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1. Abstract 

Crossmodal correspondences are a feature of human perception in which two or 

more sensory dimensions are linked together; for example, high-pitched noises may be 

more readily linked with small objects than large objects. However, no study yet has 

systematically examined the interaction between different visual-auditory crossmodal 

correspondences. We investigated how the visual dimensions of luminance, saturation, size 

and vertical position can influence decisions when matching particular visual stimuli with 

high-pitched or low-pitched auditory stimuli. For multi-dimensional stimuli, we found a 

general pattern of summation of individual crossmodal correspondences, with some 

exceptions that may be explained by Garner interference. These findings have applications 

for the design of sensory substitution systems, which convert information from one sensory 

modality to another. 
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2. Introduction 

We live in a multisensory world filled with sights, sounds, smells, textures, and 

tastes. We need to correctly integrate information from different senses to create a unified 

understanding of the world – the binding problem. This paper deals with ‘property binding’ 

(Treisman, 1996): linking together different sensory properties of individual objects. 

Shams and Kim (2010) suggested that, faced with multisensory input, brains attempt 

to minimise perceptual errors across all domains, using at least some top-down processes. 

Some combinations of information are therefore more likely to be bound together than 

others. This can happen through crossmodal correspondences (CMCs): pairs of cross-

sensory stimuli that ‘go together’, apparently automatically (e.g. Evans & Treisman, 2010; 

but see Spence & Deroy, 2013). One example is the kiki-bouba effect: participants typically 

pair spiky shapes with names containing high-pitched vowels (e.g. kiki), and round shapes 

with names containing low-pitched vowels (e.g. bouba; e.g. Bremner et al., 2013). CMCs 

occur in many sensory pairings: high luminance pairs with tactile softness (Ludwig & Simner, 

2013), while blackberry odour pairs with piano (Crisinel & Spence, 2011). CMCs may occur 

for a variety of reasons including (adult remnants of) neonatal inability to differentiate 

sensory inputs, statistical coupling of sensory dimensions in the environment, and semantic 

‘matching’ of stimuli (e.g. Mondloch & Maurer, 2004; Spence, 2011; Walker, Walker & 

Francis, 2012). 

Early studies on CMCs generally explored complex stimuli (e.g. Karwoski, Odbert & 

Osgood, 1942, had participants draw visual responses to music); more recent studies have 

focused on single CMCs. We lack, though, information about how CMCs interact. This topic 

has been systematically approached only by Eitan and Rothschild (2011), who studied 
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imagined tactile qualities of musical notes, and Woods, Spence, Butcher and Deroy (2013), 

in an online study of interactions between sounds, shapes and emotions. 

Interactions between CMCs are important: real-world objects do not have only two 

sensory dimensions. For example, drums have visual, tactile, and auditory properties. A 

drum may be a dark colour but a light weight (i.e. opposing ends of the dark-light and 

heavy-light dimensions; Ward, Banissy, & Jonas, 2008). Do we predict that the drum makes 

a high sound because of its weight (Walker et al., 2012), or a low sound because of its colour 

(Hubbard, 1996)?  

In this study, we investigated the existence of interactions between auditory-visual 

CMCs (Spence & Deroy, 2013). We displayed visual stimulus pairs varying in luminance 

(lightness), saturation (colour intensity), size, and/or vertical position, with auditory stimulus 

pairs varying in pitch. Participants decided which auditory stimuli ‘went with’ which visual 

stimuli. Our goal was to determine the principles used to combine multiple CMS. 

 We tested three models for CMC interaction. First, the summation model, based on 

sensory cue integration models (Trommershäuser, Kording, & Landy, 2011). Here, strengths 

of individual CMCs add. When CMCs are consistent, cross-modal associations are 

strengthened. When CMCS conflict, they cancel out completely or partially, depending on 

their relative strengths. Second, the hierarchy model, in which there is a hierarchy of CMCs, 

with some dominating others. Third, the majority model, where most (but not all) 

characteristics are paired with a specific pitch (e.g. a small, low luminance, low position 

stimulus pairs with high pitch in terms of size but with low pitch in terms of 

luminance/position). In this model, participants’ pitch choices are predicted by the majority 

(in this case, low pitch).  
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3. Methods 

3.1. Participants 

As this is a novel line of research, and relies on proportions of responses across 

participants as the dependent measure, we wanted to sample as many participants as 

possible in the time available. We collected data online 

(https://uelpsychology.org/soundvision), recruiting 113 participants (76 female, 30 male, 2 

other, 5 declined to respond; aged 18-67 years, mean = 30.82, SD = 11.39) from personal 

contacts and online communities of volunteers. Seventy-nine were monolingual English 

speakers; 10 were bilingual native speakers of English, the remaining 24 were non-native 

speakers of English.  

All participants gave informed consent. The experiment was approved by the 

Research Ethics Committee of the University of East London. 

3.2. Materials, design and procedure 

Visual stimuli were two circles on a mid-grey background (Table 1). Circles varied in 

luminance, saturation, size and position. We chose four hues: red (hue in HSL system: 0), 

yellow (58) green (120), and blue (240). Within-participants, hue was held constant and 

other characteristics varied. Each characteristic had three levels: low/large, medium and 

high/small. For luminance and saturation, ‘low’ was a value of 16%, ‘medium’ 50%, and 

‘high’ 85% in the HSL system. All sizes were presented with their centres aligned. We report 

positions and sizes as they appear on a 56cm widescreen monitor where the image 

occupied a rectangle with width 106mm and height 79mm (monitor sizes will have varied as 

this was an online experiment). ‘Low’ circles had centres 56mm from the top of the image 
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background, ‘medium’ 40mm, and ‘high’ 23mm. ‘Large’ circles had a diameter of 25mm, 

‘medium’ 16mm, and ‘small’ 8mm. 

Each pair of circles was either the same (i.e. both medium) or opposite (e.g. one 

large, one small) on all four within-participants characteristics. This gave us four ‘levels’ of 

stimuli. At Level 1, circles varied on one characteristic (e.g. one high and the other low 

luminance, but for all other characteristics both medium). At Level 2, circles varied on two 

characteristics, at Level 3, on three characteristics, and at Level 4, on all four. We describe 

pairs using the characteristics of the left circle; the right circle’s characteristics are implied in 

that description. Participants saw every possible combination of circles twice; the second 

time, their left-right positions were reversed (a total of 80 stimuli)
1
. 

We used responses to Level 1 stimuli to predict responses at Levels 2-4. Therefore, it 

is unimportant that perceptual distance between values is not identical across stimulus 

dimensions; participants need only distinguish between values on each dimension. 

                                                      

1
 Due to a programming error, participants did not see the Level 1 stimulus with medium 

luminance/size/position and low saturation and instead were shown another Level 1 stimulus (medium 

luminance/saturation/position, small size) twice. 
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Table 1: Example visual stimuli for each of the four levels. At Level 1, the two circles vary only 

in one characteristic; at Level 2, in two characteristics; at Level 3, in three characteristics; 

and at Level 4, four characteristics. +/- indicates that the characteristic is high/small on the 

left and low/large on the right; -/+ indicates the characteristic is low/large on the left and 

high/small on the right; = indicates that the characteristic is the same in both circles. 

 

Example 

    

Characteristic Level 1 Level 2 Level 3 Level 4 

Luminance +/- +/- +/- +/- 

Saturation = -/+ -/+ -/+ 

Size = = -/+ -/+ 

Position = = = +/- 

N trials 8 24 32 16 

 

The experiment was programmed using Javascript.  

Auditory stimuli were created using Audacity (http://audacityteam.org/). These were 

two pure-tone sine waves, each of 1000ms duration. One was at a pitch of 261.63Hz, the 

other at 523.25Hz. In each trial, participants heard both beeps; their order was 

counterbalanced across trials. Order of beeps was counterbalanced across participants. 

Participants were randomly assigned across the eight conditions (four hues x two auditory 

orders). Twenty-eight participants were assigned to the red condition, 28 to green, 30 to 

yellow and 27 to blue. 

At the start of each trial, visual stimuli appeared on the screen. Participants clicked 

to play the first auditory stimulus, with the second following automatically after 2000ms 

silence. Participants could replay stimuli as needed before deciding which beep went with 

which visual stimulus. 
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 Prior to the 80 experimental trials, participants completed 4 practice trials with 

stimuli not used in the main study. 

 

Figure 1: Example trial (high luminance, medium saturation, medium size, low position), as 

viewed by the participant after the video has been played. The participant could not see the 

radio-button decisions beneath the video until it had been played once. 

4. Initial analysis and statistics 

Reported analyses used data from all participants. Similar results were found for 

monolingual native English speakers alone.  

Initial analysis of Level 1 stimuli established association strengths of each individual 

CMC. Figure 2(a) shows proportions of participants who chose high beeps for each stimulus 

at Level 1. In all cases, there were reliable and significant correspondences between sensory 

dimensions. The high beep was associated with stimuli with higher luminance, saturation, or 

position, or that were smaller. Because auditory stimuli were matched for physical 

amplitude, the high beep was probably perceived as louder (ISO, 2014). It is thus likely that 

the strength and direction of association is determined by pitch and loudness. This does not 
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affect our interpretation of the results, which concern how different visual dimensions 

combine in determining CMCs. 

 

 

Figure 2: Results for the Level 1 conditions, in which the stimuli varied on only a single 

dimension. (a) The proportion of participants who chose a high pitched beep as the one 

that went with each stimulus. Error bars show binomial 95% confidence intervals. (b) The 

strength of the association between the frequency of the auditory stimulus, and each 

dimension of the visual stimuli, calculated using probit analysis (see text for details). ‘Low’ 

and ‘high’ map to ‘large’ and ‘small’ for the size dimension. 

 

Association strengths were modelled by assuming that each value on each visual 

dimension has a particular strength of association with the high beep, relative to the low 

beep. We also assume some variation in association strength across the population, 

modelled using a normal distribution. Using probits, we transformed proportions of 

participants choosing each beep for each visual stimulus, to quantify association strengths in 

units of the standard deviation of the variability (Thurstone, 1927): 
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where R=LEFT represents a participant choosing the left stimulus, S is association 

strength, and Φ is cumulative distribution function of the standard normal distribution. 

Association strength is quantified in terms of variability in response across observers.  

Probit values for Level 1 stimuli are plotted in Figure 2(b). Values were fixed at 0 for 

neutral stimuli – when both circles have the same value on a dimension, there can be no 

preference associated with that dimension.  

These associations were used to predict outcomes for stimuli containing variations in 

multiple dimensions. We predicted these results using each model as follows: 

4.1. Summation  

The simplest assumption is that association strengths will add: 

POSSIZESATLUMTOTAL SSSSS +++=        (2) 

This model assumes that all dimensions are equally important in determining association 

strengths.  

4.2. Hierarchy  

In this model, there is a hierarchy of CMCs. For any stimulus, the CMC is predicted by 

the dominant association. This is not necessarily the dimension with the strongest 

association when presented alone. Rather, it assumes a specific order in which dimensions 

are considered, with the association determined by the first dimension, within this order, on 

which stimuli differ. Since we tested four CMCs, there are 24 (4x3x2x1) possible hierarchies. 

We calculated correlations between predicted and actual responses for each stimulus, for all 
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hierarchies, and chose the hierarchy that best fit the data. This method provides 

considerable freedom to achieve the best fit; the other models contain no free parameters.  

4.3. Majority  

In this model, where there is a conflict between the directions of CMCs, the response 

is determined by majority vote, regardless of strengths of individual CMCs. If all stimulus 

dimensions, and experimental manipulations, had the same strength, then the predictions 

of the summation and majority models would agree. However, if for example one dimension 

was particularly dominant, then this might outweigh the combined effects of other 

dimensions that predicted the opposite response.  

5. Results 

For each model, we calculated correlations between predicted and actual responses 

for Level 2, 3 and 4 stimuli (Table 2). The summation model predicts the data well, with all 

correlations significant. Correlations for the majority model were significant, but lower than 

for the summation model. Correlations for the hierarchy model, which does not take 

account of all CMCs, were in all cases lower, and non-significant for Level 4 stimuli. 

Therefore, for stimuli containing multiple CMCs, all visual dimensions contribute to 

participant decisions.  
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Table 2: Correlation coefficients and significance levels for the fit of the probit summation, 

hierarchy and majority models. 

Model Stimulus Level Correlation coefficient Significance level 

Summation Level 2 .90 p < .000001 

Summation Level 3 .83 p < .000001 

Summation Level 4 .77 p = .000575 

Hierarchy Level 2 .83 p = .000001 

Hierarchy Level 3 .43 p = .0146 

Hierarchy Level 4 .06 p = .8207 

Majority Level 2 .85 p < .000001 

Majority Level 3 .70 p = .000007 

Majority Level 4 .74 p = .001006 

 

To further test the summation model, we created a generalized linear model with a 

binomial distribution and a probit linking function. A full factorial model was used, with 

colour saturation and luminance, the width of the stimulus, and its distance from the centre 

of the screen, as covariates. Each was significant (Luminance: Wald χ
2
=1734.8, p < .001; 

Saturation: Wald χ
2
=424.1, p < .001; Size: Wald χ

2
=348.0, p < .001; Position: Wald χ

2
=203.1; 

p < .001). None of the two-way interactions were significant, but there were significant 

three-way interactions between luminance, size and position (Wald χ
2
 =4.10; p=0.043); 

luminance, saturation and size (Wald χ
2
 ==9.00; p=0.003); and saturation, size and position 

(Wald χ
2
 =6.69; p=0.01).  

We also predicted main effect and two-way interaction results using probits for Level 1 

stimuli (Figure 2b), using a linear regression after centring the data for each dimension. The 

results were combined according to Equation 2, and the predicted proportion of ‘left’ 

responses calculated from the resulting probit value. These results are plotted in Figures 3 

(main effects) and 4 (two-way interactions). This gives a good prediction for luminance and 

size. However, the effect of saturation, in particular, is less than expected. A simple linear 

model therefore does not appear to fully account for associations made when stimuli vary 
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across multiple visual dimensions. This apparent different was tested using a generalised 

linear model with saturation as a covariate, fit separately to data from different levels of 

luminance. The effect of saturation was significantly greater for neutral luminance stimuli 

(b=.026 (95% confidence limits: .024-.028); Wald χ
2
=739.2; p < .001) than for those with low 

(b=.001 (-.0001-.0003); Wald χ
2
=14.934; p = .24) or high (b=.003; 0.002-0.005); Wald 

χ
2
=15.8; p < .001) luminance. Participants’ responses were only strongly influenced by 

saturation when luminance was neutral. 

 

Figure 3: Proportion of left responses associated with the higher tone, as a function of 

each visual dimension, for stimuli pooled over all other visual dimensions. The red symbols 

indicate the participants’ responses, the solid black line the predictions of the probit 

model. Error bars, and dotted black lines, represent 95% binomial confidence limits of the 

data and model predictions, respectively. 
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Figure 4 Proportion of left responses associated with the higher tone, as a function of each 

pair of visual dimensions, for stimuli pooled over all other visual dimensions. In all cases, one 

dimension is plotted on the horizontal axis, the black, red and blue symbols represented the 

‘low’, ‘medium’ and high values on the other dimension, respectively. The dashed lines show 

the predictions of the probit model. Error bars, and dotted lines, indicate 95% binomial 

confidence limits of the data and model fits, respectively.  
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To interpret the significant three-way interactions, we performed separate analyses 

for each stimulus size, with luminance and position, luminance and saturation, or saturation 

and position, as predictors (Table 3). We found significant main effects of luminance, 

saturation, size and position in all conditions. For medium sized objects, there was a 

significant interaction between luminance and saturation, consistent with the reduced 

effect of saturation at low and high levels of luminance.  

All calculations were performed using the HSL system. It is possible that different 

results could be obtained if stimuli are analysed in a different colour space. For example the 

CIE Luminance, Chroma Hue (LCh) might be considered more appropriate, since distances in 

this space relate to just-noticeable-differences in colour. We recalculated our probit 

predictions in LCh colour space, but found that there was little difference in the overall fit of 

the model regardless of whether the HSL (r
2
=0.534 across all stimuli) or LCh space (r

2
=0.525) 

was used. 
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Table 3: Results of the generalized linear models, performed separately for small, medium 

and large stimuli, with luminance and position, or luminance and saturation, as factors. 

 

Luminance x Position (small stimuli) 

Predictor Wald chi-square Degrees of freedom Significance level 

Luminance 477.1 1 p < .001 

Position 49.5 1 p < .001 

Luminance x Position 0.036 1 p = .85 

Luminance x Position (medium stimuli) 

Luminance 788.1 1 p < .001 

Position 84.38 1 p < .001 

Luminance x Position 0.442 1 p < .506 

Luminance x Position (large stimuli) 

Luminance 416.0 1 p < .001 

Position 41.54 1 p < .001 

Luminance x Position 1.99 1 p = .159 

Luminance x Saturation (small stimuli) 

Luminance  122.3 1 p < .001 

Saturation 484.6 1 p < .001 

Position x Saturation 3.089 1 p = .079 

Luminance x Saturation (medium stimuli) 

Luminance 840.9 1 p < .001 

Saturation 176.9 1 p < .001 

Position x Saturation 14.01 1 p < .001 

Luminance x Saturation (large stimuli) 

Luminance 412.8 1 p < .001 

Saturation 116.8 1 p < .001 

Position x Saturation 1.48 1 p = .224 

Saturation x Position (small stimuli) 

Saturation 107.5 1 p < .001 

Position 43.27 1 p < .001 

Saturation x Position 0.712 1 P=.397 

Saturation x Position (medium stimuli) 

Saturation 119.6 1 p < .001 

Position 101.1 1 p < .001 

Saturation x Position 3.26 1 p = .071 

Saturation x Position (large stimuli) 

Saturation 106.6 1 p < .001 

Position 23.3 1 p < .001 

Saturation x Position 1.25 1 p = .263 
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6. Discussion 

We examined how visual characteristics interact to determine which auditory pitch 

‘goes with’ a given visual stimulus. We found the predicted associations of high pitch with 

high luminance, high saturation, small size and high position when one visual characteristic 

was varied (following e.g. Evans & Treisman, 2010; Hamilton-Fletcher, 2015; Klapetek et al., 

2012). Our study extends previous research by using visual stimuli differing on two or more 

characteristics. A linear summation model predicted participants’ choices more accurately 

than a majority or a hierarchy model, although some results did not fit this model. 

The summation model’s overall success in predicting participant responses suggests 

a general strategy of weighting available visual cues to determine the best auditory match, 

perhaps via neural intensity matching (Spence, 2011) or a generalised system for dealing 

with magnitude (Walsh, 2003). However, we need to account for the few results which 

violate the model (the lower effect of saturation at low and high luminances, and the three-

way interactions of luminance/position/size, luminance/saturation/size and 

saturation/position/size). The decreased effect of saturation at low and high luminances 

appears to be the result of Garner interference. In Garner’s (1976) paradigm, participants 

are presented with stimuli varying along two perceptual dimensions and make a decision 

about one dimension. Information from the irrelevant dimension can interfere with 

decision-making about the relevant information. When this happens, the dimensions are 

integral, and viewed as one super-dimension. In our results, luminance and saturation 

integrate to form one super-dimension (see e.g. Burns & Shepp, 1988), except when 

luminance is medium and does not differ between the two stimuli. However, other 

violations of the model are not clear-cut instances of Garner interference. One possibility is 
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that dimensions are incompletely integrated, so participant decisions are influenced by each 

dimension at unequal relative strengths, but also by interactions between different 

dimensions. 

6.1. Explaining summation in the context of theories about CMCs 

How CMCs arise is a matter of ongoing investigation (e.g. Lindborg & Friborg, 2015). 

Eventually it should be possible to make a broad taxonomy of fundamental mechanisms of 

CMCs. Some probably occur earlier in processing than others (e.g. a CMC based on statistical 

features of the environment probably occurs earlier than a language-based one), so early-

occurring CMCs are likely to impact on later ones.  

It is also possible that some CMCs begin at an early stage of processing and spread to 

others (e.g. a structural CMC that becomes encoded in language). These hypothetical CMCs 

would likely have more effect on perceptions and decisions than those which occur at only 

one level. That is, if a multiple-level CMC conflicts with a single-level CMC, the multiple-level 

CMC is likely to ‘win’.  

6.2. Limitations and future directions 

Online testing has advantages including ease and speed of participant recruitment, 

but also disadvantages (Woods, Velasco, Levitan, Wan, & Spence, 2015). Repeated 

participation is one concern. However, since this study was unpaid and informally reported 

by some participants to be tedious, participants will not have repeatedly participated for 

money or fun.  

The variety of participant hardware and system settings used will have affected the 

exact presentation of the stimuli. However, because we asked participants to judge the 
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comparative visual features of stimuli presented at the same time, this cross-participant 

variance should not matter. This does, however, mean that our experiment cannot speak to 

whether CMCs and the interactions between them are relative or absolute. Consequently, 

an important next step is to replicate this experiment in laboratory conditions. We do not 

expect very different results: when millisecond accuracy in presentation or response 

collection is not required, participants largely behave similarly in the lab and online (Woods 

et al., 2015). 

To keep the experiment short, we only tested one auditory dimension. Therefore, 

we cannot know whether our findings are specific to the relationship of visual dimensions 

with pitch, or whether the same interactions will occur if we test, say, duration instead. This 

question may also be applied to other sensory pairings, for example differing tactile stimuli 

being matched with visual stimuli.  

A consideration for future research is whether relationships between CMCs could 

appear if we presented visual characteristics varying in a single dimension alongside 

auditory or tactile stimuli varying in multiple dimensions. Is summation a general feature of 

CMCs, or unique to vision? Evidence showing that timbre, pitch and loudness interact to 

varying extents in speeded classification paradigms (Melara & Marks, 1990) suggests that 

similar results would be seen at least with aurally multidimensional CMCs.  

Last, it is not clear whether the CMC interactions we have reported are implicit or 

explicit. This could be tested using speeded classification tasks (see Marks, 2004). For 

example, temporal order judgements (e.g. Parise & Spence, 2009) would allow exploration 

of whether interactions occur at perceptual or decisional levels. An analysis of response 
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times would also allow exploration of the impact of multiple conflicting or converging cues 

on decision making. 

6.3. Applications 

CMCs are used in packaging design (e.g. Becker, van Rompay, Schifferstein, & 

Galetzka, 2011), though not always successfully (Crisinel & Spence, 2012). Since real-world 

objects have multiple sensory dimensions, the existence of non-summative effects of 

different dimensions indicates that it is important to consider which features of packaging 

or advertising are most strongly associated with the dimension that needs to be 

emphasised. 

Our findings are also helpful for designers of sensory substitution devices such as the 

vOICe (Meijer, 1992), which allow ‘translation’ of information from one sense to another 

(for a review see Hamilton-Fletcher & Ward, 2013). Having explicit knowledge about 

relationships between different CMCs will allow better design of default settings that are 

intuitively correct to most, reducing the time needed to learn to use such devices (Auvray, 

Hanneton, & O’Regan, 2007). The findings could also help when comparing devices that pair 

a single quality (e.g. pitch) with others such as saturation (Bologna, Deville, Pun, & 

Vinckenbosch, 2007) and luminance (Doel, 2003). 
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