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Abstract

Recently, penalized regression has been used for dealing problems which found in maxi-

mum likelihood estimation such as correlated parameters and a large number of predictors.

The main issues in this regression is how to select the optimal model. In this thesis, Schall’s

algorithm is proposed as an automatic selection of weight of penalty.

The algorithm has two steps. First, the coefficient estimates are obtained with an arbitrary

penalty weight. Second, an estimate of penalty weight λ can be calculated by λ̂ = σ̂2

τ̂2 , where

σ̂2 is the variance of error and τ̂2 is the variance of coefficient. The iteration is continued

from step one until an estimate of penalty weight converge. The computational cost

is minimized because the optimal weight of penalty could be obtained within a small

number of iterations.

In this thesis, Schall’s algorithm is investigated for ridge regression, lasso regression

and two-dimensional histogram smoothing. The proposed algorithm are applied to real

datasets and simulation dataset. In addition, a new algorithm for lasso regression is

proposed. The performance of results of the algorithm was almost comparable in all

applications. Schall’s algorithm can be an efficient algorithm for selection of weight of

penalty.
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Abreviations

AIC Akaike information criterion

AICc Akaike information criterion with a correction

B-splines basis splines

BIC bayesian information criterion

ED effective dimensions

GAMs generalized additive models

GCV generalized cross-validation

GLMs generalized linear models

i.i.d independent and identically distributed random variables

IWLS iterative weighted least square

Lasso least absolute shrinkage and selection operator

MLE maximum likelihood estimation

MSE mean squared errors

OLS ordinary least squared

P-GAMs generalized additive models with penalized B-splines

P-splines penalized B-splines

PRIDE penalized regression with individual deviance effects
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Chapter 1

Introduction

Regression analysis is a method, which describes the relationships between a dependent

variable and independent variables. The most simple method is a classical linear model.

The model relates the dependent variable to a linear combination of independent variables.

Classical linear models have the assumption of normally distributed errors.

The generalized linear models (GLMs) allows for non-normal error distributions. There

are three components to any GLMs: the random components, the systematic component

and the link function. The distribution in the random components may come from an

exponential (Nelder and Wedderburn, 1972). Covariates x produce a linear predictor.

In addition, generalized additive models (GAMs) may have a linear or a non linear form

via the use of smooth functions (Hastie and Tibshirani, 1986). GAMs will be exhibited by

penalized-splines (P-splines).

1
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Coefficients are estimated using maximum likelihood estimation (MLE). However, MLE

has problems such as large variability or lack of interpretability i.e. a model is failed giving

a useful prediction or representation of a phenomenon. A penalized regression gives more

stable results, continuous, and computationally efficient (Cessie et al., 1992; Verweij and

Van Houwelingen, 1994).

All of these models may include some penalty in the likelihood. This introduces the

complexity of having to optimize the penalty weight. Other problem rises for penalized

regression. It needs large grid of λ s to choose the optimal model. In this thesis, we

are going to utilize Schall’s algorithm for penalty optimisation. The performance of the

Schall’s algorithm will be investigated and compared to the commonly used methods such

as Akaike information criterion (AIC), bayesian information criterion (BIC) and generalized

cross-validation (GCV). The algorithm is applied to data from real and simulation data sets

in GLMs, generalized additive models (GAMs), least absolute shrinkage and selection

operator (Lasso), and two-dimensional histogram.

The remaining thesis consists of six chapters and is organized as follows: Chapter 2

presents how the Schall’s algorithm is applied to ridge regression for generalized linear

models. Chapter 3 still discusses how the Schall’s algorithm is applied to ridge regression

for generalized linear models but especially for Poisson regression and logistic regression.

The algorithm is applied to a normal dependent variable. Chapter 4 is a discussion about

how the Schall’s algorithm is applied to ridge regression for generalized additive mod-

els. Chapter 5 is dedicated to discussing how the Schall’s algorithm is applied to lasso

regression. Chapter 6 is dedicated to discussing how the Schall’s algorithm is applied to
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a two-dimensional histogram. Finally, Chapter 7 presents the conclusion, and possible

future works. The list of publications related to this thesis is presented in publications.



Chapter 2

The Weight of Penalty Optimization for

Ridge Regression 1

2.1 Introduction

Ridge regression (Hoerl and Kennard, 1970; Hoerl et al., 1975) is used in many ap-

plications to shrink estimates of coefficients towards zero. It was introduced originally

within the family of linear models. It is implemented in generalized linear models (Cessie

et al., 1992; Perperoglou, 2014) as well as within the context of high-dimensional data and

machine learning.

On all these approaches, a penalty term is added to the likelihood, controlled by a weight

λ. It is up to the researcher to decide what should the penalty weight be. A common

1This chapter is published in Zuliana, S. U., and Perperoglou, A. (2016). The Weight of Penalty Optimiza-
tion for Ridge Regression. In Analysis of Large and Complex Data (pp. 231-239). Springer International
Publishing.

4
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method is used to optimize the penalty is to select a series of different λs, fit the model for

each of the weights and choose a model that would maximize a criterion such as Akaike’s

Information Criterion (Akaike, 1974), the corrected version (AICc) (Hurvich and Tsai, 1989)

or Bayesian Information criterion (BIC) (Schwarz et al., 1978). In other cases generalized

cross validation may be used (GCV) (Golub et al., 1979). Examples of the latter approach

can be found in Cessie et al. (1992) for logistic regression, or in simple linear regression one

may use function lm.ridge available in package MASS (Venables and Ripley, 2002) within

R (R Development Core Team, 2015) software. More recently, Goeman suggested leave-

one-out cross validation (Goeman, 2010) which was implemented in package penalized

(Goeman et al., 2012).

All of these approaches can be computationally expensive. In more complicated models

where estimation time may be an issue, penalty optimization through a grid search of

weights is counter-productive. Xue et al. (2007) suggested simple remedies to address the

problem, within the framework of survival analysis, which where shown however to be

inferior in simulation studies (Perperoglou, 2014). Recently, within the field of econometrics

Kibria investigated penalty weights that are obtained by dividing the residual mean square

estimate with the maximum, mean, median, etc of the coefficients (Kibria, 2003) and came

up with suggestions in their follow up paper (Muniz and Kibria, 2009). More recently

Månsson and Shukur (2011) investigated the performance of these estimators for Poisson

regression. Cule and De Iorio (2013) introduced a four step algorithm to fit penalized

models based on principal components of the eigenvectors of the regressors. This approach

is implemented in package ridge (Cule, 2014), for linear and logistic regression.
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Here we present an approach that is based on mixed models methodology. We view

the penalty as a random effect added to the model and then we employ mixed model

machinery to estimate optimal weight. Under that umbrella λ becomes a parameter to be

estimated from the model with a repeating algorithm. Our approach is similar to the one

suggested by Rigby and Stasinopoulos (2013). Their method is an automatic selection of

the smoothing parameters when fitting a generalised additive model for location, scale and

shape (GAMLSS) model. Whilst our method is an automatic selection of penalty weight

when fitting a generalized linear models. They have implemented their method in package

gamlss (Rigby and Stasinopoulos, 2005).

The chapter is organized as follows: In Section 2.2, we present the background theory

on penalized regression methods in generalized linear models. We present the general

framework and show how to optimize the penalty weight using a mixed models approach.

The emphasis is on a special case of a GLM, a simple linear model. In Section 2.3, we

use this simple case to illustrate the Bayesian viewpoint of our suggested algorithm and

present simulation studies that evaluate the performance of the suggested algorithm and

also compare it with other methods. It closes with a discussion (Section 2.4).

2.2 Ridge Regression in a Generalized Linear Models (GLM)

Consider the form of any generalized linear model as:

g(E(y)) = η = Xβ (2.1)
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where y is a response variable coming from any of the exponential family distributions,

g() is the link function and η = Xβ is the linear part of the model for X, an n × p matrix of p

covariates on n observations and β is the vector of unknown coefficients. Let l(β) denotes

the log-likelihood function of that general model and defines the penalized likelihood

function as:

l∗
(
β
)

= l(β) −
1
2
λ

p∑
j=1

β2
j (2.2)

To estimate the model an Iterative Weighted Least Squares (IWLS) algorithm can be used

which takes the form:

β̂ = (X′WX + λI)−1X′Wz (2.3)

where W is a diagonal matrix with appropriate weights w1,w2, . . . ,wn in the diagonal , z is

the intermediate variable given by z = W−1(y − µ̂) + Xβ and I is a p × p identity matrix.

The choice of penalty weight is crucial. In cases where λ tends to infinity coefficients

become zero, while when λ approaches zero coefficients are allowed to vary freely.

2.2.1 Ridge regression from Bayesian perspective

Any penalized model may be seen as a mixed model. Let pβ∗(x∗, y∗) be the joint density

function of observed data x∗ and unobserved data y∗ when parameter β∗ is known. We can

then define the posterior probability p(β∗|y∗) as: the likelihood for β∗ and y∗ as:

L(β∗; y∗) = pβ∗(y∗)pβ∗(x∗|y∗) (2.4)
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Lee and Nelder (1996) defined equation (2.4) as an h-likelihood while Green and Silverman

as penalized likelihood (Green and Silverman, 1993). h-likelihood can also be seen mathe-

matically as a Bayesian posterior distribution . The first part of the (2.4) corresponds to the

likelihood of the simple model multiplied by the likelihood that corresponds random part,

in this case, the ridge penalty. Hierarchical likelihood has many similarities to Bayesian

methods.

Consider a simple linear model

y = Xβ + ε (2.5)

with X an n × p matrix of covariates and β a p × 1 vector of coefficients. Then where

y ∼ N(Xβ, σ2I) and let β ∼ N(0, τ2I).

Then the likelihood can be written as:

L(β|y) ∝ exp
(
−

1
2σ2

(
y − Xβ

)′ (y − Xβ
))

exp
(
−

1
2τ2 β̂

′

β̂
)

(2.6)

Taking the logarithm of (2.6) leads to:

−logL(β|y) =
1

2σ2

(
y − Xβ

)′ (y − Xβ
)

+
1

2τ2 β̂
′

β̂

=
1

2σ2

((
y − Xβ

)′ (y − Xβ
)

+ λβ̂
′

β̂
)

with λ = σ2

τ2 .
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Looking at model (2.5) from a mixed model perspective one needs to estimate, along

with the coefficients, the variance of the random effects as well. Schall (1991) defined a

two-step algorithm for fitting mixed models and estimating the variance of the random

effect . In this study, the algorithm is used to estimate a penalty weight. It has the following

steps:

1. For given σ̂2, λ̂ estimate the coefficient β̂ by:

β̂ = (X′W̃X + λ̂I)−1X′W̃z̃

2. Given estimates of coefficients β̂, variance estimators are obtained from

σ̂2 =
(y − Xβ̂)′(y − Xβ̂)

n − ED

and

τ̂2 =
β̂
′

β̂

ED

where ED stands for effective dimensions and is the trace of the hat matrix of the

mode (Hoaglin and Welsch, 1978). An estimate of the penalty weight λ̂ can be then

given by:

λ̂ =
ED

β̂
′

β̂

3. Iterate until the estimated penalty weight λ̂ convergence.

The algorithm can be initialized with any value for λ̂ and usually converges within a

small number of steps. For further applications see Perperoglou (2014) and Perperoglou



2.3. Simulation 10

and Eilers (2010). An implementation of the method is also part of the coxRidge package

in R (Perperoglou, 2013).

2.3 Simulation

A simulation study was designed to investigate the performance of different approaches

to maximize penalty weight. The sample size of the full data was n = 500. The response

variable y was simulated from

y = βz + 0.2ε

where z comes from a standard normal distribution (z ∼ N(0, 1)), and the true value of the

coefficient is 1 (β = 1). The normal distribution is chosen because it is the most familiar

distribution and ease of statistical flexibility. Some noise is added in the form of a random

vector ε ∼ N(0, 1) which is independent of z.

In a second step, the simulated values of z where used to create a set of correlated

regressors, given as:

x1 = z + ε1

x2 = z + ε2

x3 = x1 + x2 + 0.05ε3

where the errors ε1, ε2, ε3 are once again random numbers generated from a normal distri-

bution and assumed to be independent from z. There are correlation between x1 and x1,
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and also between x1 and x1. The data set was then split into a training (labelled d1) and

testing data set (labelled d2), of size n1 = 400 and n2 = 100, respectively, and a linear model

of the form y = β1x1 + β2x2 + β3x3 was fitted on the data set where β = (1, 1, 1). A simple

linear regression model was fitted to the training data along with four more penalized

approaches based on different methods of penalty weight optimization. These approaches

were: leave-one-out cross validation using package penalized, penalized quasi likelihood

optimization using package gamlss, generalized cross validation using package MASS and

optimization via random effects models suggested here using Schall’s algorithm.

Once a model has been fitted, the prediction error on the testing dataset was obtained

based on the estimates of each approach as

p.error =
∑
i∈d2

(yi∈d2 − β̂Xi∈d2)
2

The whole process was repeated 1000 times.
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Figure 2.1: Distribution of λs based on different methods of optimization
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Figure 2.1 illustrates the distribution of λs as they were obtained by the different meth-

ods. As it should be expected, the mixed models approach suggested here is almost

identical to the penalized quasi likelihood optimization. On the other hand, leave-one-out

cross validation produces on median λ which is high above all other approaches, while

at the same time the spread of the distribution is much wider. On the other extreme of

the spectrum, principal components optimization leads to very small weights and almost

no penalization. Generalized cross validation also selects small penalty weights when

compared with mixed models and leave-one-out cross validation.

Method Prediction error % of β̂3 < 0

OLS 37.65 49.9

penalized 37.60 20.4

gamlss 80.71 0

MASS 37.60 19.8

Schall 37.58 0

mgcv 37.15 51.0

Table 2.1: The average prediction error of different methods.

Including a penalty term λ not only shrunks estimates towards zero, but in cases where

collinearity is present, it reduces mean squared prediction error and corrects coefficient

signs. Table 2.1 illustrates the average prediction error of all approaches. As expected the

simple linear model has the largest prediction error. Although the differences among the

models are small, using our proposed algorithm produces the smallest prediction error

with correct coefficient sign. Package mgcv gave the smallest prediction error but has 51

% of wrong coefficient sign. When no penalization is applied, estimates obtained from
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the ordinary least squares model have an opposite sign from the real one.Multicollinearity

leads to estimates of coefficients with wrong signs (Greene, 2012). The wrong sign is

examined only for β3 because it has correlation with other two independent variables.

Table 2.1 presents in the third column the percentage of cases where β̂3 coefficient was

mistakenly estimated as negative. Three out of four methods estimate a correct sign for the

coefficient. Figure 2.2 described the computation time with respect to the methods. Schall

and MASS gave the smallest computation time.

Figure 2.2: Boxplot of computation time with respect to method for the simulated data with correlation between the
independent variables
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A second simulation study was also applied to investigate the performance of the meth-

ods. This time, the regressors had the same distributional assumptions, however, corre-

lation amongst them was 0. The data were simulated this way to investigate how each

method performs when in fact penalization is not necessary. We simulated a single data

set with a sample size of 500, and generated one outcome variable y, and four covariates

x1, x2, x3, x4 which

x1 ∼ N(0, 1)

x2 ∼ N(0, 1)

x3 ∼ N(0, 1)

The covariates x1, x2, x3, x4 are independent of each other. The response y was generated

from y = 0.7x1 − 0.3x2 + 0.2x3 + 0.2ε where ε ∼ N(0, 1). The data set was then split

into a training (labelled d1) and testing data set (labelled d2), of size n1 = 400 and n2 =

100. A simple linear regression model was fitted to the training data along with four

more penalized approaches based on different methods of penalty weight optimization.

These approaches were: penalized quasi likelihood optimization using package gamlss,

generalized cross validation using package MASS, integrated model selection via GCV using

package mgcv and optimization via random effects models suggested here using Schall’s

algorithm.
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Figure 2.3: Distribution of estimated λs based on different methods of optimization for the simulated data with no
correlation between the independent variables

Figure 2.3 illustrates the distribution of estimated λs. The graph reveals that both

methods based on extended likelihoods (labelled as Schall and gamlss) overestimate the

importance of the penalty. The medianλweight was 4.8 in both while in the one obtained by

generalized cross validation, was 0.2. Figure 2.4 illustrates the distribution of computation

time. The graph reveals that the computation time of ordinary least square is the shortest,

following by the computation time of proposed algorithm, Schall’s algorithm.

2.4 Summary

We have introduced a method for optimizing a penalty weight in ridge-type regression

problems. The method is based on mixed models algorithms although in practice one does

not need to regard the penalization as a random effect. We have shown the algorithm and

illustrated application in two small simulation studies.
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Figure 2.4: Distribution of computation time based on different methods of optimization for the simulated data with
no correlation between the independent variables

The suggested method can work in any type of regression model, regardless of the

distribution assumption of the response or the link function. In this work we have shown

the advantages of our approach within the context of linear regression. Perperoglou has

showed in other texts how the method can be used in survival analysis (Perperoglou, 2014).

In future work we aim to show how the method performs when fitting Poisson or binary

data.

We presented two simulation studies. As discussed earlier, some caution is needed when

applying penalized methods in data that do not require that complexity from the model.

Cross validation methods were able to perform quite well in the absence of collinearity and

showed that λ has to be near zero, i.e. they ended up with no shrinkage of the coefficients.

When mixed models methods were applied, some shrinkage was always present in the

model. In any case, preliminary analysis of the data should reveal whether a penalty is

needed or not.
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It should be noted that using a mixed models approach as the one discussed here is

similar to the approach within gamlss models. Both methods use a restricted maximum

likelihood approach (REML) to estimate a variance of a random effect, and use that vari-

ance to obtain the penalty weight. The only difference is that Rigby and Stasinopoulos

(2013) used their approach to optimize a roughness penalty when fitting regression splines

for smoothing. An extension of either methods would be very useful in cases where a

roughness penalty form smoothing models is needed in a model that also accounts for

correlation, or in cases where penalties are applied into more than one dimensions. A sim-

ilar idea has been explored in the Penalized Regression with Individual Deviance Effects

models (PRIDE) (Perperoglou and Eilers, 2010). Unlike the other regression models, this

model not only involve independent variables but also include individual deviance effects.

Besides the model produces covariates estimates which give a general pattern of data, it

gives information whether there is an invisible systematic pattern in data.



Chapter 3

Ridge Regression in Poisson Models and

Logistic Models

3.1 Introduction

In the previous chapters, optimized ridge regression in generalized linear models was

discussed, where the response variables have a normal distribution. In generalized linear

models, the response variables belong to the exponential family of distributions. The most

famous members of exponential families are normal, binomial, and Poisson distributions.

Here we focus on generalized linear models with binomial and Poisson responses. The

binomial distribution has applied in a lot of fields. It is used when there are two possi-

ble outcomes. It is applied for examining the presence of a characteristic. The Poisson

distribution is often used to model rare events.

18
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In Section 3.2, penalized Poisson regression will be presented followed by penalized

logistic regression. In Section 3.3, we will illustrate the methods on practical applications.

3.2 Optimized Poisson Ridge Regression and Logistic Ridge

Regression

Poisson regression analysis is commonly used for modelling data with a count indepen-

dent variable. Suppose Y = (y1, y2, . . . , yn) is an i.i.d sample from a Poisson distribution

with parameter µ, the likelihood is

L(β) =

n∏
i=1

µyi
i e−µi

yi!

and the loglikehood is

l(yi|β) =

n∑
i=1

(
yi logµi − µi

)

As it has been explained in the previous chapter, the penalized log-likelihood for this

model is obtained from subtracting a ridge penalty term from the log-likelihood (equation

2.2). The log-likelihood for penalized log-linear Poisson model can be written as

l∗
(
β
)

=

n∑
i=1

(yiηi − µi) −
1
2
λ

p∑
j=1

β2
j
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where the link function is g(µi) = ηi = logµi = xT
i β. The estimated coefficients are given by

iterative weighted least square (IWLS):

β̂ = (X′W̃X + λI)−1X′W̃z̃

with the weights W̃ is a diagonal matrix with elements a vector µ on the diagonal and the

intermediate variable z̃ = (y − µ) + µη.

As for logistic regression is commonly used for data with binomial response variable.

Suppose Y+ = (y+
1 , y

+
2 , . . . , y

+
n ) is an iid sample from a binomial distribution with parameter

n and µ+, the likelihood is

L(β) =

n∏
i−1

µ
y+

i
i (1 − µ+

i )1−y+
i

and the loglikehood is

l(β) =

n∑
i=1

(
y+

i η
+
i − log(1 + eη

+
i )
)

where the link function is g(µ+
i ) = η+

i = log
(
µ+

i
1−µ+

i

)
.

Similar to Poisson ridge regression, the penalty is subtracted from the log likelihood:

l∗
(
β
)

=

n∑
i=1

(
y+

i η
+
i − log(1 + eη

+
i )
)
−

1
2
λ

p∑
j=1

β2
j
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where the weights W+, a diagonal matrix with the diagonal elements:

w+ = nµ+(1 − µ+)

and the intermediate variable z̃+:

z̃+ = η+ +
y+ − µ+

µ+(1 − µ+)

As mentioned on previous chapter, the choice of penalty weight λ is important. The

Poisson ridge regression and the logistic ridge regression will be optimized by the Schall’s

algorithm. The performance of algorithm will be compared to other model selection

methods such as Akaike information criterion (AIC), Bayesian information criterion (BIC)

and generalized cross validation (GCV).

3.3 Applications

The performance of the proposed method is investigated on real-life data and simula-

tion. First, Schall’s algorithm will be applied for a pattern of terrorism data in Afganistan

between 1994-2008 (Piazza, 2012). Second, data with non-correlated covariates from Pois-

son distribution and binomial distribution will be generated. The simulation is designed

in such a way to produce a data set where no penalty would be required. Finally, data

set with correlated covariate from Poisson distribution and binomial distribution will be

generated. The performance of the Schall’s algorithm will be compared with AIC, BIC and

GCV.
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3.3.1 Example

A pattern of terrorism in Afganistan between 1994-2008 would be modelled. Data is

published in Piazza (2012). This data set is obtained from 34 provinces. The aim of the

analysis is for examining the relationship between terrorism in Afganistan and the opium

trade, various economic development, infrastructure, geographic, security, and cultural

factors. The response (y) is the total terrorism incidents, and has median 22 incidents.

The predictor variables are the average annual opium cultivation (opium in hectares),

area (in hectares), mountainous (in %), literacy rate (literacy in %), access to drinking water

(water in %), below minimum calories(calories in %), all-season roads (roads in %), under

five mortality (mortality, out of 1000), Pashtun majority (majority, 1=Yes, 0=No), and the

mean of foreign troops (troops in yearly). Median of the average annual opium cultivation,

and foreign troops are 594 hectares and 4256 soldiers. Median of percentage mountainous,

literacy rate, access to drinking water, below minimum calories, and all-season roads are

40.1 %, 17.5 %, 28 %, 28 %, and 43 %. There are sixteen provinces which is Pashtun majority

(47 %). In this analysis, covariates are scaled to zero mean and unit standard deviation.

The first model applied is a simple Poisson regression. The results in Table 3.1 shows

that all covariates are significant. However, these are highly correlated data. Opium has

a correlation with area (0.48), mountainous has a correlation with all-season roads (-0.65)

and acces to drinking water (-0.68), below minimum calories has a correlation with literacy

rate (-0.46), and majority has a correlation with acces to drinking water (0.49).
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Coef St. Err Pr(> |z|)
Counts 0.3703 0.0125 < 0.001 ***
Opium -0.1275 0.0079 < 0.001 ***
Area -0.2716 0.0124 < 0.001 ***
Mountainous 0.2890 0.0178 < 0.001 ***
Literacy -0.0886 0.0112 < 0.001 ***
Water 0.1264 0.0177 < 0.001 ***
Calories 0.2162 0.0114 < 0.001 ***
Roads 0.2503 0.0140 < 0.001 ***
Mortality -0.0599 0.0123 < 0.001 ***
Majority -0.2075 0.0138 < 0.001 ***
Troops 0.0992 0.0121 < 0.001 ***

Table 3.1: The simple Poisson regression results show that all covariate has a significant P-values. In column 2
and 3, coefficients and standard errors of each variables are given. The last column shows that each variable has a
significant P-values (less than 0.001). However, they are highly correlated data. Opium has a correlation with area
(0.48), mountainous has a correlation with all-season roads (-0.65) and acces to drinking water (-0.68), below minimum
calories has a correlation with literacy rate (-0.46), and majority has a correlation with acces to drinking water (0.49).

In order to get the optimal model for this data, a Poisson penalized ridge regression is

used. For model selection, Akaike criterion (AIC), Bayesian criterion (BIC), generalized

cross validation (GCV) and Schall’s algorithm are used.

The optimal coefficients from three criterions and Schall’s algorithm can be seen in

Figure 3.1. Schall’s algorithm gives λ = 95.78. For one terrorism incident, opium, area,

mountainous, literacy, water, calories, roads, mortality, majority, and troops contribute

0.0018, 0.0023, -0.0234, 0.0510, 0.0687, 0.0367, 0.0539, -0.0440, 0.0395, and 0.0258. The best

coefficients from Schall’s algorithm are located in the middle of three other criterions.

Schall’s algorithm has a simpler algorithm than other criterions because the weight of

penalty λ is estimated and the iteration, which are done before convergence is usually less

than five iterations.
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Figure 3.1: The coefficients of five covariates are shrunk to zero. AIC, BIC, GCV and Schall’s algorithm give different
optimal fit. The optimal coefficients from Schall’s algorithm (+) (λ = 95.78) are located in the middle of three other
criterions.

3.3.2 Datasets Simulations for non-correlated covariate

In this subsection, data sets with non-correlated covariate will be generated. Penalized

regression will be applied on them, and some model selections will be used for choosing
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the best model.

3.3.2.1 A non-correlated Poisson regression model

The data set with a sample size of 500 is generated. The data set has four covariates

x1, x2, x3, x4 where each covariate has a standard normal distribution and are independent

of each other. The response variable is random Poisson with a parameter equal to exp
(
Xβ

)
where β = (1,−0.4, 0.7, 0.2). 1000 samples are generated and analyzed.

Poisson and Poisson ridge models are fitted the simulated data. According to Table 3.2,

it can be seen that there are no differences between the different methods. Therefore, for

non-correlated data, the simple Poisson regression analysis is enough.

3.3.2.2 A non-correlated logistic regression model

The data is generated data with four independent covariate x1, x2, x3, x4 from a standard

normal distribution and are independent of each other. The response variable is a random

binomial with a parameter equal to exp(Xβ)/(1 + exp(Xβ)), where β = (1,−0.4, 0.7, 0.2).

There are 1000 samples with different sample size: 400, 450, 475, 500, and 1000.

The data set is analyzed by logistic regression and logistic ridge regression. The results

are displayed in Table 3.3. It can be seen that MLE is quite better than penalized regression

(The value of MSE is the smallest). According to the theory, non-correlated covariate data

doesn’t need ridge regression.
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TRUE Schall AIC BIC GCV mgcv MLE

x1 1 0.997 0.999 0.999 0.998 1.001 0.999
x2 -0.4 -0.396 -0.397 -0.397 -0.397 -0.398 -0.397
x3 0.7 0.698 0.699 0.699 0.699 0.701 0.699
x4 0.2 0.199 0.199 0.199 0.199 0.200 0.199

MSE 2569.776 2569.776 2569.776 2569.776 2569.776 2569.267

mpb 0.004 0.003 0.003 0.004 0.002 0.003

computation
time 0.012 1.369 1.369 1.369 0.013 0.003

Table 3.2: The average of coefficients of Poisson regression using ridge regression for non-correlated data. Schall’s
algorithm, AIC, BIC, GCV and MLE doesn’t give different MSE and mean percentage of bias (mpb) value. So the
simple Poisson regression analysis is enough.

3.3.3 Datasets Simulations for correlated covariates

In this subsection, the algorithm will be applied to the simulation. The data will be

generated with the correlation coefficients 0.90, 0.95 and 0.99. The aim of this experiment

is illustrating the performance of Schall’s algorithm for estimating the penalty weight even

for highly correlated designs.

3.3.3.1 A correlated Poisson regression model

The simulation is generated for a correlated data with four random covariates. Each

covariate has a correlation with other covariates with the same value of correlation, i.e.

0.90, 0.95, and 0.99. The response variable is random Poisson with a parameter equal to

exp
(
Xβ

)
where β = (−0.309, 0.7503, 0.301,−0.501). Sample sizes are 20, 30, 50, and 80. 1000

samples are generated and analyzed with Poisson ridge regression. From the Table 3.4, it

can be seen that MSE that resulted from Schall’s algorithm are the smallest among other

criterions.
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n OLS Schall AIC GCV BIC

400.0 λ 0.0 2.4 0.0 309.6 79.0
MSE 0.063 0.059 0.063 1.119 0.248

450.0 λ 0.0 2.5 0.0 356.2 51.0
MSE 0.056 0.055 0.056 1.133 0.198

475.0 λ 0.0 2.4 0.0 372.0 18.1
MSE 0.059 0.053 0.059 1.119 0.114

500.0 λ 0.0 2.5 0.0 378.9 3.4
MSE 0.049 0.048 0.049 1.115 0.065

1000.0 λ 0.0 2.4 0.0 756.8 0.0
MSE 0.029 0.028 0.029 1.114 0.029

Table 3.3: MSE from non-correlated logistic data for different sample sizes i.e. 400, 450, 475, 500 and 1000. The value
of MSE for MLE is small. So the simple logistic regression analysis is enough.

OLS Schall AIC GCV

rho=0.90
20 1.539 0.770 1.361 0.959
30 0.838 0.572 0.878 0.905
50 0.465 0.364 0.549 0.765
80 0.287 0.284 0.313 0.584

rho=0.95
20 3.009 1.086 2.061 0.997
30 1.758 0.835 1.452 0.972
50 1.031 0.600 1.052 0.924
80 0.598 0.450 0.684 0.811

rho=0.99
20 18.079 1.617 7.705 1.042
30 9.960 1.598 5.506 1.126
50 5.426 1.276 3.785 1.096
80 3.290 1.069 2.521 1.113

Table 3.4: MSE from correlated count data in different correlation coefficients (0.90, 0.95, and 0.99) and different
sample sizes(20, 30, 50, and 80). MSE which is resulted from Schall’s algorithm are the smallest (ρ = 0.90 and
ρ = 0.95). For ρ = 0.99, MSE from Schall’s algorithm and GCV give similar performance.

3.3.3.2 A correlated logistic regression model

In this subsection, a correlated data will be generated with four random covariates that

have a multivariate normal distribution with mean µ = 0 and constant standard deviation

σ = 1. The response variable with random binomial distribution with parameter equal
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to exp(Xβ)/(1 + exp(Xβ)) where β = (−0.309, 0.7503, 0.301,−0.501). Each covariate has a

correlation with other covariate. Every correlation has the same coefficient, i.e. 0.90, 0.95,

and 0.99. Sample sizes are 20, 30, 50, 80, and 150. 1000 samples are generated and analyzed

with logistic ridge regression.

n rho OLS Schall AIC GCV BIC mgcv

20 0.9 31479.4386 0.6721 2.4014 0.7701 0.9866 31479.4386
30 0.9 6546.1637 0.5398 5.6852 0.7460 0.9804 6546.1637
50 0.9 0.4867 0.3036 0.9177 0.7281 0.9676 0.4867
80 0.9 0.2410 0.1947 0.7340 0.7093 0.9490 0.2410

150 0.9 0.1154 0.0995 0.2054 0.6800 0.8854 0.1154

20 0.95 19132.3881 0.7040 2.4466 0.7704 0.9878 19132.3881
30 0.95 5420.5156 0.5709 4.6707 0.7443 0.9820 5420.5156
50 0.95 0.5177 0.3284 0.9316 0.7262 0.9707 0.5177
80 0.95 0.2559 0.2080 0.7710 0.7049 0.9537 0.2559

150 0.95 0.1243 0.1079 0.2470 0.6741 0.9012 0.1243

20 0.99 15764.5653 0.7784 2.0702 0.7714 0.9899 15764.5653
30 0.99 5908.4778 0.6055 1.7492 0.7463 0.9851 5908.4778
50 0.99 0.5557 0.3644 0.9488 0.7228 0.9754 0.5557
80 0.99 0.3034 0.2439 0.8392 0.6989 0.9612 0.3034

150 0.99 0.1420 0.1242 0.3455 0.6650 0.9230 0.1420

Table 3.5: MSE from correlated binomial data in different correlation coefficients (0.90, 0.95, and 0.99) and different
sample sizes(20, 30, 50, 80, and 150). MSE which is resulted from Schall’s algorithm are the smallest

Logistic ridge regression has been applied for the data sets. The selection methods: AIC,

GCV, BIC, and the proposed methods, Schall’s algorithm are compared. The MSE values

can be seen on Table 3.5. It can be seen that all MSE that resulted from Schall’s algorithm

is the smallest among other criterions.

3.4 Summary

Penalized Poisson ridge regressions give a better result for a correlated data such as

terrorism data in Afganistan. The optimized fit using Schall’s algorithm gives coefficients
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with the right sign for correlated covariates. Mountainous has a different sign of coefficient

(-), as we know before, it has a negative correlation with roads and water and the value of

coefficient for roads and water are positive. Majority also has a different sign of coefficient

(+), and it has a positive correlation with water.

In order to know the performance of algorithm, MSE was calculated. MSE for penalized

regression using Schall’s algorithm from correlated Poisson datasets and correlated logistic

datasets are the lowest compare with MSE from other criterions.



Chapter 4

Generalized Additive Models

4.1 Introduction

The linearity assumption is violated for some applications. For example, mcycle data

set consists of 133 observations with a series of measurement of head acceleration in

a simulated motorcycle accident, used to test crash helmet. Based on Figure 4.1, it is

obvious that a simple linear regression is not the best model for this dataset. We try to

use a polynomial regression for this. In this case, the linear regression model sometimes

produce incorrect values. Transformation or higher-degree polynomials can be used , but

this needs a good deal of expertise and time.

Figure 4.2 shows the polynomial regression can fit to mcycle dataset for degree five,

ten, fifteen and twenty. As the degree is higher, the fit is more sensitive. It can be seen

there are unexpected wiggles. Under 15 ms, the datasets give constant acceleration but

the polynomial regressions is oscillatory between the data points and it also can be seen

30
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Figure 4.1: Scatterplot of the motor-cycle impact data. It can be seen that a simple linear regression is not the best
model.

above 50 ms, for the polynomial regressions degree 20, the curve is not representing what

happened on the data set.

Some methods have been developed for smoothing a scatterplot, for example: using

a local weighting scheme (Cleveland, 1979), and the spline smoothing (Silverman, 1985;

Craven and Wahba, 1978; De Boor, 1972). Generalized additive models (GAMs) give a

solution for this kind of data (Hastie and Tibshirani, 1986). GAMs replace the linear

combination with the respondent variable in GLMs with a sum of smooth functions of

covariates. In this chapter, the definition of GAMs, penalized splines (P-splines), optimal

smoothing, GAMs with P-splines and the application will be discussed.
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Figure 4.2: Polynomial regressions are applied to mcycle. It can be seen that as the degree is higher, the fit is more
sensitive. The polynomial regression degree 20 above 50 ms does not represent what happened on the data set.

In Section 4.2, b-splines basis function will be explained. Next, in Section 4.3, penalized

splines (P-splines) will be explained. After that, in Section 4.4, GAMs with P-splines (P-

GAMs) will be discussed. In Section 4.5, the Schall algorithm for P-GAMs will be discussed.

In Section 4.6, the algorithm will be applied to a datasets. Finally, Section 4.8 is the chapter

summary.
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4.2 B-spline basis functions

There are two properties on B-spline basis functions i.e., the domain is divided by knots

and each basis function degree k, B j,k(x) ( j-th basis function degree k), are zero on the entire

interval except on a few adjacent subintervals (k+1 subintervals or k+2 knots). As a result,

B-splines basis functions are strictly local.

Suppose a set of data {x, y}, where x is the independent variable and y is the dependent

variable with n observations. The set t = {t1, t2, . . . , tk+(q+1)}, called the knot vector which

t j < t j+1, is defined to obtain a q parameter B-spline basis. A B-spline degree k (order k + 1)

can be presented as:

f (x) =

q∑
j=1

B j,k(x)a j

where q is a number of parameter B-spline basis and a j are B-splines coefficients and can

be viewed as the amplitudes of B-splines. Degree k must be 1 ≤ k ≤ q + 1. The shape of

the basis functions is only dependent on the knot spacing. The positions of knots and the

degree can modified to change the shape of a B-spline basis curve.

The q parameter B-spline basis functions degree k, B j,k(x), are most easily defined recur-

sively referred to as the Cox-de Boor recursion formula (De Boor, 1972):

B j,k(x) =
x − t j

t j+k − t j
B j,k−1(x) +

t j+k+1 − x
t j+k+1 − t j+1

B j+1,k−1(x)
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where

B j,0(x) =


1 , t j ≤ x < t j+1

0 , else

Figure 4.3: Illustration of B-spline bases degree 1 with knot sequence t = {0, 0.2, 0.4, 0.6, 0.8, 1.0}

For example, the B-splines bases with degree 1 with knot sequence t = {0, 0.2, 0.4, 0.6, 0.8, 1.0}

can be seen in Figure 4.3. One basis function consists of two linear pieces. It is defined

on two subintervals (three knots); one piece from t j to t j+1 and one piece from t j+1 to t j+2.

The knots are t j, t j+1 and t j+2. A basis function B1,1 is a non-zero function on the interval

[t1, t3] = [0, 0.4]. Outside the interval [0, 0.4], a basis function B1,1 is a zero function.

The B-splines bases with degree 2 with same knot sequence can be seen in Figure 4.4.

One basis function is defined on three subintervals (four knots). A basis function B1,2 is

a non-zero function on the interval [t1, t4] = [0, 0.6]. Outside the interval [0, 0.6], a basis

function B1,2 is a zero function.
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Figure 4.4: Illustration of B-spline bases degree 2 with knot sequence t = {0, 0.2, 0.4, 0.6, 0.8, 1.0}

Taking into account the regression of n data points (xi, yi) on the set q B-splines B j(.). The

fit of the data can be expressed by the sum of squared errors (SSE):

S =

n∑
j=1

yi −

q∑
i=1

B j(x)a j

2

a j can be estimated using an iterative method of scoring for GLM. The good fit of data is

indicated by low S. The smoothness of the curve will depend on the number of B-splines

and the value a. If a j for all as are nearly equal, next the function will be constant. If a j vary

wildly, then the function will be unstable.

4.3 Penalized splines (P-splines)

B-splines have stable numerical properties, but the user has to decide the number and

the position of knots. The number of knots influence the fit, too many knots give an overfit

model and too few knots give an underfit model. Penalized B-splines (P-splines) introduce
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a penalty on roughness of a while using a B-spline with a large number of knots (Eilers and

Marx, 1996). P-splines combine a B-spline and a difference penalty. The position of knots

usually are defined as equally spaced knots.

S∗ =

n∑
i=1

yi −

q∑
j=1

B j(x)a j


2

+ λ

q∑
j=k+1

(∆da j)2 (4.1)

where ∆d is the finite-order differences of the coefficients of adjacent B-splines and λ is a

penalty weight. The first order differences can be written as:

q−1∑
j=1

(∆a j)2 =

q−1∑
j=1

(a j+1 − a j)2 = |D1a|2 = a2
1 − 2a1a2 + 2a2

2 − 2a2a3 + . . . + a2
q

This can be written in matrix form as:

(D1)′D1 =



−1 0 0 0 . . . 0

1 −1 0 0 . . . 0

0 1 −1 0 . . . 0

...

0 0 0 0 . . . 1





−1 1 0 0 . . . 0

0 −1 1 0 . . . 0

0 0 −1 1 . . . 0

...

0 0 0 0 . . . 1


The second order difference is:

∆2a j = ∆(∆a j) = (a j − a j−1) − (a j−1 − a j−2) = a j−2 − 2a j−1 + a j.
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So the second order difference operator ∆2 can be represented in matrix as:

D2
(q−2)×q

=



1 −2 1 0 . . . 0 0 0

0 1 −2 1 . . . 0 0 0

0 0 1 −2 . . . 0 0 0

...

0 0 0 0 . . . 1 −2 1


The d-order difference operator ∆d() (Dd) can be called out with R-code by:

D=diff(diag(n),diff=d).

The coefficients is estimated from minimizing S∗ in 4.1:

â = (B′B + λP)−1B′y

where B is a matrix consists of the elements b• j = B jk(x), the jth B-splines function and P is

the sum of squares of differences, P = D′dDd, d = 0, 1, 2, . . ..

4.4 Univariate Smoothing with GAMs with P-splines(P-GAMs)

Hastie and Tibshirani (1986) introduced generalized additive models (GAMs) in order

to cover nonlinear covariate effects. They proposed to change a linear form Xβ in a GLM

with a sum of smooth functions of the explanatory variables
∑

si(xi). The GAMs have the
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form:

g(E(y|X)) =

p∑
i=1

si(xik) (4.2)

where p is the number of covariates, xi j is k-th observation for i-th covariates. In this

chapter, the univariate smoothing will be examined. Let a GAM model containing one

smooth function of one covariate,

yk = s(xk) + εi (4.3)

where yk is a response variable, xk a covariate, s a smooth function and the εk are i.i.d

N(0, σ2) random variables.

The function s() can be estimated by choosing a basis, defining the space of functions of

which s (or a close approximation to it) is an element. Marx and Eilers (1998) proposed

GAMs with P-splines (termed P-GAMs) which has f j = Bjka j as the jth GAM component

where Bjk is the B-spline matrix (with q j knots) of dimension m × q j and a j is the vector of

coefficient associated with the B-spline bases. The smoothness can be achieved from the fit

to the data which can be expressed by the sum of squared differences

S∗∗ =

m∑
i=1

yi −

q∑
j=1

bi ja j


2

.

4.5 Optimal Smoothing

In order to regularize the smoothness and avoid knot selection scheme, P-splines recom-

mend using a large number of equally space knots (Eilers and Marx, 1996). The estimate
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coefficient a is obtained from an iterative technique:

ât+1 = (B′ŴtB + λP)−1B′Ŵtẑt

until convergence, where Ŵt and ẑt are the weight matrix and adjusted dependent vector

used in GLM estimation. A difference penalty is applied for smoothing splines.

Besides the number and the degree of B-spline basis function, the smoothness of an

estimated curve on generalized additive models using P-splines is influenced by the weight

of penalty. The optimal weight of penalty can be obtained by some methods. Marx and

Eilers (1998) proposed to use information criterion (IC) to get the optimal weight of penalty:

IC = dev(y; a, λ) + δtrace(Ĥ)

where Ĥ = B(B′ŴB + λP)−1B′Ŵ. The estimated effective dimension ED can be obtained

from trace(Ĥ). It is more efficiently computed using trace(Ĥ) = trace(B′ŴB + λP)−1.

The Schall’s algorithm will be proposed for selecting the optimal weight of penalty. It

has the following steps:

1. For given σ̂2, λ̂ estimate the coefficient â by:

â = (B′ŴB + λP)−1B′Ŵẑ
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2. Given estimates of coefficients â, variance estimators are obtained from

(B′ŴB + λP)â = B′Ŵẑ

σ̂2 =
(y − Xβ̂)′(y − Xβ̂)

n − ED

and

τ̂2 =
â′D′dDdâ

ED

where ED stands for effective dimensions and is the trace of the hat matrix of the

mode (Hoaglin and Welsch, 1978). An estimate of the penalty weight λ̂ can be then

given by:

λ̂ =
ED

â′D′dDdâ

3. Iterate until the estimated penalty weight λ̂ convergence.

4.6 Application

A data set consists of 133 observations with a series of measurement of head acceleration

in a simulated motorcycle accident, used to test crash helmet. Time is measured in mil-

liseconds after impact and head acceleration. In this section, mcycle data set will be used.

It is used by Silverman (1985) for giving understanding about the spline smoothing. The

data set is obtained from Schmidt et al. (1981).
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Figure 4.5: B-spline regressions with different number of knots. Upper left, the fit is resulted from B-splines with 20
knots. Upper right, the fit is resulted from B-splines with 25 knots. Lower left, the fit is resulted from B-splines with 30
knots. Lower right, the fit is resulted from B-splines with 30 knots. As bigger the number of knots, the fit is more wavy

An alternative method to solve this problem is B-spline basis regression. Regression fit

for cubic spline with 20, 25, 30, and 40 equally-sized segment can be seen in Figure 4.5. It

can be seen that for more knots, the curve is more wavy.

In order to solve the problem in choosing the number of knots, P-GAMs with P-spline is

applied and the optimal smoothing used Schall’s algorithm. The result with 40 knots can

be seen in Figure4.6. The curve which is resulted from P-spline is more smooth than the

curve which is resulted from B-spline.
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Figure 4.6: The curve is resulted from P-spline with 40 knots. The optimal weight of penalty of P-spline regression is
selected automatically using Schall’s algorithm.

4.7 Simulation

Schall’s algorithm will be applied for smoothing a simulated data set. The data set

consists of 200 observations. The predictor has a standard normal distribution (N(0, 1))

and the response variabel is y = b0 +b1 ∗sin(2∗x)3 +e2 where (b0, b1) = (5, 10) and e is an error

with a normal distributionN(0, h(x)). h(x) is a function which performs heteroscedasticity

function:

h(x) = 1 + 0.1x.

The plot of the data set can be seen on Figure 4.7.
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Figure 4.7: Scatterplot of the simulated data. It can be seen that a simple linear regression is not the best model.

Figure 4.8: Left: the smoothing result from optimized P-GAM.;Right: the smoothing result from tensor product
(package mgcv).

P-GAM using Schall’s algorithm as automatic optimization will be applied and the result

will be compared with smoothing using tensor product. The result is quite similar using the

same number of knots (40 knots). Computation time of P-GAM using Schall’s algorithm

(0.20 second)is shorter than Computation time of tensor product smoothing (0.86 seconds).
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4.8 Summary

Generalized Additive Models can be presented with generalized linear models. In order

to get GLMs form, smooth functions in GAMs are replaced by P-splines. If in GLMs, there

is linear combination of covariates then in GAMs with P-splines (P-GAMs), there is the

linear combination of basis functions.

P-GAMs have some advantages such as GAM estimation is reduced to (generalized)

linear regression with a manageable penalty; the system of equations is a low dimension

and easy to solve; all the smooths are estimated simultaneously; the resulting GAM fit

is compactly summarized by relatively few numbers of parameters that facilitate future

prediction and standard errors, and regression diagnostics can be computed with relative

ease (Marx and Eilers, 1998).

The weight of penalty choosing is the important steps in penalized regression. The

Schall’s algorithm is applied for choosing the optimal weight of penalty. This algorithm

uses iterative to find the best model. It usually only needs a few number of iteration.



Chapter 5

Lasso Regression

5.1 Introduction

The lasso is a commonly used method for a variable selection. The method uses L1

penalization to shrink estimates. It is often used on high dimensional data, not only to

solve high dimensionality problem but also as a variable selection methods.

In this chapter we will propose a method for optimising a penalty weight. The novelty

of our approach has to do with re-writing the lasso L1 penalty as an L2 type ridge penalty.

Having done that, we will be able to optimise the weight using similar approaches to those

of previous chapters. The procedure is a combination of a ridge regression approximation

(Tibshirani, 1996), and a sum of absolute values approximation (Schnabel and Eilers, 2013).

The algorithm will be applied to prostate data and simulation data.

The chapter is organized as follows: In section 5.2, the definition of the lasso regression

will be explained. Later, section 5.3 will describe the commonly used computation for the

45
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lasso regression. The proposed algorithm will be described in Section 5.4. Next, Section

will apply the algorithm for some data set, real and simulation. Finally, Section 5.6 give a

summary for this chapter.

5.2 Definition

The lasso (Least Absolute Shrinkage and Selection Operator) is a regularized regression

method with an L1-norm penalty. It was proposed by Tibshirani (1996). Where the ridge

regression uses the sum of squared coefficients as a penalty, the lasso uses the sum of the

absolute value of coefficients, such that:

`∗
(
β
)

=

n∑
i=1

`i
(
β
)
− λ

p∑
j=1

|β j|

The lasso coefficient estimates β̂ can be presented as

β̂ = argmax

 n∑
1

`i
(
β
)
− λ

p∑
j=1

|β j|

 (5.1)

or, alternatively, in matrix notation:

β̂ = argmax{`(β) − λ‖β‖1}

The constraint shrinks coefficients and produces some coefficients that are exactly zero.

That means that lasso also performs variable selection, not only shrinkage. As λ increases,

the number of nonzero components of decreases.
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5.3 Computation

Tibshirani (1996) used a quadratic programming for estimating lasso coefficients. Equa-

tion 5.1 is expressed as a least squares problem with 2p inequality constraints, corresponding

to the 2p different possible signs for the β js. Although 2p may be very large, the problem can

be solved with inequality constraints sequentially and trying to find a solution satisfying

the Kuhn-Tucker conditions. The Kuhn-Tucker conditions for the lasso problem:

XT(y − Xβ̂) = λs, (5.2)

where

si ∈


{sign(β̂i)} if β̂i , 0.

[−1, 1] if β̂i = 0.

, for i = 1, . . . , p. (5.3)

β̂ is a solution in Equation 5.1 if and only if β̂ satiesfies Equation 5.2 and Equation 5.3 for

some s. Computation for lasso solutions with this procedure is however, expensive. The

optimal weight of the penalty can be selected by generalized cross-validation. In the next

section, we will propose an alternative algorithm.

The R package penalized implemented a method introduced by Goeman (2010). The al-

gorithm improves the gradient-based algorithm by combining gradient ascent optimization

and the Newton-Raphson algorithm in order to avoid the tendency to slow convergence.

The package can be used for linear regression, logistic and Poisson regression as well as the

Cox proportional hazards model. The optimal value of the tuning parameter λ is chosen

by using cross-validation.
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Next, the R package glmnet is developed by Friedman et al. (2009). The algorithm

applies cyclical coordinate descent in a pathwise fashion. The idea of pathwise coordinate

optimization is solving a sequence of single-parameter problems (β j) with a fixed value

penalty λ and holding the other parameters fixed at their current values. Equation 5.1 can

be written as:

f (β̃) =
1
2

n∑
i=1

yi −

∑
k, j

xikβ̃k − xi jβ̃ j


2

+ λ
∑
k, j

|β̃k| + λ|β̃ j|

where all the values of βk for k , j are held fixed at values β̃k(λ). The solution is:

β̃ j(λ)← S

β̃ j(λ) +

n∑
i=1

xi j
(
yi − ỹi

)
, λ

 (5.4)

Here S (t, λ) = sign(t)(t − |λ|)+. Iteration of 5.4 is repeated until convergence. The package

can be implemented for linear regression, logistic and multinomial regression models,

Poisson regression and the Cox model. The optimal model is chosen using cross validation.

5.4 The proposed algorithm

In his original paper, Tibshirani (1996), suggested computing the lasso estimate using

an iterated ridge regression algorithm. He suggested writing the penalty
∑
|β j| as

∑ β2
j

|β j|
.

The lasso estimate β̃ can be approximated by a ridge regression of the form β∗ = (XTX +

λW−)−1XT y where W is a diagonal matrix with diagonal elements |β̃ j|, W− denotes the

generalized inverse of W. The number of effective parameters in the constrained fit β̃ is
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approximated by trace of the hat matrix.

p(λ) = tr{X(XTX + λW−)−1XT
}

Schnabel and Eilers (2013) approximated a sum of absolute values S =
∑

j |β j| as
∑

j
β2

j√
β̃2

j +ε
2
,

with ε a small number . This approximation is adapted from Schlossmacher (1973). Al-

though the approach has been highlighted before, it was never really put into practice.

There were no papers investigating the expression of L1 penalization in an L2 form. In

this chapter, a ridge regression approximation (Tibshirani, 1996) and a sum of absolute

values approximation (Schnabel and Eilers, 2013) will be combined. We got the form

β∗ = (X′X +λW−)−1X′y where W is a diagonal matrix with the diagonal elements
√
β̃2

j + ε2.

The result of the above lasso estimate, combination of a ridge regression approximation

and a sum of absolute values approximation, still has ridge regression behaviour, the coef-

ficients are not shrunk to be exactly zero. To force the coefficients to be zero, a thresholding

scheme is applied to remove small β̂s. The thresholding scheme will kill covariates that are

smaller than the standard deviation of all coefficients (β̂ j = 0) (noises) and keeps some large

covariate (β̂ j , 0) (signals). The thresholding is defined as β̃ j = β̂o
jI(|β̂o

j | > γ) (Tibshirani,

1996).In this algorithm γ is chosen as γ =
∑

(β0
j − β̂ j)2/p and β0

j is coefficients for simple

regression.
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5.5 Application

5.5.1 Simulation

A set of 80 normally distributed variables Xi ∼ N(0, 1) with i = 1, ..., 80 on n=150

observations was simulated. Out of these features, only 20 of them were related to a normal

y response, with coefficients simulated under a uniform distribution β ∼ U(−2.2, 2.2) .The

final true model was of the form: y = Xβ + σε, where εN(0, 2) is the Gaussian random

noise added to the data and X is a matrix of size (150x20). Each dataset was repeated 1000

times, with four different models fitted within each step. The first approach was fitting the

data with a lasso model optimized via the penalized package. Then, a second would fit

the same lasso model optimised using glmmnet package. The last two models are based on

the proposed algorithm of this chapter. We will use two different algorithms for optimising

the penalty weight. One approach will optimise penalty by performing a grid search over

different values ofλs and choosing the one with the best GCV criterion. The other approach

will be based on using Schall’s algorithm for optimising the penalty. It should be noted

that this approach starts with a λ value being 0, thus since there is no penalty at first step,

none of the variables are dropped from the model.

Results are presented in the table below. The first column represents the fitting ap-

proach, second column present the average number of variables in the model and the

third one present the average bias, measured as the sum of the absolute value of the es-

timate coefficients minus the true coefficients, divided by the total number of variables :

Error=
∑
|β̂ − β|/p.
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Approach Variables in model Error
penalized 31 0.078

glmnet 29 0.080
grid search 17 0.052

Schall 17 0.054

Table 5.1: Number of variables in the model under different optimisation approach for 1000 repetitions of simulated
data i.e. glmnet, penalized, proposed algorithm using grid search, and proposed algorithm using Schall’s algorithm.
The proposed algorithm using grid search, and Schall’s algorithm give the smallest average bias.

It is important to show that there are virtually no differences in results given by using

Schalls approach or a grid search over λs, where results are very close together. Moreover,

the new approach outperforms both penalized and glmnet approaches here.

5.5.2 Prostate Cancer Data

Four different approaches i.e. glmnet, penalized, proposed algorithm using grid search,

and proposed algorithm using Schall’s algorithm were used to optimise the penalty weight,

in a model on the prostate cancer dataset. The data is obtained from men who were

about to receive a radical prostatectomy Stamey et al. (1989). The relationship between

the level of prostate specific antigen (the log of PSA) and a number of clinical measures

will be examined. There are 97 observations and eight variables as predictors: lcavol:log

cancer volume,lweight: log prostate weight, age in years, lbph: log of the amount of

benign prostatic hyperplasia, svi: seminal vesicle invasion, lcp: log of capsular penetration,

gleason a numeric vector and pgg45: percent of Gleason score 4 or 5. The data have been

standardised to 0 mean and 1 standard deviation. The results of the different models are

given in table (5.2).

The different approaches gave quite similar results. It has to be noted that optimisation

via Schall’s algorithm tends to penalise less than the other approaches in this instance.
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covariate glmnet penalized proposed+grid search proposed+schall
lcavol 0.519 0.520 0.517 0.582
lweight 0.205 0.208 0.201 0.228
age -0.060 -0.067 -0.050 -0.135
lbph 0.081 0.085 0.078 0.122
svi 0.213 0.215 0.211 0.270
lcp 0 0 0 -0.127
gleason 0.003 0.005 0 0
pgg45 0.058 0.058 0.055 0.130

Table 5.2: Coefficient estimates under four different approaches i.e. glmnet, penalized, proposed algorithm using grid
search, and proposed algorithm using Schall’s algorithm. The proposed algorithm using Schall’s algorithm penalized
less than others.

5.5.3 Microarray data set

The proposed algorithm is applied to gene expression data. The data contains informa-

tion on 120 rates and theirs gene profiles. Here, 200 gene probes are used as predictors.

Out of a total of 200 genes, just 20 have a non zero coefficient, when lasso penalisation

was applied using leave-one-out cross validation from package penalized. Using glmnet,

the number of genes that had a non-zero coefficient was 18. Our proposed algorithm once

again penalized less then the other, leaving 23 genes in the equation. Results are presented

in Table 5.3 and Figure 5.1.

5.5.4 PRIDE models

PRIDE models have been used in a series of applications, either for logistic/Poisson re-

gression, smoothing or survival analysis. The novelty of the models is that they include

a deviance vector γ in the linear part of the model, that adds one parameter for each ob-

servation. This extra parameter will absorb any extra variation that is not captured by the

models. Due to their flexibility, PRIDE models can be used for modelling overdispersion,

data with extra variation or data where digit preference might be an issue. The deviance
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Figure 5.1: Estimated coefficients under the different packages i.e. glmnet, penalized, proposed algorithm
using grid search, and proposed algorithm using Schall’s algorithm. The proposed algorithm using Schall’s
algorithm penalized less than others.
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gene number glmnet penalized schall
6222 0.025 0.054 0.072

14046 0.000 0.000 0.118
14949 0.029 0.052 0.038
15863 -0.085 -0.092 -0.108
16984 0.000 0.000 -0.048
17599 0.000 0.000 -0.147
21092 -0.146 -0.145 -0.154
21550 -0.028 -0.022 -0.057
22140 0.000 -0.020 -0.044
22813 0.000 0.000 -0.060
24245 0.022 0.014 0.058
24565 0.010 0.046 0.100
24892 0.016 0.016 0.070
25141 0.210 0.193 0.143
25367 0.022 0.015 0.083
26672 0.000 0.000 -0.058
27354 0.000 0.000 -0.049
28680 0.114 0.114 0.171
28967 -0.081 -0.093 -0.114
29041 -0.040 -0.056 -0.041
29045 -0.009 -0.018 -0.075
30141 -0.054 -0.066 -0.086

Table 5.3: Coefficient estimates under four different approaches i.e. glmnet, penalized, and proposed algorithm
using Schall’s algorithm. The proposed algorithm using Schall’s algorithm penalized less than others.

effects of the model are restrained by adding an L2 penalty, so the parameters are iden-

tifiable. In their original paper, Perperoglou and Eilers (2010) illustrated how to fit the

models using an efficient algorithm that does not require a grid search over several values

of penalty weights. Here, we look into an application where the deviance effects can be

controlled using an L1 or even an L0 penalty model.

For example, consider the data on the number of deaths of Greek males in 1960. Figure

5.2 presents a histogram of the raw data. It can be seen that every five years, from the age

of 45 and onwards, there exists a spike of increased number of deaths. This phenomenon

is known as age heaping in demography or digit preference in general. An L2 type of

penalty is (blue line) shows how the smoothed data should look like. Using the same idea

as before, we also fitted an L1 penalty (green line). The smooth line is almost identical, for
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early ages, to the blue line and somewhat different for ages over 70. An L0 penalty smooth

(red line) was also fitted. In practice what that means is that when L1 is selected, matrix

W is a diagonal matrix with elements, 1/(β2
j + ε), while when L0 is selected W becomes a

diagonal matrix with elements 1/
√
β2

j + ε.

The deviance effects can be plotted to gain insight on the patterns of extra variation in

the data. The deviance effects are quite large (in absolute value) in ages multiple of five,

showcasing the impact of digit preference. Additionally, large deviance effects (positive)

are associated with ages plus or minus one year of the multiples of five. That illustrated

the ”popularity” of some numbers, and the ”unpopularity” of some other. It also evident,

that L2 penalties tend to shrink all of the effects to smaller sizes, while L1 penalty shrinks

some effects closer to zero than others. L0 penalization shrinks most of the deviance effects

to absolute 0 and only leaves some in specific ages to absorb that digit preference.

5.6 Summary

In this chapter, the new algorithm for lasso is proposed. The algorithm is the combination

of Tibshirani (1996) proposed, Schnabel and Eilers (2013)’s approximation for a sum of

absolute values and a thresholding scheme which removes some small β̂s (a small β̂ become

a zero coefficient) . Tibshirani (1996) proposed lasso regression and some algorithms for the

regression. He used quadratic programming in his paper and also proposed the penalty∑
|β j| is written as

∑
β2

j/|β j|. The lasso estimate β̃ can be approximate by a ridge regression.
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Figure 5.2: Upper: A histogram of the number of deaths for Greek males in 1960. Three smoothers have been
applied with PRIDE modelling, using L2 (blue line), L1 (green line) and L0 (red line) penalization. Lower left:
Plot of deviance effects under L0 penalization, lower middle: deviance effects under L1 penalization, lower
right: deviance effects under L2 penalization.
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Schnabel and Eilers (2013) adapted Schlossmacher (1973) for approximating a sum of

absolute values
∑

j |β j| as a sum of weighted squares
∑

j β
2
j/|β̃ j|. They modified a sum of

weighted squares to make it safer. A sum of weighted squares is written as
∑

j β
2
j/

√
β̃2

j + ε2,

with ε is a small number. So W can be written as a diagonal matrix with the diagonal

elements
√
β̃2

j + ε2.

The result of the above lasso estimate still has ridge regression behaviour, there are no

ridge regression coefficients, which is exactly zero. A thresholding scheme is applied so

that removes some small β̂s. If |β̂ j| ≤ γ then the coefficients are zero where γ =
∑

(β0
j − β̂ j)2/p

and β0
j is coefficients for simple regression.

The proposed algorithm is compared to other algorithms in R package penalized and

glmnet for prostate data set and two simulations. Those three packages use cross-validation

as model selection and the proposed algorithm use generalized cross-validation, but the

results are quite similar.

In addition, Schnabel and Eilers (2013)’s approximation can be used in PRIDE models.

PRIDE models involve the deviance effects in the models and control it using an L2 penalty

model. The deviance effects also can be controlled using an L1 or an L0 penalty model using

Schnabel and Eilers (2013)’s approximation.



Chapter 6

Two Dimensional Smoothing via an

Optimised Whittaker Smoother 1

A large number of observations will produce a scatter-plot which is difficult to investigate

due to a high concentration of points on a simple graph. We review the Whittaker smoother

for enhancing scatter-plots and smoothing data in two dimensions. To optimise the be-

haviour of the smoother, an algorithm is introduced, which is simple and computationally

efficient.

The Whittaker smoother are well-used to smooth and interpolate noisy data. The ad-

vantages of implementing the Whittaker smoother are having fast computation, providing

continuous control of smoothness, automatic interpolation and ease of cross-validation Eil-

ers (2003). The Whittaker smoother can be a valuable tool in producing better visualisations

of big data or filter distorted images.

1This chapter has been published on Zuliana, S. U. and Perperoglou, A. ”Two dimensional smoothing via
an optimised whittaker smoother,” Big Data Analytics, vol. 2, no. 1, p. 6, 2017.
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Eilers and Goeman (2004) have applied the Whittaker smoother for visual enhancement

of a scatterplot, using a smoothed histogram. However, the penalty weight λ is chosen

by the user’s taste. In this study, The optimisation process on two dimensional smoothing

is proposed. The optimal penalty weight λ can be obtained automatically. The methods

are illustrated using a simple dataset and simulations in two dimensions. Additionally, a

noisy mammography is analysed. When smoothing scatterplots the Whittaker smoother is

a valuable tool that produces enhanced images that are not distorted by the large number of

points. The methods is also useful for sharpening patterns or removing noise in distorted

images.

The article of this chapter has published on Zuliana, S. U. and Perperoglou, A. ”Two

dimensional smoothing via an optimised whittaker smoother,” Big Data Analytics, vol.

2, no. 1, p. 6, 2017 and it is attached in the appendix. The contribution of study is the

optimisation process on two dimensional smoothing. It can be done automatically without

playing a grid of penalty weights λs, simple and low computational cost. It is started by

any initial penalty weight λ. This study could be developed to more than two-dimensional

smoothing.

On the published paper, the proposed approach has been compared with Whittaker

smoothing without optimization and Kernel smoothing. In this section, the proposed

approach will be compared with tensor product smoothing from package mgcv.

From Table 6.1, the optimized Whittaker smoothing needs only very short time for all

image. For simulated image, the proposed algorithm needs 3.29 seconds and the tensor
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time in second
tensor product optimized Whittaker

simulated
histogram 87.8 3.29

simulated
image 32.4 3.5

application 144.8 1.26

Table 6.1: Computation time for smoothing simulated histogram, simulated image and the real image between
optimized Whittaker and tensor product

product needs 87.8 seconds to get the optimal smoothing. Also, the result is better for

recognizing the true data (The true histogram can be seen on the appendix). Compare

with the result from tensor product smoothing, the result from the proposed algorithm

also better for reducing the noise, so the true signal can be seen. Besides,the tensor product

need longer time than the proposed algorithm, it needs 87.8 second to get the optimal

result.

The result from tensor product (package mgcv) is better than the proposed algorithm’s

result. However the proposed algorithm’s computation time is significantly shorter than

the tensor product’s time. The Schall’s algorithm only needs 3.5 seconds and 1.26 second

to get the smoothing image and the tensor product needs 32.4 second and 144.8 seconds to

get it.

The optimized Whittaker has a good result for bivariate smoothing. It can enhance the

image and reduce the noise. The computation time is very short. It means the smoothing

would be developed for more than two-dimensional smoothing.
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Figure 6.1: Optimized Smoother Whit-
taker Figure 6.2: Tensor Product

Figure 6.3: Optimized Smoother Whit-
taker Figure 6.4: Tensor Product
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Figure 6.5: Otimized Smoother Whittaker Figure 6.6: Tensor Product



Chapter 7

Conclusion and future work

Schall (1991) proposed an algorithm for estimating the variance of the random effect.

In this thesis, we have adapted Schall’s algorithm as automatic selection for an optimal

weight of penalty in order to minimizing computational cost because the optimal penalized

model can be obtained from the algorithm within a small number of iterations. Moreover,

the proposed algorithm can be initialized with any value of penalty weight.

First of all, Schall’s algorithm has been applied to ridge regression for linear models,

generalized linear models and generalized additive models. For linear models, the per-

formance of proposed algorithm has been compared to other approaches that have been

previously provides for selecting an optimal model such as leave-one-out cross validation,

principal components, and generalized cross validation which can be found in R package

i.e. penalized, gamlss, ridge, and MASS. The performances of Schall’s algorithm and other

approaches are measured with prediction error. Prediction error of Schall’s algorithm is the

smallest value and the coefficient estimates was not mistakenly estimated as an opposite

63
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sign from the real one.

Furthermore, for the implementation of Schall’s algorithm on Poisson and logistic regres-

sions, a real data set and simulated data sets have been considered. The simulated datasets

have correlated parameter with different correlation coefficients and different sample sizes,

and the results are compared with model criterion, i.e. Akaike information criterion (AIC),

bayesian information criterion (BIC), and generalized cross validation (GCV). The results

demonstrated that the proposed automatic selection for an optimal weight of penalty

method outperform as compared to the model criterion. In addition, Schall’s algorithm is

also applied to generalized additive models with P-splines (P-GAMs) and the results show

a smoother curve compare to polynomial regression and B-spline regression.

Next, Schall’s algorithm is applied to lasso regression. For the implementation of Schall’s

algorithm, we need to calculate effective dimension, therefore a new algorithm for lasso

regression has been proposed and the new algorithm is Tibshirani (1996)’s suggestion with

improvement using Schnabel and Eilers (2013)’s approximation . The new algorithm of

lasso and Schall’s algorithm as an automatic model selection is applied prostate data,

eyedata, simulated data with five zero parameters, and simulated data with twenty zero

parameters.

Finally, Schall’s algorithm is applied to two dimensional smoothing. The optimised

Whittaker smoother has been proposed. In this work an attempt has been made to focus

on application of an automatic model selection for Eilers and Goeman (2004)’s work. The

algorithm is applied to simulated noisy data, simulated image, and real image. The results
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of smoothing can enhance the signal and reduce the noise.

The ideas suggested in this thesis can be very useful in any framework of penalized

regression. We showcased applications in linear regression, GLMs and GAMs, as well as

smoothing in two dimensions. We can quite easily expand our suggestions in more than

two dimensions, where tensor products are needed and penalization and optimisation can

be a computationally expensive task. Further work can also illustrate properties of what

we have presented in a series of examples. More simulations can highlight the behaviour

of our approach in different datasets.

A benefit can be seen also in the use of Schall’s algorithm in conjunction with PRIDE

models. We did present one example on a simple smoothing case, but the applications

expand also to more complicated settings. One might consider smoothing with PRIDE in

more than one dimensions but using an automated penalty optimisation. It would be very

interesting to see the behaviour of L1 and L0 penalties both in many dimensions but also in

regression problems with several covariates.
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Abstract

Background: In many applications where moderate to large datasets are used,
plotting relationships between pairs of variables can be problematic. A large number of
observations will produce a scatter-plot which is difficult to investigate due to a high
concentration of points on a simple graph.
In this article we review the Whittaker smoother for enhancing scatter-plots and
smoothing data in two dimensions. To optimise the behaviour of the smoother an
algorithm is introduced, which is easy to programme and computationally efficient.

Results: The methods are illustrated using a simple dataset and simulations in two
dimensions. Additionally, a noisy mammography is analysed. When smoothing
scatterplots the Whittaker smoother is a valuable tool that produces enhanced images
that are not distorted by the large number of points. The methods is also useful for
sharpening patterns or removing noise in distorted images.

Conclusion: The Whittaker smoother can be a valuable tool in producing better
visualisations of big data or filter distorted images. The suggested optimisation method
is easy to programme and can be applied with low computational cost.

Keywords: Histogram smoothing, Data visualisation, H-likelihood

Background
The histogram -in all its simplicity- is one of the most powerful tools of data visualization.
Plotting the values of a variable x against a variable y will reveal whether there are is
some sort of correlation between the variables or not, whether the relationship is linear
or more complicated, whether there are interesting subgroups in the data or whether
outliers are present. A problemmight rise however, when trying to plot many points onto
one simple graph. As the number of observations becomes larger and larger many scatter-
plots end up being to busy for the eye to understand. Often, in moderate to large datasets,
a collection of many observations on one plane will end up revealing a cloud of points
where all structure remains obscured by the superposition of one point onto another.
Depending on what is the medium where such a graph will be illustrated, it becomes a
waste of ink or space.
To address this problem, some researchers have suggested smoothing data to obtain

a heat plot image, rather than the original scatter plot. A heat plot will use colour, or
shades of black, to represent areas of great concentration of points. A common way is
via the use of Kernel smoothers [1], employed in R with the function smoothScatter

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://
creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
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which is part of the base distribution [2]. More recently, Eilers and Goeman [3] illus-
trated a way of smoothing scatter-plots in two directions using penalized b-splines or
p-splines. This approach has been implemented in package gamlss.util via command
scattersmooth [4].
In this work we are focusing on the paper by Eilers and Goeman [3] where a scatter-plot

is enhanced using smoothed densities. We will start off with the same approach, where
penalized splines are applied on the x and y directions, respectively. However, we will
also go a step further and so how the optimal smoothed scatter-plot can be obtained by
estimating the amount of penalty needed for each graph. We view penalized splines as
random effects whose variance depends on the penalty weight. This is not a completely
new approach but has only been applied to one dimension before (see [5–8]). We will
revise the algorithm and extend it to apply to two dimensional smoothing.
The paper will start by illustrating a simple spline, the Whittaker smoother [9] and how

this is applied in smoothing in one direction. In the next section we will introduce a simple
dataset on which we will show how to obtain an optimised smoother where the penalty
weight is estimated. We will then extend the method into two dimensions and show how
to optimise smoothing penalties. The paper is ended with a discussion.

Implementation
TheWhittaker smoother

Consider a simple scatter-plot in which the logarithm of the ratio of received light from
two laser sources (given as y) is plotted against the distance travelled before the light is
reflected back to its source, or range x. These particular data are produced using the Light
Detection and Ranging (LIDAR) technique. The data have been used in [10] (Chapter 3)
and can be downloaded from http://matt-wand.utsacademics.info/webspr/data.html.
We would like to obtain a smooth function of y given by a vector α. That means that for

each observation in vector y, written as yi with i = 1, 2, ...,m an estimate αi is obtained.
Adding one parameter αi for each observation yi has the benefit of allowing the smoother
to be very flexible and follow any kind of pattern the data might have. The drawback of
course is that the number of parameters is as big as the number of observations which
can lead to over-fitting. To control for over-fitting, a roughness penalty is imposed based
on the differences of the parameters.
LetDd be amatrix that forms differences of order d. For example, a first order difference

is denoted as�αi = αi−αi−1, while a second order difference would be�2αi = �(�αi) =
αi − αi−1 − (αj−1 − αj−2), with corresponding D1 and D2 matrices given by:

D1 =
⎡
⎢⎣

−1 1 0 0
0 −1 1 0
0 0 −1 1

⎤
⎥⎦ ;D2 =

⎡
⎢⎣

−1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1

⎤
⎥⎦

The penalized Whittaker smoother is computed by minimising the following penalised
least-squares function:

S = ||y − α||2 + λ||Ddα||2 (1)
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Then, to get an explicit solution for α one needs to minimise S in (1). That would lead
to penalized normal equations given as:

α̂ = (I + λD′D)−1y (2)

where I is an identity matrix of dimension m × m. The smoothed vector α̂ depends, of
course, by the choice of the penalty weight. When λ tends to zero, hardly any penalization
is imposed on the estimates giving a non-smoothed curve, close to the actual values. On
the other extreme, as λ tends to infinity the penalty weight dominates and it results in
a straight line. Optimal values of λ should provide a smooth curve that reveals the true
nature of the data whilst removing roughness and randomness. Figure 1 illustrates the raw
data along with three smooth curves based on different penalty weights. For small values
of λ the data are undersmoothed, while as λ increases the methods provides a smoother
curve.

Penalty optimization

A common way to choose the optimal weight is to perform a search for an optimal crite-
rion over a fine grid of λ values. The user has to define a number of distinct possible values
of λ, fit a model for each one of those and then decide which one is preferred based on
some sort of a loss function or a criterion. Common choices include cross-validation or
Akaikes-type criteria (including Akaike Information Criterion (AIC), Akaike Information
Criterion correction (AICc), Bayesian Information Criterion (BIC) etc, see [11–13]).
One popular approach is the use of Generalized Cross Validation (GCV) [14]. DefineH

the hat matrix as H = (I + λD′D)−1 and let ed= trace(H) be the effective dimensions,
given as the sum of the diagonal elements of H. Then

GCV (λ) =
∑m

i=1(yi − α̂i)2

(m − tr(H))2
(3)

Here, we use an algorithm for penalty optimisation that treats the penalty weight as a
parameter to be estimated from the model. A penalized likelihood can be seen through
a Bayesian model framework [15], or a random effects framework [10], or an extended
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Fig. 1 Whittaker smoother on the LIDAR data using three different penalty weights
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likelihood of a random effect parameter [16]. These different viewpoints allow for the use
of an algorithm that was first suggested by [17] to estimate the variance of the random
effect in a random effects model. Variations of the algorithm have also been published
in [6, 7].
In the Whittaker smoother model, define e = y − α̂ and let

σ̂ 2 = e′e
m − ed

(4)

wherem and ed as before, and let

σ̂ 2
α = α̂′D′Dα̂

ed − 2
(5)

More details can be found in [18] (Chapter 9).
The algorithm that chooses an optimal weight then has the following steps:

1. For given σ̂ 2, σ̂ 2
α find λ̂ = σ̂ 2

σ̂ 2
α

.

2. Estimate vectors by: α̂ = (I + λ̂D′D)−1y
3. Given α update λ̂ = σ̂ 2

σ̂ 2
α

.
4. Iterate until convergence.

The algorithm usually converges within a few steps. In rare cases convergence is sen-
sitive to starting values of λ but we have found that this is rarely happening when both
σ̂ 2, σ̂ 2

α are 1.

Smoothing a two dimensional histogram

Consider a two dimensional domain x − y that is being cut into rectangles and the num-
ber of observations that lie within each rectangle been counted. For such an x − y plain
a matrix Rm×n is formed that contains counts. To smooth a two-dimensional histogram
based on R, one has to smooth first the columns R•n, that form a vector y, using the same
algorithm defined before for one dimensional smoothing. That would produce a new
matrix Gm×n. Then, using exactly the same procedure it is easy to smooth the columns
of G′•m, which are the rows of Gm×n. The new smoothed matrix will be the transposed of
the desired outcome. This is the algorithm that was defined in [3]. There are two differ-
ent penalty weights in the algorithm, λ1 that penalises the smooth over columns of Rm×n
and λ2 which is used for the penalty in rows of Gm×n. In the original paper, as well as
in the function scatterSmooth the penalties are not optimised, instead they are taken
with the default values: λ1, λ2 = 1. Since this is a two step algorithm, it would be rather
straightforward to optimise λ-s into both direction. In the first step, the algorithm for one
dimensional smoothing can be applied to get the optimal for the columns of Rm×n and in
the second step, the same algorithm will be applied to optimize λ2. That would result in
an overall better image of the data.

Results
The LIDAR data

For the LIDAR data, the GCV criterion was first used as a reference. A fine grid of values
was defined, ranging from a very small penalty weight 0.001 that would allow the esti-
mates to vary freely, to a large penalty of 100000 that would essentially make the estimates
close to zero. The optimal value was determined to be for a high value of λ = 7943. Using
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the algorithm to optimise the penalty weight the estimated value was λ̂ = 5758. Although
the two values look different, in fact the smooth line they produce is not distinguishable,
as seen from Fig. 2, where one smooth lies on top of the other.

Simulated histogram

To illustrate the methods, a simple simulation dataset was created. Let x ∼ N(0, 1) and
y = 0.7 ∗ x + 0.4x2 + 0.3e where e is Gaussian noise. A total of 10000 observations were
created and plotted in the upper left scatter-plot in Fig. 3. The relationship between the
two variables is obscured by random Gaussian noise (showing in upper right graph). The
latter scatter-plot was then smoothed using first a Whittaker smoother with optimised
penalties. The algorithm estimated a penalty close to zero along the columns λ1 < 0.001
and a second penalty λ2 = 4.3 along the rows. The image produced be the smoother
is shown in the lower left scatter-plot. The heatmap shows areas of great concentration
of points, towards the centre of the graph, and also clearly reveals the signal behind the
noise. A few randomly selected points are plotted around the heatmap. In the lower right
graph, the Kernel smoother (using smoothScatter in R) also reveals the true signal,
however, it is more sensitive to the noise and provides a heatmap with some features of
the noise still in it.

Simulated image

The Whittaker smoother can also be used of any 2-dimensional smoothing. To illustrate,
consider the image in Fig. 4 (upper left) in which some Gaussian noise was added to
mask the patterns (upper right). The addition of Gaussian noise masks completely the
previously clear patterns. The application of aWhittaker smoother without a penalty opti-
misation uses a default line for both weights, thus here: λ1 = λ2 = 1. However, in this
case there is a need for bigger penalties that will control the smooth in both directions.
As seen in the Fig. 3 (lower right graph) the smoother does remove some noise and hints
on some of the patterns but it does not reveal the true image. Instead, when the weights
are optimised (here λ1 = 23.8 and λ2 = 33.4) the pattern is clearly revealed.
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Fig. 2 Whittaker smoother on the LIDAR data, using cross-validation and optimisation
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Filtering a noisy mammography

Smoothing can also be used to filter out noise from a distorted image. As an exam-
ple we consider the case of a mammography. In the upper left part of Fig. 5 a
mammography is displayed. In the upper part of the breast, a white shade (marked
with a cross) shows signs of what might be a tumour. The original image can
be found online at: http://img.medscape.com/news/2014/dt_140703_mammography_
breast_cancer_800x600.jpg. To make the problem more challenging Gaussian noise has
been added to the image, in a way that distorts the definition of the tumour. In Fig. 5,
the original image has been slightly distorted, as it can be seen on the upper right part
of the graph. To filter noise out, a kernel smoother has been used that resulted in the
image shown in the lower left part of the figure. The smoother was created using function:
image.smooth from library fields [19]. The smoother has removed a lot of noise
and the image looks sharper, though not as sharp as the original. TheWhittaker smoother
was applied, with an automated selection of penalty weights. In the lower right part of the
figure the Whittaker method produces a better image, has removed more noise than the
kernel smoother and defined the tumour more clearly.
The merit of the method can also be seen when the image is more noisy. Figure 6

presents the same mammograph, where the addition of noise now completely distorts the
image (upper right). The kernel smoother fails to reveal the original features of the image.
On the contrary, using aWhittaker smoother, the features of the image are restored (lower

Fig. 5 Smoothing a two dimensional histogram: Added some noise to mammography. [Upper left graph:] A
breast mammography. An area that seems like a tumour has been marked with a cross. [Upper right graph:]
obscured by Gaussian noise, [Lower left graph:] smoothed by kernel smoother [Lower right graph:] smoothed
by Whittaker smoother with optimisation



Appendix A. 79

Zuliana and Perperoglou Big Data Analytics  (2017) 2:6 Page 8 of 11

Fig. 6 Smoothing a two dimensional histogram: Mammography completely distorted by noise. [Upper left
graph:] A breast mammography. An area that seems like a tumour has been marked with a cross. [Upper right
graph:] obscured by Gaussian noise, [Lower left graph:] smoothed by Whittaker smoother with optimised
penalties and [Lower right graph:] smoothed by Whittaker smoother without optimisation

right). Although there is still noise left, it is now more clear that there is a finding in the
mammography.

Conclusions
A simple - yet powerful addition to a Whittaker smoother was presented. The addition is
based on an efficient algorithm that will lead to an optimised penalty weight. Thus, the
degree of smoothing that is needed can be objectively decided by the procedure rather
than subjectively by the user. The methods can be applied to one or two dimensional
smoothing.
The methods presented here are intended as a tool for the applied user who would like

to have an effective and computationally efficient way to smooth scatter-plots or images.
The approach was illustrated and compared to a Kernel smoother or a simple Whittaker
smoother. When compared with the Kernel smoother the optimised Whittaker approach
produced an image with less noise and closer to the true relationship between the vari-
ables. We see a two-fold advantage here; first the optimised smoother can be used as a
simple data visualisation device. It will produce a plot that is visually more compelling
whilst on the same hand communicating significant information on the data. As such the
differences with the Kernel smoother areminimal. Another advantage however, is that the
optimised smoother can be used to gain a better insight and understanding at the data,
since it removes more noise than a Kernel smoother when needed. As such, theWhittaker
smooth can be used as a more in-depth explanatory method for making sense out of data.
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The benefits of optimising penalty weights were also illustrated further in a second
example of smoothing a simulated image. Of course, an experienced researcher will prob-
ably have been able to identify the need of a larger penalty in Fig. 4 (lower right) and
experiment with larger values for the penalties. That would probably led to a better image
but leads to a subjective fit that depends on the used. On the other hand, one could also
optimise penalty weights by minimising some sort of loss function or criterion, as illus-
trated in “Background” section, but this would be a computational expensive method to
follow, especially in two dimensions.
When working with real mammography images, the method was able to outperform

kernel smoothers. In further investigation of the same problem, Gaussian filters have been
used, to blur the image and obtain better results. When specifying a Gaussian blur, the
user has to specify the variance of the Gaussian distribution. With some trial and error
approach, we where able to filter the noise out to a satisfactory level, but we could not
outperform the Whittaker smoother (data not shown). Additionally, the filter did require
tuning from the user and was not based on an automated procedure.
A merit of our approach is that it can work even in cases where smoothing is not

required. When the image is not noisy, the algorithm with converge to extremely small
values for the penalty weights, thus removing the effect of the penalty altogether. The
more noisy the image the bigger the penalty weights will be. These are situations where
the method has great advantages over other approaches.
The algorithm presented in this paper was coded in R in just a few lines of code. It is

very easy however to implement it in another programming language like Matlab or Java.
The appendix contains the R programme.

Availability and requirements
Operating System: Windows 7
Language: R

Appendix: R code

smooth2D = funct ion (Hraw , lambda =1) {
### Hraw : A plane g i v e n as an m x m matr ix
### lambda : p ena l t y we i gh t
i f ( length ( lambda ) == 1)

lambda = c ( lambda , lambda )
m <− nrow (Hraw )
n <− ncol (Hraw )
E1 <− diag (m)
E2 <− diag ( n )
Dx <− d i f f ( E1 )
Dy <− d i f f ( E2 )

dz <− 5
while ( dz >1e−5){

Qx <− E1 + lambda [ 1 ] ∗ t (Dx )
sQx <− so lve (Qx)
z1 <− sQx
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HQx <− sQx
edx <− sum ( diag (HQx) )
s2 <− sum ( t (Hraw−z1 )
su2 <− sum ( t ( z1 )
dz <− abs ( lambda [1]− s2 / su2 )
lambda [ 1 ]<− s2 / su2 }

dz <− 5
while ( dz >1e−5){

Qy <− E2 + lambda [ 2 ] ∗ t (Dy )
sQy <− so lve (Qy)
z2 <− sQy
HQy <− sQy
edy <− sum ( diag (HQy) )
s2 <− sum ( t (Hraw−z2 )
su2 <− sum ( t ( z2 )
dz <− abs ( lambda [2]− s2 / su2 )
lambda [ 2 ]<− s2 / su2 }

out <− l i s t (H= t ( z2 ) , Hx = HQx, Hy=HQy, Dx=Dx , Dy=Dy ,
Hraw=Hraw , lambda=lambda )
out }

Abbreviations
AIC: Akaike information criterion; AICc: Akaike information criterion correction; BIC: Bayesian information criterion;
GCV: Generalized cross validation
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