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Abstract—In this paper we introduce the Constrained
Minkowski Weighted K-Means. This algorithm calculates cluster
specific feature weights that can be interpreted as feature rescal-
ing factors thanks to the use of the Minkowski distance. Here,
we use an small amount of labelled data to select a Minkowski
exponent and to generate clustering constrains based on pair-wise
must-link and cannot-link rules.

We validate our new algorithm with a total of 12 datasets,
most of which containing features with uniformly distributed
noise. We have run the algorithm numerous times in each
dataset. These experiments ratify the general superiority of
using feature weighting in K-Means, particularly when applying
the Minkowski distance. We have also found that the use of
constrained clustering rules has little effect on the average
proportion of correctly clustered entities. However, constrained
clustering does improve considerably the maximum of such
proportion.

Keywords: Minkowski Weighted K-Means; Constrained K-
Means; Minkowski metric; semi-supervised learning; feature
weighting.

I. INTRODUCTION

The aim of any clustering algorithm is to partition a dataset
Y into K groups of homogeneous entities y ∈ Y creating a
partition S = {S1, S2, ..., SK}. These algorithms are rather
popular and they have been used to tackle the most diverse
problems, such as: summarizing data [1], detecting anomalous
patterns [2], clustering mental tasks [3], clustering malware by
its behaviour [4] and etc.

Clustering algorithms are traditionally divided into hierar-
chical and partitional. While the former iteratively merges
smaller (or divide larger) clusters, producing enough informa-
tion to generate a dendogram, the latter produces a single set of
clusters. Among the partitional algorithms we have K-Means
[5, 6], as probably the most popular. K-Means iteratively
minimizes the within-cluster dissimilarity between entities
and their respective centroids producing a non-overlapping
partition, in other words, a given entity y can belong to a
single partition Sk. The K-Means criterion is given below:

W (S,C) =
K∑
k=1

∑
i∈Sk

d(yi, ck) (1)

where K represents the number of clusters, ck the centroid
of cluster Sk and d a function returning the distance be-
tween an entity yi ∈ Sk and its respective centroid ck.

The algorithm outputs a clustering S and a set of centroids
C = {c1, c2, ..., cK}.

We present the iterative minimisation algorithm of the K-
Means criterion below:

1) Select K entities at random as initial centroids, put them
in C. Initialize S = {}

2) Assign each entity yi to the closest centroid ck creating
the clustering S′. The algorithm supports a variety of
distance measures, represented as d in Equation (1). If
S = S′ stop.

3) Move each centroid ck ∈ C to the centre of gravity of
Sk. This centre is given by the distance measure, for
Euclidean distance this would be the mean. return to
Step 2.

Visibly, the above iterative minimization of Equation (1) has
its weaknesses, among them: (i) it requires the user to know
the number of clusters in the dataset beforehand; (ii) there
is no guarantee the minimization will reach a global minima;
(iii) the final clustering depends heavily on the initial centroids,
normally found at random; (iv) distance measures create a bias,
for instance using Euclidean distance would bias the algorithm
towards spherical clusters; (v) it treats all features as having
the same degree of importance.

Even with all the above weaknesses, K-Means remains pop-
ular to this date. Implementations of K-Means can be found
in most data analysis software packages such as MATLAB,
R, SPSS and WEKA. The success of K-Means inspired us
to tackle two of its major problems: (iii) the use of random
initial centroids and (v) the equal treatment to all features.
Initially focusing on the later, we decided to investigate the
possibility of an algorithm setting the degree of importance of
each feature for clustering purposes by using feature weights.
We expanded the research on feature weighting of Huang et al.
[8, 7, 9] by developing the Minkowski Weighted K-Means
(MWK-Means) [10]. This algorithm follows the intuitive idea
that features may have different degrees of importance at
different clusters and that this should be taken into account
by the criterion in Equation (1).

In our original publication [10], we addressed the issue
raised by using random centroids by initializing our MWK-
Means algorithm with a modified version of intelligent K-
Means [2]. The later being a popular algorithm used to find the
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number of clusters in a dataset as well as its initial centroids
[3, 4, 11].

Naturally the MWK-Means algorithm requires a Minkowski
exponent p. This exponent can be approximated via semi-
supervised learning [10]. In this paper we expand the learning
stage of our algorithm to make use of pairwise clustering
rules, introducing then the Constrained Minkowski Weighted
K-Means (CMWK-Means). We have recently compared a six
different initializations for MWK-Means and found intelligent
K-Means and a modified version of the Ward method [12] to
work the best in our experiments. In this paper we experiment
with the later in a total of 12 datasets, derived from four
originals to which we added noise features.

II. BACKGROUND

While developing MWK-Means we had to alter the
calculation of distances to apply feature weights to the
original K-Means criterion (Equation 1). We decided to
introduce a weight wkv dependent on both, cluster k and
feature v, allowing a given feature v to have different
weights at different clusters k. We also introduced the use
of the Minkowski distance to the p power, analogous to the
Euclidean squared distance.

dp(yi, ck) =
V∑
v=1

wpkv|yiv − ckv|p (2)

where V represents the features and p is the Minkowski
exponent, a user-defined parameter that can be found with
semi-supervised learning. We have further modified the weight
variable to take into account the Minkowski exponent p, using
then wpkv . By using this exponent in the distance as well as
the feature weight we transform the latter in feature rescaling
factors. This means that the feature weights could be used
on the data-preprocessing stage regardless of what clustering
algorithm one would use.

We have shown that by using the Minkowski distance,
rather than Euclidean, our algorithm achieves better accuracy,
particularly when dealing with noisy datasets [10, 13]. We
have updated the K-Means criterion to:

Wp(S,C,w) =

K∑
k=1

∑
i∈Sk

V∑
v=1

wpkv|yiv − ckv|p (3)

The calculation of the feature weights follows the intuitive
idea introduced by Chan et al. [8], in which a feature v with
small variation in relation to others in a particular cluster k
has a higher degree of importance for clustering purposes in
this particular cluster k than the other features u ∈ V . We
calculate the feature weights per cluster using the following
equation:

wkv =
1∑

u∈V [Dkv/Dku]1/(p−1)
(4)

where the dispersion of a feature v in a cluster k in relation
to its cluster centroid ck is given by

Dkv =
∑
i∈Sk

|yiv − ckv|p (5)

Visibly this dispersion followed the Minkowski metric. The
MWK-Means criterion can be minimized iteratively by fol-
lowing a similar algorithm to K-Means, with an extra step to
calculate the weights.

1) Set the values of K centroids and V weights per centroid
(if unknown vik = 1/V ).

2) Assign each entity to its closest centroid, calculate the
distances with Equation (2).

3) Update each centroid to the Minkowski centre of its
cluster. If there are no changes, stop.

4) Recalculate all feature weights for each cluster applying
Equation (4); Go back to Step 2.

The Minkowski centre for a given p can be approximated
using the steepest descent method we have used in our original
publication [10] or even using a genetic algorithm, but the
latter is likely to be much slower.

MWK-Means is clearly a non-deterministic algorithm,
meaning that by using different initializations one may arrive
at a different clustering. We have made a comparison of
six different initializations [13] concluding that Minkowski-
based versions of the intelligent K-Means [2] and Ward [12]
methods are the best performers, the latter particularly in
high-dimensional datasets. We formalize the Minkowski Ward
initialization below.

1) Set all entities y ∈ Y as a singletons, having S =
{S1, S2, ..., SN}, where N is the cardinality of Y .

2) Merge clusters Sw1 and Sw2, which are the closest as
per the Ward criterion using the Minkowski metric.

3) Replace the references of Sw1 and Sw2, with that
representing a merged cluster Sw1∪w2.

4) If K > K∗, K∗ being the desired number of clusters,
return to step 2.

The Ward distance using the Minkowski metric, dwp, is
given by:

dwp(Sw1, Sw2) =
Nw1Nw2

Nw1 + Nw2

V∑
v=1

|cw1v − cw2v|p (6)

where cw1 and cw2 refer to the centroids of clusters Sw1 and
Sw2, respectively. Nw1 and Nw2 represent the cardinality of
each V-dimensional cluster.

The final clustering of MWK-Means very much depends
on the Minkowski exponent p used. This exponent can be
successfully approximated using a small amount of labelled
data. Following this approach, we cluster the whole dataset
with different values for p, normally between one and five in
steps of 0.1, and choose the optimal p based on the accuracy
of a small amount of labelled data.

Visibly, this semi-supervised learning approach opens the
doors to the use of constrained clustering. The question we
address here is: can this small amount of labelled data be used
to something more than simply approximate the Minkowski
exponent?.
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Constrained clustering in K-Means has been introduced by
Wagstaff et al. [14]. This approach makes use of a limited
amount of background knowledge by applying pairwise must-
link and cannot-link rules to entities. As their name suggest,
these rules state what pairs of entities are known to belong
to the same cluster and what pairs are known to belong to
different clusters.

Since we have a small amount of labelled data when using
MWK-Means, we can generate must-link and cannot-link rules
from these labels. The basic idea is that this algorithm will
change the assignment of the entities present in the rules
that would be otherwise incorrectly clustered. This way the
centroids will move to locations closer to the real centre of
gravity of the clusters and by consequence it may allow a
better general clustering. Constrained clustering is of easy
application and in a previous work we have successfully
adapted it to the intelligent K-Means initialization [15]

III. THE CONSTRAINED MINKOWSKI WEIGHTED
K-MEANS (CMWK-MEANS)

MWK-Means requires a small portion of the dataset to
be labelled, these labels are used to select a good value for
p. Likewise, CMWK-Means requires a limited quantity of
labelled data, but unlike MWK-Means it extends its use to find
a better clustering by using must-link and cannot-link rules.
We have joined these two approaches so the available labelled
data is used for estimating p as well as further enhancing the
cluster recovery of MWK-Means. We formalize the algorithm
below.

1) Run MWK-Means, initialized with the Ward method
using the Minkowski metric, 50 times with each p from
one to five in steps of 0.1 on the whole dataset.

2) Select p∗ as the p with the highest average accuracy over
the 50 runs within the labelled data.

3) Using the labelled data, generate the must-link and
cannot link rules

4) Run the Minkowski Ward initialization with p∗, finding
K Centroids C = {c1, c2, ...cK};

5) Set all weights vik to 1/V .

6) Assign each entities to its closest centroids making sure
the assignment does not break any of the constrained
rules, calculate the distances with Equation (2).

7) Update each centroids to the Minkowski centres of its
cluster. If there are no changes, stop.

8) Recalculate all feature weights for each cluster applying
Equation (4); Go back to Step 6.

We have found the above algorithm to be of easy implemen-
tation, the extra overhead processing to generate the must-link
and cannot-link rules was minimum. This was not really a
surprise as amount of labelled data was small.

IV. EXPERIMENTS WITH CMWK-MEANS

We have performed experiments on 12 datasets. The four
original datasets were chosen from UCI [16] based on their
popularity. In order to demonstrate the power of feature
weighting, we have derived datasets from the four originals,
containing features with uniformly random noise. The datasets
are:
- Iris
This dataset contains solely numerical data, it has 150 entities
over four features, partitioned into three clusters. From this
dataset we have derived two other with two and four extra
noise features.
- Wine
178 entities over 13 numerical features partitioned into three
clusters. From this dataset we have derived two others with 7
and 13 noise features.
- Hepatitis
155 entities over 19 features, mostly categorical, partitioned
into two clusters. From this dataset we have derived two
others with 10 and 20 noise features.
- Pima Indians diabetes.
768 entities over 8 numerical features, partitioned into two
clusters. From this dataset we have derived another two with
four and eight extra noise features.

We have standardized all datasets in order to deal with
features using different scales. We have standardise numerical
features by subtracting their average and dividing the result
by the features range. as shown below:

ziv =
yiv − ȳv

max(yv)−min(yv)
(7)

where ȳv represents the average of feature v over all entities
in the dataset y ∈ Y . The use of the range rather then standard
deviation as scaling factor favours bimodal distributions and
it has empirical support [17]. Regarding the standardization of
categorical features we decided to follow a method described
by Mirkin [2] that allows us to remain faithful to our criterion.
In this, each feature with n categories is transformed into n
new binary features. These new features have the value of
one only in those entities which were under the corresponding
category and zero otherwise.

We have used a confusion matrix to map the clusters
generated by our algorithm to the labels of the whole datasets.
The accuracy of each algorithm was set as the proportion of
the correctly labelled entities.

In the experiments for both MWK-Means and CMWK-
Means we have used 20% of labelled data in the semi-
supervised step. To find p we run experiments with the whole
datasets with ps between 1 and 5 in steps of 0.1 and choose
the p with the highest average accuracy in 50 runs.

We have calculated the accuracy of CMWK-Means as well
as its expected accuracy. The later relates to the fact that if
we feed the algorithm with, say, 20% of labels in the form
of must-link and cannot-link we should already expect an
increase related to this 20% of the data. The real point to
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be analysed is the impact of such rules in the accuracy in
the remaining 80% of the dataset. We calculate this expected
accuracy as per the Equation below:

Eµ = MWKµ +
NL − (MWKµ ∗NL)

N
(8)

where N is the size of the dataset, NL is the size of the labelled
data and MWKµ is the average accuracy of MWK-Means on
the same dataset. EMax uses a very similar formula with the
maximum accuracy of MWK-Means, MWKMax instead of
MWKµ.

Tables I, II, III, IV show the accuracy results for the iris,
wine, hepatitis and Pima Indians diabetes datasets. In all tables
we show the results for both MWK-Means and CMWK-Means
being initialized with the Minkowski Ward method, as well as
WK-Means [8, 7, 9] and K-Means.

TABLE I
RESULTS FOR THE EXPERIMENTS WITH THE IRIS DATASET. THE ROWS

SHOW THE RESULTS FOR THE ORIGINAL IRIS, WITH TWO AND FOUR
EXTRA NOISE FEATURES, RESPECTIVELY

Accuracy Expected
µ σ Max µ Max p

CMWK-Means 95.87 2.60 98.67 95.11 96.7 1.2
97.02 0.69 98.00 95.40 95.3 1.1
95.56 5.22 98.67 96.06 96.7 1.1

MWK-Means 94.53 3.2 96.7 - - 1.2
94.87 0.3 95.3 - - 1.3
95.33 1.7 96.7 - - 1.1

WK-Means 86.80 2.89 92.71 - - 1.68
82.1 3.3 88.8 - - 1.23
85.4 2.5 89.4 - - 1.21

K-Means 84.0 12.3 89.3 - - -
67.1 6.4 76.7 - - -
66.7 7.0 80.0 - - -

TABLE II
RESULTS FOR THE EXPERIMENTS WITH THE WINE DATASET. THE ROWS

SHOW THE RESULTS FOR THE ORIGINAL WINE, WITH SEVEN AND 13
EXTRA NOISE FEATURES, RESPECTIVELY

Accuracy Expected
µ σ Max µ Max p

CMWK-Means 94.06 3.64 96.07 94.72 95.5 1.71
94.96 1.21 97.19 94.74 95.5 1.49
96.29 1.81 97.75 93.18 93.8 1.28

MWK-Means 94.07 1.7 95.5 - - 1.6
94.35 0.9 95.5 - - 1.6
92.58 1.4 93.8 - - 1.5

WK-Means 92.34 1.15 93.53 - - 3.41
90.7 1.3 93.2 - - 3.59
85.4 1.8 89.1 - - 3.74

K-Means 95.3 0.4 96.6 - - -
93.0 6.5 96.6 - - -
87.5 11.0 93.3 - - -

We find the results in our tables quite promising. They show
that by using the constrained rules the average accuracy of
the CMWK-Means is competitive or higher and the maximum

TABLE III
RESULTS FOR THE EXPERIMENTS WITH THE HEPATITIS DATASET. THE

ROWS SHOW THE RESULTS FOR THE ORIGINAL HEPATITIS, WITH 10 AND
20 EXTRA NOISE FEATURES, RESPECTIVELY

Accuracy Expected
µ σ Max µ Max p

CMWK-Means 80.34 9.68 89.68 85.12 86.49 1.33
79.20 8.53 89.68 84.98 85.2 1.49
79.93 10.71 89.68 85.11 87.04 2.45

MWK-Means 82.52 2.5 85.2 - - 1.4
82.10 3.0 85.2 - - 1.8
82.64 3.2 86.4 - - 2.5

WK-Means 76.16 3.44 78.76 - - 1.92
77.3 1.9 78.8 - - 2.10
77.6 1.3 80.1 - - 2.65

K-Means 71.51 1.36 72.26 - - -
71.26 1.88 72.90 - - -
70.10 1.78 70.97 - - -

TABLE IV
RESULTS FOR THE EXPERIMENTS WITH THE PIMA INDIANS DIABETES
DATASET. THE ROWS SHOW THE RESULTS FOR THE ORIGINAL DATASET

AND THE VERSION WITH FOUR EXTRA NOISE FEATURES, RESPECTIVELY

Accuracy Expected
µ σ Max µ Max p

CMWK-Means 69.93 9.29 78.25 75.07 74.99 4.02
72.41 4.96 78.25 73.09 73.78 1.83

- - - - - -

MWK-Means 69.13 1.7 70.3 - - 3.8
66.91 2.2 68.7 - - 1.8
68.78 1.92 69.79 - - 2.06

WK-Means 62.73 0.96 64.09 - - 3.26
63.2 1.6 65.3 - - 1.55
65.1 1.48 66.6 - - 1.74

K-Means 66.67 0.55 66.80 - - -
52.25 1.11 53.38 - - -
51.58 1.23 53.64 - - -

accuracy is always higher when compared with not using the
rules.

V. CONCLUSION

In this paper we have presented the Constrained Minkowski
Weighted K-Means. This is a further modification to
Minkowski Weighted K-Means, an algorithm shown to be
more accurate than a variety of other algorithms [10, 13].
Because of its non-deterministic nature we have chosen to ini-
tialize it with the Ward method, also utilizing the Minkowski
metric and have selected an appropriate Minkowski exponent
by using semi-supervised learning.

This new algorithm makes full use of a limited amount of
labelled data by using the must-link and cannot-link clustering
rules introduced by Wagstaff et al. [14].

In general, our experiments ratify the superiority of using
feature-weighting in K-Means, particularly when applying
the Minkowski metric. We have also found that the use
of constrained rules does not seem to increase the average
accuracy in more than what one should expect. The maximum
accuracy in the other hand seems to have a considerable
increase. This suggests that perhaps we should investigate
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other initializations for the CMWK-Means, which we intend
to do in the future.
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