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Yuusepcumem Jluoca, Benukoopumarnus

B omoii cmamve Mbl NOCHMPOUM HEKOMMYmMAamueHoe pacwupenue omoobpadcenus Auea-
baxcmepa muna Aonepa-Amunosa, komopoe césnzano ¢ Herunelnvim ypasuenuem Lllpeouneepa.
Kpome mozo, movl noxazvisaem, umo 3mo omobpadicenue Yacmuino UHmezpupyemoe.

Knroueswie cnosa: anzceopuol I paccmana, omobpasicenus Anea-baxcmepa, ypasnenue HAnea-
baxcmepa, unmezpupyemocmo no Jluysuauio.

In this paper, we construct a noncommutative extension of the Adler-Yamilov Yang-Baxter map
which is related to the nonlinear Schrddinger equation. Moreover, we show that this map is
partially integrable.

PACS numbers: 02.30.1k, 02.30.Jr, 02.90.+p.

Key words: Grassmann algebras, Yang-Baxter maps, Yang-Baxter equation, Liouville integrability.
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The set theoretical solutions [9] of the YB equation have been of great interest for several
researchers in the area of Mathematical Physics. The first examples of such solutions appeared in
[18]. We refer to them using the shorter term ““Yang-Baxter maps” which was proposed by
Veselov in [21]. YB maps are related to several concepts of integrability as, for instance, the
multidimensionally consistent equations [1, 2, 5, 15, 16]. Of particular interest are those Yang-
Baxter maps which admit Lax representation [19]. They are connected with integrable mappings
[21, 22] and they are also related to integrable partial differential equations via Darboux
transformations [12].

Moreover, noncommutative extensions of integrable equations have been of great interest over
the last decades [6, 7]. Darboux transformations for noncommutative-extended integrable
equations were recently constructed; in the case of Grassman-extended nonlinear Schrédinger
(NLS) equation in [11] and for the supersymmetric KdV equation in [23]. At the same time, the
derivation of noncommutative versions of YB maps has gained its interest [8].

In this paper we construct a YB map associated to the noncommutative (Grassman) extension of
the Darboux transformation in the case of the NLS equation which was recently appeared in
[11]. The motivation comes from the study between Darboux transformations and Yang-Baxter
maps which was studied in [12].

The paper is organised as follows: The next section deals with parametric Yang-Baxter maps,
we give the definition of Liouville integrability, we present some basic properties of Grassmann
algebras in order to make the text self-contained and we explain what is Lax representation of a
Yang-Baxter map. In section 3, we present the Darboux transformation [11] of the
noncommutative NLS equation. Section 4 is devoted in the derivation of a noncommutative ten-
dimensional YB map and we also show that there exist suitable invariant leaves on which this
ten-dimensional map can be restricted to a partially integrable eigh-dimensional YB map. The
bosonic limit of the latter is the well-celebrated Adler-Yamilov map and we show that it is
partially integrable. Finally, in chapter 5, we make some conclu-ding remarks.

2 Preliminaries

LetY;; € End(AX A X A),i,j =123, i+ j, where A is an algebraic variety in K", where K is
any field of zero characteristic, such as C or Q. Specifically, we define Y;; by the following
relations

Y2 (x,y,2) = (u(x, y),v(x,¥),2), (1a)
Y13(x,v,2) = (u(x, z),y,v(x, Z)), (1b)
Y3(x,y,2) = (x,uy,2),v(y,2)), (1c)

where (x,y,z) € A.

Now, let Y € End(Ax A) be a map (x,y) 5 (u(x, y), v(x, y)), and Y = n¥Ym where m €
End(A x A)
is the permutation map m(x,y) = (y,x). Map Y is called a Yang-Baxter map if it satisfies the
following equation
YlZoyl3oy23 — YZSoylSoylZ’ (2)
which is the so-called Yang-Baxter equation. Moreover, map Y is called reversible if the
composition of ¥ and Y is the identity map, namely
Y°y = Id. ©))
Furthermore, we use the term parametric YB map if two parameters a, b € Kare involved in the
definition of the YB map, namely we have a map of the following form
Yop: (6, y) = (u(x,y;a,b),v(x,y;a,b)), 4)
satisfying the parametric YB equation
VahoYadVpe = Yilovadeva. (5)
Now, following [10, 20] we define the complete integrability of YB maps which is essential for
the construction of integrable lattices.
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Definition 2.1
A 2N-dimensional Yang-Baxter map,

Y: (xl,...,XZN) L (ul,...,uZN), U; =ui(x1,...,x2N ), i = 1,...,2N,
is said to be completely integrable or Liouville integrable if

1. there is a Poisson matrix J;; = {xl-,xj}, of rank 2N, which is invariant under the action of the

YB map, namely j;; and J;; = {u;w;} have the same functional form of their respective
arguments;

2. map Y has N functionally independent invariants, I;, namely I;°Y = I;, which are in involution
with respect to the corresponding Poisson bracket, i.e. {I;,;/} = 0,i,j =1,..,N, i # j.

Whenever the number of Poisson-commuting invariants in the above definition is less than N,
then the YB map is called partially integrable.

The Liouville integrability of a YB map is important for the construction of integrable lattices. In
particular, for those YB maps which admit Lax representation, one could consider a family of
integrable maps which preserve the spectrum of the correspond-ding monodromy matrix [21,
22]. The trace of the former provides us with invariants and one can claim integrability of the
corresponding lattice, if the invariants are in involution with respect to a Poisson bracket.

2.1 Grassmann varieties

Here, we briefly present the basic properties of Grassmann algebras. For further details one
could consult [4]. Let G be a Z,-graded algebra over C or, in general, a field Kof character-ristic
zero. Thus, G as a linear space isa directsum G = GO @ G1, such that GiGj S Gi + j . Those
elements of G that belong either to GO or to G1 are called homogeneous, the ones from GO are
called even, while those in G1 are called odd.

By definition, the parity |a| of an even homogeneous elementa is 0, and it is 1 for odd
homogeneous elements. The parity of the product |ab| of two homogeneous elements is a sum of
their parities: |ab| = |a| + |b|. Grassmann commutativity means that ba = (—1)!*1?lgb for
any homogeneous elements a and b. In particular, «? = 0, for all al € G1 and even elements
commute with all the elements of G.

By Grassmann algebraic variety we mean the set of solutions of polynomial equations with even
and odd variables.

Remark 2.1.1. In the rest of this paper we shall be using Latin letters for even elem-ents of Lax
operators or entries of Darboux matrices, and Greek letters when referring to the odd ones.

2.2 Lax representations of YB maps
Following Suris and Veselov in [19], we call a Lax matrix for a parametric YB map a square
matrix, L = L(x,x; a), depending on an even variable x, an odd variable y, a parameter a and a
spectral parameter A, such that the Lax-equation

L(w,$; a)L(v,m; b) = Ly, ¥; b)L(x, x; @) (6)
is satisfied whenever (u,&,v,n) = Y, z(x, x, ¥, ¥). Equation (10) is also called a refactorisation
problem.

If the Lax-equation (6) has a unique solution, namely it is equivalent to a map

WS v,n) = Yop(xx,y,9), (7)
then the Lax matrix L is said to be strong [14]. In this case (7) is a Yang-Baxter map and it is
reversible [22].

3 Grassmann extensions of Darboux transformations
Let L be a Lax operator of the following AKNS form
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L(p,q,0,9;1) = Dy + U(p,q,0,9; ), (8)
where U is a matrix depending on two even potentials, p = p(x)and q = q(x), two odd
potentials, 8 = 6(x) and ¢ = @(x), a spectral parameter A and a variable x implicitly through
the potentials.

By Darboux transformation we understand a map of the following form

L > L= MLM™?, 9)
where Lis L updated with potentials pjo = p1o(%), G10 = q10(%x), 810 = O10(x)and @, =
©10(x), namely L = L(p1o, G10, 010, P10; A). Matrix M in (9) is called the Darboux matrix.
Here, we shall be assuming that matrix M has the same A-dependence with U. Moreover, we
define the rank of a Darboux transformation to be the rank of the matrix which appears as
coefficient of the highest power of the spectral parameter.

In this section we consider the Grassmann extension of the Darboux matrix correspo-nding to the
NLS equation (see [11]).

3.1 Nonlinear Schrodinger equation

The Grassmann extension of the Darboux matrix for the NLS equation was constructed in [11].

In particular, they considered the following noncommutative extension of the NLS operator
L:=D,+U(p,q,0,0;1) = D, +AU; +U,, (10a)

where U and U° are given by

0 2p 6
Ut =diag(1,-1,0), U°= <2q 0 {), (10b)
o Kk 0
where p,q € Gyand 0,¢,k,{ € G;.

It was shown that all the Darboux transformations of rank 1 associated to this operator are
described by the following matrix
F+41 p 6
M(p,q,0,9; c1,c2) :< dio €1 0>1 (11)
®i0 0 o
where ¢; and c, can be either 1 or 0. In the case where c¢; =c, =1, the entries of

M(p,q, 6, @; 1,1) satisfy the following system of differential-difference equations

Fx = 2(pq — P10910) + 09 — 610910, (12a)
Px = 2(Fp — p1o) + 61, (12b)
Grox = 2(q — q10F) — K10%P10/ (12¢)
Hx == FH - 910 + pk, (12d)
P10x = P — P10F — (10910, (12e)
and the algebraic equations

0q10 = (S — Dk, (13a)
Pop = (§ — 1. (13b)

Moreover, system (12) admits the following first integral
0x(F — pq10 — ¥100) = 0, (14)

which implies that d,.(sdet(M))= 0, since sdet(M) = A+ F — pqi9 — ¥100-

4 Derivation of a noncommutative Yang-Baxter map
Here, we are interested in the Grassmann extension of the Adler-Yamilov YB map, associated to
the NLS equation and its integrability.

4.1 A ten-dimensional Yang-Baxter map
According to (11) we define the following matrix
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X+ X1 X1
( xZ 1 0 ), X = (xl,xZ,X1;X21X)J (15)
X2 0 1

Then, we substitute M to the Lax equation (6). The corresponding algebraic variety is a union of
two ten-dimensional components. The first one is obvious from the refactorisation problem, and
it corresponds to the permutation map

XP U=y yeov=x,
which is a trivial YB map. The second one can be represented as a ten-dimensional non-
involutive Yang-Baxter map given by

X—X1X2—X1X2—Y+Y1Y2+ P19
Xy P U =y - 21+;1§72+X11;122 X, (16a)
Xy P Uy = Yy, (160)
X—x1X%2=Y+y,y,+ 1y
x> & =y — 1X2 1+x1;22 1 2)(1’ (16c)
X2 P & =1, (16d)
XU = X—x1x2—X1)(2+(X1YZ+X11/)2)Y+3’13/2+1/)11/)2’ (168)
1+x1y2+ X192
Y12V = X, D (167)
X—=X1Xo—=X1X2—-Y+Y1V2+
V2P Uy =Xy + : 21+§C1§/2+X11;)22 1 2}/2, (169)
Yy PN = X « v (16h)
—X1X2—X1X2—Y+Y1Y i
PPN =2+ 21+;1;2 =21, (161)
Y — V — (x1y2+)(11p2)X+x1x2+)(1)(2+Y—}’1}’2—¢1¢2. (16j)
1+x1Y2+ X102

4.2 Restriction on invariant leaves: Noncommutative extension of the Adler-Yamilov map
In this section, we derive an eight-dimensional Yang-Baxter map from map (16), which is the
Grassmann extension of the Adler-Yamilov map [3, 13, 17]. Our proof is motivated by the
existence of the first integral (14) for system (12).

In particular, we have the following.

Proposition 4.2.1
1. The quantities @ = X — x;x, — x1x» and Y=Y —y,y, — Py, are invariants
(first integrals) of the map (16),
2. The ten-dimensional map (16) can be restricted to an eight-dimensional map Y, 5 € End(4, X
Ap), Where A,, A, are level sets of the first integrals @ and ¥, namely
Ag = {(1, X2, X1, X2, X) € A% X = a+ x1%, + x1x2}, (17a)

Ap = {1, Y2, Y1, W2, Y ) € A%Y = b+ vy, + P15}, (17b)
3. The bosonic limit of map Y, , is the Adler-Yamilov map.

Proof

1. It can be readily verified that (16) implies U —uju, — & =X — x1x, — y1x2 and V —
ViV, — Ny =Y — y1y, — P1,. Thus, @ and Ware invariants, i.e. first integrals of the map.

2. The existence of the restriction is obvious. Using the conditions X = x;x, + y,x, + a a and
Y = y,y, + Y1, + b, one can eliminate X and Y from (16). The resulting map, x = u(x,y),
y = v(x,y), is given by

_ (b—a)(1+x1y2—x1¥2) b—-a
xXPu= (Y1 + ( (1_;?13,2)2 ;1,}’2'1/11 + Tt7iys X1'1/J2)' (18a)
— a—b)(1+x1y2—x1¥2) _a-b
yrmLv= (-xpxz + (Ttx17,)? Y2 X1 X2t Tt717s lpz)- (18b)
3. If one sets the odd variables of the above map equal to zero, namely y; = xy, = 0 and
Y, = Y, = 0, then the map (18) coincides with the Adler-Yamilov map. [

37



BectHuk UT'Y. MaTeMaTHKa, pusnka. 2015.

Now, one can use the condition X = x;x, + y1x, + a to eliminate X from the Lax matrix (35),
ie.
at+xix;+ XX+ x1 xa
M(x;a,A) = Xy 1 0| (19)
X2 0 1
which corresponds to the Darboux matrix derived in [11]. Now, the Adler-Yamilov map’s
extension follows from the strong Lax representation
M(u;a, A)M(v; b, 1) = M(y; b, )M(x;a, A). (20)
Therefore, the extension of the Adler-Yamilov’s map (18) is a reversible parametric YB map.
Moreover, it is easy to verify that it is not involutive.

Proposition 4.2.2
The noncommutative extension of the Adler-Yamilov map is a partially integrable map.
Proof
From str(M (y; b, A)M (x; a, 1)) we obtain the following invariants for map (18)
Ty = x1% + y1¥2 + X1x2 + P1a,

T, = (a+x1% + 1102) (b + y1y2 + W1h2) + x1y2 + X001 + X102 — Yox0,
where we have omitted the additive constants. However, these invariants are linear combinations
of the following integrals

Iy = b(x1x; + x1X2) + a(Y1y2 + V1¥2) + y1Y2(x1x2 + x1x2) + (41a)
X1 X012 + Xoy1 + X1Y2 + X1 — Yaxa,
Iy =x1%; + Y1Y2, I3 = xax2 + V12, Ls = x1x290192. (41b)

These are in involution with respect to the Poisson bracket {x;,x,} = {y1y,} =1, {x1, X2} =

{Y1, ¥} = Landall the rest {x;, x;} = {y;y;} = {x;y;} = 0.
and the corresponding Poisson matrix is invariant under the YB map (18). However,
I5 and I, are not functionally independent, but 12 = 21,, thus map (18) is partially integrable.

5 Conclusions

We showed that there is an explicit example of birational endomorphism of Grass-mann
algebraic varieties which possesses the Yang-Baxter property. Specifically, we considered the
case of the Grassmann extension of the Darboux transformation for the NLS equation. In this
case a Darboux transformation appeared in [11]. Employing the associated Darboux matrix we
derived a ten-dimensional map, which we restricted on invariant leaves to an eight-dimensional
birational parametric YB map. The motivation for this restriction was the fact that the entries of
the associated Darboux matrix satisfy a particular system of differential-difference equations
which possesses a first integral. We showed that the eight-dimensional YB map is partially
integrable and, at its bosonic limit, is equivalent to the famous Adler-Yamilov map.
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OB OJTHOM KJIACCE JIU®®EPEHIIU- ABOUT ONE CLASS OF
AJIBHBIX YPABHEHUI C MHOT'OTO- DIFFERENTIAL EQUATIONS WITH
YEYHOM CUHTYJISIPHOCTBIO M MULTIPOINT SINGULARLY AND
PA3PBIBHBIMMU PEIHIEHUAMU DISCONTINUOUS SOLUTION
C.B. Ucpauios, S.V. Israilov,
ooyenm xkageopul aneebpwi u ceomempuu 4I'Y Depariment of Algebra and Geometry CSU
M.X. KyinkoBa, M.H. Kulikova,
accucmenm Kapeopvl MamemamuiecKo20 Assistant of mathematical analysis cha
aunanuza 4I'y A.A. Tovsultanov,
A.A. ToBcyaTaHos, senior lecturer of mathematical analysis cha

cmapwuil npenooasameins Kagheopwl
Mmamemamudeckoeo anaiuza 94I'y

B cmamve npusoosamcs meopemoi cywecmeoganus pewienust ons cucmemut OI1Y ¢ paspvisnbimu
NpasvbiMu 4acmamu no He3a8UCUMOU NepeMeHHOU U a308biM KOOPOUHAMAM, YOOBIeMEopsiem
MHO2OMOYEYHBIM YCI0BUAM 8 MOYKAX CUHSYAAPHOCTEN.

Knwoueevie cnosea: mouxku CUHSYIAPHOCMU, paAspulébl N0 (PA308bIM  KOOPOUHAMAM,
MHO20MOYeYHble Kpaesble YCA08Usl, MeopeMbl CYUeCm808aHUs peUeHUsL.

The article presents the existence theorem for the solutions of the income statement with discontinuous
the right sides of the independent variable and phase coordinates satisfies multipoint conditions at
singularities.

Key words: singular point, breaks on phase coordinates multipoint boundary conditions, the existence
theorem for solutions.

|. U3y4aercs kBasunHeHHas cucreMa AU depeHIHaIbHBIX YPABHCHUH
Vi =@ (% Vi Yoo Yo Vi + (60 Y1 VoY) (i=1n) (1)
OTHOCHTENBHO Touek obmactu D=Y xR"Y =[a,b], R" = {]yi| <d,,i :1,...,n}. 31ech di(i :1,....,n) -
W3BeCTHhle  umcha, Y =[a,b] 3aganmbli  cerment. Ilpemmomaraercs, 4ro  HpH
X=X, €la,b[ (vi =12,..,m,i=1..,n,m  — HaTypalbHOE€ YHCIO | :l,...,n), GbyHKITIN
(I)i(x, y):d)i(x, Yoo Yoo yn), f.(xy)= f.(6 Y0 Yoren Vo b Y = (¥, ), MMetOT cHETYRSIPHOCTH, T.€. B 06NACTH
D =Y, xR".Y; = UYiki’Yivi’ =]x
ki=0
MOTYT OBITh HE OTPaHMYEHBI CyMMHpPyeMbIMH (yHKIuAMH. [T TaKMX CHCTEM BO MHOTHX

Xiv;+1[(Vi, =1..,m =1). Y, =[a,x,[, Y, =1X,,b] (i=1...n)

-
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