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Abstract

We study an evolutionary model akin to the one studied in Anwar (2002) where

a set of agents use myopic best response learning to i) determine their action in a

2× 2 coordination game and ii) to choose on which of multiple islands to interact. We

focus on the case where the number of agents maximally allowed on each islands is

constrained. We extend Anwar’s original analysis by considering the case when there

may be more than two islands. We find that if the constraints are such that one island

may be empty, universal coordination on the payoff dominant action is possible in the

long run. If the constraints are such that all islands will be full, then for relatively mild

constraints, and apart from special cases, the coexistence of conventions will occur,

with one island coordinating on the risk dominant action and all remaining islands

coordinating on the payoff dominant action. For relatively stringent constraints all

agents will play the risk dominant action.
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1 Introduction

There are many circumstances where individuals can benefit from coordinating on the same

action, as e.g. a common technology standard (e.g. IOS vs. Android OS) or norm (metric

vs. imperial system of measurement). These situations give rise to coordination games

with multiple strict Nash equilibria. A large literature has addressed the question of which

equilibria emerge in the long run when agents adopt their behavior using simple rules of

thumb, such as imitation or (myopic) best response learning (see e.g. Weidenholzer (2010)

for a survey). The main message that arises from this literature is that when the interaction

structure is fixed, players reach profiles where everybody chooses the same action. Moreover,

when agents use myopic best response learning risk dominant conventions will emerge, that

is the population will end up using strategies that do well against mixed profiles, but do not

necessarily carry a high payoff when everybody adopts them (see e.g. Ellison (1993, 2000)

and Young (1993)).1,2

In such a setting it is a natural question to ask what happens if agents are not organized in

a fixed interaction structure, but may influence the set of their interaction partners. One way

of choosing one’s interaction partners is presented by models of network formation, see e.g.

Jackson & Watts (2002), Goyal & Vega-Redondo (2005), or Staudigl & Weidenholzer (2014).

An alternative branch of the literature has considered settings (see e.g. Oechssler (1997),

Dieckmann (1999), Anwar (2002), Ely (2002) and Blume & Temzelides (2003)) where agents

may identify their preferred interaction partners by deciding on which of multiple islands

to play the game on. The interaction structure on islands is fully connected, meaning that

everybody interacts with everybody else on their island, and there are no interactions across

islands. Interactions on islands are thus characterized by extreme clustering. This form of

endogenously formed interactions corresponds to choosing circles of friends or cliques rather

1Under imitation learning which convention will be selected depends on the information and interaction
structures and the properties of the imitation rule, see e.g. Kandori et al. (1993) Robson & Vega-Redondo
(1996) or Alós-Ferrer & Weidenholzer (2008, 2014).

2See also Dawid (1997) for a learning rule, using even less information than imitation learning, which
converges to the risk dominant convention in the presence of mistakes.
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than individually picking interaction partners.

We contribute to this literature by studying the implications of constraints limiting the

number of players that may reside at each location. Such constraints could for instance be

the result of natural limitations such as the space available on each island. In particular,

we present a model with islands, similar to the one of Anwar (2002), where each agent

interact with all the other agents in the same island, and agents use myopic best response

learning to i) determine their action in a coordination game with a payoff dominant- and

a risk dominant- equilibrium and to ii) choose on which of multiple islands to play the

game on. Under myopic best response learning players choose an action and island that

gives the highest payoff against the previous distribution of strategies of their opponents.

This captures the idea that they are not able to form a forecast on their opponents’ future

behavior and, thus, react to the current distribution of play.3 We believe this assumption

to be particulary apt for consumers’ choices of a technology standard or norm which most

probably rely to a large extent on the current distribution in the population rather than on

the consumers’ beliefs on future distributions of play. In addition, we assume that when an

agent is indifferent between various actions and/or islands, she randomizes between the set

of all profiles giving the highest payoffs. Further, whenever a desired location is at capacity,

moving there is not possible, and whenever the set of agents wanting to move to an island

exceeds its capacity only a random subset of agents is allowed to move.

We extend Anwar’s (2002) model by allowing the set of available locations to be larger

than two. By considering this more general and realistic setting, we are able to provide a

comprehensive picture of the role of (restricted) mobility on long run behaviour.

As a possible application of the setting we have in mind, consider the following example

which borrows heavily from Shi (2015). There is a number of industrial parks for a popu-

lation of firms developing software. The number of firms that may reside at each park is

constrained by space. Firms receive payoff from engaging in projects with the other firms

3We remark that the main results of our model would also hold under the imitate the best max rule (see
e.g. Robson & Vega-Redondo 1996) where players imitate the actions of the most successful agents in the
population. See footnote 13 for details.

3



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

at their industrial park but do not benefit from firms at other parks. There are two differ-

ent development platforms. The first is more efficient in the sense that it gives the highest

payoff when used against itself. The second is more compatible in the sense that it gives a

lower payoff when used against itself but gives a relatively high payoff when used against

the former. Thus, the first platform is payoff dominant and the second is risk dominant. In

this setting we provide a characterization of the set of long run outcomes depending on the

properties of the platforms, the size of the population and the size of each software park.

We find that the best response dynamic will converge to states with the following prop-

erties: i) On each island only the same action is played. This stems from the fact that the

underlying game is a coordination game. ii) The population is concentrated on the fewest

possible islands. The reason behind this observation is that agents who are indifferent among

islands (where the same action is played) are assumed to choose all such islands with positive

probability and will, thus, move across islands. Hence, the process will at some point reach a

state where certain islands are empty. Note that whether there are empty islands or not will

depend on the capacity constraint. iii) Islands where the payoff dominant action is played

will be at capacity. For, if there are payoff dominant islands with spare capacity, agents on

islands where the risk dominant action is played will change their action and move to them.

We are interested in which state will emerge in the long run when the agent’s choices are

perturbed by occasional mistakes à la Kandori et al. (1993) and Young (1993). In a nutshell,

states that are most robust to mistakes will emerge as long run equilibria, LRE.

Anwar (2002) has shown that with two islands either all agents will choose the risk

dominant action in the long run or the coexistence of conventions will occur, where agents

on one island will choose the payoff dominant action and agents on the other island will

choose the risk dominant action.4 In the case where there may be more than two islands, we

find that if the constraints are such that one island may be empty, universal coordination

on the payoff dominant action is possible in the long run. If the constraints on capacity

are such that all islands will be occupied, our results generalize those in Anwar (2002) to

4 See Goyal & Janssen (1997) and Alós-Ferrer & Weidenholzer (2007) for models where the co-existence
of conventions may be observed on the circle.
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more than two islands. In particular, if the constraints are relatively mild (within the range

of relevant constraints) such that the smallest size of a populated island is relatively small

compared to the largest size of an island (implied by capacity), apart from special cases,

the coexistence of conventions will occur, with one island coordinating on the risk dominant

action and all remaining islands coordinating on the payoff dominant action. For relatively

stringent constraints on capacity all agents will play the risk dominant action.

Let us provide some intuition for Anwar’s (2002) and our findings. First, consider the

case where, as in Anwar (2002), the constraints and the population are such that it requires

all of the islands to shelter the entire population. If the payoff dominant action is played

on some (but not all) of the islands, then all agents want to move to these islands, up until

the point where they are at full capacity. On the contrary, the population on the islands

where the risk dominant action is played will be relatively small. Thus, while islands where

the payoff dominant action is played take a small fraction of a large population to make a

mistake in order for the island to switch, islands where the risk dominant action is played

will take a large fraction of a small population to switch. Hence, whenever constraints on

capacity are relatively mild, so that the minimum size of a populated island is small compared

to the maximum size of an island, we will observe all but one island coordinating on the

payoff dominant action. If the constraints are relatively strict, so that the minimum size of a

populated island is relatively large, universal coordination on the risk dominant action will

obtain. With more than two islands we may have a third force at play, as the constraints

can be such that some islands are empty. If now an agent makes a mistake, moves to an

empty island and starts playing the payoff dominant action, other agents will follow up to

the point where the island is fully occupied. Thus, with one mistake we can increase the

number of payoff dominant islands. This implies that whenever the population size and the

constraints are such that there may be empty islands, the payoff dominant convention will

be a long run equilibrium.

Our results, thus, suggest that constrained mobility does not necessarily have to go hand

in hand with inefficient outcomes. What matters more is the questions of whether the
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constraints are such that there can be empty islands from which payoff dominant action

may spread or whether there are no such islands. Thus, the number of islands is a policy

variable (keeping total capacity fixed), it would be desirable from a welfare point of view to

have a lot of relatively small islands. In the context of the software firm example from above

a designer should aim for a setting where at least one industrial park may be potentially

empty. This empty park will then provide firms with a springboard from which the efficient

programming language may be introduced.5

Related Literature

Our results provide a bridge between the unconstrained mobility models of Oechssler (1997)

and Ely (2002), where payoff dominant profiles are selected, and the models of restricted

mobility of Anwar (2002) and others (see below). Whenever the constraints are such that

there may be empty islands, our results are in line with those of the unrestricted mobility

literature. If there are, however, no such islands, our results may be seen as a generalization

of those by Anwar (2002) to the case of more than two islands.

In addition to Anwar (2002), Dieckmann (1999) and Blume & Temzelides (2003) present

models where agents may reside on one of multiple islands and there are restrictions limiting

movement across locations. Dieckmann (1999) studies imitative behavior and finds that im-

perfect observability of play and frictions in movement can not prevent efficient conventions

from arising. Her analysis of capacity constraints is in line with Anwar in showing that

payoff dominant conventions are never observed when there are only two islands. Blume

& Temzelides (2003) differs by modelling restricted mobility through mobile and immobile

agents, rather than restrictions in capacity. If there are few islands, universal coordination

on risk dominant conventions is observed. If the number of islands is large, the payoff domi-

nant action is played on one island and all mobile agents will reside at that island. All other

islands will be inhabited by immobile agents playing the risk dominant action. Shi (2015)

studies a game between two rational policy makers who set constraints on the number of

5In fact, from the point of view of the designer, there might be a trade off. On one hand, an empty park
means a waste of resources; on the other hand, an empty park can lead all firms to coordinate on the efficient
programming language or platform.
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agents maximally allowed on their respective island and whose payoff depends on the result-

ing long run behavior of players on their island. The characterization of the game between

policy makers encompasses a complete analysis of long run behaviour under asymmetric

capacity constraints. Abstracting from special cases, the analysis of asymmetric contraints

in Shi (2015) confirms the results of Anwar. If capacity constraints are stringent, universal

coordination on risk dominate conventions will obtain and if both capacity constraints are

large, the coexistence of convention arises with the payoff dominant action being played on

the island with the larger capacity constraint.6

The remainder of this paper is organized in the following way. Section 2 presents the

model. Section 3 presents and discusses our main results. In section 4 we discuss the impli-

cations of immobile agents and present results for the case when constraints are heterogenous

across islands. Section 5 concludes.

2 The model

We consider a population of kN agents who reside on k ≥ 2 different islands. Each of these

islands can only shelter M agents. We assume N < M < kN , so that one location may

not shelter the entire population and there is enough total capacity to shelter the entire

population. Using the notation of Anwar (2002), the maximal number of agents on an island

is M = dN with 1 < d < k.7

Agents only interact with other agents on their island and have to use the same action

in all of their interactions. The payoff of an agent is given by the average payoff of playing

6See Section 4.2 for a discussion of heterogeneous capacity constraints when there are more than two
islands.

7In fact, Anwar (2002) considers two forms of restriction on mobility. First, there are constraints on the
maximally allowed number of agents on each island. Second, a certain fraction of the population of each
island (the so-called patriots) may never change location. Section 4.1 provides a discussion of patriots in the
case where k ≥ 2. While the two forms of restricted mobility are equivalent when k = 2 (see footnote 14)
they will have different implications when k ≥ 3.

7



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

the following coordination game against all other agents on her island.

s1 s2

s1 A,A B,C

s2 C,B D,D

We assume A > C and D > B, so that (s1, s1) and (s2, s2) are strict Nash equilibria. We

further assume A > D, so that the equilibrium (s1, s1) is payoff dominant, and C+D > A+B,

so that (s2, s2) is risk dominant, i.e. s2 is the unique best response against an agent playing

both strategies with probability 1
2
. We denote the critical mass on action s1 in the mixed

strategy Nash equilibrium by

q∗ =
D −B

A− C +D −B.

Note that by risk dominance q∗ > 1
2
. In addition, we focus on coordination games where

C ≥ D.8 We further assume that an agent who is alone on an island earns a payoff of ū < B,

implying that agents prefer playing the game over being alone on an island.

Time is discrete t = 1, 2, . . .. Each period each agent chooses an action that gives the

highest average payoff against the profile of actions played on her island in the previous

period. In addition, with positive probability each agent may choose an island where to

reside. When such an opportunity arises an agent chooses an action and a location that

maximize the payoff given the overall distribution of actions across all islands in the previous

period. We assume random tie breaking, i.e. in case of multiple best responses an agent

randomizes among all of them. If an island is at capacity M , an agent is not allowed to

move to this island and stays at her original island. If the number of agents intending to

move to an island exceeds available capacity, then only a random subset (equal to available

capacity) is allowed to move. Thus, as in Anwar (2002), we consider a myopic best response

process without inertia in the action choice but with inertia in the choice of islands. With

8It has been observed by Shi (2013) that if C < D, the transitions among the various absorbing sets can
differ from the one found in Anwar (2002). For ease of exposition we have decided to focus on the case where
this does not occur. The qualitative results of the present model will stay the same, though, if C < D. See
also footnote 11.
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probability ε, independent across agents and time, an agent ignores the prescription of the

adjustment process and chooses a location and an action at random.

We denote by ni the number of players on island i and by n1
i the number of s1 players

on island i. The number of s2 players on location i is, thus, given by n2
i = ni − n1

i . In the

following we refer to a populated island i where all players play the payoff dominant action,

n1
i = ni > 0, as payoff dominant island and to a populated island i where all players play

the risk dominant action, n2
i = ni > 0, as risk dominant island. Using vector notation, so

that ~n, ~n1, ~n2 ∈ Rk
+, we denote a state of this system by a tuple of vectors (~n, ~n1) . Note that

~n2 = ~n− ~n1.

The state space of our model can, hence, be characterized as

S =
{(
~n, ~n1

)∣∣ni ∈ {0, . . . ,M}, n1
i ∈ {0, . . . , ni}

}
.

We denote by k = dkN
M
e the smallest number of locations required to shelter the entire

population. Finally, we denote by m the size of the location when the other k − 1 locations

are at capacity,

m = kN −M(k − 1).

2.1 Review of techniques

The process without mistakes (ε = 0) is called unperturbed process. Ω denotes the set of

absorbing sets of this process and ω ∈ Ω denotes one such absorbing set. The process with

mistakes (ε > 0) is referred to as perturbed process. Any two states can be reached from

each other under the perturbed process. Hence, there is only absorbing set which process

corresponds to the entire state space, implying that the process is ergodic. The unique

invariant distribution of this process is denoted by µ(ε). We are interested in the limit

invariant distribution (as the error rate goes to zero), µ∗ = limε→0 µ(ε). This distribution

exists (see Foster & Young (1990), Young (1993), or Ellison (2000)) and it is an invariant

distribution of the unperturbed process. It provides a stable prediction for the unperturbed
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process. If ε is small enough the play in the long run corresponds to the distribution of play

described by µ∗. States in the support of µ∗, are referred to as stochastically stable states or

Long Run Equilibria (LRE). We denote the set of LRE by S = {ω ∈ Ω | µ∗(ω) > 0}. Let us

provide an overview of the Freidlin & Wentzell (1988) algorithm to identify the set of LRE.9

Consider two absorbing sets of states ω and ω′ and let τ(ω, ω′) > 0 be the transition cost,

i.e. the minimal number of mistakes under the perturbed process for moving from ω to ω′.

An ω-tree corresponds to a directed tree where the nodes of the tree are given all absorbing

sets, and the tree is directed into the root ω. The cost of a tree is calculated as the sum of

the costs of transition on each edge. Freidlin & Wentzell (1988) have shown that a set ω is

a LRE (or stochastically stable) if and only if it is the root of a minimum cost tree.

3 Results

We first characterize the absorbing sets of our process. In a nutshell, these will be made up of

states where i) the population is concentrated on the fewest islands possible, ii) on each island

all players play the same strategy, and iii) all islands where the payoff dominant action is

played will be at capacity (unless the entire population chooses the payoff dominant action).

In the following we refer to islands where all players play the risk dominant action as risk

dominant islands and to islands where all players play the payoff dominant as payoff dominant

islands. Note there are various ways in which the populated islands can be distributed among

all islands and there are numerous ways in which payoff- and risk- dominant islands can be

distributed among the occupied islands. Thus, formally characterizing the absorbing sets is

a bit more cumbersome and requires more notation.

We use C(a, ~x) to indicate the occurrences of element a in vector ~x.10 We start with the

following observation.

Lemma 1. Any absorbing set ω ∈ Ω is such that for all states (~n, ~n1) ∈ ω,

9 See Samuelson (1997) for a textbook exposition. Ellison (2000) provides an alternative way of identifying
LRE. We work with the original formulation which also allows for a characterization in case of multiple LRE.

10As an example, if ~x = (1, 2, 3, 1), we have that C(1, ~x) = 2, C(3, ~x) = 1 and C(5, ~x) = 0. This operator
is called count operator in the Z notation, used in computer science (see e.g. Spivey & Abrial (1992)).
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i) n1
i (ni − n1

i ) = 0 for all i = 1, . . . , k

ii) C(0, ~n) = k − k

Proof. The first part follows from the observation that on each island all players have to

adopt the same action. Thus, if for some island n1
i > 0 it has to be the case that n2

i = 0 and

if n2
i > 0, n1

i = 0 has to hold. To see the second part, observe that agents who are indifferent

between various islands will move to each of these islands with positive probability. Thus,

with positive probability the process converges to states where the population is concentrated

on the fewest islands possible, k. Further, no agent at a populated islands has an incentive to

move to an empty island. Thus, at any absorbing set k−k islands will have to be empty.

Note that each absorbing set ω may contain multiple states which the process visits

with positive probability. In order to characterize theses states, we introduce a distance

relationship between them. Consider two islands, x and y, we define

δ(x, y) =





0 if nx = 0 & ny = 0

0 if n1
x = nx > 0 & n1

y = ny > 0

0 if nx − n1
x = nx > 0 & ny − n1

y = ny > 0

1 otherwise

.

In words, δ(x, y) = 0 if both islands are empty or the same action is played on them. We

then define the distance between two states (~n, ~n1) and (~n′, ~n′1) as

d
((
~n, ~n1

)
,
(
~n′, ~n′1

))
=

k∑

i=1

δ(ni, n
′
i).

We now have:

Lemma 2. For any two states (~n, ~n1) and (~n′, ~n′1) contained in a non-singleton absorbing

set ω we have d ((~n, ~n1) , (~n′, ~n′1)) = 0.

Proof. In any absorbing set the process will only move among states where the same is-

lands are populated and on the populated islands the same action is chosen, implying

11
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d ((~n, ~n1) , (~n′, ~n′1)) = 0.

Let now Ω` denote the set of absorbing sets where on ` islands the payoff dominant action

is played, i.e.

Ω` = {ω ∈ Ω|C (0, ~n) = k − k&C
(
0, ~n1

)
= k − k + `∀ (~n, ~n1) ∈ ω}.

An element of Ω` is denoted by ω`. We refer to the set of absorbing sets Ω0 and Ωk as the

risk dominant- and the payoff dominant- convention, respectively. All other sets of absorbing

sets feature the coexistence of conventions and are referred to as mixed sets. The following

lemma characterizes the size of the population on each occupied island in an absorbing set.

Lemma 3. Consider an absorbing set ω`. Then it holds:

i) If 0 ≤ ` ≤ k − 2, then for all states (~n, ~n1) ∈ ω`, n
1
i = M for all islands i with n1

i > 0

and nj − n1
j ∈ {m,m+ 1, . . . ,M} for all islands j with nj − n1

j > 0.

ii) If ` = k − 1, then for all states (~n, ~n1) ∈ ω`, n
1
i = M for all islands i with n1

i > 0 and

nj − n1
j = m for the island j with nj − n1

j > 0.

iii) If ` = k, then for all states (~n, ~n1) ∈ ωk, n1
i ∈ {m,m + 1, . . . ,M} for islands i with

n1
i > 0.

Proof. Let us start with ii) where the risk dominant action is played on one island. As agents

who are given the opportunity to switch islands will move to islands where s1 is played, the

k− 1 islands where s1 is played will be full. On the only islands where s2 is played m agents

will be stuck using the risk dominant action. To see i), note that if s2 is played on more

than one island, again islands where s1 is played (provided that there are any) will have to

be full. The population on the islands where s2 is played will be indifferent on which of the

s2 islands to reside and, thus, will move among those islands. Hence, the population on the

s2 islands will fluctuate between m and M . In case iii) s1 is played on all islands and, thus,

agents are indifferent among which of them to reside.

12
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Thus, in mixed states islands where the payoff dominant action is played will be at

capacity. If there is only one island where the risk dominant action is played, its population

is m. If there is more than one island where the risk dominant action is played the population

on these islands will fluctuate between m and M . Similarly, if the payoff dominant action is

played on all islands the population on each of these islands will also fluctuate between m

and M .

Having characterized the absorbing sets of our process, we now move on to determine

transition costs among them. To this end, we say that two absorbing sets ω and ω′ are

adjacent if every state (~n, ~n1) ∈ ω is at distance one to every state (~n′, ~n′1) ∈ ω′, i.e. the

same islands are occupied and on all but one of these islands the same action is played.

Furthermore, if an absorbing set ω` (with 1 ≤ ` ≤ k − 1) is adjacent to another absorbing

set ωm, it follows that either m = `− 1 or m = `+ 1.

The following series of lemmata characterizes transition costs among absorbing sets. The

first two of those focus on the case when there are empty islands, which means that k < k.

Lemma 4. If k < k, then for every absorbing set ω` with 0 ≤ ` ≤ k − 1 there exists an

absorbing set ω`+1 with τ(ω`, ω`+1) = 1.

Proof. Assume an agent who resides on an island where everybody chooses the risk dominant

action makes a mistake, moves to an empty island, and starts playing the payoff dominant

action. All agents given revision opportunity will follow the mutant up to the point where

the island is full.

Lemma 5. If k < k, then all absorbing sets ω` ∈ Ω` can be reached from one another via a

chain of single mutations.

Proof. Again, assume one agent mutates, moves to an empty island but, this time, keeps his

current action. With positive probability, agents from other islands where that strategy is

played will follow and we reach a new state where the initially empty island is occupied and

some initially occupied island is empty. Iterating this argument, we can move among all sets

in Ω` via a chain of single mutations.
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The following lemma characterizes transitions to sets of states with more risk dominant

islands.11

Lemma 6.

i) For any two adjacent absorbing sets ωk and ωk−1, the transition cost is τ(ωk, ωk−1) =

dm(1− q∗)e;

ii) For any two adjacent absorbing sets ω` and ω`−1, with 0 ≤ ` ≤ k − 1, the transition

cost is τ(ω`, ω`−1) = dM(1− q∗)e.

Proof. Consider part i). For any absorbing set ωk the process moves among states where the

population on each island fluctuates between m and M . Consider a state where the number

of s1 players on one island is minimal at m. If dm(1− q∗)e agents mutate to s2 all remaining

s1 players will find it optimal to switch to s2 and we reach an adjacent state in Ωk−1.

Part ii) follows from the fact that in all absorbing sets ω` with 1 ≤ ` ≤ k − 1 the s1

islands are full. Thus, it takes dM(1−q∗)e mutations to reach an adjacent state in Ω`−1.

The next lemma analyzes transitions where the number of payoff dominant islands in-

creases in the scenario where all islands are populated.

Lemma 7. If k = k, for any two adjacent absorbing sets ω` and ω`+1, with 0 ≤ ` ≤ k − 1,

the transition cost is given by τ(ω`, ω`+1) = dmq∗e.

Proof. For any absorbing set ω`, with 0 ≤ ` ≤ k − 1, the process moves among states where

the population on the risk dominant islands is either m or fluctuates between m and M .

Consider a state such that the number of s2 players on a risk dominant island is minimal at

m. If dmq∗e players on this island mutate to s1 all remaining s2 players will find it optimal to

switch to s1 and we have reached an adjacent state with one more payoff dominant island.

11 Shi (2013) has shown that if D > C transitions that increase the number of islands on which s2 is played
may occur through an alternative cheaper route. In a first step, s1 players have to mutate to s2 such that
all players allowed will move to an s2 island. Once this is achieved, dm(1 − q∗)e of the remaining players
still have to switch. While this may change the number of mutation required, it is, however, still true that
a certain fraction of players on an island has to mutate. While the derivation of the number of mistakes
required for a transition may be different when D > C, the qualitative nature of the results in Anwar (2002)
remains.
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ω0 ω1 ω` ωk−1 ωk

dmq∗e dmq∗e dmq∗e dmq∗e

dm(1− q∗)edM(1− q∗)edM(1− q∗)edM(1− q∗)e

Figure 1: Transition costs for k = k

We summarize the transition costs in the case where k = k in Figure 1.

The final lemma shows that when finding minimum cost trees for the various absorbing

sets, it is sufficient to restrict attention to sets of absorbing sets Ω`. To this end, we define

a reduced ω`-tree as a tree directed into the root ω` with the set of nodes being comprised

by one absorbing set ωm for each of the sets of absorbing sets Ωm with m 6= `.12

Lemma 8. If for an absorbing set ω` there exists a reduced minimum cost ω`-tree, then for

each ω′` ∈ Ω` there also exists a ω′`-minimum cost tree.

Proof. If k > k lemma 5 implies that all absorbing sets ω` ∈ Ω` can be reached from one

another via a chain of single mutations and the claim follows. Next, consider k = k. Since

there are no empty islands, Ω0 and Ω` each contain one unique absorbing set. Consider

an absorbing set ω`. We can now construct a branch from ωk to an adjacent absorbing set

ωk−1, and so forth, finally connecting an adjacent absorbing set ω`+1 into ω`. In the same

way, we can construct a path connecting ω0 into ω`. As the cheapest way to escape every

absorbing set is to move to an adjacent set and since in this construction only one island is

changed at a time, the constructed reduced ω`-tree will have a cost no larger than the cost

of any alternative reduced ω`- tree. Further, note that in the same fashion we can construct

a reduced ω′`-tree of the same cost for each ω′` ∈ Ω`.

We now show that if there exists a reduced minimum cost ω`-tree there also exists a

minimum cost ω`-tree. To this end, we will connect all remaining absorbing sets to the

reduced ω`-tree. Again, note that the cheapest way to leave an absorbing set is by only

12 While the original cost trees in the sense of Kandori et al. (1993) and Young (1993) are defined over all
absorbing sets, reduced cost trees are only defined over a subset of absorbing sets compromising one set for
each class of absorbing sets. This lemma generalizes lemma 1 in Anwar to the case of more than two islands.
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changing the population on one island (i.e. moving to an adjacent set). By lemmata 6 and 7,

for all absorbing sets, different from ω0 and ωk, it is either cheaper to increase or decrease the

number of s1 islands. Thus, if it is cheaper to increase (decrease) the number of s1 islands

for some ωm, with 1 ≤ m ≤ k − 1, then it is cheaper to increase (decrease) the number of

s1 islands for all absorbing sets ωg, with 1 ≤ g ≤ k − 1. Thus, we can link all remaining

absorbing sets (possibly through a sequence of other sets) to the already existing part of the

tree, by simply adding branches to each absorbing set ωg that go either to an adjacent set

in Ωg + 1 or in Ωg − 1 (depending on which direction is cheaper). By moving only in the

least costly direction the total cost of the added part is minimal. Since also the first part is

of minimum cost, the resulting tree is a minimum cost tree rooted into ω`.

We can now state our main result.

Proposition 1.

a) If k < k and

i) if dm(1− q∗)e > 1, then S = Ωk

ii) if dM(1− q∗)e > dm(1− q∗)e = 1, then S = Ωk ∪ Ωk−1

iii) if dM(1− q∗)e = dm(1− q∗)e = 1, then S =
⋃k

`=0 Ω`.

b) If k = k and

i) if dmq∗e < dm(1− q)∗e < dM(1− q∗)e, then S = Ωk−1

ii) dmq∗e = dm(1− q)∗e < dM(1− q)∗e, then S = Ωk ∪ Ωk−1

iii) if dmq∗e > dM(1− q∗)e, then S = Ω0

iv) if dmq∗e = dM(1− q∗)e > dm(1− q∗)e, then S =
⋃k−1

`=0 Ω`

v) if dmq∗e = dM(1− q∗)e = dm(1− q∗)e, then S =
⋃k

`=0 Ω`.

Proof. By lemma 8 we only have to consider reduced minimum cost trees. Note that such a

reduced minimum cost tree will necessarily only involve transitions among adjacent absorbing
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sets as any transition involving two or more islands at the same time is more costly. Let

us first consider ω0 trees. By lemma 6 the cost of every reduced minimum cost ω0-tree

is (k − 1)dM(1 − q∗)e + dm(1 − q∗)e. Now consider the case where k < k. By lemma

4 the cost of every reduced minimum cost ωk-tree is k. Combining lemma 4 and lemma

6 reveals that the cost of every reduced minimum cost ω`-tree (with 1 ≤ ` ≤ k − 1) is

`+ (k− `− 1)dM(1− q∗)e+ dm(1− q∗)e. Pointing out that dM(1− q∗)e ≥ dm(1− q∗)e ≥ 1

establishes the claim in part a).

Finally, consider the case k = k. By lemma 7 the cost of every reduced minimum cost

ωk-tree is kdmq∗e. By lemmata 6 and 7 the cost of every reduced minimum cost ω`-tree

(with 1 ≤ ` ≤ k − 1) is `dmq∗e + (k − ` − 1)dM(1 − q∗)e + dm(1 − q∗)e. Noting that

dmq∗e ≥ dm(1− q∗)e and dM(1− q∗)e ≥ dm(1− q∗)e and comparing the costs of the various

reduced minimum cost trees establishes part b).

To interpret the result, recall that the smallest number of islands required to shelter

the entire population k is given by dkN
M
e. Thus, whenever the restrictions on mobility are

weak and M is large enough so that some islands will be empty, only coordination on

efficient outcomes will be observed (abstracting from the case where dM(1−q∗)e = 1 and/or

dm(1−q∗)e = 1 ). If, however, there are no such islands (k = k), then (apart from the special

case dmq∗e = dm(1−q∗)e) either the co-existence of conventions or universal coordination on

the risk dominant action will be observed. Note that in this case m = M−k(M−N). Thus,

m approaches M if the constraint becomes stricter (and M approaches N). If the constraint

is relatively weak (M large relative to m), the co-existence of conventions may occur whereas

if the constraint is relatively stringent (m large relative to M), universal coordination on

the risk dominant convention will obtain. Thus, (abstracting from non-generic cases) as the

constraint becomes stricter, the prediction switches from the payoff dominant convention, to

the co-existence of conventions, and finally to the risk dominant convention.13

13A similar result can be obtained when players base their decisions on the imitate the best max rule. The
only substantial difference is that it becomes slightly more difficult to populate previously empty islands as a
lonely player on an island earns the lowest possible payoff and will never be imitated. Instead, two mutations
are required to populate an island. Thus, the thresholds in Proposition 1 would change accordingly.
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Let us provide some technical intuition for proposition 1. If the constraint is such that

there may be empty islands, a single mistake is enough to move to states where the effi-

cient action is played on more islands. This ensures universal coordination on the efficient

convention in the long run. If the constraint is such that all islands will be occupied the

picture is more complicated. If all agents choose the payoff dominant action, then the pop-

ulation on each island will fluctuate between m and M . Thus, with dm(1 − q∗)e mistakes

we can traverse from these states to states where on one island the risk dominant action

is chosen. Note that now all payoff dominant islands will have to be full, implying that

further increasing the number of payoff dominant islands will take dM(1 − q∗)e mistakes.

Thus, states where there is one island choosing the risk dominant action and the rest of the

population chooses the payoff dominant action are more resilient to further increasing the

number of risk dominant islands than states where everybody chooses the payoff dominant

action. Finally, note that increasing the number of payoff dominant islands always takes

dmq∗e mistakes. Thus, whenever m is small relative to M and/or q∗ is close to 1
2

we observe

the coexistence of conventions. Conversely, whenever q∗ is large and m is large, we will

observe everybody choosing the risk dominant action. Note that by the argument above,

it also follows that whenever the coexistence of conventions emerges, only one island will

choose the risk dominant action.

We end this section with a remark providing a simple necessary and sufficient condition

when either part of Proposition 1, a) or b), holds.

Remark 1.

i) If k < M
M−N , then part a) of Proposition 1 holds.

ii) If k ≥ M
M−N , then part b) of Proposition 1 holds.

This statement can be easily verified by noting that k = dkN
M
e. Solving for k < k and

k = k gives the required result. In addition, note that when we consider the case k = 2

as in Anwar (2002), the first condition reads M < 2N meaning that no island can shelter

the entire population, which was one of the initial assumptions of Anwar (2002) and this
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contribution. Thus, with only two islands only case a) can occur. Thus, profiles where

everybody chooses the payoff dominant action can not occur in the long run (abstracting

from the special case where dmq∗e = dm(1− q∗)e).

4 Extensions

In the following section we provide an informal discussion of two extensions of the model.

On one hand, we provide insights on the role played by agents who are immobile and will

never leave their native island. On the other hand, we discuss the consequences of heteroge-

nous capacity constraints. While Anwar’s original formulation with two islands encompasses

patriots and Shi (2015) has analyzed the case of heterogenous capacity, the implications

of these two extensions when there are more than two islands are not known. Thus, our

discussion provides additional understanding of the mechanism at play and helps us explore

the robustness of our results.

4.1 Patriots

First of all, let us consider (in the original spirit of Anwar (2002)) what happens if we include

patriot agents in our model: i.e. agents who are immobile and cannot change islands. We do

so assuming that in addition to our previously considered agents, there are P ≥ 2 patriots

on each island who cannot leave their home island. Thus, the overall population is now given

by k(N +P ).14 We assume that capacity on each island is adjusted so to make room for the

additional (patriot) agents. That is capacity on each island is now given by M ′ = M + P

where M is the capacity in the model without patriots.

First, consider the case where in the original setup we have k = k, i.e. even in the absence

of patriots all islands would be populated. When we now add patriots to this setting (and

14When k = 2, as in Anwar (2002), the number of patriots (Np with 0 < p < 1, in his notation) is in
direct correspondence with capacity (Nc with c > 1, in his notation) of each island. Namely (see page 3
in Anwar (2002)): “The maximum number of agents who can reside at each location is therefore Nd where
d = min{c, 2− p} and 1 < d < 2”.
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adjust capacity accordingly), the prediction stays in line with the case where there are no

patriots. The reason behind this insight is that the size of the smallest island now also adjusts

to m′ = m + P . Thus, when we determine the transition costs between the absorbing sets

we now have to consider the new variables m′ = m+ P and M ′ = M + P , instead of m and

M . Thus, part b) of Proposition 1 (k = k) can be easily adopted to the case where there are

patriots with the only difference being that we now have to consider the variables m′ and

M ′.

If instead k < k, then the presence of patriots substantially changes the things. Most

importantly, no island can be empty now. Thus, we do not only have to consider the set of

absorbing sets from Ω0 to Ωk as possible candidates for LRE, but also all sets of absorbing

sets Ωk+1 to Ωk. Now every island has at least P inhabitants and in an absorbing set they

will all play the same action. Note that in absorbing sets with less than k payoff dominant

islands the island where the payoff dominant action is played will be at full capacity. If

there are exactly k payoff dominant islands the population on these will fluctuate between

m′ = M + P and M ′ = M + P . If there are, however, more than k payoff dominant islands,

the population on these islands will fluctuate between P and M ′ = M + P . Note that the

population of risk dominant islands will always be given by P , unless all islands choose the

risk dominant island in which case it fluctuate between P and M ′ = M + P .

It is again possible to cut down the combinatorial problems associated with finding min-

imum cost trees by using an analogous result to the one of lemma 8. Hence, we can reduce

the analysis of minimum cost trees to sets of absorbing sets characterized by the number of

islands in which the payoff dominant action is played.

In terms of the transition costs, the presence of patriots changes the model along a

number of dimensions. Most importantly, since there are no empty islands, we can no

longer increase the number of payoff dominant islands by one mistake. When increasing the

number of payoff dominant islands it now takes dPq∗e mistakes (since the population on risk

dominant island is either P or may reach a state where it is P ). When we want to increase

the number of risk dominant islands, we now have to distinguish three cases: i) If the payoff
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ω0 ω1 ωk−1 ωk ωk+1 ωk−1 ωk

dPq∗e dPq∗e dPq∗e dPq∗e dPq∗e dPq∗e

dP (1− q∗)edP (1− q∗)edP (1− q∗)ed(P +m)(1− q∗)ed(P +M)(1− q∗)ed(P +M)(1− q∗)e

Figure 2: Transition costs with patriots.

dominant action is played on k+ 1 to k islands (with at least one island where only patriots

reside) this is possible with dP (1 − q∗)e. ii) If the payoff dominant action is played on k

islands, then the size of the smallest payoff dominant island is given by m′ = P +m. It thus

takes d(m + P )(1 − q∗)e mistakes. iii) If the payoff dominant action is played on less than

k islands, all payoff dominant islands will be at full capacity M ′ = M + P , implying it will

take d(M + P )(1− q∗)e mistakes. We summarize this discussion in Figure 2.

We can now use these transition costs to determine the set of LRE. We summarize our

findings in the remark below, for which a formal proof – despite being a straightforward

generalization of the proof of Proposition 1 – goes beyond the scope of the current paper

and is omitted. The mechanisms driving this remark can be easily deduced from Figure 2.15

Remark 2. If k < k and there are P patriots on each island, then:

i) if dPq∗e > d(P +M)(1− q∗)e, then S = Ω0

ii) if dPq∗e = d(P +M)(1− q∗)e > d(P +m)(1− q∗)e, then S =
⋃k−1

`=0 Ω`

iii) if dPq∗e = d(P +M)(1− q∗)e = d(P +m)(1− q∗)e > dP (1− q∗)e, then S =
⋃k

`=0 Ω`

iv) if dPq∗e = dP (1− q∗)e = d(P +M)(1− q∗)e = d(P +m)(1− q∗)e, then S =
⋃k

`=0 Ω`

v) if d(P +M)(1− q∗)e > dPq∗e > d(P +m)(1− q∗)e, then S = Ωk−1

vi) if d(P + M)(1 − q∗)e > d(P + m)(1 − q∗)e = dPq∗e and dPq∗e > dP (1 − q∗)e, then

S = Ωk−1 ∪ Ωk

15Note that it is always the case that dPq∗e ≥ dP (1− q∗)e and d(P +M)(1− q∗)e ≥ d(P +m)(1− q∗)e ≥
dP (1− q∗)e.

21



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

vii) if d(P +M)(1− q∗)e > d(P +m)(1− q∗)e = dP (1− q∗)e = dPq∗e, then S =
⋃k

`=k−1 Ω`

viii) if dPq∗e > dP (1− q∗)e and d(P +m)(1− q∗)e > dPq∗e, then S = Ωk

ix) if d(P +m)(1− q∗)e > dPq∗e = dP (1− q∗)e , then S =
⋃k

`=k Ω` .

In order to interpret this finding let us consider the limiting cases where the number of

patriots is small (P = 2) and where it is large. In the former case we have dP (1− q∗)e = 1

and dPq∗e = 2. If we consider islands large enough, so that d(2 + M)(1 − q∗)e > 2, then

either the case v), vi) or viii) will occur. It follows that only Ωk and Ωk−1 may be subsets

of the set of LRE. That is, we will observe the coexistence of conventions where either on

k or on k − 1 islands the payoff dominant action will be played and these islands will be at

capacity. If instead capacity M is relatively small as compared to the number of patriots,

d(2 + M)(1− q∗)e ≤ 2,16 then cases i), ii) or iii) obtain. Thus Ω0 is always a subset of the

set of LRE, but there can be cases where other absorbing sets (including Ωk) are also LRE.

In the other limiting case where P is large enough, we have dPqe > d(P +M)(1− q∗)e.
Thus only case i) can occur, implying that Ω0 is unique LRE.

Abstracting from the special cases where the relevant transition costs are exactly the

same, the following pattern emerges. If the number of immobile agents is relatively small,

compared to capacity, we will observe profiles in the long run where almost all islands with

mobile agents choose the payoff dominant action and the risk dominant action is only chosen

on the smallest island containing mobile players and on all islands where only patriots live.

Thus, provided there are not too many patriots a considerable share of the population will

end up choosing the payoff dominant action. Interestingly there may be more than one

island where the payoff dominant action is played. So, even in the presence of patriots

mobile agents voting by their feet may be able to ensure high levels of efficiency. On the

contrary, if patriots form a large part of the population, there is not enough flexibility for

mobile agents to bring along efficient outcomes.

16It is possible that d(2 + M)(1 − q∗)e = 2 if M ≤ 3q∗−2
1−q∗ , and this fraction can be arbitrarily large as

q∗ → 1.

22



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

In this light our results for the patriots case may be seen as a generalization of those in

Anwar (2002), albeit in a slightly more complex form.

4.2 Heterogeneous capacity

Let us now consider the implications of introducing heterogenous capacity constraints to our

original model. Without loss of generality denote these constraints by M1 ≤M2 ≤ · · · ≤Mk.

In this case, it is no longer possible to reduce the combinatorial complexity of the problem by

considering sets of absorbing sets that are characterized by the number of islands on which

the payoff dominant strategy is played. When computing the number of mistakes required

for moving among islands with heterogenous capacity it matters which particular islands are

occupied and which action is played on each of them.

Despite these difficulties it is possible to provide a simple result for the case in which

every absorbing set has at least one empty island. In our setting, this corresponds to a

scenario where all agents can be accommodated in all but the largest island, which gives rise

to the condition kN ≤ ∑k−1
i=1 Mi. This assumption is analogous to the assumption k < k

in the original model. In this sense the following result is a generalization of part a) of

Proposition 1.

Proposition 2. If kN ≤∑k−1
i=1 Mi, then S will always contain all absorbing sets where all

agents play the payoff dominant action.

Proof. Suppose there are L different absorbing sets. In every absorbing state at least one

island is empty. This means that we can move from every absorbing set where at least one

island is populated by risk dominant players, to an absorbing set where the empty island

is populated by payoff dominant players in the following way: one agent from the original

island moves to the empty island and switches to the payoff dominant action, by mistake.

Consequently the previously empty island will be populated by payoff dominant players. In

the same manner we can move among all absorbing sets where everybody chooses the payoff

dominant action. Thus, all absorbing sets where the payoff dominant action is chosen by all
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players can be linked to all other absorbing sets via a chain of single mutations. Hence, for

each absorbing set where the payoff dominant action is chosen by all players we can construct

cost tree of L− 1. Since no absorbing set can have a cost tree of cost smaller than L− 1 the

claim follows.

This result does not tell us that there can be no LRE where the risk dominant action

is played (on some or all islands), since it could be possible that in some absorbing sets an

island is occupied by very few players. In this case if only one of them makes a mistake they

could switch to the risk dominant action, thus possibly allowing us to construct minimum

cost trees of the lowest possible cost L− 1 for some mixed states or the absorbing set where

everybody chooses the risk dominant action. This is analogous to the cases dm(1− q∗)e = 1

and/or dM(1− q∗)e = 1 in Proposition 1.

We remark that with heterogenous constraints it is a tedious problem to characterize the

size of the population on the smallest island when all other islands are at capacity as this

now depends on which islands are at capacity. This is also the main reason we believe it

is difficult to provide general conditions (in the spirit of our main Proposition) for the case

where there may be no empty islands.

Nonetheless we believe that the result above constitutes an important observation demon-

strating that payoff dominant equilibria may arise in the long run for a wide range of param-

eters for more than three islands, thus supplementing the insights from Anwar (2002) and

Shi (2015) where this was only possible for a very small parameter range (where the size of

the population on the smallest island is very small).

5 Conclusion

We have extended the results from Anwar (2002), where agents had the possibility to move

between two islands. We have relaxed constraints in a very natural way, increasing the

number of available islands, and we have shown that when the constraints are less binding

we have a long run stable equilibrium that was not considered in the original model: a
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configuration in which all agents play the payoff dominant strategy. The driving force behind

this result is that whenever the restrictions are relatively weak there may be empty islands.

This provides the payoff dominant action with a springboard from which it can play out its

superiority. We can also reinterpret our results in the context of a model where agents choose

circles of friends which are characterized by extreme clustering. In this context, universal

coordination on the payoff dominant action in a society requires it to be possible that agents

may completely abandon their current circle of friends and form new circles of friends. From

this point of view, sufficient flexibility in creating new interaction structures leads to more

efficient outcomes.
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