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Abstract
Motivated by privacy and security concerns in on-
line social networks, we study the role of social
pressure in opinion games. These are games, im-
portant in economics and sociology, that model the
formation of opinions in a social network. We en-
rich the definition of (noisy) best-response dynam-
ics for opinion games by introducing the pressure,
increasing with time, to reach an agreement.
We prove that for clique social networks, the dy-
namics always converges to consensus (no matter
the level of noise) if the social pressure is high
enough. Moreover, we provide (tight) bounds on
the speed of convergence; these bounds are poly-
nomial in the number of players provided that the
pressure grows sufficiently fast. We finally look be-
yond cliques: we characterize the graphs for which
consensus is guaranteed, and make some considera-
tions on the computational complexity of checking
whether a graph satisfies such a condition.

1 Introduction
Opinion games focus on self-interested individuals, each with
an opinion and all connected in some social network, in need
of reaching a decision in a decentralized way (i.e., without a
central authority dictating their actions). For example, they
might be sitting on some hiring panel, members having their
own favorite candidates and a job offer to be made, or they
might be co-authors/reviewers deciding about the submis-
sion/notification of a paper.

This subject received large attention in economics and so-
ciology literature. In particular, DeGroot [1974] defined
the most prominent model for this setting, where the role
of discussions in the decision making process is mathemat-
ically captured by individuals repeatedly averaging their own
opinion with those of their neighbors. In the variant of
Friedkin and Johnsen [1990], each individual additionally
maintains a persistent internal belief, which remains con-
stant even as they update their opinions through averaging.
These models have attracted much attention in recent liter-
ature, see e.g., [Bhalgat et al., 2010; Ferraioli et al., 2016;
Chierichetti et al., 2013]. This line of work identifies the ab-
sence of consensus in many real-life situations and gives a

game-theoretic explanation: players will not compromise any
further when this increases their cost, defined as a measure of
the distance between a player’s opinion and (i) her own belief;
(ii) the opinions of her neighbors on the social network.

We here note, however, that in many cases – such as the
examples mentioned above – there is a pressure to reach a
consensus. Such a pressure augments as time (e.g., length of
the meeting, the approaching deadline) goes on. Under which
conditions does this pressure facilitate consensus? How long
does it take to reach the consensus, if any?

As noted in [Rajtmajer et al., 2016], these questions bear a
certain degree of importance for security and privacy in On-
line Social Networks (OSNs) and, more generally, for dis-
tributed (multi-agent) access control policies. Access control
to contents shared on OSNs is a central research topic in se-
curity and privacy. Typically, the uploader gets to decide the
degree of access (e.g., “friends”; “friends of friends”; etc.) of
a shared content (e.g., a picture of a group of people). How-
ever, the sensibility to privacy issues of the uploader might
differ from that of the others interested in the shared content
(e.g., the others in the picture). A distributed protocol could
involve all these individuals with the objective to reach a con-
sensus on the accessibility of the content, in such a way to
cater for the needs of everyone. The social pressure might
be enforced, for example, by only publishing on the OSN
upon consensus. The authors of [Rajtmajer et al., 2016] intro-
duce a number of important themes related to this applicative
scenario, by defining a game-theoretic model reminiscent of
opinion games. However, as we discuss below, they fail to
give (complete) answers to our questions of interest.

1.1 Our Contribution
We introduce new dynamical models for opinion games.
Specifically, we generalize the definitions of (noisy) best-
response dynamics in [Bhalgat et al., 2010; Ferraioli et al.,
2016] along two main dimensions. Firstly, as detailed above,
we introduce a non-decreasing pressure to coordinate opin-
ions with the neighbors. Secondly, we do not restrict the way
the players weigh disagreements. Related literature makes re-
strictive assumptions on the cost of disagreeing (either with a
neighbor or with one’s own belief). We here instead use any
pair of functions, f and g, that measure the cost of having
an opinion different from the belief and a neighbor’s opinion,
respectively.



In the case in which the underlying social network is a
clique (as in many real world setting, e.g. the hiring com-
mittee example mentioned above), we prove (rate of) con-
vergence to consensus of these dynamics. We are able to
describe very well the behavior of best-response dynamics:
once players start to deviate from the initial strategy profile
they move onto the opinion played by the majority; this way
the initial majority keeps increasing until consensus. Inci-
dentally, this also proves that each player moves only once
and, therefore, the rate of convergence – once deviations com-
mence – is polynomial in the number of players. We deter-
mine the minimum level of social pressure needed to kick off
deviations (as the ratio between the cost of having an opin-
ion different from the belief and the cost of disagreeing with
a neighbor) and give an instance showing that our bound on
convergence is tight.

In many cases, it might not be realistic to assume that the
players are always able to choose their best response. For this
reason, we consider players with bounded rationality. In or-
der to model the behavior of these players, several noisy best
response update rules have been introduced. In this work we
will focus on one of the most successful, namely logit update
rule [Blume, 1993], according to which the player selected
for update can play every strategy with a probability that is
proportional to her advantage in adopting that strategy and to
the rationality level β > 0. We prove that this dynamics al-
ways converges to consensus in at most n3 steps as long as
the social pressure is above a given threshold (that depends
not only on the ratio between disagreements costs, but also
on the rationality level β). This result is achieved by reduc-
ing the dynamics to a birth and death chain and evaluating the
time the latter takes to reach the consensus.

For both dynamics, our results can be extended in sev-
eral ways to accommodate more general settings (e.g., better
rather than best responses; simultaneous rather than sequen-
tial moves; alternative noisy update rules; etc.). A full discus-
sion of these extensions is deferred to the full version of the
paper.

We then move onto general social networks and character-
ize the stationary points (different from consensus) of best-
response dynamics in terms of the existence of a certain cut of
the graph. For a graph to admit an equilibrium in which play-
ers’ opinions disagree there must exist a partition of vertices
in (at least) two sets such that each vertex has more neigh-
bors in its side of the partition than in the other(s). Can we
recognize in polynomial-time whether a graph will guarantee
consensus (i.e., will not admit such a cut)? We give a par-
tial answer to this question as we are only able to efficiently
recognize (a subset of the) graphs for which consensus might
not occur. We leave open the problem of establishing the ex-
act computational complexity of this problem.

1.2 Related Works
Understanding how opinions are formed and expressed in a
social context has been object of extensive recent study, in
AI and multiagent systems [Pryymak et al., 2012; Tsang and
Larson, 2014; Grandi et al., 2015; Schwind et al., 2015], CS
at large [Acemoglu and Ozdaglar, 2011; Bindel et al., 2011;
Mossel and Tamuz, 2014; Auletta et al., 2015], as well as, so-

ciology, economics, physics, and epidemiology. In particular,
the work of Friedkin and Johnsen [1990], which represents
our starting point, has been largely studied recently and has
then emerged as the principal model in the area. For example,
Bindel et al. [2011] considered this model and proved that,
under mild assumptions, whenever beliefs and opinions be-
long to [0, 1], the repeated averaging process leads to a unique
equilibrium, describing the opinion that each agent eventually
expresses. Chierichetti et al. [2013] considered the case that
opinions are discrete and bound the price of stability and price
of anarchy of the resulting games. Extensions of this model
have been proposed by Bhawalkar et al. [2013], by Auletta et
al. [2016] and by Bilò et al. [2016]. A work that is closely re-
lated to this paper is [Ferraioli et al., 2016]. Indeed, it focuses
on the rate of convergence of opinion dynamics to equilibria
under both best-response and logit dynamics. However, their
model is simpler than ours (e.g., they consider binary opinion
and fixed cost for disagreements) and thus extending their re-
sults to our setting is not straightforward. Moreover, all these
works do not consider the effects on agents of time-varying
social pressure.

Logit dynamics has been introduced by [Blume, 1993] to
model agents with bounded rationality. This dynamics is
founded on well-established measure theory tools for mod-
eling limited cognitive capacities [McFadden, 1974], and it
is largely adopted nowadays for modeling the diffusion of in-
formation and opinions on social networks [Peyton Young,
2006; Montanari and Saberi, 2009; Ferraioli et al., 2016;
Auletta et al., 2013b; 2013a].

It is worthy to compare our results with those in [Rajtmajer
et al., 2016] as our models are similar in spirit. There are a
number of notable differences. Firstly, they consider simulta-
neous moves only, while we are able to deal with the arguably
more realistic case of asynchronous moves as well. Secondly,
their analytical results only apply to cliques and a unique con-
tinuous set from which players choose beliefs and opinions;
our results, instead, hold no matter which pair of sets players
use for beliefs/opinions and the level of granularity of these
sets (incidentally, discrete sets seem to fit better the applica-
tion of opinion games to OSNs). Thirdly, their convergence
result requires an infinitely big level of social pressure while
no guarantee on the speed of convergence is given; instead,
we do give (tight) guarantees of convergence rate with “rea-
sonable” values of pressure. Finally, they only provide exper-
imental results for players with bounded rationality.

2 The Model
Let G = (V,E) be a connected undirected graph with |V | =
n. Every vertex of the graph represents a player. Each player
i has a belief bi ∈ Bi (e.g., her preferred privacy setting
in the OSN scenario) and can choose a (potentially) differ-
ent opinion xi ∈ Si (e.g., privacy setting in the OSN ap-
plication). For every pair x, y ∈

⋃
i (Si ∪Bi), we will de-

note as x − y ∈ [0, 1] their distance. Specifically, for every
x, y ∈

⋃
i Si, we assume that x − y = 1 if x 6= y, and

x − y = 0, otherwise. Note that this assumption fits partic-
ularly well our application scenarios. In particular, different
metrics could be used for the difference between strategies;



1 Let x(0)i = bi for all i
2 Let k = 0

3 while ∃ (j, l) ∈ E s.t. x(k)l 6= x
(k)
j do

4 if ∃i such that x(k)i 6= BRi(x
(k)
−i ) then

5 Let i be such an agent
6 Set x(k+1)

i = BRi(x
(k)
−i )

7 Set x(k+1)
j = x

(k)
j for j 6= i

8 else Set x(k+1)
i = x

(k)
i for all i

9 Increment k by 1
Algorithm 1: The dynamics

our “binary” definition serves well our focus on consensus
since it is not really relevant how “much” an agent is disagree-
ing with someone else but only that they disagree. Moreover,
this definition allows us to consider even beliefs and opinions
that cannot be embedded in a metric space (as instead it is the
case in most of the previous literature on the topic).

According to well-established works in sociology and eco-
nomics [DeGroot, 1974; Friedkin and Johnsen, 1990], the
cost of player i in a strategy profile x ∈ S1× · · ·×Sn can be
described as

ci(x) = fi(xi − bi) + ρ ·
∑

(i,j)∈E

gi(xi − xj),

where ρ > 0 represents the social pressure to reach con-
sensus, fi : [0, 1] → R≥0 is a non-decreasing function, and
gi : {0, 1} → R≥0 is a function such that gi(1) > gi(0)1.
Here, fi and gi measure the effects to player i of disagreeing
with her own beliefs and a neighbor’s opinion, respectively.
We assume that fi(0) = gi(0) = 0 for every i. However,
our results hold even if strategy/belief distances can be larger
than 1 or fi(0), gi(0) 6= 0 by rescaling the functions fi, gi.

To simplify the exposition and present the main ideas, we
will henceforth assume that Bi = B, Si = S, fi = f and
gi = g for every i. Moreover, we assume that B = S and
that this set is finite; however, we stress that our results can
be generalized to different and player-specific sets of infinite
cardinality and to player-specific functions.

Let BRi(x−i) = arg minx∈S ci(x,x−i) for every x−i ∈
Sn−1. The best-response consensus dynamics is defined in
Algorithm 1 under the assumption that the social pressure is
non-decreasing in k, i.e., 0 < ρ(0) ≤ ρ(1) ≤ ρ(2) ≤ . . . ,
with limk→∞ ρ(k) ≥ ρ∗. As discussed above, one novelty of
our definition is in the role of the ρ’s which, ultimately, re-
sides on the value of ρ∗. In fact, ρ∗ needs to be big enough to
incentivize consensus, for otherwise, we either have a situa-
tion wherein no player moves from her belief (when ρ∗ is too
small) or fall back to a generalized notion of opinion games
related to previous studies (when ρ∗ is not big enough).

We are also interested in a noisy version of the dynamics
of Algorithm 1 wherein players’ responses are perturbed by
some noise. Specifically, we look at logit dynamics, accord-
ing to which player i plays strategy xi as a response to x−i

1If gi(1) = gi(0) then there would be no incentive to coordinate.

with a probability proportional to e−βci(xi,x−i), with β > 0
(more details can be found in Sect. 3.1).

3 Clique Social Networks
Theorem 1. IfG is a clique and ρ∗ > f(1)

g(1) , then Algorithm 1
converges in time at most n− 1 + k∗, where

k∗ = min

{
k | ρ(k) > f(1)

g(1)

}
.

Moreover, there is an instance in which the dynamics takes
exactly n− 1 + k∗ steps to converge to consensus.

Proof. Given x(k), the strategy profile at round k of the dy-
namics, we let n(k)s denote the number of players playing
strategy s ∈ S in x(k).

Claim 2. If ρ(k) > f(1)
g(1) and x(k) is not a consensus then

x(k+1) 6= x(k).

Proof. Since x(k) is not a consensus, n(k)s > 0 for at least
two strategies. Let x+ be the strategy played by more play-
ers in x(k) and x− be the strategy played by least (non-zero)
number of players in x(k). For player i playing x− we have
ci(x

(k))− ci(x+,x(k)
−i ) > −f(1) + f(1)

g(1) g(1) = 0, where the

inequality follows from n
(k)
x+ ≥ n

(k)
x− and the lower bound to

ρ(k). The test in Line 4 of the dynamics will be then true (as
at least i will satisfy it) and thus x(k+1) 6= x(k).

Let now kmin be the first round such that ρ(kmin) > f(1)
g(1) .

Clearly, if x(kmin) is a consensus, we are done as the dy-
namics has converged in less that k∗ steps. Thus we as-
sume that x(kmin) is not a consensus and, by Claim 2, con-
clude that x(kmin+1) 6= x(kmin). Then, we set smax =

arg maxs∈S |{i ∈ V : x
(kmin+1)
i = s}|, i.e., smax denotes

the strategy2 played in x(kmin+1) by the majority of players.
Moreover, let D(x) = |{i ∈ V | xi 6= smax}|, i.e., D(x) is
the number of players with an opinion different from smax in
x. Note that, in general,D(x) ≤ n−1, while for a consensus
profile x, D(x) = 0.

Claim 3. For every k ≥ kmin, if x(k+1) 6= x(k) then
D(x(k+1)) = D(x(k))− 1.

Proof. For every k ≥ kmin, if x(k+1) 6= x(k), let i be the
player that deviates from xi = x

(k)
i to yi = x

(k+1)
i =

BRi(x
(k)
−i ). Since i deviates in round k + 1, we have that

f(xi − bi) + ρ(k)g(1)

 ∑
s6=xi,yi

n(k)s + n(k)yi

 =

ci(xi,x
(k)
−i ) > ci(yi,x

(k)
−i ) =

f(yi − bi) + ρ(k)g(1)

 ∑
s6=xi,yi

n(k)s + (n(k)xi − 1)

 .

2In the proof of Claim 3, we prove that this strategy is unique.



Then

f(xi − bi)− f(yi − bi) + ρ(k)g(1)(n(k)yi − n
(k)
xi + 1) (1)

is positive.
We now prove a general result on the behavior of the dy-

namics, that implies the claim. Namely, we show that if
k ≥ kmin, then when players deviate, they move onto smax

and will never switch to a different strategy afterwards. To
this aim, let K ′ be the set of rounds k′ ≥ kmin in which a
player changes her strategy. We prove that there is a unique
strategy adopted by the majority of players in x(kmin+1) and,
by induction on k′ ∈ K ′, that nk

′

smax
is increasing in k′ and

nk
′

s is decreasing in k′ for every s 6= smax.
The base case is k′ = kmin. Let j denote the player switch-

ing from xj = x
(kmin)
j to yj = x

(kmin+1)
j in round kmin. We

want to prove that yj = smax, i.e., yj is the unique strategy
played by more players in x(kmin+1). Recall that yj is the best
response, and thus yj = arg mins 6=xj∈S ci(s,x

(kmin)
−j ). Since,

for every s ∈ S it holds that s − bj ≤ 1 and ρ(kmin)g(1) >

f(1), then we have n(kmin)
yj = maxs6=xj∈S n

(kmin)
s . More-

over, since the difference between the f ’s in (1) is at most
f(1), ρ(kmin)g(1) > f(1), and n(kmin)

s is an integer for every
s ∈ S, then (1) is satisfied if and only if n(kmin)

yj ≥ n
(kmin)
xj .

Hence, for every s 6= yj

n(kmin+1)
yj > n(kmin)

yj ≥ n(kmin)
s ≥ n(kmin+1)

s ,

thus showing that yj is the unique strategy for which we have
that n(kmin+1)

yj = maxs∈S n
(kmin+1)
s .

Assume now that the claim is true for k′ − 1; we prove it
for k′. Let ` be the player moving at round k′. By inductive
hypothesis, smax is the one strategy played by more players
in x(k′−1). So if x(k

′−1)
` 6= smax, by the same argument of

the base case, ` will switch to smax. Moreover, no ` such
that x(k

′−1)
` = smax will deviate from smax. In fact, as noted

above, this would require ` to move to a strategy played by at
least as many players playing smax – this is impossible.

It is not hard to see that the two claims above yield the
upper bound. Observe that the result holds no matter which
agent is selected at Line 5 of the dynamics (if multiple choices
are available). However, this choice influence smax, and,
hence, the opinion on which the agents converge.

For the lower bound, we need to prove the following claim.

Claim 4. Suppose that for all players i and strategies s ∈ S
we have s − bi = 1 if s 6= bi and s − bi = 0 otherwise,
ci(x

(0)
i ,x

(0)
−i ) − ci(s,x

(0)
−i ) ≤ 0 and x(0) is not a consensus.

Then x(k+1) = x(0) for every k such that ρ(k) ≤ f(1)
δg(1) , where

δ = max
s : n

(0)
s >0

{n(0)s′ − n
(0)
s + 1 | s′ ∈ S}.

Proof. Suppose that x(k+1) = x(k) and x(k) is not a con-
sensus. Then for all players i and s ∈ S, ci(x

(k)
i ,x

(k)
−i ) −

ci(s,x
(k)
−i ) ≤ 0. This yields

ρ(k)g(1)(n(k)s − n
(k)

x
(k)
i

+ 1) ≤ f(s− bi)− f(x
(k)
i − bi).

Note that the RHS of this inequality cannot be−f(1). Indeed,
if this is the case, since ρ(k) is non-negative and g(1) > 0, the
inequality would be violated for n(k)s ≥ n

(k)

x
(k)
i

– this always

occurs since x(k) is not a consensus. Therefore, we can safely
substitute the RHS of the inequality with f(1). Then, we have
that ρ(k) ≤ f(1)

g(1)(n
(k)
s −n(k)

x
(k)
i

+1)
for every i and every s.

Hence, given x(0) and ρ(k) as from the hypothesis, the the-
orem follows by a simple inductive argument.

Now consider the following instance: for every s, b ∈ S =
B we have s − b = 1 if s 6= b and s − b = 0 otherwise,
f(1) = g(1) = 1 and every player has a different belief. In
this case x(0) is not a consensus profile, δ = 1 and if ρ(0) ≤
f(1)
δg(1) , then ci(x

(0)
i ,x

(0)
−i ) − ci(s,x

(0)
−i ) ≤ 0 for every i and s.

The lower bound then follows from the three claims.

3.1 Noisy Dynamics
For sake of presentation, let us consider now S = B = {0, 1}
(we emphasize again that our arguments do generalize to dif-
ferent settings). Let also `(x) be the number of 1’s in the
opinion profile x. By using the notation of the proof of The-
orem 1, we note that if x = x(k) for some k ≥ 0, then
`(x) = n

(k)
1 .

Now we assume that players only have bounded rationality
and update their opinion according to a logit update rule. I.e.,
after k steps, given that the current strategy profile is x =
x(k), player i is selected at random for update and adopts
opinion 1 with probability P ki (x) = eβci(x−i,1)

eβci(x−i,1)+eβci(x−i,0)
.

By setting α(k) = e−βρ
(k)g(1) and C = e−βf(1), we have

that

P ki (x) =


α(k)n−`(x)−1

α(k)n−`(x)−1+α(k)`(x)·C−(1−bi)
, if xi = 0;

α(k)n−`(x)

α(k)n−`(x)+α(k)`(x)−1·C−(1−bi)
, if xi = 1.

We denote as τ the smallest integer for which x(τ) is such
that `(x(τ)) ∈ {0, n}. I.e., τ is the time the dynamics takes
for reaching the consensus. Let Ex [τ ] be the expectation of τ
given that x(0) = x. Fix M = max

{
f(1)
g(1) ,

3
βg(1)n ,

2 logn
βg(1)n

}
.

We prove the following theorem.
Theorem 5. If G is a clique, S = B = {0, 1}, and ρ∗ > M ,
then, for every x, Ex [τ ] ≤ n3 + k∗, where k∗ = min{k |
ρ(k) > M}.

To prove this theorem, let us consider an alternative process
that works as follows: after k steps, given that the current
strategy profile is x = x(k), a player i is selected at random
and adopts opinion 1 with probability Qki (x) = P ki (x) if
k < k∗, otherwise Qki (x) is

α(k)n−`(x)−1

α(k)n−`(x)−1+α(k)`(x)·C−1 , if xi = 0 and `(x) > n−1
2 ;

α(k)n−`(x)−1

α(k)n−`(x)−1+α(k)`(x)·C , if xi = 0 and `(x) ≤ n−1
2 ;

α(k)n−`(x)

α(k)n−`(x)+α(k)`(x)−1·C−1 , if xi = 1 and `(x) ≥ n+1
2 ;

α(k)n−`(x)

α(k)n−`(x)+α(k)`(x)−1·C , if xi = 1 and `(x) < n+1
2 .



Roughly speaking, this new dynamics decreases its distance
from consensus slower than the original dynamics. We next
formally state this property.
Lemma 6. Let τ ′ be as τ but with respect to the new process
in place of the original dynamics. Then, Ex [τ ] ≤ Ex [τ ′].

Proof Sketch. Let x(k) be the strategy profile reached by the
original dynamics after k steps, and y(k) be the strategy pro-
file reached by the new dynamics after the same number of
steps. Let us also define δ(k) = min{`(x(k)), n − `(x(k))},
δ′(k) = min{`(y(k)), n−`(y(k))}, and ∆(k) = δ′(k)−δ(k).

The lemma follows by showing that the dynamics can be
coupled so that, if ∆(0) ≥ 0, then ∆(k) ≥ 0 for each k ≥ 0.

The idea behind the coupling is the following: first we try
to match as many agents as possible in the original dynamics
with agents in the new dynamics so that for both dynamics
the agent’s opinion agrees with the majority. Then the cou-
pling picks a random agent i in the original dynamics and
the matched agent in the new dynamics, and let these agents
to both play the majority opinion or both play the minority
opinion with the largest possible probability. It is easy then
to see that with the remaining probability only the original
dynamics moves towards consensus, as desired.

Consider now a birth and death chain on {0, . . . , n} such
that the probability p` of going from state ` to state `+ 1 is

p` =
n− `
n
·


α(k∗)n−`−1

α(k∗)n−`−1+α(k∗)`·C−1 , if ` > n−1
2 ;

α(k∗)n−`−1

α(k∗)n−`−1+α(k∗)`·C , otherwise.

The probability q` of going from state ` to state `− 1 is

q` =
`

n
·

1− α(k∗)n−`

α(k∗)n−`+α(k∗)`−1·C−1 , if ` ≥ n+1
2 ;

1− α(k∗)n−`

α(k∗)n−`+α(k∗)`−1·C , otherwise.

With the remaining probability the chain remains in `. We
denote as s(k) the position of this chain after k steps and
as τ0,n the smallest integer such that s(τ0,n) ∈ {0, n}. Let
E` [τ0,n] be the expectation of τ0,n given that s(0) = `. We
have the following lemma, whose proof resembles the one for
Lemma 6.
Lemma 7. Ex [τ ′] ≤ k∗ + E`(x(k∗)) [τ0,n].

In order to bound E` [τ0,n], let us consider an alternative
birth and death chain defined on the set of states {n2 , . . . , n},
such that the probability of a transition from state ` to state
` + 1 is p∗` = p` for every ` > n

2 , and it is p∗` = p` + q` if
` = n

2 , whereas the probability of a transition from state ` to
state `− 1 is q∗` = q` if ` > n

2 , and q′` = 0 if ` = n
2 . It is not

hard to see that, if ` ≥ n
2 , then E` [τ0,n] ≤ E` [τ∗n], where τ∗n

is the first time step in which this new chain hits the state n.
The case for ` ≤ n

2 is symmetric.
We next show that E` [τ∗n] ≤ n3, whenever ` ≥ n

2 . There-
fore, we can conclude that for every starting profile x, the
dynamics converges to consensus in expected time Ex [τ ] ≤
Ex [τ ′] ≤ k∗ + E`(x) [τ0,n] ≤ k∗ + E` [τ∗n] ≤ k∗ + n3.

The proof of this last step follows standard arguments
(see, e.g., [Auletta et al., 2012]). Indeed, it is well known

that E` [τ∗n] =
∑n
i=`+1

∑i−1
j=n

2

1
p∗j

∏i−1
m=j+1

q∗m
p∗m
. Now ob-

serve that q
∗
m

p∗m
≤ 1+ h

n

1− hn
· α(k∗)h+1C−1 for every m ∈ {n2 +

1, . . . , n−1}, where h = 2m−n ≥ 2 and t = α(k∗)h+1C−1.
Observe that α(k∗)h+1C−1 = e−β[ρ

(k∗)g(1)(h−1)+f(1)].
Since ρ(k

∗) > f(1)
g(1) , then α(k∗)h+1C−1 ≤ e−βρ

(k∗)g(1)h.
Moreover, if m ≤ 3n

4 (and, thus, h ≤ n
2 ), then, since

e
x

1+x ≤ 1 + x ≤ ex, 1+ h
n

1− hn
≤ e

h
n e

h
n−h ≤ e

3h
n . Thus, since

ρ(k
∗) > 3

βg(1)n , q∗m
p∗m
≤ e

−h
(
βρ(k

∗)g(1)− 3
n

)
≤ 1. If 3n

4 <

m ≤ n − 1 (and thus, h > n
2 ), then m

n−m ≤ n. Then, q
∗
m

p∗m
≤

e
−
(
βρ(k

∗)g(1)h−logn
)
≤ e

−
(
n
2 βρ

(k∗)g(1)−logn
)
≤ 1, where

in the last inequality we used that ρ(k
∗) > 2 logn

βg(1)n . More-
over, we have that 1

p∗j
= n

n−j
(
1 + α(k∗)2j−n+1 · C−1

)
.

Since for every j ∈
{
n
2 , . . . , n− 1

}
we have that n

n−j ≤ n

and α(k∗)2j−n+1 · C−1 ≤ α(k∗)2j−n ≤ 1, then it follows
that E` [τ∗n] ≤

∑n
i=`+1

∑i−1
j=n

2
n ≤ n3.

4 Other Social Networks
We begin by characterizing the stationary points of our dy-
namics, i.e., profiles in which no player will have an incen-
tive to change their opinion in any of the next steps of the
dynamics. Given graph G, agent i and profile x we denote
with N i

x(x), for x ∈ S, the number of neighbors of i in G
playing strategy x in x.

Lemma 8. If ρ∗ > f(1)
g(1) , then the profile x can be a stationary

point for the dynamics on G = (V,E) if and only if for all
agents i and every opinion yi 6= xi, it holds that

N i
xi(x)−N i

yi(x) ≥
{

1 if f(yi − bi) < f(xi − bi);
0 otherwise.

Proof. Suppose that x(k) = x for some k such that ρ(k) >
f(1)
g(1) . We have that x(k+1) = x(k) if and only if for all i ∈
V , and for every yi 6= xi, ci(x(k)) ≤ ci(yi,x

(k)
−i ). This is

equivalent to

N i
xi(x)−N i

yi(x) ≥ f(xi − bi)− f(yi − bi)
ρ(k)g(1)

.

If f(yi − bi) ≥ f(xi − bi), then the RHS of this inequality
is in

[
− f(1)
ρ(k)g(1)

, 0
]
⊆ (−1, 0), since ρ(k) > f(1)

g(1) . However,

since N i
x(x(k)) and N i

y(x(k)) are integers, then this inequal-
ity is equivalent to the desired condition.

If f(yi − bi) < f(xi − bi), then the RHS of the inequality
is in

(
0, f(1)

ρ(k)g(1)

]
⊆ (0, 1), and thus the inequality is still

equivalent to the desired condition.
Moreover, since ρ(k+1) ≥ ρ(k), the inequality will hold

also at round k + 1; then, by induction, x is stationary.

Note that a consensus profile x is always a stationary point
for the dynamics, no matter the graphG, asN i

y(x) = 0 for all



i and all y 6= xi. However, for some graphsG, there might be
additional stationary points that are different from consensus
– in such cases, we say that the dynamics on G diverges.

GivenG = (V,E), for v ∈ V andA ⊂ V , we letNv(A) =
|{j ∈ A | (v, j) ∈ E}|. We say that G is well-partitioned if
V can be partitioned in sets V0, V1, . . . , Vm−1, with m > 1,
such that, for all b, c ∈ {0, 1, . . .m − 1} with b 6= c and
v ∈ Vb, Nv(Vb) ≥ Nv(Vc).

Theorem 9. If ρ∗ > f(1)
g(1) , the dynamics on G diverges if and

only if G is well-partitioned.

Proof. Let us start by proving that whenever G is well-
partitioned then there is an instance on which the dynamics
on G diverges. Indeed, by hypothesis, there exists a parti-
tion of V in V0, V1, . . . , Vm−1, with m > 1 such that for all
v ∈ Vb,Nv(Vb) ≥ Nv(Vc), for every b, c ∈ {0, 1, . . . ,m−1}
with b 6= c. We can then naturally define B = S =
{0, 1, . . . ,m − 1} and the belief of i ∈ Vb to be b; more-
over we can also set ρ(0) = ρ∗ and f(α) = f(1) for every
α > 0. Therefore, by Lemma 8 we can conclude that x(0) is
a stationary point different from consensus.

For the other direction, let x be a stationary point of the
dynamics on G different from consensus. Since ρ∗ > f(1)

g(1) ,
Lemma 8 yields a partition of the vertices of the graph as
requested, i.e., i ∈ Vb iff xi = sb where we rewrite w.l.o.g.
the strategy set as S = {s0, . . . , sm−1}.

Basically, Theorem 9 proves that agents are content of hav-
ing reached consensus within their own cluster/community,
and they do not care for general consensus.

4.1 Understanding Well-Partitioned Graphs
It seems hard to give an explicit, topological characteriza-
tion of graphs that are well-partitioned. The related litera-
ture [Gharan and Trevisan, 2014; Peng et al., 2015; Kolev
and Mehlhorn, 2016] on “clustering” of graphs3, for exam-
ple, focuses only on algorithmic characterizations (wherein,
naturally, algorithms are intended to run in polynomial-time).
We now follow a similar avenue, but only give a partial an-
swer.

We next relate the problem of establishing whether a graph
is well-partitioned to the existence of a non-singleton min-cut,
i.e., a min-cut whose two sides are not singletons.
Theorem 10. If there exists a non-singleton min-cut of a
graph G = (V,E), then G is well-partitioned.

Proof. Let (A, V \ A) be a non-singleton min-cut of G. We
can set m = 2 and use V0 = A and V1 = V \ A as the
partition needed by the definition of well-partitioned graphs.

Assume, by contradiction, that this is not the case. Then
there exists b ∈ {0, 1} and v ∈ Vb such that Nv(Vb) <
Nv(V1−b). But then moving v from Vb to V1−b would give
rise to a new cut of smaller size; a contradiction with the fact
that (A, V \A) is a min-cut.

3In graph clustering, the nodes must have much more neighbors
in their side of the partition; we only need at least as many neighbors.

It is not hard to see that there is a polynomial-time algo-
rithm to establish whether a graph has a non-singleton min-
cut. In fact, it is well known that we can use Karger’s al-
gorithm [Karger, 1993] to enumerate (with high probabil-
ity) all of the (roughly |V |2/2) min-cuts (of an undirected,
unweighted graph) in polynomial-time; then we can simply
check the size of both ends of the cut.

However, such a condition is not necessary for well-par-
titioned graphs already for m = 2, as we are going to discuss
next. For an even number n, let G be the clique Kn with
a perfect matching removed, i.e., E = {(i, j) : j 6= i} \
{(2i, 2i− 1) : n/2 ≥ i ≥ 1}. Consider the partition in which
even vertices are in V0 and odd vertices in V1. Each vertex has
exactly half of its neighbors in Vb and exactly half in V1−b
for b = 0, 1. By Theorem 9, the dynamics diverges on G.
However, G does not have a non-singleton min-cut, since all
the min-cuts of G are of the kind ({v}, V \ {v}), v ∈ V .

Determining whether a graph is well-partitioned is, in fact,
equivalent to the graph having a non-singleton cut which has
local minimum weight (i.e., moving one vertex to the another
set of the partition does not diminish the weight of the cut).
To the best of our knowledge, the computational complexity
of this problem is open.

5 Conclusions
In this work we initiated the study of opinion dynamics with
a social pressure towards consensus. If for clique social net-
works, we have been able to give a complete picture of what
happens both with fully rational players and bounded rational
ones, much more is left to understand for different social net-
work topologies: Is it possible to design a polynomial-time
algorithm that on input a graph G is able to decide if the dy-
namics can diverge on G? Or, on the contrary, can we show
that this problem is computationally hard? Can we bound the
time that the dynamics takes in order to converge to consen-
sus or to a generic stationary point? Does the convergence to
consensus in non-clique graphs take a path similar to the one
described by Claim 3, with the majority opinion becoming
more and more supported as time goes on? Simulations may
be an useful tool for answering this question.

In this work we focused on unweighted graphs. Naturally,
it would be interesting to see to which extent our results hold
on weighted networks. Note that, for example, it is not hard
to see that for specific weight assignment of edges, the best
response dynamics does not converge to consensus even if the
underlying graph is a clique.

It would be interesting also to evaluate how bounded ratio-
nality influences the evolution of opinions in non-clique net-
work topologies. Do noisy dynamics, such as logit dynamics,
converge to the consensus whenever best response does?
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