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A Thesis Submitted for the Degree of

Doctor of Philosophy

Department of Mathematical Sciences

University of Essex

August 2017



Dedicated to

My beloved mother, father and brother.



SUMMARY

The thesis is concerned with novel Nature-Inspired heuristics for the so called NP-hard

problems of optimisation. A particular algorithm which has been recently introduced and

shown to be effective in continuous optimisation is the Plant Propagation Algorithm or

PPA. Here, we intend to extend it to cope with combinatorial optimisation. In order to

show that our extension is viable and effective, we consider three types of problems which

are good representatives of the whole topic. These are the Travelling Salesman Problem

or TSP, the Knapsack Problem or KP and the scheduling problem of Berth Allocation

as arises in container ports or BAP. Because PPA is a population-based search heuristic,

we devote a chapter to the important issue of generating good and yet computationally

relatively light initial populations of solutions to kick start the search process. In the case

of the TSP we revisit and extend the Strip Algorithm (SA). We introduce the 2-Part SA

and show that it is better than the classical SA. We also introduce new variants such as

the Adaptive SA and the Spiral SA which cope with clustered cities and instances with

cities concentrated around the center of the unit square, respectively. In the case of KP
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we adapt the Roulette Wheel selection approach to generate solutions to start with PPA.

And in the case of BAP, we introduce a number of simple heuristics which consider a

schedule as a flat box with one side being the processing time and the other the position

of vessels on the wharf. The heuristics try to generate schedules by avoiding overlap as

much as possible. All approaches and algorithms are implemented and tested against well

established algorithms. The results are recorded and discussed extensively. The thesis

ends with a conclusion and ideas for further research.
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CHAPTER 1

NATURE-INSPIRED ALGORITHMS FOR
DISCRETE OPTIMIZATION

1.1 Introduction

Optimization is finding the best possible solutions for the given problems under given

sets of constraints. In general, this is achieved using mathematical methods. Three types

of approaches to solve optimisation problems are discussed; exact methods, approxima-

tion algorithms and heuristic/metaheuristic methods. Exact methods guarantee optimality.

However, they often involve demanding calculations. Approximation algorithms tend

to be computationally less expensive at the expense of optimality. They try to gener-

ate solutions within predefined bounds, which may exclude the optimum. Like exact

methods they usually have strong mathematical underpinnings. Heuristic/metaheuristic

approaches have become popular in the last few decades since exact methods are often in-

convenient, as they are computationally too expensive for large scale real-world problems.

These, generally, do not guarantee to find the optimum solution. But, they are usually able

to find near-optimum solutions in reasonable computational times. These algorithms are

1
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often Nature-inspired. Nature has inspired scientists with its ability to deal with problems

over millions of years. Hence the rapid development in the so called Nature-inspired algo-

rithms or heuristics. This thesis is concerned with one such method, the Plant Propagation

Algorithm or PPA, which implements the way the strawberry plant propagates; PPA is also

referred to as the Strawberry Algorithm, [9]. It is organised as follows.

Chapter 2 discusses the implementations of PPA on unconstrained and constrained

continuous optimisation problems. First, we explain the basic PPA, then a modified and

improved version of it is discussed. The main modification is in the way the initial pop-

ulation is generated. Then, the implementation of PPA to solve constrained optimisation

problems is discussed. A new methodology to generate the initial population is adopted in

this variant too. As the strawberry plant can propagate by seeds as well, another implemen-

tation of PPA implements this propagation via seeds. Here, seed dispersion is assumed to

be done by animals and birds, mainly. This version has shown a better exploration capa-

bility. Considering the good exploitation characteristics of strawberry plant propagation

by runners and its good exploration characteristic by seeds, a new hybrid algorithm which

combines the two heuristics recently proposed in the literature is discussed as the final

variant of PPA. The final section introduces the discrete extension of PPA and gives the

basics of its implementation.

Chapter 3 is devoted to the methodology for generating initial populations to start with

the algorithm under investigation, i.e. PPA for the different problem types considered.

Note that, being a population-based search, starting PPA, and any such algorithm for

that matter, with a good population is very important. Three cases will be considered:

generating good tours for TSP problems using strip algorithms, generating good item
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combinations for Knapsack problems, and generating good schedules for the robust Berth

Allocation problem as arise in container ports.

In Chapter 4, we propose a discrete variant of PPA to solve TSP. Defining the notations

neighborhood and distance are addressed. Representation of tours as plants, computing

the distance between two plants and the implementation of short and long runners are

explained. Finally, the experimental results are added to show the performance of Discrete

PPA compared to that of some well-known metaheuristic methods.

In Chapter 5, we use PPA to solve another well-known family of discrete optimisation

problems, namely the Knapsack Problem and some of its variants. First, we describe the

different forms of KP. Then we discuss the issues of the implementation of PPA to solve

them. The methodologies to implement short and long runners are given and experimental

results are reported.

In Chapter 6, we implement PPA to solve a scheduling problem, the Robust Berth

Allocation problem that arises in container ports. After explaining the mathematical model

we are using, we give strategies and details for implementing short and long runners. We

conclude the chapter with our experimental investigation and computational results.

Chapter 7 is the conclusion and suggestions for worthwhile research on Nature-Inspired

algorithms and in particular the Plant Propagation Algorithm.

1.2 The Optimisation Problem: General Definition

Optimisation is the operation of maximising or minimising an objective function possibly

subject to constraints. The mathematical representation of such a problem is
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maximize/minimize f (x), x = (x1, x2, . . . , xn)
T ∈ Rn

subject to ϕ j(x) = 0, ( j = 1, 2, ..., M),

λk(x) ≤ 0 or λk(x) ≥ 0, (k = 1, 2, ..., N),

(1.1)

where f (x), ϕ j(x) and λk(x) are functions of x = (x1, x2, . . . , xn)T ∈ Rn.

In (1.1), the entries of vector x = (x1, x2, . . . , xu)T are the decision variables. f (x) is called

the objective function and, ϕ j(x) = 0 and λk(x) ≤ 0 (or λk(x) ≥ 0) are called the equality

and the inequality constraints, respectively. The feasible region/search space consists all x

points that satisfy all the constraints, [10, 11].

Decision variables can be continuous, discrete or mixed, i.e. some are real and the

others integer. In continuous optimization problems the decision variables take real values,

and in the discrete ones, they take integer values. If the optimization problem does not

have any constraints, it is called an unconstrained optimisation problem. Otherwise, it is

constrained, [10, 11].

Let a real valued function f be defined over a feasible set S ⊂ Rn, then:

Definition 1.2.1. The solution x∗ is said to be in the neighborhood of x if x satisfies |x− x∗| < ϵ.

For continuous optimisation problems, ϵ is usually a small positive number. For combi-

natorial problems, it can, for instance, be defined as the number of changes in a permuta-

tion, [11].

Definition 1.2.2. A solution x∗ is said to be a global maximum if f (x∗) ≥ f (x), ∀ x ∈ S ⊂ Rn. If

f (x∗) ≤ f (x), ∀ x ∈ S ⊂ Rn, the solution x∗ is said to be a global minimum, [12].

Definition 1.2.3. A solution x∗ is said to be a local maximum if f (x∗) ≥ f (x), ∀ x ∈ N(x∗, ϵ). If
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f (x∗) ≤ f (x), ∀ x ∈ N(x∗, ϵ), then x∗ is said to be a local minimum, where N(x∗, ϵ) denotes the

ϵ-neighborhood of x∗, [12].

1.3 NP-Completeness: A Brief Introduction

The NP-Completeness framework allows us to believe that it is very unlikely that polynomial-

time (P) algorithms, in other words, efficient algorithms exist for common problems such

as the TSP, KP or Scheduling for instance. It also allows us to extrapolate and state that

if we were to find a polynomial-time algorithm for one of the above listed problems and

any one of the many known NP-Complete problems, then all of them can be solved effi-

ciently including finding mathematical proofs, and translating in real-time from language

to language, to name of few of the most rewarding problems a breakthrough in solving

one single NP-Complete problem from a long list that started in the famous book of Garey

and Johnson, 1979, [13], will bring. Here, NP refers Non-deterministic polynomial time.

The theory of NP-Completeness assumes that problems which are solvable in polynomial-

time are tractable. Recall that the big-O notation is used to describe the asymptotic running-

time of an algorithm. It is also important to note that a running time of O(n50) is not very

encouraging, polynomial times have some nice characteristics that support this assumption.

Moore’s Law stipulates that the speed of computers doubles every 18 months. This means

that for problems that are polynomially solvable, whenever computer speed doubles, larger

by a multiplicative factor in size such problems can be solved. This is contrasted with only

an additive increase for problems which require exponential time for their solution, [14].

To illustrate consider a problem which is solvable in O(n3) (polynomial) and one which



1.3. NP-Completeness: A Brief Introduction 6

is solvable in O(2n) (exponential). If the speed of the computer we use doubles, then we

can solve problems which are 3√2 larger than the former problem as the speed will now be

twice faster and, ( 3√2×n)3 = 2×n3. For the latter one, only single variable larger problems

can be solved. This is because 2× 2n = 2n+1. Note that n is the size of a given problem, i.e.

the number of variables it involves.

NP-Complete problems are decision problems, i.e. problems with a "yes” or "no” an-

swer. Optimisation problems are easy to convert into decision ones by comparing the

solution value to some threshold value. For instance, in the case of the TSP, the decision

version of it asks if a given tour has length less than a given value L. In the case of the

Knapsack problems, we have:

KP−Optimization(p, w, c) =



max
n∑

j=1

p jx j

subject to
n∑

j=1

w jx j ≤ c,

x j ∈ {0, 1}, j = 1, . . . , N.


(1.2)

where p j denotes the profit of item j, w j denotes the weight of item j, c denotes the knapsack

capacity and N denotes the total number of items.
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KP−Decision(p, w, c, t) =



there exists an x with
n∑

j=1

p jx j ≥ t,

subject to
n∑

j=1

w jx j ≤ c,

x j ∈ {0, 1}, j = 1, . . . , N.



(1.3)

where p j denotes the profit of item j, w j denotes the weight of item j, c denotes the knapsack

capacity and t is a lower bound predetermined.

To be precise, we say that an algorithm accepts a decision problem in polynomial time

if there exists an algorithm which runs in time polynomial in the input size and for every

instance of the decision problem, if it is a "yes” instance, then the algorithm should print out

"yes” in polynomial time. Note that no restrictions are put on "no” instances. This means

that for "no” instance, the algorithm may or may not print "no” in polynomial time. In fact,

it may not terminate at all, for “no” instance. It is also important to note that optimisation

problems whose decision versions are solvable in polynomial time often are themselves

solved efficiently.

Problems the decision versions of which can be solved in polynomial time are said

to be in the P class. Current knowledge and wisdom among researchers in Operational

Research, Mathematics and Theoretical Computer Science is that KP-Decision is NOT in

the P class, [13]. However, there is no proof that a polynomial time algorithm does not

exist for it. Therefore, we cannot exclude it from the P class for certain. The same can be

said of the TSP decision, Scheduling etc. . . .

As we said earlier, only the decision versions of problems are said to be NP-Complete,
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or in the NPC class; or the P class for that matter. The full optimisation versions are said

to be NP-Hard. This is because they are at least as difficult as their decision versions

and can be a lot harder. Before, leaving this brief introduction, let us add that the NP

class is the class of Nondeterministic polynomially solvable problems. In other words, it

contains the problems for which a solution can be guessed in polynomial time and checked

in polynomial time. For example, in the case of the TSP decision version, one can guess a

permutation of cities in polynomial time; the 1st and last cities are then joined up to make

a Hamiltonian cycle or tour. The length of this tour can be computed in polynomial time

since it is only a sequence of n additions if n is the number of cities. The resulting length

can be compared to see if it is less or equal to a given value L. TSP is therefore in the NP

class. The same can be said of other problems whether they are in P or not. In fact P ∈ NP.

1.4 Solution Approaches to Optimisation Problems

In this section, exact methods, approximation algorithms and metaheuristic methods will

be reviewed.

1.4.1 Exact Methods

Exact methods are used to find the optimum solution for a given combinatorial optimization

problem. The drawback of these methods is, as the size of the instance increases, the total

computation time also increases excessively. Nevertheless, instances of small size can be

solved efficiently by these methods. Some of them will be referred in the following.

Branch and Bound (B&B), [15] and Dynamic Programming (DP), [16] are two of the
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classical methods that give exact optimum solutions by partially searching the feasible

solution set. In B&B, a branch is a subset of solutions of the partitioned problem, and the

bound is the lower bound computed that helps to find the optimum, [11,17]. As DP solves

subproblems, it keeps the solutions as a future reference, i.e if it finds the same subproblem

uses the result that was stored. In order to find the optimum value it starts from the bottom

subproblem and goes to the main problem, which also guarantees that the subproblems

are solved, [11, 18, 19]

The cutting-plane method is another exact approach for combinatorial optimization

problems. In this method, the feasible region of the Linear Programming (LP) relaxation of

the problem is renewed by adding linear inequalities at each iteration. These inequalities,

referred as cuts, try to get close to the convex hull of the integer solution set. This method

is inefficient, and has low convergence rate, [20, 21]. However, it was combined with B&B;

the Branch and Cut Algorithm is the result, [20, 21].

1.4.2 Approximation Algorithms

Approximation algorithms for combinatorial optimization problems do not necessarily

provide an optimal solution. However, they approximate the optimum solution to a

guaranteed error value α, [22, 23]. Greedy and local search algorithms are two standard

approximation algorithms. In the greedy algorithm each step guarantees that the solution

provided is locally optimal. The local search algorithm, on the other hand, starts with an

initial solution and iteratively improves it by making changes to find a better local optimum

solution, [1].

The nearest addition algorithm is an example of the greedy approaches. It starts with
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Figure 1.1: Illustration of a nearest addition algorithm for TSP, [1].

connecting two points with minimum cost. Then at each step, a new point which gives the

shortest addition to the current set is inserted. An illustration of the method for TSP can be

seen in Figure 1.1. Here, the cheapest new link is found between points i, which is already

inserted and j, which is a new point. The new link is created by breaking the link between

k and i. This procedure continues until all points are inserted to form a tour. This method

is proved to be a 2-approximation algorithm for the metric TSP, i.e in the worst case the

algorithm finds tours twice as long as the optimal tour, [1]. The Christofides Algorithm is

a 3
2 -approximation algorithm for TSP, [24].

The deterministic rounding algorithm is another example of such algorithms. It consists

in solving the LP relaxation of the integer programming model of the problem, i.e. as a

linear programming model and then getting integer solutions by rounding the obtained

results, [25].

Rounding a dual solution method is explained on the set covering problem in [26]. The

algorithm guarantees a f -times approximation of the optimum value in O(n3) operations,

where f is the maximum row sum of an m× n binary matrix, each column of which is the
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incidence vector of one of the sets. This is proved by considering the dual model of the LP

relaxation of the problem, [26].

The primal-dual method explained in [25], is applied to the set covering problem.

However, as it does not require to solve the dual of the LP relaxation problem, it is faster.

The randomised rounding algorithm solves the LP relaxation of the main problem by

rounding the solution to integers with a probability. For instance, one way of doing it is

using the fractional part of the solution as the probability value, [1, 22, 27]

1.4.3 Metaheuristics

Real life problems are hard to solve. Thus, exact algorithms are inefficient and costly,

especially when the problem size is large. Instead of finding the optimum solution, meta-

heuristics generally find good approximations to it in acceptable computational times. For

this reason, they are widely used in the last few decades, [28]. They are, in general, a com-

bination of random search and local search, [23, 29, 30]. Some well-known metaheuristic

methods and the ones developed recently will be reviewed in the following.

1.4.4 A Brief Review

As said earlier, combinatorial or discrete optimisation problems are often computationally

demanding. They more often than not belong to the so-called NP-hard class of problems,

[13], [31]. As such, it is not reasonable to expect exact solutions to perform well when

solving large and practical instances. Thus, approximation methods, heuristics and meta-

heuristics, are almost the norm when it comes to solving them, [11, 32, 33].
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1.4.4.1 Simulated Annealing

Simulated Annealing (SiA) was introduced by Kirkpatrick et al. in 1983, [34]. It is inspired

by the annealing process of metals which involves slowing down the cooling of molten

metal. It is important to choose the appropriate initial temperature and the cooling down

rate to avoid imperfections. In the pseudo-code of SiA, the temperature is denoted by t,

kB is the Boltzmann’s constant, [28], and the current candidate solution cold is replaced by

cnew, if the newly generated solution is better. But, if cnew is worse than the current solution,

then it may be accepted with probability P given by the below formula.

P(t, cnew, cold) = e
−(value(cnew)−value(cold))

kBt , t ≥ 0, (1.4)

to replace the current solution cold. This is what allows SiA to escape from the local optima.

The pseudo-code of SiA is given as Algorithm 1.

Algorithm 1 Simulated Annealing, [34]
1: t← initially a high temperature;
2: cold ← some initial guess;
3: cbest ← cold;
4: Repeat
5: cnew ← update (cold);
6: If value(cnew)<value(cold) or rand[0, 1] < P Then
7: cold ← cnew;
8: Reduce the temperature t;
9: End If

10: If value(cold)<value(cbest) Then
11: cbest ← cold;
12: End If
13: Until Best solution is found, or termination criterion is reached, or t ≤ 0;
14: Return Best solution cbest as the candidate optimum solution.
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1.4.4.2 Genetic Algorithm

The Genetic Algorithm (GA) was developed by Holland in 1975, [35]. It is based on the

idea of natural selection. The algorithm works with three operators; crossover, mutation

and reproduction. Basics of GA are discussed below.

Initial Population The predetermined number of individuals is randomly generated to

form an initial population. The basic GA starts with this population.

Fitness Function This measure is essential for the implementation of GA. It allows to rank

individual solutions in the population. It is often the objective function of the optimisation

problem.

Selection of Parents Choosing suitable individuals from the population to be parents to

new individuals is essential in GA. The latter are expected to be better than their parents, as

a result. There are different selection methods such as the Roulette Wheel and Tournament

Selection, [36].

Genetic Operators: There are three such operators.

Crossover The crossover operator selects a random point on chosen individuals represen-

tations. Then, parts of the two selected individuals are exchanged to generate two new

individuals. This procedure is called a single-point crossover. Two-point and multi-point

crossovers are possible. In the two-point variant, two random positions are selected and

parts of those parents are exchanged, to form new offspring, [36].

Mutation A predetermined number of individuals are mutated. This is done by chang-

ing/flipping some of the entries of an individual. This operator helps exploration in GA.

Reproduction This copies good individuals into the new population as they are.
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Stopping Criteria The algorithm stops when the number of generations reaches a prede-

termined maximum number of generations. Another commonly used stopping criterion

is the maximum number of generations without improvement in the current best, [23, 35].

The pseudo-code of the algorithm is as Algorithm 2.

Algorithm 2 Genetic Algorithm, [35]

1: f ← Objective function;
2: Generate an initial random population of individuals (Parents);
3: Repeat
4: Select the number of individuals based on the rate;
5: Generate new offspring using crossover (with probability pc),

mutation (with probability pm), or reproduction (with 1− pc − pm);
6: Evaluate the fitness of the children;
7: Update the population;
8: Update the generation counter;
9: Until The stopping criteria are met.

10: Return Current best solution as candidate optimum.

1.4.4.3 Discrete Particle Swarm Optimisation

PSO was introduced by Kennedy and Eberhart in 1995, [37]. It is based on flocking birds,

fish schooling and any animals moving as a group. Each particle in a swarm represents

a solution. Each particle moves in a multidimensional search space for exploration and

exploitation. In Discrete PSO or DPSO, and binary DPSO, in particular, [38], each particle

is considered as a position in an N-dimensional space and each entry of a particle position

can take value 1 or 0 which mean ”included" and ”not included", respectively. Each

particle also has a velocity vector attached to it, [39]. The velocity vector is updated at

each iteration using two pieces of information. One is the current best, pbest, that a particle

achieved and the other is the best kept in the memory from the beginning of the algorithm,

nbest. The equations below are used to update the velocity and position vectors vi and Xi,
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respectively [39].

vi(t + 1) = vi(t) + ρ1C1(pbesti −Xi(t)) + ρ2C2(nbesti −Xi(t)), (1.5)

where vi denotes the velocity of the ith particle, and t denotes time. ρ1 and ρ2 are random

values between [0, 1] and C1 and C2 are learning factors.

Xi(t + 1) =
{

1 if sig(vi(t + 1)) > ri,
0 otherwise (1.6)

where sig(vi(t + 1)) is the sigmoid function,

sig(vi(t + 1)) =
1

1 + exp(−vi(t + 1))
. (1.7)

The pseudo-code of DPSO is given as Algorithm 3.

Algorithm 3 Discrete Particle Swarm Optimisation, [38, 39]

1: Initialize with a randomly generated N − dimensional swarm with P particles;
2: Repeat
3: For all swarm i
4: If f (Xi) > f (pbesti) Then pbesti = Xi; End If
5: If f (pbesti) > f (nbesti) Then nbesti = pbesti; End If
6: End For
7: For all swarm i
8: Update the velocity and the position vectors vi and Xi;
9: End For

10: Until The stopping criterion is reached.
11: Return Best solution as candidate optimum.

1.4.4.4 The Combinatorial Artificial Bee Colony Algorithm

The Artificial Bee Colony (ABC) algorithm was introduced by Karaboga, [40]. The idea

of the algorithm is based on the foraging behaviour of bees living in a colony. There are

three types of bees represented in this process; worker bees, onlooker bees, and scout

bees. Although the algorithm was first used on continuous optimisation, Karaboga and

Gorkemli, [41] have implemented it for combinatorial optimization problems. They have
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adapted the Greedy Sub Tour Mutation (GSTM) operator, which increases the capability of

GA to find the shortest length tours in TSP, as proposed by Albayrak and Allahverdi, [42].

The fitness value of solutions is estimated by the equation

Pi =
0.9 f iti

f itbest
+ 0.1. (1.8)

The pseudo-code of the Combinatorial ABC or CABC is given as Algorithm 4.

Algorithm 4 CABC algorithm, [41]
1: Initialize the parameters (colony size (cs), maximum number of iterations (maxit));
2: Initialize the positions of the food sources Xi , i = 1, 2, . . . , cs;
3: Evaluate the fitness of the population of solutions;
4: Keep the best solution;
5: c = 0;
6: Repeat
7: Each worker bee produces a new solution vi in the neighborhood of Xi

and evaluates it. Apply greedy selection to choose between vi and Xi;
8: Each onlooker bee produces a new solution vi from Xi which is

selected depending on its fitness value, Pi and evaluates it. Apply
greedy selection to choose between vi and Xi;

9: Keep the best solution so far;
10: Food sources that are not good are abandoned and replaced by new ones

discovered by worker bees that have become scouts;
11: c = c + 1;
12: Until c=maxit
13: Return Best solution as candidate optimum solution.

The Quick Artificial Bee Colony Algorithm: The Quick Artificial Bee Colony Algorithm

(qABC) was proposed by Karaboga et al., [43]. They have observed that in real life, worker

bees and the onlooker bees are not using the same way to select food sources in the search

space. Therefore, they have updated the way an onlooker bee chooses the food source. This

modified version was implemented to solve TSP and gave better results than CABC, [43].
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1.4.4.5 The Discrete Firefly Algorithm

The Firefly (FF) algorithm is inspired by the flashing of fireflies trying to attract mates, [44].

The main assumptions of the algorithm are as follows. All fireflies are attracted towards

each other regardless of their sex. Attraction is proportional to the brightness of fireflies;

the brighter a firefly is, the more attractive it will be for other members of the population.

The less bright member will move towards the brighter ones. The brightness of fireflies

represents the objective function. The discrete version of this algorithm was proposed

by Jati et al., [45] and implemented to solve TSP. Light intensity is defined as an inverse

proportion of the total tour length for TSP. The distance between two fireflies was defined

as the number of different edges between them. The attractiveness of any member of the

population is denoted by β and the distance between any two fireflies is denoted by r. The

relationship between β and r is given as follows,

β = β0 · e−γr2
, (1.9)

where β0 is the value of attractiveness at r = 0 and γ represents the variation of the

attractiveness, [44]. Equation (1.9) guarantees that the attractiveness reduces as the distance

between fireflies increases. The movement procedure guarantees that the distance between

the fireflies decreases when one moves towards the brighter one, [45]. The pseudo-code of

the Discrete FF is given as Algorithm 5.

1.4.4.6 The Discrete Cuckoo Search Algorithm

The Cuckoo Search (CS) algorithm is another Nature-inspired metaheuristic. It simulates

the phenomenon of brood parasitism in cuckoo species, [46]. It has three basic rules, [46]:
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Algorithm 5 The Discrete Firefly Algorithm, [45]
1: Define population size, γ ← light absorbtion coefficient, updating index m and the

objective function;
2: Create a random population of fireflies and compute their function values;
3: Repeat
4: Find the most attractive firefly;
5: Attract fireflies and generate new solutions by using edge-movement scheme or

a random move (which is applicable);
6: Update attractiveness of fireflies according to e−γr2

;
7: Evaluate the new solutions;
8: Sort the fireflies and select the global best;
9: Until The stopping criteria is not reached.

10: Return Best solution is returned as the candidate optimum.

1. Each cuckoo lays one egg at a time, and dumps its egg in a randomly chosen nest;

2. The best nest is selected based on the high quality of its eggs, and is carried forward

to the next generation;

3. There are fixed numbers of host nests. An egg laid by a cuckoo is discovered by

the host bird with a probability Pa ∈ (0, 1). The host bird can either eliminate the

discovered egg or abandon the whole nest.

The Discrete Cuckoo Search Algorithm (DCS) was introduced by Jati et al., [47]. They

have proposed two new schemes: a discrete step size and the cuckoo’s updating scheme.

The discrete step size uses the number of different arcs to define the distance between two

cuckoos. The updating scheme uses the discrete step size as the updating scheme of the

best cuckoo and also uses a local random walk by adding a randomly generated value

between [0, s/2] for exploitation, where s denotes the problem size, i.e the number of cities

for TSP. In the basic CS, a random step length is drawn from the Lévy distribution, [47].

The pseudo-code of DCS is given as Algorithm 6.
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Algorithm 6 The Discrete Cuckoo Search (DCS) Algorithm, [47]

1: f ← Objective function;
2: Initialise a random population of cuckoos;
3: Define probability coefficient Pa and number of evolution m;
4: For each cuckoo, generate an initial solution;
5: Repeat
6: Select a random cuckoo;
7: Generate new solution for m times;
8: Evaluate the new solution;
9: Get the best cuckoo;

10: Generate new solution m times with the best cuckoo;
11: If (rand < Pa) Then
12: Get the worst cuckoo;
13: Generate new solution for m times;
14: Remove the worst cuckoo from the population.
15: End if
16: Store nests containing quality solutions;
17: Select the n best cuckoos;
18: Until Stopping criterion is met.
19: Return Best solution as candidate for optimum solution.

1.4.4.7 Discrete Bat Algorithm

The Bat Algorithm is a population-based metaheuristic first introduced by Xin-She Yang

in [48]. It is based on echolocation used by microbats to find their way, hunt and avoid

obstacles. Bats fly randomly with velocity vi at position xi with a fixed frequency fmin,

varying wavelength λ and loudness A0 to search for prey. They can automatically adjust

the wavelength (or frequency) of their emitted pulses and adjust the rate of pulse emission

r ∈ [0, 1], depending on the proximity of their target. Although the loudness can vary in

many ways, it is assumed that the loudness varies from a large (positive) to a minimum

constant value, from A0 to Amin, [48].

The discrete bat algorithm has been proposed in [49] and used to solve symmetric and

asymmetric TSP. The main parameters of the Bat Algorithm have been modified to adapt
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it to solve discrete optimisation problems. The frequency parameter f was not used in

the implementation to simplify the implementation. The velocity parameter, vi of a bat

at time step t was modified as a random number between 1, and the difference between

this bat and the best bat of the flock. The difference is found by Hamming Distance. This

parameter determines how many times 2-opt and 3-opt rules are going to be executed to

find the new solution. These methods look for an improvement in the solution by removing

2 edges and adding 2 new edges for the former one and similarly, removing 3 edges and

adding 3 new ones for the latter one. The best result is taken as the new solution after the

corresponding rule is executed vi times on the current bat. The variation of the loudness, is

between A0 and Amin and the rate of pulses emission r, where r ∈ [0, 1], remains the same

as in [48]. If rand > ri one solution is selected among the best ones, and a local solution

is generated around this one. To generate this local solution, the best neighbor of the

chosen bat is selected using also the 2-opt and 3-opt rules. If Ai < rand, the new solution

is accepted, then ri is increased and Ai is decreased as the bat is getting closer to the prey.

The pseudo-code of the proposed algorithm is given as Algorithm 7.

1.4.4.8 Other Metaheuristic Methods

There are many other metaheuristic methods for combinatorial optimisation, [23, 29, 30].

Ouaarab et al., [50] have introduced the Improved Cuckoo Search (ICS) and also two types

of Discrete Cuckoo Search (DCS) algorithms, one of which is based on the original CS and

the other on the improved CS, to solve TSP. The performance of the improved DCS was

tested on 41 TSP problem instances with the number of cities ranging from 51 to 1379.

The experimental results show that the proposed method is superior to Genetic Simulated
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Algorithm 7 The Discrete Bat Algorithm (DBA), [49]
F← Objective function, n← number of nodes of the instance;
ri ← rate of pulses, Ai ← loudness, vi ← velocity;
Initialise ri, vi and Ai for all bat i, i = 1, 2, . . . , n;
Repeat

For Each bat i do
Generate a new solution;
If (vt

i < n/2) Then
xi ← 2− opt(xt−1

i , vt
i) ;

Else
xi ← 3− opt(xt−1

i , vt
i) ;

End if
If (rand > ri) Then

Select one solution amongst the best ones;
Generate a new bat using the 2-opt or the 3-opt rule, selecting the best
neighbour around the chosen bat;

End if
If (rand< Ai and f (xi) > f (x∗)) Then

Select new solution;
Increase pulse rate ri and reduce loudness Ai;

End if
Rank all solutions and select the best solution.

End for
Until The stopping criterion is met.
Return Best solution as candidate for optimum solution.

Annealing Ant Colony System with Particle Swarm Optimization Technique (GSiA-ACS-

PSOT) and DPSO [50]. Saenphon et al., [51] have developed the Fast Opposite Gradient

Search method and combined it with ACO. The proposed method has been compared to TS,

GA, PSO, ACO, PS-ACO and GA-PS-ACO on TSP instances. Their algorithm has achieved

better results. Mahi et al. have developed an algorithm based on PSO, ACO and 3-opt

algorithms for TSP, [52]. The new hybrid method was tested against some well-known

algorithms such as ACO+2-opt, SiA-ACO-PSO and ACO with ABC. The experimental

results show that it outperforms the other algorithms in terms of solution quality.

Whale swarm algorithm is recently proposed and mimics the social behavior of hump-
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back whales [53]. The fruit fly optimisation algorithm was proposed by Pan, [54]. It follows

the food finding procedure of fruit flies. This algorithm has been extended to solve the

multidimensional knapsack problem in [55]. Bitam et al. proposed a bees life algorithm

for cloud computing services selection, [56]. Mehrabian et al., [57] proposed yet another

algorithm, the invasive weed optimisation algorithm inspired by the invasive spread and

growth property of weeds. The discrete implementation of this algorithm to solve TSP can

be found in [58].

1.5 Summary

We have introduced the subject matter of this thesis and reviewed important material on

which we intend to build up. This includes key Nature-inspired algorithms such as the

Genetic Algorithm, Simulated Annealing, the Firefly, Particle Swarm Optimisation to name

a few. It is clear that there is a profusion of new methods. Some active researchers are

not satisfied with this because of the lack of analysis and proper investigation of the new

additions. However, it is also a mark of necessity and activity in the field which must be

praised and encouraged. More importantly, it is a sign that we are facing harder and more

challenging problems demanding newer and more effective approaches. In the following

we will extend and investigate such an algorithm.



CHAPTER 2

THE PLANT PROPAGATION
ALGORITHM: VARIANTS AND

IMPLEMENTATIONS

2.1 Introduction

After describing the state-of-art Nature-Inspired algorithms, here we focus on a specific

algorithm namely the Plant Propagation Algorithm or PPA [9]. We start by introducing

the original and basic algorithm otherwise known as the Strawberry Algorithm. We then

look at implementations of it to handle different continuous global optimisation problems,

and in particular constrained ones. We proceed to describe a PPA algorithm which emu-

lates propagation based entirely on seeds. This version uses the feeding station model of

queueing theory. Since the particular plant of interest in PPA is the strawberry plant, and

this plant uses both runners and seeds to propagate, it is reasonable to consider a hybrid

which uses runners and seeds to search for the global optimum. Such a hybrid has been

introduced and successfully tested. We will also explain it here. Finally we will extend

PPA to discrete optimisation.

23
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2.2 PPA for Continuous Optimisation Problems

2.2.1 The Basic Plant Propagation Algorithm

The Plant Propagation Algorithm (PPA) introduced by Salhi and Fraga, [9], emulates

the strategy that plants deploy to survive by colonising new places which have good

conditions for growth. Plants, like animals, survive by overcoming adverse conditions

using often basic but effective strategies. The strawberry plant, for instance, has a survival

and expansion strategy which is to send short runners to exploit the local area if the latter

has good conditions, and to send long runners to explore new and more remote areas, i.e.

to run away from a not so favourable current area. The mechanism of the basic PPA is

explained in this section, [9].

Algorithm 8 Pseudo-code of PPA, [9]
1: Generate a population P = Xi, i = 1, . . . , NPop of plants;
2: g← 1
3: for g = 1 : gmax do
4: Compute Ni = f (Xi),∀ Xi ∈ P;
5: Sort P in ascending order of fitness values N (for minimization);
6: Create new population Φ;
7: for each Xi, i = 1, . . . , NPop do
8: ri ← set of runners where both the size of the set and the distance for each runner

(individually) are proportional to the fitness value Ni;
9: Φ← Φ ∪ ri (append to population; death occurs by omission);

10: end for
11: P← Φ (new population);
12: end for
13: return Best solution as the candidate for optimum.

The algorithm starts with a population of plants each of which represents a solution

in the search space. Xi denotes the solution represented by plant i in an n-dimensional

space. Xi ∈ Rn, i.e. Xi = [xi j], for j = 1, . . . , n and xi j ∈ R. NPop is the population size.
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This iterative process stops when g, the counter of generations, reaches its given maximum

value gmax.

Individuals/plants/solutions are evaluated and then ranked (sorted in ascending or

descending order) according to their objective (fitness) values and whether the problem is

a min or a max problem. The number of runners of a plant is proportional to its objective

value and conversely, the length of each runner is inversely proportional to the objective

value, [9]. For each Xi, Ni ∈ (0, 1) denotes the normalized objective function value. The

number of runners for each plant to generate is

ni
r = ⌈(nmax Ni βi)⌉, (2.1)

where ni
r shows the number of runners and βi ∈ (0, 1) is a randomly picked number. For

each plant, the minimum number of runners is set to 1. The distance value found for each

runner is denoted by dxi
j. It is:

dxi
j = 2(1−Ni)(r− 0.5), f or j = 1, . . . , n, (2.2)

where r ∈ [0, 1] is a randomly chosen value. Calculated distance values are used to position

the new plants as follows:

yi j = xi j + (b j − a j) dxi
j, f or j = 1, . . . , n, (2.3)

where yi j shows the position of the new plant, and [a j, b j], j = 1, . . . , n are the bounds of

the search space.

The new population that is created by appending the new solutions to the current

population is sorted. In order to keep the number of population constant, the solutions

that have lower objective values are dropped. Figure 2.1 depicts a strawberry plant with

its runners and plantlets.

After the introduction and successful implementation of the basic PPA , further studies
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Figure 2.1: Mother plant, runners and plantlets, [2]

have been carried out to solve continuous optimisation problems, [59–62]. Results show

that PPA works well both on constrained and unconstrained continuous optimisation

problems.

2.2.2 The Modified and Improved PPA

In [62], Sulaiman et al. have introduced MPPA, a modified version of PPA. They have

proposed an alternative implementation of the propagation phase. The algorithm has

been stated as a robust, easy to implement for non-linear, non-convex high dimensional

continuous optimisation problems. The proposed method is explained as follows. First,

the population is generated randomly using the Equation (2.4):

xi j = a j + (b j − a j)α j, j = 1, ..., n, (2.4)
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where α j ∈ (0, 1) is a randomly generated real number for each j, and [a j, b j], j = 1, . . . , n

are the bounds of the search space. After the population is set, MPPA proceeds to generate

for every member in the population nr runners. These runners lead to new solutions as per

Equations (2.5-2.7) below:

yi j = xi j + β jxi j, j = 1, . . . , n, (2.5)

where β j ∈ [−1, 1] is a randomly generated number for each j. The term β jxi j is the length

with respect to the jth coordinate of the runner, and yi j ∈ [a j, b j]. If the bounds of the

search domain are violated, the point is adjusted to be within the domain. The generated

individual Y is evaluated according to the objective function and is stored in Φ. Equation

(2.5) helps in exploring the neighbourhood of xi j. As the search becomes refined, that is

the algorithm is in exploitation mode, the coordinates produced by Equation (2.5) become

smaller and smaller. In MPPA, if this newly created solution by Equation (2.5) is not

improving the objective function, then another individual is created as a runner based on

Equation (2.6).

yi j = xi j + β jb j, j = 1, . . . , n, (2.6)

where b j is the jth upper bound and here again yi j ∈ [a j, b j]. This can be considered as a

solution at the end of a long runner. Again, if the generated individual does not improve

the objective value, another runner is created by Equation (2.7),

yi j = xi j + β ja j, j = 1, . . . , n, (2.7)

where a j is the jth lower bound and yi j ∈ [a j, b j]. Similar to Equation (2.6), this can be also

considered as a solution at the end of a long runner.

Equations (2.5-2.7) are implemented in MPPA in turn if any of the search equations fails

to improve the current solution. MPPA maintains a better balance between exploration and
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exploitation of the search space. Note that the above equations may lead to infeasibility.

In these situations, the offending entry is set by default to the boundary, lower or upper as

per the concerned equation. To keep the size of the population constant, the plants with

ranks bigger than NPop (population size) after sorting, are eliminated [62].

2.2.3 PPA for Constrained Optimisation

In [59], Sulaiman et al. show the superiority of PPA to some well-known algorithms. In

the study, well-known, hard constrained engineering problems are solved. In order to

start the algorithm with a good initial population, it has been run r times with a randomly

generated population. If r = NPop, where NPop denotes the size of population, there are

enough individuals to start the algorithm. In the case of mixed integer problems, the jth

entries of the solution vectors are fixed when they are showing a trend to converge to some

values; here j = 1, 2, · · · , n. This trend is monitored by calculating the number of these

entries which have not changed after a number of iterations.

Let P be a general matrix containing the randomly generated population of a given run.

Its rows correspond to individuals. Equation (2.4) is used to generate a random population

for each of the initial NPop runs.
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Algorithm 9 Modified Plant Propagation Algorithm (MPPA), [62]

1: Create a random population of plants pop = {Xi | i = 1, 2, ..., NPop},
f ← Objective function , Φ← Temporary population of runners;

2: Evaluate the population;
3: Assume a fixed number of runners as nr = 3;
4: while the stopping criteria is not satisfied do
5: Create Φ;
6: for all plants i = 1 to NPop do
7: Φi = Xi;
8: for k = 1 to nr do
9: Generate a new solution Y according to Equation (2.5);

10: Evaluate it and store it in Φ;
11: Calculate diff=| f (Y) | − | f (Xi) |;
12: if diff ≥ 0 then
13: Generate a new solution Y according to Equation (2.6);
14: Evaluate it and store it in Φ;
15: Compute diff=| f (Y) | − | f (Xi) |;
16: if diff ≥ 0 then
17: Generate a new runner using Equation (2.7);
18: Evaluate it and store it in Φ;
19: end if
20: end if
21: end for
22: end for
23: Append Φ to current population pop;
24: Sort the population in ascending order of the objective values and omit the solutions

with rank > NPop;
25: Update current best;
26: end while
27: return Best solution as candidate for optimum.

In each generation, generated individuals are kept in Φ. Each new plant is generated

following three rules. The first two rules are valid if r ≤ NPop, the last one is used otherwise.

For the first two rules, there is a fixed modification parameter Pm, which after a number

of carried out experiments, is set to Pm = 0.8 as the algorithm has a better convergence

rate with this value. The first two rules are implemented if the population is initialized

randomly. Rule 1 uses Equation (2.8) below to update the population.

x∗i j = xi j(1 + β j), j = 1, ..., n, (2.8)
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Algorithm 10 Pseudo-code of PPA for constrained optimisation problems, [59]
1: Set gmax ←Max. number of generations NPop← pop. size r← no. of trial runs;
2: if r ≤ NPop then
3: Generate a random population P = Xi, i = 1, . . . , NPop using Equation (2.4),

gather best solutions.
4: end if
5: while r > NPop do
6: Use Pg that is created by collecting best individuals from each run, then

calculate IN j value for each individual plant;
7: end while
8: Evaluate the population;
9: Set nr = 3, ngen = 1, where nr indicates the number of runners;

10: while do(ngen < gmax)∥(neval < maxeval)
11: Create new population Φ;
12: for i = 1, . . . , NPop do
13: for k = 1, . . . , nr do
14: if r ≤ NPop then
15: if rand ≤ Pm then
16: Generate a new solution X∗(1) using Rule 1;
17: Evaluate it and append in Φ;
18: end if
19: if rand ≤ Pm then
20: Generate a new solution X∗(2) using Rule 2;
21: Evaluate it and append to Φ;
22: end if
23: else
24: for j = 1, . . . , n do
25: if (IN j ≤ 4)∥(rand ≤ Pm) then
26: Update the jth entry of Xi, i = 1, . . . , NPop using Rule 3;
27: end if
28: Evaluate it and append to Φ;
29: end for
30: end if
31: end for
32: end for
33: P← Φ (new population);
34: Sort the population in ascending order;
35: Update current best;
36: end while
37: return Best solution as candidate for optimum.
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where β j ∈ [−1, 1] and x∗i j ∈ [a j, b j].

The generated individual X∗(1)i is evaluated according to the objective function and is

stored in Φ. In rule 2 another individual is created using the same modification parameter

Pm = 0.8 with Equation (2.9),

x∗i j = xi j + (xl j − xkj)β j, j = 1, ..., n, (2.9)

where β j ∈ [−1, 1], x∗i j ∈ [a j, b j]. The indices l, k are mutually exclusive and are different from

i, [63]. The generated individual X∗(2)i is evaluated according to the objective function and

is stored in Φ. The first two rules are applicable for r ≤ NPop. r is a counter of the number

of runs. For r > NPop the algorithm also tries to recognise entries which are settling to their

final values through a counter IN which is an n-dimensional vector containing counts for

each column j. If the jth entries in the current population matrix has a low IN j value then it

is modified by implementing Equation (2.10) as Rule 3. Otherwise it is left as is. The value

of IN j is set to 4 after carrying out a number of experiments over a number of problems.

Equation (2.10) is as below.

x∗i j = xi j + (xi j − xkj)β j, j = 1, ..., n, (2.10)

where β j ∈ [−1, 1], x∗i j ∈ [a j, b j], and k is different from i, [63].

2.3 The Seed-Based PPA: The Feeding Station Model

PPA is particularly concerned with the strawberry plant. Strawberry plants propagate via

seeds as well as runners. In [60], Sulaiman et al. studied a Seed-based PPA or SbPPA which

is a new variant of PPA based on propagation by seeds. The dispersion of seeds is provided

by animals and birds in particular. Since plants produce fruit for the purpose of dispersing
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their seeds, there is a timing element and a set up which must attract the dispersing agents.

This obviously calls for the feeding station analogy. Indeed, one can draw the reasonable

parallel with restaurants for instance which are set up to attract customers in need of

feeding, but will then contribute to the business owner. A queueing model is used to

imitate the system.

A queuing system has two basic components:

(1) the rate at which agents arrive at the (feeding station) strawberry plants,

(2) the rate at which the agents eat fruit and leave the plants to disperse the seeds. The

agents arrive at plants in a random process. The conditions under which the system

operates are listed below, [64]:

• Orderliness: Plants are visited at most by one agent (bird/animal in this case) at a

time.

• Stationarity: The probability of arrivals of agents to the plants remains the same for

a particular period of time.

• Independence: Arrivals are independent from each other.

Based on these assumptions, it is concluded that the probability of arrival of k agents

during a cycle c of fruit production by strawberry plants can be denoted by random variable

X′, [64]. The probability distribution of a Poisson random variable X′ can be expressed

mathematically as

P(X′ = k) =
(λt)ke−λt

k!
, (2.11)

where λ denotes the mean arrival rate of agents per unit time, and t the length of the time

interval. The time taken by agents in successfully eating fruit and leaving to disperse its
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seeds, in other words the service time for agents, are expressed by a random variable which

follows the exponential probability distribution, [65]. This can be expressed as follows,

S(ρ) = µe−µρ, (2.12)

where µ is the average number of agents that can feed at time ρ.

Assume that the arrival rate of agents is less than the fruits available on all plants per

unit of time, therefore λ < µ and the system is in steady state. Let D denote the average

number of agents in the strawberry field (some already eating and the rest waiting in the

queue to feed), and Dq the average number of agents waiting to get the chance to eat, i.e

waiting in the queue. If the average number of agents eating fruits is denoted by λµ , then

by Little’s formula, [66],

D = Dq +
λ
µ

. (2.13)

Since the plant strives to maximise dispersion, this is equivalent to having a large Dq in

Equation (2.13). Therefore, from this equation, the following problem should be solved,

Maximize Dq = D− λ
µ

, (2.14)

subject to

g1(λ,µ) = λ < µ+ 1,

λ > 0, µ > 0.

(2.15)

Frugivores may travel far away from the plants and hence will disperse the seeds far and

wide. This feeding behaviour typically follows a Lévy distribution, [60, 67].

Lévy distribution

The Lévy distribution is a probability density function of a random variable. Here the

random variable represents the directions of flights of arbitrary birds. This function ranges
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over real numbers in the domain represented by the problem search space, [60]. The flight

lengths of the agents served by the plants follow a heavy tailed power law distribution, [68],

represented by,

L(s) ∼ |s|−1−β, (2.16)

where s is a step size drawn from the Lévy distribution and L(s) denotes the Lévy distribu-

tion with index β ∈ (0, 2). Lévy flights are unique arbitrary excursions whose step lengths

are drawn from (2.16). An alternative form of Lévy distribution is, [68],

L(s,γ,µ) =


√
γ

2π

(
1

(s− µ)

) 3
2

exp
[
− γ

2(s− µ)

]
, 0 < µ < s < ∞

0 Otherwise.

(2.17)

This implies that

lim
s→∞

L(s,γ,µ) ≈
√
γ

2π

(1
s

) 3
2

. (2.18)

The steps L(s) are generated by Mantegna’s algorithm, [68]. This algorithm ensures that the

behaviour of Lévy flights is symmetric and stable. It is assumed that the arrival of different

agents (birds and animals) to the plants to feed follows a Poisson distribution, [64].

As already stated, balancing the exploration and exploitation is essential in this imple-

mentation. To this end, in [60] a threshold value of the Poisson probability is chosen that

dictates how much exploration and exploitation is done during the search. The probability

Poiss(λ) < 0.05 means that exploitation is covered. In this case, Equation (2.19) is used,

which is helping the algorithm to search locally,

x∗i j =


xi j + ξ j(xi j − xl j) if PR ≤ 0.8; j = 1, 2, · · · , n;

i, l = 1, 2, · · · , NPop; i , l

xi j Otherwise,

(2.19)

where PR denotes the rate of dispersion of the seeds locally, around the strawberry plant;



2.3. The Seed-Based PPA: The Feeding Station Model 35

x∗i j and xi j ∈ [a j, b j] are the jth coordinates of the seeds X∗i and Xi respectively; where a j and b j

are the jth lower and upper bounds defining the search space of the problem, andξ j ∈ [−1, 1],

[63]. The indices l and i are mutually exclusive. If, on the other hand, Poiss(λ) ≥ 0.05 then

global dispersion of seeds becomes more prominent. This is implemented by using the

following equation,

x∗i j =


xi j + Li(xi j − θ j) if PR ≤ 0.8, θ j ∈ [a j b j]

i = 1, 2, · · · , NPop; j = 1, 2, · · · , n

xi j Otherwise,

(2.20)

where Li is a step drawn from the Lévy distribution, [68], θ j is a random coordinate within

the search space. Equations (2.19) and (2.20) perturb the current solution.

As mentioned in Algorithm 10, first collect the best solutions are collected from the first

NPop trial runs to form a population of potentially good solutions denoted by popbest. The

statistics values best, worst, mean and standard deviation are calculated based on popbest.

The seed based propagation process of the strawberry plant can be represented in the

following steps:

1. The dispersal of seeds in the neighbourhood of the strawberry plant is carried out

either by fruit fallen from strawberry plants after they become ripe or by agents. The

step lengths for this phase are calculated using Equation (2.19).

2. Seeds are spread globally through agents. The step lengths for these travelling agents

are drawn from the Lévy distribution, [68].

3. The probabilities, Poiss(λ), that a certain number k of agents will arrive to strawberry

plants to eat fruit and disperse it, is used as a balancing factor between exploration

and exploitation.
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For implementation purposes, it is assumed that each strawberry plant produces one

fruit, and each fruit is assumed to have one seed; solution Xi means the current position

of the ith seed to be dispersed. The number of seeds in the population is denoted by NPop.

Initially a random population of NPop seeds is generated using Equation (2.4).

Algorithm 11 Seed-based Plant Propagation Algorithm (SbPPA), [60]
1: NPop← Population size, r← Counter of trial runs, MaxExp←30;
2: for r=1 : MaxExp do
3: if r ≤ NPop then
4: Create a random population of seeds pop = {Xi | i = 1, 2, ..., NPop},

using Equation (2.4) and collect the best solutions from each trial run, in popbest;
5: Evaluate the population pop.
6: end if
7: while r > NPop do
8: Use updated population popbest;
9: end while

10: while ( the stopping criteria is not satisfied) do
11: for i = 1 to NPop do
12: if Poiss(λ) ≥ 0.05 then ◃ (Global or local seed dispersion)
13: for j = 1 to n do ◃ (n is number of dimensions)
14: if rand ≤ PR then
15: Update the current entry according to Equation (2.20);
16: end if
17: end for
18: else
19: for j = 1 to n do
20: if rand ≤ PR then
21: Update the current entry according to Equation (2.19);
22: end if
23: end for
24: end if
25: end for
26: Update current best;
27: end while
28: Return: Updated population and global best solution.
29: end for
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2.4 The Hybrid PPA-SbPPA for Continuous Optimisation

In [61], Sulaiman et al. have proposed and investigated a hybrid metaheuristic algorithm

referred to as H-PPA-SbPPA , which captures the overall propagation process of the straw-

berry plant. They combined PPA and SbPPA to handle constrained and unconstrained

optimisation problems. The study of PPA showed that exploration is not prominent; this

often results in premature convergence. The hybridised algorithm is expected to address

the weak exploration characteristic of PPA with the exploration capability of SbPPA. Ex-

ploitation is performed through sending many short or few long runners in the neighbour-

hood of the parent, [9]. Furthermore, there is no gauge defined in PPA which can decide

how much exploration and exploitation should be carried out to cover the search space

well. They used the Poisson probability as in [60] to balance the two characteristics. In

the original implementation of PPA, the runners are generated according to a normalised

fitness value of the objective function. These runners are either long or short depending

on the fitness value of positions of their parent plants.

At the initialization phase, H-PPA-SbPPA generates random populations for the first

NPop (population size) trial runs. To preserve feasibility, it gathers all the global best

solutions of the first NPop experiments and forms a new population of size NPop. The

random spots where to grow NPop strawberry plants are generated as in [59]. This new

algorithm has all its components already explained in the previous sections of this chapter.
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Quality of the Current Spot

The quality of a spot is calculated according to Equation (2.21), [9],

f (X) =
fmax − f (X)

fmax − fmin
, (2.21)

where fmin and fmax are respectively the minimum and maximum objective function values

in the current population. If fmax − fmin < ϵ, where ϵ is a small positive real number, then

all positions in the current population are given a fitness of 0.5, [9].

Algorithm 12 Hybridised PPA-SbPPA (H-PPA-SbPPA ), [61]
1: NPop← Population size, r← Counter of trial runs, MaxExp← 30;
2: for r=1 : MaxExp do
3: if r ≤ NPop then
4: Create a random population of plants pop = {Xi | i = 1, 2, ..., NPop},

using Equation (2.4) and collect the best solutions from each trial run, in popbest;
5: Evaluate the population pop.
6: end if
7: while r > NPop do
8: Use updated population popbest;
9: end while

10: while (the stopping criteria is not satisfied) do
11: for i = 1 to NPop do
12: if Poiss(λ) ≥ 0.05 then ◃ (Global or local search)
13: for j = 1 to n do ◃ (n is number of dimensions)
14: Update the current entry according to Equation (2.19);
15: end for
16: else
17: for j = 1 to n do
18: Update the current entry according to Equation (2.3);
19: end for
20: end if
21: end for
22: end while
23: Record the best of this experiment.
24: end for
25: return Best solution as candidate for optimum.

In each iteration, a plant produces new child plants through seeds or runners. The

probability Poiss(λ) ≥ 0.05 means that exploration is covered. In this case, Equation
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(2.19) is used, which is helping the algorithm to search globally. If the quality of new

spot X∗i is better than the quality of its parent location Xi, then the parent location is

replaced, otherwise the new solution is ignored. If, on the other hand, Poiss(λ) < 0.05 then

propagation through runners becomes prominent. Depending on their sports, each plant

either sends many short runners or a few long runners in their neighborhood. This is done

by using Equations (2.2) and (2.3), [9]. To keep the size of the population constant, the

plants with ranks bigger than NPop after sorting, are eliminated.

2.5 Extension of PPA for Discrete Optimisation

After discussing various successful implementations of PPA on constrained and uncon-

strained continuous optimisation problems, its extension to solve discrete optimisation

problems will now be discussed. The idea is again to use short runners for exploitation

and long runners for exploration of the search space, [9]. The main issues with the imple-

mentation of PPA to solve discrete optimization problems are [6]:

1. Finding/Defining the equivalent of a distance between two solutions in the discrete

solution space. In other words defining a metric for the search space.

2. By extension, defining the neighbourhood of a discrete solution.

2.5.1 The Representation of a Solution as a Plant

The solution representation as a plant varies depending on the discrete optimisation prob-

lem type. In the next chapters, we will explain implementations to solve the Travelling

Salesman Problem (TSP), the Knapsack Problem (KP) and, Scheduling Problems, in partic-
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Figure 2.2: The permutation representation of a plant as a tour

ular the Robust Berth Allocation Problem (RBAP) as arise in container ports. For TSP, the

represenation is depicted as a permutation of cities. Each plant therefore indicates a tour.

In Figure 2.2, the entries of the array represent cities. City 6 and city 9 are successive in

the depicted tour and the notation 6-9 defines the edge between them.

For the single binary KP, the represenation of a solution as a plant is basically a binary

string, Xi = [0 1 0 0 1 1 0 1] which represents a knapsack where n = 8 and items x2, x5, x6

and x8 are to be included in the knapsack. For the multiple knapsack problem, a matrix

representation is used where each row represents a knapsack. A sample set of 3 knapsacks

with 6 items in total can be shown as below, Xi j, where xi j in the set Xi j denotes the jth item

in the ith knapsack:

Xi j =

1 0 0 0 1 1
0 1 0 1 0 0
0 0 1 0 0 1

 , i = 1, . . . , 3, j = 1, . . . , 6. (2.22)

Here, items x11, x15, and x16 are in the first knapsack, items x22 and x24 are in the second

bag, and items x33 and x36 are in the 3rd knapsack.

The third type of representation is for schedules. Here, we will look at the schedules

for the Robust Berth Allocation Problem. For each vessel, a starting time and a position is

needed to configure a schedule. We represent it as an array of length 2n, where n denotes

the number of vessels. The first n numbers on the string show processing starting times

and the rest shows the positions each vessel is assigned to. Table 2.1 depicts a schedule for

3 vessels. The first vessel starts being processed in time unit 5 and is placed in position

unit 0.
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Table 2.1: Representation of a schedule as a plant

5 16 23 0 2 6
T1 T2 T3 P1 P2 P3

2.5.2 Short and Long Runners

Determining strategies for short and long runners is at the heart of the implementation.

While implementing the strategies chosen, it is essential to cover the search space extend-

edly.

Let gen be the number of generations, pop be the size of population, r and R be the

number of short and long runners, respectively. Let short runners be sent from the top

γ solutions of the population and S denote the search space that is examined. The total

number of short runners is calculated as:

SR = gen × r × pop
γ

, (2.23)

The total number of long runners generated from the rest of the population is:

LR = gen ×R (pop− pop
γ

), (2.24)

Therefore, assuming that there are no repetitions, the number of all individuals (SR + LR)

examined by the algorithm is:

S = gen × pop (
r + (γ − 1)R

γ
) + pop. (2.25)

The sketch in Figure 2.3 shows that the cumulative effect of short runners is a long

runner or even a longer runner. Following this idea, it can be assumed that the algorithm

does not get stuck into a local optimum. If there is a local optimum at the exploitation

area, it is found. Unless the local optimum is in fact the global optimum, after a certain

number of generations, long runners will help move from the local optimum found by its
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Figure 2.3: A sketch of short runners in different generations

exploration property.

2.5.3 Termination of the Algorithm

The termination criterion of the algorithm is two fold:

1. The maximum number of generations, maxgen;

2. The number of iterations without improvement in the current best solution.

Note that both approaches can be combined and used together.

2.6 Summary

In this chapter, we discussed variants and implementations of PPA, which has been suc-

cessfully implemented for both constrained and unconstrained continuous optimisation

problems. First, we explained the basic algorithm [9]. We then reviewed recent implemen-

tations of it. We started with MPPA which offers a new mechanism for short and long

runners. Then, we discussed PPA for constrained optimisation problems. Well-known

and hard engineering problems were solved in this study [59]. The novelty of this variant

is that the inital population is generated running the algorithm NPop times, where NPop
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denotes the size of the population, and keeping the best solution of each run. Next, a

study that uses a different approach for the propagation of the strawberry plant has been

discussed. In this algorithm, SbPPA, instead of runners, the propagation is achieved via

seeds. Seeds are transported and dispersed by animals and birds in particular. The feeding

station model of queueing systems has been used to implement SbPPA. Succesful results

were observed after solving well-known benchmark problems. As SbPPA was a success,

then the hybrid version of SbPPA and PPA [61] was studied. This variant was aimed at

improving the exploration capability of PPA by using SbPPA.

In the last section, the extension of PPA to solve discrete optimisation problems is

discussed. Representation methods for discrete optimisation problems were shown for

different problem types. The main issues of the implementation were addressed and the

importance of choosing good strategies for implementing short and long runners was

highlighted. Then, the search mechanisms of short and long runners were discussed. It

was underlined that short runners have the ability to find local optima, if they happen to be

in their exploitation search areas and long runners have the ability to escape from getting

stuck at local optima. Finally, the stopping criteria of the extenstion of PPA for discrete

optimisation was discussed. The discrete extensions of PPA to solve various combinatorial

optimisation problems will be discussed in Chapter 4, Chapter 5 and Chapter 6 in detail.



CHAPTER 3

INITIAL POPULATION GENERATION
IN POPULATION-BASED ALGORITHMS

3.1 Introduction

Population-based algorithms maintain a population from generation to generation and

tries to improve it. Some of the well-known population-based heuristics are GA [35],

ACO [69], ABC [40], Swarm intelligence [70], and Harmony Search [71].

Starting an algorithm with a population of individuals/solutions enhances its explo-

ration capabilities, [23]. However, starting with a good initial population is crucial since

it directly affects the performance of the algorithm, [23]. In order to boost the quality of

the initial population we include in it a number of individuals which are not randomly

generated. This chapter is concerned with ways to generate good individual cheaply. Some

of the methods used to initialize populations are as follows, [23].

1. Random generation

2. Sequential diversification

44
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3. Parallel diversification

4. Heuristic initialization

Here, we consider the situation of applying PPA to a set of well-known discrete opti-

misation problems. We will treat each case on its own, showing how the initial population

can be generated.

3.2 Strip Algorithms to Generate Good Tours for TSP

Cheap but not necessarily robust algorithms are always needed. Also, since, often, hard

problems encountered in the real world are not required to be solved exactly, approximate

solutions are enough particularly when time is crucial. The TSP is one such problem. So,

cheap algorithms were devised for it. Such algorithms are known as Strip Algorithms,

[72–74]. They are simple and efficient heuristics for large Euclidean TSPs, [75]. Their

approach is to cut the plane into vertical or horizontal strips, then group the cities within

strips according to their coordinates, and find Euclidean distances by following the order

of the cities. Eventually the total length of a tour is obtained, [76]. It can be implemented

in various ways. Furthermore, we believe that it has a lot of scope for improvement.

3.2.1 Ideas Behind the Strip Algorithm

Without loss of generality, we consider the Euclidean or 2D TSP. The idea is to connect

nodes which are within a reduced area of the 2D problem. This is not very different

from approaches which build tours from minimum spanning trees and other greedy meth-

ods, [77]. However, it allows for ”less obvious" links to be taken into consideration and
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discourages cris-crossings from appearing in the tour. It is well-known that good tours do

not have any edge crossings.

Besides well-known construction heuristics such as, the nearest neighbour, the greedy

algorithm, and insertion heuristics, there are different approaches for solving TSP instances.

In some situations, such as when large TSP instances are involved, the speed of an algorithm

is the priority, rather than the quality of solutions, [78]. Therefore, for large Euclidean TSP

instances, various fast but not necessarily very accurate algorithms have been introduced.

Some of these heuristics are the Space Filling Curves, Strip Heuristics and Decomposition

Approaches, [75, 79].

Few [72], has proved that for n points, with n ≥ 2, the path length through them cannot

be larger than
√

2n + 1.75 by using the strip idea. Beardwood et al., [73] have studied

the shortest path for large numbers of points on a k-dimensional Euclidean space. They

have assumed k = 2. They have shown that the optimum tour length is almost always

proportional to
√

nv , where n is the number of points and v is the area of the plane defined.

So, in the unit square this proportion has been defined as

lim
n→∞

copt√
nv

= C, (3.1)

where copt is the optimal solution, and C ≤ 0.9212 is a constant.

In [80], the constant C found by Beardwood et al. was improved and the new constant

was defined as C ≤ 0.894 again by using the strip idea. Supowit et al. [74,76], have studied

the length of the shortest TSP tour in the worst case, through n cities in the unit square.

They have found the worst case tour length to be α
√

n + o(
√

n), where 1.075 ≤ α ≤ 1.414.

They introduced the strip algorithm which was inspired from the study in [73]. In their

heuristic, the unit square is divided into r = ⌈
√
(n

2 )⌉ vertical strips. Here, the number of
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Figure 3.1: An Illustration of the Classical Strip Algorithm.

strips is guaranteed to be an integer value by using the ceiling function. The configuration

of their strip algorithm can be seen in Figure 3.1. The first tour T1 is formed by linking the

points starting from the city which has the smallest y-axis value on the leftmost strip. The

path goes up along that strip, then jumps to the next strip and goes down, and so on. The

last city is connected to the first one to complete the tour. The second tour T2 is formed in

the same way. However, in order to construct the second tour the strips are shifted by 1
2r

while the width of each strip is kept the same. The algorithm returns the tour with shortest

length, [74]. The complexity of this algorithm is O (n log n), [81].

In [3], Dazango has introduced a new strategy for the expected length of tours by

considering zones of various shapes and the density of vertices. The expected tour length

was given as

D ≈ ϕ
√

AN (3.2)

as N → ∞, where N is the number of points uniformly distributed in the plane, A is the

area of the plane, and ϕ is taken as 0.75 for the Euclidean metric. Further details are in [3].

In [82], Karloff has introduced the Local Strips method and proved that the upper

bound for the shortest length of a TSP tour for n cities in a unit square cannot be larger than
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α
√

n+ 11, where n is the number of points and α√
(2)
< 0.984. Reinelt et al. [75], defined the

strip algorithm as in Algorithm 13.

Algorithm 13 Reinelt’s Algorithm, [75]
1: s← number of strips,
2: Split the planar graph into s vertical strips of equal width and calculate the tour length;
3: Split the planar graph into s vertical strips each having the same number of cities and

calculate the tour length;
4: Split the planar graph into s horizontal strips of equal height and calculate the tour

length;
5: Split the planar graph into s horizontal strips each having the same number of cities

and calculate the tour length;
6: Return Best solution is chosen as the result.

The running time for this algorithm is estimated to be Θ (n log n), and the number

of strips is s =
√

n
2 , where n indicates the total number of points. In [83], Johnson et

al. modified the strip algorithm to overcome the problem that occurs with clustered data

points/ cities. They ran the algorithm twice for each problem; once using vertical strips

and once horizontal strips. They, then, chose the one which gives the better result. This

method is called ”2-Way Strip Algorithm". Compared to the Classical Strip Algorithm, it

is reported that this method has only minor improvement on average.

3.2.1.1 The Appropriate Number of Strips

In their algorithm, Supowit et al., [74], used r = ⌈
√
(n

2 )⌉ strips for the vertices uniformly

distributed vertices in the unit square. We applied this algorithm to some TSP problems

taken from [4], but we used different numbers of strips chosen arbitrarily [8]. We also used

the number of strips suggested in the original paper for comparison purposes. Results can

be seen in Table 3.1. Instances with 100, 200, 280, 442, 575 and 1084 points have been solved.

The numbers of strips were chosen arbitrarily as 12, 20, 30, 40. But, we also used ⌈
√
(n

2 )⌉
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Table 3.1: CSA with various numbers of strips, [8]

TSP True Average errors for strip numbers (%):
Instances Solution r=12 r=20 r=30 r=40 r=⌈

√
(n/2)⌉

rd100 7910 63.80 129.45 188.26 231.51 33.93
kroA200 29368 37.67 60.55 92.90 133.30 38.70
a280 2579 57.31 51.49 84.18 119.83 57.31
pcb442 50778 37.49 56.22 82.83 126.42 48.77
rat575 6773 60.54 38.95 39.72 57.63 38.29
vm1084 239297 73.83 53.23 55.65 77.23 49.19

Figure 3.2: Dazango’s configuration of the Strip Algorithm, [3].

strips.

Results show that, better approximations can be obtained using different numbers of

strips. For kroA200 and pcb442 the algorithm with 12 strips gives better results. For 280

points, 20 strips give a better result. Reinelt et al. [75] defined the number of strips as r =
√

n
2 ,

where n indicates the total number of nodes. Another study of the optimum number of

strips can be found in [3]. Dazango [3], claimed that, for any rectangle containing the cities,

the width of strips, i. e. their number, affects the quality of solution. If width w is too small

then there will be extra length to connect points. But, if w is too large, then there will be

zigzags which increase the tour length. For the configuration in his study, where A is the

area, r is the number of strips and σ is the density of points in the unit area the optimum

width was found to be w =
√
(3A
σ ). Dazango’s configuration of the strip algorithm can be

seen in Figure 3.2.
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3.2.2 2-PSA: the 2-Part Strip Algorithm

The difference between CSA, [74], and 2-PSA is that in the latter the plane is divided

into two by one horizontal line. Furthermore, the number of strips can be changed in

the given interval, so more alternatives can be compared in one method. In practical

implementations, this algorithm aims at minimising the distance between the last visited

point and the starting point. In both upper and lower part CSA is applied. It starts from

the bottom part and follows the ascending or descending order of y-axis values to connect

to the next strip. When it goes through the upper part, the same procedure is used and

the last point meets the starting point. The time complexity of this algorithm is O (n log n),

because of the sorting that has been performed with respect to the vertical coordinates.

The 2-PSA can be described as in Algorithm 14, [8]. Note that r can be chosen between

r = ⌈
√
(n

2 )⌉ and width w =
√
(3A
σ ) or through some experimentation. An example output

of 2-PSA for a large TSP instance can be seen in Figure 3.3.

Algorithm 14 2-Part Strip Algorithm, [8]
1: r← number of strips;
2: Divide the grid into two horizontal parts each having roughly equal number of points;

then divide each into r vertical strips;
3: Proceed as in the basic strip algorithm from either of the horizontal parts, but reverse

the sense of travel when at the end of the first part;
4: Connect the last point of the tour to the starting point to complete the Hamiltonian

tour;
5: Return Return the tour and its length.
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Figure 3.3: Representation of the solution found by 2-PSA for TSP problem rl5915, [4].

3.2.3 Worst-Case Analysis of 2-PSA and an Upper Bound on the Mini-

mum Tour Lengths Returned

Since 2-PSA, [8], is a refined version of CSA, [74], we carried out its analysis in the same

way. The L2 metric has been used. Let there be n points uniformly distributed in the unit

square. Construct two tours, T1 and T2 according to the procedure described in Algorithm

14 and let the lengths of these tours be LT1 and LT2, respectively. In order to define upper

bounds on the optimum tour length, create two tours BT1 and BT2, the former following

the median of a strip that is used to construct T1 and the latter that of a shifted strip to the

right by 1
2r , that is used to construct T2. Tours BT1 and BT2 are generated using the same
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Figure 3.4: The paths BT1 and BT2 for visiting points

procedure as that of 2-PSA. However, since each path goes up or down through the median

of the strip and its shifted couterpart, in order to connect the points, there is a jut that goes

horizontally to the middle of the intersection of the two strips. This can be seen in Figure

3.4. A similar representation can be found in [74].

Assuming that the horizontal line cuts the unit square from the midpoint of the leftmost

and the rightmost sides, the vertical length of the upper and lower parts becomes 1
2 each.

The total length of BT1 and BT2 are calculated in order to define an upper bound for the

2-PSA. Since the total vertical length for BT1 is r
2 for the lower part and r

2 for the upper

part, it is therefore, r for the total tour length. Similarly for BT2, it is r+1
2 + r+1

2 = r + 1.

Since the strips have been shifted to construct the second tour, the total number of strips

has increased by 1. The total horizontal length for BT1 to connect one strip to another is,

1− 1
r for the lower part, because on the leftmost and the rightmost strips, there are gaps of

1
2r , and the same applies for the upper part, the total tour length would be therefore 2− 2

r .

For BT2, this length is 2. In order to calculate the total horizontal length of visiting each
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point and coming back to the median line, let us assume that points have been placed 1
4r

apart from each half strip. Therefore, from each path, which is on the median, there is a

horizontal length of 2 1
4r . For both BT1 and BT2, the total horizontal length is n

r . Finally, the

length of connecting the last visited point to the starting point is 1 in the worst case for

both tours. By using the triangle inequality and assuming r = ⌈
√
(n

3 )⌉, we can write

LT1 + LT2 ≤ length(BT1) + length(BT2),

≤ r + r + 1 +
n
r
+ (2− 2

r
) + 2 + 1 + 1,

≤ n
r
+ 2r + O(1),

≤ 5

√
3n
3

+ O(1). (3.3)

Therefore, as in [74], either LT1 or LT2 is less or equal to 5
√

3n
6 + O(1) which is the worse

upper bound in terms of cost. However, experiments show that assuming that we know

the optimal width of the strips, we can deduce that

length(T2−PSA
1 ) ≤ length(TCSA

1 ).

In other words, 2-PSA generates better tours than CSA. But, referring to experimental

evidence again, CSA is much faster. Note that, O(1) denotes the constant execution time

that does not depend on the size of the problem.

3.2.4 Other Implementations of the Strip Algorithm

Following the analysis of 2-PSA, we have developed other variants of the strip algorithm

and investigated them. These variants and the results obtained with them are given below.
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3.2.4.1 The Adaptive Strip Algorithm (ASA)

The classical strip algorithm is not effective on instances with clustered cities. To generate

good quality initial tours for such TSP instances in a cheap way, a new idea has been

explored. This idea consists in generating strips with approximately similar numbers of

cities in them. A threshold of cities is arbitrarily chosen and then any strip with a number

of cities greater than this threshold is subdivided into 2 new strips. The process is started

with the initial grid containing all cities. Since the threshold is set well below the number

of given cities, this initial grid or box is vertically split into two. The choice of splitting

vertically first is arbitrary. Each resulting strip or box is then checked for the number of

cities it has. If this number is higher than the threshold, the box is split further. The process

continues. Note that any box which is a result of a vertical split is split horizontally, and

any box which is the result of a horizontal split is divided vertically. This approach results

in small boxes where there is a high density of cities and larger ones where the density is

low. In each box, a representative city is then chosen at random. These representatives are

linked up using CSA. Then in every box a path linking all cities is generated. These paths

fall into the overall path which links the boxes, to form a Hamiltonian path. The last city

in the last box is then linked to the first city in the first box to complete a tour. Note that,

boxes with no cities in them are ignored. The Adaptive Strip Algorithm or ASA can be

described as in Algorithm 15.

The graphical result of ASA for solving greece9882 problem can be seen in Figure 3.5.

A 50-city TSP problem was solved by using both ASA and CSA. Graphical results can be

seen in Figures 3.6 and 3.7. In this set of cities, there are clusters which cause CSA to work
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Algorithm 15 The Adaptive Strip Algorithm, [8]
1: Split the unit square into horizontal and vertical strips. Each strip should contain a

predetermined number of cities at most;
2: Choose a city from each strip as a representative of the cities in that strip;
3: Apply CSA to all representative cities to link them into a path;
4: Apply CSA to all cities in each strip;
5: Return Return the tour by linking up all paths within strips to each other and calculate

its length.

Figure 3.5: ASA solution of greece9882, [5]

ineffectively. Applying ASA, the same problem was solved by hand. The total length of

the tour formed with CSA is 6.33. With ASA it is 5.50. This shows that the clustered TSP

instances can be solved more efficiently using the new algorithm.

3.2.4.2 The Spiral Strip Algorithm (SSA)

In this approach, the plane is cut into a number of horizontal and vertical strips proportional

to the number of cities. Assume that r is the number of vertical strips and p the number

of horizontal strips. Therefore, r × p cells are created. Both r and p are calculated as

⌈number o f cities
t ⌉, where t is a positive integer used as the number of strips. The application

starts from the leftmost upper corner cell and follows a spiral and ends up about the middle

of the plane. The Hamiltonian cycle is completed by connecting the ending point with the

starting one.
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Figure 3.6: The Adaptive Strip Algorithm on the 50-city problem

Figure 3.7: The Classical Strip Algorithm on the 50-city problem
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Figure 3.8: SSA solution of problem rl5915, [4].

One similar approach can be found in [84]. To justify the investigation of the SSA, we

compare the tour length it produces with that of the CSA, for instance. Let consider two

identical unit squares with n number of cities spread over each. In order to complete the

Hamiltonian cycle, let solve each using CSA and SSA, respectively. If we use r strips to

solve the problem with CSA, the total tour length in the worst case will be r + r−1
r +

√
2.

Similarly, to solve the problem using SSA with r vertical and r horizontal strips, then, the

total tour length in the worst case will be 3
r (r− 1) + (r−2)(r−1)

r +
√

2
2 . The first part is the total

length of three edges of the unit square. The second part is the total length of the inner

path. Note that the spiral path is getting smaller as it gets closer to the centre. Finally, the

last part is the length of the connection between the centre and the starting point. In both

cases, it is assumed that nodes are exactly on the strips. Comparison of the results of each
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problem proves that

length (TSSA) ≤ length (TCSA). (3.4)

An example output of the implementation can be seen in Figure 3.8.

3.2.5 Computational Results

We have implemented 2-PSA and other similar schemes and tested them on standard TSP

problems ranging from 51 to 5915 cities, [4]. The computing platform is an Intel core I5 PC

with a 3.40 GHz processor and 16 Gigabytes RAM, running Windows 7. All algorithms

are coded in Matlab R2014a. The results show the value of the strip approach at least as a

tool for generating computationally cheap but better tours than those generated randomly.

Note that it was not expected to generate solutions too close to the optimum, hence the

relatively large errors observed. The aim is to have something which is better than just

random tours. Speed is the essence. For comparison purposes, the CPU time of 2-PSA for

the TSP with 9882 cities is less than 1
10

th
of a second, while that of the greedy algorithm is

around 8 minutes. Comparative results between the different variants of the strip algorithm

and random permutation considered have also been recorded in Table 3.2; the superiority

of 2-PSA over CSA, SSA and the random permutation is very clear.

In Table 3.3, real-life instances [5] have been used to compare the performance of CSA, 2-

PSA, ASA and the random permutation. Note that 2-PSA and ASA give better results than

CSA. Table 3.4 records the total computation time for each algorithm. ASA has solved all

problems in a reasonable time. Results show that 2-PSA runs 7 to 20 times longer than CSA,

however it reduces the error from 10% to nearly half that. ASA is faster than 2-PSA, and for

large instances, it gives better tour lengths than both CSA and 2-PSA. Results demonstrate
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Table 3.2: Deviation (in %) from the optimum of CSA, SSA, 2-PSA and Random Solutions

TSP in-
stances

No. of
cities

Opt.
Sol.

CSA SSA 2-PSA Rand.
Perm.

eil51 51 426 21.67 40.63 19.62 303.28
st70 70 675 31.94 47.93 17.75 443.46
rd100 100 7910 32.84 48.18 23.80 598.31
a280 280 2579 41.50 62.19 29.71 1190.02
rat575 575 6773 47.70 37.54 20.83 1604.73
vm1084 1084 239297 51.74 519.27 40.38 3498.61
vm1748 1748 336556 55.58 671.69 44.19 4342.15
rl5915 5915 565530 78.24 163.03 64.11 7436.97

Table 3.3: Deviation (in %) from the optimum of CSA, 2-PSA, ASA and Random Solutions

TSP
instances No. of

cities
Opt. Sol. CSA 2-PSA ASA Rand.

Perm.
usca50 50 14497 108.79 54.69 97.61 451.08
zimbabwe929929 95345 68.13 57.27 61.91 1319.46
canada4663 4663 1290319 158.17 114.88 86.11 1793.95
greece9882 9882 300899 90.81 90.12 87.75 12529.2

that although the random permutation is the fastest, it gives the worst approximate solution

compared to the others.

The Strip Heuristic is cheap yet effective in finding good tours in a short time. The

proposed algorithms, 2-PSA and ASA have given better results than CSA. Although the

returned solutions are far from the optimum solutions in terms of quality, they have been

obtained quickly. This makes them potential providers of initial populations for other meta-

Table 3.4: CPU time of each algorithm on large problems

CPU Time (s) usca50 zimb929 ca4663 gre9882
CSA 0.008 0.003 0.006 0.012
2-PSA 0.028 0.061 0.117 0.083
ASA 0.006 0.009 0.020 0.047
Random
Permutation 0 0 0 0.001
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Table 3.5: An Example of a RW Selection

Items Fitness Normalised
Fit.

Probabilities
(%)

1 5 0.05 5%
2 10 0.1 10%
3 42 0.42 42%
4 20 0.2 20%
5 23 0.23 23%

heuristics such as the Plant Propagation Algorithm or the Strawberry Algorithm [6,9,59,60]

and the Genetic Algorithm [85].

3.3 KP Solutions: Roulette Wheel Approach

The Roulette Wheel (RW) method is one of the most common and easy-to-implement

approaches used in the parents’ selection process of GA [86], in particular. Here, we

explain how it can be used in the context of PPA for the Knapsack problem. The approach

works as follows. For each item a probability is assigned based on their
p j
w j

proportion,

where p j and w j denote the value and weight of item j, respectively. Then, by using the RW

approach sets of solutions are generated. For multiple knapsack problems, the procedure

starts with assigning items to the knapsack with the smallest capacity and then proceed

in the same way until all knapsacks are filled, [87]. Some of the sets are generated by

using random generation to ensure diversity in the population. A simple example and an

illustration of a roulette wheel are given in Table 3.5 and Figure 3.9, respectively.

Assuming that the fitness values represent
p j
w j

proportion values for each item j to be

placed in a single KP. This proportion denotes the profit of item j per unit weight. Then

the normalised fitness values are calculated using
f itness j∑

f itness and probabilities to be chosen
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Figure 3.9: Proportionate fitness representation on a roulette wheel.

are assigned by multiplying each normalised fitness value by 100. During the selection

process cumulative probabilities are calculated by adding up probabilities and reaching 1.

Then, a random value between 0 and 1 is generated and by checking where the value falls

in the cumulative probability, the corresponding item is chosen. According to the given

example in Table 3.5, it is expected to have item 3 in the knapsack with a priority since it

has the largest probability to be chosen.

3.3.1 Complexity of the Roulette Wheel Approach

In RW approach, we search the target value within a list of assigned proportions. Each

element is checked sequentially to find into which slot the randomly generated value falls.

This is called linear search, [88]. Checking for each random value takes O(n) time. However,

as the algorithms needs to be performed for all n items, it requires n spins. Therefore, the

time complexity of this method is O(n2), [86].
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3.4 Edge Seeking Heuristics for Scheduling

In this section, we present some new heuristics we refer to as Edge Seeking Heuristics

(ESH) designed to generate quickly feasible or near feasible schedules for population-

based heuristics such as GA and PPA when applied to scheduling problems of the Berth

Allocation Problem (BAP) type. Five heuristics are considered. It is assumed that a schedule

is a box or rectangle with time on its horizontal edge and space on its vertical one, and a

ship is a rectangular plank. Ships must be placed in the box without any overlap. However,

these heuristics do not guarantee feasible solutions. All heuristics have been introduced

and compared with different size of problems ranging from 5 to 30 vessels. All data

has been generated randomly. While generating vessels Area o f box ≥ ∑
Area o f vessels

is considered. The maximum length and the maximum time are fixed while running the

experiments depending on the size of the problem. Here, the maximum width corresponds

to the wharf length, and the maximum time is total processing time of all vessels found

in the worst case, i.e handling of a vessel cannot be started before its predecessor task

is completed. Illustrations of a 10-vessel problem and its solution with each ESHs are

provided later.

3.4.1 Edge Seeking Heuristic 1

ESH1 is the simplest version of these algorithms. If Tv − 0 ≤Maximum time−Tv − hv, where

Tv and hv are berthing time and handling time of a vessel, respectively, it is moved to the

left and its arrival time becomes 0. Otherwise, it is placed at the point Maximum time− hv.

Similarly, the same procedure is applied in the vertical line, if Pv − 0 ≤ Maximum length −
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Figure 3.10: Initial positions of a 10-vessel Problem
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Figure 3.11: Example ESH1 output for a 10-vessel problem

Pv − Lv, where Pv and Lv are berthing position and length of a vessel, respectively, it is

pushed to 0, otherwise, it is placed at Maximum length − Lv. In the end, vessels that are

starting before their arrival times are pushed back to them. An illustration is shown in

Figures 3.10 and 3.11. The working mechanism of ESH1 is shown in Figure 3.12.
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Figure 3.12: The working mechanism of ESH1

3.4.2 Edge Seeking Heuristic 2

This approach starts with implementing ESH1. In ESH2, it is assumed that the main box

consists of four equally divided boxes. The mid-coordinates of each vessel are then found.

ESH1 is implemented in each box and each vessel takes a place determined by their mid-

point coordinates, i.e the vessel is placed in that corresponding box where the coordinates

fall. In the end, vessels that are starting before their arrival times are pushed back to them.

The working mechanism of ESH2 is shown in Figure 3.13. An example implementation is

shown in Figure 3.14.

3.4.3 Edge Seeking Heuristic 3

This heuristic is slightly different from ESH2. Here, again, the main box is assumed to

consist of 4 equal boxes. Each vessel is assigned to the boxes where their mid-point

coordinates fall. Then, both vertical and horizontal positions are determined for each

vessel implementing ESH1 in each box. In the end, vessels that are starting before their
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Figure 3.13: The working mechanism of ESH2
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Figure 3.14: Example ESH2 output for a 10-vessel problem
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Figure 3.15: The working mechanism of ESH3

arrival times are pushed back to them. The working mechanism of ESH3 is shown in Figure

3.15. An example implementation of it to solve a 10-vessel problem is shown in Figure

3.16.

3.4.4 Edge Seeking Heuristic 4

In this approach, a smaller box is placed inside the main box. The size of the small box

is 1/r of the main box, where r is a pre-determined number. Then, each vessel is checked

and placed in the box where their mid-point falls. Note that, it is assumed that the small

box in the middle of the main box is equally far from all edges. The main box is divided

into four small boxes. First, ESH1 is applied inside the small box for the vessels that fall in

there, and then, the same approach is implemented for the four sub boxes of the main box

for the rest of the vessels. The working mechanism of ESH4 is illustrated in Figure 3.17.

An example implementation of it to solve a 10-vessel problem is shown in Figure 3.18.
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Figure 3.16: Example ESH3 output for a 10-vessel problem

Figure 3.17: The working mechanism of ESH4
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Figure 3.18: Example ESH4 output for a 10-vessel problem

3.4.5 Edge Seeking Heuristic 5

ESH5 is slightly different from ESH4. Similarly in ESH4, a small box is placed inside the

main box. The size of the small box is 1/r of the main box, where r is a pre-determined

value. Each vessel is checked and placed in the box where their mid-point falls. Here,

again, it is assumed that the small box in the middle of the main box is equally far from

all edges. The main box is divided into four small boxes. This time, the inner box is also

divided into four. First, ESH1 approach is applied inside the small box for the vessels that

fall in there also considering the four boxes obtained when it is divided, and then, the same

approach is implemented for the four sub boxes of the main box for the rest of the vessels.

The working mechanism of ESH5 is shown in Figure 3.19. An example implementation of

it to solve a 10-vessel problem is shown in Figure 3.20.
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Figure 3.19: The working mechanism of ESH5
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Figure 3.20: Example EHS5 output for a 10-vessel problem
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3.4.6 Complexity Analysis of ESH

Let us consider ESH1. The aim is to push a vessel to its nearest edge of the main box which

represents a schedule. This heuristic checks for each vessel how far it is from each edge

to find the nearest and then moves it there by altering its position. Clearly, this is an O(n)

procedure, where n denotes the number of vessels. The same analysis shows that the other

heuristics have complexity O(mn) since the main box is partitioned into m boxes and the

procedure is replicated for each small box.

3.4.6.1 Experimental Results and Comparisons

All algorithms were tested on problems with sizes ranging from 5 to 30 vessels. Each

algorithm was run a 100 times. In Table 3.6, "Box size" is "maximum length × maximum

time". "Tolerance" shows the overlapping percentage that is acceptable depending on the

number of vessels. Results show that for 5 vessels, all algorithms work well. However, as

the number of vessels increases ESH 1, 2 and 3 show very low performance. ESH5 gives the

best results compared to the rest of the variants. Here, we should remember that these are

simple but effective and cheap heuristics introduced to generate good initial populations

and/or to be used as part of long runners.

3.5 Summary

In this chapter we have discussed the importance of initializing population-based heuristics

with good populations. Although diversity is important for exploration, with a good set of

initial individuals mixed with a number of randomly generated ones, the total computation
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Table 3.6: Experimental result of ESH for various sizes of problems
(All experiments are repeated 100 times.)

Box size Tolerance Prob. Size % with Tol. No overlap Time (s)

60x60 20% 5 40% 4% 0.0018
60x60 30% 10 1% 0% 0.0037

ESH1 90x90 40% 20 0% 0% 0.009
120x120 40% 30 0% 0% 0.0158
120x120 50% 30 0% 0% 0.0158

60x60 20% 5 41% 3% 0.0018
60x60 30% 10 1% 0% 0.0037

ESH2 90x90 40% 20 0% 0% 0.0089
120x120 40% 30 0% 0% 0.0158
120x120 50% 30 0% 0% 0.0158

60x60 20% 5 50% 9% 0.0016
60x60 30% 10 36% 1% 0.0035

ESH3 90x90 40% 20 1% 0% 0.0086
120x120 40% 30 0% 0% 0.0154
120x120 50% 30 1% 0% 0.0154

60x60 20% 5 58% 17% 0.0015
60x60 30% 10 33% 0% 0.0034

ESH4 90x90 40% 20 10% 0% 0.0086
120x120 40% 30 3% 0% 0.0154
120x120 50% 30 12% 0% 0.0154

60x60 20% 5 59% 12% 0.0016
60x60 30% 10 28% 1% 0.0035

ESH5 90x90 40% 20 13% 0% 0.0085
120x120 40% 30 16% 0% 0.0155
120x120 50% 30 36% 0% 0.0155

time can be reduced. We proposed two cheap yet effective heuristics to generate the initial

populations for TSP and RBAP. For KP, we used the well-known Roulette Wheel approach.

First, we discussed how to generate good initial populations for TSP. We picked the Strip

Algorithm and proposed new variants of it. We provided the worst-case analysis of the

new variants, carried out experiments and compared the results obtained with the variants

on randomly generated solutions. We then explained how the RW approach is used to

generate good initial solutions for KP. Finally, we proposed 5 easy heuristics to generate
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good initial populations for RBAP in container ports. The aim was to generate good

schedules, i.e placing vessels in a designated area without overlaps. We ran experiments to

demonstrate the performance of these heuristics. In the following chapters we will show

how to implement PPA to solve iconic problems of TSP, KP and RBAP taking advantage of

the material expanded in this chapter, namely good initial population of plants.



CHAPTER 4

THE PLANT PROPAGATION
ALGORITHM FOR THE TRAVELLING

SALESMAN PROBLEM

4.1 Introduction

After giving a brief description of discrete PPA in the previous chapters, in this chapter we

investigate its implementation to solve the Travelling Salesman Problem (TSP), [6].

4.2 TSP: A Brief Review

A notoriously difficult and yet easy to state representative of NP-hard problems is the well

known Travelling Salesman Problem, or TSP, [77]. The aim is to find the Hamiltonian cycle

of shortest length in the complete weighted graph that represents a fully connected set of

cities where the edges represent the connections between each pair of cities; an edge weight

is the distance (time, cost ...) that separates a pair of cities linked by the edge. Depending

on the properties of these weights, we get different types of TSP. When the weights ci j are

73
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put together in a square matrix C = ci j,∀ i, j and ci j = c ji, ∀ i, j, then we have a symmetric

TSP or STSP, by virtue of matrix C which is symmetric. It is asymmetric if this property

does not hold. If entries of C fulfil the triangle inequality, i.e. cik ≤ ci j + c jk,∀ i, j, k, the TSP

is called metric. When ci j is given as the Euclidean distances between nodes, the TSP is

said to be Euclidean, [77, 89].

There are various methods to solve the TSP. As for other intractable combinatorial op-

timisation problems, exact algorithms are available, but only for relatively small instances;

they do not work for large instances for efficiency reasons. Therefore, many heuristic

approaches have been proposed in this respect, [90, 91].

Some of the exact algorithms for TSP are the branch and bound [92], branch and cut

algorithms [93] and the Held-Karp algorithm which is based on dynamic programming [94].

Some of the popular heuristic algorithms are Lin-Kernighan Local Search [95] and the strip

algorithm [74]. Metaheuristics have become popular since they are able to find near

optimal results in reasonable time even for large instances [33, 70, 75]. These are Nature-

inspired algorithms which are now widely used to solve both continuous and discrete

optimization problems. Most of these have been applied to TSP. Early examples are the

Genetic Algorithm (GA) [96], Simulated Annealing (SiA) [97], Ant Colony Optimisation

(ACO) [69], Discrete Particle Swarm Optimisation (DPSO) [98, 99] and Tabu Search (TS)

[100].

In the following we review some of the most recently introduced Nature-inspired

algorithms. Tsai et al. [101] have developed an algorithm called Heterogeneous Selection

Evolutionary Algorithm (HeSEA). The algorithm has been tested on 16 TSP benchmark

problems ranging from 318 to 13509-city problems. The algorithm is able to find the
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optimum result for up to 3038-city problem. The average errors are 0.05%, 0.01% and 0.74%

for problems that have 4461, 5915 and 13509 cities, respectively. Song and Yang [102] have

proposed an improved ACO introducing new strategies in order to increase the quality

of the original algorithm. The new approach has given better results than the classical

ACO and has found even better results than the best known solutions for some TSPs.

Marinakis et al. [103] have proposed a hybrid algorithm to solve the Euclidean TSP problem.

Their approach combines Honey Bees Mating Optimization algorithm (HBMOTSP), the

Multiple Phase Neighborhood Search-Greedy Randomized Adaptive Search Procedure

(MPNS-GRASP) and the Expanding Neighborhood Search Strategy. Experiments have

been run on 74 benchmark TSP instances and have given competitive results.

Karaboga and Gorkemli [41] implemented the Combinatorial Artificial Bee Colony

algorithm (CABC). They have adapted the Greedy Sub Tour Mutation (GSTM) operator

proposed by Albayrak and Allahverdi [42], which increases the capability of GA to find the

shortest length in TSP. The algorithm was used to solve two TSP instances with 150 and

200 cities, respectively. In [43], Gorkemli et al. have introduced the Quick Combinatorial

Artificial Bee Colony Algorithm (qCABC) and improved CABC by changing the behaviour

of onlooker bees. The new algorithm was tested against 9 heuristic methods including the

CABC on the same instances. The qCABC outperforms all algorithms except CABC on

the 150-city problem. In [104], Li et al. have developed a Discrete Artificial Bee Algorithm

(DABC) and applied it to TSP. They used the Swap Operator to represent the basic ABC

for discrete problems. The performance of the algorithm was compared to that of PSO

algorithm. Experimental results show that DABC outperforms PSO.
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Table 4.1: A compilation of recent notable results, [6]

Authors Year Algorithm TSP size Avg. Error (%)

Karaboga
et al.

2011 CABC 150 and 200
cities

0.9% and 0.6% respc-
tively

Li et al. 2011 DABC 14 to 130
cities

Changing from 0.55%
to 6.41%

Jati et al. 2011 EDFA 16 to 666
cities

0% up to 225-city in-
stances and the 666-
city problem,
less than 12% for in-
stances of 225,280 and
442 cities

Karaboga
et al.

2013 qCABC 150 and 200
cities

0.7% and 0.5% respc-
tively

Jati et al. 2013 New
EDFA

16 to 666
cities

0% up to 225-city in-
stances and the 666-
city problem,
less than 12% for in-
stances of 225, 280
and 442 cities

Ouaarab et
al.

2014 DCS 51 to 1379
cities

0% for 13 out of 41 in-
stances,
less than 4.78% as the
worst for the 1379-
city instance

Saenphon
et al.

2014 FOGS-
ACO

48 to 200
cities

0% for the instance of
51-city,
changing from
0.062% to 1.64% for
the other instances

Mahi et al. 2015 PSO-
ACO-
3Opt

51 to 200
cities

Changing from 0.00%
to 0.95%

Zhou et al. 2015 DIWO 48 to 2392
cities

Changing from 0.00%
to 3.1%

Osaba et al. 2016 IBA 30 to 1002
cities

Changing from 0.00%
to 7.5%
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Jati and Suyanto [105] have introduced the Evolutionary Discrete Firefly Algorithm

(EDFA) and tested it against the Memetic Algorithm (MA). EDFA was found to be better

than MA on TSP instances. An improved version of EDFA was developed later by Jati et

al. [70]; it uses a new movement scheme. This new version has outperformed the previous

one in terms of efficiency. Zhou et al. [58] proposed a discrete invasive weed optimisation

(DIWO) to solve TSP. The performance of the algorithm was tested on twenty benchmark

TSP instances. The experimental results showed that DIWO can find results close to

the optimal values within a reasonable period of time, and it also has strong robustness.

Osaba et al. [49] developed an improved discrete bat algorithm (IBA) for symmetric and

asymmetric TSP. They compared the performance of the algorithm in 37 instances with

the performance of five different methods in the literature. Results show that IBA has

outperformed all the other alternatives in most of the cases. Table 4.1 is a compilation of a

set of results reported in fairly recent papers. The last column records the performance of

the concerned algorithm on a set of TSP problems.

4.3 Implementation of PPA for TSP

In any algorithm and in particular in population-based ones, the representation of individ-

uals/solutions is a key aspect of their implementation. The issue here is the representation

of a plant which itself represents a solution. A solution here is any Hamiltonian cycle (tour)

of the complete graph representation of the TSP. Note that representation affects the way

the search/optimisation process as well as any stopping criteria which are implemented.



4.3. Implementation of PPA for TSP 78

Figure 4.1: The permutation representation of a plant as a tour, [6]

4.3.1 The Representation of a Tour

A plant in the population of plants maintained by PPA is a tour/solution represented as a

permutation of cities. Xi is tour i, i = 1, . . . , NP. The size of the population of plants is NP.

Tours/plants are ranked according to their lengths. The tour length of plant i is denoted by

Ni; it is a function of Xi. Without loss of generality, the Euclidean TSP is considered here.

Tour lengths, therefore, are calculated according to the Euclidean distance

dx,y =

√√ n∑
i=1

(xi − yi)2. (4.1)

In Figure 4.1, the entries of the array represent cities. City 1 and city 4 are successive in

the depicted tour and the notation 1-4 defines the edge between them.

4.3.2 The Distance Between Two Plants

One of the issues in implementing PPA is defining the distance that separates tours. Here

it is defined as the number of exchanges to transform one tour into another. After sorting

the tours by their tour lengths, a pre-determined number of the tours is taken amongst

the ones that have good short lengths; short runners are then sent from these plants, i.e.

new neighbouring tours are generated from them. The 2-opt rule is used for this purpose

since it require the minimum number of changes to create new tours. The 2-opt move is

implemented by removing two edges from the current tour and exchanging them with two

other edges, [106].
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Figure 4.2: 2-opt Exchange of a 4-city tour, [6]

An illustration of a 2-opt exchange is shown in Figure 4.2. There, tour a-b-d-c-a has

been transformed into a-d-b-c-a by exchanging edges a-b and d-c.

Similarly, long runners are implemented by applying a k-opt rule with k > 2. In fact,

this is pretty much the Lin-Kernighan algorithm (LK) [95]. It changes k edges in a tour,

with k other edges. If, in this process, shorter tours are preferred and kept, then it will

converge to potentially better solutions than it started with, [107].

This is not the only way available to measure the distance separating any two tours

or permutations. However, in the literature, this method is widely used because of its

efficiency and ease of implementation, [23, 95]. An alternative approach can be found

in [108], where a metric space of permutations defined using the k-opt rule has been

studied.

4.3.3 Short and Long Runners

As mentioned earlier, in the basic PPA, a plant sends many short runners when it represents

a good solution (exploitation move), or a few long runners when representing a poor

solution (exploration move). Short runners are implemented using the 2-opt rule, and long

runners, the k-opt rule, with k > 2.
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Figure 4.3: Illustration of short runner generation from a main plant, [6]

Figure 4.4: Illustration of one long runner generation from a main plant, [6]

An illustration of 2-opt rule implementing short runners can be seen in Figure 4.3. In

the figure, only two 2-opt neighbours of the main plant are shown. The first new plant was

generated by exchanging the edges 4-8 and 8-9 and for the second one the edges 7-6 and

6-11 were exchanged. Note that the exchanged edges do not have to be adjacent.

Those tours in the population deemed to be representing poor solutions send one long

runner each to explore the search space for better solutions. This is reasonable since a

plant in a poor spot can hardly afford to send many long runners as sending a long runner

requires a lot of energy consumption and it is not easy for a plant which is trying to survive

in a poor spot. For both short and long runner cases, if the new tours have better results

from these exchanges they are adopted and kept as new tours. Otherwise they are ignored.

An illustration of a new plant produced by sending a long runner can be seen in Figure

4.4. The new plant is a 6-opt neighbour of the main plant. A 6-opt move can either be

achieved by exchanging 6 edges chosen with other 6 edges or by implementing at most of
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six 2-opt moves sequentially, [109].

4.4 Pseudo-code of Discrete PPA

To the light of the general idea of implementing discrete PPA, we aimed at keeping the total

computation time as short as possible. Therefore, it has been decided to start the algorithm

with a good population of plants (tours). Diversity in the initial population is assumed

to be guaranteed by the random processes used to generate tours. There are various such

processes. Here, the initial population is generated using the greedy algorithm, random

permutation or the strip algorithm, [8, 75]. See also Chapter 3.

For short runners, the 2-opt algorithm has been implemented using speed-up techniques

such as, “don’t look bits", and “fixed radius search". Fixed radius search can be achieved

either finding a given number of nearest cities to each city, or using specially defined

measures to find the nearest cities [110]. The main idea of the don’t look bits strategy is to

restrict the nodes which have been chosen to be searched and have not given an improved

solution [106, 110]. For long runners, the 2-opt has been implemented sequentially many

times in order to complete the number of exchanges a k-opt rule with k > 2 would achieve,

[107].

4.5 Computational Results and Discussion

Four sets of experiments have been carried out. The first set compares PPA with GA and

SiA. The second compares it with modified PSO and the third with New DFA. Final set

of experiments carried out to see the performance of discrete PPA on large TSPs and the
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Algorithm 16 Pseudo-code of Discrete PPA for TSP, [6]

1: Generate a population P = {Xi, i = 1, . . . , NP} of valid tours; choose values for gmax
and y;

2: g = 1
3: while g < gmax do
4: Compute Ni = f (Xi),∀ Xi ∈ P;
5: Sort N = {Ni, i = 1, . . . , NP} in ascending order (for minimization);
6: for i = 1 : E(NP/10), Top 10% of plants do
7: Generate ⌈(y/i)⌉ short runners for plant i using 2-opt rule, where y is an

arbitrary parameter;
8: if Ni > f (ri) then
9: Xi← ri;

10: else
11: Ignore ri;
12: end if
13: end for
14: for i = E(NP/10) + 1 : NP do
15: ri = 1 runner for plant i using k-opt rule, k > 2, 1 long runner for each plant

not in the top 10%;
16: if Ni > f (ri) then
17: Xi← ri;
18: else
19: Ignore ri;
20: end if
21: end for
22: end while
23: return the best solution as candidate for optimum.
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Table 4.2: Parameters used in PPA experimental results, [6]

Problem
size

Pop.
size

Max.
gena

Max.
runnerb

Short runners Long runners

14 to 51 40 100 10 10 (each a 2-opt) 1 (3 seq. 2-opts)
51 to 101 40 100 10 10 (each a 2-opt) 1 (4 seq. 2-opts)
101 to 666 100 100 10 10 (each a 2-opt) 1 (6 seq. 2-opts)

a Maximum number of generations
b Maximum number of runners a plant can produce
seq.= sequential

effect of using 2-PSA to generate a part of the initial population. Therefore, we solved a set

of problems with the discrete PPA and the discrete PPA+ 2-PSA, seperately and compared

their results. Each of these is discussed below.

4.5.1 PPA versus GA and SiA

The discrete implementation of PPA has been applied to 10 TSP instances ranging from

14 to 101 cities, [4]. These well known problem have also been solved with GA and SiA

elsewhere, in particular, in [96, 111] The key parameters used in our experiments can be

found in Table 4.2, below. For algorithms GA and SiA, the relevant parameter values can

be found in Table 4.4 and Table 4.5. Note that these particular values have been chosen

through experimentation.

Two termination criteria have been used: the first is the maximum number of genera-

tions set to 100, and the second is the number of iterations without any change in the best

tour found so far, which is set to 10. In these experiments, PPA outperformed both GA and

SiA on all instances. All algorithms have been coded in Matlab and each algorithm was

run 5 times. Results of the comparison with GA and SiA have been recorded in Table 4.3.
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Table 4.3: Comparison of GA, SiA and, PPA on standard TSP Instances, [4, 6]

GA SiA Discrete
PPA

Problem Optimum Av.
Dv.(%)

Av.
Time(s)

Av.
Dv.(%)

Av.
Time(s)

Av.
Dv.(%)

Av.
Time(s)

burma14 30.8785 0.7 6.95 0.53 8.34 0 1.55
ulysses16 73.9876 0.27 8.26 0.17 42.28 0 2.71
ulysses22 75.3097 1.56 9.83 1.16 97.12 0 4.02
att48 33524 4.97 41.23 31.48 10.52 0.6 5.71
eil51 426 4.46 44.45 18.17 423.26 1.54 5.12
berlin52 7542 8.67 42.99 36.37 11.44 2.1 7.87
st70 675 11.62 66.17 24.89 232.21 1.66 9.23
eil76 538 6.84 74.9 33.34 1162.02 4.1 9.42
pr76 108159 6.25 94.02 35.91 254.2 1.2 10.26
eil101 629 10.37 143.99 50.11 220.71 4.29 14.37

Table 4.4: Parameters of Genetic Algorithm

Parameter Value
Population size 50
Maximum number of generations 20
The rate of crossover 0.95
The rate of mutation 0.075
The length of the chromosome 50 × 8-bits
The number of points of crossover 2

Note that although the results are very encouraging, further testing on larger instances and

comparison with other algorithms are needed to draw useful conclusions on performance.

The really interesting aspects of PPA which have not been discussed yet are: (a) it is very

simple to understand; (b) it involves less parameters than GA and SiA, for instance, [6].

Claim (a), above, is justified if we note that the algorithm is based on a universal

principle which is “to stay in a favourable spot" (exploitation) and “to run away from an

unfavourable spot" (exploration). That is all that the algorithm implements really. But,

that is all a global search algorithm requires too. Claim (b) is equally easy to justify. Let us

consider the list of parameters that are arbitrarily set in GA.
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Table 4.5: Parameters of Simulated Annealing

Parameter Value
Maximum temperature 20
Minimum temperature 1
α% 0.5%
P 5
Number of iterations at each temperature 20
Temperature set [20,10,5,3,1]

1. The population size;

2. The maximum number of generations;

3. The number of generations without improvement to stop;

4. The rate of crossover;

5. The rate of mutation;

6. The length of the chromosome;

7. The number of points of crossover.

Now, compare the above list to that of PPA. We can start the algorithm with a single

plant that will then produce more plants unlike GA where a population with more than

one individual is required. The number of runners can be decided by the objective value

of each plant; indeed in Nature, some plants may have no runners at all because they

are in desperate conditions while other may have 1, 2 or more depending on where they

are and the corresponding value they give to the objective function. If we accept this,

then PPA requires no more than a mechanism to stop, i.e a stopping criterion. Hence, the

comparatively short list of its parameters below.

1. The maximum number of generations;

2. The number of generations without improvement to stop;
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3. The maximum number of runners any plant can have.

For ease of implementation more parameters are used.

Simulated Annealing is not as extravagant as GA when it comes to arbitrary parameters.

However, it still requires at least five parameters.

1. The maximum temperature;

2. The minimum temperature;

3. Parameter α: Percentage improvement in the objective value expected in each move;

4. The maximum number of moves without achieving α% of objective function value

improvement (P);

5. Number of iterations at each temperature.

To this, one can add the temperature set as in the last row of Table 4.5.

It is, therefore, fair to say that PPA compares well against GA and SiA even if only small

instances of TSP have been considered. Note that the proliferation of arbitrary parameters

makes the concerned algorithms less usable since it is difficult to find good default param-

eters when the list is long. More arbitrary parameters also mean more uncertainty. Based

on this comparison approach, it is fair too to say that PPA will match most heuristics and

hyper-heuristics. Further work may be to design a more realistic algorithm comparison

methodology which not only takes into account raw performance, but also what is required

in terms of parameter setting.
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4.5.2 PPA versus Modified PSO

A second set of experiments has been conducted and the results compared to those obtained

by the modified PSO, [112]. There are four versions of PSO was studied. All algorithms

have been applied to four TSP instances with 14 to 76 cities, [4]. Each algorithm was run

10 times for each problem. The results of the comparison can be found in Table 4.6. The

parameters values used in the PPA experiments can be found in Table 4.2. Those of PSO

can be found in Table 4.7.

Table 4.6: Comparison of modified PSO and PPA on standard TSP Instances, [4]

PSO-TS PSO-TS-
2opt

PSO-TS-
CO

PSO-TS-
CO-2opt

Discrete
PPA

Problem Av. Dv.(%) Av. Dv.(%) Av. Dv.(%) Av. Dv.(%) Av. Dv.(%)

burma14 9.12 0 10 0 0
eil51 35.47 6.81 16.34 2.54 1.84
eil76 9.98 5.46 12.86 4.75 3.76
berlin52 7.37 5.22 10.33 2.12 1.84

PSO-TS : The PSO based on Space Transformation
PSO-TS-2opt: PSO-TS combined with 2-opt local search
PSO-TS-CO: PSO-TS with chaotic operations
PSO-TS-CO-2opt: PSO-TS combined with CO and 2-opt.

In these experiments, PPA outperformed all modified PSO algorithms on all instances

in terms of solution quality. Arbitrarily set parameters for modified PSO are as listed

below, [112]:

1. The number of particles;

2. The value of Vmax;

3. The values for learning factors, c1 and c2;
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Table 4.7: Parameters of Modified PSO

Parameter Value
The number of particles 50
The value of Vmax 0.1
The values for learning factors, c1 and c2 c1=c1=2
The inertia coefficient 1
Pmax 1
Local search probability 0.01
Disipitive Probability 0.001
The maximum number of generations 2000

4. The inertia coefficient;

5. A positive real number Pmax, to express the range of the activities for each particle;

6. Local search probability;

7. Disipitive Probability;

8. The maximum number of generations;

9. The number of generations without improvement to stop.

Figure 4.5 depicts the tours found in generations 1, 3, 5 and 8 of PPA when applied

to a 22-city instance [4]. The last figure shows the optimal tour. Figures 4.6-4.9 show the

evolution curve diagrams of the algorithm on four TSP instances with the number of cities

ranging from 48 to 225.

4.5.3 PPA versus New DFA

Another set of experiments has been conducted and the results compared to those obtained

with the Discrete Firefly Algorithm (New DFA) described in [45,70]. Both algorithms have

been applied to 7 TSP instances with 16 to 666 cities, [4]. The parameter values used in PPA

experiments can be found in Table 4.2. For New DFA, they can be found in Table 4.9. Note
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Figure 4.5: A 22-city problem- 1st, 3rd, 5th and the 8th Generations

that the average accuracy was calculated using the equation below.

Avg. accuracy =
Best known solution
Avg. solution f ound

× 100. (4.2)

Each algorithm was run 50 times. The results of the comparison can be found in Table

4.8. In these experiments, in terms of solution quality, PPA outperformed New DFA on 3

out of 7 instances. On the remaining 4 instances both algorithms have found the optimum

solution. Arbitrarily set parameters required by New DFA are as listed in Table 4.9 with

the values used, [45].

4.5.4 Discrete PPA on large TSP instances

Here, we demonstrated the performance of PPA on large TSP instances by applying PPA on

its own and the combination of PPA and 2-PSA. In the implementation of PPA on its own,
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Figure 4.6: Evolution curve diagram of att48

Figure 4.7: Evolution curve diagram of eil51

Figure 4.8: Evolution curve diagram of st70

Figure 4.9: Evolution curve diagram of tsp225
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Table 4.8: PPA versus New DFA on standard TSP Instances, [4]

New DFA PPA

Problem Optimum Av. Acc.(%) Av. Acc.(%)

ulysses16 73.9876 100 100
ulysses22 75.3097 100 100
gr202 549.99 100 100
tsp225 3845 88.332 94.242
a280 2578 88.297 93.392
pcb442 50778 88.505 93.985
gr666 3952.53 100 100

Table 4.9: Parameters of New DFA

Parameter Value
The number of maximum generations Between 100 to 500 generations
The population size 5
The light absorption coefficient 0.001
The updating index Between 1 and 16

1
4 of the initial population was generated using the greedy algorithm and the rest of the

population was generated using random permutation. In the combined version, 1
4 of the

initial population was generated using the greedy algorithm, second 1
4 of it was generated

using 2-PSA and the rest of it was generated using random permutation.

Both algorithms were applied to 7 TSP instances ranging from 280 to 5915 cities, [4].

The comparison in terms of total computation time and average errors is recorded in Table

4.10. For the instances ranging from 280 to 666 cities, each algorithm was run 5 times

with the population size of 40. The number of short and long runners was set to 10 and

6, respectively. For the instances ranging from 1304 to 3038 cities, each algorithm was run

3 times with the population size of 100. The number of short and long runners was set

to 30 and 20, respectively. For the instance with 5915 cities, each algorithm was run once

with the population size of 200; the number of short and long runners was set to 30 and
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50, respectively. These parameters were set after a number of experiments. As instance

size increases, PPA+2-PSA outperforms PPA in terms of execution time. This shows that

starting with a good population is important.

Table 4.10: PPA versus PPA+2-PSA on large TSP instances, [4]

PPA PPA+2-PSA

Problem Optimum Av. Dv.(%) Av.
Time(s)

Av. Dv.(%) Av.
Time(s)

a280 2578 6.71 42.4 7.11 42.08
pcb442 50778 7.41 86.35 6.12 80.92
gr666 3952.53 0 291.45 0 273.237
rl1304 252948 7.02 1129.37 7.69 1011.77
rl1889 316536 7.68 1921 7.76 1772.1
pcb3038 137694 9.02 4906.27 8.44 2308.9
rl5915 565530 8.1 7.45(h) 9.6 4.16(h)

h: hour

4.6 Summary

In this chapter, we showed how to implement PPA to solve TSP. We addressed the issues of

defining distance and neighborhood. We used the Euclidean distance to compute the tour

length. The distance between plants is the number of changes in the permutation, i.e tours.

Short runners are generated using the 2 − opt rule and long runners are generated using

the k − opt rule, with k > 2. We used a variant of the Strip Algorithm, to generate some

individuals of the initial population. We also used the greedy approach and, the random

generation to provide diversity. One of the advantages of PPA is that it has relatively fewer

parameters compared to other heuristics such as GA, SiA and PSO. It was demonstrated

that, PPA combined with the variant of the Strip Algorithm, 2-PSA which generates good
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initial populations, is an effective way to handle large TSP instances in terms of computation

time. Experiments conducted to demonstrate the performance of the proposed algorithm,

produced results which are very encouraging and overall in favour of PPA.



CHAPTER 5

THE PLANT PROPAGATION
ALGORITHM FOR THE KNAPSACK

PROBLEM

5.1 Introduction

The second implementation of PPA is to solve Knapsack Problems (KP). They are a class of

well-known combinatorial optimization problems. They are widely studied and encoun-

tered in real-life. They belong to the class of NP-hard problems, [113].

KP can be defined as the problem of assigning items to knapsacks in a way that would

maximize the total value of items put in each knapsack while not exceeding their predeter-

mined capacities. Here, the weight and the value per item are given as input data of the

problem. We intend to establish that PPA can also work on Knapsack Problems.

94
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5.2 The Knapsack Problem: A Brief Review

In a KP, let the total number of items be n and the total number of knapsacks be m. For each

item j, its weight and profit are given in the problem and denoted by w j and p j, respectively.

For each knapsack i, given capacity values are represented by ci, [87].

Sahni [114], has shown approximate algorithms to solve (0-1) KP and in his work each

algorithm guarantees a certain minimal closeness to the optimal solution value. Gherboudj

et al. [115] have proposed a discrete Binary Cuckoo Search (BCS) algorithm to solve the

(0-1) Knapsack and the Multidimensional Knapsack Problems. They have used a sigmoid

function to generate binary solutions. They have compared the performance of discrete

BCS with other algorithms. The experimental results show that in the most cases BCS gives

results close to the optimal.

Shao et al. [116], have developed the greedy genetic algorithm by hybridising the greedy

algorithm with GA. The new approach was used to solve the (0-1) KP to demonstrate the

algorithm feasibility and viability.

Zou et al. [117], have proposed a novel global Harmony Search Algorithm(NGHS)

to solve the (0-1) KP. Their algorithm has two key operations. The first one is position

updating. It enables the worst harmony of the harmony memory to move to the global

best harmony in a fast way, in each iteration. The second one is a genetic mutation with a

small probability that helps NGHS to run away from the local optimum. Computational

experiments show that NGHS can be an efficient alternative for solving the (0-1) KP.

Pulikanti et al. [118], have proposed a new hybrid approach combining artificial bee

colony algorithm with a greedy heuristic and a local search for the quadratic knapsack
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problem. The quadratic knapsack problem belongs to the knapsack problem family and it

is an extension of the well-known (0-1) KP. In this problem profits are associated with pairs

of objects as well as with individual objects. As this problem is an extension of the (0-1)

KP, it is also NP-Hard. The performance of the algorithm on standard quadratic knapsack

problem instances is compared with other heuristic techniques. The results obtained show

that the proposed algorithm is superior to the techniques in many aspects.

Hristakeva et al. [119], have presented a comparative study of brute force, dynamic

programming, memory functions, branch and bound, greedy, and genetic algorithms. They

discussed the complexity of each algorithm in terms of time and memory requirements,

and in terms of required programming efforts. The results show that the most promising

approaches are dynamic programming and genetic algorithms. The paper examines in

more details the specifics and limitations of these two paradigms.

Sundar et al. [120], presented an Artificial Bee Colony (ABC) algorithm for the (0-1) Mul-

tidimensional Knapsack Problem, (0-1) MKP. The objective of (0-1) MKP is to find a subset

of a given set of n objects in such a way that the total value of the objects included in the

subset is maximized, while a set of knapsack constraints remains satisfied. Computational

results demonstrate that the ABC algorithm not only produces better results but converges

very rapidly in comparison with other swarm-based approaches.

5.2.1 The 0-1 Knapsack Problem

The (0-1) KP is the classical, well-known KP. There are two variants of this problem: single

and multiple KP. Given a set of n items and a set of m knapsacks (m ≤ n); the general form

of the (0-1) KP is as follows [87].
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max z =
m∑

i=1

n∑
j=1

p jxi j

s.t.
n∑

j=1

w jxi j ≤ ci, i ∈M = {1, . . . , m},

m∑
i=1

xi j ≤ 1, j ∈ N = {1, . . . , n}, (5.1)

xi j = 0 or 1, i ∈M, j ∈ N,

where, {x1, x2, . . . , xn} denotes the set of n items. xi j = 1 if item j is in the knapsack i and

0, otherwise. If m = 1, the problem is called (0-1) Single Knapsack Problem, otherwise, if

m > 1, then it is called the (0-1) Multiple Knapsack Problem, or (0-1) MKP, [113].

5.2.2 The Bounded Knapsack Problem

This variant of the KP allows choosing the same item x j multiple times. An upper limit u j

denotes the maximum number of item x j that can be selected. The mathematical formula-

tion of the problem is as follows [113].

max z =
n∑

j=1

p jx j

s.t.
n∑

j=1

w jx j ≤ c, (5.2)

0 6 x j 6 u j and integer, j ∈ N.

5.2.3 The Unbounded Knapsack Problem

The knapsack problem is said to be unbounded when there is no upper limit on an item to

be selected. The problem can be formulated as follows [121].
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max z =
n∑

j=1

p jx j

s.t.
n∑

j=1

w jx j ≤ c, (5.3)

0 6 x j, j ∈ N, and x j ∈ Z.

5.2.4 The Multidimensional Knapsack Problem

The multidimensional KP has more than one aspect that should be considered while assign-

ing items to knapsacks. For instance, if w1 j denotes the weight of each item, w2 j denotes the

volume of each item [121]. These constraints are defined in the mathematical programming

formulation of the (0-1) multidimensional knapsack problem as follows.

max z =
n∑

j=1

p jx j

s.t.
n∑

j=1

w1 jx j ≤ c1,

n∑
j=1

w2 jx j ≤ c2, (5.4)

x j ∈ {0, 1}, j ∈ N.

5.2.5 The Quadratic Knapsack Problem (QKP)

This variant of KP considers an additional value an item will have if it is transported

with another particular item. The mathematical model of QKP for a single knapsack is as

follows [122].
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max z =
n∑

i=1

n∑
j=1

pi jxix j

s.t.
n∑

j=1

w jx j ≤ c, (5.5)

x j ∈ {0, 1}, j ∈ N.

There are other variants, such as the Multiple-choice Knapsack Problems, the Set-Union

Knapsack Problems and others.

5.3 Implementation of PPA to solve the Knapsack Problem

In the previous section, variants of the KP are discussed. In this section, PPA is implemented

to solve the KP. As discussed in the previous chapter, representation of individuals/solu-

tions is a key aspect of their implementation. The issue here is the representation of a plant

which itself represents a solution. A solution here is the set of items placed in one or many

knapsacks in a way that would maximise the total value of the knapsack or knapsacks.

5.3.1 The Representation of Knapsacks

A plant in the population of plants maintained by PPA is a solution represented as a set of

0s and 1s that depicts whether an item is in a knapsack or not. Xi is set i, i = 1, . . . , NP. Here,

NP denotes the size of the population. Plants are ranked according to their total values.

Total value of a plant i is denoted by Zi; it is a function of Xi. Here, while maximising

the total value of a knapsack or multiple knapsacks, the given capacity constraints should

not be violated. Recall that the mathematical programming formulation of the (0-1) KP is
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given by Equation (5.1).

For the single KP, the representation of items in a knapsack is an array of 0s and 1s. To

illustrate, Xi = [0 1 0 0 1 1] represents in where n = 6 and items x2, x5 and x6 are in the

knapsack. For a multiple knapsack problem, a matrix representation is used where each

row represents a knapsack. A sample set of 3 knapsacks with 5 items in total can be shown

as :

Xi j =


1 0 0 0 1

0 1 0 1 0

0 0 1 0 0


, i = 1, . . . , 3, j = 1, . . . , 5. (5.6)

Here, items x11 and x15 are in the first knapsack, items x22 and x24 are in the second bag

and items x33 is in the third knapsack. For this variant, it is important not to violate the

capacity constraint for each knapsack while maximising the total value.

The initial population is generated by the Roulette-wheel approach, as discussed in

Chapter 3. For each item a probability is assigned based on their
p j
w j

ratio. For multiple

knapsack problems, the procedure starts with assigning items to the knapsack with the

smallest capacity [87]. Some of the sets are generated by using random generation to

ensure diversity in the population.

5.3.2 The Distance Between Two Plants

The distance between two plants is defined as the number of exchanges to transform

one plant/solution into another. After sorting sets by their total values, a pre-determined

number of them is taken amongst the ones that have maximum values; short runners are
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then sent from these plants, i.e. new neighbouring sets are generated from them. For

the rest of the set, long runners are sent to explore for better solutions. For this purpose,

mutation is used. For the single knapsack problem, the change is applied to the vector and

for the multiple KP, the mutation is applied to the matrix.

5.3.3 Short and Long Runners

The mechanism of PPA works by sending short and long runners to exploit and explore

the search space to find better solutions. After generating the initial population, a predeter-

mined number of the best solutions are taken, and short runners are sent from them. Three

different approaches are used to implement short and long runners.

5.3.3.1 The Hamming Distance Approach (PPA1)

The Hamming distance is the total number of point changes between two solutions [123].

For short runners, the 2-point Hamming distance is used since it requires the minimum

number of changes to create a new solution. For a 5-item single knapsack problem, the

change from 0 − 1 − 0 − 0 − 1 to 1 − 1 − 0 − 0 − 0 demonstrates the 2-point change. If the

solution is improved and the capacity constraint is not violated, the new plant is kept as a

child plant; otherwise, it is tried for the second time and kept regardless of the satisfaction of

the constraints. Long runners are implemented by using k-point mutation since it requires

many changes from one plant to another to keep the distance far from the main plant. For

long runners there is no control mechanism. All child plants are added up to the temporary

population set.

For the MKP, the change is made in the matrix, i.e. the set of knapsacks. The number of
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short runners sent from each plant is determined depending on the quality of solutions. A

maximum number of runners is set in the beginning. This guarantees to send many short

runners from good plants whereas, sending only 1 or 2 long runners from plants with bad

quality results.

Once this process is completed, solutions that exceed the capacity limits of knapsacks

are eliminated. The rest of the solutions are sorted considering their solution quality and

NP of them are kept for the next cycle.

5.3.3.2 Adding / Removing a Small Real Value (PPA2)

The binary vector or string can be considered as a binary representation of some value. It

can be altered to implement short and long runners. In this approach, a small value ε is

added into binary strings after they are converted into decimals. See Equation 5.7. Then

the procedure is completed once new decimal values are converted back to binary values

and considered as runners.

bin2dec(0100110) ± ε = dec2bin(value) (5.7)

5.3.3.3 Hamming Distance + Deep Search (PPA3)

In this approach, randomization is reduced compared to the first approach. Some items

are chosen randomly and some depending on their weights and value, i.e. the cheapest

element in the knapsack should be removed in case of overloading. In the case of short

runners again two items are changed following the rule of searching. For long runners

k-items are changed, this process can be done either randomly or by following the rule

defined below.
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Algorithm 17 Hamming distance+ Deep search Procedure
1: Generate the first set of items to be changed randomly;
2: If Available space < 0 Then
3: Remove the item with the least value and check whether

the conditions are satisfied;
4: Else
5: Add the most profitable item available.
6: End If
7: Return New solutions

5.3.4 Termination of the Algorithm

There are two ways to terminate the algorithms. The first one is by setting a maximum

number of generations. When the program reaches this number, it stops. The other one

is keeping a list of best solutions found. If the best solution found repeats itself for a

predetermined number of times, the program terminates and outputs that solution as the

optimum.

Algorithm 18 Pseudo-code of Discrete PPA for KP

1: Generate a population P = {Xi, i = 1, . . . , NP} of valid solutions by RW approach;
2: Choose values for gmax, maxrunner and y;
3: g = 1
4: while g < gmax do
5: Compute Ni = f (Xi),∀ Xi ∈ P;
6: Sort N = {Ni, i = 1, . . . , NP} in descending order (for maximisation);
7: Normalise Ni and assign Ni ×maxrunner runners to plant i;
8: if Number of runners > y then
9: Generate short runners and add to the new population Φ;

10: else
11: Generate long runners and add to the new population Φ;
12: end if
13: end while
14: return Best solution as candidate for optimum.
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Table 5.1: PPA versus BCSA and NgHS

Test Size Optimum BCSA NgHS PPA1

f1 10 295 295 295 295
f2 20 1024 1024 1024 1024
f3 4 35 35 35 35
f4 4 23 23 23 23
f5 15 481.0694 481.0694 481.0694 481.0694
f6 10 52 52 50 52
f7 7 107 107 107 107
f8 23 9767 9767 9767 9767
f9 5 130 130 130 130
f10 20 1025 1025 1025 1025

5.4 Computational Experiments and Results

The proposed algorithm has been implemented using various strategies as mentioned in

the previous section. Five sets of experiments have been carried out. The first set compares

PPA1 with Binary Cuckoo Search Algorithm (BCSA) [115], and the Novel Global Harmony

Search Algorithm (NgHS) for solving the (0-1) single Knapsack Problem instances with

item sizes range from 4 to 23, [117]. The first set of test results can be seen in Table 5.1. This

table only shows that PPA1 is as robust as the other algorithms considered. We cannot say

more since we only have access to the results of these algorithms.

In the second set of experiments the same problem instances were solved using all

variants of PPA for the KP and compared to GA. Results can be seen in Table 5.2. These

results show that PPA3 outperforms all algorithms by finding the optimum result in all

runs. The size of population is set to 10 and the number of generations to 100 for all

algorithms. For GA, the crossover and mutation rates are set to 0.5 and 0.1, respectively

and 1-point cross-over is applied. For the variants of PPA for KP, the maximum number
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of runners is set to 4 and for short and long runners the neighborhood is defined as 2 and

6-element changes, respectively.

In the third set of experiments variants of PPA were compared with Binary ABC, Binary

PSO and Improved Binary PSO , [117, 124, 125]. Here, the size of the problem instances

is increased. PPA3 has outperformed all other algorithms in terms of solution quality,

including PPA1 and PPA2, on both instances.

In the fourth set of experiments randomly generated large KP instances are solved with

both PPA and GA. The size of population is set to 100 and the number of generations to

200 for all algorithms. For GA, the crossover and mutation rates are set to 0.5 and 0.1,

respectively and 1-point cross-over is applied. For variants of PPA for KP, the maximum

number of runners is set to 10 and for short and long runners the neighborhood is defined

as 2 and 12-element changes, respectively. Results can be seen in Table 5.4.

In the last set of experiments PPA is compared with Binary Firefly Algorithm and Binary

PSO, [125, 126]. For the first two instances all algorithms except BPSO find the optimum.

PPA3 and BFA show similar performances. Results are shown in Table 5.5.

5.5 Summary

In this chapter we explained how PPA can be implemented to solve KP. First we gave a brief

review of the topic of interest and reviewed different variants of KP. Second, we extended

PPA to solve KP. We discussed the representation of solutions as a plant. For short and long

runners, we used three different approaches and compared their effects on the performances

of the algorithm. The one which converts binary solution representations to decimal
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Table 5.3: PPA versus BABC, BPSO and IBSO

Test Size Opt. PPA1 PPA2 PPA3 BABC BPSO IBPSO

f12 50 3103 3091 2953 3103 3087.5 3093 3078
f13 80 5183 5181.5 N/A 5183 5147.7 5132.6 N/A

Table 5.4: PPA versus GA

Test Size PPA1 PPA2 PPA3 GA

f14 500 22637 N/A 22697 19014
f15 1000 48452 N/A 48700 35446
f16 1500 76290 N/A 76649 53102

Table 5.5: PPA versus BFA and BPSO

Test Size Opt. PPA1 PPA2 PPA3 BFA BPSO

f17 8 3924400 3924400 3924400 3924400 3924400 3921857.19
f18 12 5688887 5688887 5688887 5688887 5688887 5683694.29
f19 20 10727049 10712735.38 10703865.24 10724854.4 10727049 10707360.9
f20 24 12233713 12200679 12144380.48 12211026.56 12208229.7 12205346.2
f21 16 9352998 9342627.22 9351524.64 9352998 9352998 9334408.62

and vice versa has the disadvantage of implementation as Matlab cannot handle binary

numbers larger than 52 digits. Further tests were carried out to measure the performance of

the proposed algorithm. We used 21 different problem instances and compared the results

of the variants of PPA with that of some well-known metaheuristic methods found in the

literature. Large instances were generated randomly. Overall PPA3 performed better than

other variants.



CHAPTER 6

THE PLANT PROPAGATION
ALGORITHM FOR SCHEDULING

PROBLEMS

6.1 Introduction

Scheduling is a vast area of applications and research. It spans timetabling in all its variety

(course, exam, tournament . . . ) and other scheduling problems such as planning and

sequencing. Here we consider a practical and representative scheduling problem which

is Berth Allocation in container ports. Moreover, we consider a practical version which

handles uncertainty, hence the more appropriate reference to the Robust Berth Allocation

Problem, or RBAP.

Container terminal problems are complex real-life problems. They are varied and

numerous. The Berth Allocation Problem (BAP) is just one of them. Others include

Quay Crane Assignment Problem, Quay Crane Scheduling, Yard Crane Scheduling and

Workforce Planning Problem [127], to name a few. BAP is widely studied in the literature,

[127–131]. The aim of the problem is assigning the best berthing time and berthing position

108
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for each ship that arrives at the port, to minimise the total time spent at the wharf, [132].

This chapter is concerned with implementing PPA to solve RBAP, [133].

6.1.1 The Berth Allocation Problem

It is the problem of finding the most appropriate docking place and berthing time that

optimize a given objective function, [132]. Imai et. al have classified BAP in terms of wharf

utilization and berthing time [128, 129]. Wharf configuration is divided into three main

categories: Discrete, continuous, and hybrid types [129]. In the discrete setup, the wharf

is split into berths and vessels are placed in these specified areas. The continuous setup

allows each vessel to dock at any point on the wharf as long as the wharf length is not

exceeded. In the hybrid configuration, the wharf is partitioned into berth spaces for vessels;

however, it is more flexible than the discrete setup type, i.e. a vessel is allowed to moor

and take more space than is needed for one vessel, [129, 132]. Berthing times are divided

into 2 categories: Static and dynamic arrivals, [128]. If arrivals are static, it is assumed that

all ships are ready to be moored immediately, i.e. there are no fixed arrival times. On the

other hand, if arrivals are dynamic, each ship has a particular arrival time which directly

affects their berthing times.

6.1.2 Robust Berth Allocation Problem

In real life problems, it is not realistic to expect to have fixed arrival and handling times.

As uncertainty has a high impact on real life, schedules that are more flexible considering

real life situations, rather than rigid may be preferable. In [134], Xu et. al studied RBAP.

In their study, they have proposed a robust model by adding buffer time between two
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Figure 6.1: Port of Felixstowe-Berths 8 and 9, [7]

successive vessels to overcome uncertainties regarding arrival and handling times. The

objective function of their model targets is to minimise total tardiness. A recent study of

RBAP by Alsoufi et. al, [133] considers optimal berth position as well as tardiness. In

addition to total tardiness, their objective function also gauges the total distance between

the vessels current positions and their desired positions. This is an important aspect of

container port problems as it impacts on yard management. In this model, the continuous

wharf is used.

6.1.2.1 The Mathematical Model of RBAP

The problem is represented as a mixed integer programming model, [132, 133]. It aims at

generating robust plans by mitigating uncertainty. This is rendered by finding the optimal

time for starting the process, the optimal position a vessel is allocated by considering their
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desired position, the time buffer needed between a vessel and its successor, etc.

Let V = [v1 v2 . . . , vn] denote a set of vessels. If a segment of quay is occupied, no

other ships are allowed to be positioned there. It is assumed that there is a safety distance

between a vessel and its successor. A vessel cannot leave before its processing has finished.

A ship can be allocated to any point on the continuous wharf considering its arrival time

and the available space in wharf.

The parameters of the model are listed below:

• W: the length of wharf

• Av: arrival time of vessel v

• dv: requested departure time of a vessel v

• hv: handling time of vessel v

• Lv: Length of vessel v

• bv: desired point for vessel v to be allocated

• c1v: tardiness cost of vessel v

• c2v: distance cost of vessel v if it is not placed to its desired point

• INv: Insatiability in arrival time of v

• PPv: proportion of the processing time of vessel v over total processing time

• Rv : INv + PPv

• λv: time buffer value
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• M: a large number (positive)

There are eight decision variables; four of which are binary,

δviv j =


1, if the processing time of v j starts later than finishing time of vi

0, otherwise

σviv j =


1, if vi is located below v j

0, otherwise

ξviv j =


1, if v j occupies part of berthing location of vi

0, otherwise

ζviv j =


1, if v j starts later than the finishing time of vi and occupies part of its space

0, otherwise

and the rest, Tvi , θvi , Pvi and τviv j are continuous. Tvi denotes berthing time of vi and

Pvi denotes berthing position of vi. Time buffer is indicated by τviv j and minimum buffer

time between a vessel and other vessels is denoted by θvi . The mathematical model of

the problem is as follows, [133]. The objective function aims at minimising total cost of
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tardiness and position distance.

min
V∑

v=1

C1v(Tv + hv − dv)
+ +

V∑
v=1

C2v|Pv − bv| (6.1)

s.t

Tvi + hvi + Rviλvi − θvi ≤ Tv j + M(1− δviv j) ∀vi, v j; vi , v j (6.2)

Pvi + Lvi ≤ Pv j + M(1− σviv j) ∀vi, v j; vi , v j (6.3)

σviv j + σv jvi + δviv j + δv jvi ≥ 1 ∀vi, v j; vi , v j (6.4)

Tv ≥ Av ∀v (6.5)

0 ≤ Pv + Lv ≤W ∀v (6.6)

ξviv j = 1− (σviv j + σv jvi) ∀vi, v j; vi , v j (6.7)

ζviv j ≥ δviv j + ξviv j − 1 ∀vi, v j; vi , v j (6.8)

τviv j ≤M(1− ζviv j) + Tv j − Tvi − hvi ∀vi, v j; vi , v j (6.9)

θvi ≤ τviv j + M(1− ζviv j) ∀vi, v j; vi , v j (6.10)

ξviv j , ζviv j , σviv j , δviv j ∈ {0, 1} (6.11)

Pvi , Tvi , τviv j ,θvi ≥ 0 (6.12)

The first part of the function corresponds to the time factor and the second part corresponds

to the position factor. Constraint (6.2) makes sure that if v j starts after finishing time of vi,

its berthing time should be larger than completion time of vi including the buffer time. If

the current time between these two vessels are larger than buffer time, then it is ignored.

Constraint (6.3) guarantees that v j is positioned above vi, if vi is below v j. Constraint
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Table 6.1: Representation of a schedule as a plant for three vessels

4 12 17 0 5 1
T1 T2 T3 P1 P2 P3

(6.4) eliminates overlaps in the 2-d space. Constraint (6.5) guarantees that a vessel cannot

start being processed before its arrival time. Constraint (6.6) guarantees that the total

wharf length cannot be exceeded. Constraints (6.7-6.8) are on binary variables. Constraints

(6.9-6.10) calculates the current buffer time and the minimum buffer time between vessels.

6.2 Solving RBAP with PPA

Implementing the PPA paradigm to solve RBAP requires a solution representation, the

generation of good initial solutions (schedules). implementing the concepts of short and

long runners and stopping. It is also necessary to have define a useful objective function.

6.2.1 Solution Representation

As discussed in the previous chapters, the representation of individuals/solutions is a key

aspect of the implementation. The issue here is the representation of a plant which itself

represents a solution. A solution here is a string that shows berthing times and positions

of vessels. Table 6.1 illustrates this for the case of three vessels.

6.2.2 Generating Initial Population

It is important to start with a good set of initial solutions as mentioned in previous chap-

ters. For this problem a number of plants has been generated using a three-step method

comprising a deterministic step, semi-deterministic step and a random generation step.
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• Deterministic Step: Vessels are set in an ascending order according to their arrival

times. Berthing time for the earliest ship is set as its arrival time. All vessels are then

checked and grouped if their arrival time is earlier than the earliest ship finishing time

and the total length of ships does not exceed the wharf length. Vessels in the same

group are placed along the wharf in a random order. Once the wharf is fully occupied

the next earliest available vessel is placed and the same procedure is repeated until

all vessels are docked. Berthing times are calculated in a way that would avoid

overlapping without considering the robustness factor.

• Semi-Deterministic Step: Vessels are set in an ascending order according to their arrival

times. The berthing time for the earliest ship is set as its arrival time. All vessels

are then checked and grouped if their arrival time is earlier than the earliest ship

finishing time and the total length of ships does not exceed the wharf length. The

number of vessels and the order of the vessels that share the wharf to be docked are

decided randomly. Once the determined number of ships are placed the next earliest

available vessel is placed and the same procedure is repeated until all vessels are

placed. Berthing times are calculated in a way that would avoid overlapping without

considering robustness factor.

• Random Step: This step consists of two parts. All berthing times and positions are

generated randomly considering arrival time and wharf length constraints. Half of

these are added to the initial population after applying ESH3, 4 or 5. The rest is kept

as random.

Once the initial population has been generated, handling times and finishing times are
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calculated for each vessel [133] as follows :

Handling time : Cv = hv + Rviλvi − θvi

Finishing time : Fv = Tv + Cv.

6.2.3 The Fitness Function Calculation

The fitness function introduced in [133] is used as a solution quality indicator for PPA.

A penalty value is added to the normalised fitness value to find the final fitness value

of a plant. Here, the penalty value is calculated by finding the overlapped area. This is

achieved by multiplying two overlapped quantities in Cartesian time and place. In order

to decide whether it is necessary to add a penalty value, each solution is checked against

constraints (6.2), (6.3) and (6.4). The penalty value is denoted by γi j = (Ai j × Bi j)
0.5. Here,

Ai j corresponds to the positional overlapped area and Bi j corresponds to the timewise

overlapped area. These two terms are calculated as follows:

Ai j = Max(
Li + L j

2
− |Pi + Pi + Li

2
−

P j + P j + L j

2
|, 0),

Bi j = Max(
Ci + C j

2
− |Ti + Fi

2
−

T j + F j

2
|, 0).

The maximum feasible error is defined as γmax
ij = (A′i j × B′i j)

0.5 where A′i j =
Li + L j

2
and

B′i j =
Ci + C j

2
. The objective function Z of the model is considered in the fitness of indi-

viduals as 1
Z . The ratio of

∑
γi j∑
γmax

ij
is subtracted from the normalised objective function value

Z−1 to find the fitness values for each plant. This is maximised. Although, mathematically

speaking, Z when minimised can hit its lowest value, zero, which can cause numerical

problems during the optimisation process, in practice this is unlikely to happen. This is

because it is almost impossible to allocate every arriving vessel its ideal position in the
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wharf and also it is unlikely that all vessels will depart at exactly their expected departure

time. This means that Z > 0 in practice. That is what we worked with. In the extreme

cases, we can of course consider the normalised objective function values as 1
exp(Z) . So,

there is no real issue in implementing and solving the model. The fitness values of plants

are sorted in descending order and the pre-determined number of short or long runners

are sent from each plant.

Fitness = Z−1 −
∑
γi j∑
γmax

ij
.

6.2.4 Short and Long Runners Implementations

The maximum number of runners is given at the beginning of the procedure. The number

of runners assigned to each plant depends on their fitness value. This calculation starts

with normalising all fitness values as follows.

Normalised f itness(i) =
f itnessi −min( f itness)

max( f itness) −min( f itness)
, i = 1, . . . , npop,

where npop denotes the size of the population.

The number of runners for each mother plant is calculated as follows:

Number o f runners(i) = ⌈((max. number o f runners− 1) ∗Normalised f itness(i))⌉+ 1,

where npop denotes the size of the population and i = 1, . . . , npop.

6.2.4.1 Short Runners

There are two possible ways to determine the number of plants that sends short runners.

One of them is taking k% of the solutions in the population, where k is a pre-determined
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value. The other option is taking plants, where Number o f runners (i) ≥ nr is satisfied,

where nr is a pre-determined value. Short runners are implemented in two steps:

1. The first part involves the investigation of overlapped vessels. As we are dealing

with goodish solutions, we do not expect many overlapping ships in this subset of

the population. If there are overlapping ships, to implement short runners, one of

the overlapping pairs is selected randomly and one vessel is either moved slightly to

the right/left or up/down without violating constraints (6.5) and (6.6). An example is

illustrated in Figure 6.2. In Figure 6.3, Vessel 3 has been pushed upwards to eliminate

overlapping.

2. If there is no overlapping, we use a list that shows the differences Tv −Av and Pv − bv

for each vessel. A vessel that is changed is randomly selected from this list. If a

randomly chosen point shows berthing time, then it is updated and pushed to the left

to get as close as possible to the arrival time of the corresponding vessel. If a randomly

chosen point shows a position, then this position is pushed as close as possible to its

desired point. During this process, constraints (6.5) and (6.6) are verified for feasibility.

An illustration can be seen in Figure 6.4. In the figure the randomly chosen Vessel 4

is pushed down to get close to its desired position.

6.2.4.2 Long Runners

For the rest of the population long runners are implemented. To do this, first all overlapping

ships are listed. Then, depending on their berthing times and positions, ships are moved

to left or right and pushed up or down considering constraints (6.5) and (6.6). A large
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Algorithm 19 Short Runners
1: nr ← The number of runners to be sent from the mother plant
2: Separate the pre-determined number of plants in the population to send short runners.
3: For Each mother plant
4: For i = 1 : nr
5: If There are overlapping ships then
6: Choose one ship randomly and move slightly to eliminate overlapping;
7: else
8: Make a list that shows the differences Tv −Av and Pv − bv for each vessel;
9: Choose one of the starting times or the positions randomly from the list;

10: If The randomly chosen point shows berthing time, then it is updated
and pushed to the left to get as close as possible to the arrival time
of the corresponding vessel then;

11: else
12: It shows the position. So, it is pushed as close as possible to

its desired point;
13: EndIf
14: EndIf
15: Keep the generated plant in a new list.
16: EndFor
17: EndFor
18: Return List of new plants.

Figure 6.2: Implementation of short runners in the case of overlapping
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Figure 6.3: Implementation of short runners when there is no overlapping

Figure 6.4: Implementation of long runners when there is overlapping

number of changes means that the new plant is far from the mother plant. Swapping is

also used for vessels that are in the same horizon, period T. The procedure to implement

long runners is explained below. A further investigation of implementing long runners is

discussed in the next section. An illustration of an implementation of a long runner can be

seen in Figure 6.4.

In Figure 6.3 overlapped pairs 1-2 and 5-6 are pushed to the bottom and to the top , for

this example swapping is also implemented for vessels 3 and 4. Although the new layout

does not have any overlaps when we do not consider the robustness factor, there may be

new overlapping pairs once the long runner is generated. A sample schedule obtained by

PPA for a 20-vessel problem can be seen in Figure 6.5.
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Algorithm 20 Long Runners
1: nr ← The number of runners to be sent from the mother plant
2: Separate the pre-determined number of plants in the population to send long runners.
3: For Each mother plant
4: nr = 1;
5: Find the list of overlapping ships;
6: If rand>0.5 & there are overlapping ships then
7: First, all overlapping ships are moved in vertical space. The lower ship is

pushed to level 0 and the upper one is moved to W − Lvshipabove;
8: Second, both ships are moved either to the left of right by (Tv + 0.5 ∗ r), where

Tv is the berthing time and r is a random value between [0, 1].
Constraints (6.5) and (6.6) are considered;

9: else
10: If rand1>0.5 then
11: Tv −Av and Pv − bv for each vessel are found as in the implementation of short

runners. Each vessel that is not starting on its arrival time and/or not placed
at their desired position is moved accordingly;

12: else
13: Swap either overlapping and/or non-overlapping situations by changing

any two randomly selected vessels on the same vertical line;
14: EndIf
15: EndIf
16: Keep the generated plant in a new list.
17: EndFor
18: Return List of new plants.
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Figure 6.5: A Sample Schedule (1) for a 20-vessel Problem
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6.2.5 Further Investigation of the Initial Population and Runners

A further study is carried out to find optional approaches to generate the initial population

or to implement long runners. For this purpose, we use the Edge Seeking Heuristics

discussed in Chapter 3.

6.3 PPA Application

In this section we will give the pseudo-code of PPA to solve RBAP.

Algorithm 21 Pseudo-code of Discrete PPA for RBAP
1: npop← population size, gmax←maximum num. of generations, maxrun←maximum

number of runners.
2: Generate a population P = {Xi, i = 1, . . . , npop} of valid solutions using the three-step

approach;
3: g = 1;
4: while g <= gmax do
5: Find fitness values and sort in descending order;
6: Assign number of runners to be sent using nr = ⌈(maxrun − 1) ∗ n f it⌉+ 1;
7: for nr > a do ◃ a is a pre-determined number.
8: Apply short runners;
9: end for

10: Set nr = 1 for the rest of the plants;
11: Apply long runners;
12: Keep all new plants in a temporary set Φ;
13: Compute fitness values and append to mother plants; Φ;
14: Keep top npop of the solutions
15: end while
16: return The best solution as the candidate for optimum.
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Table 6.2: Example input data of a 5-vessel problem

Arrival time 5 9 6 8 7
Estimated handling time 8 2 9 4 5
Expected departure time 12 10 14 11 11
Length of vessel 5 8 4 9 6
Desired position 5 3 7 1 0
Cost of tardiness 1 1 1 1 1
Distance cost 1 1 1 1 1
Instability in arrival 0.2 0.9 0.5 0.7 0.3
Proportion of processing time 0.28 0.07 0.23 0.14 0.17

6.4 Experimental Investigation

The experiments were carried out with problems of size ranging from 5 to 20 1. Example

input data can be seen in Table 6.2.

Wharf length, W and a large number, M is also given.

Following the mathematical model given in Section 6.1.2, the total number of variables

and the total number of constraints are found as follows:

Given i = 1, . . . , n and j = 1, . . . , m, where m and n denote the number of vessels, in

total there are 8 variables in the model. Five of them are in the form of matrices of m × n

size and three of them are arrays of n size. These can be found in constraints (6.11) and

(6.12). As m = n, and i = j situations are not taken into account, total number of variables

are 5n2 − 5n + 3n or 5(n2 − n) + 3n. Similarly, for 12 constraints out of 17 (total number

of constraints), i = j situations are not taken into account. Therefore, there are total of

12(n2 − n) + 5n constraints.

1All randomly generated problem sets were provided by Ghazwan Alsoufi in private communication.
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Table 6.3: PPA versus B&C and GA

Size B&C GA PPA

Best
obj.

Avg.
Obj.

Best
obj.

Avg.
Obj.

5 51 61 88 51 52.8
6 22 37 49 22 22
9 144 183 300 174 175.4
20 152 263 423 211 220.4
5 58 64 76 58 59.8
6 37 42 52 37 37
9 163 209 243 190 194
20 239 424 471 394 397.6

6.5 Experimental Results and Conclusion

Four instances of RBAPs have been solved using PPA. Experiments have been repeated

twice for two different buffer time values. The results of the experiments are compared

with those of Branch and Cut method and the Genetic Algorithm, [133].

In our experiments, the maximum number of runners is set to 10. For small instances

population size is set to 100 and for large instances it is set to 200. Each problem was solved

five times.

For the first four tests, λ is set to 5 and for the rest it is set to 10. Results show that PPA

outperforms GA on all instances based on the average objective function value for both λ

5 and 10.

Another set of tests was run for a 6-vessel problem. The results of PPA were compared

to those of the Branch and Cut algorithm. Results show that PPA has found the optimum

for different values of λ at least 70% of all runs. Results for B&C are all optimum since

it is an exact method. CPU times of PPA are given in Table 6.4. This time is expected to
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Table 6.4: PPA versus B&C for a 6-vessel Problem

B&C PPA

λ Optimum Best
found

Avg.
Result

CPU
Time(s)

Success
Rate

5 83 83 83 6.8 10/10
10 90 90 94.3 7.3 7/10
15 103 103 106.3 8.9 8/10
20 120 120 122.2 9.7 7/10

be around 1-2 minutes for B&C considering the results given in [133]. The success rate

indicates how many times PPA achieved the optimum over 10 runs.

6.6 Summary

In this chapter we implemented PPA to solve RBAP one of the scheduling problems that

arises in container ports. In order to generate the initial population of solutions/schedules,

we used three approaches: deterministic, semi-deterministic and random generations.

Strategies for short and long runners are discussed extensively. We used Edge Seeking

Heuristics or ESH methods embedded in a random generation step to improve the solution

quality of half of the randomly generated initial population.



CHAPTER 7

CONCLUSION AND FURTHER
RESEARCH

7.1 Summary

This thesis is mainly concerned with the extension of the Plant Propagation Algorithm to

handle discrete optimisation problems. Considering the importance of having a good set

of population as well as randomly generated ones, we focused on methods to generate

good initial population. First of all we revisited the well-known Strip Algorithm and

we developed new variants of it to generate cheap good tours for TSP. For instance, we

introduced the 2-Part Strip Algorithm that works well on uniformly distributed instances

and the Adaptive Strip Algorithm that is aimed to give good initial solutions for clustered

TSP instances. We also carried on the analysis of one of the variants. For scheduling

problems, the robust berth allocation in particular has been considered. We proposed a set

of heuristics referred to as Edge Seeking Heuristics (ESH) to generate cheap, near feasible

and feasible schedules. These are used to improve the initial population which is generated

on the whole randomly. The aim of ESH is to reduce or completely remove overlapping.

126
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In order to show the efficiency of PPA on discrete problems, we extended it to solve

various and different types of problems. One of them is the well-known TSP. Here, we

discussed the parameters of well-known algorithms and showed the advantage of PPA,

which has only a few parameters. This makes our algorithm easy to implement. The

second problem is the Knapsack Problem and the last one is the Robust Berth Allocation

Problem. We carried out extensive experiments and compared the results with those of

well-established algorithms and heuristics. These comparative results show that, on the

whole, discrete PPA is a robust and efficient algorithm, which compares well with other

Nature-inspired approaches to optimisation.

7.2 Future Research

This thesis is concerned with a Nature-inspired metaheuristic referred to as PPA. Our main

contribution is to show that it works well on a variety of discrete optimisation problems

such as TSP, KP and RBAP. However, discrete PPA only uses the runners approach to solve

problems. In the literature, there is a seed-based strawberry plant propagation algorithm

and a hybrid of PPA with SbPPA, [60, 61]. The discrete PPA can be modified to implement

the propagation via seeds as well. Discrete PPA can be used to solve other discrete type

problems as found in the literature to show its efficiency. It can also be implemented

to solve multi-objective optimisation problems and other scheduling problems as arise

in timetabling applications, [135]. The performance of PPA can be tested on very large

scale discrete problems. Finally, in this thesis MATLAB is used for all implementations of

PPA. Other programming languages may improve the efficiency of the algorithm. Parallel
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implementation can be another useful approach to increase the efficiency of the algorithm.

Given that PPA is fairly recent and has very attractive attributes such as simplicity and

low number of parameters, it is worth while extending it to handle different optimisation

problems.
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APPENDIX A

Matlab Code for The Adaptive Strip Algorithm

1

2 %An example implementation of the Adaptive Strip Algorithm
3

4 clear all
5 close all
6

7 cit=[ -6890.91 2242.06
8 -5632.62 2838.55
9 -5096.27 2947.10

10 -7369.09 2424.18
11 -4303.32 5701.62
12 -5216.07 2805.86
13 -7036.07 2433.68
14 -10357.5 4229.90
15 -5785.13 2920.73
16 -5704.14 2459.86
17 -5709.93 2658.69
18 -5830.85 2331.90
19 -5142.33 2719.89
20 -5664.12 2312.69
21 -4821.50 3061.67
22 -6753.60 2091.31
23 -8223.61 2444.14
24 -5293.59 2714.79
25 -4752.28 3095.56
26 -6298.38 2104.00
27 -5885.55 2924.21
28 -5796.36 3012.19
29 -6502.02 2078.80
30 -5341.75 3053.49
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31 -8463.32 3369.09
32 -8448.44 2616.77
33 -7496.88 3163.43
34 -6141.59 2100.22
35 -5245.63 2908.83
36 -5997.68 2316.13
37 -6963.69 3234.25
38 ];
39

40 [nnn col]=size(cit);
41 added=ones(nnn,2);
42 added=added.*(1.15*10^4);
43 cit=cit+added;
44 cit=sortrows(cit,1);
45 box_l=[];
46 %n=100;
47 limit=15;
48 %cit=n*rand(n,2);
49 cont=0;
50 x1=max(cit(:,1))+0.01;
51 x2=min(cit(:,1))-0.01;
52 y1=max(cit(:,2))+0.01;
53 y2=min(cit(:,2))-0.01;
54 completed=[];
55 al=[];
56 box=[x2;y2;x1;y2;x1;y1;x2;y1]’;
57 [a,b]=count(box’,cit);
58 draw_seg(box)
59 cell_all=[];
60 if b>limit
61 cont=cont+1;
62 else
63 end
64 r=1;
65 Partition=box;
66

67 while cont>=1
68

69 if size(Partition ,2)<2*cont*8
70 Partition(:,end+1:(2*cont*8))=0;
71 end
72

73 Temp1=Partition(r,:);
74 if mod(r,2)==~0
75 i=1;
76 Temp=[];
77

78 while i<=size(Partition ,2)
79 [a,b]=count(Temp1(i:i+7)’,cit);
80 a=sortrows(a,2);
81 if b>limit
82 coord=Split(Temp1(i:i+7)’);
83 Temp=[Temp,coord];
84 else
85 end
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86 i=i+8;
87 end
88 if size(Temp,2)<size(Partition ,2)
89 Temp(end+1:size(Partition ,2))=0;
90 Partition=[Partition;Temp];
91 else
92 Partition=[Partition;Temp];
93 end
94 else
95 Temp=[];
96

97 l=1;
98

99 while l<=size(Partition ,2)
100 [p,b]=count(Temp1(l:l+7)’,cit);
101 p=sortrows(p,1);
102 if b>limit;
103 coord=Split_h(Temp1(l:l+7)’);
104 Temp=[Temp,coord];
105 else
106

107 end
108 l=l+8;
109 end
110 if size(Temp,2)<size(Partition ,2)
111 Temp(end+1:size(Partition ,2))=0;
112 Partition=[Partition;Temp];
113 else
114 Partition=[Partition;Temp];
115 end
116 end
117 r=size(Partition ,1);
118 Temp2=Partition(r,:);
119 cont=0;
120 j=1;
121 gr=[];
122

123 while j<=size(Partition ,2)
124 [c,k]=count(Temp2(j:j+7)’,cit);
125 Temp3=Temp2(j:j+7);
126 if mod(r,2)==~0
127 c=sortrows(c,1);
128 else
129 c=sortrows(c,2);
130 end
131 %
132 if size(c,1)<=limit
133 al=[al;Temp3];
134 else
135 end
136

137 j=j+8;
138 gr=[gr;k];
139

140 if size(c,1)<=limit & size(c,1)>0
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141 box_l=[box_l;size(c)];
142 completed=[completed;c];
143 end
144 end
145

146 a=find(gr>limit);
147 cont=size(a,1);
148 end
149

150 completed;
151 box_l;
152 set=[];
153 set1=[];
154 distance=0;
155 d=1;
156 setx=[];
157 for i=1:size(box_l ,1)
158 if box_l(i)==1
159 set=[completed(1,:);completed(1,:)]
160 else
161 set=completed(1:box_l(i),:);
162 end
163 set1=[set1;set(1,:);set(end,:)];
164 nc=[];
165

166 for j=1:size(set,1)
167 nc(1:j,1)=d;
168 end
169 setx=[setx;set,nc];
170 d=d+1;
171 completed(1:box_l(i),:)=[];
172 end
173 alx=al(1,:);
174 st_w=alx(1,3)-alx(1,1);
175

176 coord_box=[];
177 strip_box_tours=[];
178 coord_box1=[];
179 strip_box_tour=[];
180 a=rand();
181 for i =1:2:size(set1,1)
182 set2=set1(i:i+1,:);
183 if a>=0.5
184 coord_box=[coord_box;set2(1,:)];
185 else
186 coord_box=[coord_box;set2(2,:)];
187 end
188 end
189 cb=1:size(coord_box);
190 coord_box1=[coord_box cb’];
191 strip21m
192 bb;
193 bb(end,:)=[];
194 k=[];
195 for i=1:size(bb,1)
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196 for j=1:size(coord_box1 ,1)
197 if coord_box1(j,1)==bb(i,1) & coord_box1(j,2)==bb(i,2)
198 strip_box_tour=[strip_box_tour;bb(i,:) coord_box1(j,end)];
199 end
200 end
201 end
202 strip_box_tour;
203 setx;
204 strip_box_tour1=strip_box_tour(:,3:4);
205 k=[];
206 for j=1:size(strip_box_tour1 ,1)
207 temp=[];
208 for i=1:size(setx,1)
209 if strip_box_tour1(j,2)==setx(i,3)
210 temp=[temp;setx(i,:)];
211 end
212 end
213 if strip_box_tour1(j,1)==0
214 temp=sortrows(temp ,[2]);
215 else
216 temp=sortrows(temp,[-2]);
217 end
218

219 k=[k;temp];
220 end
221 b=[];
222 hold on
223 k(end+1,:)=k(1,:);
224 plot(k(:,1),k(:,2))
225 for ii=1:length(k)-1
226 jj=ii+1;
227 distance=distance+(sqrt([k(ii,1)-k(jj,1)]^2+[k(ii,2)-k(jj,2)]^2));
228 end
229 distance=distance+(sqrt([k(1,1)-k(end,1)]^2+[k(1,2)-k(end,2)]^2));
230

231 aa=[];
232 hold on
233 plot(cit(:,1),cit(:,2),’*’)
234 for i=2:size(Partition ,1)
235 a=Partition(i,:);
236 b= find(a==0);
237 a(b)=[];
238 a;
239

240 for t=1:8:size(a,2)
241 box=a(t:t+7);
242 plot( [box(1) box(1)] ,[box(2) box(8)] )
243 hold on
244 plot( [box(3) box(3)] ,[box(2) box(8)] )
245 plot( [box(3) box(1)], [box(2) box(2)] )
246 plot([box(3) box(1)],[box(6) box(6)])
247 hold on
248 end
249

250 end
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251 distance

1 function [cities1,number]=count(coord,cit)
2 number=[];
3 if coord(1)==0
4 cities=[cit(find(cit(:,1)>=coord(1) & cit(:,1)<=coord(3)),:)];
5 else
6 cities=[cit(find(cit(:,1)>coord(1) & cit(:,1)<=coord(3)),:)];
7 end
8 if coord(2)==0
9 cities1=cities(find((cities(:,2))>=coord(2) & (cities(:,2))<=coord(6)),:);

10 else
11 cities1=cities(find((cities(:,2))>coord(2) & (cities(:,2))<=coord(6)),:);
12 end
13 number=[number;length(cities1)];
14 end

1 function draw_seg(coordinates)
2 x2=coordinates(1);
3 y2=coordinates(2);
4 x1=coordinates(3);
5 y1=coordinates(6);
6 plot([x1 x1] ,[y1 y2])
7 hold on
8 plot([x2 x2], [y1 y2])
9 plot([x1 x2] ,[y1 y1])

10 plot([x1 x2], [y2 y2])
11 end

1 function new_coord = Split(coord)
2 new_coord(1)=coord(1);
3 new_coord(2)=coord(2);
4 new_coord(3)=(coord(3)+coord(1))/2;
5 new_coord(4)=coord(2);
6 new_coord(5)=(coord(5)+coord(7))/2;
7 new_coord(6)=coord(6);
8 new_coord(7)=(coord(7));
9 new_coord(8)=coord(8);

10 new_coord(9)=new_coord(3);
11 new_coord(10)=new_coord(4);
12 new_coord(11)=coord(3);
13 new_coord(12)=coord(4);
14 new_coord(13)=coord(5);
15 new_coord(14)=coord(6);
16 new_coord(15)=new_coord(5);
17 new_coord(16)=new_coord(6);
18 end

1 function new_coord = Split_h(coord)
2 new_coord(1)=coord(1);
3 new_coord(2)=coord(2);
4 new_coord(3)=coord(3);
5 new_coord(4)=coord(4);
6 new_coord(5)=(coord(3));
7 new_coord(6)=(coord(6)+coord(4))/2;
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8 new_coord(7)=(coord(7));
9 new_coord(8)=(coord(8)+coord(2))/2;

10 new_coord(9)=new_coord(7);
11 new_coord(10)=new_coord(8);
12 new_coord(11)=new_coord(5);
13 new_coord(12)=new_coord(6);
14 new_coord(13)=coord(5);
15 new_coord(14)=coord(6);
16 new_coord(15)=coord(7);
17 new_coord(16)=coord(8);
18 end

1 %The Strip Algorithm to connect boxes
2

3 city_coord= coord_box;
4 [nn co]=size(city_coord);
5 %r=ceil(sqrt(nn/2))
6 city_coord1=sortrows(city_coord ,[1]);
7 city_coord1;
8 %sort the first column
9 %[city_coordi sorted_index]=sort(city_coord(:,1))

10 w=(st_w);
11 x1p=(x1-x2);
12 r=floor((x1p)/st_w);
13 %((max(city_coord1(:,1)+1))/r); %width of each strip
14 it=1;
15 st=1;
16 bb=[];
17 %j=1;
18 %city_coord1(n+1,2)=max(city_coord1(:,1))+2;
19 while (st <= r)
20 bl=[];
21 witness=0;
22 while city_coord1(it,1) <= (st*w)
23 witness=1;
24 bl=[bl;city_coord1(it,:)];
25 if it<nn
26 it=it+1;
27 else
28 break
29 end
30 end
31 if witness==1
32 if mod(st,2)==0
33 bb=[bb;sortrows(bl,[-2]),ones(size(bl,1),1)];
34 else
35 bb=[bb;sortrows(bl,[2]),zeros(size(bl,1),1)];
36 end
37 bb;
38 end
39 st=st+1;
40 end
41 bb(end+1,:)=bb(1,:);
42 hold on
43 plot1m
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1 b=[];
2 for x=x2:w:x1
3 b(end+1,:)=[x];
4 end
5 b;
6 %plot(bb(:,1),bb(:,2));
7 hold all
8 % plot([b b], [0 (max(max(bb(:,2))))+0.0001])
9 hold off

10 title(’Adaptive Strip Algorithm’)
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Figure 7.1: An illustration of the output of ASA for a 194-city Qatar map
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Figure 7.2: An illustration that shows the interconnection inside boxes
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Figure 7.3: An illustration of an output of ASA
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Figure 7.4: An initial plant(schedule) generated using the deterministic approach for a 9-vessel problem
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Figure 7.5: An initial plant(schedule) generated using the semi-deterministic approach for a 9-vessel problem
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Figure 7.6: An initial plant(schedule) generated using the random approach for a 9-vessel problem

0 10 20 30 40 50 60 70 80 90

Time

0

2

4

6

8

10

12

14

16

18

P
os

iti
on

Figure 7.7: An initial plant(schedule) generated using ESH5 for a 9-vessel problem
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Figure 7.8: Output of PPA for a 9-vessel problem
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