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Abstract  
The eukaryotic genome is organized in a chain of nucleosomes that consist of 145-147 bp of 

DNA wrapped around a histone octamer protein core. Binding of transcription factors (TF) to 

nucleosomal DNA is frequently impeded, which makes it a challenging task to calculate TF 

occupancy at a given regulatory genomic site for predicting gene expression. Here, we 

review methods to calculate TF binding to DNA in the presence of nucleosomes. The main 

theoretical problems are (i) the computation speed that is becoming a bottleneck when partial 

unwrapping of DNA from the nucleosome is considered, (ii) the perturbation of the binding 

equilibrium by the activity of ATP-dependent chromatin remodelers, which translocate 

nucleosomes along the DNA, and (iii) the model parameterization from high-throughput 

sequencing data and fluorescence microscopy experiments in living cells. We discuss 

strategies that address these issues to efficiently compute transcription factor binding in 

chromatin. 

 

 

1. Introduction 
Predicting gene expression from mechanistic molecular considerations is a challenging 

subject, which currently has exact solutions only for a small number of mainly prokaryotic 

model systems [1-4]. However, this field is developing very fast, with many recent studies 

constructing bottom-up quantitative models of gene regulation [5-17].  Gene regulation in 

eukaryotes is much more complicated due to the dynamic organization of the DNA in 

chromatin, which modulates the accessibility of regulatory DNA regions to transcription 

factors (TFs) [18]. Furthermore, in a human organism tens of thousands of annotated genes 

exist whose expression levels depend on each other. The resulting large combinatorial 

number of possible expression patterns makes it impossible to determine these for all 

combinations of concentrations of all molecular players experimentally. However, the 

problem could be solved if one succeeds in constructing a model that predicts expression 

changes for individual genes as a function of TF concentrations and other input molecular 

parameters. This would be a highly valuable achievement for both basic research as well as 

medical systems biology. Accordingly, the field is rapidly expanding, and currently involves 

two large groups of approaches: One comprises descriptions based on biophysically 

formulated molecular binding models for protein arrangements along the DNA [5-17] and the 

other is based on bioinformatic strategies where the rules of gene expression are correlated 

to TF occupancies or histone modifications by learning from large datasets without knowing 
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the underlying molecular mechanisms [19-22]. Here we will focus on the first group of 

approaches, and specifically on one requirement that has to be accounted for in these types 

of models: the interference of TF-DNA binding with nucleosomes at regulatory genomic 

regions. We will review the main assumptions inherent to currently used approaches. Then 

we will describe a theoretical method to calculate transcription factor binding to regulatory 

DNA regions and the experimental methods to determine input parameters for such models. 

Finally, several examples of the implementation of this approach will be given. 

 

2. Basic assumptions and concepts. 
2.1. Gene expression rate is proportional to the probability of transcription initiation. 

According to the classical central dogma of molecular biology, the genetic information 

encoded in the DNA is read by proteins to produce RNA, which is translated into proteins. 

This dogma has been revised multiple times during the last decades after the discoveries of 

reverse transcription of RNA into DNA, RNAs with enzymatic activities as well as non-coding 

regulatory RNAs and the identification of epigenetically determined gene expression 

implemented by the modifications of DNA and DNA-bound histone proteins. Thus, instead of 

a linear flow of information from the DNA to protein expression a complex regulatory network 

exists between DNA, RNA and proteins, which determines the readout of the DNA sequence 

[23-25]. Nevertheless, the main part of the dogma still holds true: the DNA is a carrier of 

genetic information, and it requires proteins to read, interpret and execute the information it 

encodes. The development of the final gene product depends on many regulatory events at 

all stages of transcription, processing and translation. In this sequence of events the first one 

is the initiation of transcription. Once it occurred, it still can be halted or modulated by a 

number of other downstream regulatory events. The critical assumption used in most 

theoretical works in this field is that the rate of expression is proportional to the probability of 

transcription initiation [2, 4, 26-31]. Although this is a significantly simplified view, it has 

proved to be a reasonable approach for many genes. 

 

2.2. Transcription initiation depends on the promoter-enhancer interaction. 

Transcription initiation is a complex process, with the main part being the assembly of the 

transcription machinery including RNA polymerase (RNAP) at the promoter [32]. The 

recruitment and activation of this complex depends on transcription factors (Figure 1A). TF 

binding is in many cases cooperative and/or involves competitive binding of several factors 

for the same DNA sequence [3, 33-35]. TF binding sites can be separated from each other or 



  3 

clustered; they may be proximal to transcription initiation sites or at distal regulatory elements 

termed enhancers. In many cases promoter and enhancer regions come into contact through 

protein-assisted DNA looping [36], and the interaction between the pre-initiation complex at 

promoter and transcription factors assembled at the enhancer can be mediated by another 

large multiprotein complex called Mediator [37]. Thus, TF arrangement at enhancers is 

believed to determine transcription initiation through mechanistic interactions transmitted to 

RNAP. The commonly accepted view is that promoter-enhancer interactions are always by 

direct DNA-protein-DNA contacts (as opposed to other models that propose long-range 

information transmission e.g. through changes of the DNA conformation or quantum transfer 

[38]). In this paradigm, any advanced mathematical model of transcription initiation can be in 

principle supported by a corresponding mechanistic picture. The enhancer can be viewed 

either as a specific multicomponent structure that forms via cooperative binding of its 

components and is referred to as an “enhanceosome”, or a flexible “billboard”, which is a less 

defined structure arising from stochastic binding of a set of components [39]. In both cases 

its mathematical role is providing a single proxy for multiple TF signals [39-43].  

 

2.3. The probability of transcription initiation is a function of TF bound states. 

In many cases the exact mechanistic details of protein-DNA-protein complexes formed at a 

cis-regulatory module are not known. However, in principle molecular details can be 

determined as done for the beta-interferon enhanceosome as a prototypic example [44]. To 

compute the effect on gene expression, it is generally assumed that the expression of a 

given gene can be described by some mathematical function of TF occupancies at the 

enhancer and/or promoter. There have been several names for such functions in the 

literature, including “regulation factors” [45], “logic functions” [46], “input functions” [47], “cis-

regulatory input functions” [48, 49] and “gene-regulation functions” (“GRF”) [4, 50], which is 

the term used here. Initially, GRFs were thought to be exclusively determined by the DNA 

sequence of the corresponding cis-regulatory modules [8]. However, recent studies have 

shown that GRFs are also strongly dependent on covalent histone modifications of 

nucleosomes covering the corresponding region [51]. In some cases GRFs can be defined in 

the form of Boolean functions of TF concentrations [47, 48], linear functions of TF 

occupancies at their binding sites [8] or mixed “analog” scenarios [52]. Recent studies of 

well-defined prokaryotic systems showed that in a general case GRFs are neither Boolean, 

nor linear [4, 48, 53]. For several classes of promoters where the relation of RNAP 

recruitment and TF binding is known it is possible to determine the nonlinear non-Boolean 
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gene regulation functions directly from TF binding maps [4]. The situation becomes much 

more complicated when one takes into account the nucleosomal organization of DNA in 

chromatin in eukaryotes (Figure 1B). In this case, some nucleosomes need to be removed or 

repositioned to allow transcription initiation complex assembly. Thus, the GRF becomes also 

dependent on the nucleosome states [54]. Even with this correction, several recent studies 

have challenged the classical assumption that expression of a gene is correlated to the 

corresponding TF occupancy [55]. Rather, it was proposed that in some cases GRFs are 

better correlated to the changes in histone modifications than to the changes in TF 

occupancies [17]. A special study devoted to the effect on gene expression of TF 

arrangement versus histone modifications has shown that TF occupancies are responsible 

for short-range effects (e.g. one gene) whereas histone modifications act more globally 

(genomic locus including several genes) [56]. In any case, histone modifications are thought 

to work predominantly by recruiting specific proteins, so that the GRF would be still 

determined by the protein-DNA binding state of a given regulatory module. Last but not the 

least, it is noted that the GRF concept assumes gene expression to be at least to some 

extent deterministic and not purely stochastic. The latter point might seem obvious at the 

macroscopic level since organisms develop according to a well-defined program. However, 

at the microscopic level this assumption is not strictly fulfilled, and relative contributions of 

stochastic/deterministic processes still have to be evaluated quantitatively [57]. 

 

2.4. Binding maps cannot be measured for all time points, and have to be calculated. 

Current high-throughput techniques allow measuring genome-wide binding maps for a single 

protein in a given cell type and cell state. In general, the binding maps determined for 

different cell types do not coincide. For example, recent studies of genome-wide binding of 

an insulator protein CTCF in mouse embryonic stem cells and mouse embryonic fibroblasts 

have revealed that only ~ 30% of binding sites are identical between these two cell types 

[58]. The TF binding maps depend on the protein concentration, active nucleosome 

repositioning and changes in large-scale chromatin accessibility. In all three cases we have 

to account for TF competition with each other and with other molecules for DNA binding. 

Classical types of competitive binding may involve competition for overlapping and non-

overlapping binding sites, formation of DNA loops and multilayer structures [59, 60]. In 

addition, molecular motor activities require the introduction of a non-equilibrium component, 

which still can be integrated in the frame of quasi-equilibrium thermodynamic models [61].  
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2.5. TF-DNA binding maps are calculated for equilibrium conditions. 

The cell nucleus is a very crowded environment and equilibration times can be as large as 

hours [62]. Furthermore, many DNA binding proteins can undergo conformational changes 

that are driven by the hydrolysis of ATP and act as molecular motors against the thermal 

equilibrium [63, 64]. Nevertheless, most current methods for calculation of TF-DNA binding 

maps use the assumption that the binding map can be determined from the 

thermodynamically preferred protein-DNA contacts and the thermodynamic competition 

between different protein species [1-3, 65]. The use of this assumption is justified by the 

following considerations: (i) TF binding events frequently happen on a time scale of seconds 

[66, 67]. Thus, TF DNA occupancy is expected to be in a quasi-equilibrium although the cell’s 

state might change on the hour scale, e.g. during progressing through the cell-cycle. 

(ii) Similarly, the ATP-dependent activity of chromatin remodelers that could translocate 

nucleosomes at promoters or enhancers would lead to a steady state of nucleosome 

positions at a given point of time in the cell that can be represented by equilibrium [61, 68]. It 

is also noteworthy that only a very small fraction of nucleosomes appears to be translocated 

in the absence of DNA replication or DNA repair [64]. (iii) One can also think of a collective 

equilibrium in an ensemble of many identical cells [4]. In this case, the binding map derived 

from the equilibrium assumption would represent an average pattern characteristic for many 

instances of the cell at different time points.  

 

3. Calculation of TF binding maps in chromatin. 

3.1. Integrating nucleosomes in thermodynamic TF binding models. 

The nucleosome consists of 145-147 bp wrapped around the histone octamer core [69]. 

Without ATP-dependent remodelers, the nucleosome residence time is in the order of 1-2 

hours, which is much larger than that for a typical transcription factor [70]. The energy of 

DNA-histone octamer interaction (~1 kT per bp) is also much larger than the energy of 

binding for a typical TF [71, 72]. From this perspective, the nucleosome can be viewed as 

almost immobile with respect to TF binding. Mathematically that would be described by a 

structure that always protects 147 base pairs from binding to other proteins. A given site on 

the DNA would be either nucleosome-free, or inside the nucleosome. However, the 

nucleosome is actually quite a dynamic structure [73-78] (Figure 2). Some of the four histone 

dimers can be lost leading to partial nucleosome disassembly [60, 79]. Alternatively, DNA 

can partially unwrap from the histone octamer due to a variable number of protein-histone 

bonds [72, 80, 81]. The nucleosome unwrapping model suggests two possible effects: first, 
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transcription factors can access the DNA inside the nucleosome, especially close to the 

nucleosome entry/exit site, and second, nucleosomes can invade the territories of each 

other. Both of these effects have been observed experimentally [75, 82]. Furthermore, this 

model was shown to be quantitatively consistent with in vitro measurements of DNA 

accessibility and DNA positioning [72].  

 

3.2. Formulating one-dimensional DNA lattice models. 

Genomic DNA is packaged into chromatin in a complex 3D structure, which is still poorly 

understood [83]. In particular, there are multiple contacts between distant genomic regions 

mediated by specific DNA-protein-DNA interactions [84, 85]. Mathematically speaking, this 

property can be described as a fractal dimension [86-88]. Nevertheless, for many problems 

involving a single genomic region it is useful to consider the DNA as a linear molecule, 

characterized by a single 1D coordinate numbering the nucleotides or base pairs (bp) along 

the genome. Each nucleotide can contribute to a potential protein-DNA contact [13, 89, 90]. 

Mutations changing distances between TF binding sites at Drosophila enhancers by several 

bp lead to different phenotypes [13], and sites of single-nucleotide polymorphism (SNP) 

affect differential TF binding at regulatory regions [91]. In one-dimensional models the DNA 

is considered as a lattice of base pair units numbered by index n (Figure 3A). Each DNA unit 

can be in one of several states determined by the reversible protein binding as is typical for 

Ising [92] and Markov chains [93]. We consider f types of proteins, which can competitively 

bind DNA depending on the protein type g, g = (1, f). Macroscopic protein-DNA binding 

constants K(n,g) determined by the energy of protein-DNA binding depend on the position of 

the binding site start along the DNA n and protein type g. For each protein-DNA complex, it is 

possible to enumerate base pairs within the binding site by index h with respect to the start of 

the canonical binding site n, and correspondingly distinguish microscopic binding constants 

k(n,g,h) corresponding to individual protein-DNA bonds. The product of all microscopic 

binding constants k(n,g,h) for a given complex gives the macroscopic binding constant 

K(n,g). In principle, any DNA base pair in the sequence may be considered to represent the 

start of a potential binding site for a given protein. Proteins g1 and g2 can interact with each 

other depending on the distance j along the DNA with a potential w = w(j, g1, g2). Proteins are 

characterized by their corresponding binding site sizes on the DNA, m = m(g). It is frequently 

assumed that the binding site size for a given protein type is constant, e.g. a protein covers 

10 bp upon binding to the DNA and protects these 10 bp from binding of other proteins. 

However, this is just a special case of a more general situation when each binding site is 
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characterized by h1 unbound bp from the left and h2 unbound bp from the right end of the 

binding site as shown in Figure 3. This model becomes particularly important for large 

protein-DNA complexes such as the nucleosome where it is known that partial unwrapping of 

DNA from the histone octamer occurs spontaneously [72, 94]. 

 

3.3. Mathematical algorithms to solve 1D lattice models. 

The aim of constructing 1D lattice models is to be able to predict probabilities of all bound 

protein-DNA configurations. Only few of these configurations are of particular interest, but to 

be able to calculate their probabilities one has to know the probabilities of the others. In the 

pseudo-equilibrium approximation, each bound configuration i can be given a weight which 

exponentially depends on its free energy, exp(-∆Gi / kBT), where ∆Gi  is the energy change 

corresponding to a given configuration of protein arrangement along the DNA, kB is the 

Boltzmann constant, and T the absolute temperature in Kelvin. The sum of weights of all 

possible configurations is called the partition function. The straightforward way to calculate 

the partition function is via sampling through all possible states of the system. This can be 

done analytically for simplified systems e.g. assuming non-specific binding [95, 96] or 

numerically for realistic systems confined to short DNA lattices [97, 98], or systems with a 

small number of known discrete binding sites of a few transcription factors [99], such as the 

λ-switch [27, 28] or the Lac operon [29-31]. However, if both sequence-specific and 

nonspecific binding to overlapping DNA sites is taken into account, calculations for DNA 

regions longer than 30 bp are not feasible using this method with currently available 

computers [100], and special methods are needed to accelerate calculations [101]. These 

include the binary variable method, combinatorial method, generating function method, 

transfer matrix method and dynamic programming approach as reviewed elsewhere [60, 94]. 

Many currently used approaches are based on dynamic programming algorithms for historic 

reasons [94]. The dynamic programming algorithms were initially developed in the 1970s 

independently by DeLisi in USA and Gurskii and Zasedatelev in USSR [102-105] and for 

some time used only by specialists interested in theoretical aspects of such models [106-

108]. Then they were almost forgotten, and recently have become very popular again in 

applied science, particularly in the nucleosome positioning and TF binding fields [8, 12, 109-

117]. A first dynamic programming method to calculate TF-DNA binding taking into account 

the possibility of partial nucleosome unwrapping was developed in our recent publication 

[94]. In the dynamic programming approach, the partition function Z for a DNA of length N 

can be calculated recurrently if partition functions for smaller lattices are known using the 
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dynamic programming algorithm [94] (see Appendix). Alternatively, the transfer matrix 

method [72], or binary variable methods could be used for simpler systems where 

nucleosome unwrapping does not need to be taken into account [60]. As a result, one gets 

the partition function Z, which allows calculating the probability P(n, g, h1, h2) that a protein of 

type g is bound starting at site n, leaving on the left and right sides correspondingly h1 and h2 

unbound contacts with respect to its canonical binding length m(g). The critical parameters in 

the modeling is c0(g), the free concentration of the protein of type g, the binding constant of 

the corresponding protein, and protein-protein interaction potentials w(j, g1, g2). To account 

for the possibility of partial nucleosome unwrapping, the macroscopic binding constant K* for 

the protein (or the histone octamer) whose first contact with DNA starts at position n is 

defined in dependence of the number of formed bonds as a function of n, m(g), g, h1, h2: 
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where k is the microscopic binding constant for the protein-DNA bond at position i with 

respect to the start of the completely bound protein binding site. In practice, it is impossible to 

determine all probabilities P(n, g, h1, h2) experimentally. What is usually reported in the 

experiments is the occupancy of a given base pair by a given protein type. The probability 

that a specific DNA base pair is occupied by the protein of type g is 
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Many experimental papers also report the value of the nucleosome dyad density as a 

function of position along the DNA. This is equivalent to the probability that a given DNA unit 

is bound by the middle of the protein according to
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where Int is the integer part of the corresponding expression. These equations allow 

calculating TF binding maps in the presence of nucleosomes and taking nucleosome 
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unwrapping into account. An implementation of this algorithm in a program called "TFnuc" 

will be made available online at http://generegulation.info. While this is a powerful method, its 

application requires the proper choice of input parameters (binding affinities, concentrations, 

interaction potentials) to yield meaningful results. The next chapters discuss strategies for 

obtaining these parameters. 

 

 

4. Determining binding affinities from high-throughput sequencing experiments 
4.1. Estimating relative TF binding constants.  
Recent developments in high-throughput microarray-based and sequencing-based methods 

allow measuring protein binding maps for a complete genome in a single experiment [118]. 

Having such an experimental binding map, one can extract protein-DNA sequence 

preferences. Some proteins are more specific, recognizing just a single motif and some 

minor variation of it. For this class of proteins binding affinities are usually characterized by 

position weight matrices (PWM). It is assumed that each nucleotide within the binding site 

adds an independent contribution to the binding energy [119-121]. For many transcription 

factors, position weight matrices are available via databases such as FlyTF [122], JASPAR 

[123] and TRANSFAC [124]. Several methods exist to convert PWMs into protein binding 

affinities [116, 125-127]. However, some TFs can recognize many different motifs, and 

binding preferences can also be influenced by dependencies of neighboring nucleotides. In 

this case storing binding affinities in the form of weight matrices becomes an ineffective 

strategy. Until recently, TF binding motifs have been commonly determined in vitro by 

protein-binding microarrays, but this method is limited by the number of represented 

sequences on the microarray, which are usually not longer than 10 bp [128]. In general, 

microarray-based methods such as SELEX (systematic evolution of ligands by exponential 

enrichment)only return relative affinity values [129]. Such values, e.g. from the HTPSELEX 

database [130], can be technically stored in a genome-wide affinity profile file and 

sequentially read as input to feed them into Eq. 1 calculating the corresponding binding 

constant for each window of length m(g) on the DNA. With high-throughput SELEX (HT-

SELEX) [131], DNA fragments with a randomized 10 bp sequence are incubated with TFs 

and then protein-DNA complexes are purified and eventually sequenced using deep 

sequencing protocols [131].  When comparing the number of initial DNA fragments with TF-

enriched sequences after sequencing, one can calculate the probability of binding to a 

particular 10 bp region. Using certain assumption, it is possible to calculate the free energy 

for each sequence depending on read statistics and estimations for the energy contribution 

of each nucleotide using the PMW energy model [131]. A recent study showed that absolute 

dissociation constants of fluorescently labeled TFs to immobilized DNA clusters can be 
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obtained from next generation sequencing data by plotting the signal intensity of the TFs with 

increasing TF concentrations [132]. This method can also resolve interdependencies of 

nucleotides for transcription factor binding, which is valuable information when calculating 

transcription factor binding probabilities. To identify binding sites that are functionally relevant 

in vivo, a ChIP-seq analysis of TF binding sites in a cell is informative (Fig. 4A). Binding 

maps derived by this method account for the chromatin organization, since nucleosome 

positions are implicitly taken into account [133]. When the resultant TF binding maps are 

compared to nucleosome binding maps determined by MNase-seq for the same cell type it 

becomes apparent that many TFs are preferentially bound to the linker DNA regions between 

nucleosomes. Importantly, extracting enriched binding sites with peak calling algorithms 

leads in many cases to the loss of information about the occupancy level of individual peaks. 

Therefore, the weighted sum of enriched fragments has been proposed as a measure for 

relative TF binding affinity and it has been shown that gene expression predictions can be 

made with improved precision when the weighted sum also depends on the proximity to a 

TSS [134]. Particularly accurate in vivo binding sites at single nucleotide resolution can also 

be also obtained with the ChIP-exo method [135]. Applications of this method showed that 

not all consensus sequences previously described in in vitro experiments were occupied. 

Clusters of poor consensus sequences were also bound and utilized by TFs to initiate 

transcription [135]. It has to be noted that ChIP-seq based methods rely on the availability of 

good antibodies, and both direct binding of transcription factors to DNA and indirect 

association via other factors/complexes are captured. Importantly, the common assumption 

that ChIP-seq peak heights reflect relative binding affinity might not always be true, since 

other factors may influence the amount of immunoprecipitated DNA, including the formation 

of protein complexes that have different exposure of the epitope used in ChIP-seq, as well as 

the level of chromatin packing affecting the representation of a given genomic fragment in 

the input material after digestion [136]. Thus, a combination of in vitro and in vivo methods is 

needed to retrieve quantitative data of functionally relevant direct and indirect binding sites. 

  

4.2. Experimental determination of cell-type dependent nucleosome occupancies. 
A similar strategy as with TF-DNA affinities can also be applied to estimate the affinity of the 

histone octamer to any DNA sequence [111, 137-139]. Several web servers already exist for 

calculating affinities of the histone core particle to an arbitrary DNA sequence [111, 140-143]. 

Recent advancements in high-throughput sequencing methods allowed genome-wide 

mapping of individual nucleosomes at single base pair resolution [144, 145], with yeast 

serving as a model system for the initial pioneering studies [111, 138, 146]. Further studies 

showed that nucleosome positions in different cell types of the same organism differ [147-

154]. As with any protein-DNA binding, nucleosome positioning is determined by several 
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contributions including the intrinsic histone-DNA preferences, competition with non-histone 

proteins for DNA binding, and the action of ATP-dependent molecular motors [61]. The 

relative roles of these contributions are still under discussions, but all of them seem to be 

relevant. A typical experiment for the determination of genome-wide nucleosome positions is 

currently based on chromatin extraction from the cell nucleus, digestion of chromatin with 

MNase (or alternatively, by sonication combined with exonucleases) to obtain 

mononucleosomes, followed by the purification from proteins and RNA, and subsequent 

submission of obtained segments of nucleosomal DNA for high-throughput sequencing 

(Figure 4B). Paired-end sequencing is the method of choice since it allows exact mapping of 

both ends of the nucleosomal DNA to the reference genome without any assumptions. The 

results of the MNase-seq experiment usually yield a somewhat fuzzy picture. A nucleosome 

is almost never strictly positioned at exactly the same position in all cells of the same type 

due to cell heterogeneity and due to the intrinsic nucleosome property to “breath” by 

unwrapping/rewrapping the DNA at the ends. Accordingly, the most informative parameter to 

describe such a nucleosome distribution is the nucleosome occupancy, i.e. the probability 

that a given DNA base pair is occupied by the nucleosome. Obtained nucleosome 

occupancy profiles strongly depend on the level of chromatin digestion, which can be used 

as a titration parameter [155]. Finally, nucleosome occupancy at position i can be determined 

from the experimental data according to Eq. 4 (Figure 4B): 
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where I is an indicator function defined as follows: I(condition)=1 if condition is satisfied, 0 

otherwise; index j numbers individual nucleosome reads (current generation high-throughput 

experiments can provide up to two hundred millions of paired-end reads per sequencing run). 

The parameters nj and sj correspond to the mapped start and end of each individual 

nucleosome read after paired-end sequencing. Experimental data obtained with the help of 

Eq. 4 can be then normalized to the total number of reads per base pair and directly 

compared to the theoretical occupancy distribution calculated by Eq. 2.  

 

If exact borders of nucleosomes are not known (e.g. due to the use of single-end sequencing 

which is less-expensive than paired-end sequencing) one usually determines the 

nucleosome dyad distribution, i.e. the probability that the nucleosome centre is at a given 

position along the genome. The latter can be directly compared to the theoretically calculated 
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distribution given by Eq. 3. In the absence of information about exact nucleosome 

boundaries, nucleosome start site maps (or dyad maps) can be converted to nucleosome 

occupancy maps assuming that the nucleosome consists of m base pairs and cannot 

unwrap, using the following approximation [61]: 
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where the probability that the DNA unit n is covered by a nucleosome is referred to as C(n) 

and the probability that a nucleosome starts at a DNA unit n as P(n). It is noted that the 

single-end sequencing approach introduces additional errors that arise because a certain 

length of the nucleosomal DNA has to be assumed. Although it is well established from 

crystal structure analysis that the nucleosome core particle contains 145-147 bp the fragment 

length obtained by MNase digestion is much more heterogeneous and typically ranges from 

120 to 180 bp, depending on the digestion conditions. In addition, the linker histone H1 binds 

to the DNA at the entry-exit site of the nucleosome and protects an additional ~20 bp. 

Accordingly, the footprint of a nucleosome with bound H1 is typically larger than 160 bp.     
 

 

5. Absolute chromatin binding affinities derived from fluorescence microscopy based 
methods in living cells. 
As described above, high-throughput methods can yield genome-wide occupancy profiles for 

nucleosomes, TFs or other chromatin proteins. However, these profiles usually provide only 

relative binding affinities. Thus, the information on the competitive binding of two proteins for 

the same sequence cannot be derived from this type of data. Moreover, phenomena like 

cooperative binding or stabilization of chromatin loops that influence the GRF as described 

above depend on the interaction strength between chromatin-associated proteins, which 

cannot be derived from occupancy profiles. As discussed in several excellent reviews 

molecular details and interaction parameters can be obtained from in vitro studies [156-159]. 
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These provide an approach to quantify the competitive binding of two proteins to DNA or 

reconstituted nucleosomes and to each other. However, although these experiments provide 

valuable information it is usually very difficult to relate these data to the situation in the highly 

crowed environment of the cell nucleus and a chromatin organization that is certainly 

different from that of an in vitro reconstituted nucleosome. Thus, the relevant binding 

parameters need to be determined in living cells. Strategies to accomplish this via 

quantitative fluorescence microscopy based techniques will be discussed in the following. As 

depicted in Figure 5, several complementary approaches exist to measure the interaction 

between fluorescently labeled proteins or labeled proteins and chromatin. Compared to 

biochemical methods, these approaches are non-invasive and can work without perturbing 

the cell. The caveat, however, is that they require expression of fluorescently tagged 

proteins, which in some instances might lead to interaction affinities that are different than 

those of the endogenous proteins. Thus, it needs to be confirmed that the fluorescent tag has 

no effect on the properties to be measured. The choice of the specific method depends on 

the mobility and the size of the proteins under study. To determine the affinity between a 

protein and a DNA sequence of interest one would ideally measure this interaction on a 

single-molecule level. However, this is on the one hand not always possible and on the other 

hand very laborious if lots of different DNA sequences are to be measured. Thus, an 

alternative strategy is to determine the affinity of the protein to an average DNA sequence by 

measuring at randomly chosen positions within the cell. This value together with the relative 

affinities from high-throughput experiments allows for estimating the absolute affinity profile 

of the protein. In addition, the interaction between transient chromatin-binders is relevant for 

calculating the binding cooperativity they exhibit on the DNA as well as for estimating their 

propensity to stabilize higher-order chromatin structures. Such structures may include 

chromatin loops at promoter regions or multilayer structures that have a direct impact on the 

GRF as mentioned above. The following methods are the most prominent ones used to 

determine such protein-DNA-protein interactions in living cells. 

 
5.1. Fluorescence Resonance Energy Transfer (FRET) 
Fluorescence Resonance Energy Transfer (FRET) is a convenient tool to test whether two 

proteins interact directly with each other. Non-radiative energy transfer in FRET occurs 

between two spectrally suitable fluorophores with distinct fluorescence excitation and 

emission characteristics. Upon excitation of the “donor”, the absorbed energy can be emitted 

either via fluorescence emission or via non-radiative FRET if a suitable “acceptor” is present 

within a distance of up to 10 nm. In this case, the acceptor is excited by the donor and emits 

light according to its characteristic emission spectrum. The efficiency of this process is 

inversely related to the 6th power of the distance between the two fluorescently labeled 
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proteins so that interactions on the molecular level can be detected. If no FRET is observed, 

the interpretation is not straightforward since negative results can occur for different reasons. 

These include a too large spatial distance or a mostly perpendicular orientation of the two 

fluorophores’ transition dipole moments. To extract binding affinities using FRET, the size of 

the interacting and non-interacting pools as well as the FRET efficiency have to be 

determined. Since the latter parameter depends on the orientation of the two fluorophores, 

i.e. the composition and geometry of a complex, it is difficult to construct appropriate controls 

for quantitative interpretations. However, estimates for relative affinities can be readily 

obtained both in live cells and in vitro [160, 161]. Moreover, FRET measurements in 

conjunction with microinjection provide access to additional protein interaction parameters 

like the association rate [162]. Importantly, FRET can be used to study the interaction of a 

transcription factor or another mobile protein with chromatin. To this end, chromatin is 

labeled via incorporation of a fluorescent histone [163] or by labeling the DNA with a 

fluorescent dye [164]. As discussed above, high FRET efficiencies are indicative of strong 

interactions and allow for the calculation of relative binding affinities to “average” chromatin. 

There are conceptually two possibilities to assess the interaction with a particular DNA 

sequence or chromatin region in living cells. If the sequence can be easily located in 

microscopy images, e.g. the murine pericentric sequences in the dense chromocenters of 

mouse cells, the measurement can simply be performed at the desired location. Otherwise, 

i.e. for all non-repetitive and non-macroscopic sequences, a sensor protein binding to the 

sequence/region of interest could be used as FRET counterpart. A critical requirement for 

such an experiment would be that the sensor does not directly bind to the protein of interest. 

 

5.2. Fluorescence Recovery After Photobleaching (FRAP) 
FRAP is a method to measure the mobility of a protein moving in the cell. Since binding 

interactions with the rather immobile chromatin network reduce a protein’s mobility, mobility 

and binding strength are inversely correlated. There are sophisticated reaction-diffusion 

models to extract pseudo-association and dissociation rates from FRAP recovery curves 

[165, 166], which can be used to estimate the binding affinity if the substrate concentration is 

known. Due to the inherently limited spatial resolution, such experiments typically yield the 

interaction behavior with an average site on chromatin. However, if macroscopic amounts of 

repetitive binding sites are used FRAP can also measure the interaction between a 

transcription factor and a distinct DNA sequence [167, 168]. Both types of measurements 

can be useful to convert occupancy profiles into absolute affinities. For example, FRAP was 

used to determine the dissociation constant of the glucocorticoid receptor at a tandem array 

of mouse mammary tumor virus promoter sites, yielding a value of about 100 nM [169]. 
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5.3. Fluorescent Two-Hybrid Assay (F2H) 
A convenient way to study the interaction of two nuclear proteins is the Fluorescent Two-

Hybrid Assay [170] that has been applied in a recent study to dissect protein interactions at 

telomeres [171]. One of the two proteins tagged with Green Fluorescent Protein (GFP) is 

recruited to a macroscopic array of lacO sites on the DNA that can readily be identified within 

a microscopy image. The interaction with a second protein tagged with Red Fluorescent 

Protein (RFP) is read-out by testing for colocalization at the array in both color channels. In 

the presence of an interaction, both proteins are at the array; in the absence of an interaction 

(or for very weak interaction) only the recruited protein is detected. The main advantage of 

the assay is that it can easily be implemented using standard microscopy hardware and that 

it typically does not give false-positive results if spectral cross talk is avoided. However, lacO 

arrays are typically constructed with a high density of binding sites, accommodating large 

numbers of recruited proteins in direct proximity. If one of the proteins of interest is 

incorporated into large complexes, it has to be ensured that the steric requirements are 

compatible with the local constraints of the protein-bound lacO array. To obtain semi-

quantitative information from F2H experiments, the fluorescence intensity at the array and in 

the rest of the nucleus can be used to estimate the size of the free and bound fractions, from 

which the affinity can be deduced if the endogenous protein concentrations are known. A 

prerequisite for such an analysis is to exclude quenching or saturation effects, which might 

not always be trivial. Although F2H has to our knowledge not been used for quantitative 

studies so far, it should be suitable for determining the binding affinity between two proteins if 

the conditions mentioned above are met.  

 

5.4. Fluorescence Correlation Spectroscopy 
An elegant approach to detect the interaction between proteins is Fluorescence (Cross) 

Correlation Spectroscopy with a one or a two-color label (FCS/FCCS). In particular the ability 

to detect low concentrations of multimeric complexes in solution makes FCCS an attractive 

method. It does not require recruitment to an artificial array but works with two species of 

fluorescently proteins only [172]. As opposed to FRET, the orientation of the two proteins in 

their complex(es) has no impact on the measurement. FCCS relies on the correlation of the 

presence of the two labeled proteins in the microscope’s focus over time, i.e. it measures if 

both proteins enter or leave the focus together or independently. Since both the total and the 

interacting protein species are measured with single molecule sensitivity, conclusions about 

the affinity of the complex can be made if the endogenous concentrations of the proteins are 

known. This is a major advantage with respect to many other methods since quantitative 

evaluation typically requires an extensive calibration procedure, which is not the case here. 

However, appropriate controls have to be used to account for aberrations in the optical setup 
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or maturation problems of the fluorophores [173]. As an example, the affinity between the 

small Rho-GTPase Cdc42 and the actin-binding scaffolding protein IQGAP1 was 

successfully measured in living zebrafish embryos and cultured mammalian cells using 

FCCS [174]. 

 

5.5. Single Particle Tracking (SPT) 
Another way to exploit the connection between the mobility and the binding affinity of a 

transcription factor is single particle tracking. Here, the protein of interest is expressed in very 

low concentrations and individual molecules are imaged and followed over time. Under 

certain conditions, one can deduce the binding affinity to the target site from such time-

series, as shown for the lac repressor binding to its lac operator target site [175]. This 

approach works best for low concentrations of transcription factors and binding sites since 

the spatial resolution is inherently limited by the microscope. 

 

6. Insight in molecular details of transcription regulation from model systems. 

6.1. Lessons learned from the prokaryotic world. 

Many paradigms in this field have been developed using a limited number of relatively well-

understood model systems. In the studies of prokaryotes, the phage λ-switch [27, 28] and 

the Lac operon [29-31] served as model systems for many years. The λ-switch model 

revealed that direct competition between the two transcription factors CI and Cro and RNAP 

can regulate activation/repression of two neighboring promoters PR and PRM that determine 

the fate of the E. coli bacteria invaded by bacteriophage λ. Most energetic parameters 

characterizing protein-DNA and protein-protein binding at the λ-switch promoter region have 

been determined experimentally, which allowed constructing many quantitative models. 

Interestingly, our understanding of this well-defined system is being constantly refined. One 

refinement was the discovery of a DNA loop between the PR-PRM region and a distant PL 

region. The loop energy was measured and the structure of CI multimer holding the loop was 

characterized, allowing the quantitative agreement with the experiment of an updated model 

[176, 177]. Another refinement to the classical λ-switch model came when the significant role 

of nonspecific protein binding was pointed out in addition to the specific binding to their 

recognition sites [178]. An additional refinement to the model was the introduction of the 

distant-dependent interference between RNAPs bound to adjacent promoters. This 

interaction was quantified with the help of the long-range interaction potential w(j, RNAP, 

RNAP), and it appeared that this interaction shapes the GRF of a given cis-regulatory 

module to make it more digital-like [4, 59]. Yet, studies of the λ-switch indicate that we are 
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perhaps still missing some details in the complete understanding of this system [179]. 

Similarly to the λ-switch, the classical Lac repressor system also taught as important lessons 

about regulation of transcription initiation through TF competition and cooperativity. Recent 

conceptual insight was obtained from this system with respect to long-range cooperativity 

between DNA-bound TFs due to protein-induced DNA looping [180]. It was known for a long 

time that protein binding sites separated by n x 10 bp along the DNA appear on one side of 

the double helix and therefore exhibit higher cooperativity in protein binding. In addition, this 

study also characterized the intermediate distances so that it can now be quantified with a 

continuous distance-dependent potential w(j, g1, g2).  

 

6.2. TF interference with nucleosomes at eukaryotic regulatory regions. 

Similar to the prokaryotic studies, in eukaryotes there are also several systems that have 

been well-defined at the molecular level and studied for a long time, e.g. the IFN-β 

enhanceosome formation [181], Epstein-Barr virus promoter activation [182] and yeast PHO5 

promoter [54]. The Epstein-Barr virus promoter activation was perhaps the first theoretical 

model that addressed transcription initiation in a eukaryotic system explicitly considering 

multiprotein combinatorial assembly [182], but this model did not take nucleosomes into 

account. The difference from the prokaryotic analogues was simply in the number of TF 

binding sites that are involved in the cooperative interaction with the pre-initiation complex. 

The introduction of nucleosomes in this type of models is illustrated by the recent study of the 

yeast PHO5 promoter [54]. In this case, binding site occupancy by the nucleosome was 

considered in a binary way: as occupied or not occupied. This allowed getting quantitative 

agreement with the experimentally measured expression for this system. However, as noted 

in many molecular studies, nucleosome removal is usually not a binary process, with 

nucleosomes either being continuously unwrapped [72, 80, 81] or moved by a remodeler 

along the DNA in small steps such as 10 bp [61, 183], so that a binary description is in 

general not adequate. Accordingly, several theoretical models have been proposed to 

include continuous nucleosome competition with TFs in the description of transcription 

initiation [59-61, 72, 80, 81, 184, 185]. The practical use of such models is currently limited 

by the absence of suitable biological systems, which are characterized well enough to set 

input values for Equations 1-4 with the affinities and concentrations for histone and non-

histone proteins. Mathematical approaches including fitting of the missing values can help [8, 

12], but should be used with care due to avoid over-fitting (the more unknown parameters 

are in the model, the easier it is to find a satisfactory parameter set, but it is much more 
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difficult to derive a biologically relevant physical model). On the other hand, the continuous 

increase of high-throughput genome-wide datasets for a limited set of model systems (e.g. 

Drosophila embryonic development, human T-cell activation, mouse embryonic stem cell 

differentiation) promises more well-defined genomic modules suitable for the complete 

bottom-up description. Meanwhile, it is instructive to decipher some general mechanisms that 

are characteristic for eukaryotes and have not been observed previously in the prokaryotic 

studies. One such mechanism is the cooperativity between transcription factors mediated by 

nucleosomes.  

 

In 2008, Segal and coauthors concluded their computational analysis of the experimental 

Drosophila development data with the following statement: “We do not know how 

[transcription factor binding] cooperativity is achieved mechanistically – by homotypic 

protein–protein interactions, transcriptional synergy, or perhaps competition with 

nucleosomes – but the similar narrow range within which the clustering occurs for most 

factors suggests a general common mechanism” [8]. The source of this cooperativity still has 

not been identified. The characteristic distance for such interactions is ~50 bp, and therefore 

several computational models just use the corresponding interaction potential, derived from 

fitting the experimental data [12]. An attractive possibility suggested by this characteristic 

length is that this cooperativity is mediated by the nucleosomes [186]. We recently developed 

a quantitative model for TF-nucleosome interference using the concept of partial nucleosome 

unwrapping that is described by equations 1-4, and tested it on the experimental dataset by 

Fakhouri et al [13]. This dataset is particularly interesting because the authors have looked at 

enhancer-promoter cross-talk involved in Drosophila embryonic development by varying the 

distance between binding sites for a repressor/activator transcription regulation module. The 

binding sites themselves were not altered, and the promoter regions remained intact. The 

authors observed that gene expression followed a complex nonlinear dependence as a 

function of the distance between the repressor and activator binding sites: the repressor 

efficiency was high at small separations ~5 bp, low around 30 bp, reached a maximum at 50-

60 bp, and decreased at larger distances. Such distances are large enough to rule out direct 

protein-protein interactions. On the other hand, these distances are too small to be 

accounted for by usual DNA looping, which has a characteristic length of ~500 bp [187]. 

Moreover, the experimental dependence did not reveal a 10-bp periodicity characteristic for 

prokaryotes [180]. Therefore, to explain distance-dependent cooperativity at these distances 

we are only left with nucleosomes or other complexes geometrically resembling the 
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nucleosome such as the enhanceosome. Indeed, our calculations showed that the nonlinear 

distance-dependent behavior can be quantitatively explained when TF-nucleosome 

competition is considered and the nucleosome unwrapping is taken into account [81]. This 

mechanism would explain evolutionary clustering of TF binding sites at the regulatory regions 

with characteristic 60-80 bp distances [188, 189]. Of course there is still no direct proof that 

this mechanism is really in operation and more direct molecular experiments are required to 

solve this issue [190].  

 

6.3. ATP-dependent nucleosome repositioning.  

Another important feature specific to eukaryotic systems is the contribution of ATP-

dependent chromatin remodelers to gene regulation. Pioneering high-throughput 

experiments in yeast showed that genomic nucleosome positions are highly correlated with 

preferred nucleosome positions on the same DNA sequences in vitro [111]. This suggested 

that nucleosome arrangement in vivo might be primarily governed by intrinsic preferences of 

histone octamers to DNA at a thermodynamic equilibrium. Subsequently, it was shown that 

an ATP dependent activity, most likely that of chromatin remodelers, is needed to establish 

the nucleosome positioning pattern found in the cell and that this can override DNA intrinsic 

positioning [191]. Nucleosome occupancy profiles around genomic barriers such as the 

insulator CTCF proteins or transcription start sites have pronounced oscillatory patterns [192-

194]. These are very typical for reversibly binding ligands equilibrated in the presence of a 

boundary on the DNA [97, 195]. Using the assumption of reversible equilibrium binding of 

histone octamers allowed quantitatively explaining oscillatory nucleosome patterns around 

genomic barriers without the need of introducing ATP-dependent chromatin remodelers [196, 

197]. This has led to the view that the oscillatory nucleosome occupancy patterns around 

genomic barriers arise simply due to statistical positioning [195]. However, as we have 

demonstrated theoretically, very similar periodic oscillatory of nucleosome occupancy around 

a boundary can also be the result of the activity of nonspecific nucleosome translocations 

due to chromatin remodeling activity [61]. By taking into account both the sequence-specific 

histone preferences and ATP-dependent remodeler activities it is predicted that one role of 

nonspecific chromatin remodelers is to distribute nucleosomes with equal spaces. Several 

other models have been developed that account for the remodeler’s ability to evenly space 

nucleosomes [198]. It is noted that the oscillatory nucleosome patterns around transcription 

start sites observed in vivo were absent for the same DNA sequences in vitro in the absence 

of chromatin remodelers or the absence of ATP, while addition of remodelers plus ATP re-
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established the oscillatory nucleosome pattern [191]. Thus, remodeler activity appears to be 

essential for nucleosome positioning in the cell. Methodologically, remodeler activity can be 

taken into account either (i) as a dynamic redistribution according to the remodeler rules of 

the equilibrated binding map determined by the nucleosome/TF competition, or (ii) as a cell-

type dependent refinement to the intrinsic histone-DNA affinities, followed by the equilibration 

of histone octamers with competitively binding TFs [61]. The first option is biophysically 

better defined, but it requires the definition of remodeler activity rules for different classes of 

remodelers. This is difficult to do even with sophisticated experiments like knock-out or 

recruitment of specific remodelers [152, 153, 199]. The second option provides less 

mechanistic insight, but allows effectively characterizing different cell states by histone-DNA 

preferences, which already take into account remodeler action, and then proceed with the 

calculation of TF binding maps according to Equations 1-7.  Future studies will show which of 

these methods is more suited for the quantitative description of eukaryotic gene regulation.  

 

7. Conclusions  

In higher eukaryotes, specific cell types and tissues are established from the same DNA via 

different protein-DNA binding patterns that determine gene expression. These patterns 

correspond to distinct chromatin states that are maintained via a complex epigenetic network 

that includes DNA methylation and histone modifications and can be transmitted through cell 

division. Accordingly, it is essential to consider the chromatin state for the computation of TF 

binding maps at regulatory elements like enhancers and promoters to predict gene 

expression. As discussed here, an essential step towards this goal is to include the 

nucleosome in the calculation of TF binding maps at thermodynamic equilibrium conditions. 

Protein concentrations, binding affinities and long-range interaction potentials are needed as 

input parameters for such calculations (Figure 6). Here, we have discussed how these 

parameters can be obtained using high-throughput sequencing experiments in combination 

with fluorescence microscopy in living cells. Being able to calculate TF occupancy in the 

presence of nucleosomes more accurately is an important advancement. However, it is also 

clear that in general it is not possible to reliably predict gene expression from molecular 

binding events with the current experimental datasets and theoretical methods. Taking into 

account the ever-growing amount of experimental data, it seems that the bottleneck will be 

on the theoretical side. A crucial step is the computation speed when considering TF-

nucleosome competition and partial nucleosome unwrapping. We showed how this issue can 

be addressed with novel faster algorithms [94]. A second challenge is the incorporation of 
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ATP-dependent remodeler activities. As discussed in section 6.3, this problem also has 

conceptual solutions that can help constructing quantitative models for gene regulation at 

new levels. Finally, nucleosome-dependent gene regulation is realized not only through 

nucleosome translocations and dissociation/unwrapping, but also through covalent histone 

modifications. These are accounted for by equation 1 through the use of the microscopic 

binding constants k(n, g, h). Thus, introducing histone modifications changes the histone 

octamer binding constant through the change of the nucleosome type g, and through the 

change of the unwrapping potential (dependence of k on the unwrapping length h). 

Furthermore, the interaction energy of the corresponding nucleosome with nucleosome-

binding proteins also changes depending on g. Given that there are several dozens of known 

histone modifications and histone variants and a huge number of their combinations [200], 

the amount of nucleosome types is tremendous. As with protein binding it is impossible to 

determine maps for all histone modification states experimentally for all cell states. Thus, one 

of the current challenges is it to identify a manageable subset of histone modifications that 

needs to be taken into account, derive a method of predicting its changes from the protein 

arrangements and to combine calculation of protein binding maps with the calculation of the 

corresponding changes in histone modifications. 

 

Acknowledgements 

We thank David Arnosti for valuable comments on the manuscript. VT acknowledges the 

support by a fellowship from the Heidelberg Center for Modeling and Simulation in the 

Biosciences (BIOMS) and the DKFZ Intramural Program. This work was funded within 

project EpiGenSys by the BMBF as a partner of the ERASysBio+ initiative supported under 

the EU ERA-NET Plus scheme in FP7. 

 

 



  22 

Figure Legends 

 

Figure 1. Different levels of understanding of cis-regulatory module functioning. A) Enhancer 

and promoter regions can be connected by a DNA loop bridged by transcription factors. One 

of the bound proteins is RNA polymerase (RNAP), whose binding determines the probability 

of transcription initiation. B) In chromatin, both enhancer and promoter regions might be 

covered by nucleosomes; some nucleosomes need to be removed or repositioned to be 

compatible with TF binding, which becomes an additional layer of regulation of the initiation 

of transcription. 

 

Figure 2. Understanding TF-nucleosome competition. A) The DNA site is either bound by a 

transcription factor, or a nucleosome is formed and TFs cannot bind to this site. B) The 

nucleosome is viewed as a dynamic structure that can allow partial DNA unwrapping or 

partial disassembly of histone dimers. TFs bind to the released sites on the DNA inside the 

canonical nucleosome. 

 

Figure 3. 1D lattice models for TF-DNA binding in the context of nucleosomes and other 

protein complexes. A) The histone octamer is represented as a single ligand covering up to 

147 bp when completely bound. Partial bonding of histone octamer and DNA results in 

unwrapping of the DNA from the nucleosome entry/exit. Transcription factors can bind the 

unwrapped DNA. The forward partial partition function is calculated left to right (B). The 

reverse partial partition function is calculated right to left (C). A partial partition function of the 

system with the bound pink protein in the middle is given by the product of the corresponding 

forward and reverse partition functions, divided by the weight of this bound protein. 

 

Figure 4. A schematic representation of the ChIP-Seq and MNase-Seq workflow to 

determine genome-wide nucleosome occupancy profiles. (A) ChIP-Seq. The chromatin is 

extracted from the cell nucleus, sonicated into short fragments and immunoprecipitated using 

antibodies specific to the chromatin protein of interest. The resulting DNA segments 

associated with the target protein are mapped, which results in sharp peaks for proteins that 

realize specific binding to well-defined binding sites. The peaks are identified with peak-

calling software and used for TF binding DNA motif discovery. (B) MNase-Seq. The 

chromatin is extracted from the cell nucleus and digested by MNase to remove the linker 

DNA between nucleosomes. Subsequently, the remaining nucleosomal DNA is sequenced 



  23 

and mapped to the reference genome. In the paired-end sequencing setup exact positions of 

individual nucleosome instances are determined, but they are overlapping due to some 

sample heterogeneity, resulting in a smooth distribution of the nucleosome occupancy. The 

nucleosome occupancy is defined as a normalized number of individual nucleosome reads 

covering a given DNA position.  

 

Figure 5. Fluorescence fluctuation microscopy methods used to measure protein-chromatin 

and protein-protein interactions in living cells. 

The principles of the most prominent living cell imaging techniques such as Single Particle 

Tracking (SPT), Fluorescence Recovery After Photobleaching (FRAP), Fluorescence (Cross) 

Correlation Spectroscopy (FCS/FCCS) and Fluorescence Resonance Energy Transfer 

(FRET) are illustrated. In SPT, a single particle (with high enough contrast) is followed within 

a sequence of microscopy images to determine its mobility. While the particle is bound to 

chromatin, it exhibits lower mobility, enabling to distinguish bound and free states as well as 

the kinetic rate constants. In FRAP, fluorescent particles within a large region are bleached, 

and the recovery of non-bleached molecules from the surrounding is recorded over time. The 

shape of the recovery curve encodes information about the chromatin interactions of the 

protein. In FCCS, the presence of two differently labeled proteins is assessed over time, and 

the correlated presence of the two proteins (corresponding to the amplitude of the correlation 

function) is used as readout for their interaction. Finally, the presence of FRET between two 

proteins labeled in two colors indicates that they are in close proximity, which can be 

interpreted as interaction between the two. 

 

 

Figure 6. Flow chart for the integrative analysis to predict gene expression in the presence of 

nucleosomes. 

TF binding affinities, interaction potentials and concentrations, which are the input 

parameters for the calculation of the binding maps, can be obtained from two interdependent 

sources: experiments and bioinformatic predictions based on the sequence analysis. The 

experimental part consists on high-throughput sequencing based methods detailed in Figure 

4 and imaging techniques in living cells detailed in Figure 5. After the model 

parameterization, gene regulation functions are being calculated which allows predicting 

gene expression.   
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Appendix. A dynamic programming algorithm to calculate TF-DNA binding 

probabilities for chromatin taking into account partial nucleosome unwrapping. 

 

In order to calculate probabilities of TF-DNA binding in Eq. 1, one needs to know the partition 

function of the system. This calculation becomes non-trivial when partial nucleosome 

unwrapping is considered. The corresponding calculation strategy using the transfer matrix 

formalism has been described elsewhere [72]. An equivalent approach is also available in 

the frame of the dynamic programming approach [94]. In the latter study, the algorithm was 

derived only in is the case of homotypic interactions between DNA-bound TFs (when the TF-

TF interaction potential depends on the distance but does not depend on the TF type). Here, 

the extension of this algorithm is described that allows calculations for the general case of 

heterotypic TF-TF interactions. 

 

Let us consider the genomic region of length N, with index n numbering the first bp covered 

by a protein of type g, and index s numbering the last bp covered by a protein of type g 

(s = n + m(g) - h1 - h2 - 1) (Figure 3). Then the partition function Z for a DNA of length s can 

be calculated recurrently according to Eq. A1: 
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With the following boundary conditions: 

 

1=sZ  for ( ) 21 hhgms −−< ,  (A2) 
 

Here c0(g) is the free concentration of the protein of type g, and the macroscopic binding 

constant K* = ( )21,,, hhgnK  for the protein whose first contact with DNA starts at position n is 

defined by Eq. 1 in the main text with the following boundary conditions: 

 

( ) NsnhhgnK ><= or  1for  0,,, 21  (A3) 
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A given configuration with DNA positions [n, s] covered by a bound protein of type g with 

unbound h1 and h2 bp from its left and right ends, respectively, is described by the following 

partial partition function:  
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Equation A4 is based on the recurrent calculation of the partition function in the forward 

direction (left to right in Figure 3B). Analogously, we can calculate the partial partition 

function backwards (right to left from N to n in Figure 3C) for the situation when the protein of 

type g with unwrapped h1 and h2 bp covers region [n, s] on the DNA. This partial partition 

function is denoted as ),,,( 21 hhgnZn
− . Then the product of partial partition functions 

),,,(),,,( 2121 hhgnZhhgnZ ns
−+ ⋅  gives the sum of all states of the system where the protein of 

type g with unwrapped h1 and h2 bp covers region [n, s] on the DNA. This expression has to 

be divided by ( ) ( )21,,, hhgnKgco ⋅  because the forward and reverse partition functions take 

into account our protein of interest twice. Finally, in order to find the probability of TF binding 

event we have to divide this expression by the total partition function Zn of the system. Then 

the probability that the protein of type g with unwrapped h1 and h2 bp starts at position n is 

given by the following expression: 
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