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Abstract

This paper proposes a multivariate copula-based volatility model for estimating value-at-Risk

in banks of some selected European countries by combining Dynamic Conditional Correla-

tion (DCC) multivariate GARCH (M-GARCH) volatility model and copula functions. Non-

normality in multivariate models is associated with the joint probability of the univariate

models’ marginal probabilities —the joint probability of large market movements, referred

to as tail dependence. In this paper, we use copula functions to model the tail dependence of

large market movements and test the validity of our results by performing back-testing tech-

niques. The results show that the copula-based approach provides better estimates than the

common methods currently used and captures VaR well based on the differences in the num-

bers of exceptions produced during different observation periods at the same confidence level.

Keywords: value-at-risk, dynamic conditional correlation, GARCH, volatility, copulas,

volatility, risk management.
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1 Introduction

Value-at-Risk (VaR) is a standard risk measure in financial risk management and is widely

used in the banking sector and other financial institutions. It summarises the worst possible

loss of a portfolio of financial assets at a given confidence level (CL) over a given time period.

European banks began adopting VaR in the early 1990s. International bank regulators

also influenced the development and use of VaR when the Basel Committee on Banking

Supervision chose VaR as the international standard method for evaluating the market risk

of a portfolio of financial assets for regulatory purposes (on Banking Supervision, 1996).

There are many methods to estimate VaR (see Holton (2014), Jorion (2007), Malz (2011)

and the references therein), and the most common methods used by banks are the variance-

covariance method (also known as the parametric or Delta Normal approach, was developed

by J.P. Morgan using its RiskMetrics in 1993), historical simulation, and Monte Carlo sim-

ulation. Due to their simplicity, variance-covariance methods appear to have been pervasive

in the banking sector with over three-quarters of banks using them for calculating VaR

(Drehmann, 2007). These methods are based on the assumption that the asset returns are

independently and identically normally distributed, which of course, may not be the case

in reality. This assumption contradicts empirical evidence, which shows that in many cases

(for example see Sheikh and Qiao (2010)), financial asset returns are not independent and

normally distributed —financial asset returns are, in fact, leptokurtic and fat-tailed, leading

to underestimation or overestimation of VaR, as extremely large positive and negative asset

returns are more likely in practice than normally distributed models predict.

Another drawback of these methods is in the estimation of the conditional volatility of

financial returns. Most financial asset returns exhibit heavy tails (as explained earlier) with

respect to conditional volatility over time. Berkowitz et al. (2011) also showed evidence

of changing volatility and non-normality using desk-level data from a large international

commercial bank. VaR models are highly dependent on the type of volatility model used. A

good volatility model should be able to capture the behaviour of the tail distribution of asset
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returns, be easily implemented for a wide range of asset returns, and be easily extensible to

portfolios with many risk factors of different kinds (Malz, 2011). For multivariate volatility

models of VaR, we must focus on the tail dependence, which is the principal factor associated

with non-normality.

Therefore, the purpose of this paper is to investigate the reliability of a VaR model

constructed using a DCC M-GARCH volatility model and copulas.

The rest of the paper is structured as follows: Section 2 presents an overview of M-

GARCH volatility models, the DCC model, and why they are important in VaR estimation.

In Section 3, we introduce copulas (elliptical and Archimedean) and Sklar’s theorem. Section

4 presents invariant measures used in measuring the dependence structure. Section 5 presents

empirical procedures and results of the VaR estimates. In Section 6, we discuss and present

the results of back-testing techniques; this is followed by a summary and conclusion in Section

7.

2 Multivariate Volatility Models

Financial asset returns often demonstrate volatility clustering. Therefore, volatility plays an

important role in VaR estimation. Many volatility models have been proposed, for example

a generalised autoregressive conditional heteroskedasticity (GARCH) model and its exten-

sion have been used to capture the effects of volatility clustering and asymmetry in VaR

estimation. Numerous studies have applied a variety of univariate GARCH models in VaR

estimation (see So and Philip (2006), Berkowitz and Obrien (2002), and McNeil and Frey

(2000)). In addition, Kuester et al. (2006) provides an extensive review of VaR estimation

methods with a focus on univariate GARCH models. The results of all these studies suggest

that GARCH models provide more accurate VaR estimates than traditional methods.

Because financial applications typically deal with a portfolio of assets with several risk

factors (as considered in this study), a multivariate GARCH model would be very useful for

2
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VaR estimation. Univariate VaR models focus on an individual portfolio, whereas the mul-

tivariate approaches explicitly model the correlation structure of the covariance or volatility

matrix of multiple asset returns over time.

Numerous multivariate GARCH models have since been developed (see Bollerslev et al.

(1994), Engle and Kroner (1995), Fengler and Herwartz (2008), Tsay (2013) and the refer-

ences therein). Bauwens et al. (2006) divides multivariate GARCH (M-GARCH) models into

three categories: (i) direct generalisation of univariate GARCH models (e.g., exponentially-

weighted moving average (EWMA), vector error correction (VEC), BEKK, etc.), (ii) lin-

ear combinations of univariate GARCH models (e.g., generalised orthogonal GARCH (GO-

GARCH), principal component GARCH (PGARCH), etc.), and (iii) nonlinear combinations

of univariate GARCH models (e.g., dynamic conditional correlation (DCC) and constant

conditional correlation (CCC)). Most volatility models fail to satisfy the positive definite

conditions of the covariance matrix of asset returns. In this paper, we employ the DCC

model in our analysis because of some conditions (to be discussed later) that will guarantee

the conditional volatility matrix to be positive-definite almost surely. For more details on

M-GARCH models, see (Silvennoinen and Teräsvirta, 2009) and (Ghalanos, 2015).

2.1 The DCC model

In the DCC model, the volatility matrix, Σt, consists of a marginal standardised vector

of the series ηt, where ηt = ait
σit

, and σit is the conditional volatility series obtained using

GARCH(1,1) for i = 1, . . . , N . We can then represent the conditional volatility or covariance

matrix as

Σt = DtρtDt, (1)

3
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and the conditional correlation matrix is given by

ρt = D−1
t ΣtD

−1
t , (2)

where Dt is the diagonal matrix of the k conditional volatilities of the stock returns; that is,

D = diag
{√

σ11,t, . . . ,
√
σkk,t

}

, and σij,t is the (i, j)th element of the volatility matrix (Tsay,

2005).

Tse and Tsui (2002) and Engle (2002) propose two types of DCC models.

The DCC model of Tse and Tsui (DCCT (m)) is given by

ρt = (1− θ1 − θ2)ρ̄t + θ1ρt−1 + θ2ψt−1, (3)

where θi ∈ R+, 0 ≤ θ1+θ2 < 1 for i = 1, 2. ρ̄t is a k x k unconditional correlation matrix of ηt.

ψt−1 is a k x k correlation matrix of the most recent returns that depends on {ηt−1 . . . ηt−m}

and is defined as

ψij,t−1 =
Σm

k=1ηi,t−kηj,t−k
√

(Σm
k=1η

2
i,t−k)(Σ

m
k=1η

2
j,t−k)

. (4)

If m > k, then ψt−1 and hence ρt are guaranteed to be positive-definite.

For the model proposed by Engle (DCCE(m)), the correlation matrix (Eq.(2)) depends

on two parameters, θ1 and θ2, controlled by

Σt = (1− θ1 − θ2)Σ̄t + θ1Σt−1 + θ2ηt−1η
′
t−1, (5)

and Σt is a positive-definite matrix. Σ̄t is the unconditional covariance matrix of ηt, θi ∈ R+,

0 < θ1 + θ2 < 1 for i = 1, 2 (Tsay, 2013).

4
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3 Copulas

Non-normality in multivariate models is associated with the joint probability of the univariate

models’ marginal probabilities, that is, the joint probability of large market movements

referred to as tail dependence. The VaR estimation for a portfolio of assets can become

very difficult due to the complexity of joint multivariate distributions. To overcome these

problems, we use the copula theory, which enables us to construct a flexible multivariate

distribution with different margins and different dependence structures; this allows the joint

distribution of a portfolio to be free from assumptions of normality and linear correlation.

Additionally, copulas can easily capture extreme dependencies such as tail dependence, while

the normal distribution assumes no extreme dependencies.

The copula theory was first developed by Sklar (1959) and later introduced to the finance

literature by Embrechts and McNeil (1999), Frey et al. (2001), and Li (1999). Consequently,

Embrechts et al. (2002) introduced the application of copula theory to financial asset returns

and Patton (2004) expanded the framework of the copula theory with respect to the time

varying nature of financial dependence schemes. The copula theory has also been used in

risk management to measure the VaR of portfolios, including both unconditional (Cherubini

and Luciano (2001), Embrechts and Lindskog (2003), and Cherubini et al. (2004)) and, re-

cently, conditional distributions (Silva Filho et al. (2014), Huang et al. (2009) and Fantazzini

(2008)).

In this paper, we take advantage of copula theory and develop a copula-based volatility

model.

For the purpose of estimating the VaR, we use the following version of Sklar’s theorem as

given by Cherubini et al. (2004).

Theorem 1 Sklar’s theorem: Let F1(x1), . . . , Fn(xn) be known marginal distribution func-

tions. Then, for every x = (x1, . . . , xn) ∈ ℜ±n,

5
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• if c is any subcopula whose domain contains Ran F1× Ran F2 × . . .× Ran Fn, then

c(F1(x1), F2(x2), . . . , Fn(xn))

is a joint distribution function with margins F1(x1), F2(x2), . . . , Fn(xn), and

• if F is a joint distribution function with margins F1(x1), F2(x2), . . . , Fn(xn), there exists

a unique subcopula c, with domain Ran F1× Ran F2 × . . .× Ran Fn, such that

F = c(F1(x1), F2(x2), . . . , Fn(xn)).

If F1(x1), F2(x2), . . . , Fn(xn) are continuous, the subcopula is a copula; if not, there

exists a copula C such that

C(u1, u2, . . . , un) = c(u1, u2, . . . , un)

for every (u1, u2, . . . , un) ∈ Ran F1× Ran F2 × . . .× Ran Fn.

Where ℜ±n = [−∞,+∞]n and Ran F = range of the function F .

Definition 1 An n−dimensional copula C(u1, u2, u3, . . . , un)
′

is a distribution function on

I
n with standard uniform marginal distributions (Tsay, 2013).

Consider a random vector X = (x1, . . . , xn)
′

, with margins F (x1), . . . , F (xn); then, from

Theorem 1,

F (x1, . . . , xn) = C(F (x1), . . . , F (xn)). (6)

C is unique if F (x1), . . . , F (xn) are continuous; otherwise, C is uniquely determined on In (I

= [0, 1]; a unit interval on the real line.). On the other hand, if C is a copula and F1, . . . , Fn

are univariate distribution functions, Eq.(6) is a joint distribution function with margins

F1, . . . , Fn (Ghalanos, 2015), (Tsay, 2013).

6
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Definition 2 Each copula C(u1, . . . , un) has a density c(u1, . . . , un) related to it and defined

as

c(u1, . . . , un) =
∂nC(u1, . . . , un)

∂u1, . . . , ∂un
, (7)

and the density function for the copula is

f(x1, . . . , xn) = c(F1(x1, . . . , Fn(xn))
n
∏

i=1

fi(xi) (8)

in I
n for a continuous random variable, where fi are the marginal densities

(Cherubini et al., 2004), (Ghalanos, 2015).

Bob (2013) and Cherubini et al. (2011) discuss two commonly used families of copulas in

financial applications: the elliptical and the Archimedean copulas.

3.1 Elliptical Copulas

The most common elliptical copulas are the Gaussian and the Student’s t copulas, which

are symmetric. The dependence structure is determined by the standardised correlation or

dispersion matrix

R =













1 . . . ρ1,n
...

. . .
...

ρn,1 . . . 1













(9)

because of the invariant property of copulas. ρi,j is the dispersion parameter, which can be

set to either Kendall’s tau or Spearman’s rho, as discussed later.

7
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Consider a symmetric positive definite matrix (Eq.9) with diag(R) = (1, 1, . . . , 1)T ; we

can represent the multivariate Gaussian copula (MGC) as

CGa

R = P (Φ(X1) ≤ u1, . . . ,Φ(Xn) ≤ un) = ΦR(Φ
−1(u1), . . . ,Φ

−1(un)), (10)

where ΦR is the standardised multivariate normal distribution and Φ−1
R is the inverse standard

univariate normal distribution function of u with correlation matrix R. If the margins are

normal, then the Gaussian copula will generate the standard Gaussian joint distribution

function with density function

cGa

R (u1, u2, . . . , un) =
1

|R| 12
exp

(

−1

2
ςT (R−1 − I)ς

)

, (11)

where ς = (Φ−1(u1), . . . ,Φ
−1(un))

T .

On the other hand, the multivariate Student’s t copula (MTC) can be represented as

TR,v(u1, . . . , un) = tR,v(t
−1
v (u1), . . . , t

−1
v (un)) (12)

with density function

cR,v(u1, . . . , un) = |R|− 1

2

Γ(v+n
2
)

Γ(v
2
)

(

Γ(v
2
)

Γ(v+1
2
)

)n (1 + 1
v
ςTR−1ς)−

v+n
2

∏n
j=1

(

1 +
ς2j
v

)− v+1

2

, (13)

where tR,v is the standardised Student’s t distribution with correlation matrix R and v

degrees of freedom.

8
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3.2 Archimedean Copulas:

Archimedean copulas are built via a generator as

C(u1, . . . , un) = ϕ−1(ϕ(u1) + . . .+ ϕ(un)) (14)

with density function

c(u1, . . . , un) = ϕ−1(ϕ(u1) + . . .+ ϕ(un))
n
∏

i=1

ϕ
′

(ui), (15)

where ϕ is the copula generator and ϕ−1 is completely monotonic on [0,∞]. That is, ϕ must

be infinitely differentiable with derivatives of ascending order and alternative sign such that

ϕ−1(0) = 1 and limx→+∞ ϕ(x) = 0 (Cherubini et al., 2011). Thus, ϕ
′

(u) < 0 (i.e., ϕ is

strictly decreasing) and ϕ
′′

(u) > 0 (i.e., ϕ is strictly convex).

Archimedean copulas are very useful in risk management analysis because they capture an

asymmetric tail dependence between financial asset returns. The most common are Gumbel

(1960), Clayton (1978) and Frank (1979) copulas (Yan et al., 2007).

The Gumbel copula captures upper tail dependence, is limited to positive dependence,

and has generator function ϕ(u) = (− ln(u))α and generator inverse ϕ−1(x) = exp(−x 1

α ).

This will generate a Gumbel n-copula represented by

C(u1, . . . , un) = exp







−
[

n
∑

i=1

(− ln ui)
δ

] 1

δ







δ > 0. (16)

9
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The generator function for the Clayton copula is given by ϕ(u) = u−α − 1 and generator

inverse ϕ−1(x) = (x+ 1)−
1

α , which yields a Clayton n-copula represented by

C(u1, . . . , un) =

[

n
∑

i=1

(u−α
i − n+ 1

]− 1

α

α > 0. (17)

The Frank copula has generator function ϕ(u) = ln
(

exp(−αu)−1
exp(−α)−1

)

and generator inverse

ϕ−1(x) = − 1
α
ln (1 + ex(e−α − 1)), which will result in a Frank n-copula represented by

C(u1, . . . , un) = − 1

α
ln

{

1 +

∏n
i=1(e

−αui − 1)

(e−α − 1)n−1

}

α => 0, (18)

(Cherubini et al., 2004).

4 Measuring Dependence

The traditional way to measure the relationship between markets and risk factors is by

looking at their linear correlations, which depend both on the marginal and joint distributions

of the risk factors. If there is no linear relationship —in the case of non-normality —the

results might be misleading (see Cherubini et al. (2011)). In this situation, nonparametric

invariant measures that are not dependent on marginal probability distributions are more

appropriate. Copulas measure a form of dependence between pairs of risk factors (i.e., asset

returns) known as concordance using invariant measures.

Two observations (xi, yi) and (xj, yj) from a vector (X, Y ) of continuous random variables

are concordant if (xi − xj)(yi − yj) > 0 and discordant if (xi − xj)(yi − yj) < 0. Large values

of X are paired with large values of Y and small values of X are paired with small values

of Y as the proportion of concordant pairs in the sample increases. On the other hand, the

proportion of concordant pairs decreases as large values of X are paired with small values

of Y and small values of X are paired with large values of Y (Alexander, 2008).

The most commonly used invariant measures are Kendall’s tau and Spearman’s rho.

10
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Consider n paired continuous observations (xi, yi) ranked from smallest to largest, with the

smallest ranked 1, the second smallest ranked 2 and so on. Then, Kendall’s tau is defined

as the sum of the number of concordant pairs minus the sum of the number of discordant

pairs divided by the total number of pairs, i.e., the probability of concordance minus the

probability of discordance:

τX,Y = P [(xi − xj)(yi − yj) > 0]− P [(xi − xj)(yi − yj) < 0] =
C −D

C +D
, (19)

where C is the number of concordant pairs below a particular rank that are larger in value

than that particular rank, and D is the number of discordant pairs below a particular rank

that are smaller in value than that particular rank.

Spearman’s rho, on the other hand, is defined as the probability of concordance minus the

probability of discordance of the pair of vectors (x1, y1) and (x2, y3) with the same margins.

That is,

ρX,Y = 3(P [(x1 − x2)(y1 − y3) > 0]− P [(x1 − x2)(y1 − y3)] < 0).

The joint distribution function of (x1, y1) is H(x, y), while the joint distribution function of

(x2, y3) is F (x), G(y) because x2 and y3 are independent (Nelsen, 2007). Alternatively,

ρX,Y = 1− 6
∑n

i=1 d
2
i

n(n2 − 1)
,

where d is the difference between the ranked samples.

Nelsen (2007) has shown that Kendall’s tau and Spearman’s rho depend on the vectors

(x1, y1), (x2, y2) and (x1, y1), (x2, y3), respectively, through theirs copulas C, and that the

following relationship holds:

τX,Y = 4

∫ 1

0

∫ 1

0

C(u, v)dC(u, v)− 1

11

Page 13 of 38

URL: http://mc.manuscriptcentral.com/rejf

The European Journal of Finance

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

ρX,Y = 12

∫ 1

0

∫ 1

0

C(u, v)dudv − 3.

5 Empirical Analysis

5.1 Data

We investigate the performance of an M-GARCH DCC copula-based volatility model in VaR

estimation using daily closing stock prices of 47 banking sector stocks from seven different

EU countries —Germany, the UK, Sweden, France, Italy, Spain, and Greece —over the

period from 31 December 2004 to 31 December 2015. All data are from DataStream and

consist of 2870 observations.

The daily log return series of the stocks are calculated via

rt =

[

log

(

S1,t+τ

S1,t

)

, . . . , log

(

SN,t+τ

SN,t

)]

= (r1t, . . . , rNt) , (20)

where N represents the number of stocks in the sample. Figures 1 to 7 shows time series

plots of daily log returns series for the different countries. From the plots, we can observe

the presence of volatility clustering. That is, small changes in volatility tend to be followed

by small changes for a prolonged period of time and large changes in volatility tend to be

followed by large changes for a prolonged period of time. Basic statistics of the stock returns

are reported in percentages in Table 1. From the table, we see that the stock returns are far

from being normally distributed, as indicated by their high excess kurtosis and skewness. We

confirm this by running a multivariate ARCH test, as described by Tsay (2013), on the log

returns at 5% significance. The results confirm the presence of conditional heteroskedasticity

in the daily log return series with a P − value equal to or close to zero.

12

Page 14 of 38

URL: http://mc.manuscriptcentral.com/rejf

The European Journal of Finance

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

Country Stocks
France F.BNP F.SGE F.CRDA F.KNF F.CC F.CAI F.CAMO F.LAV F.CAIV F.CPD

Mean 0.0006 -0.0151 -0.0215 -0.0019 0.0006 -0.0108 -0.0102 -0.0011 -0.0103 -0.0166
Variance 0.0647 0.0807 0.0764 0.0959 0.0197 0.0145 0.0262 0.0267 0.0225 0.0202
Stdev 2.5427 2.8399 2.7645 3.0969 1.4027 1.2029 1.6182 1.6340 1.5003 1.4212
Skewness 34.4305 6.9738 27.7890 60.0710 62.1017 7.6754 -43.2826 -46.9617 5.3467 -1.5654
Excess Kurtosis 867.8928 680.0429 624.0289 1209.1365 821.6399 678.3979 476.7556 1107.4525 601.0420 702.8488

Italy I.ISP I.UCG I.MB I.PMI I.BMPS I.BP I.UBI I.BPE I.CE I.BPSO
Mean -0.0023 -0.0519 -0.0078 -0.0250 -0.1260 -0.0635 -0.0278 -0.0129 -0.0022 -0.0132
Variance 0.0671 0.0829 0.0429 0.0773 0.0870 0.0814 0.0566 0.0574 0.0517 0.0335
Stdev 2.5905 2.8797 2.0722 2.7800 2.9488 2.8539 2.3799 2.3966 2.2734 1.8305
Skewness -25.1383 -16.0663 3.8658 29.6811 -24.7777 2.9842 -4.4575 24.7941 1.4148 58.9718
Excess Kurtosis 656.5973 589.0746 320.6962 383.9322 891.5712 461.0507 273.2804 392.4517 408.2981 553.0105

UK HSBA BARC LLOY RBS STAN CIHL
Mean -0.0124 -0.0306 -0.0407 -0.0971 -0.0112 -0.1171
Variance 0.0293 0.1030 0.1077 0.1504 0.0594 0.0762
Stdev 1.7122 3.2098 3.2823 3.8785 2.4376 2.7600
Skewness -33.6697 143.8658 -105.4936 -840.1325 31.6077 9.0031
Excess Kurtosis 1690.7965 4021.7880 3727.5413 23552.6326 1308.5010 4940.1441

Germany D.DBK D.CBK D.IKB D.MBK D.OLB D.UBK
Mean -0.0320 -0.0782 -0.1287 0.0008 -0.0457 0.0879
Variance 0.0615 0.0904 0.1529 0.0550 0.0478 0.0466
Stdev 2.4803 3.0066 3.9100 2.3445 2.1863 2.1586
Skewness 32.5034 -13.9034 151.9830 31.5160 83.5634 -31.7385
Excess Kurtosis 1022.5506 873.5286 1914.4094 1145.6160 2008.7958 1984.3534

Greece G.PIST G.PEIR G.EFG G.ETE G.ATT G.ELL
Mean -0.1603 -0.3371 -0.3377 -0.2872 -0.2045 -0.0642
Variance 0.2287 0.2876 0.3162 0.2487 0.2818 0.0448
Stdev 4.7826 5.3624 5.6234 4.9866 5.3087 2.1157
Skewness -12.5182 -105.8321 -61.0233 -103.6301 -59.4886 -7.5496
Excess Kurtosis 827.1241 1063.2666 865.8341 1044.0274 1317.2709 1519.9341

Spain E.SCH E.BBVA E.BSAB E.BKT E.POP
Mean -0.0070 -0.0154 -0.0199 0.0117 -0.0702
Variance 0.0463 0.0444 0.0359 0.0512 0.0529
Stdev 2.1519 2.1078 1.8940 2.2617 2.2991
Skewness 20.4736 32.7311 71.6545 49.2691 43.5654
Excess Kurtosis 828.4460 668.4718 623.2511 304.9592 494.7029

Sweden W.NDA W.SVK W.SWED W.SEA
Mean 0.0202 0.0234 0.0109 0.0104
Variance 0.0419 0.0347 0.0631 0.0643
Stdev 2.0471 1.8633 2.5116 2.5361
Skewness 52.6835 12.2476 -20.9301 5.3782
Excess Kurtosis 657.9097 690.7580 906.9637 1278.0779

Table 1: Basic statistics of stock returns (in percentages). High excess kurtosis and skewness implies stock returns are not
normally distributed.
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5.2 Modelling the volatility matrix and copula parameters

We obtained the volatility matrix
∑

t, which consists of the marginal standardised residu-

als {ηi,t}Tt=1, by applying the M-GARCH DCC model to the log return series and setting

the conditional distribution of the standardised residuals to the Student’s t distribution to

account for the heavy tails.

Copula parameters are estimated by the canonical maximum likelihood (CML) method

(Cherubini et al., 2004). That is, we use pseudo-observations of the standardised residuals

to estimate the marginals and then estimated the copula parameters by means of maximum

likelihood estimation (MLE):

θ̂2 = ArgMaxθ2

T
∑

t=1

ln c(F̂1(x1t), . . . , F̂n(xnt); θ2). (21)

The best copula to use for our VaR modelling is selected by comparing MLE values. We select

two models, one from each copula family. Table 2 shows the MLEs and copula parameter

values for both Archimedean and elliptical copulas.

Stocks from
Archimedean Copula Elliptical Copula

Gumbel Clayton Frank Gaussian Student’s t

UK 1691 (1.30) 1813 (0.47) 1810 (2.33) 3834 (ρn) 4047 (ρt)

Germany 81.47 (1.05) 152.5 (0.10) 105.2 (0.43) 986.6 (ρn) 1018 (ρt)

Greece 3861 (1.55) 3609 (0.81) 3825 (3.86) 4717 (ρn) 5092 (ρt)

Spain 4817 (1.88) 4616 (1.34) 4952 (5.73) 5936 (ρn) 6362 (ρt)

France 1352 (1.16) 1615 (0.24) 1298 (1.32) 4789 (ρn) 5059 (ρt)

Italy 6959 (1.45) 6816 (0.70) 7024 (3.55) 8846 (ρn) 9493 (ρt)

Sweden 3747 (1.95) 3142 (1.32) 3715 (6.00) 4057 (ρn) 4047 (ρt)

Table 2: MLE and copula parameter (in parentheses) values. The best copula that fits the
data (in bold) is selected based on the highest MLE value.
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5.3 Modelling the marginal distributions

Next, we specify the desired marginal distributions, which we set to a Student’s t distribution,

and generate 10000 simulations from the fitted copula. Our choice of Student’s t distributions

for the margins is because a multivariate ARCH test on the standardised residuals {ηi,t}Tt=1

still indicates the presence of volatility clustering. We then reintroduce the GARCH(1,1)

model and convert the daily simulated data with t-margins to daily risk factor returns.That

is,

xi,t = µi + σ̂i,tζi,t , and

σ̂2
t = α0 + α1ξ

2
t−1 + β1σ

2
t−1, (22)

where i = 1, . . . n represents the stocks in each country, t = 1 . . . T represents the length of

the original data = 2869, and ζi,t are the daily simulated observations from the copulas with

t-margins. α0, α1, and β1 are the GARCH parameters, µi are the unconditional means of

the risk factors, and σ̂i are estimates of the conditional volatilities of the risk factors from

the M-GARCH DCC model.

5.4 Estimating VaRs

For each country, we apply the risk factor mappings to construct a simulated portfolio of

returns consisting of all stocks represented by

R̄p,t = E (Rp,t) =
N
∑

t=1

wiE (Ri,t) , (23)

where

wi =

∑n
j=1 xij

∑N
j=1Cj

, and
N
∑

i=1

wi = 1 1 ≤ i ≤ n, 1 ≤ j ≤ N.
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R̄p,t is the expected return of the portfolio at time t; xij is the amount invested in asset i; Cj

is the total dollar amount invested; and wi the weight of asset i. We assume equal weights.

The one day VaR at time t with α% confidence level is simply the 1−α percentile of the

distribution of the simulated portfolio returns below which lies (1−α)% of the observations

and above which lies α% of the observations. Thus, we are α% confident that in the worst

case scenario, the losses on the portfolio will not exceed the 1−α quantile. Table 3 shows VaR

estimates with confidence levels α = 99%, 95%, and 90%, based on the selected Archimedean

and elliptical copulas for the constructed portfolios.

Copula Family
Portfolio CL Archimedean Elliptical
UK Clayton Student’s t

99% -7.52 -7.85
95% -3.41 -3.76
90% -2.19 -2.39

Germany Clayton Student’s t
99% -6.24 -5.31
95% -3.52 -2.90
90% -2.53 -2.13

Greece Gumbel Student’s t
99% -14.82 -18.88
95% -7.23 -8.68
90% -5.04 -5.71

Spain Frank Student’s t
99% -6.12 -7.02
95% -3.75 -3.78
90% -2.79 -2.65

France Clayton Student’s t
99% -5.11 -4.54
95% -2.49 -2.52
90% -1.81 -1.77

Italy Frank Student’s t
99% -5.76 -7.35
95% -3.77 -4.07
90% -2.87 -2.78

Sweden Gumbel Gaussian t
99% -6.44 -8.11
95% -3.53 -3.37
90% -2.34 -2.47

Table 3: VaR estimates (in percentages) for the portfolio constructed from returns generated
using Archimedean and elliptical copulas.

6 Back-testing

To check that the model does not overestimate or underestimate risk, we do back-testing on

the model. This involves comparing the estimated VaRs for a given number of days T to
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the subsequent portfolio returns. The number of days N in which the loss on the portfolio

exceeds VaR is recorded as the number of exceptions or failures. Too many exceptions implies

the VaR model underestimates the level of risk on the portfolio, and too few exceptions

implies the model overestimates risk. The number of exceptions should be reasonably close

to T (1 − c)% (c = confidence level), depends on the choice of c, and follows a binomial

distribution

f(x) =
(

T
x

)

pxqT−x (24)

with mean = pT and variance = pqT ; q = 1− p and p = 1− c (Best, 2000).

6.1 Back-testing methods

The most popular back-testing methods include the standard normal hypothesis (or failure

rate) test , Kupiec’s (1995) “proportion of failures” (POF) test, Basel’s (1996a) “traffic

light” test, and Christoffersen’s (1998) test. We employ the standard normal hypothesis

test, Basel’s “traffic light” test, and Kupiec’s POF test to check the reliability of the VaR

models.

6.2 Standard normal hypothesis test

From the central limit theorem and with sufficiently large T , Eq.(24) can be approximated

by the normal distribution

z =
x− pT√
pqT

≈ N(0, 1), (25)

which is also the test statistic for a standard normal hypothesis test to assess the reliability

of the VaR model (Jorion, 2007). The VaR model is rejected if z < −zα/2 or z > zα/2 for a

two-tailed test and if z > zα for a one-tailed test. α = 1− c, and zα/2 and zα are the cutoff

17

Page 19 of 38

URL: http://mc.manuscriptcentral.com/rejf

The European Journal of Finance

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

values for the inverse standard normal cumulative distribution of α and α/2, respectively.

Tables 5 and 6 show back-testing results based on the standard normal hypothesis test.

6.3 Basel “traffic light” test

The Basel “traffic light” approach to back-testing the VaR was originally proposed by the

Basel Committee of Banking and Supervision (BCBS) and is described in (on Banking Su-

pervision, 1996). In a new accord, the BCBS further came up with a set of requirements

that the VaR model must satisfy for it to be considered a reliable risk measure (Resti, 2008).

That is, (i) VaR must be calculated with 99% confidence, (ii) back-testing must be done

using a minimum of a one year observation period and must be tested over at least 250 days,

(iii) regulators should be 95% confident that they are not erroneously rejecting a valid VaR

model, and (iv) Basel specifies a one-tailed test —it is only interested in the underestimation

of risk. Table 4 shows the acceptance region for the Basel “traffic light” approach.

Zone Number of Exceptions CumulProb
Green ≤ 4 89.22%
Yellow 5 95.88%

6 98.63%
7 99.60%
8 99.89%
9 99.97%

Red ≥ 10 99.99%

Table 4: Acceptance region for Basel “traffic light” approach for back-testing VaR models.
CL = 99%, T = 250 (Jorion, 2007).

Depending on the number of exceptions, the bank is placed in a red, green or yellow zone.

Test results based on this test are shown in Table 7

6.4 Kupiec’s POF test

Kupiec defined an approximate 95% confidence region whereby the number of exceptions

produced by the model must be within this interval for it to be considered a reliable risk

measure. The confidence region is approximated using a chi-square distribution with one
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degree of freedom, defined as

LRPF = 2ln

[

(

1− N
T

)T−N (

N
T

)N

qT−NpN

]

. (26)

Assuming one degree of freedom and at a 5% confidence level, the chi-square value is 3.841.

Hence, by equating Eq.(26) to 3.841 and solving for N , we obtain two values of N ; the

rejection region is [x1, x2]. The VaR model is rejected if N /∈ [x1, x2] and accepted if N ∈

[x1, x2] (Holton, 2002). Results based on this test are shown in Tables 8 and 9.

Exceptions VaR Coverage (%) Z-score Accept one tail? Accept two tail?
Portfolio CL 250 500 250 500 250 500 250 500 250 500

UK 99% 28 27 0.98 0.94 -0.13 -0.32 Yes Yes Yes Yes
95% 141 138 4.94 4.81 -0.21 -0.47 Yes Yes Yes Yes
90% 277 264 9.65 9.20 -0.62 -1.43 Yes Yes Yes Yes

Germany 99% 27 26 0.94 0.91 -.32 -.50 Yes Yes Yes Yes
95% 137 132 4.78 4.60 -0.55 -0.98 Yes Yes Yes Yes
90% 266 259 9.27 9.03 -1.24 -1.66 Yes Yes Yes Yes

Greece 99% 27 27 0.94 0.94 -0.32 -0.32 Yes Yes Yes Yes
95% 143 140 4.98 4.88 -0.04 -0.30 Yes Yes Yes Yes
90% 282 279 9.83 9.27 -0.30 -0.49 Yes Yes Yes Yes

Spain 99% 27 27 0.94 0.94 -0.32 -0.32 Yes Yes Yes Yes
95% 142 142 4.95 4.95 -0.12 -0.12 Yes Yes Yes Yes
90% 283 283 9.86 9.86 -0.24 -0.24 Yes Yes Yes Yes

France 99% 26 26 0.91 0.91 -0.50 -0.50 Yes Yes Yes Yes
95% 140 130 4.88 4.53 -0.30 -1.15 Yes Yes Yes Yes
90% 272 253 9.48 8.82 -0.93 -2.11 Yes Yes Yes Yes

Italy 99% 27 27 0.94 0.94 -0.32 -0.32 Yes Yes Yes Yes
95% 143 143 4.98 4.98 -0.04 -0.04 Yes Yes Yes Yes
90% 283 281 9.86 9.79 -0.24 -0.37 Yes Yes Yes Yes

Sweden 99% 27 25 0.94 0.87 -0.32 -0.69 Yes Yes Yes Yes
95% 141 137 4.91 4.78 -0.21 -0.55 Yes Yes Yes Yes
90% 280 269 9.76 9.38 -0.43 -1.11 Yes Yes Yes Yes

Table 5: Testing the reliability of the VaR model based on a standard normal hypothesis
test. Returns generated using selected Archimedean copulas; time horizon = 1 day, 250-day
and 500-day observation periods.
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Exceptions VaR Coverage (%) Z-score Accept one tail? Accept two tail?

Portfolio CL 250 500 250 500 250 500 250 500 250 500

UK 99% 27 27 0.94 0.94 -0.32 -0.32 Yes Yes Yes Yes
95% 142 141 4.95 4.91 -0.12 -0.21 Yes Yes Yes Yes
90% 281 273 9.79 9.52 -0.37 -0.87 Yes Yes Yes Yes

Germany 99% 27 27 0.94 0.94 -.32 -.32 Yes Yes Yes Yes
95% 140 132 4.88 4.60 -0.30 -0.98 Yes Yes Yes Yes
90% 279 264 9.72 9.20 -0.47 -1.36 Yes Yes Yes Yes

Greece 99% 23 23 0.80 0.80 -1.07 -1.07 Yes Yes Yes Yes
95% 122 121 4.25 4.22 -1.84 -1.92 Yes Yes Yes Yes
90% 253 245 8.82 8.54 -2.11 -2.61 Yes Yes Yes Yes

Spain 99% 27 27 0.94 0.94 -0.32 -0.32 Yes Yes Yes Yes
95% 142 137 4.95 7.78 -0.12 -0.55 Yes Yes Yes Yes
90% 279 271 9.72 9.45 -0.49 -0.99 Yes Yes Yes Yes

France 99% 27 27 0.94 0.94 -0.32 -0.32 Yes Yes Yes Yes
95% 139 135 4.84 4.71 -0.38 -0.72 Yes Yes Yes Yes
90% 280 286 9.76 9.34 -0.43 -1.18 Yes Yes Yes Yes

Italy 99% 27 27 0.94 0.94 -0.32 -0.32 Yes Yes Yes Yes
95% 140 140 4.88 4.88 -0.30 -0.30 Yes Yes Yes Yes
90% 282 275 9.83 9.59 -0.74 -0.30 Yes Yes Yes Yes

Sweden 99% 27 25 0.94 0.87 -0.32 -0.69 Yes Yes Yes Yes
95% 141 134 4.91 4.67 -0.21 -0.81 Yes Yes Yes Yes
90% 278 263 9.69 9.17 -0.55 -1.49 Yes Yes Yes Yes

Table 6: Testing the reliability of the VaR model based on standard normal hypothesis
test. Returns generated using selected elliptical copulas; time horizon = 1 day; 250-day and
500-day observation periods.
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Exceptions CumulProb OneTail % CumulProb TwoTail % Zone OneTail Zone TwoTail Accept OneTail? Accept TwoTail?
Portfolio CopulaFamily 250 500 250 500 250 500 250 500 250 500 250 500 250 500

UK Archimedean 28 27 49.81 42.32 99.96 99.91 Green Green Yellow Yellow Yes Yes Yes Yes
Elliptical 27 27 42.32 42.32 99.91 99.91 Green Green Yellow Yellow Yes Yes Yes Yes

Germany Archimedean 27 26 42.32 35.01 99.91 98.82 Green Green Yellow Yellow Yes Yes Yes Yes
Elliptical 27 27 42.32 42.32 99.91 99.91 Green Green Yellow Yellow Yes Yes Yes Yes

Greece Archimedean 27 27 42.32 42.32 99.91 99.91 Green Green Yellow Yellow Yes Yes Yes Yes
Elliptical 23 23 16.52 16.52 98.80 98.80 Green Green Yellow Yellow Yes Yes Yes Yes

Spain Archimedean 27 27 42.32 42.32 99.91 99.91 Green Green Yellow Yellow Yes Yes Yes Yes
Elliptical 27 27 42.32 42.32 99.91 99.91 Green Green Yellow Yellow Yes Yes Yes Yes

France Archimedean 26 26 35.00 35.00 99.82 99.82 Green Green Yellow Yellow Yes Yes Yes Yes
Elliptical 27 27 42.32 42.32 99.91 99.91 Green Green Yellow Yellow Yes Yes Yes Yes

Italy Archimedean 27 27 42.32 42.32 99.91 99.91 Green Green Yellow Yellow Yes Yes Yes Yes
Elliptical 27 27 42.32 42.32 99.91 99.91 Green Green Yellow Yellow Yes Yes Yes Yes

Sweden Archimedean 27 25 42.32 28.14 99.91 99.65 Green Green Yellow Yellow Yes Yes Yes Yes
Elliptical 27 25 42.32 28.14 99.91 99.65 Green Green Yellow Yellow Yes Yes Yes Yes

Table 7: Testing the reliability of the VaR model based on BCBS requirements. Time horizon = 1 day; 250- and 500-day
observation periods. CumulProb = cumulative probability.
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Exceptions Test Statistic Accept?
Portfolio CL 250 500 250 500 250 500

UK 99% 28 27 0.02 0.10 Yes Yes
95% 141 138 0.04 0.22 Yes Yes
90% 277 264 NaN NaN No No

Germany 99% 27 26 0.10 0.26 Yes Yes
95% 137 132 0.31 0.99 Yes Yes
90% 266 259 NaN NaN No No

Greece 99% 27 27 0.1 0.1 Yes Yes
95% 143 140 0.00 0.09 Yes No
90% 282 279 NaN NaN No No

Spain 99% 27 27 0.10 0.10 Yes Yes
95% 142 142 0.02 0.02 Yes Yes
90% 283 283 NaN NaN No No

France 99% 26 26 0.26 0.26 Yes Yes
95% 140 130 0.09 1.37 Yes Yes
90% 272 253 NaN NaN No No

Italy 99% 27 27 0.10 0.10 Yes Yes
95% 143 143 0.00 0.00 Yes Yes
90% 283 281 NaN NaN No No

Sweden 99% 27 25 0.10 0.50 Yes Yes
95% 141 137 0.04 0.31 Yes Yes
90% 280 269 NaN NaN No No

Table 8: Testing the reliability of the VaR model based on Kupiec’s POF coverage test.
Returns generated using Archimedean copulas. Time horizon = 1 day; 250-day and 500-day
observation periods.
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Exceptions Test Statistic Accept?
Portfolio CL 250 500 250 500 250 500

UK 99% 27 27 0.10 0.10 Yes Yes
95% 142 141 0.02 0.04 Yes Yes
90% 281 273 NaN NaN No No

Germany 99% 27 27 0.10 0.10 Yes Yes
95% 140 132 0.09 0.99 Yes Yes
90% 279 264 NaN NaN No No

Greece 99% 23 23 1.22 1.22 Yes Yes
95% 122 121 3.55 3.90 Yes No
90% 253 245 NaN NaN No No

Spain 99% 27 27 0.10 0.10 Yes Yes
95% 142 137 0.02 0.31 Yes Yes
90% 279 271 NaN NaN No No

France 99% 27 27 0.10 0.10 Yes Yes
95% 139 135 0.15 0.53 Yes Yes
90% 280 268 NaN NaN No No

Italy 99% 27 27 0.10 0.10 Yes Yes
95% 140 140 0.00 0.00 Yes Yes
90% 282 275 NaN NaN No No

Sweden 99% 27 25 0.10 0.50 Yes Yes
95% 141 134 0.04 0.67 Yes Yes
90% 278 263 NaN NaN No No

Table 9: Testing the reliability of the VaR model based on Kupiec’s POF coverage test. Re-
turns generated using elliptical copulas. Time horizon = 1 day; 250- and 500-day observation
periods.

7 Summary and Conclusion

Because VaR models attempt to capture the behaviour of asset returns in the left tail, it is

important that the model is constructed such that it does not underestimate the proportion

of outliers and hence the true VaR. The normality assumption of asset returns might severely

underestimate the true VaR because extreme values are assumed to be very unlikely to occur.

Therefore for a reliable VaR model, it is important to take into account the choice of time

horizon, the observation period, and the type of volatility models being used. We construct

our VaR model using copulas with a DCC M-GARCH volatility model for a time horizon of

one day. We then check the reliability of the model by back-testing on a window of 250 and

500 observation periods and record the number of exceptions produced.

As the observation period increases from 250 to 500 days at a 99% confidence level, the

number of exceptions produced is unchanged using elliptical copulas with the exception of
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Sweden, which exhibits a difference of 2. With Archimedean copulas, there is a difference

of 1, 1, and 2 for the UK, Germany and Sweden, respectively, at the 99% confidence level.

The number of exceptions produced is also very close to the expectation (i.e., 29) with the

exception of Greece for the elliptical Student’s-t copula. This suggests that the model at

a 99% confidence level captures VaR extremely well because the difference in exceptions is

very minimal or zero.

At the 95% confidence level, there is a significant difference between the number of

exceptions produced in some of the countries when using 250- and 500-observation periods

for both Archimedean and elliptical copulas. Although the number of exceptions is quite

close to the expectation, 143, the significant difference indicates that there is greater room

for error in estimating VaR at the 95% compared with the 99% confidence level. However,

back-testing results indicate that the VaR model performed quite well at the 95% confidence

level except for the models of Greece in the 500-observation period.

At a 90% confidence level, the difference in the number of exceptions is quite high for

both copula families. The tail dependence structure of the portfolio returns is not quite

accounted for and hence, the model fails to capture extreme events.

Back-testing results from Kupiec’s POF test confirm the above analysis. The model is

accepted at the 99% and 95% confidence levels for both copula families except for in Greece,

where the elliptical Student’s-t copula rejects the model at a 95% confidence level with a

500-day observation period. At a 90% confidence level, Kupiec’s POF test rejects the model

for both copula families.

For the standard normal hypothesis test and Basel “traffic light” test, we perform one-

and two-tailed tests. Although Basel is only concerned with the underestimation of risk,

we performed a two-tailed test to make sure that the model does not overestimate risk and

thereby result in excess capital being provided (Best, 2000). The model is accepted in all

cases for both one-tailed and two-tailed tests. However, for both Archimedean and elliptical

copulas, the Basel “traffic light” test places the VaR model in the yellow zone for a two-
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tailed test when using 250- and 500-observation periods, suggesting that there might be some

instances of overestimation of risk since for a one-tailed test the model falls in the green zone

in all instances.

It is also important to note that the standard normal hypothesis test and the Basel “traffic

light” test do not specify whether the number of exceptions produced is too small. That

is, the model will not be rejected if the number of exceptions is too low, which would lead

to overestimation of VaR. Kupiec’s POF test rejects the model if the number of exceptions

produced is too high or too low. This is why the standard normal hypothesis test and Basel

“traffic light” test fail to reject the model at the 90% confidence level. Thus, from the

banks perspective, Kupiec’s POF test is preferable and superior because it accounts for both

underestimation and overestimation of risk. Back-testing results also suggest that the type

of copula family used (i.e., elliptical or Archimedean) to model the dependence structure

does not have a strong effect when dealing with quantile VaRs. The results are quite similar

based on the number of exceptions produced.

This study suggests a challenging yet possible development in the world of risk manage-

ment, that is, to design a model based on the Basel requirements that detects when the

number of exceptions produced by a VaR model is too low.
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Time plots of daily log return series for French stocks indicating presence of volatility clustering.  
 

291x164mm (72 x 72 DPI)  

 

 

Page 32 of 38

URL: http://mc.manuscriptcentral.com/rejf

The European Journal of Finance

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

  

 

 

Time plots of daily log return series for German stocks indicating presence of volatility clustering.  
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Time plots of daily log return series for Greek stocks indicating presence of volatility clustering.  
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Time plots of daily log return series for Italian stocks indicating presence of volatility clustering.  
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Time plots of daily log return series for Spanish stocks indicating presence of volatility clustering.  
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Time plots of daily log return series for Swedish stocks indicating presence of volatility clustering.  
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Time plots of daily log return series for UK stocks indicating presence of volatility clustering.  
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