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Highlights for Review 

Type-2 Self-Organizing Fuzzy Logic Controllers for automatic anesthesia control. • Type-2 

SOFLC use type-2 fuzzy sets to handle anesthesia control uncertainties. • Data capturing inter 

and intra-patient variability used to define type-2 fuzzy sets. • Simulations show effectiveness of 

type-2 SOFLC in control of anesthetic infusion under noisy and uncertain surgical conditions. • 
Type-2 SOFLC are able to outperform the existing type-1 SOFLC. 
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Type-2 Fuzzy Sets Applied to Multivariable Self-Organizing 

Fuzzy Logic Controllers for Regulating Anesthesia

Faiyaz Doctor1 Chih-Hao Syue2 Yan-Xin Liu2 Jiann-Shing Shieh2

Rahat Iqbal1

1Department of Computing, Coventry University, Coventry, CV1 5FB, United Kingdom
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Convergence,Yuan Ze University, Chungli, 320,Taiwan, ROC

Email: faiyaz.doctor@coventry.ac.uk

Abstract--In this paper, novel interval and general type-2 Self-Organizing Fuzzy Logic Controllers

(SOFLCs) are proposed for the automatic control of anesthesia during surgical procedures. The 

type-2 SOFLC is a hierarchical adaptive fuzzy controller able to generate and modify its rule-base 

in response to the controller’s performance. The type-2 SOFLC uses type-2 fuzzy sets derived from 

real surgical data capturing patient variability in monitored physiological parameters during 

anesthetic sedation, which are used to define the footprint of uncertainty (FOU) of the type-2 fuzzy 

sets. Experimental simulations were carried out to evaluate the performance of the type-2 SOFLCs 

in their ability to control anesthetic delivery rates for maintaining desired physiological set points 

for anesthesia (muscle relaxation and blood pressure) under signal and patient noise. Results show 

that the type-2 SOFLCs can perform well and outperform previous type-1 SOFLC and 

comparative approaches for anesthesia control producing lower performance errors while using 

better defined rules in regulating anesthesia set points while handling the control uncertainties. The 

results are further supported by statistical analysis which also show that zSlices general type-2 

SOFLCs are able to outperform interval type-2 SOFLC in terms of their steady state performance.
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Index terms--anesthesia; hierarchical systems; type-2 fuzzy sets, self-organizing fuzzy logic 

controller.

1. Introduction

Modern invasive surgical procedures would normally be impossible without the patient being 

induced into a state of general anesthesia (GA). The essential features of successful GA, 

displayed by the patient, are a reversible loss of consciousness with a cessation of movement 

through muscle relaxation, a lack of awareness, unresponsiveness to painful stimuli through 

analgesia (i.e. pain relief) and an overall lack of recall of the surgical intervention. Inadequate 

GA may lead to intra-operative awareness with recall (due to anesthetic under dosage) or to 

prolonged recovery and an increased risk of postoperative complications for the patient (due to 

over dosage) [1]. The major role performed by a clinical anesthetist is the maintenance of GA 

over the duration of surgical procedures by the precise and timely delivery of drugs into the 

patient’s body. In order to aid the anesthetist there is a need to design systems to accurately 

administer and control the delivery of anesthetic in direct response to patients’ physiological 

changes, in order to maintain effective anesthesia during surgery, while providing a means of 

interpreting these responses. In the last decade several experiments have been performed, where 

anesthesia was controlled in a closed-loop control system without human interference [2-4]. 

Although these experiments were relatively successful, there are many sources of complexity 

and uncertainty related to biomedical control systems that make designing such an automatic

controller difficult.

    There can be differences in the patient’s physiological characteristics such as age, gender and 
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any pre-operative health conditions which can have an effect on the concentration and duration 

of anesthetic drug that is required to be administered during surgery [1]. The variability in the 

physiological effects of drugs on the body (pharmacodynamics) and the drugs metabolism in the 

body (pharmacokinetics) means that the concentrations of the anesthetic drug required to be 

infused or inhaled may change. There can be dynamic multi-variable effects in the way the 

patient responds while undergoing the surgical procedure based on heart rate (ECG), respiration, 

blood pressure (BP) and muscle relaxation (EMG) as well as brain activity (EEG), which will 

need to be carefully monitored and controlled by the anesthetist. Finally noise and variability in 

signals that are sensed and monitored from the human body such with EMG and BP signals can 

occur due to the effects of high frequency surgical instruments, interference due to changes in 

cardiac rhythm, sensing barriers such as subcutaneous fat, bodily movements and other external 

environmental effects. The above mentioned complex multivariable interactions and variations 

translate into a high degree of non-linearity; complex input output relationships and encountered 

uncertainties within the control process. These make the task of automating anesthesia control 

very challenging [5, 6]. 

    Fuzzy logic controllers (FLC) have been credited with being an adequate methodology for 

designing robust controllers that are able to deliver a satisfactory performance when contending 

with the uncertainty and imprecision attributed to the real world [7]. FLCs are therefore able to 

exhibit robustness with regard to noise and variation of system parameters in complex highly 

non-linear problem domains such as biomedical control systems [8, 9]. There have been a 

number of recent applications of FLCs for automated drug infusion control as described in [10-

12]. Here type-1 FLCs have been used in a closed loop system designed to maintain a targeted 

effect by adapting the administered amounts of drug based on approximating the outputs of a 

reference model.
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    Fuzzy adaptive control schemes in which the FLC parameters are modified have been 

increasingly applied for regulating the drug delivery process, due to their ability to dynamically 

configure and learn to control drug infusion/concentration rates based on patient and 

environmental variability. In [13] a fuzzy rules emulated network (FREN) is described to

adaptively control the infusion of Sodium Nitroprusside while maintaining target values for 

mean arterial pressure (MAP). Here an FLC is initially pre-defined and an on-line adaptation

algorithm is used to tune its input and output type-1 membership function parameters during the 

simulation run. In [14] a fuzzy neural network (FNN) is proposed to automatically manage the 

hemodynamic variables specifically, MAP and cardiac output (CO), of patients with 

hypertension and congestive heart failure by simultaneous infusion of cardiac drugs such as 

vasodilators and inotropic agents. The parameters of the FNN are initialised based on physician 

expert experience. Over the course of the control simulations a back-propagation learning 

algorithm adjusts, on-line, the shapes of the type-1 membership functions (MFs) used in the 

fuzzification layer and fuzzy output layer of the neural network.

    Type-2 FLCs that are based on type-2 fuzzy sets have been shown under specific conditions to 

assist in providing a good solution [15]. This is due to the fact that type-2 fuzzy sets have more

design degrees of freedoms, which are able to handle higher orders of possible real world 

uncertainties and hence potentially contribute to producing more accurate and stable control 

performances. Previous work by El-Bardini and El-Nagar [16] has developed a direct adaptive 

interval type-2 FLC for controlling the multivariable anesthesia system to overcome the 

uncertainty problem introduced by large inter and intra-individual variability of the patient’s 

parameters. This adaptive controller uses predefined rule-bases for each control signal and expert 

initialized interval type-2 fuzzy sets. The learning mechanism approximates a reference model 

which models the effects on MAP and muscle relaxation based on the interaction of two 
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anesthetic agents: Isoflurane and Atracurium used in their regulation to specified set points. This 

is achieved by a knowledge base modifier which tunes the centers of the output MFs of fired 

rules in response to deviations from the desired control behaviour. Random initialization of the 

model parameters was used to simulate the patient variability. More recently in [17] an automatic 

approach for the regulation of bispectral (BIS) index in the anesthesia process by controlling the 

concentration target of two drugs, namely, Propofol and Remifentanil is proposed. The approach 

constructs a pharmacokinetic and pharmacodynamic patient reference model describing the 

dynamic reactions to the input drugs which is derived from real clinical data. Three PID 

controllers are employed, namely linear PID controller, type-1 (T1) fuzzy PID controller and 

interval type-2 (IT2) fuzzy PID controller, to regulate the BIS index using the nominal patient’s 

model. The number of fuzzy rules and shape of the MFs are initially pre-defined however the 

PID gains and MF parameters are optimized offline by a Genetic Algorithm subject to a 

performance index (cost function) which quantifies the performance of the controllers.

    One successfully applied approach is the self-organizing fuzzy logic controller (SOFLC) [6]

which is composed of a hierarchical control structure consisting of a standard FLC that is 

adapted using a self-organizing (SO) mechanism proposed by Procyk and Mamdani [6, 18]

which acts as a monitor and an evaluator of the controller performance. The SO has the ability to 

create and modify the rule-base of an FLC to meet the desired response of the controller. This 

feature provides a qualitative adaptive mechanism which is based on adjusting the control 

behavior rather than focusing on a parametric tuning and optimization of the fuzzy sets as is the 

case with the existing approaches for adaptive closed loop drug delivery systems described 

above. As the rules essentially distribute and individually encapsulate control behavior this 

approach provides a very flexible adaptive control mechanism that can rapidly adjust the system 

to a desired behavior. More over the approach can provide the benefit to the anesthetist of being 
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able to linguistically interpret and analyze the control performance based on adapted rules 

enabling an understanding of drug delivery behavior over different stages, of specific surgical 

procedures in response to patient specific physiological and medical conditions.

    In the past two decades, there have been several studies on applying SOFLC to biomedical 

systems, such as muscle relaxation [19, 20], depth of anesthesia [21], and patient analgesia 

control [22]. Controlling the delivery of anesthesia in operating theaters is possible using the 

multivariable SOFLC structure due to its ability to approximate flexible nonlinear control models 

which can be dynamically adapted for regulating desired physiological set points for muscle 

relaxation and unconsciousness (measured from BP). Simulation studies presented in [6, 23], 

have shown that the SOFLCs were able to adaptively adjust the multivariate control outputs for 

the drug concentration and infusion rates however produced high degree of instability and steady 

state errors in approximating the set points for control of anesthesia, which would not be 

acceptable in a real system. Part of the reason for this is that these previous applications of 

SOFLCs are based on using type-1 fuzzy sets, which are unable to handle fully the uncertainties 

affecting parameter variability associated with biomedical control processes and in particular 

controlling anesthesia delivery during surgical procedures.

    In this paper we propose a type-2 SOFLC which combines the qualitative adaptive control 

mechanism of a SOFLC with the use of type-2 fuzzy sets to handle the uncertainties affecting 

parameter variability during the maintenance of anesthetic sedation. Type-2 SOFLC’s are based 

on interval and z-slices based type-2 fuzzy sets [24] which are used for modeling the

uncertainties associated with the input / output parameters. We evaluate the performance of the 

type-2 SOFLCs for the automatic control of anesthesia during single stage surgical procedures in 

which we use a non-fixed patient model and add signal noise to account for environmental and 

patient drug interaction uncertainties. We construct the type-2 FOUs using data acquired from 
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real patients during surgical procedures to approximate realistic patient interaction and signal 

uncertainties encountered. The FOU’s of the type-2 sets therefore aim to capture the possible 

numerical uncertainties in the physiological parameters during regulation and control of 

anesthesia. We perform unique simulated experiments in which the type-2 SOFLCs is used for 

controlling anesthestic drug delivery to maintain physiological set-points for muscle relaxation 

and BP (used in assessing consciousness) during surgical procedures. We show how our type-2 

SOFLCs can deal with the control complexities and uncertainties to produce a good control 

performance in terms of approximating and maintaining the physiological set-points over steady 

state control. We compare their performance with type-1 SOFLCs and show the type-2 SOFLCs 

produce significantly lower performance errors while generating fewer better defined rules in 

controlling a multi-variable anesthesia system.

The rest of this paper is organized as follows: In Section II, we describe the patient anesthetic 

model and the derived reference model which we use in our anesthesia control simulations for 

evaluating controllers’ performance. In Section III, the type-2 fuzzy sets and their associated 

terminologies are introduced. Our type-2 SOFLC’s hierarchical control and adaptation 

mechanism is described in Section IV. In Section V, we present our experiments and results. 

Finally conclusions and future research directions are presented in Section VI.

2. Patient Anesthetic Model

The major roles performed by a clinical anesthetist are the maintenance of drug-induced muscle 

relaxation (paralysis), unconsciousness and analgesia [25]. Measuring the patient’s level of 

sensation based on muscle relaxation can be carried by using a Datex Relaxograph to measure 

evoked electromyogram (EMG) signals. In clinical settings, anesthesiologists have a number of 
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physiological signs and online measurements including BP, EEG, minimum alveolar

concentration and auditory evoked response that can be used selectively for the determination of 

the patient’s anesthetic state [26, 27]. However, anesthesiologists still normally use BP as it is 

considered as one of the most reliable measures according to clinical standard practices [28, 29]

for defining the level of anesthesia that relates to the degree of unconsciousness and depth of 

anesthesia (DoA) [26]. Currently there is still no validated, routinely used monitor for analgesia

[30, 31], and so analgesia is not controlled in this study. Regulation of muscle relaxation 

percentage is done by EMG responses to the intravenous administration of drugs such as 

Atracurium, Cis-Atracurium, or Rocurocium. This is normally done by using a syringe pump, 

like an Ohmeda 9000 or Graseby 3500, via a computer to control the infusion rate [32]. For 

maintaining DoA, BP (expressed in terms of the systolic pressure over diastolic pressure and 

measured in millimeters of mercury (mmHg) is used as a guide for administering intravenous 

drugs such as Propofol or inhalational anaesthetics such as Isoflurane, Desflurane, or 

Sevoflurane. Typically this is done through using a stepping motor via a computer to control the 

inhalational gas concentration [33].

Pharmacological modeling is commonly used to describe the metabolism of such drugs [16]

which can be used as a basis to create a mathematical model. Pharmacological modeling 

comprises of two main categories which are: Pharmacokinetics (PK), the concentration of drugs 

in the blood as a function of time and dose schedule interpreted mathematically via 

compartmental models representing the metabolism of the drug in different parts of the body;

Pharmacodynamics (PD), the relationship between drug concentration in the blood and its 

effect [34]. In modern surgery, Atracurium is commonly used for controlling muscle relaxation 

and Isoflurane or Propofol for controlling anesthesia through BP via their PK-PD compartment 

models. 
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2.1 Multivariable Anesthetic Model

The patient model used with our SOFLCs simulations is based on a multivariable anesthetic 

model combining two pharmacological models the Atracurium Mathematical Model: based on 

the pharmacokinetics and non-linear pharmadynamics of Atracurium [35] on muscle relaxation 

(paralysis), and the Isoflurane Unconsciousness Model: describing variations of BP (change in

MAP) to small changes in concentrations of inhaled Isoflurane

2.1.1 The Atracurium Mathematical Model

According to previous studies [34, 35], the Atracurium pharmacokinetics can be expressed by the 

following transfer function (1) which describes the pharmacokinetics of the muscle relaxation 

relating to Atracurium.

       (1)

The drug’s pharmacodynamics effect can be expressed as the following transfer function [36]:

       (2)

where τ1 is a dead-time (time elapsed until the drug takes effect), K1 is a coefficient, T1, T2, T3

and T4 are time-constants with the values: τ1 = 1 min, K1 = 1, T1 = 4.81 min, T2 = 34.42 min, T3 = 

3.08 min, T4 = 10.64 min. s refers to the algebraic function derived from applying a Laplace
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transform to transform from the time domain to a frequency domain s in order to equate time 

based effects on the model parameters. In addition, the following Hill equation is used to relate 

the effect of a specific drug concentration as described in equation (3) [37, 38]:

      (3)

where  is the drug concentration, α the power and  the drug concentration at 50 percent

effect with the following values: Emax = 100 percent, XE(50) = 0.404 μg/ml, α = 2.98.

2.1.2 The Isoflurane Unconsciousness Model

Up till now there is still no direct method to measure DoA since the brain activity is too 

complicated to observe. Clinically, BP is one of the signs that are commonly used to indicate 

DoA. Based on previous studies in [6, 39], the responses of BP to inhaled Isoflurane 

concentration is approximately linear when the changes in Isoflurane concentration are less than 

5 percent. However, the responses are in general non-linear and time-varying if the changes 

become large. Therefore, a first-order linear model with a dead-time of 0.42 minutes and a time-

constant of 2 minutes is used. In addition, in order to estimate the steady-state gain, it is assumed 

that a relatively sensitive patient needs 2 percent Isoflurane for a 30 mmHg reduction in mean 

arterial pressure. Therefore, the model describing variations of BP to inhaled Isoflurane 

concentration can be written as follows [6]:
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:        (4)

where MAP is the change in MAP, τ2 is a dead-time, T5 is a time-constant and K2 is a coefficient 

with the following values: τ2 = 0.42 min, T5 = 2 min, K2 = -15 mmHg/percent.

2.1.3 The Interactive Component Model

According to previous studies, the interaction of Atracurium to BP is so small that can be ignore 

[35, 40]. The interaction of Isoflurane to muscle relaxation is significant and is expressed by the 

following equation [41]:

                                               (5)

where τ4 is dead time, T6 and T7 are time-constants, and K4 is a coefficient having the values: τ4 = 

1 min, T6 = 2.83 min, T7 = 1.25 min, K4 = 0.27.

2.1.4 The Multivariable Anesthetic Model

Based on the equations (1-5) described in previous sections, the overall multivariable anesthetic 

model combining muscle relaxation (based on the pharmacokinetics and non-linear 

pharmacodynamics of Atracurium) and unconsciousness (based on the effects of Isoflurane on 

BP) can be summarized as the following equation:
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                     (6)

where U1 is the Atracurium infusion, U2 is the Isoflurane concentration. In a deployed system U1

and U2 would be inputs to an embedded microcontroller that would be used to operate the 

syringe pump and stepping motor for regulating infusion and inhalation concentration of these 

drugs respectively.

2.1.5 The Non-Fixed Anesthetic Model with Signal Noise

The traditional fixed patient mathematical models is based on predefined clinical studies [34, 35], 

and cannot represent the dynamic changes and interactive effects of drugs on a patient during 

surgical operations (intra-patient uncertainties) and these differences from one person to another

(inter-patient uncertainties). In our simulations we experimented with adding values up to 1

percent of white noise to approximate the maximum value of possible parametric uncertainty 

affecting all parameters in equation (1) to (5) of the multivariable anaesthetic model. By using 

this non-fixed patient anesthetic model we can account for the possible patient drug interaction 

uncertainties during our simulations. The strength of physiological signals like muscle relaxation 

and BP is so small that it is susceptible to interference during measurement. In most cases, the 

amplitude of noise is up to 20 percent of standard deviation of the signal strength in measuring 

instruments [42]. We therefore experimented with adding values up to 20 percent white noise to 

the measured signals (i.e. muscle relaxation and BP value), in order to test the robustness of 

SOFLCs under real environmental uncertainty. Both the patient interaction and signal noise will 

enable us to test the features of type-2 SOFLCs, in their ability to handle the encountered 
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uncertainties.The type-2 SOFLC proposed in this paper uses the non-static anesthetic model as a 

reference model in a closed loop control of the infusion and concentration rates of Atracurium 

and Isoflurane to maintain set points for muscle relaxation and BP for regulating DoA as shown 

in Figure 1. The anesthetic model determines signal values for muscle relaxation and MAP based 

on the interaction of Atracurium and Isoflurane infusion and concentrate rates output by the 

controller. The model signals with the addition of noise are then compared with reference signals 

produced from a previous control actuation. The error and integration of error of each signal is 

calculated to form the closed loop inputs to the controller, as shown in Figure 1. We use 

integration of error as additional inputs to signal errors in order for the control system to better 

emulate the gradual pharmacokinetics and pharmacodynamics responses and produce less 

pronounced oscillatory responses when approaching the desired control set points.

EMG 
Sensor

Blood Pressure 
sensor

Controller Acturators Patient

ΔMAP

EMG Signal

Muscle error
Integration of 
Muscle error

Pressure error
Integration of 
Pressure error

Drug_Atr

Drug_Iso

Atrcurium

Isoflurane

Ref_Muscle

Ref_Pressure +

+

-

-

Fig. 1. The block diagram showing the multivariable anesthesia system

3. Type-2 Fuzzy Sets
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Type-2 fuzzy sets are characterized by a fuzzy Membership Function (MF), where the 

membership value (or membership grade) for each element of the set is itself a fuzzy set in [0, 1]. 

This allows us to capture and handle uncertainties about the degree of membership of an element 

in the fuzzy set. Given an input at p in the case of type-1 fuzzy sets, this will be a crisp singleton 

membership value where the vertical line intersects the type-1 fuzzy set as shown in Figure 2(a). 

Note that the figure includes a third dimension which is implicit in the definition of a type-1 

fuzzy set [15]. In the case of type-2 fuzzy sets the input at p will no longer have a single crisp 

value for the MF but instead the MF takes on values wherever the vertical line intersects a 

bounded area known as the Footprint Of Uncertainty (FOU) of a type-2 fuzzy set, see Figures 

2(b), (c) and (d). According to Liang et al.[43], a type-2 fuzzy set can be thought of as a large 

collection of embedded type-1 MFs (forming its FOU), where each type-1 MF also has a weight 

or amplitude associated with it. These embedded type-1 MFs can potentially partition the input 

domain into smaller regions which enables a type-2 FLC to realize more complex nonlinear 

input–output control relationships than a type-1 FLC using the same rule-base [44, 45].The FOU 

can be derived from real world domain data [46, 47] to capture the possible control variability of 

the input / output parameters that will affect the membership degree of their fuzzy sets.

The membership of the type-2 set at p comprises of the primary membership values that intersect 

the FOU at p. Each primary membership value can have a weight associated with it creating an 

amplitude distribution projected in the third dimension. This distribution forms what is termed as 

a secondary MF which provides an additional design degree of freedom for modeling higher 

level uncertainties associated with the primary membership values. The third dimensional 

secondary MF can be modeled as either a fixed interval (interval type-2) or as a continuous fuzzy 

set (General type-2), whose support is in the interval [0, 1] [15], as shown in Figure 2(b) and (c)

respectively.
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Fig. 2. An example of the three types of fuzzy sets, where the same input p is applied to each 

fuzzy set showing its vertical intersection and corresponding membership to the set (a) 

Type-1 fuzzy set (b) Interval type-2 fuzzy set (c) General type-2 fuzzy set (d) zSlices based 

general type-2 fuzzy set

    Formally a general type-2 fuzzy set A
~

 is characterized by a type-2 MF ),(~ up
A

 [48] where 

Xp and ]1,0[ pJu , i.e., 

                                 ]1,0[,|)),(),,((
~

~  pA
JuXpupupA                (7)

in which ]1,0[),(~ up
A

 . A
~

can also be expressed as follows [48]:

                                        


Xp Ju A
p

upupA ),/(),(
~

~ ]1,0[pJ (8)



Page 17 of 62

Acc
ep

te
d 

M
an

us
cr

ip
t

17

where  denotes union over all admissible x and u. pJ  is called the primary membership of p

in A
~

. At each value p say pp  , the two-dimensional (2-D) plane, whose axes are u and 

),(~ up
A

  is called a vertical slice of A
~

[48]. A secondary MF is therefore a vertical slice of 

A
~

and is ),( '
~ upp
A

 , for Xp ' and ]1,0[ pJu [48], i.e.,

                                  


'
' /)()(),( '

~
'

~

p
Ju pAA

uufpupp  ]1,0[' p
J                              (9)

in which 1)(0 '  uf
p

. Because Xp  ' , the prime notation on )( '
~ p
A

  can be dropped, and 

)(~ p
A

  is referred to as a secondary MF [48], which is a type-1 fuzzy set, also referred to as a 

secondary set [48]. When 1)( uf p  is true for Xp , then the secondary MFs are interval sets 

and we have the case for an interval type-2 MF [48], which characterizes interval type-2 fuzzy 

sets. 

3.1 Interval Type-2 Fuzzy Sets

Interval secondary MFs reflect a uniform uncertainty distribution over the primary memberships 

of p [48]. Since all the memberships in an interval set are unity, an interval set is represented just 

by its domain interval, which can be represented by its left and right endpoints as [l, r] [43]. The 

two endpoints are associated with two type-1 MFs that are referred to as upper MF (UMF) and 

lower MF (LMF) [49]. The UMF and LMF are bounds for the FOU ( A
~

) of an Interval type-2 
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fuzzy set A
~

[49]. The UMF is associated with the upper bound of FOU ( A
~

) and is denoted 

by Xpp
A

),(~ . The LMF is associated with the lower bound of FOU ( A
~

) and is denoted by 

Xpp
A

),(~ [49]. The interval type-2 fuzzy set A
~

 can be represented in terms of its UMF and 

LMF as follows:

                                                          





Xp ppu
puA

AA
)](),([ ~~

/1
~


                                                (10)

Most of the real world applications of type-2 fuzzy sets have used Interval type-2 fuzzy sets 

[50]. This is due to the high complexity and associated computational requirements involved in 

the design of general type-2 fuzzy sets. Interval type-2 sets however have a limited ability to 

represent the secondary membership values 1)(0  uf p over a vertical slice of A
~

, which are 

associated with a varied uncertainty distribution in the third dimension. zSlices based general 

type-2 fuzzy sets as proposed in [24] provides a framework for extending the capabilities of 

interval type-2 sets to model the unequal uncertainty distribution in the third dimension. This 

should result in the potential for a superior control performance in comparison to type-1 and 

interval type-2 based fuzzy systems. 

3.2 zSlices Based General Type-2 Fuzzy Sets

The third dimension (z) of a general type-2 fuzzy set can be sliced into a finite number of interval 

type-2 fuzzy sets )( iz  to form a zSlices based general type-2 fuzzy set as shown in Figure 3 (d). 
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Each zSlice iZ
~

 is an interval type-2 fuzzy set with a specific height or level iz  that represents 

the secondary membership or amplitude associated with all the primary memberships over its 

FOU. As such, the interval type-2 fuzzy set iZ
~

would have a membership grade ),(~ up
iZ

  in 

the third dimension that is equal to 10  iz [24]. The zSlice iZ
~

 can therefore be written as 

follows:

                                                              


Xp Ju iii
pi

upzZ ),/(
~

                                                  (11)

where at each p value, zSlicing creates an interval set with height zi  and domain 
piJ , which 

ranges from iA
p)(~ . to iA

p)(~ , where Ii 1  and I is the number of zSlices (excluding 0

~
Z  and 

Iizi / [24]. Figure 3 shows zSlices-based type-2 fuzzy set with three zSlices where  iA
p)(~

and iA
p)(~ are designated as ir  and il  respectively, for each slice along a vertical intersection of 

the set at point p. Hence equation (11) can be written as follows:

                                                     


Xp ppu iii
iAiA

upzZ
])(,)( ~~

),/(
~

                                       (12)

and a zSlice iZ
~

 can also be expressed as:

                                          ,|)),,{((
~

XpzupZ iii  ]},[ iii rlu                              (13)
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Fig. 3. zSlices-based type-2 fuzzy set with three zSlices where iA
p)(~  and 

iA
p)(~ memberships (designated as ir  and il  respectively) are shown for each slice along a 

vertical intersection of the set at point p

The zSlices are arranged to represent a convex piecewise secondary MF where higher Z levels 

represent interval type-2 fuzzy sets with more certain narrower FOUs than lower Z level interval 

type-2 FOUs as shown in Figures 3. Hence depending on the size and shape of the FOUs of each 

z slice, p would intersect one or more Z levels with corresponding secondary memberships over 

the union of all intersecting FOUs at iz . 

4. Type-2 SOFLC

Our proposed type-2 SOFLCs for anesthesia control have a closed loop hierarchical adaptation 

and control structure which has the ability to generate and modify the rule-base making the 

controller adaptive to dynamic changes in the controlled system. The hierarchical structure 

consists of two levels comprising of the type-2 FLC and the components of the SO mechanism as 
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shown in Figure 4 and described in the sections below. 

`

Fuzzifcation Inference

Previous 
rule-base 

generation

Performance 
index

Rule-base 
modification

Control rules

Type-reduction

Defuzzifiion Patient

Type-2 
fuzzy input 

sets

Type-2 
fuzzy output 

sets

Set point

Output

GI

GO

GI = Input scaling factor GO = Output scaling factor

+
-

Type-2 FLC

Rule generation 
and displacement

Fig. 4. Type-2 SOFLC control structure with type-2 FLC and SO components

4.1 Type-2 Fuzzy Logic Controller

The first level is a type-2 fuzzy controller which consists of a fuzzifier, inference engine, rule-

base, type-reducer, and defuzzifier [43] see Figure 4. The input signal from the patient 

anaesthetic model to the controller is taken at each sampling instant in the form four inputs. 

These are the error of muscle relaxation (M_e), integration error of muscle relaxation (M_e_i), 

error of BP (B_e) and integration error of BP (B_e_i) based on the set points to be maintained for 

DOA control. As mentioned the integration of the error is considered as an additional input to the 

system in order to effect the reduction of the steady state error in approaching the desired control 

set points. In our previous work we have proposed a method for decomposing a multivariable SO

fuzzy logic structure into smaller 2-input/ 1-output control units [6]. This has the advantages of 

providing a more interpretable and modular component based representation of the system and 

generated rule-bases, as well as allowing flexible and efficient parallel computational 
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implementations [51]. In the decomposed 2-input/1-output system used in our simulations, the 

fuzzy rules can be represented as:

                                               IF and , THEN                                                (14)

where  and  are inputs,  is input fuzzy set,  is output and  is output fuzzy set. In our 

simulations we evaluate the performance of both four input and two input SOFLCs where in the 

latter case the input parameters M_e_i and B_e_i are not included. Each input signal is mapped 

to a corresponding discrete level by using the error and integration error scaling factors 

respectively.

    The type-2 FLC maps control inputs to either interval or zSlices based type-2 input fuzzy sets

which are based on singleton fuzzification. The input type-2 fuzzy sets activate rules in the rule-

base. The inference engine combines the fired rules by employing type-2 intersection and union 

operations based on minimum t-norm and maximum t-conorm respectively [43]. This gives a 

mapping from input type-2 fuzzy sets to output type-2 fuzzy sets (which can also be either 

interval or zSlices based type-2 output fuzzy sets). The type-2 fuzzy outputs of the inference 

engine are then processed using standard interval type-2 type-reduction and defuzzification 

methods. The type-reducer combines the output type-2 fuzzy sets to form a type-1 fuzzy set 

known as the type reduced set [52].The type-reduction method used here is the Enhanced 

Iterative Algorithm with Stop Condition (EIASC) method [53] which has been shown to be more 

computationally efficient for real world control applications over the well-known Kamik Mendel 

(KM) iterative procedure [49, 52]. The defuzzifier can then defuzzify the type-reduced type-1 

fuzzy outputs to produce the crisp control outputs, where we use the standard centroid type 

reducer [54]. These control operation are based on using general type-2 fuzzy sets. In the case of 

z-slices based general type-2 fuzzy sets the interval type-2 control operations previously 
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described are computed independently on the input and output interval type-2 fuzzy sets for each 

level iz . A centre of sets type-reducer is then used to combine all the type reduced sets for each 

zlevel iz  to create an overall type reduced set [24]. The centroid defuzzifier is finally applied to 

obtain a final crisp output value as described in [24].

    There are two output control signals corresponding the to change of Atracurium infusion rate 

(d_Atra_inf) and the change of Isoflurane concentration (d_Iso_conc) which are based on the 

integration of these output values in order to facilitate real-time adjustment of anesthetic dosage. 

The crisp outputs are converted back to real values using the output scaling factors and sent to 

the patient anaesthetic model. The model responses are then fed back to the type-2 SOFLC and 

compared with the set points to calculate the error and integration error of the input control 

signals.

4.2 Generation of Type-2 Fuzzy Sets

The type-2 SOFLCs which extend on the type-1 SOFLCs use input and output scaling factors to 

map the real valued parameters to a set of discrete levels for scaled inputs and outputs used in the 

system [6]. The discrete levels for the scaled control inputs are divided into seven levels 

represented by equidistant shoulder and triangular type-1 fuzzy sets: negative big (NB), negative 

medium (NM), negative small (NS), zero (ZE), positive small (PS), positive medium (PM), and 

positive big (PB). Figure 5(a) shows the input type-1 fuzzy sets for M_e. The discrete levels for 

the scaled control outputs are divided into four levels also represented by equidistant shoulder 

and triangular type-1 fuzzy sets: zero (ZE), positive small (PS), positive medium (PM) and 

positive big (PB). Both scaled input and output type-1 fuzzy sets have an overlap 25 percent  of 
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the total area of each triangular MF. Interval and zSlices based type-2 FOUs are created from 

monitored physiological parameters of real anesthetized patients where we use the zSlices based 

type-2 FOUs to capture the intra and inter patient parameter variability. The generated FOUs will 

model realistic data derived numerical uncertainties affecting the input and outputs. We can then 

evaluate the SOFLC’s ability to handle different proportions of white noise added to the input 

signals and non-static reference model parameters for approximating these numerical 

uncertainties during the surgical simulations. The following section describes the heuristic 

approach used for generating interval and zSlices based FOUs from the patient data. 

4.2.1 Heuristic Approach for Calculating Interval and zSlices Based FOUs from Patient Data

The FOUs of the patient derived type-2 fuzzy sets are generated using data acquired from 

monitoring physiological parameters of real anesthetized patients, in order to account for the 

uncertain parameter variability during DoA control. Average percentage of muscle 

relaxation mravg and standard deviations (±) mrstdv and the average BP bpavg and standard 

deviations(±) bpstdv were collected from 15 anesthetized patients while undergoing ear, nose, and 

throat (ENT) surgical procedures, as shown in Table 1 [55]. The (±) mrstdv and (±) bpstdv values 

for a given patient represent the intra patient variability attributed to noise and the PK and PD 

effects of anesthetic on the patient’s body over the surgery duration. Table 1 also contains the 

mean average and standard deviation values for muscle relaxation and BP which we will 

designate as )( mean
mravg )( mean

mrstdv and )( mean
bpavg )( mean

bpavg respectively.

We used the following heuristic process to generate the interval and zSlices based general 

type-2 fuzzy sets for the type-2 SOFLC input parameters. A coefficient of variation percentage
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for muscle relaxation: mrcv and BP: bpcv is initially calculated for each patient (see table 1), as 

follows:

                                                           100
)(

)(
)( 




 t

t
t

avg

stdv
cv                                                      (15)

where Tt 1 ,T is the number of patients and  = mr or bp. The calculated cv values are based 

on 100 percent muscle relaxation and a BP of 100 mmHg. The operating physiological set points 

for anesthesia used in our simulations are 80 percent muscle relaxation and 110 mmHg (systolic) 

BP, which we will designate as mrstp and bpstp  respectively. The cv values were then scaled to 

these set points to give the following scaled cv values )( t
bpcv  and )( t

mrcv  that were calculated as 

follows:   

                                                             


  stp
cv

cv
t

t

100

)(
)(                                                      (16)

Table 1 shows the calculated mean cv values )(meancv   for muscle relaxation and BP based on the

15 patients which were then scaled to reflect anesthesia set points and are given as )( mean
mrcv  and 

)( mean
bpcv respectively. 

To construct the interval type-2 set’s FOUs a symmetric uncertainty value  uc  is calculated 

as follows:
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                                                         2
)(








 





 pr

cv
uc

mean

                                                 (17)

where pr  is the parameter range over which the )( meancv  values are divided to derive the FOU  

uncertainty ranges. The calculated  uc  is added to the end points of the type-1 fuzzy sets to 

form the interval type-2 FOUs. The type-2 fuzzy sets produced are based on shoulder and 

trapezoidal interval type-2 MFs. We illustrate how the heuristic process was applied to generate 

the interval type-2 fuzzy sets for the type-2 SOFLC input variable M_e, based on the patient data 

in table 1, as follows:

)( mean
mravg = 89.69, )( mean

mrstdv = ±10.95

)( mean
mrcv = (10.95/89.69) x 100 = 12.21, 

)( mean
mrcv  =12.21   0.8) = 9.77

7mrpr (scaled parameter range for M_e)

)( mean
mruc = 1   ((9.77 / ±7) / 2) = 1.39 / 2 = ±0.70

As shown in the example above the overlap and support of the original type-1 fuzzy sets was 

also factored into the final )( meanuc   value. In the case of the input M_e this was the product of 

the support (which was 4) and overlap (which was 0.25) that equated to 1. This was then 

multiplied by )( mean
mruc  to give the same result. The calculated )( mean

mruc value above was then 

used to construct symmetric FOUs to form interval type-2 fuzzy sets which are shown in figure 

5(b). 
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(a)                                                                        (b)

Fig. 5. (a) Type-1 fuzzy sets for input M_e (b) The interval type-2 fuzzy sets (solid lines) and 

original type-1 fuzzy sets (dashed lines) for input M_e

    The cv values )( t
mrcv and )( t

bpcv for each patient represent inter patient variability attributed to 

differences in the PK and PD effects of anaesthetic on each patient’s body. For constructing the 

zSlices based general type-2 fuzzy sets, similar inter patient )( tcv  values were identified and 

grouped from the patient data. Five groups of patients were identified, based on a distance 

measure between their )( tcv  values for muscle relaxation and BP respectively. The mean cv

values i
mrcv and i

bpcv calculated from each group was used to generate a symmetric interval type-

2 iFOU   over the endpoints of the original scaled type-1 fuzzy set using the heuristic method 

previously described, where 51  i . Each iFOU   was then assigned to a zSlice with amplitude 

zi. The interval FOUs for each group were then arranged together to form a third dimensional 

piecewise secondary MF of the zSlices based general type-2 fuzzy sets. We illustrate below how 

the average cv values for muscle relaxation were calculated from each identified group of similar 

patients based on the patient data in table 1. We then show how the heuristic process was applied 

to generate the zSlices based general type-2 fuzzy sets for the SOFLC input variable M_e as 

follows:
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Patient group 1: 1
mrcv  = 14.11 + 20.88 + 17.60 = 52.59/3 = 17.53

1
mruc (17.53 * 0.8) / 7 = 14.02/7 = 2.0 (FOU) = +/- 1.0

Patient group 2: 2
mrcv = 13.91 + 13.20 + 12.74 = 39.85/3 = 13.28

2
mruc (13.28 * 0.8) / 7 = 10.62 /7 = 1.52 (FOU) = +/- 0.76

Patient group 3: 3
mrcv = 11.71 + 10.95 + 11.84 = 34.5/3 = 11.5

3
mruc (11.5 * 0.8) / 7 = 9.2/7 = 1.31 (FOU) = +/- 0.66

Patient group 4: 4
mrcv = 10.47 + 10.90 + 10.81 = 32.18/3 = 10.72

4
mruc (10.72 * 0.8)/7 = 8.58/7 = 1.23 (FOU) = +/- 0.61

Patient group 5: 5
mrcv = 7.79 + 8.39 + 8.10 = 24.28/3 = 8.09

5
mruc (8.09 * 0.8) / 7 = 6.47/7 = 0.92 (FOU) = +/- 0.46

The calculated i
mruc values above are then used to construct symmetric FOUs i

mrFOU  for 

each zSlice which are separately shown in figure 6 (a) for linguistic level ZE. The individual 

FOUs are then combined to form zSlices based general type-2 fuzzy set for linguistic level ZE as 

shown in figure 6 (b).

(a)                                                                         (b)
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Fig. 6. (a) Decomposed view of the derived FOUs i
mrFOU for each zSlice (b) zSlices based 

general type-2 fuzzy set for the linguistic label ZE for input M_e showing the overlapping 

FOUs for each slice (solid lines) and the original type-1 fuzzy set ( dashed lines)

The type-2 MFs used for the type-2 SOFLC input parameters are constructed using the heuristic 

method previously described. In contrast a trial and error based approach was used to determine

the interval and zSlices based general type-2 MFs used for the type-2 SOFLC output parameters 

(d_Atra_inf) and (d_Iso_conc). Here the best drug infusion and concentration range to induce 

patients into anesthesia was determined and then used to calculate the uncertainty ranges for 

creating the type-2 FOUs from the existing type-1 fuzzy sets. The design of a more structured 

approach to generate the output type-2 fuzzy sets will be the scope of future work.

4.3 Self-Organizing Mechanism

The second level of the SOFLC consists of the SO mechanism that is able to tune and modify the 

control rules to output the desired control responses [6]. The SO mechanism comprises of four

functional blocks: the previous rule-base generation, performance index, rule generation and 

displacement and rule-base modification which feeds into the FLC control rules as shown in 

Figure 4. The previous rule-base can be generated either from expert experience (i.e., medical 

doctors) or from learning the input/output relationships based from clinically logged patient data 

on DoA. During the control process the rules in the previous rule-base generation block will be 

modified by the SO mechanism. The performance index measures the deviation from the desired 

response and calculates the appropriate changes that are required in the output of the controller. 
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The performance index functions act as an evaluation criterion of the controller performance and 

measures the deviation from the desired trajectory and issues the appropriate correction to the 

rule(s). It is derived from linguistic conditional statements by means of using standard fuzzy 

operations and is written in a multi-dimensional look-up table (performance index matrix). The 

generation and modification of the control rules is achieved by assigning a credit or reward value 

to the individual rule combinations defined in the look-up table. The credit value is obtained 

from the performance index defining the desired performance linguistically and is added into a 

look-up table to generate new rules if these are not found in the previous rule-base. Hence this 

process will iteratively modify the output of the controller. The type-2 FLC rules are adjusted 

over the control process to reflect a qualitative “feel” for the patients’ responses to administered 

drugs and are intended to provide fast convergence around the equilibrium state to achieve a high 

accuracy and control stability. As the performance functions are only shown in a two-

dimensional form, we use our previously described method for decomposing an m-input/n-output 

SOFLC structure to many 2-input/1-output subsystems whose outputs are then aggregated 

together as described in [6]. The performance index rules for the 2-input/1-output subsystems 

can therefore be more easily defined in a more interpretable two-dimensional space [6]. Figure 7 

shows our four input two output type-2 SOFLC which has been decomposed into 12 two 

inputs/one output subsystems. Further details on the design of SOFLC can be found in [56]. The 

type-2 SOFLC therefore provides adaptive control rules which can effectively model a 

multivariable non-linear system and dynamically configure themselves to control drug 

infusion/concentration rates while handling patient and environmental uncertainties.
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Fig.7. The decomposition of 4-input / 2-output SOFLC structure into 2 input / one output 

subsystems

5. Experiments and Results 

Unique simulations are presented in which we evaluate the interval and zSlices based general 

type-2 SOFLCs in comparison with the existing type-1 SOFLC. The simulations compared the 

performance of each controller in their abilities to effectively control the infusion and 

concentration rates for Atracurium and Isoflurane to regulate set points for muscle relaxation and 

BP in the face of noisy signals. A non-fixed multivariable anesthetic model of the 
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Pharmacokinetic and Pharmacodynamics effects of these drugs, that would account for possible 

uncertain variability in these effects was used as the patient reference model, as described in 

section 3.

5.1 Experimental Setup

From point view of clinical measurements, in order to measure muscle relaxation stimulating 

electrodes for a Datex Relaxograph are placed over the ulnar nerve of the non-infused hand, 

while sensing electrodes are placed over the hypothenar area. By stimulating the nerve the 

expected degree of  neuromuscular block is determined based on EMG [33]. To measure BP 

previous studies have used a MP60 critical care patient monitor to measure patients' MAP at one 

minute intervals [21]. In our simulations Muscle relaxation percentage was normalized over a 

scale of 0-1 where the initial value of muscle relaxation was set at 0. BP was measured in units 

of mmHg and was initialized to 120 mmHg. In our previous work the initial default values of

EMG set points used were between 10 and 20 percent of the baseline based on different surgical 

needs for adequate muscle relaxation [32]. Hence we used an EMG set point at 20 percent of the 

baseline for our simulation of muscle relaxation which corresponded to a normalized output

value of 0.8. During anesthesia it is normal practice to reduce MAP by 10~15 percent in 

comparison with conscious states of patients. Hence, we used a set point of 110 mmHg for BP in 

this study. Each controller was evaluated on its ability to maintain the desired  set points for 

muscle relaxation and BP  that are considered acceptable for DoA during surgery as previously 

discussed in [6]. 

    In modern surgical procedures it is usual practice to administer an initial bolus of anesthetic to 
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patients in order to raise its concentration in blood to an effective level in order to reach rapid 

anesthesia and unconsciousness [57]. This is often administered intravenously, by intramuscular, 

intrathecal or subcutaneous injection. Rapid anesthesia can help to initially stabilize the patient 

prior to surgery, after which the anesthetist can control the drug delivery rates to regulate DoA. 

In our simulations, an initial bolus is modeled based on Atracurium, which is administered to 

patients to reach the saturation of muscle relaxation (near to 1 normalized scale of muscle 

relaxation), where the range of muscle relaxation is between 0 to 1 normalized units. The amount 

of Atracurium injected to the patients is about 5 normalized units for the first 5 minutes. During 5 

to 15 minutes, the muscle relaxation which reaches almost saturation settles down to be near to 

the desired set point for 10 minutes. Because the Atracurium effects muscle relaxation and has 

virtually no effect on consciousness (i.e., BP), the patient’s BP is maintained constant at 120 

mmHg for the first 15 minutes via only the effect of Isoflurane. In clinical operations, it is usual 

to give intravenous administration of Propofol as an initial bolus to quickly bring patient into an 

unconscious state and then use Isoflurane to maintain the anesthesia level. However In these 

simulations we do not include a model of the effects of Propofol on BP, which we consider to be 

a possibility for future work. Following the initial bolus effect, the SOFLC controller is turned 

on to control multivariable anesthesia system.

    For each SOFLC the performance of two different input configurations were tested, 

specifically a 2-input 2-output SOFLC and a 4-input 2-output SOFLC which included the 

integration of error inputs B_e_i and M_e_i in addition to the two existing inputs B_e and M_e 

as described in [6]. We will use the following shortened naming conventions to reference the 

different SOFLCs being evaluated: ##-T1-SOFLC for the type-1 SOFLC, ##-IT2-SOFLC for the 

interval type-2 SOFLC and ##-GT2-SOFLC for the zSlices based general type-2 SOFLC, where 

## represent to number of inputs and outputs of the SOFLC respectively. The simulations were 
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run using MATLAB on a desktop PC with an Intel(R) Pentium(R) Dual CPU E2180, running MS 

Windows 7. Each simulation was run for 15,000 intervals where 100 intervals represent 1 minute 

of time. Hence the total time for each simulation was 150 minutes which is a realistic time frame 

for single stage procedures such as ear, nose, and throat (ENT) operation.

5.2 Type-1 and Type-2 SOFLCs Simulations and Evaluation

The strength of physiological signals like muscle relaxation and BP is very small and susceptible 

to interference when measuring. Examples of this can be due to the use of high frequency 

surgical instruments (e.g., electrosurgical unit), heart beat irregularity or subcutaneous fat. In 

most cases, the amplitude of noise is up to 20 percent standard deviation of the signal strength in 

measuring instruments [42]. Consequently, simulations based on both noise free and a noise 

added environments were performed. In the simulations on a noise added environment, 5, 10, 15,

and 20 percent of signal noise was added to the measured signals (i.e. muscle relaxation and BP 

values), in order to test the robustness of the different SOFLCs (T1, IT2 and GT2) under real 

environmental uncertainty based on using a fixed (noise free) patient model. As previously 

mentioned we also experimented with adding values of up to 1 percent of white noise to 

approximate the maximum value of possible parametric uncertainty affecting all parameters in 

equation (1) to (5) of the multivariable anesthetic model. Hence we tested each SOFLC’s 

simulation performance in relation to the effects of using a non-fixed patient model with added 

while noise values of 0.25, 0.50, 0.75 and 1 percent, while keeping the signal noise at zero. 

Finally a performance evaluation of each SOFLC was carried out by simultaneously introducing 

the maximum possible single noise of 20 percent standard deviation of the signal strength to the 
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measured signals and the maximum possible added white noise of 1 percent to the non-fixed 

patient model. Since the added white noise affects the physiological signal measurements in a 

random way, we repeated each simulation 10 times to account for these effects in our analysis.

    The performance of each SOFLC controller on the surgical simulation was evaluated against 

the following performance measures for which the mean and standard deviation values were 

obtained over the 10 simulation runs are presented in Tables 2 and 3: Steady State Errors for 

muscle relaxation (SSE_M) and BP (SSE_P) was used to evaluate the performance of the 

controller in its ability to approximate and maintain the desired set points over the duration of the 

simulation. This was based on the absolute error calculated from the different between the actual 

and desired set point values to be maintained, based on the average values over the last 50 

minutes of simulation). The Overshoot Error for muscle relaxation (OS_M) was used to define 

the percentage error between maximum muscle relaxation percentage value and average of 

steady state values produced during the simulation. The Undershoot Error for BP (US_P) was 

defined as the percentage error between minimum BP value and average of steady state values 

obtained over the duration of simulation. There were two additional performance measures also 

used as follows: The Rising Time error for muscle relaxation (RT_M), that was based on the time 

taken to rise the muscle relaxation percentage from 10 percent to 90 percent of the steady state 

value and the Decreasing Time error for BP (DT_P) that was defined as the time taken to 

decrease BP from 10 percent to 90 percent of the steady state value. As a control system, an

SOFLC that produce less RT_M or DT_M has a better performance. Although the data results of 

each of the repeated simulations were different due to the addition of noise, the simulated drug 

induced muscle relaxation and BP values of each SOFLC converged to similar values among the 

10 repeated simulations. Therefore, we chose typical output cases produced by each controller 

corresponding to the added amounts of signal and model noise to construct our simulation plots 
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for analysis.

Figures 8, 9, 10 and 11 show the simulation results on noise free environment, and Table 2 

shows the detail data in terms of SSE, RT_M, DT_P, OS_M and US_P. The simulation results in 

Figures 8(a), 9(a), 10(a) and 11(a) compare the equivalent two input type-1, interval type-2 and 

general type-2 SOFLCs initiated with bolus. Figures 8(a) and 9(a) show that the 22-T1-SOFLC 

was unable to reach the desired set points for both muscle relaxation and BP over the entire 

duration of the surgical simulation. In comparison the 22-IT2-SOFLC initially resulted in a 

marginally higher RT_M in regulating muscle relaxation. However the controller was able to 

quickly stabilized and reach the desired set point with a considerably reduced SSE_M, as shown 

in Figure 8(a). The 22-IT2-SOFLC was also successful in regulating BP at its desired set point. 

There was an initially higher DT_P than the 22-T1-SOFLC though the US_P and SSE_P were

considerably reduced as compared with the T1-SOFLC as shown in Figure 9(a). The simulation 

results for the 22-GT2-SOFLC showed that the controller initially produced a higher DT_P in 

reaching the BP set point compared to the equivalent type-1 and interval type-2 systems and 

higher US_P in stabilizing compared to the T1-SOFLC. The controller was however able to 

outperform both the 22-T1-SOFLC and 22-IT2-SOFLC in terms of a reduced SSE_P and 

SSE_M as shown in Figures 8(a) and 9(a). The simulation results in Figures 8(b), 9(b), 10(b) and 

11(b) compare the equivalent four input type-1, interval type-2 and general type-2 SOFLCs

initiated with bolus. The 42-IT2-SOFLC was shown to perform better in terms of reduced 

SSE_M and US_P errors than the 42-T1-SOFLC which was unable to reach the desired muscle 

relaxation set point over the duration of the simulation, as shown in Figure 8(b). The SSE_P and 

RT_M for the 42-IT2-SOFLC were however higher in comparison to the type-1 system. The 42-

GT2-SOFLC initially produced a higher US_P compared to the 42-T1-SOFLC and 42-IT2-

SOFLCs, however achieved a lower SSE_M than both the 42-IT2-SOFLC and 42-T1-SOFLC. In 
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the comparisons described above we did not compare OS_M values as we found that for the 

cases that used initial bolus, the OS_M values actually only depend on the steady state value of 

each SOFLC because the maximum value of muscle relaxation occurs at initial bolus stage as 

Figure 8 shows. Consequently, the comparison of OS_M is meaningless.

Figure 12 shows the simulation results of 4-input 2-output SOFLCs (initialized with bolus)

under 20 percent signal noise and 1 percent model noise, while Table 3 shows corresponding

data in terms of SSE, RT_M, DT_P, OS_M and US_P. Figure 12(a) shows that the three SOFLCs 

produce similar performance for controlling muscle relaxation. However, from Figure 12(c) we 

can find the Atracurium infusion of 42-T1-SOFLC has more fluctuation than 42-IT2-SOFLC and 

42-GT2-SOFLC. Therefore, we can conclude that 42-IT2-SOFLC and 42-GT2-SOFLC have 

better control stability in terms of muscle relaxation control. As for BP, from Figure 12(b), we 

can see 42-T1-SOFLC has an offset and also fluctuates wildly, whereas 42-IT2-SOFLC and 42-

GT2-SOFLC are able to keep steady at the set point. The wild fluctuation of isoflurane curve 

produced by 42-T1-SOFLC in Figure 12(d) also supports the phenomenon in Figure 12(b).

In order to make a more precise performance comparison of the SOFLCs, the Kruskal–Wallis 

and Wilcoxon signed-rank tests were applied to analyze their SSE [58, 59]. Both the two tests are 

non-parametric tests. The former can test the equivalence of two or more groups of samples, 

while the latter is used for the comparison of two paired samples. Firstly, we use the Kruskal–

Wallis test to find whether there existed a significant difference among the different 4-input 2-

output SOFLCs (initialized with bolus). As we evaluate a total of 9 different noise strengths and

2 SSE data types (namely for muscle relaxation and BP), there are 18 cases in total. The result of 

Kruskal–Wallis test shows that all the 18 cases have significant difference. Hence, we applied the 

one-tailed Wilcoxon signed-rank tests whose significance level α was 0.05 to evaluate the 

performance of the three SOFLCs. Three groups of pairwise comparisons were set, 42-T1-
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SOFLC and 42-IT2-SOFLC, 42-T1-SOFLC and 42-GT2-SOFLC, and 42-IT2-SOFLC and 42-

GT2-SOFLC. The result of the three comparisons are shown in Table 3 where the cases rejecting 

the tested performance hypotheses for each pairwise comparison are marked with superscript a, b 

and c respectively. The result of comparison between 42-T1-SOFLC and 42-IT2-SOFLC shows 

that only 1 of the 18 tests reject the hypothesis that 42-T1-SOFLC and 42-IT2-SOFLC are 

different. Note that in terms of SSE_M, of the four simulations under zero signal noise, the 42-

T1-SOFLC produces a lower mean value of SSE_M than 42-IT2-SOFLC, with the results being

the opposite in other cases. Therefore, we can conclude that in 13 of the 18 cases, 42-IT2-

SOFLC performs better. Of the remaining 5 cases shown in 4 cases the 42-T1-SOFLC performs 

better, and in 1 case they are comparable. Similarly, 42-GT2-SOFLC performs better than 42-T1-

SOFLC in 13 of the 18 cases, worse in 2 of the 18 cases, and comparable to 42-T1-SOFLC in 3 

cases. The results of comparison between 42-IT2-SOFLC and 42-GT2-SOFLC are that 42-GT2-

SOFLC performs better in 14 cases and are comparable in the remaining 4 cases. Finally 6 

groups of overall pairwise comparisons (i.e., 42-T1-SOFLC versus 42-IT2-SOFLC, 42-T1-

SOFLC versus 42-GT2-SOFLC, and 42-IT2-SOFLC versus 42-GT2-SOFLC in terms of SSE_M,

and the same three pairs in terms of SSE_P) combining the 18 cases applying Wilcoxon signed-

rank tests were conducted. The results show that 42-T1-SOFLC is not significantly different 

from 42-IT2-SOFLC and 42-GT2-SOFLC in terms of SSE_M, but significant differences exist

in the other 4 groups (i.e., 42-IT2-SOFLC versus 42-GT2-SOFLC in terms of SSE_M and the 

other three tests in terms of SSE_P). Based on both of the overall mean of SSE_M and the 

overall mean of SSE_P, the 42-GT2-SOFLC produces the lowest value, the 42-T1-SOFLC 

produces the largest value and the 42-IT2-SOFLC produces a medium value between those of 

the other two controllers. Thus it is clear to see that the 42-GT2-SOFLC performs best and the 

42-T1-SOFLC performs the worst in terms of SSE_P. For the SSE_M, the reason why 42-T1-
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SOFLC is not significantly different from 42-IT2-SOFLC and 42-GT2-SOFLC is that the 42-T1-

SOFLC performs well for the cases without signal noise but worse than 42-IT2-SOFLC and 42-

GT2-SOFLC for the cases with signal noise as we have previously described. However, in a 

practical scenario signal noise is unavoidable, so we can still conclude that 42-GT2-SOFLC 

performs best and 42-T1-SOFLC performs worst in terms of SSE_M.

Statistical comparison of RT_M, DT_P, OS_M and US_P between each SOFLC were also 

conducted. Firstly, the Kruskal–Wallis test was applied to determine if there existed significant 

difference among the three SOFLCs, whose results are shown in Table 3 where the cases 

rejecting this hypothesis are marked with the superscript d. We then performed the Wilcoxon 

signed-rank test to rank the three SOFLCs for the cases where significant differences occurred.

In regards to the comparison of RT_M and DT_P, the RT_M values are comparably similar

between all three systems due to the initial bolus effect. The DT_P results show that for all the 

cases where only model noise was added, the 42-IT2-SOFLC outperformed the 42-T1-SOFLC. 

However when signal noise was added, the results show there are three cases without significant 

difference, and three cases where the 42-T1-SOFLC has a lower DT_P than the type-2 SOFLCs

(i.e., 42-IT2-SOFLC and 42-GT2-SOFLC). The reason for this could be that after signal noise 

was added, the 42-T1-SOFLC was not able to reach set point as Figure 12 (b) shows. Thus the 

difference between steady state value and initial value for 42-T1-SOFLC was decreased, which 

leads to a reduced DT_P. In terms of OS_M, the resulting values do not show any performance

differences between the different SOFLCs for the same reason as the result under noise free 

environment which we illustrated above. The results of US_P are the opposite of those of DT_P. 

That is, the US_P values of 42-T1-SOFLC are less than those of 42-IT2-SOFLC and 42-GT2-

SOFLC for the cases where model noise was added, but the US_P values of 42-T1-SOFLC are 

larger than those of 42-IT2-SOFLC and 42-GT2-SOFLC for the cases where signal noise was 
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added. However, despite the difference of each SOFLC, the US_P values of all these cases are all 

quiet good as they are only around 1 percent.

(a)  (b)

Fig. 8 The simulation result of muscle relaxation on noise free environment using (a) 2 

input 2 output SOFLC (b) 4 input 2 output SOFLC

(a) (b)

Fig. 9 The simulation result of BP noise on free environment using (a) 2 input 2 output

SOFLC (b) 4 input 2 output SOFLC
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(a) (b)

Fig. 10 The simulation result of Atracurium infusion on noise free environment using (a) 

2 input 2 output SOFLC (b) 4 input 2 output SOFLC

(a) (b)

Fig. 11 The simulation result of Isoflurane concentration on noise free environment

using (a) 2 input 2 output SOFLC (b) 4 input 2 output SOFLC
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(a) (b)

(c) (d)

Fig. 12 The simulation result of 4 input 2 output SOFLCs under 20 percent signal noise and 

1 percent model noise (a) muscle relaxation (b) BP (c) Atracurium infusion (d) Isoflurane 

concentration

    We also conducted simulations comparing the performance of type-1 and type-2 SOFLCs 

without the use of an initial bolus under the noise free simulation conditions as described in the 

experiments above. Although these simulations are not presented here the performance results 

which are presented in table 2 conclude that the 42-T1-SOFLC was able to reach set points for 

BP and muscle relaxation although it took too long to reach the desired set point for the latter

which is unacceptable for anesthesia control. In comparison both the 42-IT2-SOFLC and 42-

GT2-SOFLC were able to produce a better multivariable control performance reaching the 



Page 43 of 62

Acc
ep

te
d 

M
an

us
cr

ip
t

43

steady state set points for both inputs in just a few minutes. Both these systems however 

encountered an initially high undershoot error for BP that would have caused a patient’s blood 

pressure to fall dangerously low during the DoA control process. It was therefore necessary to 

use an initial bolus with the type-2 SOFLCs to allow the system to quickly stabilize and our 

simulations in figure 8 to 12 shows that this provides a more stable steady state multi variable 

control performance as compared to the type-1 system. 

5.3 Rule-base Analysis of Type-1 and Type-2 SOFLCs

In order to analyze the behavior characteristics of the SOFLCs, we logged the rule firing 

percentage (calculated as the number of times that a rule was fired divided by total number of 

inference operations) of each SOFLC running on maximum noise environment (i.e., 20 percent 

signal noise and 1 percent model noise). The initial rule-base of 4 input 2 output SOFLC is 

shown in figure 13. Figure 14 and 15 show the firing percentage of the final rule-base for

Atracurium and Isoflurane outputs respectively. The x-y planes of figure 14 and 15 correspond to 

figure 13. The height of each bar shows the output linguistic term of each rule and the color

represents the firing percentage in reference to the color bar on the right. Since those rules that 

were fired less than 1% of the total number of inference operations were mainly fired due to 

noise, we considered them to be trivial rules and set them to be white. The first column on the 

left and top row in figure 13 represent the linguistic labels for the error and integration error 

respectively of each input parameter (muscle relaxation and BP). The intersection of each 

identical set of these linguistic labels form a block of six cells which represent the output 

linguistic label corresponding to the six decomposed 2 input combinations (i.e., error of muscle 
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relaxation and integration error of muscle relaxation, error of muscle relaxation and error of BP, 

error of muscle relaxation and integration error of BP, integration error of muscle relaxation and 

error of BP, integration error of muscle relaxation and integration error of BP, error of BP and 

integration error of BP). Each of the cells in figure 13 therefore represents a decomposed 2 input 

1 output rule. By comparing the rule-bases of the different SOFLCs, we can see from the 

generated and active rules in both Figures 14 and 15, the 42-T1-SOFLC used more rules than 42-

IT2-SOFLC and 42-GT2-SOFLC. 42-GT2-SOFLC used the least number of rules and a more 

noteworthy phenomenon is that the rules used by 42-GT2-SOFLC are concentrated on the 

middle of the rule table, which indicates stable control around the ZE state. Therefore, we can 

conclude that 42-T1-SOFLC has to use more rules to handle noise and control uncertainties, 

whereas 42-IT2-SOFLC and 42-GT2-SOFLC are able to achieve a steadier control behavior with 

less used rules because their type-2 fuzzy sets can handle more uncertainties than those of 42-T1-

SOFLC.
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ISO
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Fig. 13. The 4 input 2 output control rule-bases (a) Atracurium output rule-base (b) 

Isoflurane output rule-base

(a) (b)
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(c)

Fig. 14. Firing percentage of Atracurium output rule-base (a) 42-T1-SOFLC (b) 42-

IT2_SOFLC (c) 42-GT2-SOFLC

(a) (b)
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(c)

Fig. 15. Firing percentage of Isoflurane output rule-base (a) 42-T1-SOFLC (b) 42-

IT2_SOFLC (c) 42-GT2-SOFLC

6. Conclusions 

In this paper, we have presented a novel type-2 SOFLC for the automatic control of anesthesia

during single stage surgical procedures. The SOFLC is a hierarchical controller which consists of 

a standard FLC and a SO rule-base mechanism that observes the trajectory of the process to be 

controlled and corrects any deviations from a desired trajectory path by modifying the FLC’s 

control rule(s). The purpose of our study was to evaluate whether the original type-1 SOFLC 

could be enhanced by using type-2 fuzzy sets to improve multivariable anesthesia control. 

Our type-2 SOFLCs used interval and zSlices based general type-2 fuzzy sets to model 

variability in the multi variable control parameters, specifically the input parameters for muscle 

relaxation and BP (used in monitoring DoA) and the output parameters of Atracurium and 

Isoflurane infusion/concentration rates (used in anesthesia regulation). Clinically acquired data 

on the average maintained set points for BP (mmHg) and muscle relaxation percentage were 

collected from 15 anesthetized patients during surgery. The data was used for defining 

symmetrically shaped FOUs of the Interval and zSlices based general type-2 fuzzy sets using a 

heuristic approach to capture inter and intra patient parameter variability found in the clinical 

data, in order to approximate the type-2 FOUs. We used a multivariable non fixed anesthetic 

model as our patient reference model for conducting surgical simulations which were based on 

known pharmacological models of the noise added interactions of Atracurium and Isoflurane for 

regulating muscle relaxation and DoA respectively. The simulations compared the type-2 
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SOFLCs with type-1 SOFLCs in controlling anesthesia delivery to maintain physiological set 

points for muscle relaxation and BP over the duration of a single stage operational procedure. 

    Our results specifically showed that both the interval and zSlices based general type-2 

SOFLCs were able to produce a good multivariable control performance in maintaining the 

desired set points for muscle relaxation and BP in comparison to the type-1 SOFLCs while 

operating under signal and patient noise. In the case of interval type-2 SOFLC these results 

concur with experimental evidence that suggests that an interval type-2 FLC will give a smoother 

control surface in regions around the steady state over its type-1 counterpart [60, 61]. Karnik and 

Mendel also suggest that interval type-2 FLCs are more adaptive as they are able to realize more 

complex input-output relationships which cannot be achieved by a type-1 FLC [62]. Our results 

also support this from the IT2 SOFLCs ability to adaptively regulate multi variable anesthesia set 

points based on adjusting the delivery rates of two different drugs with different 

pharmacodynamic and pharmacokinetic characteristics. zSlices based general type-2 fuzzy sets 

slice the third dimension of a general type-2 fuzzy set into a finite number of interval type-2 

fuzzy sets each with a specific height that represents the secondary membership or amplitude 

associated with all the primary memberships over its FOU [24]. The three dimensional MF of a 

zSlices based general type-2 fuzzy set can therefore provide greater design degrees of freedom 

over interval type-2 fuzzy sets [24].The simulation results we obtained for our GT2-SOFLCs 

were shown to support this by achieving lower steady state errors for multi variable set point 

control than the equivalent interval type-2 and type-1 SOFLCs.

    We also found that both the interval and zSlices based general type-2 SOFLCs are able to use 

fewer more concentrated rules to reach the set points via tracking their rule usage. In our 

simulations we didn’t use the rules’ firing percentage values as additional inputs into our SO 

mechanism. Further research can use these values to assign a weight to each rule in order to 
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improve the rule modification process. In addition, a further deployment of this approach for 

visualizing the rule usage patterns can help the anesthetist study the drug delivery behavior.

This study has provided good evidence on the merits of using our type-2 SOFLC for 

automated anesthesia. Compared with the previous FREN system described in [13], our SOFLC 

is a multi-variable controller for controlling both of MAP (as with FREN) and muscle relaxation. 

FREN was also applied in a postoperative scenario while the SOFLC is for intraoperative drug 

delivery control. The FNN in [14] is a multi-variable system for controlling MAP and CO in a 

postoperative scenario. Two separate sub-controllers are used in [14], which is a similar concept 

as the decomposition of the multi-variable structure used for SOFLC. However a major 

difference between the FNN and our SOFLC is that the FNN is able to modify the MFs whereas 

the SOFLC can self-adapt by modifying the fuzzy control rules.

El-Bardini et al. proposed a direct adaptive IT2-FLC in [16] applied to the same scenario as 

our study. The direct adaptive IT2-FLC uses a predefined rule-base and tunes the centers of the 

output MFs of fired rules in response to deviations from the desired control behaviour. Inter and 

intra-variability is added to the parameters of the patient drug interaction model by manually 

setting these for specific test cases. In our study we added random noise to both patient model 

and the measured signals for muscle relaxation and BP to exam the robustness of the controller

under environmental and patient related uncertainties. In terms of evaluation of performance, 

square of errors (ISE), integral of time and absolute error (ITAE) and root mean square error

(RMSE) are used as criteria for the direct adaptive IT2-FLC. In our simulations, SSE is the most 

important criterion to evaluate the performance. It can be proved that the RMSE is greater than 

or equal to the arithmetic mean error that we used to calculate the SSE. However, the difference 

of these two types of error will be close to zero for steady state control. Therefore we can use the 

two errors to roughly compare the performance of the two controllers. By comparison we can 
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find that even the worst case of the 42-IT2-SOFLC and 42-GT2-SOFLC can still produce a 

lower error than the best case of the direct adaptive IT2-FLC in [16]. Nevertheless, it should be 

noted that the RMSE measured for direct adaptive IT2-FLC also counted the settling stage, 

which leads to a larger overall error. Hence, further research will provide a benchmark

comparison to evaluate the performance of the two controllers more precisely. More recent 

research described in [17] uses genetic algorithms to design fuzzy PID controllers to regulate 

BIS. The parameters of the fuzzy PID controllers are optimized offline and a cost function is 

defined to evaluate the performance of the fuzzy PID controllers. However, this controlling 

structure is quite different from our study so it is difficult to directly compare the performance of 

this system with our approach. Future research could compare this control strategy to the 

SOFLCs if we change our monitoring of DoA to use BIS instead of BP as is the case in this study.

    In our simulations, we have used a fixed amount of initial bolus which is administered to 

patients to reach rapid anesthesia. The initial bolus is effective in muscle relaxation in the first 15 

minutes and settles down towards the set point. The simulation results show that the bolus can let 

the system stabilize close to the desired set point which can then be regulated through the 

adaptive SOFLC. In a real clinical setting it is still however difficult for the anesthetists to decide 

the amount of the bolus to give. Different patients have different physiological response such as 

height and weight, and the dosage of initial bolus can therefore also vary in terms of its 

effectiveness on the patient. Anesthetists generally tend to guess the initial bolus and adjust the 

amount according to the patient’s physiological response. Future work will simulate different 

amount of initial bolus and see how the type-2 system can handle the related uncertainties and 

adjustment of the bolus amount to be initially administered.

Our controller is mainly proposed for regulating single stage operation procedure instead of 

multi stage operation procedures. In such scenarios the depth of anesthesia is not always at the 
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same level during multi-stage surgical procedure in which the set points may change several 

times during the operation. Hence, in the future, the set point of muscle relaxation and BP will be 

changed two or three times during a longer multi-stage simulated procedure to evaluate how well 

the controller (i.e., Type-2 SOFLC) can handle these changes.

    Another proposed feature of the SOFLC which has not been investigated as part of this study 

is the ability to track and analyze the systems rules that fire over the control period. The dynamic 

patterns of rule firings can indicate some behavior about the effects of drugs and individual 

patient’s responses to them over the course of a surgical procedure. This would be beneficial to 

the surgical team during the operation as well as to clinical staff managing the patient’s 

postoperative care.

Acknowledgement

This research was supported by the Center for Dynamical Biomarkers and Translational 

Medicine, National Central University, Taiwan which is sponsored by Ministry of Science and 

Technology (Grant Number: MOST103-2911-I-008-001). Also, it was supported by National

Chung-Shan Institute of Science & Technology in Taiwan (Grant Numbers: CSIST-095-V301 

and CSIST-095-V302).

References

[1] B. Musizza, S. Ribaric, Monitoring the depth of anaesthesia, Sensors, 10 (2010) 10896-10935.
[2] J. Agarwal, G. Puri, P. Mathew, Comparison of closed loop vs. manual administration of 
propofol using the Bispectral index in cardiac surgery, Acta anaesthesiologica Scandinavica, 53 
(2009) 390-397.
[3] S. Locher, K.S. Stadler, T. Boehlen, T. Bouillon, D. Leibundgut, P.M. Schumacher, R. Wymann, 



Page 52 of 62

Acc
ep

te
d 

M
an

us
cr

ip
t

52

A.M. Zbinden, A new closed-loop control system for isoflurane using bispectral index 
outperforms manual control, Anesthesiology, 101 (2004) 591-602.
[4] M.M. Struys, T. De Smet, S. Greenwald, A.R. Absalom, S. Bingé, E.P. Mortier, Performance 
evaluation of two published closed-loop control systems using bispectral index monitoring: a 
simulation study, Anesthesiology, 100 (2004) 640-647.
[5] K. Ejaz, J.-S. Yang, Controlling depth of anesthesia using PID tuning: a comparative model-
based study, in:  Control Applications, 2004. Proceedings of the 2004 IEEE International 
Conference on, IEEE, 2004, pp. 580-585.
[6] J. Shieh, M. Abbod, C. Hsu, S. Huang, Y. Han, S. Fan, Monitoring and control of anesthesia 
using multivariable self-organizing fuzzy logic structure, in:  Fuzzy Systems in Bioinformatics and 
Computational Biology, Springer, 2009, pp. 273-295.
[7] F. Doctor, H. Hagras, V. Callaghan, A type-2 fuzzy embedded agent to realise ambient 
intelligence in ubiquitous computing environments, Information Sciences, 171 (2005) 309-334.
[8] J. Yadav, A. Rani, G. Garg, Intelligent Heart Rate Controller For Cardiac Pacemaker, 
International Journal of Computer Applications, 36 (2011).
[9] J.J. Hsu, J.I. Wang, A. Lee, D.Y. Li, C.H. Chen, S. Huang, A. Liu, B.K. Yoon, S.K. Kim, T.J. Tsai, 
Automated Control of Blood Glucose in the OR and Surgical ICU, in:  Annual International 
Conference of the IEEE EMBS, Minneapolis, Minnesota, USA, 2009, pp. 1286-1289.
[10] M.L. Kumar, R. Harikumar, A.K. Vasan, V. Sudhaman, Fuzzy controller for automatic drug 
infusion in cardiac patients, in:  Proc. of the International MultiConference of Engineers and 
Computer Scientists (IMECS 2009), Citeseer, 2009.
[11] D.S. Diwase, R.W. Jasutkar, Expert Controller for Estimating Dose of Isoflurane, International 
Journal of Advanced Engineering Sciences and Technologies, 9 (2011) 218-221.
[12] C. Jiming, C. Kejie, S. Youxian, X. Yang, Continuous drug infusion for diabetes therapy: a 
closed-loop control system design, EURASIP Journal on Wireless Communications and 
Networking, 2008 (2008).
[13] T. Chidentree, U. Sermsak, Biological systems drug infusion controller using FREN with 
sliding bounds, Biomedical Engineering, IEEE Transactions on, 53 (2006) 2405-2408.
[14] M.E. Karar, M.A. El-Brawany, Automated Cardiac Drug Infusion System Using Adaptive Fuzzy 
Neural Networks Controller, Biomedical Engineering and Computational Biology, 3 (2011) 1-11.
[15] R. John, S. Coupland, Type-2 Fuzzy Logic: Challenges and Misconceptions [Discussion 
Forum], Computational Intelligence Magazine, IEEE, 7 (2012) 48-52.
[16] M. El-Bardini, A.M. El-Nagar, Direct adaptive interval type-2 fuzzy logic controller for the 
multivariable anaesthesia system, Ain Shams Engineering Journal, 2 (2011) 149-160.
[17] H. Araujo, B. Xiao, C. Liu, Y. Zhao, H. Lam, Design of Type-1 and Interval Type-2 Fuzzy PID 



Page 53 of 62

Acc
ep

te
d 

M
an

us
cr

ip
t

53

Control for Anesthesia Using Genetic Algorithms, Journal of Intelligent Learning Systems and 
Applications, 6 (2014) 70.
[18] T. Procyk, E. Mamdani, A linguistic self-organizing process controller, Automatica, 15 (1979) 
15-30.
[19] D. Mason, J. Ross, N. Edwards, D. Linkens, C. Reilly, Self-learning fuzzy control of atracurium-
induced neuromuscular block during surgery, Medical and Biological Engineering and 
Computing, 35 (1997) 498-503.
[20] J. Ross, D. Mason, D. Linkens, N. Edwards, Self-learning fuzzy logic control of neuromuscular 
block, British journal of anaesthesia, 78 (1997) 412-415.
[21] J. Shieh, D.A. Linkens, A. Asbury, A hierarchical system of on-line advisory for monitoring 
and controlling the depth of anaesthesia using self-organizing fuzzy logic, Engineering 
Applications of Artificial Intelligence, 18 (2005) 307-316.
[22] J.-S. Shieh, L.-W. Chang, T.-C. Yang, C.-C. Liu, An enhanced patient controlled analgesia (EPCA) 
for the extracorporeal shock wave lithotripsy (ESWL), Biomedical Engineering: Applications, 
Basis and Communications, 19 (2007) 7-17.
[23] J.-S. Shieh, M.F. Abbod, E.D. Krishna, Y.-C. Chou, S.-Z. Fan, The Simulation of Controlling of 
Anesthesia Using a Novel Multivariable Fuzzy Logic and Self-Organizing Fuzzy Logic Controller, in: 
M. Hertzog, Z. Kuhn (Eds.) General Anesthesia Research Developments, Nova Science Publishers, 
Inc., 2009.
[24] C. Wagner, H. Hagras, Toward general type-2 fuzzy logic systems based on zSlices, Fuzzy 
Systems, IEEE Transactions on, 18 (2010) 637-660.
[25] C.-T. Chuang, S.-Z. Fan, J.-S. SHIEH, Muscle relaxation controlled by automated 
administration of cisatracurium, Biomedical Engineering: Applications, Basis and 
Communications, 18 (2006) 284-295.
[26] J.S. Shieh, D.A. Linkens, J.E. Peacock, Hierarchical rule-based and self-organizing fuzzy logic 
control for depth of anaesthesia, Systems, Man, and Cybernetics, Part C: Applications and 
Reviews, IEEE Transactions on, 29 (1999) 98-109.
[27] J.-Y. Lan, M.F. Abbod, R.-G. Yeh, S.-Z. Fan, J.-S. Shieh, Review: intelligent modeling and 
control in anesthesia, Journal of Medical and Biological Engineering, 32 (2012) 293-307.
[28] J.-S. Shieh, L.-W. Chang, S.-Z. Fan, C.-C. Liu, H.-P. Huang, Automatic control of anaesthesia 
using hierarchical structure, Biomedical Engineering-Applications, basis, communications, 10 
(1998) 195-202.
[29] M.M. Struys, T. De Smet, L.F. Versichelen, S. Van de Velde, R. Van den Broecke, E.P. Mortier, 
Comparison of closed-loop controlled administration of propofol using Bispectral Index as the 
controlled variable versus “standard practice” controlled administration, Anesthesiology, 95 



Page 54 of 62

Acc
ep

te
d 

M
an

us
cr

ip
t

54

(2001) 6-17.
[30] M. Jeanne, C. Clément, J. De Jonckheere, R. Logier, B. Tavernier, Variations of the analgesia 
nociception index during general anaesthesia for laparoscopic abdominal surgery, Journal of 
clinical monitoring and computing, 26 (2012) 289-294.
[31] M. Gruenewald, C. Ilies, Monitoring the nociception–anti-nociception balance, Best 
Practice & Research Clinical Anaesthesiology, 27 (2013) 235-247.
[32] J.-S. Shieh, S.-Z. Fan, L.-W. Chang, C.-C. Liu, Hierarchical rule-based monitoring and fuzzy 
logic control for neuromuscular block, Journal of Clinical Monitoring and Computing, 16 (2000) 
583-592.
[33] O. Meretoja, T. Taivainen, B.W. Brandom, K. Wirtavuori, Frequency of train-of-four 
stimulation influences neuromuscular response, British journal of anaesthesia, 72 (1994) 686-
687.
[34] M. Mahfouf, D. Linkens, A. Asbury, W. Gray, J. Peacock, Generalised predictive control (GPC) 
in the operating theatre, in:  IEE Proceedings D (Control Theory and Applications), IET, 1992, pp. 
404-420.
[35] M. Mahfouf, M. Abbod, A comparative study of generalized predictive control (gpc) and 
intelligent self-organizing fuzzy logic control (soflc) for multivariable anaesthesia, Intelligent 
Control in Biomedicine, (1994) 79-132.
[36] L.B. Sheiner, D.R. Stanski, S. Vozeh, R.D. Miller, J. Ham, Simultaneous modeling of 
pharmacokinetics and pharmacodynamics: application to d-tubocurarine, Clinical pharmacology 
and therapeutics, 25 (1979) 358-371.
[37] B. Weatherley, S. Williams, E. Neill, Pharmacokinetics, pharmacodynamics and dose-
response relationships of atracurium administered iv, British Journal of Anaesthesia, 55 (1983) 
39S.
[38] B. Whiting, A. Kelman, The modelling of drug response, Clin. Sci, 59 (1980) 311-315.
[39] R. Millard, C. Monk, T. Woodcock, C.P. Roberts, Controlled hypotension during ent surgery 
using self-tuners, Computational Biology and Medicine, 17 (1988) 1-18.
[40] D. Mason, N. Edwards, D. Linkens, C. Reilly, Performance assessment of a fuzzy controller 
for atracurium-induced neuromuscular block, British journal of anaesthesia, 76 (1996) 396-400.
[41] M. Mahfouf, D.A. Linkens, Generalised predictive control and bioengineering, CRC press, 
1998.
[42] Z. Wu, N.E. Huang, Ensemble empirical mode decomposition: a noise-assisted data analysis 
method, Advances in Adaptive Data Analysis, 1 (2009) 1-41.
[43] Q. Liang, N.N. Karnik, J.M. Mendel, Connection admission control in ATM networks using 
survey-based type-2 fuzzy logic systems, Systems, Man, and Cybernetics, Part C: Applications 



Page 55 of 62

Acc
ep

te
d 

M
an

us
cr

ip
t

55

and Reviews, IEEE Transactions on, 30 (2000) 329-339.
[44] X. Du, H. Ying, Derivation and analysis of the analytical structures of the interval type-2 
fuzzy-PI and PD controllers, Fuzzy Systems, IEEE Transactions on, 18 (2010) 802-814.
[45] M. Nie, W.W. Tan, Derivation of the analytical structure of symmetrical IT2 fuzzy PD and PI 
controllers, in:  Fuzzy Systems (FUZZ), 2010 IEEE International Conference on, IEEE, 2010, pp. 1-8.
[46] C.W.H. Hagras, Novel methods for the design of general type-2 fuzzy sets based on device 
characteristics and linguistic labels surveys, (2009).
[47] H. Hagras, F. Doctor, V. Callaghan, A. Lopez, An incremental adaptive life long learning 
approach for type-2 fuzzy embedded agents in ambient intelligent environments, Fuzzy Systems, 
IEEE Transactions on, 15 (2007) 41-55.
[48] J.M. Mendel, R.B. John, Type-2 fuzzy sets made simple, Fuzzy Systems, IEEE Transactions on, 
10 (2002) 117-127.
[49] J.M. (Eds.), Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions, 
Prentice Hall, Upper Saddle River, New Jersey, 2001.
[50] H. Hagras, C. Wagner, Towards the wide spread use of type-2 fuzzy logic systems in real 
world applications, Computational Intelligence Magazine, IEEE, 7 (2012) 14-24.
[51] M.M. Gupta, J.B. Kiszka, G. Trojan, Multivariable structure of fuzzy control systems, Systems, 
Man and Cybernetics, IEEE Transactions on, 16 (1986) 638-656.
[52] Q. Liang, J.M. Mendel, Interval type-2 fuzzy logic systems: theory and design, Fuzzy Systems, 
IEEE Transactions on, 8 (2000) 535-550.
[53] D. Wu, M. Nie, Comparison and practical implementation of type-reduction algorithms for 
type-2 fuzzy sets and systems, in:  Fuzzy Systems (FUZZ), 2011 IEEE International Conference on, 
IEEE, 2011, pp. 2131-2138.
[54] N.N. Karnik, J.M. Mendel, Centroid of a type-2 fuzzy set, Information Sciences, 132 (2001) 
195-220.
[55] Y.-C. Chou, M.F. Abbod, J.-S. Shieh, C.-Y. Hsu, Multivariable Fuzzy Logic/Self-organizing for 
Anesthesia Control, Journal of Medical and Biological Engineering, 30 (2010) 297-306.
[56] D.A. Linkens, S. Hasnain, Self-organising fuzzy logic control and application to muscle 
relaxant anaesthesia, in:  Control Theory and Applications, IEE Proceedings D, IET, 1991, pp. 274-
284.
[57] C.T. Hartrick, Y.-S. Tang, D. Siwek, R. Murray, D. Hunstad, G. Smith, The effect of initial local 
anesthetic dose with continuous interscalene analgesia on postoperative pain and 
diaphragmatic function in patients undergoing arthroscopic shoulder surgery: a double-blind, 
randomized controlled trial, BMC anesthesiology, 12 (2012) 6.
[58] J.B. Kruskal, Multidimensional scaling by optimizing goodness of fit to a nonmetric 



Page 56 of 62

Acc
ep

te
d 

M
an

us
cr

ip
t

56

hypothesis, Psychometrika, 29 (1964) 1-27.
[59] F. Wilcoxon, Individual comparisons by ranking methods, Biometrics bulletin, 1 (1945) 80-
83.
[60] E.A. Jammeh, M. Fleury, C. Wagner, H. Hagras, M. Ghanbari, Interval type-2 fuzzy logic 
congestion control for video streaming across IP networks, Fuzzy Systems, IEEE Transactions on, 
17 (2009) 1123-1142.
[61] D. Wu, W.W. Tan, A type-2 fuzzy logic controller for the liquid-level process, in:  Fuzzy 
Systems, 2004. Proceedings. 2004 IEEE International Conference on, IEEE, 2004, pp. 953-958.
[62] N.N. Karnik, J.M. Mendel, Q. Liang, Type-2 fuzzy logic systems, Fuzzy Systems, IEEE 
Transactions on, 7 (1999) 643-658.



Page 57 of 62

Acc
ep

te
d 

M
an

us
cr

ip
t

57

Table 1. Clinical data from 15 anesthetized patients while undergoing a specific Ear, Nose, 

and Throat (ENT) surgical procedures showing avg, stdv and calculated cv values for 

Muscle relaxation and BP for each patient and average values for all patients

Patient
Muscle 

relaxation mravg ,
mrstdv mrcv

Blood Pressure  (mmHg)

bpavg , bpstdv bpcv

1 90.22 (±) 9.83 ±10.90 84.60 (±) 5.66 ±6.69

2 89.33 (±) 12.43 ±13.91 74.96 (±) 6.72 ±8.96

3 89.38 (±) 6.96 ±7.79 113.03 (±) 12.91 ±11.42

4 91.04 (±) 9.97 ±10.95 89.02 (±) 11.95 ±13.42

5 89.05 (±) 10.43 ±11.71 86.05 (±) 13.36 ±15.53

6 90.82 (±) 11.99 ±13.20 90.44 (±) 16.45 ±18.19

7 91.65 (±) 11.68 ±12.74 92.29 (±) 10.69 ±11.58

8 90.85 (±) 12.82 ±14.11 98.21 (±) 17.71 ±18.03

9 89.04 (±) 7.47 ±8.39 90.81 (±) 23.23 ±25.58

10 87.33 (±) 10.34 ±11.84 90.33 (±) 10.31 ±11.41

11 86.63 (±) 18.09 ±20.88 88.48 (±) 12.05 ±13.62

12 91.41 (±) 7.40 ±8.10 96.04 (±) 7.43 ±7.74

13 89.03 (±) 9.32 ±10.47 93.05 (±) 10.64 ±11.43

14 89.10 (±) 15.68 ±17.60 89.60 (±) 9.26 ±10.33

15 90.46 (±) 9.78 ±10.81 86.34 (±) 17.69 ±20.49

Average 89.69 (±) 10.95 ±12.21 90.88 (±) 12.40 ±13.64

Notes:

Coefficient of variation (CV) is the ratio of standard deviation to average noise for muscle relaxation and BP 

respectively.  
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Table 2. Comparison of 2-input 2-output, 4-input 2-output type-1, interval and general 

SOFLCs on noise free environment

G
eneral

Interval

1

G
eneral

Interval

1

G
eneral

Interval

1

G
eneral

Interval

1

T
yp

e

4 4 4 4 4 4 2 2 2 2 2 2

In
p

u
ts

Y
E

S

Y
E

S

Y
E

S

N
O

N
O

N
O

Y
E

S

Y
E

S

Y
E

S

N
O

N
O

N
O

B
olu

s

0.0022

0.0119

0.1534

0.0076

0.0093

0.0131

0.0041

0.0068

0.0729

0.0321

0.0197

0.0846

S
S

E
_M

(n
orm

alized
 u

n
its)

0.0609

0.1029

0.0652

0.2563

0.2037

0.0652

0.0193

0.0626

1.2500

0.2148

0.6434

1.2500

S
S

E
_P

(m
m

 H
g)

12.8698

14.2719

39.2664

3.4040

0.0867

0.8833

13.1408

13.5279

23.8453

15.5844

13.2874

0.8333

O
S

_M
(%

)

0.1360

0.0054

0.0449

9.9427

9.9941

0

0.2947

0.1286

0.5295

16.6582

14.9182

0.2391

U
S

_P
(%

)

2.3

2.3

1.8

8.9

8.9

61.9

2.3

2.3

2.1

5.3

4.2

52.9

R
T

_M
(m

in
)

3.7

4.1

4.1

1.0

1.0

5.1

3.2

3.5

2.1
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0.6

1.2

D
T
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Notes:

1. M represents the value of muscle relaxation and P represents the value of blood pressure.

2. Steady state error (SSE) is the absolute error between the set point value and last average 50 minutes values (for 

muscle relaxation and BP respectively).

3. Overshoot (OS) is percentage of error between maximum value and average of steady state values.

4. Undershoot (US) is percentage of error between minimum value and average of steady state values.

5. Rising time (RT) is the time taken to rise from 10 percent to 90 percent of the steady state value.
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6. Decreasing time (DT) is the time taken to decrease from 10 percent to 90 percent of the steady state values.
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Table 3. Comparison of 4-input 2-output type-1, interval and general SOFLCs on different 

noise environment
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0.0068 (±) 0.0028

0.0061 (±) 0.0031

0.0014 (±) 0.0008
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a
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a Reject hypothesis: 42-T1-SOFLC produces different SSE compared with 42-IT2-SOFLC.
b Reject hypothesis: 42-T1-SOFLC produces different SSE compared with 42-GT2-SOFLC.
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c Reject hypothesis: 42-GT2-SOFLC produces different SSE compared with 42-IT2-SOFLC.
d Reject hypothesis: There is significant difference among the three 4 input 2 output SOFLCs.
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