals do not pass the test. Lung-Box statistics 

are calculated to test the autocorrelation issue on the standardised residuals and squared 

standardised residuals with the lag of 50. The high values of probability in the parenthesis do 

not reject the no-autocorrelation hypothesis. The robust tests on the standardised residuals 

suggest that the DCC-GARCH model specification in the paper is able to describe the dynamics 

of the conditional covariance matrix.  
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Figure 13. Dynamic conditional correlations of the two series via intraday returns 

 

Notes: This figure plots the dynamic conditional correlation between crude oil market and stock 

market. The horizontal axis indicates the observation number. 
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Figure 14. Dynamic conditional correlations of the two series via daily returns 

 

Notes: This figure plots the dynamic conditional correlation between crude oil market and stock 

market. The horizontal axis indicates the year span.   
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Figure 15.  Dynamic conditional volatility of intraday crude oil and stock market 

 

Notes: This figure plots the volatilities of crude oil market and stock market respectively. The 

horizontal axis indicates the observation number.   
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Figure 16.  Dynamic conditional volatility of daily crude oil and stock market 

 

Notes: This figure plots the volatilities of crude oil market and stock market respectively. The 

horizontal axis indicates the year span.   
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Figure 13 and 14 illustrate the visual information on dynamic conditional correlations and 

dynamic conditional volatilities of crude oil market and stock market. From the figures one 

could read the difference of correlation between intraday data and daily data which is similar 

to the table output in Table 6 and 8. The dynamic conditional correlation for the intraday data 

is near zero and the peak value is less than 0.006 and the largest negative value is larger than -

0.004. For intraday data, the dynamic correlation does not move dramatically. On the contrary, 

the dynamic conditional correlation obtained from daily data is more volatile than that obtained 

from intraday data. The two markets indicated by the daily data co-move in the same direction 

for the most of the time while the two markets move in a different direction in the year 2003, 

2005 and 2008. The correlation for the two markets are negative for a short time in the year 

2011 and 2014 respectively. The findings here are similar to the findings obtained by using 

wavelet coherency method. After employing the wavelet coherency method on intraday data, 

we are able to read that the wavelet coherency is not large or significant for short periods and 

it is only significant and large for some large periods. The overall performance of wavelet 

coherency method on intraday data is not significant and the values from wavelet coherency 

method are small which becomes the mirror image of correlation analysis. The daily data 

performances for correlation analysis and wavelet coherency are consistent as well.  The 

correlation obtained from DCC-GARCH model is significant and the average value of the time-

varying correlation cannot be ignored. The wavelet coherency result on daily data indicates 

that the coherency is large and significant for large period from July 2007 to 2012. The only 

difference is that in the wavelet coherency analysis, all the arrows are pointing to the right 

(right-up and right-down) in the large contour close to the cone at the bottom which suggests 

that the two financial assets move “in phase”, i.e. in the same direction. But we are able to read 

from the dynamic correlation analysis from the DCC-GARCH model that the correlation is 

negative for the two financial assets in the year of 2008 and in the first quarter of year 2011 
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dramatically. It is due to the fact that correlation is a 2-dimension measurement measuring how 

strong two variables are connected in the time domain while the wavelet coherency analysis is 

a 3-dimension measurement measuring the relationship of two variables not only in time 

domain but frequency domain. In the figure depicting the wavelet coherency relationship 

between stock market and crude oil market in daily data frequency, at the top of the figure there 

are arrows pointing left at short periods while at the same time there exist arrows pointing right 

at the bottom for long periods in the same figure. This is the advantage of using wavelet 

coherency analysis because it distinguish the long period feature and short period feature of the 

connections of two variables.  

Figure 15 and Figure 16 depict the dynamic conditional volatilities of the two financial assets 

under two different time frequencies. Figure 15 documents the volatilities of crude oil and stock 

market under 5-min data and Figure 16 documents those of crude oil and stock market under 

daily data. By reading the two figures we are able to find that the volatility trends of crude oil 

are similar but the peaks do not occur at the same time. The volatility peaks occurring in the 

crude oil intraday data prior to the peaks in the crude oil daily data from 2002 to 2013. One 

example is that the largest volatility peak of crude oil intraday data occurs at 14 Jun 2008 while 

the extreme volatility peak of crude oil daily data occurs at 4 Jan 2009. We are able to conclude 

a rule of thumb that from 2002 to 2013, the volatility peaks of crude oil would be documented 

in intraday data 6-8 months ahead of the peaks in daily data. However, this rule of thumb is no 

longer instrumental after 2014 when the volatility graphs are not alike for intraday data and 

daily data. Moreover, the volatility scale of intraday data is way less than that of daily data. It 

is clear to explain because we divide the daily time span into several 5 min span therefore for 

each time observation in intraday data, the volatility scale is less than the volatility scale for 

each time observation in daily data. 

The volatility figures for stock market in two different time frequencies tell different stories in 
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Figure 15 and 16. For intraday data, the volatility is quite stable and close to zero for each time 

stamp and it has 5 extreme peaks in the time span we study. Daily volatility is more volatile 

than the intraday counterpart and the peaks in daily volatility are not synchronised with intraday 

volatility peaks except Sep 2008 and Jul 2011. For other cases, there are no clear lead-lag or 

synchronisation phenomenon for the stock market volatility for two different time frequencies 

for the same sample length. 
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6. Forecast evaluation     

We evaluate the forecasting performance of DCC-GARCH model in this part.  We follow 

Chortareas et al. (2011), employ 15 min data to detect the forecasting performance of the two 

assets. The whole sample data observations are from 8 Oct 2001 9:30 to 30 Oct 2015 16:00 and 

we divide the whole sample into two subgroups: the in-sample data for volatility modelling 

covering from 8 Oct 2001, to 4 Jun 2015, and the out-of-sample data for model evaluation is 

from 5 Jun 2015, to 30 Oct 2015, covering 100 trading days and containing 3200 observations 

(There are 32 observations within a day for 15 min data). The rolling window method is 

employed and we produce one-step ahead daily volatility forecasts for daily models and 32-

step-ahead intraday volatility forecasts for intraday models. This procedure is repeated 100 

times in order to produce 100 daily volatility forecasts for evaluation out-of-sample.  

For DCC-GARCH with intraday data, the actual volatility 𝜎𝑡
2 is set to be realised volatility  𝑟𝑡,𝑛

2  

from 5 min data and volatility forecast obtained �̂�𝑡
2 for a single day is the realised volatility 

obtained from the 15 min data. Volatility forecast from daily data is conditional volatility 

obtained from daily DCC-GARCH model. We also compare the mean forecast. For the mean 

forecast performance of 15 min data, the actual mean series are the 15 min returns we employ 

in the paper and the forecasted values are obtained from the rolling window estimation 

procedure. We also compare the real daily returns and the forecasted values from the one-day 

ahead rolling-window procedure. Therefore, by employing the realised volatility from 15 min 

data and daily volatility from daily data, we are able to compare the volatility forecast 

performance of DCC-GARCH model among different data frequencies since the comparison 

criteria are set to be the same among different data frequencies.  

Table 10 and Table 11 document the forecasting result of the DCC-GARCH model for 15 min 

data and daily data respectively. There are 5 loss functions mentioned in the methodology part 

to indicate the performance of the DCC-GARCH model. Within each table, we are able to 
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compare the forecast accuracy of mean equations of crude oil and S&P 500 index and we can 

make cross-table comparison of the volatility forecast performance. Put it another way, we 

compare the loss functions measuring the volatility of each financial asset calculated from 

different time frequencies.   
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Table 10. Forecast valuation of one-day out-of-sample volatility forecasts of DCC-GARCH 

model  of intraday data 

 
Oil Mean Stock Mean Oil Vol Stock Vol 

MSE 1.62E-05 0.000141 2.18E-09 6.37E-08 

MedianSE 3.52E-06 4.11E-07 4.27E-11 5.47E-09 

ME -3.5E-05 -0.00013 -7.3E-06 2.2E-07 

MAE 0.002763 0.00111 1.72E-05 0.000141 

RMSE 0.004026 0.011884 4.67E-05 0.000252 

Notes: The value of each loss function for the forecast valuation of the first and the second 

moment of oil and stock is documented in every cell. 

 

 

 

Table 11. Forecast valuation of one-day out-of-sample volatility forecasts of DCC-GARCH 

model  of daily data 

 
Oil Mean Stock Mean Oil Vol Stock Vol 

MSE 0.000801 0.000133 2.43E-06 0.006466 

MedianSE 0.000244 2.64E-05 2.43E-07 8.38E-13 

ME 0.002462 0.00071 -1.1E-05 0.001079 

MAE 0.020488 0.008029 0.000901 0.001081 

RMSE 0.028299 0.011551 0.00156 0.080409 

Notes: The value of each loss function for the forecast valuation of the first and the second 

moment of oil and stock is documented in every cell. 
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After reading the numbers in Table 10 we can conclude that DCC-GARCH provides a more 

accurate forecast for oil than stock market in terms of mean equations. Crude oil outperforms 

stock market in all loss functions in terms of mean equations. For daily data, it is the other way 

round. For all loss functions, the forecast results of the mean of stock market are more accurate 

than those of the mean of crude oil market.  

We also make cross-table comparison of the volatility forecast performance. We are able to 

read that the values of all loss functions of financial assets in intraday frequencies are less than 

those in daily frequency except the median squared error for stock market volatility. By using 

the loss functions in this study, we can conclude that the using of intraday data improves the 

forecast ability of DCC-GARCH model. Our finding is in line with Pong et al. (2004) and 

Chortareas et al. (2011).   
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7. Conclusion 

The co-movements of crude oil/stock returns and volatilities are important in asset allocation 

and risk management. In this paper, we employ continuous wavelet analysis and traditional 

time series model DCC-GARCH model to assess the relationship between S&P 500 stock 

market and crude oil market.  

Wavelet method allows for the examination of the time-and frequency varying co-movements 

of financial assets within a unified framework. Wavelet analysis is a model-free approach 

which can distinguish between short and long run relations for a single time series or for two 

series to detect the relationship between the two financial assets. We make contribution to the 

literature by extending wavelet analysis framework into intraday data. Unfortunately, the 

wavelet approach fails to detect the relationship between the crude oil market and stock market 

due to the large number of observations involved. However, wavelet analysis does fit daily data 

and it is able to distinguish between short term investment behaviours and long term investment 

behaviours. Madaleno and Pinho (2014) find that the relationship between oil prices and sector 

stock returns is ambiguous because phase and anti-phase relationships exist for different 

horizons at the same observation time. Our daily data findings are in line with their results.  

Apart from using wavelet method, we also apply DCC-GARCH model to estimate and forecast 

the return and volatility of crude oil market and stock market. We are among the pioneers to 

identify the relationship between the two vital financial assets with the help of intraday data. 

We find that intraday data and daily data fit DCC-GARCH model well. We also find that by 

using daily data, the two financial assets in questions have similar volatility figures and we are 

able to conclude a rule of thumb that from 2002 to 2013, the volatility peaks of crude oil would 

be documented in intraday data 6-8 months ahead of the peaks in daily data. 

By measuring the forecasting performance of intraday DCC-GARCH model and daily DCC-

GARCH model, we can conclude that the using of intraday data improves the forecast ability 
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of DCC-GARCH model. Our finding support the theory saying that the employment of high 

frequency data is instrumental for improving the forecasting performance of traditional time 

series method.   

One limit of our study is that we are not able to forecast the wavelet approach results due to its 

model-free nature. The in-sample comparison between DCC-GARCH model and wavelet 

approach is valuable while the out-of-sample comparison is also a key interesting point in later 

research.  

A potential extension of the current study is to study the contagion of the stock and oil markets 

(Reboredo and River-Castro, 2014; Martín-Barragán et al., 2015). Also, to develop the current 

wavelet analysis approach and to make the forecast feature available in a way are promising 

for future’s research.  

The analysis conducted has a number of practical implications to practitioners and policy 

makers. Findings in the paper can be applied to the construction of dynamic optimal portfolio 

diversification strategies and value-at-risk methodologies since changes in correlation/wavelet 

coherency impacts portfolio weights.   
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Conclusion 

This thesis studies an array of volatility estimation models and evaluates the forecasting 

performance of those estimation models on high-frequency data/intraday data and daily data of 

WTI crude oil futures in the first two chapters. I also study the linkage of crude oil futures and 

the US stock market and evaluate the forecasting results of multi-variable GARCH model in 

Chapter 3.  

In Chapter 1, I employ a greater number of GARCH-class models and many loss functions and 

carry out the superior predictive ability (SPA) test to estimate and compare the forecasting 

performance on the basis of intraday data and daily data. Several GARCH family models such 

as GJR, EGARCH, APARCH, FIGARCH, FIAPARCH, HYGARCH capture long-memory 

volatility and/or the asymmetry leverage effect in volatility. None of the GARCH-class models 

outperforms the others when it comes to intraday data. Our finding is against some research 

papers in the literature such as ABDL (2001), Corsi (2009), Martens and Zein (2004) and 

Chortareas et al. (2011) which all document that long memory specification in high-frequency 

data can improve the forecasting power and accuracy significantly. EGARCH model is superior 

to other model when it comes to daily data and it is different from the finding of Kang et al. 

(2009) in which FIGARCH performs well. 

Our findings provides a solid piece of evidence to the cons part in the discussion that whether 

the traditional time series models are good to fit intraday data. We find that the traditional 

volatility model cannot fit the data when we employ intraday data. After de-seasonalising the 

raw returns of the crude oil futures and putting in GARCH family models, it emerges that no 

GARCH model can produce satisfactory forecast results.  

We find that the intraday crude oil returns are consistent with the stylised properties of other 

financial series such as stock market indices and exchange rates at high frequencies in many 

respects. This becomes a piece of evidence that these properties are not limit to certain kinds 



180 
 

of high-frequency data. It might reflect some general features which all intraday data share. 

Agnolucci (2009) proposes the question “whether the comparison of volatility forecasting 

models is influenced by the criterion used in the exercise.”  Our findings indicate that the 

rankings of the performance of volatility models are different when different criteria are applied 

to. 

The results of Chapter 1 suggest that economists and financial practitioners should not 

arbitrarily choose a volatility forecasting model by referring to the existing research. Which 

model can be trusted depends on not only the given data sample but also the correspondence 

of the particular forecasting purpose with the loss function considered.  

In Chapter 2, I present results from an empirical analysis of a batch of predictive HAR-type 

time-series models whose aim is to forecast realised volatility. For the in-sample fitness 

performance, there is no outperforming model in terms of the explanatory power i.e. R squared. 

Squared jumps help to reduce future’s volatility to some extent. MedRV jump is more 

significant than BPV jump component but their contribution to volatility explanation is limited. 

The information of the decomposition of variance into semi-variance is mixed which is against 

Sevi’s (2014) finding that considering independently the squared jump component, the 

continuous component, signed jumps and realised semi-variances of both signs significantly 

help to improve the fit of the predictive regression. 

The out-of-sample performance comparison presents the most complicated HAR-type model 

outperforms other simple HAR-type models. The comparison between GARCH-type models 

and HAR-type models is inconclusive. This finding is against Andersen, Bollerslev, 

Christoffersen, and Diebold (2006, chap. 15), who find that even based on simple 

autoregressive structures such as the HAR provide much better results than GARCH-type 

models. 

In Chapter 3, the results show that the wavelet approach fails to detect the relationship between 
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the crude oil market and stock market due to the large number of observations involved. 

However, wavelet analysis does fit daily data and it is able to distinguish between short term 

investment behaviours and long term investment behaviours.  

By utilising DCC-GARCH model, I find that intraday data and daily data fit DCC-GARCH 

model well. I also find that by using daily data, the two financial assets in questions have similar 

volatility figures and I am able to conclude a rule of thumb that from 2002 to 2013, the volatility 

peaks of crude oil would be documented in intraday data 6-8 months ahead of the peaks in 

daily data. The forecasting evaluation shows that the using of intraday data improves the 

forecast ability of DCC-GARCH model. 

There are still limitations of the thesis. First, the time series models in the thesis are GARCH 

series models and HAR series models. Though the comparison of the forecast performance of 

different models is the highlight of the thesis, the in-sample specification and modelling are the 

cornerstone of forecasting performance. For the in-sample specification, regime-switching 

models and stochastic volatility models are not mentioned in this thesis. Second, the forecasting 

performance tests are limited to DM test and SPA test. Stepwise SPA test (Hsu et al., 2010), an 

improvement on the conservation of SPA test has already been introduced to the literature 

before the writing of the thesis. Stepwise SPA (SSPA) test is not adopted in the thesis, which is 

also a limitation in the thesis. Third, the wavelet approach results utilised in the thesis are not 

able to detect evidence of contagion in the two markets (see Reboredo and River-Castro, 2014; 

Martín-Barragán et al., 2015). Future research would extend the thesis based on the limitations 

mentioned above.  

The analysis conducted has a number of practical implications to practitioners and policy 

makers. Results of Chapter 1 and 2 suggest that economists and financial practitioners should 

not arbitrarily choose a volatility forecasting model by referring to the existing research. Which 

model can be trusted depends on not only the given data sample but also the correspondence 
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of the particular forecasting purpose with the loss function considered. Findings in Chapter 3 

can be applied to the construction of dynamic optimal portfolio diversification strategies and 

value-at-risk methodologies since changes in correlation/wavelet coherency impacts portfolio 

weights.  


