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Abstract

In this paper, we consider the joint modelling of survival and longitudinal data with

informative observation time points. The survival model and the longitudinal model

are linked via random effects, for which no distribution assumption is required under

our estimation approach. The estimators are shown to be consistent and asymptotically

normal. The proposed estimator and its estimated covariance matrix can be easily

calculated. Simulation studies and an application to a primary biliary cirrhosis study

are also provided.

Keywords: Cox model; informative observation times; log-normal distribution; longitu-

dinal data; multistate models.

1 Introduction

The motivation for this paper arose from a primary biliary cirrhosis (PBC) study (Mur-

taugh et al., 1994). The PBC is a chronic, fatal, but rare liver disease characterized

by inflammatory destruction of the small bile ducts within the liver, which eventually

leads to cirrhosis of the liver. Patients often present abnormalities in their blood tests,
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such as elevated and gradually increased serum bilirubin. The research interest is to

study how the drug D-penicillamine (DPCA) affects event times and how the patterns

of time courses of bilirubin levels affect death due to PBC. Patients in this study will

have their blood tests roughly at 6 months, 1 year, and annually thereafter. Longi-

tudinal measurements (such as bilirubin levels) will be collected at these time points.

These predetermined time points are independent of the longitudinal measurements,

however, some longitudinal observations may be observed at an ‘extra’ visit, which is

often undertaken unexpectedly because of worsening medical condition. Therefore, such

an observation time point is informative to the longitudinal measurement. For survival

events, a patient in this study may experience a single event, death/transplant (or cen-

soring); or may experience a death/transplant (or censoring) event and an extra visit to

clinic(implying worsening medical condition).

Multiple event models such as multistate models (Andersen and Keiding, 2002; Meira-

Machado et al., 2009) are suitable for modelling the extra-visit event and death event.

To incorporate the effects of longitudinal measurements, we consider a joint analysis of

multiple event models for the survival data and linear mixed effect models for the longitu-

dinal measurements, where the dependency on the informative observation time points

is also considered. The sub-models are joint via a common biomarker process. Such

joint models for longitudinal data and survival events have been well developed, when

the observation times for longitudinal data are non-informative. Henderson et al. (2000)

demonstrated the advantage of using a joint modelling approach. Recent developments

in this area include Han et al. (2007) for joint models of a longitudinal biomarker and

recurrent events; Elashoff et al. (2008) for joint modelling of competing risks models and

longitudinal models; and Dantan et al. (2011) for joint analysis of multi-state models and

longitudinal models. Note that the longitudinal model in Dantan et al. (2011) involves

a change point and they use two different linear models for the longitudinal data before

and after the change point. Their model requires that all longitudinal observations are
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collected at non-informative time points. In our study, however, the last longitudinal

observation may be observed in the extra visit, which is informative. Readers may see

Tsiatis and Davidian (2004) for a detailed review of joint modeling of survival events

and longitudinal measurements.

The main challenge for the PBC study, which cannot be solved by the existing methods, is

the informative observation time points for longitudinal measurements, the ‘extra visit’.

There has been a vast literature for dealing with informative observation time points for

longitudinal data, e.g. Lin et al. (2004); Sun et al. (2007); Liang et al. (2009); Huang

et al. (2006); Chen et al. (2015), but these methods focus on longitudinal observations

without a terminating survival event or with an independent stopping event. More

recent studies focus on longitudinal data with informative observation time points or

with informative dropouts. For example Liu et al. (2008) developed a joint random

effect model, with the random effect distribution specified, for longitudinal data with

informative observation time points and dependent terminal event. Sun et al. (2012)

provided a joint analysis of longitudinal data with informative observation times and a

dependent terminal event via two latent variables. Their focus is on the effects of the

observed covariates rather than how the unobserved biomarker affects the survival events.

In their estimation approach, the distribution of the latent variables are unspecified, but

the asymptotic covariance matrix is estimated via a Monte Carlo resampling approach.

Han et al. (2013) developed a joint modelling approach for longitudinal observations

using a semiparametric regression, observation processes and the dropout process using

an accelerated failure time model.

To our knowledge, although many methods for joint modelling of multiple survival events

and longitudinal data have been developed, joint analysis for multiple survival event and

longitudinal data with informative observation times has been hardly studied. In this

paper we develop a working-likelihood approach to deal with such problems. This new

method has several innovations. First, our method needs neither to impute the latent
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random effects nor to integrate out the latent variables from the likelihood. Instead, our

method estimates the latent biomarker process via Least Squares estimates, which are

actually functions of other unknown parameters in the longitudinal model. Then such

Least Squares estimate functions are plugged into the survival model and we can further

obtain unbiased estimating equations for all unknown parameters. The proposed method

gives a very simple asymptotic covariance matrix estimator, which is easy to compute.

Monte Carlo resampling approach is not needed as that in Sun et al. (2012). Second,

the new method does not need to specify any distribution for the random effects. This

new method is an extension of the corrected score methods in Wang (2006) and Song

and Wang (2008). Third, our method can provide not only the effects of the observed

covariates on survival events but also how the unobserved biomarker process affects

survival event rates.

This paper is organised as follows. The preliminaries and statistical models are intro-

duced in Section 2. Then we introduce the new methodology, and provide the estimating

equations, the consistent estimators and the asymptotic normality in Section 3. Sim-

ulation studies and an application to the primary biliary cirrhosis study are given in

Section 4 and Section 5, respectively. Section 6 gives a brief discussion.

2 Notations and the statistical model

We denote the death event time as Ti, which is usually subject to random censoring

by Ci. We can only observe Xi = min{Ti, Ci} and δi = I[Ti ≤ Ci]. Let Yi(t) denote

the longitudinal process at time t, which is observed intermittently either at time points

ti1 < ti2 < · · · < ti,ni (these times are usually planned in advance and are independent

of the longitudinal process Yi(t)), except that the last time point may be an extra

(random) visit Ri = ti,ni related to Yi(t)). The observation time Ri means that at this

time point the patient visits the clinic unexpectedly. Therefore this ‘extra’ observation
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time point Ri will be informative, for example representing worsening medical condition.

We assume that each patient has at most one informative time points, for simplicity

and because this is the scenario in the application data set. In general, more than

one informative time points could be observed for each patient. The proposed method

can be easily extended to such general scenarios (see further discussions in Section 6).

For simplicity and without loss of generality, we also assume that there is one time-

independent covariate W i, which corresponds to the treatment or other factors. Note

that our method is applicable for time-dependent covariates W i(t), if it can be observed

at all time t.

Before presenting the model for Yi(t), we introduce the counting processes for the death

events and the ‘extra’ visits. We consider a two-state transition model for the death

event and the ‘extra’ visit. For the multistate process, state 0 means alive (the initial

state); state 1 means alive but medical condition becomes worse and state 2 means

dead. We here only allow transitions from 0 to 1, 0 to 2 and 1 to 2. We define N i
hl(t) =

#{ direct transitions from h to l, in [0, t] for subject i} and Nhl(t) = n−1
∑

iN
i
hl(t). A

review for multi-state models can be found in Andersen and Keiding (2002).

We consider the longitudinal model

Yi(t) = µi(t) + αH{N i
01(t)}+ ϵi(t) (1)

where µi(t) is the unobserved biomarker process for subject i before medical condition

worsening, ϵi(t) ∼ N(0, σ2) and H{N i
01(t)} is a function depending on the counting

process related to Ri. This function H{N i
01(t)} is able to model how Yi(t) changes at or

after the informative time point. Without the term αH{N i
01(t)}, the random effect µi(t)

will be estimated with bias and then this will further distort other parameter estimates.

If there are multiple informative times, the function H can be chosen as the number of

informative times within a small neighborhood of t (Sun et al., 2005). In our study, there

is at most one informative time. We can choose, for example, H{N i
01(t)} = I[Ri < t].
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For simplicity, we denote Hi(t) := H{N i
01(t)}. The random process µi(t) is modelled by

µi(t) = vi0+vi1t+· · ·+viqt
q. In our study, we do not specify any distribution assumption

on the random effect vi = (vi0, vi1, · · · , viq).

Define Fi(t) as the filtration generated by {N i
hl(s), 0 ≤ s ≤ t, hl = 01, 02, 12}, W i and

vi. The individual rate of the counting processes N i
hl(s) is modelled as a product of

a baseline transition rate and a subject specific factor that depends on the covariates

and the individual’s biomarker process µi(t) + αHi(t−). The biomarker process has a

change point at the informative observation time. In summary, we consider the following

models,

dΛhl,i(t) = dΛhl,0(t) exp
{
γ ′
hlW i + ηhl(µi(t) + αHi(t−))

}
. (2)

In model (2), parameter γhl shows the effects of time independent covariates such as

treatment on the transition rate from state h to state l. Similarly parameter ηhl shows

the effects of the underlying biomarker process on the transition rate. Notation dΛhl,0(t)

means the baseline transition rate from state h to state l.

Equivalently, with the notation βhl = (γhl, ηhl) and θ = (α,β01,β12,β02, σ
2), we can

also write the above model as

E[dN i
hl(t)|Fi(t−)] = Qi

hl(t;θ)dΛhl,0(t) (3)

Qi
hl(t;θ) = exp

{
γ ′
hlW i + ηhl(µi(t) + αHi(t−))

}
H i

hl(t).

where H i
01(t) = H i

02(t) = I[min{Ri, Xi} ≥ t] and H i
12(t) = I[Xi ≥ t > Ri]. Note that

here if Ri did not occur we let Ri = ∞ for convenience. Since we choose H{N i
01(t)} =
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I[Ri < t], the formula for Qi
hl can also be written as

Qi
01(t;θ) = exp

{
γ ′
01W i + η01µi(t)

}
I[Ri ≥ t],

Qi
02(t;θ) = exp

{
γ ′
02W i + η02µi(t)

}
I[Xi ≥ t],

Qi
12(t;θ) = exp

{
γ ′
12W i + η12(µi(t) + α)

}
I[Xi ≥ t > Ri]. (4)

The above joint models are very general comparing to some existing works. If we choose

µi(t) = µ0(t) to be the same for all subjects and choose ηhl = 0 for all (hl), then the

above joint model can be solved using the method in Sun et al. (2005). If we set α = 0,

µi(t) = aiµ0(t) for some random effect ai and unknown function µ0(t) and we only

consider the death (censoring) event, then the above model becomes that in Ding and

Wang (2008). The above survival model can also be amended easily to fit the survival

data with multiple failure times in Elashoff et al. (2008).

3 The statistical inference

In this section, we focus on the parameter estimations in the models (1) and (3). The

challenge here is to deal with the unknown process µi(t). One may specify a particular

distribution for vi and based on this distribution assumption, integrate out the latent

variables from the likelihood function (Dantan et al., 2011). However, an inappropriate

distribution assumption may distort the final estimation results and if many unknown

random effects are involved the numerical integration or EM algorithms will be unstable

(Ding and Wang, 2008). Therefore, we here consider an approach without requiring any

distribution assumption on vi.

A simple idea is, given all the longitudinal observations for Yi(t) and α, to replace µi(t)

with its Least Squares estimate µ̂i(t;α) (as a function of α) in the (partial) likelihood.

This simple idea, however, will give biased estimates (Henderson et al., 2000). But
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it is possible to use µ̂i(t;α) with certain adjustments in the likelihood function or the

estimating equations to obtain a consistent estimate. One way of doing this is to use the

method based on sufficient statistics in Tsiatis and Davidian (2001) or the corrected score

method (Wang, 2006). These methods, however, are only valid when the longitudinal

data are collected at noninformative times. This paper uses the log-normal distribution

property to correct the bias. Note that for any Gaussian random variable ξ with mean

µξ and variance σ2
ξ we have that E[eξ] = eµξ+σ2

ξ/2. Therefore eξ−σ2
ξ/2 can be used as an

unbiased estimate for eµξ . This log-normal distribution property will help us to find an

unbiased estimate for eµi(t), the exponential of the random effect process, which will be

part of the proportional hazard model.

3.1 The working likelihood function

We here consider an extension of the corrected score approach. Suppose that subject

i has ni longitudinal observations, ni > q + 1. If α is given, we can estimate vi based

on all longitudinal observations of subject i and calculate the predicted value µ̂i(t;α).

If denoting Y i = (Yi(ti1), · · · , Yi(ti,ni))
′ and Hi = (Hi(ti1), · · · ,Hi(ti,ni))

′, we have that

µ̂i(t;α) = (1, t, · · · , tq)(T′
iTi)

−1T′
i(Y i − αHi), where Ti is the design matrix with ni

rows and q+1 columns; the first column has all 1s and the kth column has values tk−1
ij ,

k ≥ 2. Using standard results from linear regression, given µi(t), the predicted value

µ̂i(t;α) is normally distributed with mean µi(t) and variance σ2
i (t) = σ2bi(t), where

bi(t) = (1, t, · · · , tq)(T′
iTi)

−1(1, t, · · · , tq)′.

Recall that Qi
hl(t;θ), defined in (3), is a term used to construct the estimating equations

for Cox regression models. Details can be found in Fleming and Harrington (1991) and

Andersen et al. (1993). Since Qi
hl is not available (due to the unknown random effects),
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we consider using

Q̃i
hl(t;θ) = exp

{
γ ′
hlW i + ηhl(µ̂i(t;α) + αHi(t))−

η2hlσ
2
i (t)

2

}
H̃ i

hl(t) (5)

instead, where H̃ i
hl(t) = I[ni > q + 1]H i

hl(t). We know that, given µi(t) = vi ·

(1, t, · · · , tq)′, the term exp(ηhlµ̂i(t;α)) follows a log-normal distribution and

E
[
exp

(
ηhlµ̂i(t;α)−

η2hlσ
2
i (t)
2

)
|vi

]
= I[ni > q + 1] exp(ηhlµi(t)). In addition, given Ft− ,

we also have E
[
Q̃i

hl(t;θ)|Ft−

]
= I[ni > q + 1]Qi

hl(t;θ). Therefore it is natural to use

Q̃i
hl(t;θ) to construct the estimating equations. The idea here is to replace Qi

hl(t;θ) by

Q̃i
hl(t,θ) in the standard Cox partial likelihood function and then the estimating equa-

tions can be obtained by taking derivatives with respect to parameters α and βhl and

σ2.

With the arguments above, we consider the working likelihood function (for the survival

sub-model)

l̃(θ) =
∏
hl

∏
i

∏
t

 exp
(
γ ′
hlW i + ηhl(µ̂i(t;α) + αHi(t))−

η2hlσ
2
i (t)
2

)
∑

j exp

(
γ ′
hlW j + ηhl(µ̂j(t;α) + αHj(t))−

η2hlσ
2
j (t)

2

)
H̃j

hl(t)


dÑ i

hl(t)

.

where dÑ i
hl(t) = I[ni > q + 1]dN i

hl(t). Then the working log-partial likelihood function

(for the survival sub-model) is

log l̃(θ) =
∑
hl

∑
i

∫ [
γ ′
hlW i + ηhl(µ̂i(t;α) + αHi(t))−

η2hlσ
2
i (t)

2
− log

(
S̃
(0)
hl (t,θ)

)]
dÑ i

hl(t). (6)

where S̃
(0)
hl (t,θ) := n−1

∑
i Q̃

i
hl(t;θ).

On the other hand, since ϵ is normally distributed, we also have the following log-
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likelihood function for σ2 based on the longitudinal sub-model

∑
i

I[ni > q + 1]

−(ni − q − 1) log(σ2)− (σ2)−1
ni∑
j=1

(Yi(tij)− µ̂i(tij ;α)− αHi(tij))
2

 . (7)

Therefore the sum of (6) and (7) will give us the working log-likelihood function.

Note that in Tsiatis and Davidian (2001) σ2 can be estimated directly based on (7)

and then we replace the estimate σ̂2 in (6) to estimate the other parameters. This is

because in their model µ̂i can be estimated directly and (7) does not involve the unknown

parameter α. In our study, we need to consider the likelihood as the sum of (6) and (7)

and estimate all parameters of θ = (α,β01,β12,β02, σ
2) simultaneously.

3.2 The unbiased estimating equations

We can get the estimating equations, based on the derivative for the log-likelihood. First,

we need to introduce the notations S̃
(1)
β;hl(t,θ), S̃

(1)
α;hl(t,θ) and S̃

(1)
σ;hl(t,θ) as the first-order

partial derivatives of S̃
(0)
hl (t,θ) with respect to βhl, α and σ2, respectively. We also

introduce the notations S̃
(2)
α,α;hl(t,θ), S̃

(2)
α,β;hl(t,θ), S̃

(2)
α,σ;hl(t,θ), S̃

(2)
β,β;hl(t,θ), S̃

(2)
β,σ;hl(t,θ)

and S̃
(2)
σ,σ;hl(t,θ) as the second-order partial derivatives for S̃

(0)
hl (t,θ) with respect to βhl,

α and σ2, respectively. The formulas for these derivatives can be found in Appendix

(equations (15), (16) and (17)).

The estimating equations are given by

U(θ) =
[
Uα(θ),Uβ01

(θ)′,Uβ12
(θ)′,Uβ02

(θ)′, Uσ(θ)
]′
= 0
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for the unknown parameters θ, where

Uα(θ) = n−1
n∑

i=1

∫ ∞

0

∑
hl

ηhl(mi(t) +Hi(t))−
S̃
(1)
α;hl(t,θ)

S̃
(0)
hl (t,θ)

 dÑ i
hl(t)− n−1

n∑
i=1

Fi(α, σ
2)

Uβhl
(θ) = n−1

n∑
i=1

∫ ∞

0


 W i

µ̂i(t;α) + αHi(t)− ηhlσ
2
i (t)

−
S̃

(1)
β;hl(t,θ)

S̃
(0)
hl (t,θ)

 dÑ i
hl(t) (8)

Uσ(θ) = n−1
n∑

i=1

∫ ∞

0

∑
hl

−1

2
η2hl · bi(t)−

S̃
(1)
σ;hl(t,θ)

S̃
(0)
hl (t,θ)

 dÑ i
hl(t)− n−1

n∑
i=1

Ei(α, σ
2)

where

Ei(α, σ
2) := I[ni > q + 1]

[
(ni − q − 1)−

∑ni
j=1(Yi(tij)− µ̂i(tij ;α)− αHi(tij))

2

σ2

]
· σ−2,

Fi(α, σ
2) = I[ni > q + 1]

ni∑
j=1

2(Yi(tij)− µ̂i(tij ;α)− αHi(tij))(mi(tij) +Hi(tij)) · σ−2

and mi(t) is the derivative of µ̂i(t;α) with respect to α, given by (14) in Appendix.

Note that given a parameter value θ we can calculate the function U(θ) given above,

since no latent random effects vi are involved. The expressions of Uα(θ) and Uσ(θ)

have extra terms n−1
∑

i Fi and n−1
∑

iEi, which are based on the likelihood from the

longitudinal data only. We should expect that such estimating equations give consistent

estimates, which is shown in the following section.

3.3 Large sample properties of the estimate

Denote the true model parameters as θ∗ and Λ∗
hl,0. Based on the arguments in Section

3.1, i.e. Q̃i
hl is an unbiased version for Qi

hl, we also have that θ∗ and Λ∗
hl,0 satisfy the

model

dΛhl,i(t) = dΛhl,0(t) exp

{
γ ′
hlW i + ηhl(µ̂i(t;α) + αHi(t−))−

η2hlσ
2
i (t)

2

}
. (9)
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Therefore, we only need to show the large sample properties under model (9), which

does not involve the unknown random effects.

If we define Gi(t), as the filtration generated by {N i
hl(s), 0 ≤ s ≤ t, hl = 01, 02, 12;W i,Y i}

where Y i denotes the longitudinal observations, then Ñ i
hl(t) is adapted to Gi(t) and

model (9) can be written as

E[dÑ i
hl(t)|Gi(t−)] = dΛhl,0(t) exp

{
γ ′
hlW i + ηhl(µ̂i(t;α) + αHi(t−))−

η2hlσ
2
i (t)

2

}
H̃ i

hl(t)

= dΛhl,0(t)Q̃
i
hl(t;θ)H̃

i
hl(t) (10)

This implies that dM i
hl(t) = dÑ i

hl(t) − Q̃i
hl(t;θ

∗)dΛhl,0(t) is a martingale with respect

to the filtration Gi(t). Based on this we can show that the solution of the estimating

equations gives a consistent estimate, i.e. θ̂ → θ∗, the true parameter value. This is

given in Appendix.

To establish the asymptotic normality for the estimator, we first consider the asymptotic

normality for the estimating equations. We can show that

√
nU(θ∗) → N (0,Σθ∗), as n → ∞

for some matrix Σθ∗ . This can be easily seen from the facts 1) Ei and Fi (i = 1, · · · , n)

are i.i.d. random variables and 2) the function U(θ∗) can be rewritten in terms of

martingale representation, as

Uα(θ
∗) = n−1

n∑
i=1

∫ ∞

0

∑
hl

η∗hl(mi(t) +Hi(t))−
S̃
(1)
α;hl(t,θ

∗)

S̃
(0)
hl (t,θ

∗)

 dM i
hl(t)− n−1

n∑
i=1

Fi(α, σ
2)

Uβhl
(θ∗) = n−1

n∑
i=1

∫ ∞

0


 W i

µ̂i(t;α) + αHi(t)− η∗hlσ
2
i (t)

−
S̃

(1)
β;hl(t,θ

∗)

S̃
(0)
hl (t,θ

∗)

 dM i
hl(t) (11)

Uσ(θ
∗) = n−1

n∑
i=1

∫ ∞

0

∑
hl

−1

2
η∗hl

2bi(t)−
S̃
(1)
σ;hl(t,θ

∗)

S̃
(0)
hl (t,θ

∗)

 dM i
hl(t)− n−1

n∑
i=1

Ei(α
∗, σ∗2).
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Note that the correlation of dM i
hl(t) and Ei (or Fi) is 0, since E[dM i

hl(t)|Gi(t−)] = 0 and

Ei (or Fi) is measurable with respect to Gi(t−).

If we define dN̄hl(t) = n−1
∑

i dN̄
i
hl(t),

Λ̂hl,0(t) =
dN̄hl(t)

S̃(0)(t, θ̂)
, (12)

an estimate for the symmetric matrix Σθ∗ is given by (the detailed calculation is given

in Section 2 of the supplementary file)

Σ̂ =


Σ̂α,α Σ̂α,β Σ̂α,σ

Σ̂′
α,β Σ̂β,β Σ̂σ,β

Σ̂′
α,σ Σ̂

′
σ,β Σ̂σ,σ


where

Σ̂α,α = n−1
∑
i

∑
hl

∫ ∞

0

 S̃
(2)
α,α;hl(t, θ̂)

S̃
(0)
hl (t, θ̂)

−
S̃
(1)
α;hl(t, θ̂)

2

S̃
(0)
hl (t, θ̂)

2

 dÑ i
hl(t) + V̂ar(Fi),

Σ̂σ,σ = n−1
n∑

i=1

∑
hl

∫ ∞

0

 S̃
(2)
σ,σ;hl(t, θ̂)

S̃
(0)
hl (t, θ̂)

−

 S̃
(1)
σ;hl(t, θ̂)

S̃
(0)
hl (t, θ̂)

2 dÑ i
hl(t) + V̂ar(Ei)

Σ̂α,σ = n−1
n∑

i=1

∑
hl

∫ ∞

0

 S̃
(2)
α,σ;hl(t, θ̂)

S̃
(0)
hl (t, θ̂)

−
S̃
(1)
α;hl(t, θ̂)S̃

(1)
σ;hl(t, θ̂)

S̃
(0)
hl (t, θ̂)

2

 dÑ i
hl(t)

+Ĉov(Ei, Fi)

with V̂ar(Fi), V̂ar(Ei) and Ĉov(Ei, Fi) as the sample variances and covariance of Fi(α̂, σ̂
2)

and Ei(α̂, σ̂
2) (i = 1, · · · , n such that ni > q + 1), respectively.

The elements in Σ̂α,β are given by

Σ̂α,βhl
= n−1

∫ ∞

0

−(
0

mi(t) +Hi(t)

)
+

 S̃
(2)
α,β;hl(t, θ̂)

S̃
(0)
hl (t, θ̂)

−
S̃
(1)
α;hl(t, θ̂)S̃

(1)
β;hl(t, θ̂)

S̃
(0)
hl (t, θ̂)

2

 dÑ i
hl(t).
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The elements in Σ̂σ,β are given by

Σ̂σ,βhl
= n−1

n∑
i=1

∫ ∞

0

η̂hlbi(t) +
 S̃

(2)
σ,β;hl(t, θ̂)

S̃
(0)
hl (t, θ̂)

−
S̃
(1)
σ;hl(t, θ̂)S̃

(1)
β;hl(t, θ̂)

S̃
(0)
hl (t, θ̂)

2

 dÑ i
hl(t).

The elements in the diagonal blocks of Σ̂β,β

Σ̂βhl,βhl
= n−1

∫ ∞

0


 0 0

0 σ̂2bi(t)

+
S̃

(2)
β,β;hl(t, θ̂)

S̃
(0)
hl (t, θ̂)

−

 S̃
(1)
β;hl(t, θ̂)

S̃
(0)
hl (t, θ̂)

⊗2
 dÑ i

hl(t)

and the other elements in Σ̂β,β are 0s.

Then using the first-order Taylor expansion for the estimation equations, we obtain that

the asymptotic distribution for
√
n(θ̂ − θ∗) is N (0,D−1

θ∗ Σθ∗(D′
θ∗)−1), where Dθ is the

limit of ∂U(θ)/∂θ. We then can easily have an estimate for the covariance matrix of θ̂,

with Σ̂ given above and an estimate for Dθ as D̂ = ∂U(θ)
∂θ

∣∣∣
θ=θ̂

, which is given in Section

1 of the supplementary file.

Note that the estimate in (12) for Λ∗
hl,0 is also consistent and

√
n(Λ̂hl,0(t)−Λ∗

hl,0(t)) has

asymptotic distribution N(0, σ2
hl(t)). The variance σ2

hl(t) can be estimated as σ̂2
hl(t) =∫ t

0 S̃
(0
hl(t, θ̂)

−1dΛ̂hl,0(t)+gt(θ̂)
′D̂−1Σ̂(D̂′)−1gt(θ̂), where gt(θ) =

∫ t
0

∂S̃(0)(t,θ)
∂θ S̃

(0
hl(t,θ)

−1dΛ̂hl,0(t).

This result follows from the standard martingale theory and one may see Chapter 8 of

Fleming and Harrington (1991) for more details.

4 Simulation Studies

4.1 Linear random effect process µ(t)

Scenario 1. Simulation studies were carried out to check the performance of the pa-

rameter estimators. We choose the longitudinal model with q = 1, i.e. µi(t) = vi0 + vi1t,

where random intercept vi0 and random slope vi1 mimic the subject-specific baseline

14



disease severity and disease progression rate, respectively (Luo, 2014). The random

effects v = (v0, v1) were generated from a bivariate normal distribution with mean

(0.3, 0.5). The random effects v0 and v1 have standard deviation 0.15 and 0.1 respec-

tively and a correlation 0.1. The covariate W is chosen as univariate and generated

from a Bernoulli distribution with p = 0.5. The baseline hazard rate was chosen as

λ01(t) = exp(−3.0 + 0.2t), λ02(t) = exp(−4.0 + 0.05t) and λ12(t) = 1.0, the censoring

variable is C = 10 plus an exponential variable with mean 5. This gives a 40% censoring

or so. When generating the longitudinal observations we use H{N i
01(t)} = N i

01(t).

The sample sizes were chosen as n = 200, 400. All the simulation results in this section

are based on 200 Monte Carlo replications. We take longitudinal measurements at every

0.2 unit time when t <= 1 and at every 0.5 unit time when t > 1. This gives that 95%

subjects have more than 2 longitudinal observations (ni > 2) and will contribute to the

estimating equations. Even when there are only 85% of subjects having ni > 2, the

method still works well. More simulation studies on this and details of how the survival

data are generated are provided in the supplementary file.

Table 1 presents the true parameter values, the estimates, Monte Carlo standard devia-

tion (SD), and mean of standard error estimates (SE) and the coverage probabilities for

the estimates based on the new methods. We can see from the results that the proposed

estimator is practically unbiased. Also the Monte Carlo standard errors agree with the

estimated standard errors. This is one of the advantages of the proposed method, which

can provide a consistent standard error estimate for the estimated parameters. Exist-

ing methods, such as Sun et al. (2012), use bootstrap or other Monte Carlo resampling

methods to compute the standard errors which may not be computationally feasible for

large data sets. The coverage probabilities of the 95% confidence intervals are also rea-

sonable. As the sample size increases from 200 to 400, the performance of the proposed

estimator becomes better.

Table 1 is about here.
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The baseline transition rate estimates and the Monte Carlo errors based on the two-

hundred simulations are presented in Figure 1. It shows that the baseline estimates are

also consistent.

Figure 1 is about here.

Some existing research works use parametric methods to model the random effects and

integrate out the unknown random effects from the likelihood function in order to es-

timate the parameters. For example, Dantan et al. (2011) considered a scenario where

a change-point exists for biomarker and used two different linear models (two stages,

before and after the change point) to model the longitudinal data. If we rewrite the

longitudinal model (1) as

Yi(t) = µi(t) + ϵi(t), if t < Ri

Yi(t) = µi(t) + ϵi(t) + α, if t ≥ Ri, (13)

then the parametric approach by integrating out the Gaussian random effects can be

applied directly. When comparing our method with this approach, we found out that the

parametric approach provides similar results to our method, when the random effects

are indeed normally distributed (See Table 1). The parametric results even have smaller

standard errors, comparing to the working likelihood results. This is not surprising

since the parametric method uses the correct Gaussian distribution assumption for the

random effects. However, when the random effects are not normally distributed, the

parametric methods provide worse results and this is shown in the following simulations

studies.

Scenario 2. Now we study the performance of the working likelihood approach under

different random effect distributions. We generate vi0, vi1 from two independent uniform

distributions U [0.1, 0.5] and U [0.3, 0.7]. The censoring percentage is about 40%. The

simulation results are shown in Table 2. We can see that results based on the working-
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likelihood approach are as good as those in Table 1. This is because the proposed

working-likelihood method does not require any distribution assumption on the random

effect v. However, if we use parametric methods with the Gaussian assumption for the

random effects, some parameter estimates (those non-zero parameter estimates) have

larger bias. This is shown in Table 2.

Table 2 is about here.

Scenario 3. In some cases the parametric approach performs much worse than the

proposed working likelihood method. We now consider a more extreme case where vi0, vi1

are generated from mixtures of normal distributions, vi0 ∼ 0.5N(0, 0.01)+0.5N(0.1, 0.01)

and vi1 ∼ 0.5N(0.05, 0.01) + 0.5N(0.25, 0.01). All other parameter settings remain the

same as the previous simulation studies. The censoring percentage is 50% or so. The

simulation results are shown in Table 3. We can see that the parametric method provides

much larger bias for all parameters. For example, the parametric approach seems not

to give a correct estimate for η01 and η02. However the working-likelihood approach is

very reliable and seems not to be affected by the random effect distribution.

Table 3 is about here.

Scenario 4. For comparison, we also present the result based on α = 0 to compare

the effects when informative censoring is not taken into account. Table 4 presents the

results when the model is misspecified with α = 0. We can see the larger bias and poor

coverage probability in terms of the estimation for the parameters ηhl and σ2. This is

because without α the link process vi0 + vi1t will be estimated with bias and therefore

its associated parameter η will be estimated with bias.

Table 4 is about here.
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4.2 Higher-order polynomials for µ(t)

Theoretically the proposed method require that a large proportion of subjects having

ni > q + 1, which may limit the applicability of this method. However, practically if

ni ≤ q + 1 we may still estimate the trajectory of µi(t) via a lower-order polynomial.

For example, if we choose q = 3 then µi(t) should be a 3rd-order polynomial. But for all

subjects with ni ≤ q + 1, we can still estimate µi(t) via a quadratic or linear function.

Such an approach only requires that the majority of subjects have no less than 3 repeated

observations. Note that if most subjects have only one or two longitudinal observations,

it would not make much sense to use a random process to model the biomarker effects.

Therefore it is reasonable to focus on problems where most subjects have enough number

of longitudinal observations.

In this section we consider a simulation study of q = 3. We choose the same true

parameter values as before. The random effects vi,0, vi,1, vi,2, vi,3 are chosen as indepen-

dent multivariate Gaussian variables, with means (−0.2, 0.5, 0.6,−0.04) and variances

(0.02, 0.01, 0.002, 0.0001). In this simulation study there are only about 50% subjects

having more than 4 observations. However, about 95% subjects have more than 2 ob-

servations. Therefore, most subjects are included in the working likelihood: some of

them (with ni = 3) use linear random effect processes, some of them (with ni = 4) use

quadratic random effect processes and some (with ni > 4) use a polynomial function of

order 3. We can see from the simulation results in Table 5 that the working-likelihood

method still works well.

Table 5 is about here.

18



5 Data Analysis

Now we apply the proposed approach to the PBC study discussed earlier. In this ran-

domized clinical trial, 158 out of 312 patients took the drug D-penicillamine, whereas

the other patients were assigned to a control group. Lab test results such as serum

bilirubin were measured at the time of recruitment and at follow-up visits, recorded un-

til death or censoring. The observed event time ranges from 41 to 5225 days. Among the

312 subjects, 125 deaths are observed and the others are censored. The measurement

times of serum bilirubin are specified visits at 6 months, 1 year, and annually thereafter.

About 85% of patients have no more than 10 longitudinal observations. Following (Luo,

2014), we consider the linear biomarker process µi(t) = vi0 + vi1t in case of over fitting.

Also about 85% of patients have no less than 3 longitudinal observations, which can

contribute to the estimation.

There are 56 patients who have an extra visit. In such an extra visit, patients usually have

an abnormal bilirubin values. Several patients’ longitudinal observations are plotted in

Figure 2. From this plot, we can see that their last bilirubin level is unexpectedly higher

than the trend from previous values. These show the worsening medical condition of the

patients. Indeed, among these extra-visit patients, 51 of them have observed death.

Figure 2 is about here.

The original data were studied in Fleming and Harrington (1991) based on only baseline

covariates, and their conclusion was that the drug D-penicillamine is not effective and

some baseline covariates, such as bilirubin, are significant. Ding and Wang (2008) further

analysed the data based on the longitudinal observations for bilirubin. They use a joint

modelling approach to analyse the survival events and longitudinal data. They also

concluded that the drug D-penicillamine is not effective on patient survival but bilirubin

levels are significant risk factors.

In our analysis for the survival events, we consider a multi-state model in (3), modeling
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transition rate from the initial state (state 0) to the state having the extra visit (state

1), transition rate from having the extra visit to death (state 2) and transition rate from

0 to 2. The covariates in the multi-state model include the longitudinal measurements of

serum bilirubin during the follow-up period and the time-independent treatment. When

modelling the longitudinal events, we consider model (1). These models will allow us to

take into account the effects of the extra visit. Here we mainly focus on explaining the

estimated parameter values, shown in Table 6.

Figure 3 is about here.

Table 6 is about here.

The value α is estimated at 0.490 with standard error 0.12, which is significant. This

means that at the extra visit, the bilirubin levels are significantly higher than the lon-

gitudinal observations obtained before. For four typical patients’ longitudinal data, we

plot them individually in Figure 3 and show their fitted regression line based on our pro-

posed model. The longitudinal observation at the extra visit is plotted via solid ‘◦’ sign,

which is clearly not on the regression line and shows the worsening medical condition.

The dotted vertical line in Figure 3 shows the jump of the process at the extra visit and

the parameter α can be interpreted as the average of these jumps. Therefore Figure 3

shows that model (1) taking into account the change point would be appropriate.

From Table 6, we have that the estimates γ̂02 = −0.067 (with se 0.26), which is not

significant, and η̂02 = 0.977 (with se 0.10), which is significantly unequal to 0. This

means that if there is no extra visit, the drug D-penicillamine is not effective on patient

survival but bilirubin levels are significant risk factors. This confirms the results in

Fleming and Harrington (1991) and Ding and Wang (2008). Based on the new model,

however, more results can be achieved. For example, we can also analyse the rate of

‘extra visit’. The estimates γ̂01 = 0.264 (with se 0.28), which is not significant, and

η̂01 = 0.970 (with se 0.13), which is significantly unequal to 0. This means that the

treatment does not affect the rate of the extra visit, but higher bilirubin levels will result

20



in unexpected visits within a shorter period. This can facilitate clinical managements.

On the other hand, γ̂12 = −0.543 (with se 1.42) and η̂12 = −0.067 (with se 0.35), both of

which are not significant. This means that if the extra visit happens (medical conditions

become worse), neither the treatment nor the bilirubin level will give significant effects

on survival. However, the values γ̂02 = −0.067 and γ̂12 = −0.543 might suggest that the

treatment has more effects on those patients with worsening conditions. Analysis based

on a larger data set is needed to confirm such an argument.

To assess the adequacy of the proposed model, it is straightforward to apply a graph-

ical method based on martingale residuals, similar to Schoenfeld (1982) and Zeng and

Cai (2010). The martingale residuals for each subject is given by
∑

hl

∫
dÑ i

hl(t) −

Q̃i
hl(t;θ)dΛhl,0(t), which can be calculated easily by using the estimated parameter val-

ues. If the multi-state model assumption is reasonable, these residuals should have mean

0 and no correlation with covariates. We find out that the residual mean is 0.157 and

residual median is −0.009. In addition the following residual plot shows that there is no

relation between residuals and the baseline longitudinal values. Therefore we conclude

that our model is appropriate.

Figure 4 is about here.

6 Discussion

In the paper, we have presented a joint model for multi-state event times and longitu-

dinal data with a random process as a link, when there exist informative observation

times. Our method does not require any distribution assumption on the random effects.

Asymptotically unbiased estimating equations were proposed to obtain parameter esti-

mates and their standard errors. The asymptotic covariance can be easily calculated.

Existing corrected score methods or conditional score methods require that the longi-

tudinal process be independent of the data collection times. One contribution of the
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new method is that it extends the corrected score method to the cases with longitudinal

data collected at informative time points. However, it is not straightforward to extend

the conditional score method (Tsiatis and Davidian, 2001), since it is not easy to find

a suitable sufficient statistic when the longitudinal process depends on an extra term

αHi(t). We leave this to a future work.

We here focus on the case where there is only one extra visit. When there are more

than one extra visit, the methodology proposed in this paper still works. In such general

cases, the counting process N01(t) means the number of extra visits up to time t. Then

the three-state transition model proposed in this paper should be revised to a more

general multi-state Markov models. We also need to choose different function form

H(N01(t)). As Sun et al. (2005) suggested, H(N(t)) can be chosen as the jumps of N(t)

at a small neighborhood of t. Under such revised models, the martingale estimation

approach in this paper can be applied directly. More research needs to be done to

justify the performance of the proposed working likelihood approach in such general

scenarios. This is left to future work.

In practice, there may be many subjects having very few or even no longitudinal mea-

surements. Sun et al. (2012) also pointed out this as a challenge and suggested that

an inverse probability weight method might work. Such reweighing methods will assign

smaller weights to the subjects with few longitudinal observations and larger weights to

subjects with more longitudinal observations. From the simulation results provided in

the supplementary file (Section 3), we found that our estimators are still very good even

if there are about 15% observations have no more than 2 longitudinal observations. But

it is worth carrying out further research to study how to incorporate the inverse proba-

bility weighted methods into our methods. We leave this as a future work. Nevertheless,

the proposed method is preferable to the approach via dealing with unknown random

effects using EM algorithm, since the EM algorithm requires a particular distribution

assumption for the random effects and will be unstable due to many random effects
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included in the model (Ding and Wang, 2008).

In the proposed model, the parameter α is time-independent. If there are more longitudi-

nal observations, this could be generalized to a model with time-dependent parameters.

In addition, the random errors ϵij , j = 1, · · · , ni could be dependent, following a multi-

variate normal distribution. It is possible to use the mean-covariance modelling method

in Leng et al. (2010) to estimate the covariance matrix for the longitudinal observations.

We also leave these as future works.

A Notation for S(1) and S(2) and proof of the consistency

We define

mi(t) :=
dµ̂i(t;α)

dα
= −(1, t, · · · , tq)(T′

iTi)
−1T′

iHi,
dσ2

i (t)

d(σ2)
= bi(t). (14)

From the definition of S
(0)
hl (t,θ), we can obtain its derivatives as

S̃
(1)
β;hl(t,θ) :=

∂S̃
(0)
hl (t,θ)

∂βhl

= n−1
n∑

i=1

 W i

µ̂i(t;α) + αHi(t)− ηhlσ
2
i (t)

 Q̃i
hl(t;θ)

S̃
(1)
α;hl(t,θ) :=

∂S̃
(0)
hl (t,θ)

∂α
= n−1

n∑
i=1

ηhl · (mi(t) +Hi(t)) · Q̃i
hl(t;θ) (15)

S̃
(1)
σ;hl(t,θ) :=

∂S̃
(0)
hl (t,θ)

∂(σ2)
= −n−1

n∑
i=1

(
1

2
η2hlbi(t)

)
Q̃i

hl(t;θ).
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We can further work out the second derivatives of S̃(0)(t,θ) with respect to θ, as

S̃
(2)
α,α;hl(t,θ) :=

∂2S̃
(0)
hl (t,θ)

∂α2
= n−1

n∑
i=1

[ηhl · (mi(t) +Hi(t))]
2 · Q̃i

hl(t;θ)

S̃
(2)
α,β;hl(t,θ) :=

∂2S̃
(0)
hl (t,θ)

∂α∂βhl

= n−1
n∑

i=1

(
0

mi(t) +Hi(t)

)
Q̃i

hl(t;θ) (16)

+n−1
n∑

i=1

ηhl · (mi(t) +Hi(t))

 W i

µ̂i(t;α) + αHi(t)− ηhlσ
2
i (t)

 · Q̃i
hl(t;θ)

S̃
(2)
α,σ;hl(t,θ) :=

∂2S̃
(0)
hl (t,θ)

∂α∂(σ2)
= −n−1

n∑
i=1

ηhl · (mi(t) +Hi(t)) ·
(
1

2
η2hlbi(t)

)
· Q̃i

hl(t;θ),

and

S̃
(2)
β,β;hl(t,θ) :=

∂2S̃
(0)
hl (t,θ)

∂β2
hl

= n−1
n∑

i=1


 0 0

0 −σ2
i (t)

+

 W i

µ̂i(t;α) + αHi(t)− ηhlσ
2
i (t)


⊗2 Q̃i

hl(t;θ)

S̃
(2)
β,σ;hl(t,θ) :=

∂S̃
(0)
hl (t,θ)

∂βhl

= −n−1
n∑

i=1

(
0

ηhlbi(t)

)
Q̃i

hl(t;θ)

−n−1
n∑

i=1

 W i

µ̂i(t;α) + αHi(t)− ηhlσ
2
i (t)

 ·
(
1

2
η2hlbi(t)

)
· Q̃i

hl(t;θ)

S̃
(2)
σ,σ;hl(t,θ) :=

∂2S̃
(0)
hl (t,θ)

∂(σ2)2
= n−1

n∑
i=1

(
1

2
η2hlbi(t)

)2

Q̃i
hl(t;θ). (17)

Now we prove the consistency of the estimator θ̂. Denote the log-likelihood, the sum

of (6) and (7), as Ln(θ) and L(θ) := limn Ln(θ) and u(θ) = limnU(θ). Noticing that

M i
hl(t), defined as dM i

hl(t) = dN i
hl(t) − Q̃i

hl(t;θ
∗)dΛ∗

hl,0(t) is a martingale with respect

to Gi(t), we have that at the true parameter value θ∗, u(θ∗) = 0. Under certain mild

conditions, we will have that −∂u(θ)/∂θ is positive definite and thus θ∗ is the maximum

point for the function L(θ).
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Therefore the maximum point θ̂ of Ln(θ) converges to the maximum point θ∗ of L(θ).

Note that the maximum point θ̂ for Ln(θ) is also the solution of the estimating equations.

The consistency is proved.
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The new working-likelihood approach

n = 200 α γ01 η01 γ02 η02 γ12 η12 σ2

True 0.5 0.0 0.3 0.0 0.7 −0.5 0.3 0.09

Estimates 0.505 −0.054 0.314 −0.036 0.671 −0.507 0.279 0.089
SE 0.037 0.184 0.164 0.239 0.227 0.302 0.161 0.0026
SD 0.038 0.190 0.171 0.233 0.239 0.298 0.166 0.0025
CP 0.94 0.94 0.95 0.96 0.93 0.96 0.94 0.94

n = 400 α γ01 η01 γ02 η02 γ12 η12 σ2

Estimates 0.497 0.028 0.294 0.024 0.707 −0.506 0.289 0.090
SE 0.025 0.128 0.144 0.181 0.203 0.246 0.137 0.0021
SD 0.022 0.122 0.147 0.187 0.196 0.255 0.140 0.0020
CP 0.96 0.96 0.94 0.94 0.95 0.95 0.93 0.94

The Parametric Gaussian random effect approach

n = 400 α γ01 η01 γ02 η02 γ12 η12 σ2

Estimates 0.494 0.021 0.312 0.011 0.685 −0.486 0.290 0.090
SE 0.021 0.098 0.120 0.118 0.199 0.164 0.127 0.0020
SD 0.019 0.102 0.119 0.121 0.195 0.175 0.119 0.0019
CP 0.95 0.96 0.94 0.96 0.94 0.97 0.94 0.95

Table 1: Simulation studies; scenario 1; normal random effects. SE: mean of standard er-
ror estimates; SD: Monte Carlo standard deviation of the estimates across the simulated
data sets; CP: coverage probability.
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The new working-likelihood approach

True 0.5 0.0 0.3 0.0 0.7 −0.5 0.3 0.09

n = 200 α γ01 η01 γ02 η02 γ12 η12 σ2

Estimates 0.496 0.002 0.310 0.009 0.680 −0.467 0.274 0.091
SE 0.042 0.138 0.113 0.106 0.150 0.105 0.075 0.004
SD 0.041 0.144 0.117 0.110 0.143 0.107 0.081 0.004
CP 0.93 0.93 0.97 0.93 0.96 0.94 0.95 0.94

n = 400 α γ01 η01 γ02 η02 γ12 η12 σ2

Estimates 0.505 0.026 0.296 0.005 0.702 −0.504 0.299 0.090
SE 0.031 0.092 0.084 0.081 0.123 0.086 0.061 0.002
SD 0.030 0.094 0.089 0.079 0.126 0.083 0.060 0.002
CP 0.95 0.96 0.96 0.94 0.93 0.96 0.95 0.95

The Parametric Gaussian random effect approach

n = 400 α γ01 η01 γ02 η02 γ12 η12 σ2

Estimates 0.506 −0.010 0.290 0.014 0.728 −0.487 0.286 0.090
SE 0.030 0.082 0.82 0.077 0.119 0.061 0.054 0.002
SD 0.030 0.086 0.085 0.074 0.110 0.067 0.050 0.002
CP 0.94 0.96 0.93 0.97 0.94 0.97 0.94 0.96

Table 2: Simulation studies; scenario 2; uniform random effects. SE: mean of stan-
dard error estimates; SD: Monte Carlo standard deviation of the estimates across the
simulated data sets; CP: coverage probability.
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The new working-likelihood approach

True 0.5 0.0 0.3 0.0 0.7 −0.5 0.3 0.09

n = 200 α γ01 η01 γ02 η02 γ12 η12 σ2

Estimates 0.477 0.010 0.312 −0.019 0.675 −0.528 0.276 0.089
SE 0.067 0.228 0.182 0.189 0.192 0.239 0.165 0.009
SD 0.075 0.220 0.191 0.202 0.183 0.244 0.163 0.010
CP 0.96 0.93 0.96 0.97 0.93 0.96 0.94 0.97

n = 400 α γ01 η01 γ02 η02 γ12 η12 σ2

Estimates 0.490 0.005 0.290 0.020 0.682 −0.516 0.291 0.090
SE 0.052 0.185 0.171 0.187 0.167 0.133 0.149 0.0083
SD 0.057 0.182 0.163 0.179 0.165 0.142 0.147 0.0085
CP 0.92 0.96 0.93 0.95 0.95 0.96 0.95 0.96

The Parametric Gaussian random effect approach

n = 400 α γ01 η01 γ02 η02 γ12 η12 σ2

Estimates 0.534 −0.010 0.232 0.005 0.647 −0.468 0.285 0.080
SE 0.052 0.198 0.113 0.237 0.255 0.171 0.062 0.002
SD 0.054 0.206 0.109 0.242 0.224 0.193 0.071 0.002
CP 0.90 0.96 0.85 0.96 0.90 0.91 0.93 0.96

Table 3: Simulation studies; scenario 2; mixture normal random effects. SE: mean of
standard error estimates; SD: Monte Carlo standard deviation of the estimates across
the simulated data sets; CP: coverage probability.

n = 200 α γ01 η01 γ02 η02 γ12 η12 σ2

True 0.5 0.0 0.3 0.0 0.7 -0.5 0.3 0.09
Estimates - 0.031 0.546 0.015 0.571 −0.527 0.027 0.110

SE - 0.161 0.207 0.188 0.223 0.235 0.124 0.03
SD - 0.174 0.192 0.205 0.216 0.217 0.116 0.03
CP - 0.96 0.60 0.96 0.91 0.94 0.92 0.95

Table 4: Simulation studies; ; scenario 3. SE: mean of standard error estimates; SD:
Monte Carlo standard deviation of the estimates across the simulated data sets; CP:
coverage probability.

The new working-likelihood approach

True 0.5 0.0 0.3 0.0 0.7 −0.5 0.3 0.09

n = 400 α γ01 η01 γ02 η02 γ12 η12 σ2

Estimates 0.496 0.035 0.296 −0.004 0.695 −0.503 0.293 0.090
SE 0.015 0.112 0.117 0.158 0.196 0.138 0.124 0.0016
SD 0.017 0.110 0.115 0.165 0.191 0.145 0.117 0.0018
CP 0.93 0.95 0.93 0.96 0.95 0.96 0.95 0.95

Table 5: Simulation studies; scenario 5; q = 3 and normal random effects. SE: mean of
standard error estimates; SD: Monte Carlo standard deviation of the estimates across
the simulated data sets; CP: coverage probability.
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α γ01 η01 γ02 η02 γ12 η12 σ2

Estimates 0.490 0.264 0.970 −0.067 0.977 −0.543 −0.067 0.108
Std Errors 0.12 0.28 0.13 0.26 0.10 1.42 0.35 0.005

Table 6: Data analysis, estimates and their standard errors.
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Figure 1: The baseline transition rate estimates for simulation scenario 1. Solid line: the
true baseline; dash line: the estimated baseline; dot-dash line: the Monte Carlo error
based on the simulation results; dotted line: the mean of the replicated standard error
estimates.
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Figure 2: longitudinal observations with the last observation in the extra visit

32



0 2 4 6 8 10 12

0.
0

1.
0

2.
0

3.
0

visit time

lo
gr

ith
m

 o
f s

er
um

 b
ili

ru
bi

n

0 2 4 6 8 10 12

0.
0

1.
0

2.
0

3.
0

visit time

lo
gr

ith
m

 o
f s

er
um

 b
ili

ru
bi

n

0 2 4 6 8 10 12

1
2

3
4

visit time

lo
gr

ith
m

 o
f s

er
um

 b
ili

ru
bi

n

0 2 4 6 8 10 12

1.
0

1.
5

2.
0

2.
5

visit time

lo
gr

ith
m

 o
f s

er
um

 b
ili

ru
bi

n

Figure 3: The regression fits for the longitudinal observations, by taking into account
that the last visit time is informative.
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Figure 4: Residual plots for model validation.
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