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Abstract  

The impact of visual field deficits such as hemianopia can be mitigated by eye 

movements that position the visual image within the intact visual field. Effective eye 

movement strategies are not observed in all patients, however, and it is not known 

whether persistent deficits are due to injury or to pre-existing individual differences. 

Here we examined whether repeated exposure to a search task with rewards for good 

performance would lead to better eye movement strategies in healthy individuals. 

Participants were exposed to simulated hemianopia during a search task in five testing 

sessions over five consecutive days and received monetary payment for improvements 

in search times. With practice, most participants made saccades that went further into 

the blind field earlier in search, specifically under conditions where little information 

about the target location would be gained by inspecting the sighted field. These changes 

in search strategy were correlated with reduced search times. This strategy 

improvement also generalised to a novel task, with better performance in naming 
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objects in a photograph under conditions of simulated hemianopia after practice with 

visual search compared to a control group. However, even after five days, eye 

movements in most participants remained far from optimal.  The results demonstrate 

the benefits, and limitations, of practice and reward in the development of effective 

coping strategies for visual field deficits. 

Key words: 

Visual search, optimality, blindsight, hemianopia 

 

Partial binocular visual field loss such as hemianopia has a profound impact on 

day-to-day functioning and is often associated with difficulties carrying out daily 

activities such as reading (Schuett, Heywood, Kentridge, & Zihl, 2008), driving 

(Papageorgiou, 2007), and navigating in familiar and unfamiliar environments (Han, 

Law-Gibson, & Reding, 2002; Kerkhoff, 2000; Papageorgiou, Hardiess, Schaeffel, 

Wiethoelter, Karnath, Mallot, Schoenfisch, & Schiefer, 2007; Zihl, 1995). The adverse 

effects of hemianopia on the interactions with the environment can be reduced by 

effective eye movements that strategically position the target visual image within the 

intact visual field. For example, a patient with left visual field loss could fixate the left 

edge of busy sidewalk, rather than the center, to avoid colliding with other pedestrians. 

Some patients spontaneously compensate for their visual field loss over time by 

adopting more efficient eye movement strategies (Zihl, 1999; Zihl & von Cramon, 1985), 

but an estimated 60% of patients continue using ineffective scanning strategies when 

searching for a target object (Zihl, 1995). One technique that has been shown to 

improve patients’ visual exploratory abilities is visual search training, which encourages 
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patients to make exploratory eye movements into the blind field (Pambakian, Currie & 

Kennard, 2005; Pambakian, Mannan, Hodgson & Kennard, 2004). In laboratory settings, 

improvements have been noted after an average of 15 hours of training in 14 previous 

studies (See Sahraie et al., 2016 for a review) but some improvements after as little as 

only one session of therapy (300 trials) have also been reported (Jacquin-Courtois, 

Bays, Salemme, Leff & Husain, 2012). Applying these strategies in real life has been 

associated with self-reported improvements in general functioning (Mannan, 

Pambakian & Kennard, 2010; Nelles, Esser, Eckstein, Tiede, Gerhard & Diener, 2001). It 

is important to note, however, that eccentric fixation strategies come with the cost of 

lower visual acuity as items of interest are viewed peripherally. 

In training studies, participants are typically given specific instructions and are 

encouraged to use a particular strategy. Is this required, or can an efficient strategy 

develop spontaneously simply through exposure to the deficit and practice with a 

search task in the absence of any specific instruction? An influential model of visual 

search suggests that healthy human observers can use optimal strategies without 

specific instructions (Najemnik & Geisler, 2005; 2008). In the optimal or ideal search 

model, eye movements are directed to locations that are expected to lead to the highest 

possible information gain, and the authors who developed the model found that it 

matched human search in terms of the number of eye movements it required to find a 

target. But this model’s premise is inconsistent with research revealing profound 

failures to direct eye movement to locations that could maximise information gain 

(Clarke & Hunt, 2016; Morvan & Maloney, 2012; Verghese, 2012). The results of these 

latter studies are more consistent with a stochastic model of eye movements during 

search, where each eye movement is randomly selected from a population of the eye 
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movements participants can make from that region of the screen (Clarke, Greene, 

Chantler & Hunt, 2016; Clarke, Stainer, Tatler & Hunt, 2017).   

From related experiments in our lab, we also know that healthy individuals 

without visual field deficits show large variation in search strategies, with some of them 

being very efficient searchers, and some using a very inefficient strategy (Nowakowska, 

Clarke, & Hunt, 2017). Indeed, the large range of individual differences has been 

documented in numerous behavioural, electrophysiological and even neuroanatomical 

studies, showing the variations in pattern of connectivity in different individuals. 

Variability in patients’ performance, on the other hand, has often been attributed to 

factors such as site and extent of the lesion and age at the onset as well as differing 

retro- and anterograde patterns of degenerations post lesion (see for example Zihl, 

1999, Tant, 2002). One detail that is often lacking in patient studies, however, is the 

knowledge of premorbid performance.  Hence, although different lesions result in 

different deficiencies, the baseline performance levels are also variable. Furthermore, it 

is also possible that some particular premorbid patterns of connectivity can make some 

patients more susceptible to develop residual capacities to process some visual stimuli. 

This has been shown, for example in the unusual pattern of projection to the contra-

lesioned MT in a famous blindsight case GY (Bridge, Thomas, Jbabdi, & Cowey, 2008). 

Our goal in this experiment is to provide baseline information about how individuals 

adapt their eye movements to compensate for visual information loss like that seen in 

hemianopia, and to document how their eye movement patterns change under repeated 

exposure with strong incentives to improve. 

We recently investigated the strategies that healthy participants spontaneously 

adopt to compensate for simulated visual deficit (Nowakowska, Clarke, Sahraie & Hunt, 
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2016). In that study, visual information in one hemifield was removed or degraded 

while participants searched for a line tilted 45° to the right among lines of varying 

degree of tilt in one set of studies, or an angry face among neutral faces in the second set 

of studies. A rational search strategy would be to look towards the degraded field, and 

to do so to an increasing extent the more it is degraded. We found the opposite: there 

was a bias towards the sighted field, and the proportion of saccades directed towards 

the blind field increased as the simulated deficit became less severe. We also kept the 

target line tilt constant but varied the background pattern to observe the effect on 

search strategies. The logic was that when the target is difficult to see against a complex 

background, it does not matter whether participants search the sighted or blind field 

first, as they need to serially inspect each location to determine if the target is present 

or not. If the background is simple, however, and the target is consequently highly 

visible in the periphery, participants can quickly ascertain from a central point whether 

or not the target is present or absent in the sighted field, without making any eye 

movements. Eye movements towards the sighted field will provide little new 

information and increase search times under these circumstances; indeed, they 

substantially decrease the perceived information by shifting the simulated deficit across 

a larger proportion of the search area. Nonetheless, our participants frequently directed 

eye movements towards the sighted field even though the target was obviously absent, 

exhibiting surprisingly inefficient search behaviour.  

Our finding that participants fail to adopt efficient strategies to compensate for 

simulated visual deficits is inconsistent with theories suggesting human search is 

optimal (Najemnik & Geisler, 2005; 2008). These results also justify the use of 

specialized training for helping patients learn to cope with visual deficits, as they 
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suggest patients otherwise persist in using ineffective strategies. However, it is 

important to note that simulated hemianopia is an unusual circumstance for our healthy 

participants, and it may not be warranted to conclude that they are sub-optimal at 

adapting their search after only one session. In the current study we investigate 

whether repeated exposure to a simulated visual field deficit leads to the development 

of an efficient search strategy. Participants searched for a line segments under 

conditions of simulated hemianopia every day for five consecutive days, with financial 

incentives associated with improvements in performance. 

In the first and last session of the five-day experiment, participants completed 

two additional tasks: detection and object naming. The aim of the detection task was to 

measure the extent to which improvements in search performance over the five 

sessions could be due to practice related enhancement in perceptual sensitivity to the 

target rather than to changes in eye movement strategies. Like the search task, the 

object naming task was also carried out under simulated hemianopia, and was used to 

estimate the extent to which any improvements in performance in the repeated 

exposure task would transfer to other images/tasks.  A control group performed just the 

detection and object naming tasks on the first and last day, without any intervening 

exposure to the simulated deficit. If we do observe increasingly efficient search over the 

week, we can measure whether this learning transfers to the object naming task by 

comparing improvements on the object-naming task between the repeated-exposure 

and control groups.   

 

Method 
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Participants. Thirty-four participants (age range = 19-36; mean age = 22.8 ± 3.99) 

completed the experiment. Seventeen participants were in the repeated exposure group 

(females = 15) and 17 were in the control group (females = 12). All reported normal or 

corrected-to-normal vision.  

Apparatus. The display was presented on a 17inch CRT monitor with a resolution of 

1024x768. Stimulus generation, presentation and data collection were controlled by 

Matlab and the psychophysics toolbox (Brainard, 1997; Pelli, 1997) run on a Powermac. 

The position of the dominant eye was recorded using a desktop-mounted EyeLink 1000 

eye tracker (SR Research, Canada), sampling eye position at 1000Hz. The duration of 

the system’s delay was 1.5ms (time taken from registering a new sample to sending the 

command to update the screen). 

Overview of Procedure. On arrival at the laboratory each participant was asked to read 

and sign an information sheet/consent form and was seated alone in a small, low-lit 

room. In the first and fifth sessions, the repeated exposure group participants did three 

tasks: an object-naming task, detection task, and a search task, and their eye movements 

were recorded while performing each of the tasks. On the intervening three days, 

participants in this group only completed the search task. The control group completed 

the object-naming and detection tasks during the first and fifth day with no search 

sessions in the intervening days. The three tasks are described in detail below. 

Participants were not given any information about hemianopia or simulated 

hemianopia until they finished the last session. At the end of the first session, the 

experimenter reminded participants in the repeated exposure group that they would be 

paid 20 pounds for their participation in the experiment regardless of their 

performance. At this point, the experimenter also added that they would also receive an 
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additional £5 for any session in which they improved their reaction times compared to 

their best performance on any previous session, provided their accuracy stayed at least 

the same as on the first session. Participants were given this information after 

completing the first session to ensure they did not deliberately under-perform. Thus 

participants in the repeated exposure group could be reimbursed a maximum of £40 

pounds if their performance improved on every session. Participants in the control 

group received 10 pounds for completing the two sessions. 

Repeated search task 

This task was completed by the repeated exposure group for five consecutive days 

(Monday to Friday). Each participant was tested under two experimental conditions: 

Simulated Hemianopia and Normal Viewing (i.e. no mask). Under the simulated 

hemianopia condition the eye-tracker sampled the current gaze position online and 

replaced the part of the display falling to the left or right of current fixation (blocked) 

with the grey background. In the Normal Viewing condition eye movements were 

recorded but no mask was applied. Participants completed three blocks of 80 trials (240 

trials total) in each session: one block masked to the left, one to the right, and one block 

with no mask (Normal Viewing). Block order was counterbalanced in each session. 

Participants were informed of the condition and underwent a nine-point eye movement 

calibration sequence before each block of trials. 
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Figure 1. Example line segments: the left panel shows the target (a line tilted 45˚ to 
the right) on a background of distractor lines with a 95˚ range of variation (hard 
search), and right panel shows the target on a background of distractor lines with an 
18˚ range of variation (easy search). 

The stimuli in each block consisted of 80 pre-generated arrays of line segments. Each 

line was 1.2cm (1.5° at a viewing distance of 45 cm) long. The segments were aligned in 

22 columns and 16 rows. The target line was always tilted 45 degrees to the right and 

the mean distractor angle was perpendicular to the target angle. The target could be 

located in any of the possible locations apart from the first and last row and column and 

the middle two rows and columns. Of the 80 images, 40 were target present and 40 

target absent. We introduced two levels of search difficulty, with each level 

corresponding to the distribution from which the distractor line orientation was drawn 

relative to the target. The distractor angle range of 95° (range of possible distractor 

angles from the mean orientation) was the high task difficulty condition and the range 

of 18° was the easy condition (see Figure 1 for example stimuli).  These two search 

conditions will be referred to as “easy” and “hard” respectively. There were forty search 

arrays of each difficulty level. The target was present 20 times on the left and 20 times 

on the right hand side of the screen. The lines were located on a uniform grey 

background. The background and mask luminances were matched (17±1 cd/ m²). 
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Each trial began with a black fixation point (letter x) subtending 1.5x2.5cm (1.9°x3.2°), 

presented at the centre of the computer screen. On the press of a space bar, the fixation 

point was replaced by the search array after a 1000ms delay, with the mask applied 

according to the condition. For example, in the right-side simulated hemianopia block 

the display was increasingly uncovered as the participants moved their eyes to the far 

right, and as they moved their eyes to the left the screen was increasingly covered with 

the mask. The display remained on the screen until the participant made their response, 

or after 60 seconds had elapsed without a response. The participants were asked to 

respond by pressing either the left arrow key (for target present trials) or right arrow 

key (for target absent trials) on a standard keyboard. The display was replaced with the 

initial fixation point for the next trial 200ms after the left or right arrow key was 

pressed. The target was present on half of all trials in each block and the participants’ 

task was to indicate the presence or absence of a target. All participants were asked to 

respond as quickly and as accurately as possible. Auditory feedback in the form of a 

beep immediately followed every incorrect key press. The position of the dominant eye 

was recorded using a desktop-mounted EyeLink 1000 eye tracker (SR Research, 

Canada) sampling eye position at 1000Hz. The length of the eye tracking system’s delay 

was 1.5ms (time taken from registering a new sample to screen update), and the refresh 

rate 120Hz, so the absolute maximum delay for updating would be 9.5ms. To simulate 

small macular sparing and not to bisect the current point of fixation, the mask was 

drawn 1° from central fixation. One participant reported the mask to be “jittery” at one 

point during the experiment, however this was rectified following EyeLink re-

calibration. The mask disappears during the blinks, however the refresh rate is fast 

enough that this is not an issue in the experiment (in other words, it is impossible to see 

the stimuli by blinking frequently).  
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Detection task 

In the repeated exposure group, a detection task was carried out before the first 

repeated search block on Monday and after the last repeated search block on Friday. In 

the control group, it was the first task carried out on both Monday and Friday. The 80 

search arrays of line segments we used in this experiment were exactly the same as the 

ones in the Repeated Exposure Task. No masks were applied. Participants were told 

they would see line segments on the screen for a very short time, and their task was to 

determine whether a line tilted 45° to the right was present among other lines. 

Participants were asked to respond as accurately as possible and to guess if not sure 

about the answer.  

Each trial consisted of a black fixation point (letter x) subtending 1.5x2.5cm (1.9°x3.2°), 

presented at the centre of the computer screen. On the press of a space bar, the stimulus 

was displayed for 200ms follow by a blank screen. Participants had to press either the 

left (present) or right (absent) arrow key. Auditory feedback in the form of a beep 

immediately followed incorrect key presses. Before the start of the experiment 

participants underwent a five-point calibration sequence.  

Object Naming task 

This task was introduced to investigate if any improvements in eye movement 

strategies under conditions of simulated hemianopia after repeated exposure to the 

search task would transfer to other tasks and stimulus types.  
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Figure 2. Example of images used in the Object Naming Task (original on the left 
and flipped on the right). 

Participants viewed photographic images of scenes with simulated hemianopia for 4 

seconds, after which the image disappeared and participants verbally listed all the 

objects that they could remember seeing in a particular scene. Participants were 

encouraged to list as many objects as they could remember.  The responses were 

recorded using a voice recorder. The stimuli were 80 images of natural indoor and 

outdoor scenes (see example Figure 2) taken from Clarke, Coco & Keller (2013). The 

images were divided randomly into two sets. Each of the images in the two sets was also 

flipped to avoid any left/right bias. Therefore we had four sets in total (Original Images 

Set 1, Original Images Set 2, Flipped Images Set 1, and Flipped Images Set 2). If 

participant were tested with Original Set 1 on the first session, they would be tested 

with Flipped Set 2 on the second session, similarly if they saw Flipped Set 1 on the first 

session they would see Original Set 2 on the second (the full randomisation is shown in 

table 1 in the supplementary materials). We simulated hemianopia while participants 

were doing this task, in exactly the same way as in the five-day repeated exposure task. 

Participants who experienced left hemianopia in the first session experienced right 
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simulated hemianopia in the last session, and vice-versa. Thus in this task we had two 

hemianopia types (Left, Right), two image types (Original, Flipped), and two image sets 

(Set One, Set Two). For the purpose of data analysis none of these variables were of 

theoretical interest so we collapsed across them and only included just one independent 

variable: Session (1 vs. 2).  

Results 

Repeated Exposure Task Performance. 

Reaction Time. RTs are shown in Figure 3. RTs were log transformed before they were 

entered into the model. Although we use terms sighted and blind side in the normal 

viewing condition, we essentially mean left and right side of the display. As expected, 

RTs are faster for easy search, and they improve over the five sessions. RT is faster 

when the target is in the sighted field, and simulated hemianopia slows search. To 

confirm the reliability of this pattern, a multiple regression was run to predict RT from 

Session (1 to 5), Viewing Type (Normal Viewing, Simulated Hemianopia), Target Side 

(Sighted, Blind, Absent) and Search Difficulty (Easy, Hard). These variables predicted 

RT, [F (4, 1015) = 290.18, p < .001, R2 = .53], with all four variables accounting for 

significant variance, [Session (Beta = -0.10, p < .001), Viewing Type (Beta = -0.38, p < 

.001), Target Side (Beta = 0.40, p < .001) and Search Difficulty (Beta = 0.59, p < .001)]. 
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Figure 3. Mean of the median Reaction Times for the Simulated Hemianopia and 
Normal Viewing condition shown for two difficulty levels (Easy and Hard) and three 
target positions (target in the Sighted field, Blind field and target Absent trials) and 
five consecutive sessions. Y axis is on a log transformed scale. Error bars represent 
first lower quantile and third upper quantile. 

Accuracy. As can be seen from Figure 4, accuracy shows a similar pattern to RT, with 

higher accuracy for easy search, and steady improvement over the sessions. Accuracy is 

also lower under simulated hemianopia conditions. Accuracy is higher in the target 

absent over present condition because of a tendency for participants to respond that the 

target is absent when unsure. For completeness, and to confirm the reliability of this 

pattern, a multiple regression was also run to predict Accuracy from Session (One to 

Five), Viewing Type (Simulated Hemianopia, Normal Viewing), Target Side (Sighted, 

Blind, Absent) and Search Difficulty (Easy, Hard) [F (4, 1015) = 94.00, p < .0005, R2 = 

.27]. All four variables contributed to the model, [Session (Beta = .03, p < .001), Viewing 

Type (Beta = .06, p < .001), Target Side (Beta = .03, p < .001) and Search Difficulty (Beta 



15 
 

= .15, p < .001)]. Performance in the easy condition is clearly close to ceiling, however, 

and the results should be interpreted only in conjunction with the reaction time data. 

 

 

Figure 4. Mean accuracy for the Simulated Hemianopia and Normal Viewing 
condition shown for two difficulty levels (easy and hard) and three target positions 
(target in the sighted field, blind field and target absent trials) and five consecutive 
sessions. Error bars represent 95% confidence intervals based on binomial 
distribution. 

Eye movement behaviour in the repeated exposure task. The reaction time and accuracy 

measures establish that participants improved their search performance over sessions. 

Can this improvement be explained by more efficient eye movements? The trials that 

best address this question are target absent trials when the target is easy to spot on the 

background. In this condition, eye movement behaviour can be unambiguously 

categorized as either efficient or inefficient: the target can easily be spotted in the 

periphery, so on easy trials participants can ascertain that it is not present and direct 

their eye movements towards the blind side. Any eye movements towards the sighted 



16 
 

side can be considered inefficient, because they provide no new information and 

increase the amount of the array obscured by the mask. 

Figure 5 depicts the mean horizontal (x) position of the first eight fixations for 

each participant over the target absent trials across each of the five sessions. Negative 

values represent the masked side of the display. Over the course of the five sessions, 

participants increasingly directed their attention to the (initially) blind side of the 

display, and did so earlier in the trial. The shift in the distribution towards the negative 

side as session number increases is a particularly notable in the easy condition. To 

verify this, we carried out a 2x2x2 repeated measure ANOVA on the x position of 

fixation with Viewing Type (Simulated Hemianopia, Normal Viewing), Search Difficulty 

(Easy, Hard), and Session (1 vs 5) as factors. For simplicity, we have collapsed across 

fixation number (one to eight) and only analysed fixations from the first and last 

session. One participant did not have minimum of eight trials with eight fixations so was 

excluded from further analysis. We found a significant main effect of Search Difficulty 

[F(1,15)=37.46, p<.001, ɳ
p
2  =.71], Viewing Type [F(1,15)=16.17, p=.001, ɳ

p
2  =.52], and 

Session [F(1,15)=37.62, p<.001, ɳ
p
2  =.72], and significant interactions between Difficulty 

and Session [F(1,15)=28.89, p<.001, ɳ
p
2  =.66], between Difficulty and Viewing Type 

[F(1,15)=25.65, p<.001,  ɳ
p
2  =.63], and between Viewing Type and Session 

[F(1,15)=44.54, p<.001, ɳ
p
2  =.75], but no significant interaction between the three 

factors [F(1,15)=1.80, p=.14, ɳ
p
2  =.11]. 

 To further look at the effect of repeated exposure, we carried out separate 

analyses for the Normal Viewing and Simulated Hemianopia conditions. In the Normal 

Viewing condition a 2x2 ANOVA with Search Difficulty and Session as factors showed 

that none of the main effects or interactions were significant (all p>.32). In the 
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Simulated Hemianopia condition, however, the same analysis showed significant main 

effect of Search Difficulty [F(1,15)=41.48, p<.001, ɳ
p
2  =.73], Session [F(1,15)=49.19, 

p<.001, ɳ
p
2  =.77], and a significant interaction between the two factors [F(1,15)=7.31, 

p=.02, ɳ
p
2  =.33]. To look at this interaction in the Simulated Hemianopia condition, we 

carried out a paired samples t-test for each difficulty level. This analysis showed 

statistically significant differences between group means both when the search was Hard 

[t(15) = 4.56, p < .001], and Easy [t(15) = 8.33, p < .001]. Our participants changed their 

strategy both in the Easy and Hard condition, but the interaction indicates that the shift to the 

blind field is much more pronounced in the easy condition. 

 

 

Figure 5. Mean position of the first eight fixations on the x-axis in the easy and hard 
condition, and for two viewing type levels (Simulated Hemianopia and Normal 
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Viewing) in the target absent trials for the five consecutive days. Negative numbers 
on the Y-axis indicate the hemianopia side. 

 

 

 

 

Figure 6. Correlation between mean fixation position of the first five fixations on the 
X-axis on the target absent easy trials and median reaction times (in seconds) on the 
target present easy trials, with the five panels representing five consecutive 
sessions. 
 

We next measured the effect of strategy on search performance when the target was 

present. This analysis checks whether the eye movement strategy we are assuming is 

optimal in this task is, in fact, associated with faster search. We take the mean position 

on the X-axis of all fixations during target absent trials for each participant and correlate 

this measure with that participant’s reaction time on the target present trials 

(irrespective of target side). We do this only for the easy search trials, because these are 

the trials in which we expect this strategy to provide the largest benefit. We excluded 

one participant from this analysis for having very long mean reaction time (over 7 

seconds in the target absent easy condition). As is clear from Figure 6, participants who 

made more saccades towards the blind side when the target was absent were quicker to 

find the target when it was present. The benefits of searching the blind field early in the 

trial are evident in the first session and increase for the next four sessions. 
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Although we did not do any follow-up testing with our participants beyond the 

week-long experiment, we correlated participant performance over the week and found 

that strategies stabilized towards the end of the week. There is small correlation 

between first and fifth session in terms of the mean eye movement position (target 

absent trials) for individual participants (r=.58, p=.02), but a very high correlation in 

performance between session 4 and 5 (r=.90, p<.005), suggesting strategy differences 

between participants becames very stable over the last two days of testing (see Figure 

7). 

 

Figure 7. Mean position of first eight fixations in the easy condition target absent 

trials is shown for each of the five consecutive days. Negative numbers on the Y-axis 

indicate saccades towards the simulated-hemianopia side of the search array. Each 

line represents an individual participant. We colour coded the lines so the five 
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participants who started with larger saccades deep into the in the sighted field on the 

first day of the experiment are shown in black, five starting deepest in the blind field 

are shown in red and remaining participants are represented by orange lines.   

As can be seen in Figure 7, most of our participants improved on the task later on 

in the week by shifting their fixations into the blind field. Yet, the degree of 

improvement varies. A few participants made eye movements that were increasingly 

deep into the blind field, but some did not move far from the midline. Some participants 

shifted their strategy abruptly very early in the week and some showed very gradual 

change.  In this analysis we only looked at trials with minimum 8 fixations to reduce 

noise in the data. The participant missing data for the first session made only 40 

fixations in this session’s target absent parallel condition, while the average for the 

other participants was around 350 fixations. Together with low accuracy (35 % correct 

trials, compared to the rest of the group average, 95% correct trials) these data suggest 

the participant was guessing in this session. His accuracy and number of fixations in 

following sessions increased. 

 

Detection Task Results 

  We included a detection task as a control to check whether performance 

improvements across sessions could be attributed only to eye movement strategies, or 

if perceptual sensitivity to the target also improved with repeated exposure. The 

accuracy data from the detection task on the first and last day of the repeated exposure 

group as well as control group results are shown in Figure 8. We only analysed data 

from 16 participants in the control condition, as data from one participant on Friday 

session was not recorded due to technical difficulties. As is clear from the Figure, 

participants perform better on the task in the second session, but this improvement is 
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only modest in the control condition compared to the improvement we see following 

repeated exposure to the line segment search task. We calculated d’ as a measure of 

participant’s sensitivity to the target in this task. To overcome the problem of extreme 

values in our data (i.e. having the proportion correct be 1 in some participants in some 

conditions) we used the loglinear approach (Hautus, 1995). We added 0.5 to both the 

number of hits and the number of false alarms and added 1 to both the number of signal 

trials and the number of noise trials, before we calculated the hit and false-alarm rates. 

 

 

Figure 8. Accuracy data from the detection task shown separately on Monday and 
Friday for target absent and present trials and two levels of Search Difficulty. Left 
panel shows accuracy in Repeated Exposure group and right panel Control group. 
The error bars show 95% confidence intervals. 

We carried out a mixed design ANOVA with one between group factor (Repeated 

Exposure vs. Control), and two repeated measures (Search Difficulty, Session). There 

was no significant effect of group [F(1,31)=3.37,p=.08, ɳp
2  =.10]. We found a significant 

effect of Session [F(1,31)=59,p<.001, ɳp
2  =.66] and Difficulty [F(1,31)=202.67,p<.001, ɳp

2  

=.87]. There was also a significant interaction between Session and Group 

[F(1,31)=23.91, p<.001, ɳp
2  =.44], indicating larger improvements across session with 

repeated exposure to the stimuli. There was also an interaction of Difficulty and Group 

[F(1,31)=5.10,p=.03, ɳp
2  =.14], due in part to ceiling effects in the easy condition, but no 
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significant three way interaction [F(1,31)=.25,p=.62, ɳp
2  =.008]. Overall, the results show 

that participants improved on the task in both groups, and this improvement was 

enhanced with intervening simulated hemianopia sessions. 

 

Object Naming Results 

To analyse mean number of objects named in the two groups, we carried out a 2x2 

Mixed Design ANOVA with Session as a within-subjects variable and Group as a 

between-subjects variable. This analysis showed significant Group differences 

[F(1,32)=6.43,p=.02, ɳp
2  =.17], and no significant effect of Session [F(1,32)=.53,p=.47, ɳp

2  

=.02]. There was a significant interaction between Session and Group 

[F(1,32)=9.74,p=.004, ɳp
2  =.23], however, so we looked at the effect of session for each 

group separately. Paired sample t-tests showed that participants reported significantly 

more objects on Friday [M=5.17, SD=.79], compared to Monday [M=4.69, SD=.61; 

t(16)=2.68,p=.016] in the Repeated Exposure group. In contrast, participants did not 

report significantly more objects in the Control group on Friday [M=4.46, SD=1.10], 

compared to Monday [M=4.16, SD=.74; t(16)=1.63,p=.12]. 
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Figure 9. Mean position of fixation on the x-axis shown for the first eight fixations, 
separately for Monday (red) and Friday (blue) sessions. Zero on the Y axis 
represents middle of the screen, and the negative numbers extend to the field where 
mask was applied.   

We then analysed the mean horizontal position of fixation (Figure 9). To simplify data 

analysis, we collapsed across fixation number (first eight fixations). A 2x2 Mixed Design 

ANOVA with Session as within variable and Group as between variable showed 

significant  between-group differences [F(1,32)=6.83,p=.01, ɳp
2  =.18], a significant effect 

of Session [F(1,32)=6.29, p=.02, ɳp
2  =.16], and a significant interaction between Session 

and Group [F(1,32)=11.93,p=.002,  ɳp
2  =.27]. Paired sample t-tests indicated that 

participants moved further into the blind field in the second session [M=-159, SD=97], 

compared to the first session [M=-6, SD=165, t(16)=3.63,p=.002] in the Repeated 

Exposure group. The same analysis on the Control group indicated that participants did 

not move further into the blind field in the second session [M=23.63, SD=131] compared 

to the first session [M=-.69, SD=113, t(16)=.83,p=.42]. 

 

General Discussion 
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Repeated exposure to a simulated visual field deficit can lead to the spontaneous 

development of a more efficient visual search strategy. We observed faster reaction 

times and higher accuracy following five consecutive days of repeating the search task. 

Faster and more accurate search can be partially explained by increased perceptual 

sensitivity to the target. However, participants’ fixations progressively moved deeper in 

the blind field with every session, and this shift was seen both in the easy search 

condition, where this strategy was most effective, but also in the hard condition, to a 

lesser extent. Saccades into the blind field were strongly associated with improved 

search performance. Importantly, the improvements in eye movement strategy in the 

search task transferred to the object naming task.  A control group that performed the 

object naming task on the first and last day, without any intervening exposure to the 

simulated deficit, did not change their search strategy, and did not name more objects in 

the second session.  

Eye movements towards the sighted field provide no new information in the 

easy search condition; the target would be clearly visible in peripheral vision if it were 

present, so eye movements towards the sighted field substantially decrease information 

by shifting the simulated deficit across a larger proportion of the search area. In our 

previous study, using the same search stimuli (Nowakowska et al., 2016) we found that 

participants frequently directed eye movements towards the sighted field even though 

the target was obviously absent, exhibiting surprisingly inefficient search behaviour.  In 

the current study, we generally replicate this finding in our first testing session, with 

many eye movements directed towards the sighted field. There is, however, a slight 

difference in the results of the two experiments, with a slight bias towards the blind 

field in the current experiment, and a slight bias towards the sighted field in 
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Nowakowska et al. (2016). While this may seem contradictory, the individual 

differences we observe in both these studies are worth noting.  In the current study, 

several participants exhibited near-optimal eye movements even in the first session, 

whereas others did not. We observed a similar range of individual differences in eye 

movement strategies in a third recent study (Nowakowska, Clarke & Hunt, 2017) in 

which the logic was similar, but there was no simulated hemianopia. The results of all 

three of these studies demonstrate a high degree of inter-subject variability. We have 

therefore been careful to depict the individual participant means in figures describing 

eye movement behaviour, and avoid making broad conclusions about “people’s” search 

strategies. That said, these data match our previous results in demonstrating that we do 

not have an a priori default bias to fixate locations that provide us with the most 

information, as suggested by Najemnik and Geisler (2005, 2008).   

While most people do not begin the week with a clearly optimal eye movement 

strategy, as the week progresses, and good performance is rewarded, our participants 

become less variable in their strategies and more of them exhibit eye movements that 

could be classified as efficient. In other words, participants gradually figure out the most 

effective strategy and this strategy helps them perform better in each session. In 

training studies of patients with hemianopia (Schuett, 2009; Jacquin-Courtois, 2012), 

participants are typically given specific instructions and are encouraged to use a 

particular strategy. We found that in some healthy observers with simulated deficit, an 

efficient strategy can develop spontaneously simply through exposure to the deficit and 

practice with a specific search task. These results could lend partial support to optimal 

search model (Najemnik & Geisler, 2005; 2008) postulating eye movements are 

directed to locations that are expected to lead to the highest possible information gain. 
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If the participants were optimal in the strictest sense, the mean x-position should be 

shifted deep into the blind side from the very start of the trial, yet this shift only 

happens after the initial few fixations. We think a more plausible alternative is that 

participants’ eye movements are largely consistent with the stochastic model (Clarke et 

al. 2016). In this model, each eye movement during search is randomly selected from 

the population of eye movement vectors that a participant tends to make from that 

region of the search array. Thus while the saccade selection process is random, the 

population of saccade vectors is constrained, making some locations more likely to be 

fixated than others (see also Clarke et al., 2017). These constraints on the population of 

vectors, we argue, come from a combination of motor, perceptual, and attentional biases 

that have evolved or develop gradually to make “random” search more efficient. In the 

current experiment, we would argue that the population of saccade vectors is gradually 

constrained by the reward of improved search times, leading to a slow and steady 

increase in the efficiency of eye movement behaviour. Although participants change 

their strategy most clearly in the easy condition, we also see shift towards the blind field 

when search is difficult, although to a lesser extent. This behaviour does not harm the 

performance, as participants have to search the whole display in order to find the 

target.  

Patients with hemianopia tend to spend more time overall looking into the side 

associated with the deficit on a free viewing task (Ishiai et al., 1987), the pattern we see 

towards the end of the week (in the easy condition). Why did we not see this strategy in 

the first session? Firstly, our participants may need time to adjust to the deficit, because 

simulated hemianopia is a very unusual experience. Secondly, in our initial experiment 
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(Nowakowska et al., 2016), and first session of the current experiment, participants did 

not receive any reward for good search performance. 

One critical consideration is the extent to which conclusions drawn from any 

experiment using simulated hemianopia could be applied to patients with visual field 

deficits. In considering this, it is important to keep in mind that the goal of our study 

was to understand whether healthy individuals adopt effective eye movement strategies 

to compensate for visual deficits. There is an urgent need for more pre-morbid data on 

how we can expect the visual system to be affected by a loss of information, to provide a 

contrast with how the injured brain responds. By documenting the longer-term change 

in eye movement strategies, the range of individual differences in our sample, and the 

fact that these individual differences get more stable over time, we have provided 

important context for understanding the eye movement behaviour of patients. For this 

purpose, a perfect simulation of the wide-ranging effects of brain injury is less critical 

than having a uniform method for comparing compensation strategies across healthy 

individuals. 

That said, it is important to keep in mind that simulated hemianopia differs from 

the effects of brain damage in many respects. Visual deficits are not uniform in their 

effects but depend on the specific damage that caused them. Due to decussation of nerve 

fibres, post-chiasmatic lesions of the visual pathways result in homonymous field defect. 

That is, the blindness appears to be the same in both eyes, both in terms of the visual 

field location and extent. Weiskrantz and colleagues have demonstrated that in cases of 

post-geniculate lesions, some visual capacities may remain for detection/discrimination 

of visual features with or without any acknowledgement of visual awareness, termed 

blindsight (Weiskrantz, 1986). The neuronal basis for such capacities are often 

presumed to be visual processing that by-passes the direct geniculo-striate pathways. 
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Evidence for such projections comes from functional imaging studies in humans and in 

non-human primates. In those with pre-geniculate lesions and in some patients with 

occipital lesions, when the lesion has extended anteriorly to the Lateral Geniculate 

Nucleus, there is limited ways for the visual information to be transmitted to higher 

visual areas for processing and therefore there is no evidence for blindsight. Indeed, 

some recent studies have shown that up to 30% of hemianopic patients may show no 

blindsight abilities (see for example Sahraie, Trevethan, MacLeod, Urquhart, & 

Weiskrantz, 2013).  The current method of simulating hemianopia works by completely 

removing all the visual information from one half of the display screen in a gaze 

contingent manner. This method of “hard-edge” hemianopia, is a good approximation of 

what happens in this sub-group of hemianopic patients.  

 

Although in the current study we do not provide participants with any “residual 

information”, in Nowakowska et al. (2016) we found no difference in gaze strategy 

when information on the position of the stimuli was available on the “blind” side; 

participants continued to ignore location pointers and direct most of their saccades to 

the sighted side, even though using location information would allow them to target the 

stimuli more precisely. Only when low spatial frequency identity information was 

supplied did participants direct more saccades to the blind field. In hemianopia, the 

extent of brain injury is one known predictor of the ability to spontaneously 

compensate for patient’s visual field deficit (see for example a study of 70 patients by 

Zihl, 1999 or Tant at all., 2002). Results of the current experiment, a related visual 

search experiment performed in our lab (Nowakowska et al., 2017), and 

experiments looking at other modalities (memory, target detection, throwing; Clarke & 

Hunt, 2016) consistently showed large individual differences between participants in 
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terms of the ability to adjust strategy to task difficulty. On the basis of these cumulative 

findings we could speculate that some variability in the compensatory strategy 

development or its lack could also be explained by individual differences. 

In the present study, all participants were exposed to both simulated hemianopia 

and normal viewing conditions, so it is impossible to dissociate the effects of masking 

from those of repeatedly performing the task. It was for this reason that we included the 

simple detection task in the first and last session, to estimate the extent to which 

improvements in performance from the first to the last session were due to changes in 

eye movement strategy versus better detection of the target. It is clearly a combination 

of both, and it would have been interesting (in retrospect) to include a group who 

searched for the target without a mask. In related work without masks (Nowakowska, 

Clarke and Hunt, in preparation), we find evidence that healthy observers tend to 

develop better search strategies over time, so we do not believe this is specific to 

hemianopia, but reflects a more general pattern: eye movement strategies are generally 

sub-optimal, and can improve spontaneously to some extent, but remain far from 

optimal in most individuals. This has clear relevance to how we rehabilitate patients 

with visual deficits. 

In our investigations in healthy adults reported here, we note a high correlation 

between performance on the fourth and fifth sessions on the task, suggesting that those 

participants who have not developed an optimal strategy by day five are very unlikely 

to change their strategy later on. It is likely that a combination of both the premorbid 

variability we have documented here, as well as loss of specific connectivity after the 

lesion, underlies the patterns of recovery/plasticity in patients such that some may 

recover spontaneously whereas others, irrespective of the time duration post-injury, 

remain impaired. An important remaining question is the extent to which specific 
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instructions or interventions can facilitate better strategies specifically in this sub-

population of individuals with persistently poor eye movement strategies. Another 

important question is the extent to which such training transfers to real world contexts, 

which usually involve a far more complex visual environment, offering many competing 

demands on the subject for navigation, orientation and visual processing.  
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Highlights: 

 We simulated hemianopia in healthy observers completing a search task for five 

consecutive days with reward for good performance 

 We observed  more efficient, yet far from optimal, search strategies with practice 

 Improvements in search strategy generalized to a novel task 

 

 




