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Class B peptide hormone GPCRs are targets for the treatment of major chronic disease. Peptide 

ligands of these receptors display biased agonism and this may provide future therapeutic 

advantage. Recent active structures of the calcitonin (CT) and glucagon-like peptide-1 (GLP-1) 

receptors reveal distinct engagement of peptides with extracellular loops (ECLs) 2 and 3, and 

mutagenesis of the GLP-1R has implicated these loops in dynamics of receptor activation. In the 

current study, we have mutated ECLs 2 and 3 of the human CT receptor (CTR), to interrogate 

receptor expression, peptide affinity and efficacy. Integration of these data with insights from the 

CTR and GLP-1R active structures, revealed marked diversity in mechanisms of peptide 

engagement and receptor activation between the CTR and GLP-1R. While the CTR ECL2 played a 

key role in conformational propagation linked to Gs/cAMP signalling this was mechanistically 

distinct from that of GLP-1R ECL2. Moreover, ECL3 was a hotspot for distinct ligand- and 

pathway- specific effects, and this has implications for the future design of biased agonists of class 

B GPCRs.  
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1. Introduction 

Class B1 G protein-coupled receptors (GPCRs) are the targets for peptide hormones that play major 

roles in the development and maintenance of lymphatic and cardiovascular function, bone 

homeostasis, metabolic regulation, migraine, stress and anxiety
1
. Consequently, these receptors are 

important therapeutic targets.  

 

The calcitonin (CT), Class B1 GPCRs (CTRs), are highly expressed on osteoclasts and have been 

exploited therapeutically for treatment of bone disorders, including Paget’s disease, hypercalcemia 

of malignancy and osteoporosis
2-5

. The receptors are also expressed in numerous other cells and 

tissues including leucocytes and their precursors, the central nervous system, kidney, lung, 

gastrointestinal tract and reproductive tissues
6
, thereby influencing pain perception, feeding and 

reproduction, and ion secretion
2,7

, though these actions are not well understood. Furthermore, CTRs 

can interact with the receptor activity modifying protein (RAMP) family to form high affinity 

receptors for amylin (Amy) and calcitonin gene-related peptide (CGRP)
8
.  

 

CT peptides from different species have been identified and can be classified into 3 major 

subgroups based on evolution and sequence conservation: human/rodent, artiodactyl (e.g., porcine) 

and teleost (salmon/eel)/chicken. Both human and salmon CT have been approved for treatment of 

bone disorders including Paget’s disease and osteoporosis, however, they have distinct binding 

kinetics, affinity and efficacy
9-11

 that impact on G protein recruitment and activation
11

, suggesting 

different modes of interaction with CTRs. 

 

Orthosteric peptide ligands of Class B1 GPCRs are proposed to interact with their cognate receptors 

via a two-domain mechanism, with an initial engagement of the C-terminus of the peptide with the 

N-terminal extracellular domain (ECD) of the receptor that allows the peptide N-terminus to bind to 

the transmembrane (TM) spanning receptor core comprising the 7 TM helices and 3 interconnecting 



  

    
 

extracellular loops (ECLs), leading to receptor activation
12

. This mode of binding is supported by 

recent full-length, active, Gs-complexed structures of the CTR
13

 (bound to sCT) and glucagon-like 

peptide-1 (GLP-1) receptor (GLP-1R) (bound to GLP-1
14

, or exendin-P5
15

). Nonetheless, there 

were marked differences in the orientation of the receptor ECD relative to the receptor core and 

correlative changes in presentation of the peptides to the receptor core, linked to differences in the 

degree of secondary structure of the peptides
13-15

. Moreover, the CT-family peptides have a cyclic, 

cysteine-disulfide linked N-terminus between amino acids 1 and 7 (2 and 7 for Amy and CGRP) 

that contrasts with the extended helix of GLP-1, and alters the relative interaction of the peptide N-

termini with the ECLs and proximal TM helix segments. 

 

Mutagenesis and crosslinking studies have shown that the ECLs of Class B1 GPCRs are critical for 

both peptide binding and propagation of conformational change associated with receptor 

activation
14-20

. For the GLP-1R, alanine-scanning mutagenesis revealed that the ECLs, particularly 

ECL2 and ECL3, were also important in the biased agonism of peptides, but had distinct 

contribution to pathway specific signalling
16,21

. For this receptor, both ECL2 and ECL3 played a 

critical role in cAMP formation, and intracellular calcium (iCa
2+

) mobilisation, while effects on 

ERK phosphorylation (pERK) were principally confined to residues within ECL3.  

 

In the current study, we have performed alanine-scanning mutagenesis of amino acids in ECLs 2 

and 3 of the hCTR and interrogated mutant receptors for their effects on cell surface receptor 

expression, peptide affinity and efficacy for cAMP and IP1 accumulation, as well as pERK in 

response to calcitonin (sCT, hCT, pCT) and related family (Amy, CGRP) peptides. This work 

revealed both differences in how the receptor engages with and is activated by the different CT-

family peptides, and in the role of ECLs 2 and 3 between the CTR and GLP-1R. 

 

2. Materials and Methods 



  

    
 

2.1 Reagents  

All peptides were purchased from Mimotopes. Dulbecco’s Modified Eagle’s Medium (DMEM) was 

purchased from Invitrogen. Foetal bovine serum (FBS) was purchased from Thermo Electron 

Corporation. AlphaScreen reagents, Lance cAMP kit, 384-well Optiplates were purchased from 

PerkinElmer. SureFire
TM

 ERK1/2 reagents were obtained from TGR Biosciences and PerkinElmer. 

IP-One HTRF® assay kit was from CisBio. Antibodies were purchased from R&D systems and 

ThermoFisher. All other reagents were purchased from Sigma-Aldrich or BDH Merck and were of 

an analytical grade. 

 

2.2 Mutagenesis    

Desired mutations were introduced to N-terminally c-Myc tagged human CTR in pENTER11 

(Invitrogen) via the Q5® High-Fidelity PCR Kit (New England Biolabs), then LR recombination 

reactions were conducted to transfer mutated and wild-type (WT) receptor into the pEF5/FRT/V5-

DEST destination vector using Gateway Technology (Invitrogen). The oligonucleotides for 

mutagenesis were purchased from Gene-Works (Thebarton, SA, Australia) and mutants were 

confirmed by automated-sequencing.  

 

2.3. Stable cell line generation and cell culture  

The mutant or wild-type (WT) receptor genes were integrated into FlpIn-CV1 cells using Flp-InTM 

system (Invitrogen). Stable Flp-In expression cell lines were generated through polyclonal 

selection, screening and maintained in Dulbecco’s modified Eagle’s medium supplemented with 5% 

 (Invitrogen) at 37°C in 5% CO2.  

 

2.4 Homologous whole cell competition binding assay 

Homologous radioligand competition was performed on 2.5x10
4
 cells well seeded into   -well trays 

and cultured o ernight   ells were incubated o ernight at    C with two concentrations of 
125

I-



  

    
 

sCT(8-32) (between 25 and 100 pM; specific activity, 2000 Ci/mmol
9
) and serial dilutions of non-

iodinated sCT(8-32) . Non-bound ligand was removed and bound ligand activity was measured 

using a γ counter (Wallac Wizard 1 70 Gamma  ounter, Perkin Elmer, 80% counter efficiency)  

Values were normalised against non-specific binding (0%) defined by the presence of 1 μM of 

unlabelled sCT(8-32), and total ligand bound in absence of competing sCT(8-32) (100%). 

 

2.5 Heterologous whole cell competition binding assay  

Competition binding was performed as previously described
41

 on whole cells in 96-well plates by 

using the antagonist radioligand 
125

I-sCT(8-32) (~0.1 nM), and competing with increasing 

concentrations of unlabelled peptide. Non-specific binding was defined by co-incubation with 1 μM 

unlabelled sCT(8-32). Following overnight incubation non-bound ligand was removed and 

radioactivity was determined using a gamma counter.  

 

2.6 Cell surface expression by FACS  

Surface expression of c-Myc tagged CTR mutants stably expressed in CV-1 cells was quantified by 

flow cytometry using standard methods. Cells were plated into 6 well trays at approximately 5x 10
5
 

cells per well the day before assay. Cells were harvested using versene. All staining steps were 

conducted in ice cold HBSS with 0.1% BSA and 20 mM HEPES (pH 7.4). Blocking was conducted 

in 5% BSA.  Primary antibody staining was performed with a mixture of 5 µg/mL 9E10 (anti-c-

Myc) and 1 µg/mL Mab4614 (anti-CTR, R&D Systems). The secondary antibody was 1 µg/mL 

goat anti-mouse AF647 (ThermoFisher). Sytox blue was used for live/dead discrimination. Data 

were collected on a FACS CantoII (BD Biosciences) with at least 20,000 live cells collected per 

sample, WT stained CTR sample and stained parental CV-1 cells were collected at the beginning 

and the end of each run. Data were analysed using FlowJo. The mean AF647 fluorescence intensity 

from each sample for a particular experiment was normalized against parental (0%) and CTR WT 

(100%) controls. 



  

    
 

 

2.7 cAMP accumulation  

Cells (2.5x10
4
 cells/well) were seeded into 96-well plates and incubated overnight. Cells were 

stimulated with increasing concentrations of ligands for 30 min in the presence of IBMX. The liquid 

was discarded, changed to absolute ethanol and volatilized to dryness at room temperature. Samples 

were then lysed and intracellular cAMP was detected using PerkinElmer Lance kit as previously 

described
16
  Data were normalized to the response of 100 μM forskolin   

 

2.8 IP1 accumulation  

Cells (2.5x10
4
 cells/well) were plated into 96 well trays and cultured overnight. Cells were 

stimulated with increasing concentration of ligands for 60 min in the presence of LiCl. Samples 

were lysed and endogenous IP1 was measured using an IP-One HTRF® assay kit (CisBio) as 

specified by the manufacturer  Data were normalised to the maximal response elicited by 100 μM of 

ATP. 

 

2.9 ERK1/2 phosphorylation  

Cells (2.5x10
4
 cells/well) were seeded into 96-well culture plates and incubated overnight. Initially, 

pERK1/2 time-course experiments were performed over 30 min to identify the time point when the 

pERK1/2 response is maximal (6-8 min). Subsequently, this time point was selected to generate 

concentration response for different agonists with ligand addition performed after overnight serum 

starvation. pERK1/2 was detected using an Alphascreen assay as previously described
22

. Data were 

normalized to the maximal response elicited by 10% FBS determined at 6 min.  

 

2.10 Data analysis  

IC50 and Bmax values were estimated from competitive inhibition of 
125

I-sCT(8-32) binding using a 

3-parameter logistic equation (log(inhibitor versus response)) in Prism (v7; Graphpad). Data were 



  

    
 

corrected for radioligand occupancy using the Cheng-Prusoff equation in Prism; as such data are 

reported as pKi. Emax and EC50 were estimated from concentration-response curves using with a 3-

parameter logistic equation in Prism (v7). These values are a composite of functional affinity, 

efficacy and stimulus response coupling. The Black and Leff operational model of agonism
23

 was 

applied to separate effects on pathway-

functional affinity (pKA

cell surface expression to provide a c) that is independent of affinity and 

altered cell surface receptor expression
16

. pKi, pKA 

statistically compared to those of the WT receptor using a one-way analysis of variance (ANOVA) 

and Dunnett’s post- test. Significance was accepted at P< 0.05.  

 

2.11 Molecular modelling and mapping of mutational effects  

The structures of the CTR:CT complexes were generated from the cryo-electron microscopy 

structure of the calcitonin receptor
13

 and the X-ray structure of the CTR ECD
24

. Missing loops were 

generated using Modeller
25

 (1000 structures) and the final loop selected to ensure that the conserved 

residues faced inwards
26

 by analysis of the correlation of the conservation, as measured using the 

Shannon entropy, and the extent to which a residue is buried
27

. 

 

2.12 Molecular dynamics simulations  

CTR:sCT and CTR:hCT complexes were prepared for molecular dynamics simulations by means of 

a multistep procedure that integrates both python htmd
28

 and tcl (Tool Command Language) scripts. 

The pdb2pqr
29

 and propka
30

 software were used to check the protein’s structural integrity and to add 

hydrogen atoms (configurations of titratable amino acid side chains were visually inspected) 

appropriate for a simulated pH of 7.0. The CTR was embedded in rectangular matrixes of a 1-

palmitoyl-2-oleyl-sn-glycerol-3-phospho-choline (POPC) bilayer (previously built by using the 

VMD Membrane Builder plugin 1.1; http://www.ks.uiuc.edu/Research/vmd/plugins/membrane) 



  

    
 

through an insertion method
31

: receptors were first oriented according to the CTR coordinates from 

the OPM database
32

, then lipids overlapping the protein were removed and TIP3P water molecules
33

 

were added to the simulation box by means of the VMD Solvate plugin 1.5 

(http://www.ks.uiuc.edu/Research/vmd/plugins/solvate). Charge neutrality was finally reached by 

adding Na
+
/Cl

-
 counter ions to a final concentration of 0.154 M, according to the VMD Autoionize 

plugin 1.3 (http://www.ks.uiuc.edu/Research/vmd/plugins/autoionize). The CHARMM36 force 

field
34

 was used. 

 

2.13 System equilibration and classic MD run settings 

All the following MD simulation stages were performed by using Acemd
35

. Equilibration of the 

four systems was achieved in isothermal-isobaric conditions (NPT) using the Berendsen barostat
36

 

(target pressure 1 atm) and the Langevin thermostat
37

 (target temperature 300 K) with a low 

damping of 1 ps
-1

. A three-stage procedure with an integration time step of 2 fs was performed: in 

the first stage, 2000 conjugate-gradient minimization steps were applied to reduce the clashes 

between protein and lipids. Then, a 10 ns long MD simulation was performed in the NPT ensemble, 

with a positional constraint of 1 kcal mol
-1 

Å
-2 

on protein and lipid phosphorus atoms. During the 

second stage, 30 ns of MD simulation in the NPT ensemble were performed, constraining all 

protein atoms but leaving the POPC residues free to diffuse in the bilayer. In the last equilibration 

stage, positional constraints were reduced by one half and applied only to the protein backbone 

alpha carbons for a further 10 ns of MD simulation.  

 

For each intermolecular complex, a total of 2 s of unbiased MD was performed, divided in one 

replica 1 s long and two replicas 500 ns long. After equilibration, production MD trajectories were 

computed with an integration time step of 4 fs in the canonical ensemble (NVT) at 300 K, using a 

thermostat damping of 0.1 ps
-1

 and the M-SHAKE algorithm
38

 to constrain the bond lengths 

involving hydrogen atoms. The cut off distance for electrostatic interactions was set at 9 Å, with a 



  

    
 

switching function applied beyond 7.5 Å. Long range Coulomb interactions were handled using the 

particle mesh Ewald summation method (PME)
39

 by setting the mesh spacing to 1.0 Å 

 

2.14 Analysis 

Contacts and hydrogen bonds were quantified using VMD
40

. A contact between two residues was 

considered productive if at least two atoms were detected at distances less than 3.5 Å. A distance 

between acceptor and donor atoms of 3 Å and an angle value of 20° were set as the geometrical cut-

off for hydrogen bonds. Equilibrated coordinates and parameters are available from the following 

doi: 10.5526/ERDR-00000075 

 

Data on the effect of ECL2 and ECL3 mutation on GLP-1R-mediated efficacy were mapped onto 

the high resolution 3.3A structure of exendin-P5 in complex with the hGLP-1R and dominant 

negative Gs heterotrimer (PDB=6B3J
15

). Mapping and visualization of the effect of mutation on 

receptor structure was performed using ICM (Molsoft).  

 

3. Results 

To assess the importance of ECL2 and ECL3 in CTR function, we performed alanine-scanning 

mutagenesis of residues within these loops as well as adjacent TMs, and assessed effects on cell 

surface receptor expression, competitive binding affinity and cAMP accumulation, IP1 

accumulation and ERK1/2 phosphorylation (pERK). These pathways are important for 

physiological, CTR-mediated, signalling
2,7

. Responses were evaluated for representatives of the 

major structural/evolutionary clades of CT peptides, specifically, human CT (hCT) and salmon CT 

(sCT) that are both used clinically, as well as porcine CT (pCT) (Figure 1A). We also assessed 

responses to the related peptides Amy and CGRP that bind to and activate the CTR with low 

affinity/potency, but are potent agonists of CTR/RAMP complexed receptors. Global affinity (pKi) 

was determined from competition with the radiolabelled antagonist peptide 
125

I-sCT(8-32), while 



  

    
 

functional affinity (pKA) and efficacy were determined by quantification of concentration-response 

data with the operational model of Black and Leff
23

 that provides independent measures of pKA and 

All experiments were performed in CV-1 FlpIn cells that lack functional CTR and 

RAMP expression, with receptors stably expressed following isogenic recombination. Data are 

mapped onto the active hCTR structure (5UZ7), following modelling of missing side chains and 

sampling by short time-scale MD. 

 

3.1 Receptor expression 

Residues for mutation were selected based on the recent structure of sCT/hCTR/Gs
13

 and comprised 

amino acids I279-I300 (ECL2) and F356-M376 (ECL3) (Figure 1B,C). Cell surface expression was 

determined by anti-c-Myc antibody binding to the c-Myc tag inserted after the receptor signal 

peptide in the N-terminal ECD (Figure 1B), and quantified by FACS. 

 

Most mutants demonstrated equivalent cell surface expression to that of the WT receptor (Figure 

1D; Table 1), however, a subset of mutants, particularly within ECL2, had altered expression. Only 

K370A in ECL3 had no detectable expression. D287A, C289A, W290A, and I300A in ECL2, and 

I371 in ECL3, also had markedly diminished cell surface expression (<20% of WT). R281A, 

N286A, T295A, L297A, Y299A in ECL2 and F356A in ECL3 were expressed at levels between 

20% and ~40% of WT. A smaller but significant attenuation of expression was observed for 

Y284A, R362A and Y374A. In contrast, T280A significantly increased expression and P360A 

strongly augmented cell surface receptor expression (Figure 1D; Table 1). Within ECL2, those 

residues with strongly attenuated expression formed a continuum within the central portion of the 

loop, suggesting that these residues participate in a network that helps to stabilize the apo receptor 

(Figure 1E). 

 

3.2 ECL2 and ECL3 mutants differentially modulate peptide-specific affinity 



  

    
 

Global affinity was determined by competition of 
125

I-sCT(8-32) binding in whole cells by each of 

the peptides. Homologous competition with sCT(8-32) revealed a pKi for the WT receptor of 

9.70±0.05, and a Bmax of 22,900±2,500 sites/cell (Table 1). Overall, there was a good correlation, 

for the mutant receptors relative to WT, between measured Bmax and cell surface expression data 

from antibody binding (Figure 1F), although there was a high error in Bmax estimates, consistent 

with expectations of cold saturation experiments with only two radioligand concentrations. sCT, 

hCT and pCT had pKi values for the WT receptor of 9.87±0.03, 6.72±0.06 and 8.27±0.07, 

respectively (Table 1), consistent with those reported in previous studies
9,10

.   

 

Mutants with very low expression, N286A, D287A, C289A, W290A, I300A, K370A and I371A, 

displayed little or no detectable 
125

I-sCT(8-32) binding, thereby preventing assessment of global 

affinity, whereas all other mutant receptors exhibited a sufficient radioligand binding window to 

determine peptide affinity. Of these, only R281A, L291A and P360A reduced sCT(8-32) affinity, 

whereas T295A increased affinity of this peptide (Table 1, Figure 2; Figure 3). Similarly, there was 

only limited effect on sCT affinity, with reduced affinity for the R281A, P360A and D373A 

mutants, and increased affinity for S292A. Intriguingly, the L291A mutant that had reduced affinity 

for the antagonist and both hCT and pCT, did not alter sCT affinity. Both hCT and pCT were more 

broadly sensitive to mutation, with those affecting pCT common with hCT, including R281A, 

L291A, T295A, L298A, F359A-P363A and Y372A that principally resided either within 5Å of sCT 

in the CTR model, or were involved in the network of amino acids in the core of ECL2 that was 

linked to receptor stability/expression (Table 1, Figures 1 and 2). There was a significant reduction 

in pCT affinity for the Y299A mutant that also trended lower for hCT. Moreover, there was 

selective, significant attenuation of hCT affinity for L297A, L298A, V357A, V358A, D373A and 

M376A (Table 1, Figure 2).  

 



  

    
 

CGRP and Amy displayed no detectable competition with the radioligand at the wildtype or mutant 

receptors within the concentration range assessed (up to 10 μM), confirming pre ious findings that 

these have low affinity for the CTR. 

 

3.3 ECL2 and ECL3 mutants alter functional affinity in a ligand and pathway dependent manner 

Concentration-response data, for cAMP accumulation, in response to each peptide was established 

for WT and mutant receptors (Figure 4, Table 2), IP1 accumulation (Figure 5; Table 3), and 

ERK1/2 phosphorylation (Figure 6; Table 4). Functional affinity for each of the pathways was 

determined by operational fitting of the concentration response data. The effect of mutation on pKA 

for cAMP formation was broadly similar to the derived pKi values (Figure 6), clustering to either 

residues in proximity to the peptide or in the central segment of ECL2 that was important for 

receptor stability and expression (Figure 2, Figure 8). Unlike the competition binding assay, 

estimates of pKA could be derived for at least one of the peptides for all mutants, except K370A that 

was not expressed at the cell surface (Figure 2, Figure 8, Table 5). Of these, N286A had no impact 

on affinity, while D287A, C289A and W290A caused a marked decrease in pKA for cAMP 

formation for all peptides, and these were the only mutations to alter sCT cAMP pKA values. The 

weak IP1 responses for these mutants made interpretation of effect difficult, however they had clear 

differential impact on pERK pKA values. While none of the mutants altered sCT pERK pKA, 

D287A decreased both hCT and pCT functional affinities, and W290A decreased that for pCT (hCT 

was not detectable), and there was a selective loss of pERK functional affinity for hCT at the 

C289A mutant (Figure 2, Figure 8, Table 5). 

 

There were distinct patterns in the effect of mutation on pKA values both across pathways and 

between peptides. sCT functional affinities were the least sensitive to mutation, and in particular, 

mutations in ECL3 had limited impact. This contrasts with hCT and pCT where ECL3 mutations 



  

    
 

had widespread effect with greatest impact on pKA values derived from IP1 and cAMP signalling 

(Figures 2, 8 and 9, Table 5).  

 

The F359A and P360A mutants induced a global decrease in functional affinity for pERK and IP1 

pathways, but had differential effect on cAMP responses. Neither affected sCT, while P360A 

attenuated pKA values for both hCT and pCT, with a selective loss of affinity for hCT observed for 

the F359A mutant (Figures 2, 8 and 9, Table 5). 

 

For sCT, there was a selective decrease in pKA values linked to pERK for the V293A mutant and a 

selective increase for the I300A and F356A mutants, while none of the other mutants altered pERK-

derived pKA values (Table 5). Analysis of IP1 signalling revealed an IP1 specific loss of affinity for 

all 3 peptides at the Y374A mutant, while there was preferential loss of affinity for sCT and hCT 

for the V358A and M367A mutants. For the latter mutant, while there was no significant effect on 

pCT functional affinity linked to IP1 signalling, there was a selective decrease in the pERK linked 

pKA value. There was also a selective decrease in sCT IP1-derived functional affinity for the 

F285A, E294A, T295A, and Y299A mutants. No other mutants altered sCT functional affinities for 

any of the pathways studied (Figures 2, 8 and 9, Table 5). 

 

hCT and pCT displayed intriguing differences in the pattern of mutational effect on pKA values 

derived from analysis of IP1 and pERK responses. For hCT there was only limited effect of 

mutation in ECL3 on pERK-derived pKA values and these were confined to the membrane proximal 

ECL3/TM6 boundary (V358A-R362A) and Y372A that packs up against this region in the WT 

receptor (Figures 2, 8 and 9, Table 5). This segment was also important for pCT pERK-derived 

functional affinity, but additional effect was seen with the M367A-G369A mutants that are involved 

with packing at the top of the extension of TM7, and which are important for IP1-derived functional 

affinity of hCT and pCT, albeit that not all effects reached significance for both peptides (Table 5). 



  

    
 

ECL3 was important for IP1-derived functional affinities for both hCT and pCT, with those 

mutations impacting on pCT also decreasing hCT pKA values, including residues at the ECL3/TM6 

boundary (F356A-R362A), residues in the distal part of ECL3 that are likely important for 

TM7/TM1 packing (D373A, Y374A) as well as residues located in the upper extension of TM7 

(M368A-G369A) (Figures 2, 8 and 9, Table 5). However, the network of residues important for 

hCT pKA values was more extensive for both the TM6/ECL3 boundary (P363A, S364A), and the 

extension of TM7 (M367A). In contrast, ECL2 played only a limited role in pCT functional affinity 

derived from either IP1 or pERK signalling. Only the I279A mutant altered pCT IP1-derived pKA 

values, although no quantifiable response was obtained for the poorly expressed C289A, W290A 

and I300A mutants (Table 5). For pERK functional affinity, only the D287A, W290A and L291A 

mutants attenuated pCT affinity. This central network was also important of hCT pERK-derived 

pKA values, with N288A and C289A also reducing hCT functional affinity. It is likely that the 

R281A mutant additionally attenuates hCT affinity as no quantifiable response was detected, and 

there was a large decrease in cAMP-derived pKA. For hCT functional affinity derived from IP1 

signalling, there was a broader impact of mutation for ECL2 residues that included T280A-V283A, 

residues of the central core and boundary with ECL1 (D287A-S292A), and L297A and L298A 

(Figures 2, 8 and 9, Table 5).  

 

Due to the low affinity of amylin and CGRP for CTR, and poor coupling to IP1 signalling (data not 

shown), no competitive binding data or IP1-derived functional affinity data could be obtained for 

these peptides. pKA values from operational analysis of the cAMP signalling could be derived for 

most mutants, revealing only limited impact on either amylin or CGRP functional affinity. This was 

particularly true for amylin that mirrored the observations for sCT, with ~10-fold loss of affinity for 

the C289A and W290A mutants. No quantifiable response for the D287A and Y372A mutants (that 

had weak reductions in sCT functional affinity) was observed, while all other mutants failed to 

significantly alter affinity (Figure 8; Table 5, Supplementary Figure 6). Although the magnitude of 



  

    
 

effect was also limited for CGRP in this pathway, there were broader effects of mutations, including 

loss of detectable response for D287A, C289A, and W290A, and reduced affinity for L291A, 

T295A, F356A, W361A and M376A. These residues were also important for hCT functional 

affinity at this pathway (Figures 3 and 10; Table 5). 

 

Both amylin and CGRP are only weakly coupled to pERK, and alanine mutation either had no 

effect or attenuated responses such that they there were not quantifiable. Nonetheless, interesting 

differences were observed between the effect on amylin and CGRP signalling. Residues with very 

low expression, including D287A, C289A, W290A and I371A had no detectable response for either 

peptide. Loss of response for both peptides was also seen for the P360A, Y372A and D373A 

mutants, despite similar or greater (P360A) cell surface expression of the receptor. The L291A, and 

Y299A mutants selectively attenuated, and the N286A mutant selectively enhanced, CGRP 

functional affinity. Functional CGRP affinity for T295A was not significantly altered, and not 

determined for amylin due to large error in parameter estimates, despite a measurable response 

(Figures 8 and 10; Table 5). 

 

3.4 ECL2 and ECL3 play distinct roles in pathway specific efficacy 

3.4.1 Calcitonin peptides 

Interestingly, despite detrimental effects on functional affinity, only enhancement of cAMP efficacy 

was observed for any of the CT peptides (Figures 11A and 12A; Table 6). For sCT and hCT, the 

effect of mutation was similar, and confined to ECL2, with the exception of F356A that resides at 

the base of the peptide binding pocket. Enhanced efficacy was seen for both sCT and hCT for 

R281A, D287A, C289A, W290A, T295A and I300A (Figures 11A and 12A; Table 6). These 

mutants also had reduced cell surface expression (Figure 1), indicative of destabilization of the 

receptor in a manner that lowers the barrier to Gs coupling. N286A caused a selective enhancement 

of hCT efficacy, while pCT had both overlapping and distinct effects following receptor mutation. 



  

    
 

In ECL2, the effect of mutation was conserved with the other peptides except that there was no 

change in pCT efficacy with the D287A mutant, and a selective enhancement of efficacy at the 

L297A mutant. Strikingly, ECL3 residues were also important for pCT cAMP efficacy, with 

P360A, R362A, P363A and D373A causing selective enhancement of efficacy (Figures 11A and 

12A; Table 6).  

 

There was only limited impact of mutation on CT-mediated IP1 efficacy (Figure 11B, Figure 12B, 

Table 6). Within ECL2, no quantifiable response was seen with W290A for any of the peptides, 

with C289A for hCT and pCT (but no effect on sCT), and with D287A for sCT and hCT, but an 

enhanced efficacy for pCT with this mutation. The Y299A mutant attenuated efficacy for all 

peptides, while I300A abolished responses to sCT and pCT but not hCT (Table 6). Within ECL3, 

there was no pCT response with the F356A mutant, but this did not alter efficacy for sCT or hCT. 

The I371A mutant significantly enhanced efficacy for all peptides. The P360A mutant selectively 

reduced hCT efficacy, while the Y372A and M376A mutants selectively attenuated efficacy for 

pCT. No other mutants altered peptide-mediated IP1 efficacy (Figure 11B, Figure 12B, Table 6).  

 

Within ECL2, efficacy was attenuated for all peptides at the Y299A mutant and enhanced at the 

H296A and I300A mutants, albeit that the H296A and I300A mutants did not achieve significance 

for hCT or pCT, respectively (Figure 11C, Figure 12C, Table 6). The C289A mutant selectively 

enhanced sCT efficacy, while no quantifiable response was observed for hCT at the R281A and 

W290A mutants, which did not alter sCT or pCT efficacy. Within ECL3, the mutant effects tended 

to be relatively peptide specific, although no measurable response was observed for any peptide at 

the I371A mutant (Figure 11C, Figure 12C, Table 6). sCT efficacy was least impacted with loss of 

efficacy at the Y372A mutant (that was also seen with hCT and pCT), and selective enhancement of 

efficacy at the F359A, this latter effect contrasted with the enhanced efficacy seen for hCT and 

pCT. The P360A and M376A mutants attenuated pCT and hCT efficacy, albeit that the M376A 



  

    
 

mutant did not achieve significance for hCT. The K366A mutant selectively enhanced hCT 

efficacy, while there was a selective loss of pCT efficacy with the D373A mutant, and selective 

enhancement of efficacy for the M367A and L368A mutants with this peptide (Figure 11C, Figure 

12C, Table 6).  

 

3.4.2 Amylin and CGRP 

Within ECL2 there was no quantifiable response for D287A for either amylin or CGRP, and no 

measurable response to CGRP at the C289A and W290A mutants, while the C289A mutant, along 

with N286A, had enhanced amylin efficacy (Figure 11A, Figure 12A, Table 6). Both amylin and 

CGRP efficacy were enhanced at the I300A mutant but there were no other significant effects for 

either peptide. Within ECL3, the F356A and I371A mutants enhanced efficacy for both peptides, 

while the Y372A mutant attenuated CGRP efficacy and abolished the response to amylin, but no 

other mutants impacted on amylin efficacy. For CGRP, loss of efficacy also occurred at the F359A, 

P360A, D373A and M376A mutants (Figure 11A, Figure 12A, Table 6).  

 

Due to weak coupling of amylin and CGRP to IP1 signalling, effects of mutations on efficacy could 

not be determined.  

 

As noted above for functional affinity data, as coupling of amylin and CGRP to pERK is relatively 

weak, many mutants had responses that could not be operationally quantified. Although some of 

these had selective effects on amylin or CGRP, in these cases the effects on affinity versus efficacy 

could not be separated. 

 

Within ECL2, most mutants either had no quantifiable signalling or did not affect peptide efficacy. 

Lack of signalling occurred for both peptides at the D287A, C289A and W290A mutants. 

Signalling was not quantifiable for L291A and Y299A for CGRP, and attenuated for amylin, while 



  

    
 

amylin signalling was not quantifiable at the T295A mutant, with no effect on CGRP (Figure 11C, 

Figure 12C, Table 6). 

 

Within ECL3, no quantifiable signalling for either peptide was observed for the P360A, D373A and 

I371A mutants. At the Y372A mutant, efficacy was abolished for amylin and attenuated for CGRP. 

Efficacy of both peptides was reduced at the W361A and M376A mutants. It was reduced for 

amylin and abolished for CGRP at the P363A mutant. In general, mutations to the membrane 

proximal segment of TM6/ECL3 had greater impact on CGRP efficacy, with either loss (V357A) or 

attenuation (V358A, F359A, R362A) of efficacy for CGRP with less pronounced effects amylin 

efficacy (Figure 11C, Figure 12C, Table 6). 

 

4. Discussion 

Recent structural biology breakthroughs for the CTR and GLP-1R have provided new 

understanding of class B GPCR peptide binding and receptor activation that includes reorganisation 

of the packing of loop residues, and major, conserved, conformational changes in TM6/ECL3/TM7 

at the extracellular face of the receptor that are linked to outward movement of the intracellular face 

of TM6 to accommodate G protein binding
13-15

. However, these studies also revealed 

peptide/receptor specific differences in presentation of the peptide N-terminus to the core and their 

engagement with the receptor surface, in particular for ECLs 2 and 3. For the GLP-1R, these loops 

play an important role in peptide binding, efficacy and biased agonism
15,16,21

. Intriguingly, the role 

of ECLs 2 and 3 of the CTR was generally distinct when compared to the GLP-1R. This could in 

part be attributed to distinct effector coupling profiles exhibited by the two different receptors with 

the GLP-1R capable of coupling to both G proteins and β-arrestins
16

, whereas CTR is unable to 

recruit the latter when activated by CT peptides
41

.  

 



  

    
 

4.1 CTR ECL2 plays a key role in conformational propagation linked to Gs/cAMP signalling that 

is distinct from that of GLP-1R ECL2. 

CTR stability, as indexed by cell surface expression, was highly sensitive to mutations in the core of 

ECL2 that formed an interconnected network but were located away from the principal binding site 

for sCT in the active structure. Moreover, mutation of this ECL2 network enhanced efficacy 

selectively for cAMP (all peptides) suggesting that the ECL2 destabilized state is linked to lowered 

barrier for Gs activation, despite decreased affinity of some mutations for peptides (lower pKA). 

Indeed, some mutants demonstrated higher Emax than WT receptor, despite low cell surface 

expression. However, there was limited correlation of the loss of cell surface expression with 

efficacy in other pathways, indicating that this ECL2 conformation is poorly linked to activation of 

other pathways for this receptor. 

 

This segment of ECL2 contains a number of residues that are very highly conserved across the CTR 

and GLP-1R (and indeed all class B GPCRs), including R281/K288 (CTR/GLP-1R amino acids and 

residue number, respectively), C289/C296, W290/W297 and an polar/acidic motif between these 

residues N286,D287,N288 (CTR) and E292,D293,E294 (GLP-1R)
13-15

. Despite this, these residues 

are differentially important in receptor activation between those receptors. With minor exception, 

GLP-1R expression/stability was not markedly affected by mutation for any of the ECLs, including 

ECL2, however, ECL2 was broadly required for both Gs- (cAMP) and Gq- (iCa2+) mediated 

signalling with mutation decreasing peptide efficacy
16,21

. This contrasts with both the enhancement 

of cAMP efficacy for CT peptides, and the very limited importance of ECL2 in CT efficacy for IP1 

signalling (Figures 11, 12 and 13A). Comparison of the Gs complexed structures of the two 

receptors provides some potential insight into why these differences may occur, in particular, there 

are marked differences in positioning of W290/297 and the packing interactions of conserved 

residues around this residue. In the GLP-1R, W297 is completely flipped and buried within the core 

of the loop and this conformation is stabilized by K288, with the acidic/polar residues forming 



  

    
 

additional interactions that stabilize this conformation (Figure 14). In contrast, the aromatic 

functional group of W290 in the CTR remains oriented towards the receptor core with extensive 

interactions observed with sCT and hCT that are stable in MD simulations (Figure 15A, Table 7); 

D287 packs tightly with W290 and C289, while R281 forms alternate interactions to stabilize the 

loop conformation (Figure 14B). The two receptors have very distinct preferred orientations of the 

N-terminal ECD and the peptide ligands enter the receptor core at different angles, with GLP-

1/ExP5 closer to ECL2 such that their entry may require the major reorientation of W297
15

. In this 

vein, it is interesting to note that while alanine mutations of C296 and W297 dramatically 

diminished GLP-1 and exendin-4 binding, they did not alter oxyntomodulin affinity
21

, and it is 

possible that this peptide engages the receptor core in a manner more similar to that observed for 

sCT. For ECL2, CGRP and amylin were generally less affected by mutation and efficacy effects 

were either unmeasurable or only found in a subset of those with altered efficacy for CT peptides.  

 

The CTR shares greatest homology with the calcitonin receptor-like receptor (CLR), including 

strong conservation of residues within ECL2. Unlike CTR, CLR requires RAMP interaction for 

functional cell surface expression and to form CGRP (CGRP1, CLR/RAMP1) or adrenomedullin 

(AM1, CLR/RAMP2; AM2, CLR/RAMP3) receptors. In contrast to the CTR, CLR cell surface 

expression was not greatly impacted by alanine mutation of ECL2 residues
42,43

. However, there 

were similarities in the impact of mutation of conserved residues on cAMP pKA (CTR) or cAMP 

potency (CLR/RAMP receptors). This included reductions in CGRP and adrenomedullin potency, 

for their respective receptors, for R274A (R281A, in CTR), D280A (D287A), C282A (C289A), 

W283A (W297A), and I284A (L291A)
42

 that paralleled the losses in functional affinity seen with 

hCT and pCT, although this could be RAMP-dependent for the adrenomedullin receptors
43

.  

 

Within ECL2, amino acids proximal to the peptide in the sCT/CTR/Gs structure (W290-T295; 

L297,L298) tended to display peptide and/or pathway selective effects. These likely form dynamic 



  

    
 

and differential interactions with key polar residues of the peptides (S
2,sCT/pCT

/G
2,hCT

, N
3
, T

6
, 

Q
14,sCT/hCT

,R
14,pCT

, H
17,sCT

/N
17,hCT/pCT

) to influence peptide binding and signalling (Figure 15A; 

Table 7; Supplementary Movie 1). Of note, T288A, L290A, and L291A of CLR, in a RAMP-

dependent manner, also attenuated adrenomedullin (T288A) or CGRP (T288A,L290A,L291A) 

cAMP potency
42,43

. 

CTR indicated that ECL2 was more conformationally dynamic when the receptor was bound to 

hCT (Supplementary Movie 1), and this may also contribute to the differential effects of mutation 

between CT peptides. 

 

4.2. ECL3 is a gateway for ligand, receptor and pathway specific modulation of class B GPCR 

function 

Across the available active CTR and GLP-1R structures, the largest difference in the receptor core 

was the angle of tilt of TM6, and to a lesser extent TM7, and the interconnecting conformation of 

ECL3, with the CTR exhibiting the greatest outward movement of this domain
13-15

. Nonetheless, 

this was also the region of greatest divergence between the structures of GLP-1/GLP-1R/Gs and the 

G protein-biased analogue complex, ExP5/GLP-1R/Gs, indicating that peptide interactions with 

ECL3 play a critical role in differential modes of receptor activation
15

. Indeed, comparison of the 

effect of mutation in ECL3 across multiple peptides and pathways, and between the CTR and GLP-

1Rs, revealed significant diversity in how ECL3 was engaged and contributed to peptide binding 

and propagation of conformational change linked to efficacy (Figure 13). Interestingly, mutations 

that altered GLP-1R mediated Ca
2+

 (Gq) and pERK primarily clustered within ECL2 and ECL3 

respectively, whereas CTR mutations that altered IP1 (Gq) and pERK displayed similar clustering, 

predominantly within ECL3 that distinct from those required for cAMP. pERK can be activated 

downstream of multiple effector proteins and is often a composite of many divergent signalling 

pathways
16,44

. While pERK1/2 mediated by the GLP-1R is a composite of both G protein and β-

arrestin signalling
16

, the CTR is unable to recruit β-arrestins, suggesting that the pERK response is 



  

    
 

likely to be predominantly G protein mediated
41

. While the CTR can couple to multiple different G 

proteins, similar clustering in our of residues important for IP1 and pERK in our mutational 

analysis suggests that CTR mediated pERK, at least in part, may be downstream of Gq coupling, 

although further experimental data will be required to confirm this. 

 

Despite the diversity in how CTR and GLP-1Rs engage ECL3 to promote signalling, there were 

clear patterns with respect to clustering of residues that were functionally important, particularly 

around the TM6 and TM7 proximal segments of ECL3 that were located with 5Å of the sCT ligand, 

and the network of residues within the loop that stabilized these interactions. For hCT and pCT, the 

sequence of residues at the apex of the TM extension (K366-G369) was important, in a peptide 

specific manner, for IP1 or pERK signalling, indicating that secondary structure in this segment of 

ECL3 contributes to propagation of conformation linked to these pathways for the less well coupled 

peptides. Of particular note were the clear distinctions in the patterns of important residues for pCT 

versus other CT peptides, and CGRP across all peptides suggesting that these peptides have 

different modes of ligand engagement with the receptor relative to the other peptides.  

 

Uniquely among class B GPCR peptide ligands, the CT-family peptides contain an N-terminal 

disulphide bridge between residues 1 and 7 (2 and 7 for CGRP and adrenomedullin), with a 

consequent bulky loop structure that contrasts to the linearly extended GLP-1R peptides observed in 

the active structures. This loop is oriented toward ECL3 and the larger outward movement of this 

domain is required to accommodate the peptide N-terminus. However, the peptides are predicted to 

make relatively weak (non-polar) and transient interactions with ECL3 (Figure 15A; Table 7), and 

this is consistent with the high mobility of TM6/ECL3 in the sCT/CTR/Gs structure that could not 

be resolved at high resolution
13

. Linear analogues of sCT maintain high affinity and potency in 

cAMP signalling, whereas equivalent analogues of hCT have attenuated potency
9,45,46

. sCT has 

higher helical secondary structure propensity in the mid-region of the peptide, compared to hCT
9,47

 



  

    
 

that likely constrains the location of the N-terminus to maintain interactions, whereas the additional 

constraints imposed by the disulphide bridge are required to facilitate interactions for hCT. Greater 

secondary structure of sCT versus hCT is seen in MD simulations of bound peptides (Figure 15C) 

and this contributes to predicted differences in peptide-receptor interactions for these two peptides 

(Figure 15B; Table 7, Supplementary Movie 1). 

 

Intriguingly, comparison of the ExP5, and the GLP-1, receptor complexes, revealed distinct 

positioning of peptides (including minor difference in the relative orientation of the ECD) that 

likely contributes to engagement with ECL3/TM6 and TM7, and this had implications for ligand-

dependent G protein conformations and cAMP signalling efficacy
14,15

. Amongst the cryo-EM 

structures, the GLP-1R complexes exhibited a single major conformation of the ECD relative to the 

receptor core, while the sCT/CTR/Gs complex contained multiple conformations of the ECD that 

were discernible at lower resolution
13

. CT family peptides have a relatively unstructured, and more 

flexible C-terminus than GLP-1 and related peptides
13,48

, and it is likely that there would be greater 

potential for different CT peptides to have altered orientation within the receptor core, relative to 

sCT, as would be predicted from MD simulations (Figure 15C). This would be consistent with the 

differential impact of ECL3 mutation on sCT versus hCT and pCT, and between hCT and pCT (eg. 

for pKA in IP1 and pERK, and efficacy for cAMP and pERK). 

 

Though it is difficult to draw direct comparisons, it is intriguing that select mutation of residues in 

ECL3 differentially affected potency/functional affinity of GLP-1 relative to ExP5
15

, and that this 

was also seen for sCT versus hCT. Like hCT and sCT that have altered Gs-mediated efficacy linked 

to different ligand-induced conformations of Gs
11

, higher efficacy was observed for ExP5 (relative 

to affinity) compared to GLP-1, and this was associated with lower population based assessment of 

max conformational change (hCT, ExP5 versus sCT, Ex4/GLP-1, respectively). This provides the 



  

    
 

first evidence of parallels in the mode of control of efficacy within relatively divergent class B 

subfamily members, albeit that there is still much to understand at a mechanistic level. 

 

Amylin and CGRP are low affinity and potency agonists of CTR but are high potency ligands of 

CTR/RAMP complexes
8
. While this low potency limited analysis for poorly expressed CTR 

mutants, the impact of mutation on amylin was generally consistent with observations for CT 

peptides, especially sCT. In contrast, CGRP had a unique profile, particularly with respect to 

residues within ECL3 and proximal to TM6 (F356A-R362A), indicative of a non-canonical 

spectrum of interaction with this receptor segment. Of note, there were additional CGRP selective 

effects for mutations to CTR residues Y372 and D373 that could make direct peptide interactions, 

and M367 that packs between F356 and F359. Data from the related secretin receptor, has 

implicated TM6/TM7 as the principal membrane interface for RAMP interaction
49

, and this is 

broadly consistent with the data for CLR
13

, albeit that the authors of this latter work reached a 

different conclusion. While CTR and CLR interactions are more complex, with additional 

interaction between RAMP and receptor ECDs that contribute to altered peptide affinities
48-50

, a 

TM6 interface would be consistent with the key role of ECL3 in biased signalling, and with the 

predicted impact of RAMP interactions on the conformation of ECL3 for adrenomedullin 

receptors
43

. RAMPs alter signalling profiles for multiple class B GPCRs, including glucagon, 

VPAC1 and CT receptors
50-55

, even where altered binding phenotypes are not observed. The nature 

of the RAMP-induced enhancement of CGRP binding and potency at the CTR is particularly 

complex, with RAMP chimera and truncation studies indicative of a direct role of the short RAMP 

C-terminus in G protein engagement that is critical for CGRP potency
56-57

, and this may also 

allosterically regulate CGRP engagement with ECL3. ECL3 was also important for cAMP 

signalling of CGRP or adrenomedullin at CLR/RAMP complexed receptors. Similar to observations 

for CT peptides at the CTR, both common and peptide specific effects were observed
58-60

, 

confirming the dynamic role that ECL3 plays in this receptor subfamily. However, as the signalling 



  

    
 

data were not separated into the derivative effects on affinity and efficacy, it is difficult to make 

specific comparisons. Understanding the impact of RAMPs on CTR binding and activation by 

peptides will require additional structures and mutants of RAMP-complexed receptors. 

 

Integration of alanine scanning analysis of the critically important ECLs 2 and 3, on peptide 

function, with new insights available from novel peptide-bound, active state, G protein complexed 

class B receptors, has revealed marked diversity in mechanisms of peptide engagement and receptor 

activation between the CTR and GLP-1R. A significant contributor appears to be the orientation of 

peptides within the receptor core, and this will be influenced by relative orientation of the ECD that 

engages the peptide C-terminus. While both domains play important functional roles, ECL3 appears 

to be a hotspot for distinct ligand and pathway specific effects, and this has implications for the 

future design of biased agonists of class B GPCRs.  
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Figure 1. Alanine mutation of ECL2 and ECL3 of the hCTR selectively alters expression of 

the receptor. (A) Alignment of CT and related peptide sequences was performed using Biology 

WorkBench (workbench.sdsc.edu). Identical residues are highlighted in green, conservative 

substitutions are coloured blue, and semi- conservative substitutions are in orange. Black text 

indicates the non-conserved. (B) Snake diagram of the hCTR: highlighted in blue are the residues 

that constitute the signal peptide of the receptor, in orange the c-Myc tag, and in green the residues 

that have been mutated to alanine. (C) Active state model of the hCTR (pale blue ribbon), with 

position of mutated residues displayed as grey surface map. sCT is shown as dark red, with side 

chains in proximity to the ECLs displayed in x-stick, and residues 1-7 that are critical for receptor 

activation displayed in transparent cpk. (D) Expression of mutant receptors determined by FACS 

analysis of antibody binding to the c-Myc epitope. (E) Top view of the ECLs with mutants that 

significantly altered receptor expression displayed in colour according to the magnitude of effect; 

grey indicates no significant effect and black mutants where expression could not be measured. The 

receptor ECD and C-terminal peptide residues are omitted for clarity (F). There was a strong 

correlation between cell surface receptor expression by FACS and homologous competition 

radioligand binding. *P<0.05, one-way ANOVA with Dunnett’s post-test. Data are mean + S.E.M. 

(D) or ± S.E.M. (F) of 3 to 6 (WT 10 to 12) independent experiments. 

 

Figure 2. Alanine mutation of ECL2 and ECL3 of the hCTR alters CT peptide binding pKi 

and functional affinity (pKA) in a peptide- and pathway- specific manner. The effect of 

mutation on peptide affinity in competition for the antagonist radioligand 
125

I-sCT(8-32) is 

displayed as pKi in the upper panels, with functional affinities derived from operation fitting of 

concentration-response curves in cAMP accumulation, pERK and IP1 accumulation displayed as 

pKA in the mid and lower panels, respectively. Illustrated is a top view of the active, sCT-bound, 

hCTR model with ECL2 and ECL3 shown in surface representation. Mutations that significantly 

alter peptide affinity are coloured according the magnitude of effect (from Tables 1 and 5), with 



  

    
 

mutated amino acids without significant alteration to affinity coloured grey. sCT is shown as dark 

red, with side chains in proximity to the ECLs displayed in x-stick, and residues 1-7 that are critical 

for receptor activation displayed in transparent cpk. 

 

Figure 3. Competition of 
125

I-sCT(8-32) binding by CT peptides for wild-type (WT) and each of 

the hCTR mutants stably expressed in CV1- FlpIn cells. Whole cell radioligand binding was 

performed for each receptor mutant in presence of 
125

I-sCT(8-32) and competing peptide ranging in 

concentration between 1 μM and 1 pM  Non-specific binding was determined in the presence of 1 

μM of s T(8-32) and was used to calculate % of specific binding. Data were fit with a three-

parameter logistic equation. All values are mean + S.E.M. of 3 to 12 (WT 16 to 18) independent 

experiments, conducted in duplicate.  

 

Figure 4. cAMP accumulation profiles elicited by sCT, hCT, pCT, rat amylin (rAmy) or hCGRP in 

CV1-FlpIn cells stably expressing wild-type (WT) or single alanine mutations of ECL2 or ECL3. 

cAMP formation in the presence of agonist peptides was normalized to responses of the internal 

control (0.1 mM forskolin) and fit to a three-parameter logistic equation. Data was subsequently 

normalised to WT receptor response. All values are mean + S.E.M. of 4 to 11 (WT 25 to 36) 

independent experiments conducted in duplicate. 

 

Figure 5. IP1 accumulation profiles elicited by sCT, hCT, or pCT in CV1-FlpIn cells stably 

expressing wild-type (WT) or single alanine mutations of ECL2 or ECL3. IP1 accumulation in the 

presence of agonist peptides was normalized to responses of the internal control (0.1 mM ATP) and 

fit to a three-parameter logistic equation. Data was subsequently normalised to WT receptor 

response. All values are mean + S.E.M. of 4 to 7 (WT 37 to 47) independent experiments conducted 

in duplicate. 

 



  

    
 

Figure 6. Peak ERK1/2 phosphorylation (pERK) profiles elicited by sCT, hCT, pCT, rat amylin 

(rAmy) or hCGRP in CV1-FlpIn cells stably expressing wild-type (WT) or single alanine mutations 

of ECL2 or ECL3. pERK in the presence of agonist peptides was normalized to the WT receptor 

response and fit to a three-parameter logistic equation. All values are mean + S.E.M. of 4 to 6 (WT 

30 to 35) independent experiments conducted in duplicate. 

 

Figure 7. Correlation between changes in global peptide affinity (pKi) derived from heterologous 

competition binding assays, and functional pKA for cAMP (upper panels), IP1 (middle panels) or 

pERK (bottom panels) signalling, for hCT (left hand panels), sCT (middle panels) or pCT (right 

hand panels). For all peptides, the highest correlation was seen between pKi and pKA derived from 

operational analysis of cAMP response data. Significant but weaker correlations were also observed 

between pKi and functional affinities for IP1 and pERK signalling for hCT, and for pERK 

signalling alone for pCT. No correlation was observed for sCT pKA values from IP1 or pERK 

assays or pCT IP1 assays. 

 

Figure 8. Alanine mutation of ECL2 and ECL3 of the hCTR selectively alters peptide 

functional affinity in a pathway-dependent manner. For each receptor mutant and ligand, 

concentration-response data for (A) cAMP accumulation, (B) IP1 accumulation, or (C) pERK 

assays were fit with the Black and Leff operational model to derive a functional affinity (pKA) for 

each pathway, and these values were subtracted from the WT pKA  alues to yield ΔpKA. All values 

are mean + S.E.M. of 4 to 11 (WT 25 to 47) independent experiments conducted in duplicate. 

Significance of changes were determined by comparison of the WT to the other receptor mutants in 

a one-way analysis of  ariance and Dunnett’s post-test of determined pKA values (Table 5) with 

significant changes (P<0.05) denoted by *, and coloured according to the magnitude of effect. N.D., 

functional affinity not determined. 

 



  

    
 

Figure 9. Mutants that differentially alter peptide-dependent functional affinity cluster into 

subdomains in ECL2 and ECL3. (A-C) Mutants that alter functional affinity are displayed in x-

stick representation, coloured according to effect on the different signalling pathways. (A) Effect of 

mutation on sCT, (B) hCT, or (C) pCT pKA. Mutants that did not significantly affect functional 

affinity in any pathway are coloured grey. The full receptor TM domain is displayed as grey ribbon, 

and sCT in dark red ribbon, with the receptor ECD, and peptide C-terminal residues omitted for 

clarity. (D) ECL2 and ECL3 amino acids within 5Å of sCT in the model are displayed in red 

transparent cpk representation.  

 

Figure 10. Alanine mutation of ECL2 and ECL3 of the hCTR alters amylin and CGRP 

functional affinity (pKA) in a peptide- and pathway- specific manner. Functional affinities 

derived from operation fitting of concentration-response curves in cAMP accumulation (upper 

panel) and pERK (lower panel) are displayed as pKA. Illustrated is a top view of the active, sCT-

bound, hCTR model with ECL2 and ECL3 shown in surface representation. Mutations that 

significantly alter peptide affinity are coloured according the magnitude of effect (from Table 5), 

with mutated amino acids without significant alteration to affinity coloured grey. sCT is shown as 

dark red, with side chains in proximity to the ECLs displayed in x-stick, and residues 1-7 that are 

critical for receptor activation displayed in transparent cpk. 

 

Figure 11. Alanine mutation of ECL2 and ECL3 of the hCTR selectively alters peptide 

efficacy. Concentration-response data for each peptide in (A) cAMP accumulation, (B) IP1 

accumulation, or (C) pERK assays were fit to the operational model of agonism to calculate the 

affinity-independent coupling efficacy log(τ) of each receptor (mutant or WT) for each signalling 

pathway  The log(τ)  alues of each receptor were then corrected for expression to obtain log(τc)  

Graphs show the differences relative to WT. All values are mean +/- S.E.M. of 4 to 11 (WT 25 to 

47) independent experiments conducted in duplicate. Significance of changes were determined by 



  

    
 

comparison of the WT to the other receptor mutants in a one-way analysis of variance and 

Dunnett’s post-test of determined log(τc)  alues (Table 2) with significant changes (P<0 05) 

denoted by *, and coloured according to the magnitude of effect. N.D., efficacy not determined. 

 

Figure 12. Alanine mutation of ECL2 and ECL3 of the hCTR differentially modulates CT and 

related peptide efficacy in a pathway-dependent manner. Illustrated are top views of the active, 

sCT-bound, hCTR model with ECL2 and ECL3 shown in surface representation. Mutations that 

significantly alter peptide efficacy are coloured according the magnitude of effect (from Table 6 and 

Figure 11), with mutated amino acids without significant alteration to efficacy coloured grey. 

Salmon CT is shown as dark red, with side chains in proximity to the ECLs displayed in x-stick, 

and residues 1-7 that are critical for receptor activation display in transparent cpk. (A) Changes to 

cAMP efficacy. (B) Changes to IP1 efficacy. (C) Changes to pERK efficacy. 

 

Figure 13.  Comparison of the effect of alanine-scanning mutagenesis of ECL2 and ECL3 on 

cAMP (A) and pERK (B) efficacy of sCT at the CTR or exendin-4 at the GLP-1R. Top views 

of active state structures of sCT/hCTR/Gs or Ex-P5/hGLP-1R/Gs, with the receptor ECD and 

peptide C-terminus omitted for clarity. Mutations that significantly alter peptide efficacy are 

coloured according the magnitude of effect, with mutated amino acids without significant alteration 

to efficacy coloured grey. Efficacy data for exendin-4 (Ex4) are from Wootten et al., 2016, and are 

mapped onto the structure of exendin-P5/hGLP-1R/Gs (PDB: 6B3J). sCT is shown as dark red, 

with side chains in proximity to the ECLs displayed in x-stick, and residues 1-7 that are critical for 

receptor activation displayed in transparent cpk. Exendin-P5 is shown as dark blue, with side chains 

in proximity to the ECLs displayed in x-stick, and residues 1-8 that are important for receptor 

activation displayed in transparent cpk. 

 



  

    
 

Figure 14. CTR and GLP-1R have distinct conformations of ECL2 that are differentially 

stabilised by conserved residues in the core of the loop. (A) GLP-1R displaying loop residues in 

red x-stick and the highly conserved C296, W297 and K288 residues displayed in transparent cpk 

representation. Shown in orange are GLP-1R residues in the conserved polar network E292, D293, 

and E294. (B) CTR displaying loop residues in green x-stick and the highly conserved C289, W290 

and R281 residues displayed in transparent cpk representation. Shown in light green are the CTR 

residues in the equivalent conserved polar network N286, D287, and N288. Ribbon representations 

of the proximal amino acids of exendin-P5 (blue) or sCT (dark red) are also displayed. 

 

Figure 15. Molecular dynamic simulations of sCT and hCT peptide-receptor interaction. 

The CT residues least engaged by the receptor (0% contact) are coloured blue, while residues most 

engaged by the receptor (100% contact) are coloured red. (A) hCT (magenta), (B) sCT (magenta). 

(C) 

simulation of sCT bound to CTR, as determined using VMD. 

 

Supplementary Movie 1. Interactions between hCT (left hand panel) or sCT (right hand 

 Interactions between hCT and the CTR are less 

stable than those of sCT and the receptor. As a consequence, ECL2 in the hCT-bound CTR 

undergoes more dynamic conformational sampling. 

  



  

    
 

Table 1. Effect of single alanine mutation in hCTR ECL2 or ECL3 on binding affinity (pKi) of 
CT peptides, and receptor cell surface expression.  

 
hCT sCT pCT sCT(8-32) FACS Bmax 

pKi pKi pKi pKi (% of WT) (sites/cell) 

WT 6.72±0.06 (16) 9.87±0.03 (16) 8.27±0.07 (17) 9.70±0.05 (18) 100 (12) 22,900±2,500 (10) 

I279A 6.16±0.08 (3) 9.93±0.18 (4) 7.83±0.24 (4) 9.72±0.08 (8) 113±7 (4) 40,500±11,300 (5) 

T280A 6.71±0.05 (4) 10.2±0.03 (4) 8.20±0.15 (4) 9.61±0.08 (8) 142±11 (4) 62,600±8,700* (4) 

R281A 5.92±0.28* (5) 9.10±0.15* (6) 7.18±0.23* (5) 9.07±0.21* (10) 32±4* (6) 24,900±10,200 (3) 

V283A 6.63±0.11 (4) 9.78±0.14 (4) 7.82±0.08 (4) 9.67±0.03 (8) 93±11 (4) 47,600±13,600 (4) 

Y284A 6.61±0.11 (5) 9.83±0.07 (3) 7.84±0.10 (4) 9.85±0.10 (8) 72±9* (4) 37,800±12,800 (4) 

F285A 6.60±0.11 (4) 10.0±0.12 (4) 7.92±0.11 (4) 9.99±0.05 (8) 96±15 (4) 33,200±11,000 (4) 

N286A N.D. N.D. N.D. N.D. 26±4* (4) N.D. 

D287A N.D. N.D. N.D. N.D. 5±1* (4) N.D. 

N288A 6.35±0.12 (4) 9.74±0.13 (4) 8.03±0.12 (5) 9.63±0.04 (8) 132±16 (4) 51,600±2,600* (4) 

C289A N.D. N.D. N.D. N.D. 13±3* (3) N.D. 

W290A N.D. N.D. N.D. N.D. 19±6* (4) N.D. 

L291A 5.41±0.10* (3) 9.75±0.21 (5) 7.17±0.12* (6) 8.76±0.19* (9) 109±15 (4) 55,700±27,400 (3) 

S292A 6.60±0.05 (4) 10.4±0.20* (4) 8.54±0.22 (4) 10.2±0.13 (8) 78±14 (4) 11,600±3,600 (4) 

V293A 6.22±0.08 (4) 9.59±0.05 (4) 7.85±0.10 (4) 9.75±0.08 (8) 101±12 (4) 39,500±13,000 (4) 

E294A 6.73±0.06 (5) 9.77±0.08 (4) 7.93±0.10 (4) 9.58±0.07 (8) 103±12 (4) 48,700±10,100 (4) 

T295A 5.90±0.050* (4) 10.2±0.16 (4) 7.49±0.08* (4) 10.3±0.09* (8) 27±6* (4) 6,600±2,300* (4) 

H296A 6.95±0.13 (4) 9.84±0.09 (4) 8.07±0.03 (4) 9.57±0.07 (8) 82±11 (4) 65,500±5,100* (4) 

L297A 6.09±0.05* (4) 10.1±0.15 (4) 7.81±0.19 (4) 10.2±0.07 (8) 29±3* (4) 9,200±2,000* (4) 

L298A 6.13±0.08* (4) 9.76±0.09 (4) 7.69±0.10 (4) 9.83±0.12 (8) 59±14 (4) 19,600±4,000 (4) 

Y299A 6.28±0.02 (4) 9.41±0.20 (4) 7.33±0.20* (4) 9.97±0.18 (8) 43±16* (4) 11,100±1,900* (4) 

I300A N.D. N.D. N.D. N.D. 11±1* (4) N.D. 

F356A 6.58±0.11 (5) 9.79±0.34 (5) 7.92±0.17 (4) 9.85±0.25 (12) 28±4* (6) 5,900±2,200* (5) 

V357A 6.13±0.13* (5) 9.83±0.18 (4) 7.89±0.27 (4) 9.68±0.10 (8) 104±14 (4) 28,400±7,700 (4) 

V358A 5.89±0.15* (5) 9.62±0.09 (4) 7.84±0.13 (4) 9.81±0.06 (8) 103±18 (4) 34,100±10,500 (4) 

F359A 5.49±0.12* (5) 9.50±0.15 (4) 7.13±0.19* (3) 9.66±0.10 (10) 158±28 (4) 40,400±9,200 (4) 

P360A 5.65±0.06* (5) 9.01±0.13* (4) 7.30±0.28* (4) 9.22±0.10* (10) 320±35* (5) 89,400±15,800* (5) 

W361A 5.99±0.08* (5) 9.48±0.08 (4) 7.47±0.24* (4) 9.55±0.11 (10) 139±22 (4) 46,200±18,200 (5) 

R362A 5.96±0.06* (4) 9.53±0.13 (4) 7.33±0.22* (4) 9.66±0.14 (8) 71±9* (4) 27,300±1,000 (4) 

P363A 5.48±0.26* (4) 9.44±0.14 (4) 7.26±0.13* (4) 9.45±0.23 (8) 81±7 (4) 19,400±5,800 (4) 

S364A 6.61±0.07 (4) 9.73±0.06 (4) 8.27±0.34 (4) 9.72±0.08 (10) 88±16 (4) 32,600±11,200 (5) 

N365A 6.68±0.16 (4) 9.96±0.06 (4) 8.68±0.24 (4) 9.63±0.10 (10) 116±13 (4) 29,400±11,900 (5) 

K366A 6.47±0.17 (4) 9.69±0.05 (4) 7.96±0.23 (4) 9.71±0.12 (10) 119±14 (4) 43,000±16,000 (5) 

M367A 6.24±0.11 (4) 9.67±0.09 (4) 7.67±0.25 (4) 9.53±0.14 (8) 94±112 (4) 25,600±7,900 (4) 

L368A 6.50±0.13 (4) 9.81±0.04 (4) 8.07±0.19 (4) 9.68±0.11 (8) 89±9 (4) 28,200±13,100 (4) 

G369A 6.41±0.10 (4) 9.89±0.02 (4) 8.10±0.19 (4) 9.64±0.14 (10) 133±20 (4) 40,600±18,800 (5) 

K370A N.D. N.D. N.D. N.D. N.D. N.D. 

I371A N.D. N.D. N.D. N.D. 3±1* (3) N.D. 

Y372A 6.09±0.09* (4) 9.40±0.06 (4) 7.55±0.27* (4) 9.85±0.19 (8) 98±13 (4) 21,700±8,600 (4) 

D373A 5.76±0.22* (6) 9.36±0.09* (4) 7.76±0.28 (4) 9.28±0.15 (8) 98±14 (4) 43,500±22,700 (5) 

Y374A 6.64±0.17 (4) 9.79±0.13 (4) 8.23±0.09 (4) 9.83±0.13 (8) 65±5* (4) 26,300±7,500 (4) 

V375A 6.48±0.19 (5) 9.83±0.08 (4) 8.29±0.25 (4) 9.72±0.09 (8) 115±13 (3) 22,500±8,000 (4) 

M376A 6.06±0.21* (6) 9.80±0.15 (6) 8.11±0.24 (4) 9.88±0.10 (8) 113±7 (4) 23,600±3,200 (4) 

 
pKi values were derived for each ligand and mutant receptor from analysis of either homologous (sCT(8-32)) or heterologous (sCT, 
hCT, pCT) competition of [125]I-sCT(8-32) binding. The number of receptors per cell (Bmax) was estimated from homologous 
competition studies. All values are mean ± S.E.M. (independent “n” values are indicated within parentheses). Cell surface receptor 
expression was determined by FACS using an anti-c-myc antibody, and expression normalized to WT expression and expressed as 
%WT. Significance of changes in receptor expression, or pKi of each ligand, was determined by comparison of mutant receptors to 
WT values by a one-way analysis of variance and Dunnett’s post-test for affinity data, and two-tailed t-test for expression data 
(p<0.05 represented by *). (N.D.) affinity not determined as no radioligand binding was detected. 
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Table 2: Effect of single alanine mutation in hCTR ECL2 or ECL3 on cAMP signalling in response to CT-family 

peptides.  

 

hCT sCT pCT rAmy hαCGRP  

pEC50 
Emax (% 

WT) 
N pEC50 

Emax (% 
WT) 

N pEC50 
Emax (% 

WT) 
N pEC50 

Emax 
(% 

WT) 
N pEC50 

Emax 
(% 

WT) 
N 

WT 
9.93±0.0

6 
100±2 

(36
) 

10.7±0.
05 

100±1 
(36

) 
10.4±0.10 100±2 

(31
) 

8.05±0.
11 

100±4 
(31

) 
7.96±0.

21 
100±

7 
(25

) 

I279A 
10.3±0.1

8 
91±4 (4) 

11.1±0.
25 

90±6 (5) 10.4±0.15 97±4 (6) 
8.53±0.

35 
81±9 (5) 

8.47±0.
41 

139±
18 

(5) 

T280
A 

10.3±0.2
8 

97±6 (4) 
11.3±0.

56 
107±14 (4) 10.4±0.17 113±5 (5) 

8.47±0.
38 

69±8 (4) 
8.48±0.

49 
107±

21 
(5) 

R281
A 

7.22±0.2
6* 

117±15 (8) 
10.4±0.

17 
119±5 

(11
) 

9.19±0.28
* 

147±16* (6) 
7.36±0.

5 
63±14 (5) 

7.41±0.
43 

114±
25 

(5) 

V283
A 

10.4±0.3
4 

90±7 (4) 
11.1±0.

38 
116±12 (5) 10.5±0.32 107±9 (5) 

8.17±0.
36 

77±10 (5) 
7.89±0.

39 
130±

19 
(5) 

Y284
A 

10.2±0.3
5 

103±10 (5) 
11.0±0.

35 
111±11 (5) 10.2±0.29 104±9 (6) 

7.99±0.
25 

101±1
0 

(5) 
7.72±0.

39 
139±

22 
(5) 

F285
A 

9.97±0.4
2 

105±11 (5) 
11.1±0.

29 
105±8 (5) 10.3±0.45 81±10 (6) 

8.17±0.
28 

92±9 (5) 
7.80±0.

39 
122±

18 
(5) 

N286
A 

9.37±0.1
7 

126±6 (5) 
10.8±0.

22 
103±6 (5) 9.70±0.22 84±6 (5) 

7.35±0.
35 

97±15 (5) 
7.85±0.

75 
46±1

6 
(5) 

D287
A 

7.53±0.3
0* 

140±18* (6) 
10.3±0.

22 
119±7 

(10
) 

8.72±0.34
* 

74±9 (6) N.D. N.D.  N.D. N.D.  

N288
A 

9.99±0.3
2 

117.0±1
0 

(5) 
11.2±0.

28 
69±5* (6) 10.2±0.31 105±10 (5) 

8.52±0.
44 

64±8 (5) 
7.99±0.

34 
118±

17 
(5) 

C289
A 

7.92±0.2
1* 

148±7* (8) 
10.3±0.

17 
140±7* 

(10
) 

8.99±0.16
* 

115±7 (8) 
7.17±0.

48 
89±23 (5) N.D. N.D.  

W29
0A 

7.13±0.2
4* 

164±20* 
(10

) 
10.5±0.

16 
154±7* 

(11
) 

8.48±0.28
* 

113±12 (5) 
7.09±0.

55 
72±26 (5) N.D. N.D.  

L291
A 

8.36±0.1
1* 

131±5* 
(10

) 
10.9±0.

14 
108±4 

(10
) 

9.50±0.14
* 

105±5 (6) 
7.74±0.

31 
101±1

3 
(5) 

7.29±0.
64 

101±
36 

(5) 

S292
A 

9.95±0.3
5 

135±13 (6) 
11.1±0.

38 
119±12 (6) 10.5±0.26 131±9* (6) 

8.39±0.
32 

95±10 (6) 
7.65±0.

30 
106±

14 
(5) 

V293
A 

10.1±0.2
4 

123±8 (5) 
10.9±0.

35 
112±11 (5) 10.3±0.18 107±5 (6) 

8.13±0.
29 

91±10 (6) 
8.06±0.

29 
153±

17 
(5) 

E294
A 

10.3±0.2
0 

105±5 (5) 
11.1±0.

31 
98±9 (5) 10.4±0.22 105±6 (5) 

7.92±0.
26 

90±9 (5) 
7.31±0.

49 
137±

31 
(5) 

T295
A 

9.44±0.3
1 

127±11 (5) 
10.5±0.

31 
138±13* (5) 9.55±0.21 123±8 (5) 

7.36±0.
48 

74±19 (5) 
6.97±0.

42 
79±2

0 
(5) 

H296
A 

10.5±0.1
9 

87±4 
(10

) 
11.0±0.

18 
86±5 

(10
) 

10.5±0.29 96±8 (5) 
8.29±0.

48 
107±1

8 
(5) 

7.85±0.
41 

106±
18 

(6) 

L297
A 

9.75±0.2
5 

91±6 (4) 
10.8±0.

4 
103±12 (4) 10.0±0.20 127±8 (6) 

7.87±0.
30 

85±10 (5) 
7.44±0.

34 
88±1

4 
(5) 

L298
A 

9.44±0.2
0 

103±6 (5) 
10.7±0.

3 
112±9 (5) 10.2±0.20 118±7 (5) 

8.21±0.
30 

117±1
3 

(5) 
7.47±0.

36 
109±

17 
(5) 

Y299
A 

9.33±0.2
2 

133±9 (5) 
10.9±0.

25 
110±7 (5) 9.87±0.23 117±9 (6) 

7.71±0.
25 

102±1 (4) 
7.48±0.

55 
62±1

6 
(5) 

I300A 
9.83±0.1

8 
116±6 (5) 

10.7±0.
36 

113±11 (5) 10.3±0.30 117±11 (5) 
7.61±0.

22 
109±1

0 
(5) 

7.71±0.
45 

73±1
4 

(5) 

F356
A 

8.71±0.1
8* 

131±8* (5) 
10.9±0.

05 
100±1 (6) 10.5±0.07 100±2 (4) 

7.62±0.
30 

126±1
5 

(4) 
7.18±0.

11 
128±

10 
(5) 

V357
A 

9.15±0.1
4* 

137±6* (6) 
10.3±0.

32 
133±12* (6) 9.82±0.35 154±17* (4) 

7.69±0.
27 

88±10 (5) 
7.53±0.

32 
82±1

0 
(5) 

V358
A 

9.72±0.1
6 

98±4 (4) 
10.8±0.

24 
139±9* (4) 10.5±0.38 140±15* (4) 

7.86±0.
36 

94±13 (4) 
7.68±0.

31 
74±9 (5) 

F359
A 

8.95±0.2
4* 

130±9* (5) 
11.0±0.

18 
84±4.0 (5) 9.79±0.25 113±8 (4) 

7.63±0.
25 

95±9 (5) 
7.73±0.

41 
53±8

* 
(5) 

P360
A 

8.80±0.1
7* 

152±8* (5) 
11.0±0.

18 
100±5 (5) 9.88±0.27 146±13 (4) 

7.63±0.
30 

115±1
3 

(5) 
7.76±0.

28 
48±5

* 
(5) 

W36
1A 

9.32±0.2
5 

132±9* (5) 
10.6±0.

19 
126±7* (5) 9.83±0.20 133±9* (4) 

7.79±0.
31 

102±1
3 

(5) 
7.01±0.

30 
102±

16 
(5) 

R362
A 

8.68±0.2
4* 

125±9* (4) 
10.8±0.

14 
95±4 (4) 9.74±0.21 138±9* (4) 

7.61±0.
32 

88±12 (4) 
7.75±0.

48 
51±9

* 
(5) 

P363
A 

8.74±0.1
3* 

111±5 (5) 
10.3±0.

28 
111±9 (5) 

9.41±0.34
* 

148±15* (4) 
7.82±0.

55 
94±20 (6) 

7.41±0.
47 

38±7
* 

(5) 

S364
A 

9.94±0.3
6 

97±9 (5) 
10.8±0.

26 
102±7 (5) 

9.22±0.29
* 

166±16* (4) 
8.35±0.

38 
56±7* (4) 

7.78±0.
31 

83±1
0 

(4) 

N365
A 

9.91±0.1
6 

96±4 (5) 
10.8±0.

19 
94±5 (5) 10.5±0.21 95±5 (4) 

8.18±0.
32 

72±8 (4) 
7.81±0.

31 
111±

13 
(5) 

K366
A 

10.1±0.1
7 

74±3* (5) 
10.9±0.

23 
81±5* (5) 10.7±0.39 80±8 (4) 

8.02±0.
26 

71±7 (4) 
8.27±0.

54 
73±1

3 
(5) 

M36
7A 

10.0±0.1
9 

82±4 (5) 
10.9±0.

16 
79±3* (5) 10.8±0.34 73±13 (4) 

8.30±0.
26 

93±8 (4) 
7.67±0.

31 
114±

14 
(5) 

L368
A 

10.1±0.2
3 

70±4* (5) 
11.1±0.

33 
75±7* (5) 10.5±0.26 96±6 (4) 

7.93±0.
34 

95±12 (5) 
7.94±0.

4 
78±1

2 
(5) 

G369
A 

9.92±0.2
7 

129±9* (5) 
10.8±0.

27 
106±8 (5) 9.69±0.28 89±7 (4) 

7.83±0.
20 

78±6 (4) 
7.61±0.

38 
131±

20 
(5) 
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K370
A 

N.D. N.D.  N.D. N.D.  N.D. N.D.  N.D. N.D.  N.D. N.D.  

I371A 
9.99±0.4

7 
24±2.7* (5) 

11.2±0.
30 

28±2* (5) 10.1±0.21 35±5* (4) 
8.73±0.

60 
47±7* (5) 

6.88±0.
54 

58±1
5* 

(5) 

Y372
A 

8.03±0.2
0* 

149±12.
* 

(4) 
10.0±0.

27 
113±10 (4) 

8.94±0.24
* 

137±13* (4) 
6.73±0.

26 
170±2

6* 
(5) 

6.91±0.
45 

36±8
* 

(5) 

D373
A 

9.20±0.1
9 

142±8* (4) 
10.8±0.

25 
116±8 (4) 

9.41±0.16
* 

158±9* (4) 
7.98±0.

70 
64±16 (5) 

7.95±0.
41 

34±5
* 

(5) 

Y374
A 

9.78±0.2
3 

83.2±5 (5) 
10.9±0.

18 
96±5 (5) 10.7±0.39 90±9 (4) 

8.10±0.
24 

92±9 (4) 
7.60±0.

36 
82±1

2 
(5) 

V375
A 

9.79±0.2
2 

122±7* (5) 
10.6±0.

17 
106±5 (5) 10.5±0.21 151±8* (4) 

8.10±0.
27 

92±9 (5) 
7.69±0.

38 
114±

17 
(5) 

M37
6A 

8.44±0.3
7* 

84.3±10 (5) 
10.6±0.

20 
102±6 (5) 9.63±0.40 87±11* (4) 

7.33±0.
34 

85±13 (5) 
6.85±0.

26 
47±7

* 
(5) 

 

For each receptor and ligand, data were fit to a three-parameter logistic equation to derive pEC50 (negative 

logarithm of the concentration of ligand that produces half the maximal response) and Emax (maximal 

response, as % of WT). All values are mean ± S.E.M. (independent “n” values are indicated within 

parentheses). For each ligand, significance of changes in pEC50 and Emax were determined by comparison of 

mutants to the WT receptor in a one-way analysis of variance followed by Dunnett’s post-test (p<0.05 

represented by *). (N.D.) pEC50 or Emax not determined.  
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Table 3:   Effect of single alanine mutation in hCTR ECL2 or ECL3 on IP1 signalling in response to CT peptides.  

 
hCT sCT pCT 

pEC50 Emax (% WT) N pEC50 Emax (% WT) N pEC50 Emax (% WT) N 

WT 8.80±0.07 100±3 (47) 9.24±0.5 100±3 (44) 8.86±0.13 100±3 (37) 

I279A 8.08±0.25 79±7 (7) 8.72±0.23 97±7 (7) 8.18±0.22 116±10 (5) 

T280A 7.68±0.20* 79±6 (6) 8.89±0.12 119±5 (7) 8.61±0.21 100±6 (7) 

R281A 7.96±0.37* 30±4 (7) 9.03±0.23 91±6 (6) 8.65±0.23 52±4* (6) 

V283A 7.60±0.21 67±6* (5) 8.87±0.15 115±6 (7) 8.21±0.14 100±5 (7) 

Y284A 7.71±0.37 81±12 (7) 8.94±0.20 118±7 (6) 8.94±0.20 94±6 (7) 

F285A 7.99±0.27 58±6* (6) 8.59±0.17 114±6 (5) 8.30±0.32 112±13 (6) 

N286A 8.82±0.28 40±3* (6) 8.93±0.26 59±5* (5) 9.25±0.27 76±6 (7) 

D287A N.D N.D  N.D. N.D.  8.43±0.38 56±7* (6) 

N288A 7.78±0.22* 91±8 (7) 8.80±0.15 119±6 (6) 8.72±0.25 93±7 (7) 

C289A N.D. N.D.  8.52±0.28 42±4* (6) N.D N.D (7) 

W290A N.D. N.D.  N.D N.D  N.D N.D  

L291A 6.28±0.53* 71±16* (7) 8.73±0.14 85±4 (7) 8.79±0.31 67±6* (7) 

S292A 7.51±0.20* 70±6 (6) 8.86±0.21 91±6 (7) 8.37±0.23 92±7 (7) 

V293A 8.12±0.13 87±4 (6) 9.21±0.22 109±7 (7) 8.49±0.27 112±10 (5) 

E294A 8.21±0.27 57±6* (6) 8.62±0.18 84±5 (6) 8.89±0.22 119±8 (6) 

T295A 8.31±0.27 43±4* (6) 8.11±0.33* 53±7* (6) 8.34±0.37 56±7* (6) 

H296A 7.98±0.19* 73±6* (7) 9.34±0.19 101±5 (7) 8.35±0.21 101±7 (6) 

L297A 7.68±0.25* 52±5* (7) 9.12±0.32 69±7* (6) 8.70±0.25 68±5* (7) 

L298A 7.69±1.10 58±6* (7) 8.88±0.22 66±5* (7) 8.39±0.25 91±10 (5) 

Y299A 7.94±0.37 34±5* (6) 8.19±0.27* 54±5* (6) 9.38±0.25 52±3* (7) 

I300A 8.12±0.37 44±4* (6) N.D N.D  N.D. N.D.  

F356A 7.95±0.20* 69±6* (6) 9.23±0.29 36±3* (6) N.D N.D  

V357A 7.61±0.23* 50±4* (5) 8.90±0.20 39±3* (5) 7.81±0.20* 48±4* (5) 

V358A 7.64±0.18* 126±9* (6) 8.76±0.15 123±6* (6) 8.48±0.26 73±6* (5) 

F359A 7.29±0.20* 101±9 (5) 8.72±0.14 125±6* (5) 7.88±0.18* 77±6 (5) 

P360A 7.06±0.16* 95±8 (5) 8.55±0.11* 144±5* (6) 7.07±0.23* 107±12 (5) 

W361A 7.77±0.26 89±9 (6) 9.01±0.18 108±6 (5) 8.08±0.19* 80±6 (6) 

R362A 7.47±0.34* 77±11 (6) 8.74±0.22 64±5* (5) 7.71±0.50* 47±9* (6) 

P363A N.D. N.D.  9.27±0.35 86±9 (5) 8.21±0.38 73±10* (6) 

S364A 7.77±0.21* 93±8 (5) 8.79±0.21 87±6 (5) 8.16±0.29 93±6 (5) 

N365A 8.36±0.21 81±6 (5) 8.96±0.18 66±4* (4) 8.65±0.29 68±6* (5) 

K366A 8.58±0.16 121±6 (5) 9.03±0.15 93±5 (5) 8.83±0.23 91±6 (5) 

M367A 7.94±0.14 149±8* (4) 8.71±0.16 123±6* (6) 8.29±0.23 101±8 (5) 

L368A 7.76±0.14* 115±7 (6) 8.79±0.14 97±4 (5) 8.00±0.24* 94±9 (5) 

G369A 7.97±0.17* 148±10* (5) 8.93±0.22 97±7 (5) 8.12±0.14 110±6 (5) 

K370A N.D. N.D.  N.D. N.D.  N.D. N.D.  

I371A 8.09±0.20 42±3* (7) 8.83±0.21 31±14* (6) 8.38±0.29 61±6* (5) 

Y372A 7.83±0.36 68±9* (5) 8.74±0.29 46±4* (7) 8.54±0.35 44±5* (5) 

D373A 7.75±0.26* 102±10 (5) 8.79±0.26 78±6 (5) 7.83±0.18* 46±3* (5) 

Y374A 7.65±0.20* 110±9 (5) 8.67±0.19* 102±6 (6) 7.91±0.15* 106±6 (5) 

V375A 8.34±0.17 104±6 (5) 8.72±0.21 87±5 (6) 8.93±0.16 100±5 (5) 

M376A 8.08±0.26 52±5* (4) 8.67±0.13 95±4 (4) 8.25±0.27 47±4* (5) 

 

For each receptor and ligand, data were fit to a three-parameter logistic equation to derive pEC50 (negative 

logarithm of the concentration of ligand that produces half the maximal response) and Emax (maximal 

response, as % of WT). All values are mean ± S.E.M. (independent “n” values are indicated within 
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parentheses). For each ligand, significance of changes in pEC50 and Emax were determined by comparison of 

mutants to the WT receptor in a one-way analysis of variance followed by Dunnett’s post-test (p<0.05 

represented by *). (N.D.) pEC50 or Emax not determined. 
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Table 4:   Effect of single alanine mutation in hCTR ECL2 or ECL3 on pERK signalling in response to CT-family 

peptides.  

 
hCT sCT pCT rAmy hαCGRP  

pEC50 Emax (% 
WT) 

N pEC50 Emax (% 
WT) 

N pEC50 Emax (% 
WT) 

N pEC50 Emax 
(% 

WT) 

N pEC50 Emax 
(% 

WT) 

N 

WT 8.32±0.
09 

100.0±3 (3
4) 

8.62±0.
10 

100±3 (3
5) 

8.95±0.
08 

100±3 (3
2) 

7.19±0.
10 

100±
5 

(3
0) 

7.11±0.
11 

100±6 (3
0) 

I279
A 

8.09±0.
19 

143±10* (5) 8.22±0.
11 

126±5* (5) 8.66±0.
17 

122±7 (5) 7.74±0.
27 

88±9 (5) 7.30±0.
23 

97±11 (5) 

T280
A 

8.17±0.
19 

168±12* (6) 8.55±0.
25 

158±12* (6) 8.69±0.
19 

160±10* (6) 7.57±0.
23 

110±
11 

(6) 7.27±0.
23 

106±1
2 

(6) 

R281
A 

N.D. N.D.  9.01±0.
43 

45±5* (5) 8.64±0.
35 

37±4* (5) 7.16±0.
27 

31±5
* 

(5) 7.46±0.
43 

30±5* (5) 

V283
A 

8.00±0.
24 

155±14* (5) 8.30±0.
22 

133±10* (6) 8.65±0.
34 

109±12 (5) 7.77±0.
27 

83±9 (5) 7.22±0.
18 

81±7 (4) 

Y284
A 

8.08±0.
23 

82±7 (5) 8.83±0.
21 

96±6 (5) 8.92±0.
25 

81±6 (5) 7.69±0.
23 

64±6
* 

(5) 6.95±0.
31 

79±15 (5) 

F285
A 

8.09±0.
33 

91±11 (5) 8.78±0.
16 

114±6 (5) 8.74±0.
20 

88±5 (5) 7.66±0.
28 

60±7
* 

(5) 6.90±0.
34 

93±18 (5) 

N286
A 

8.37±0.
32 

52±5* (5) 9.16±0.
28 

59±5* (5) 8.92±0.
36 

46±5* (5) 7.27±0.
32 

41±6
* 

(5) 7.89±0.
47 

31±5* (5) 

D287
A 

7.01±0.
25* 

35±5* (5) 9.40±0.
23 

39±2* (5) 7.9±0.2
5* 

27±3* (5) N.D. N.D.  N.D. N.D.  

N288
A 

7.74±0.
15 

137±8* (5) 8.36±0.
29 

127±13* (5) 8.53±0.
26 

135±11* (5) 7.28±0.
2 

79±7 (5) 7.01±0.
16 

110±1
0 

(5) 

C289
A 

7.10±0.
39* 

40±8* (5) 9.07±0.
57 

64±11* (5) 8.37±0.
28 

38±4* (5) N.D. N.D.  N.D. N.D.  

W29
0A 

N.D. N.D.  9.47±0.
41 

38±4* (5) 8.13±0.
26 

28±3* (5) N.D. N.D.  N.D. N.D.  

L291
A 

7.05±0.
24* 

72±9 (5) 8.61±0.
15 

107±5 (5) 8.02±0.
18* 

77±5 (5) 7.35±0.
22 

41±4
* 

(5) N.D. N.D.  

S292
A 

8.02±0.
26 

116±11 (5) 8.84±0.
21 

121±7 (5) 9.26±0.
25 

104±7 (5) 7.76±0.
31 

96±1
2 

(6) 7.68±0.
35 

80±12 (5) 

V293
A 

7.78±0.
15 

130±8* (5) 8.18±0.
24 

135±12* (5) 8.50±0.
25 

136±11* (5) 7.29±0.
26 

67±8
* 

(5) 7.28±0.
31 

149±2
2 

(5) 

E294
A 

8.07±0.
21 

125±10 (5) 8.67±0.
17 

126±7* (5) 8.70±0.
24 

115±9 (5) 7.43±0.
22 

72±7 (5) 6.91±0.
36 

66±15 (5) 

T295
A 

8.13±0.
34 

48±6* (5) 9.27±0.
30 

49±4* (5) 9.12±0.
32 

50±5* (5) 7.35±0.
39 

28±5
* 

(5) 7.68±0.
38 

22±4* (5) 

H296
A 

8.02±0.
14 

148±8* (5) 8.57±0.
20 

152±9* (5) 8.63±0.
20 

163±10* (6) 7.47±0.
22 

82±8 (5) 7.04±0.
27 

77±11 (5) 

L297
A 

8.10±0.
22 

63±5* (5) 9.05±0.
22 

68±4* (5) 9.01±0.
26 

59±4* (5) 7.55±0.
27 

49±6
* 

(5) 7.01±0.
29 

73±12 (5) 

L298
A 

7.82±0.
29 

84±10 (5) 8.75±0.
21 

85±6 (5) 8.96±0.
28 

73±6* (5) 7.69±0.
20 

82±7 (5) 7.12±0.
24 

58±8 (5) 

Y299
A 

7.99±0.
28 

56±6* (5) 9.23±0.
25 

58±4* (5) 9.03±0.
19 

51±3* (5) 7.22±0.
28 

51±7
* 

(5) N.D N.D  

I300
A 

8.71±0.
29 

65±6* (5) 9.49±0.
21 

63±3* (5) 9.55±0.
22 

54±3* (5) 7.48±0.
25 

44±5
* 

(5) 7.17±0.
42 

61±13 (5) 

F356
A 

7.77±0.
17* 

43±3* (4) 9.52±0.
25* 

72±5* (5) 8.35±0.
30 

57±6* (4) 7.06±0.
23 

41±5
* 

(5) 6.74±0.
28 

68±11 (5) 

V357
A 

7.92±0.
21 

53±5* (4) 8.61±0.
27 

82±7* (5) 8.43±0.
36 

83±10 (4) 7.46±0.
46 

40±8
* 

(5) N.D. N.D.  

V358
A 

7.83±0.
15* 

160±10* (5) 8.68±0.
16 

150±8* (4) 8.65±0.
26 

101±8 (4) 7.23±0.
35 

59±1
0* 

(5) 7.49±0.
50 

39±8* (5) 

F359
A 

7.57±0.
12* 

153±8* (5) 8.62±0.
12 

186±7* (5) 8.20±0.
15 

116±6 (5) 7.22±0.
4 

58±1
1* 

(5) 8.20±0.
15 

116±6 (5) 

P360
A 

7.12±0.
24* 

51±6* (5) 7.78±0.
19* 

115±9 (5) 7.40±0.
28* 

59±7* (5) N.D. N.D.  N.D. N.D.  

W36
1A 

7.64±0.
12* 

112±6 (5) 8.52±0.
12 

125±5* (4) 8.20±0.
22 

76±6* (5) 7.24±0.
49 

42±9
* 

(4) 6.93±0.
31 

49±8* (5) 

R362
A 

7.68±0.
25* 

64±7* (5) 8.81±0.
28 

107±10 (4) 8.12±0.
20 

45±4* (5) 6.94±0.
36 

36±7
* 

(4) 6.95±0.
61 

31±8* (5) 

P363
A 

7.59±0.
23* 

64±6* (5) 8.81±0.
15 

95±5 (4) 8.24±0.
15 

39±2* (5) 7.51±0.
81 

28±9
* 

(4) N.D. N.D.  

S364
A 

8.18±0.
20 

135±10* (5) 8.56±0.
13 

106±4 (4) 8.44±0.
28 

127±12* (4) 7.94±0.
36 

66±9
* 

(4) 7.97±0.
29 

54±6* (4) 

N365
A 

8.15±0.
16 

93±6 (5) 8.82±0.
12 

84±3 (4) 8.79±0.
32 

98±10 (5) 7.73±0.
39 

63±1
0* 

(5) 7.52±0.
39 

52±8* (4) 

K366
A 

8.33±0.
24 

186±16* (5) 8.84±0.
11 

136±5* (4) 8.72±0.
18 

156±9* (5) 7.89±0.
33 

84±1
1 

(5) 7.39±0.
27 

146±1
7* 

(4) 

M36
7A 

8.26±0.
15 

127±7* (5) 8.66±0.
10 

130±4* (4) 8.56±0.
19 

172±10* (5) 7.19±0.
15 

77±5 (5) 6.97±0.
27 

78±12 (4) 

L368
A 

8.05±0.
14 

126±7* (4) 8.62±0.
12 

140±6* (4) 8.71±0.
23 

159±11* (5) 7.56±0.
23 

82±8 (4) 7.07±0.
37 

84±16 (4) 

G369
A 

8.20±0.
18 

141±9* (5) 8.53±0.
11 

115±4 (4) 8.28±0.
18 

128±8* (5) 7.73±0.
34 

63±8
* 

(4) 7.09±0.
30 

87±14 (4) 

K370
A 

N.D. N.D.  N.D. N.D.  N.D. N.D.  N.D. N.D.  N.D. N.D.  

I371
A 

N.D. N.D.  N.D. N.D.  N.D. N.D.  N.D. N.D.  N.D. N.D.  

Y372
A 

8.74±0.
29 

46±4* (5) 8.64±0.
26 

39±3* (4) 7.72±0.
41* 

26±4* (4) N.D. N.D.  N.D. N.D.  

D373
A 

7.63±0.
24* 

71±7* (5) 8.62±0.
34 

103±11 (4) 8.31±0.
35 

32±4* (5) N.D. N.D.  N.D. N.D.  

Y374
A 

7.92±0.
09 

94±4 (5) 8.63±0.
14 

99±5 (4) 8.57±0.
24 

105±8 (4) 7.21±0.
17 

61±5
* 

(4) 7.21±0.
31 

49±8* (5) 

V375
A 

8.08±0.
13 

67±3* (4) 8.83±0.
14 

70±3* (5) 8.58±0.
14 

89±4 (5) 6.91±0.
29 

77±1
3 

(5) 6.96±0.
24 

58±7* (5) 

M37
6A 

7.58±0.
21* 

52±4* (4) 8.35±0.
2 

72±5* (4) 8.71±0.
29 

47±4* (5) 7.17±0.
32 

43±7
* 

(5) 7.74±0.
60 

36±8* (5) 

 
For each receptor and ligand, data were fit to a three-parameter logistic equation to derive pEC50 (negative 
logarithm of the concentration of ligand that produces half the maximal response) and Emax (maximal 
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response, as % of WT). All values are mean ± S.E.M. (independent “n” values are indicated within parentheses). 
For each ligand, significance of changes in pEC50 and Emax were determined by comparison of mutants to the 
WT receptor in a one-way analysis of variance followed by Dunnett’s post-test (p<0.05 represented by *). (N.D.) 
pEC50 or Emax not determined. 
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Table 5.     Effect of single alanine mutation in hCTR ECL2 or ECL3 on functional affinities of 
CT-family peptides.  

 
hCT sCT pCT rAmy hαCGRP 

cAMP  IP1  pERK1/2  cAMP  IP1  pERK1/2  cAMP  IP1  pERK1/2  cAMP pERK1/2 cAMP pERK1/2 

WT 
9.54±0.09 

(36) 
8.54±0.10 

(47) 
8.15±0.0
8 (34) 

10.5±0.09 (36) 9.2±0.12 (44) 8.55±0.07 (35) 
10.1±0.10 

(31) 
8.75±0.13 

(37) 
8.74±0.09 

(32) 
7.72±0.11 

(31) 
7.23±0.11 

(30) 
7.69±0.16 

(25) 
7.10±0.1
1 (30) 

I279A 
10.0±0.32 

(4) 
7.89±0.16 (7) 

7.68±0.1
6 (5) 

10.8±0.32 (5) 8.54±0.19 (7) 7.89±0.19 (5) 10.1±0.26 (6) 
7.82±0.22* 

(5) 
8.39±0.18 (5) 

8.30±0.25 
(5) 

7.58±0.19 
(5) 

7.99±0.12 
(5) 

7.03±0.2
4 (5) 

T280A 
10.0±0.35 

(4) 
7.56±0.18* 

(6) 
7.59±0.1
4 (6) 

11.0±0.35 (4) 8.49±0.13 (7) 8.04±0.15 (6) 9.96±0.26 (5) 8.35±0.21 (7) 8.15±0.14 (6) 
8.32±0.25 

(5) 
7.27±0.15 

(6) 
7.92±0.24 

(5) 
6.95±0.2
0 (6) 

R281A 
6.74±0.34* 

(8) 
7.84±0.50 (7) N.D. 9.89±0.21 (11) 9.24±0.20 (6) 8.97±0.11 (5) 

8.30±0.15* 
(6) 

8.47±0.18 (6) 8.57±0.12 (5) 
7.12±0.12 

(5) 
7.01±0.58 

(5) 
6.89±0.16 

(5) 
7.71±0.2
2 (5) 

V283A 
10.2±0.35 

(4) 
7.43±0.22* 

(5) 
7.55±0.1
5 (5) 

10.7±0.28 (5) 8.63±0.14 (7) 7.97±0.17 (6) 10.1±0.27 (5) 7.94±0.21 (7) 8.38±0.20 (5) 
8.03±0.17 

(5) 
7.59±0.19 

(5) 
7.49±0.17 

(5) 
7.18±0.3
1 (4) 

Y284A 
9.77±0.29 

(5) 
7.92±0.24 (7) 

7.93±0.2
5 (5) 

10.6±0.28 (5) 8.51±0.15 (6) 8.60±0.23 (5) 9.85±0.25 (6) 8.64±0.21 (7) 8.73±0.25 (5) 
7.61±0.30 

(5) 
7.55±0.25 

(5) 
7.20±0.32 

(5) 
6.69±0.3
0 (5) 

F285A 
9.65±0.29 

(5) 
7.98±0.24 (6) 

7.93±0.2
3 (5) 

10.7±0.29 (5) 8.30±0.17* (5) 8.48±0.20 (5) 10.1±0.30 (6) 7.93±0.21 (6) 8.54±0.23 (5) 
7.89±0.31 

(5) 
7.47±0.28 

(5) 
7.46±0.28 

(5) 
6.76±0.2
6 (5) 

N286A 
8.81±0.30 

(5) 
8.56±0.32 (6) 

8.16±0.4
1 (5) 

10.4±0.30 (5) 8.71±0.27 (6) 8.99±0.37 (5) 9.43±0.32 (5) 9.02±0.26 (7) 8.75±0.26 (5) 
7.05±0.27 

(5) 
7.16±0.44 

(5) 
7.65±0.23 

(5) 
8.25±0.2
9* (5) 

D287A 
6.81±0.32* 

(6) 
N.D. 

6.71±0.2
4* (5) 

9.79±0.22* (10) N.D. 9.09±0.30 (5) 
8.52±0.42* 

(6) 
8.33±0.17 (6) 

7.65±0.30* 
(5) 

N.D. N.D. N.D. N.D. 

N288A 
9.52±0.27 

(5) 
7.58±0.16* 

(7) 
7.35±0.1
7* (6) 

10.8±0.29 (6) 8.45±0.19 (6) 7.98±0.18 (5) 9.79±0.27 (5) 8.56±0.21 (7) 8.11±0.16 (6) 
8.40±0.23 

(5) 
-7.15±0.24 

(5) 
7.55±0.18 

(5) 
6.74±0.2
2 (5) 

C289A 
7.02±0.33* 

(8) 
N.D. 

6.84±0.3
6* (5) 

9.57±0.3* (10) 8.31±0.39* (6) 8.92±0.34 (5) 
8.50±0.35* 

(8) 
N.D. 8.13±0.30 (5) 

6.77±0.15* 
(5) 

N.D. N.D. N.D. 

W290A N.D. N.D. N.D. 9.45±0.34* (11) N.D. 9.03±0.43 (5) 
8.08±0.31* 

(5) 
N.D. 

7.84±0.35* 
(5) 

6.55±0.32* 
(5) 

N.D. N.D. N.D. 

L291A 
7.69±0.27* 

(10) 
6.35±0.4* (7) 

6.83±0.3
6* (5) 

10.4±0.23 (10) 8.47±0.21 (7) 8.36±0.21 (5) 
9.05±0.27* 

(6) 
8.67±0.30 (7) 

7.82±0.28* 
(5) 

7.29±0.23 
(5) 

7.21±0.43 
(5) 

6.67±0.24* 
(5) 

N.D. 

S292A 
9.24±0.2
9 (6) 

7.23±0.25* 
(6) 

7.82±0.1
8 (5) 

10.6±0.28 (6) 8.57±0.19 (7) 8.58±0.18 (5) 9.87±0.26 (6) 8.13±0.20 (7) 9.15±0.20 (5) 
8.05±0.28 

(6) 
7.55±0.16 

(6) 
7.20±0.15 

(5) 
7.47±0.2
5 (5) 

V293A 
9.58±0.28 

(5) 
8.01±0.15 (7) 

7.41±0.1
8 (5) 

10.4±0.28 (5) 8.92±0.16 (7) 7.74±0.18* (5) 9.95±0.25 (6) 8.19±0.22 (7) 8.13±0.17 (5) 
7.84±0.29 

(6) 
7.12±0.28 

(5) 
7.41±0.17 

(5) 
6.79±0.1
9 (5) 

E294A 
9.84±0.29 

(5) 
8.05±0.21 (6) 

7.74±0.1
7 (5) 

10.7±0.30 (5) 8.36±0.24* (6) 8.32±0.19 (5) 10.0±0.27 (5) 8.62±0.17 (6) 8.42±0.18 (5) 
7.61±0.32 

(5) 
7.24±0.25 

(5) 
6.88±0.35 

(5) 
6.64±0.3
6 (5) 

T295A 
8.83±0.30 

(5) 
7.76±0.32 (6) 

7.97±0.4
4 (5) 

9.60±0.31 (5) 8.22±0.34* (6) 9.05±0.15 (5) 
8.98±0.28* 

(5) 
8.15±0.41 (6) 8.96±0.41 (5) 

7.00±0.17 
(5) 

N.D. 
6.71±0.21* 

(5) 
7.61±0.2
4 (5) 

H296A 
10.1±0.25 

(10) 
7.83±0.18 (7) 

7.59±0.1
6 (5) 

10.6±0.24 (10) 9.08±0.18 (7) 8.13±0.17 (5) 10.1±0.29 (5) 8.07±0.23 (6) 8.08±0.14 (6) 
7.87±0.29 

(5) 
7.30±0.22 

(5) 
7.48±0.16 

(6) 
6.91±0.2
9 (5) 

L297A 
9.37±0.27 

(4) 
7.40±0.31* 

(7) 
7.99±0.3
3 (5) 

10.4±0.33 (4) 8.89±0.27 (6) 8.90±0.22 (5) 9.44±0.25 (6) 8.54±0.30 (7) 8.91±0.35 (5) 
7.59±0.24 

(5) 
7.43±0.35 

(5) 
7.14±0.12 

(5) 
6.82±0.3
1 (5) 

L298A 
9.07±0.31 

(5) 
7.58±0.25* 

(7) 
7.62±0.2
5 (6) 

10.2±0.29 (5) 8.72±0.24 (7) 8.54±0.26 (5) 9.70±0.26 (5) 8.09±0.25 (5) 8.78±0.27 (5) 
7.77±0.28 

(5) 
7.49±0.20 

(5) 
7.10±0.30 

(5) 
6.95±0.3
7 (5) 

Y299A 
8.68±0.32 

(5) 
7.97±0.46 (6) 

7.81±0.3
8 (5) 

10.4±0.31 (5) 8.04±0.36* (6) 9.05±0.38 (5) 9.35±0.24 (6) 9.20±0.40 (7) 8.85±0.40 (5) 
7.36±0.10 

(4) 
-7.15±0.36 

(5) 
7.32±0.19 

(5) 
N.D. 

I300A 
9.31±0.28 

(5) 
7.97±0.32 (7) 

8.55±0.3
1 (5) 

10.2±0.29 (5) N.D. 9.29±0.36* (5) 9.72±0.26 (5) N.D. 9.29±0.31 (5) 
7.18±0.33 

(5) 
7.38±0.40 

(5) 
7.54±0.24 

(5) 
7.03±0.3
5 (5) 

F356A 
8.05±0.35* 

(5) 
7.70±0.30 (6) 

7.58±0.2
7 (4) 

9.73±0.21 (6) 9.05±0.41 (6) 9.38±0.21* (5) 
8.85±0.29* 

(4) 
N.D. 8.23±0.33 (4) 

7.09±0.32 
(4) 

6.95±0.45 
(5) 

6.65±0.21* 
(5) 

6.65±0.3
4 (4) 

V357A 
8.43±0.25* 

(6) 
7.37±0.48* 

(5) 
7.74±0.2
6 (4) 

10.1±0.21 (6) 8.69±0.42 (5) 8.44±0.19 (5) 9.73±0.32 (4) 
7.69±0.40* 

(5) 
8.19±0.25 (4) 

7.36±0.33 
(5) 

7.29±0.44 
(5) 

7.29±0.15 
(5) 

N.D. 

V358A 
9.29±0.28 

(4) 
7.28±0.17* 

(6) 
7.31±0.1
3* (5) 

10.7±0.25 (4) 8.31±0.13* (6) 8.19±0.13 (4) 9.40±0.28 (4) 8.20±0.26 (5) 8.38±0.20 (4) 
7.50±0.33 

(4) 
7.06±0.30 

(5) 
7.42±0.27 

(5) 
7.34±0.5
0 (5) 

F359A 
8.50±0.21* 

(5) 
7.08±0.24* 

(5) 
7.07±0.1
5* (5) 

10.6±0.20 (5) 8.29±0.14* (5) 7.79±0.13* (5) 9.65±0.28 (4) 
7.68±0.24* 

(5) 
7.87±0.18* 

(5) 
7.33±0.31 

(5) 
7.10±0.31 

(4) 
7.49±0.19 

(5) 
6.64±0.2
9 (5) 

P360A 
7.96±0.34* 

(5) 
6.77±0.26* 

(5) 
6.98±0.4
0* (5) 

10.0±0.20 (5) 7.99±0.13* (6) 7.50±0.15* (5) 
9.03±0.27* 

(4) 
6.76±0.28* 

(5) 
7.31±0.22* 

(5) 
7.24±0.28 

(5) 
N.D. 

7.59±0.34 
(5) 

N.D. 

W361A 
8.69±0.23 

(5) 
7.55±0.23* 

(6) 
7.30±0.2
0* (5) 

10.4±0.21 (5) 8.66±0.15 (5) 8.16±0.15 (4) 9.10±0.31 (4) 
7.80±0.25* 

(6) 
7.99±0.27 (5) 

7.40±0.28 
(5) 

7.23±0.44 
(4) 

6.73±0.23* 
(5) 

6.90±0.3
8 (5) 

R362A 
8.22±0.24* 

(4) 
7.34±0.27* 

(6) 
7.49±0.2
9 (5) 

9.85±0.23 (4) 8.51±0.25 (5) 8.53±0.16 (4) 
8.45±0.32* 

(4) 
7.68±0.42* 

(6) 
7.91±0.25* 

(5) 
7.27±0.38 

(4) 
6.78±0.54 

(4) 
7.62±0.10 

(5) 
7.01±0.6
1 (5) 

P363A 
8.29±0.25* 

(5) 
N.D. 

7.38±0.3
0 (5) 

10.4±0.20 (5) 9.04±0.19 (5) 8.57±0.18 (4) 
8.68±0.30* 

(4) 
8.08±0.25 (6) 8.05±0.25 (5) 

7.48±0.27 
(6) 

7.43±0.63 
(4) 

7.25±0.16 
(5) 

N.D. 

S364A 
9.56±0.21 

(5) 
7.47±0.22* 

(5) 
7.82±0.1
4 (5) 

10.5±0.21 (5) 8.56±0.18 (5) 8.23±0.17 (4) 10.2±0.35 (4) 
-8.00±0.20 

(5) 
8.11±0.17 (4) 

8.18±0.33 
(4) 

7.76±0.23 
(4) 

7.53±0.31 
(4) 

7.75±0.3
0 (4) 

N365A 
9.55±0.22 

(5) 
8.08±0.28 (5) 

7.93±0.1
8 (5) 

10.6±0.24 (5) 8.71±0.26 (4) 8.57±0.20 (4) 10.4±0.27 (4) 8.49±0.31 (5) 8.58±0.18 (5) 
7.93±0.30 

(4) 
7.56±0.26 

(5) 
7.41±0.15 

(5) 
7.30±0.3
6 (4) 

K366A 
9.84±0.31 

(5) 
8.20±0.17 (5) 

7.52±0.1
4 (5) 

10.6±0.24 (5) 8.73±0.17 (5) 8.41±0.13 (4) 10.5±0.29 (4) 8.68±0.21 (5) 8.17±0.13 (5) 
7.83±0.20 

(4) 
7.66±0.17 

(5) 
8.02±0.34 

(5) 
6.89±0.1
6 (4) 

M367A 
9.49±0.34 

(5) 
7.50±0.17* 

(5) 
7.91±0.1
4 (5) 

10.8±0.25 (5) 8.27±0.13* (6) 8.28±0.14 (4) 10.2±0.31 (4) 8.02±0.19 (5) 
7.93±0.14* 

(5) 
8.09±0.23 

(4) 
7.04±0.24 

(5) 
7.27±0.23 

(5) 
6.77±0.2
7 (4) 

L368A 
9.85±0.32 

(5) 
7.41±0.17* 

(6) 
7.68±0.1
6 (4) 

10.4±0.20 (5) 8.51±0.17 (5) 8.21±0.13 (4) 9.63±0.33 (4) 
7.66±0.22* 

(5) 
8.21±0.14 (5) 

7.61±0.28 
(5) 

7.35±0.21 
(4) 

7.67±0.32 
(5) 

6.94±0.2
4 (4) 

G369A 
9.31±0.22 

(5) 
7.28±0.21* 

(5) 
7.78±0.1
3 (5) 

10.4±0.24 (5) 8.61±0.16 (5) 8.22±0.16 (4) 9.97±0.30 (4) 7.80±0.19 (5) 
7.90±0.17* 

(5) 
7.56±0.28 

(4) 
7.55±0.26 

(4) 
7.06±0.25 

(5) 
6.84±0.2
3 (4) 

K370A N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. 
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I371A 
9.63±0.33 

(5) 
8.07±0.22 (5) N.D. 10.8±0.21 (5) 8.45±0.19 (6) N.D. 10±0.30 (4) 8.58±0.19 (5) N.D. 

8.29±0.26 
(5) 

N.D. 
7.02±0.34 

(5) 
N.D. 

Y372A 
7.18±0.35* 

(4) 
7.67±0.35 (5) 

6.76±0.3
0* (5) 

9.60±0.22 (4) 8.81±0.43 (5) 8.55±0.42 (5) 
8.23±0.35* 

(4) 
8.27±0.34 (5) 

7.57±0.28* 
(4) 

N.D. N.D. 
6.93±0.25 

(5) 
N.D. 

D373A 
8.41±0.27* 

(4) 
7.51±0.20* 

(5) 
7.41±0.2
7 (5) 

10.3±0.21 (4) 8.60±0.22 (5) 8.34±0.15 (4) 
8.39±0.34* 

(4) 
7.59±0.28* 

(5) 
8.09±0.28 (4) 

7.81±0.29 
(5) 

N.D. 
7.72±0.24 

(5) 
N.D. 

Y374A 
9.45±0.28 

(5) 
7.32±0.20* 

(5) 
7.67±0.1
8 (5) 

10.5±0.20 (5) 8.34±0.15* (6) 8.36±0.18 (4) 10.4±0.32 (4) 
7.60±0.18* 

(5) 
8.35±0.20 (4) 

7.75±0.33 
(4) 

7.12±0.3 
(4) 

7.35±0.34 
(5) 

7.07±0.3
7 (5) 

V375A 
9.21±0.20 

(5) 
7.98±0.28 (5) 

7.88±0.2
8 (4) 

10.2±0.20 (5) 8.32±0.22* (6) 8.70±0.23 (5) 9.59±0.41 (4) 8.25±0.31 (5) 8.32±0.23 (5) 
7.79±0.29 

(5) 
6.70±0.26 

(4) 
7.27±0.26 

(5) 
6.78±0.4
0 (5) 

M376A 
8.12±0.31* 

(5) 
7.83±0.41 (4) 

7.47±0.2
1 (4) 

10.2±0.21 (5) 8.43±0.19 (4) 8.17±0.25 (4) 9.30±0.36 (4) 7.90±0.30 (5) 8.54±0.14 (5) 
7.09±0.27 

(5) 
7.09±0.43 

(5) 
6.63±0.31* 

(6) 
7.52±0.2
6 (5) 

 

For each receptor mutant and ligand, concentration-response data for each pathway were fit with the Black 

and Leff operational model to derive a functional affinity (pKA) for each pathway. All values are mean ± S.E.M. 

(independent “n” values are indicated within parentheses). For each ligand, significance of changes was 

determined by comparison of mutant receptor pKA to WT receptor pKA in a one-way analysis of variance 

followed by Dunnett’s post-test (p<0.05 represented by *). (N.D.) data were not able to be reliably 

determined. WT pKA values for sCT were 10.52±0.09, 9.20±0.12, and 8.55±0.07, for cAMP, IP1 and pERK 

signalling, respectively. The corresponding values for hCT were 9.54±0.09, 8.54±0.10, and 8.15±0.08, and for 

pCT were 10.12±0.10, 8.75±0.13 and 8.74±0.09. pKA values for cAMP and pERK were, respectively, 7.50±0.33 

and 7.23±0.11 for rAmy, and 7.69±0.16 and 7.10±0.11 for CGRP. 

 
 
 
 
 
 
Table 6. Effect of single alanine mutation in hCTR ECL2 or ECL3 on efficacy of CT-family 
peptides.  

 
hCT sCT pCT rAmy hαCGRP 

cAMP IP1 pERK1/2 cAMP IP1 pERK1/2 cAMP IP1 pERK1/2 cAMP pERK1/2 cAMP pERK1/2 

WT 
0.18±0.0

7 (36) 
-0.07±0.02 

(47) 
-0.11±0.04 

(34) 
0.25±0.12 

(36) 
-0.04±0.02 

(44) 

-
0.15±0.
02 (35) 

0.12±0.10 
(31) 

-0.07±0.04 
(37) 

-0.11±0.03 
(32) 

0.12±0.0
9 (31) 

-0.10±0.03 
(30) 

0.11±0.0
9 (25) 

-0.08±0.08 
(30) 

I279A 
-

0.09±0.
10 (4) 

-0 .30±0.10 
(7) 

0.20±0.09 
(5) 

0.00±0.13 
(5) 

-0.13±0.10 
(7) 

0.05±0.
09 (5) 

0.07±0.12 
(6) 

0.01±0.10 
(5) 

0.02±0.08 
(5) 

-
0.11±0.1

2 (5) 

-0.24±0.15 
(5) 

0.37±0.2
2 (5) 

-0.14±0.11 
(5) 

T280A 
-

0.13±0.
10 (4) 

-0.39±0.11 
(6) 

0.35±0.11 
(6) 

0.06±0.16 
(4) 

-0.01±0.11 
(7) 

0.24±0.
10 (6) 

0.14±0.15 
(5) 

-0.22±0.10 
(7) 

0.27±0.10 
(6) 

-
0.34±0.1

3 (4) 

-0.15±0.14 
(6) 

-
0.01±0.2

0 (5) 

-0.17±0.11 
(6) 

R281A 
0.74±0.1

7* (8) 
-0.33±0.14 

(7) 
N.D. 

0.87±0.17* 
(11) 

0.37±0.14 
(6) 

-
0.16±0.
16 (5) 

1.31±0.34* 
(6) 

-0.02±0.15 
(6) 

-0.27±0.17 
(5) 

0.26±0.1
8 (5) 

-0.29±0.16 
(5) 

0.71±0.2
4 (5) 

-0.30±0.19 
(5) 

V283A 
-

0.01±0.
10 (4) 

-0.32±0.13 
(5) 

0.40±0.14 
(5) 

0.36±0.17 
(5) 

0.11±0.13 
(7) 

0.20±0.
13 (6) 

0.26±0.14 
(5) 

-0.04±0.13 
(7) 

0.00±0.13 
(5) 

-
0.07±0.1

3 (5) 

-0.19±0.15 
(5) 

0.36±0.2
5 (5) 

-0.21±0.15 
(4) 

Y284A 
0.22±0.1

0 (5) 
-0.33±0.13 

(7) 
-0.12±0.14 

(5) 
0.42±0.16 

(5) 
0.25±0.13 

(6) 
0.01±0.
13 (5) 

0.33±0.13 
(6) 

0.03±0.13 
(7) 

-0.12±0.13 
(5) 

0.30±0.1
5 (5) 

-0.24±0.32 
(5) 

0.57±0.2
8 (5) 

-0.09±0.16 
(5) 

F285A 
0.12±0.1

0 (5) 
-0.47±0.17 

(6) 
-0.17±0.17 

(5) 
0.23±0.15 

(5) 
0.09±0.17 

(5) 
0.03±0.
17 (5) 

-0.02±0.11 
(6) 

0.05±0.18 
(6) 

-0.18±0.17 
(5) 

0.08±0.1
4 (5) 

-0.42±0.20 
(5) 

0.27±0.2
1 (5) 

-0.12±0.19 
(5) 

N286A 
0.92±0.1

4* (5) 
-0.07±0.17 

(6) 
0.03±0.18 

(5) 
0.78±0.15 

(5) 
0.17±0.17 

(5) 
0.10±0.
18 (5) 

0.58±0.12 
(5) 

0.30±0.17 
(7) 

-0.04±0.18 
(5) 

0.69±0.1
8* (5) 

-0.07±0.24 
(5) 

0.13±0.2
1 (5) 

-0.20±0.20 
(5) 

D287A 
1.46±0.3

4* (6) 
N.D. 

0.08±0.33 
(5) 

1.25±0.17* 
(10) 

N.D. 
0.12±0.
21 (5) 

0.70±0.14 
(6) 

0.78±0.20* 
(6) 

-0.10±0.29 
(5) 

N.D. N.D. N.D. N.D. 

N288A 
0.11±0.1

2 (5) 
-0.26±0.13 

(7) 
0.08±0.15 

(5) 
-0.23±0.11 

(6) 
-0.11±0.13 

(6) 
0.00±0.
14 (5) 

0.09±0.14 
(5) 

-0.25±0.14 
(7) 

0.07±0.14 
(5) 

-
0.36±0.1

2 (5) 

-0.38±0.14 
(5) 

0.10±0.2
2 (5) 

-0.12±0.16 
(5) 

C289A 
0.80±0.2

8* (8) 
N.D. 

0.19±0.34 
(5) 

1.57±0.29* 
(10) 

0.27±0.27 
(6) 

0.46±0.
28* (5) 

1.22±0.20* 
(8) 

N.D. 
0.16±0.29 

(5) 
0.95±0.2

1* (5) 
N.D. N.D. N.D. 

W290A N.D. N.D. N.D. 
1.71±0.50* 

(11) 
N.D. 

-
0.04±0.
34 (5) 

1.01±0.18* 
(5) 

N.D. 
-0.20±0.37 

(5) 
0.64±0.2

5 (5) 
N.D. N.D. N.D. 

L291A 
0.36±0.1

4 (10) 
-0.39±0.15 

(7) 
-0.38±0.19 

(5) 
0.20±0.14 

(10) 
-0.21±0.15 

(7) 

-
0.08±0.
15 (5) 

0.17±0.14 
(6) 

-0.41±0.15 
(7) 

-0.34±0.16 
(5) 

0.13±0.1
6 (5) 

-
0.68±0.1

6* (5) 

0.09±0.2
0 (5) 

N.D. 
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S292A 
0.56±0.1

5 (6) 
-0.28±0.19 

(6) 
0.13±0.19 

(5) 
0.48±0.18 

(6) 
-0.01±0.19 

(7) 
0.17±0.
19 (5) 

0.64±0.21 
(6) 

-0.04±0.19 
(7) 

0.03±0.19 
(5) 

0.20±0.1
3 (6) 

-0.01±0.19 
(6) 

0.23±0.2
1 (5) 

-0.12±0.20 
(5) 

V293A 
0.30±0.1

2 (5) 
-0.21±0.13 

(6) 
0.14±0.14 

(5) 
0.28±0.17 

(5) 
0.03±0.13 

(7) 
0.19±0.
14 (5) 

0.22±0.14 
(6) 

0.03±0.14 
(5) 

0.19±0.13 
(5) 

0.05±0.1
3 (6) 

-0.37±0.14 
(5) 

0.61±0.1
7 (5) 

0.33±0.15 
(5) 

E294A 
0.10±0.1

0 (5) 
-0.42±0.23 

(6) 
0.09±0.13 

(5) 
0.13±0.14 

(5) 
-0.20±0.23 

(6) 
0.10±0.
13 (5) 

0.19±0.14 
(5) 

0.04±0.13 
(6) 

0.01±0.13 
(5) 

0.02±0.1
4 (5) 

-0.32±0.12 
(5) 

0.38±0.1
8 (5) 

-0.35±0.18 
(5) 

T295A 
0.91±0.1

4* (5) 
-0.08±0.21 

(6) 
-0.05±0.23 

(5) 
1.20±0.21* 

(5) 
0.06±0.21 

(6) 

-
0.04±0.
22 (5) 

0.99±0.19* 
(5) 

0.08±0.23 
(6) 

-0.03±0.22 
(5) 

0.46±0.2
0 (5) 

N.D. 
0.44±0.2

7 (5) 
-0.37±0.27 

(5) 

H296A 
0.02±0.0

8 (10) 
-0.21±0.16 

(7) 
0.39±0.15 

(5) 
0.10±0.11 

(10) 
0.05±0.16 

(7) 
0.42±0.
15* (5) 

0.20±0.13 
(5) 

0.02±0.14 
(6) 

0.53±0.14* 
(6) 

0.30±0.1
5 (5) 

-0.14±0.08 
(5) 

0.21±0.1
8 (6) 

-0.18±0.16 
(5) 

L297A 
0.51±0.1

1 (4) 
0.04±0.12 

(7) 
0.09±0.13 

(5) 
0.72±0.15 

(4) 
0.22±0.12 

(6) 
0.14±0.
13 (5) 

1.01±0.19* 
(6) 

0.17±0.13 
(7) 

0.05±0.13 
(5) 

0.52±0.1
4 (5) 

-0.01±0.30 
(5) 

0.50±0.2
1 (5) 

0.25±0.15 
(5) 

L298A 
0.33±0.1

1 (5) 
-0.23±0.24 

(7) 
-0.01±0.24 

(5) 
0.52±0.17 

(5) 
-0.13±0.24 

(7) 
0.00±0.
24 (5) 

0.59±0.17 
(5) 

0.10±0.24 
(5) 

-0.10±0.24 
(5) 

0.56±0.1
7 (5) 

0.00±0.25 
(5) 

0.37±0.2
3 (5) 

-0.20±0.26 
(5) 

Y299A 
0.22±0.1

5 (5) 

-
0.96±0.3

1* (6) 

-
0.72±0.1

8* (5) 

0.07±0.16 
(5) 

-
0.68±0.3

9* (6) 

-
0.69±0.
28* (5) 

0.15±0.16 
(6) 

-
0.74±0.1

8* (7) 

-
0.76±0.1

8* (5) 

-
0.04±0.1

7 (4) 

-
0.73±0.1

7* (5) 

-
0.49±0.2

1 (5) 
N.D. 

I300A 
1.16±0.1

2* (5) 
0.33±0.10 

(7) 
0.53±0.12

* (5) 
1.24±0.17* 

(5) 
N.D. 

0.50±0.
12* (5) 

1.3±0.17* 
(5) 

N.D. 
0.41±0.13 

(5) 
1.19±0.1

8* (5) 
0.33±0.16 

(5) 
0.76±0.1

9* (5) 
0.54±0.15* 

(5) 

F356A 
1.05±0.1

9* (5) 
0.15±0.15 

(6) 
-0.10±0.17 

(4) 
1.08±0.17* 

(6) 
-0.16±0.14 

(6) 
0.20±0.
12 (5) 

1.49±0.10* 
(4) 

N.D. 
0.06±0.15 

(4) 
0.90±0.1

9* (4) 
-0.12±0.14 

(5) 
0.91±0.2

* (5) 
0.16±0.18 

(4) 

V357A 
0.59±0.2

1 (6) 
-0.55±0.18 

(5) 
-0.54±0.16 

(4) 
0.61±0.18 

(6) 

-
0.69±0.1

4* (5) 

-
0.27±0.
14 (5) 

0.62±0.28 
(4) 

-0.59±0.16 
(5) 

-0.25±0.15 
(4) 

-
0.05±0.1

3 (5) 

-
0.69±0.1

4* (5) 

-
0.12±0.1

3 (5) 
N.D. 

V358A 
0.10±0.1

0 (4) 
0.12±0.19 

(6) 
0.41±0.19 

(5) 
-0.04±0.09 

(4) 
0.18±0.18 

(6) 
0.31±0.
18 (4) 

0.25±0.27 
(4) 

-0.32±0.19 
(5) 

-0.10±0.19 
(4) 

0.02±0.1
4 (4) 

-0.45±0.24 
(5) 

-
0.20±0.1

2 (5) 

-
0.72±0.2

2* (5) 

F359A 
0.28±0.1

6 (5) 
-0.28±0.20 

(5) 
0.15±0.19 

(5) 
-0.06±0.09 

(5) 
0.01±0.19 

(5) 
0.55±0.
20* (5) 

0.14±0.16 
(4) 

-0.46±0.19 
(5) 

-0.16±0.19 
(5) 

-
0.17±0.1

3 (5) 

-0.66±0.19 
(4) 

-
0.60±0.1

4* (5) 

-
1.08±0.3

1* (5) 

P360A 
0.38±0.2

3 (5) 

-
0.62±0.1

5* (5) 

-
1.06±0.1

6* (5) 

-0.06±0.14 
(5) 

-0.10±0.12 
(6) 

-
0.48±0.
12 (5) 

1.07±0.17* 
(4) 

-0.47±0.17 
(5) 

-
0.98±0.1

6* (5) 

-
0.28±0.1

5 (5) 
N.D. 

-
0.98±0.1

4* (5) 
N.D. 

W361A 
0.38±0.1

8 (5) 
-0.32±0.17 

(6) 
-0.14±0.17 

(5) 
-0.05±0.09 

(5) 
-0.08±0.17 

(5) 

-
0.03±0.
17 (4) 

0.4±0.24 
(4) 

-0.36±0.17 
(6) 

-0.44±0.17 
(5) 

-
0.04±0.1

3 (5) 

-
0.80±0.1

8* (4) 

-
0.07±0.1

6 (5) 

-
0.74±0.2

0* (5) 

R362A 
0.56±0.1

5 (4) 
-0.15±0.15 

(6) 
-0.26±0.15 

(5) 
0.40±0.12 

(4) 
-0.20±0.14 

(5) 
0.11±0.
13 (4) 

0.87±0.27* 
(4) 

-0.44±0.16 
(6) 

-0.48±0.16 
(5) 

0.12±0.1
5 (4) 

-0.58±0.18 
(4) 

-
0.30±0.1

4 (5) 

-
0.71±0.2

1* (5) 

P363A 
0.34±0.1

3 (5) 
N.D. 

-0.32±0.12 
(5) 

0.26±0.10 
(5) 

- 0.05±0.12 
(5) 

-
0.05±0.

1 (4) 

1.47±0.35* 
(4) 

-0.21±0.11 
(6) 

-0.63±0.14 
(5) 

0.11±0.1
2 (6) 

-
0.77±0.0

8* (4) 

-
0.52±0.2

1 (5) 
N.D. 

S364A 
0.16±0.0

9 (5) 
-0.08±0.19 

(5) 
0.24±0.19 

(5) 
0.13±0.09 

(5) 
-0.08±0.19 

(5) 
0.01±0.
19 (4) 

0.09±0.14 
(4) 

-0.08±0.19 
(5) 

0.17±0.19 
(4) 

-
0.31±0.1

2 (4) 

-0.33±0.20 
(4) 

-
0.04±0.1

2 (4) 

-0.46±0.20 
(4) 

N365A 
0.03±0.1

0 (5) 
-0.33±0.13 

(5) 
-0.21±0.12 

(5) 
-0.12±0.08 

(5) 
-0.39±0.15 

(4) 

-
0.29±0.
12 (4) 

-0.16±0.13 
(4) 

-0.44±0.13 
(5) 

-0.18±0.12 
(5) 

-
0.25±0.1

3 (4) 

-0.47±0.29 
(5) 

0.11±0.1
3 (5) 

-0.59±0.14 
(4) 

K366A 
-

0.21±0.
09 (5) 

0.02±0.13 
(5) 

0.67±0.15
* (5) 

-0.16±0.08 
(5) 

-0.15±0.23 
(5) 

0.13±0.
13 (4) 

-0.24±0.11 
(4) 

-0.22±0.13 
(5) 

0.32±0.13 
(5) 

-
0.28±0.1

3 (4) 

-0.29±0.35 
(5) 

-
0.27±0.1

1 (5) 

0.22±0.14 
(4) 

M367A 
-

0.03±0.
09 (5) 

0.36±0.15 
(4) 

0.15±0.13 
(5) 

-0.10±0.08 
(5) 

0.22±0.13 
(6) 

0.17±0.
13 (4) 

0.11±0.12 
(4) 

-0.03±0.14 
(5) 

0.58±0.14* 
(5) 

0.04±0.1
2 (4) 

-0.26±0.17 
(5) 

0.23±0.1
3 (5) 

-0.25±0.16 
(4) 

L368A 
-

0.13±0.
09 (5) 

0.10±0.12 
(6) 

0.17±0.12 
(4) 

0.25±0.10 
(5) 

0.00±0.12 
(5) 

0.28±0.
12 (4) 

0.04±0.13 
(4) 

-0.06±0.13 
(5) 

0.46±0.12* 
(5) 

0.09±0.1
2 (5) 

-0.18±0.12 
(4) 

-
0.09±0.1

1 (5) 

-0.19±0.14 
(4) 

G369A 
0.36±0.1

7 (5) 
0.19±0.18 

(5) 
0.12±0.16 

(5) 
-0.13±0.09 

(5) 
-0.16±0.16 

(5) 

-
0.09±0.
16 (4) 

0.04±0.13 
(4) 

-0.09±0.16 
(5) 

0.01±0.16 
(5) 

-
0.25±0.1

3 (4) 

-0.53±0.17 
(4) 

0.27±0.1
7 (5) 

-0.32±0.17 
(4) 

K370A N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. 

I371A 
0.60±0.1

7 (5) 
0.52±0.21* 

(7) 
N.D. 

0.72±0.13 
(5) 

0.87±0.09* 
(6) 

N.D. 
0.78±0.18 

(4) 
1.00±0.12* 

(5) 
N.D. 

0.99±0.1
3* (5) 

N.D. 
1.06±0.1

9* (5) 
N.D. 

Y372A 
0.80±0.3

3 (4) 
-0.32±0.16 

(5) 

-
0.78±0.1

5* (5) 

0.29±0.12 
(4) 

-0.53±0.14 
(5) 

-
0.72±0.
15* (4) 

0.61±0.29 
(4) 

-
0.62±0.1

6* (5) 

-
0.95±0.2

5* (4) 
N.D. N.D. 

-
0.66±0.1

6* (5) 
N.D 

D373A 
0.69±0.2

3 (4) 
-0.06±0.16 

(5) 
-0.34±0.15 

(5) 
0.33±0.12 

(4) 
-0.18±0.16 

(5) 

-
0.06±0.
15 (4) 

0.96±0.31* 
(4) 

-0.56±0.19 
(5) 

-0.83±0.2* 
(5) 

-
0.27±0.1

2 (5) 
N.D. 

-
0.67±0.1

8* (5) 
N.D. 

Y374A 
0.15±0.0

9 (5) 
0.19±0.10 

(5) 
0.05±0.09 

(5) 
0.28±0.09 

(5) 
0.19±0.09 

(6) 
0.09±0.
09 (4) 

0.2±0.12 
(4) 

0.18±0.09 
(5) 

0.13±0.09 
(4) 

0.19±0.1
4 (4) 

-0.25±0.09 
(4) 

0.08±0.1
3 (5) 

-0.39±0.14 
(5) 

V375A 
0.33±0.1

5 (5) 
-0.27±0.10 

(5) 
-0.44±0.10 

(4) 
0.14±0.12 

(5) 
-0.23±0.09 

(6) 

-
0.41±0.
09 (5) 

0.69±0.28 
(4) 

0.08±0.16 
(5) 

-0.25±0.09 
(5) 

-
0.05±0.1

4 (5) 

-0.34±0.12 
(5) 

-
0.15±0.1

6 (5) 

-0.56±0.11 
(5) 

M376A 
-

0.08±0.
11 (5) 

-0.57±0.13 
(4) 

-0.60±0.09 
(4) 

0.10±0.10 
(5) 

-0.12±0.09 
(4) 

-
0.39±0.
09 (4) 

-0.07±0.15 
(4) 

-
0.69±0.1

3* (5) 

-
0.66±0.1

1* (5) 

-
0.12±0.1

5 (5) 

-
0.70±0.1

2* (5) 

-
0.53±0.1

6* (5) 

-
0.81±0.1

3* (5) 
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For each receptor mutant and ligand, concentration-response data for each pathway were fit with the Black 
and Leff operational model to derive an affinity-independent measure of efficacy (log(τ)).  These data were 
corrected for changes in cell surface expression from FACS to yield log(τc). All values are mean ± S.E.M. 
(independent “n” values are indicated within parentheses). For each ligand, significance of changes in log(τc) 
was determined by comparison of mutants to the WT receptor in a one-way analysis of variance followed by 
Dunnett’s post-test (p<0.05 represented by *). (N.D.) data were not able to be reliably determined. 
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Table 7. Interactions between either hCT or sCT and the CTR in MD simulations of bound 
peptide. 

CTR Residue Interaction hCT sCT 

I279 CTR H bonds / / 

CTR Contacts / / 

T280 CTR H bonds / / 

CTR Contacts / / 

R281 CTR H bonds / / 

CTR Contacts / / 

V283 CTR H bonds / / 

CTR Contacts / / 

Y284 CTR H bonds / / 

CTR Contacts / / 

F285 CTR H bonds / / 

CTR Contacts / / 

N286 CTR H bonds / / 

CTR Contacts / / 

D287 CTR H bonds / / 

CTR Contacts / / 

N288 CTR H bonds / / 

CTR Contacts / / 

C289 CTR H bonds / / 

CTR Contacts Q14 34.4% / 

W290 CTR H bonds /  H17 3.0% 
C1 2.5% (bb) CTR Contacts Q14 57.0% 

N17 54.7% 
T13 30.9% 
K18 25.8% 

S13 73.8% 
Q14 60.0% 
H17 59.0% 
G10 24.2% 

L291 CTR H bonds K18 2.3% (bs) / 

CTR Contacts Q14 54.9% 
T11 34.0% 

/ 

S292 CTR H bonds / Q14 9.9% 

CTR Contacts / Q14 49.8% 
H17 28.0% V293 CTR H bonds / / 

CTR Contacts Q14 27.1% Q14 21.8% 

E294 CTR H bonds C1 8.7% (sb) / 

CTR Contacts / / 

T295 CTR H bonds / / 

CTR Contacts G2 22.5% / 

H296 CTR H bonds / / 

CTR Contacts / / 

L297 CTR H bonds / / 

CTR Contacts N3 26.2% / 

L298 CTR H bonds N3 9.5% (bs) / 

CTR Contacts N3 62.5% 
T6 27.8% 

N3 25.4% 
 Y299 CTR H bonds / / 

CTR Contacts N3 47.8% S2 29.5% 

I300 CTR H bonds / / 

CTR Contacts / / 

 
CTR Residue Interaction hCT sCT 

F356 CTR H bonds / S5 5.1% (bs) 

CTR Contacts M8 74.1% 
S5 54.0% 
L4 37.1% 
L9 26.1% 

L4 92.1% 
S5 77.4% 
V8 32.4% 

 

V357 CTR H bonds / / 

CTR Contacts L4 72.1% 
S5 41.7% 

/ 

V358 CTR H bonds / / 

CTR Contacts / / 

F359 CTR H bonds / / 
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CTR Contacts M8 42.8% L4 60.6% 

P360 CTR H bonds / / 

CTR Contacts L4 67.2% 
M8 60.5% 
C7 41.8%% 

L4 89.6% 
C1 26.3% W361 CTR H bonds / / 

CTR Contacts C1 37.9% 
C7 34.3% 
L4 28.6% 

T11 25.9% 

L4 58.4% 
C1 43.2% 
C7 34.9% 

K11 31.8% 
V8 29.8% 
S2 26.8% 

R362 CTR H bonds / / 

CTR Contacts C1 20.3% K11 60.2% 

P363 CTR H bonds / / 

CTR Contacts / / 

S364 CTR H bonds / / 

CTR Contacts / / 

N365 CTR H bonds / / 

CTR Contacts / / 

K366 CTR H bonds / / 

CTR Contacts / / 

M367 CTR H bonds / / 

CTR Contacts / / 

L368 CTR H bonds / / 

CTR Contacts / / 

G369 CTR H bonds / / 

CTR Contacts / / 

K370 CTR H bonds / / 

CTR Contacts / / 

I371 CTR H bonds / / 

CTR Contacts / / 

Y372 CTR H bonds / / 

CTR Contacts M8 36.8% L4 45.4% 

D373 CTR H bonds C1 6.8% (sb) K11 13.0% 

CTR Contacts / K11 27.8% 

Y374 CTR H bonds / / 

CTR Contacts / / 

V375 CTR H bonds / / 

CTR Contacts / / 

M376 CTR H bonds / / 

CTR Contacts M8 77.2% L4 82.2% 
V8 49.7%  

Hydrogen bonds and generic contacts established between the CTR and both the human calcitonin (hCT) and 

salmon calcitonin (sCT), during 2 s of MD simulations (percentages are referred to the total number of 
frames). (sb): hydrogen bond involving a CTR side chain and the backbone of the hCT or sCT; (bs) hydrogen 
bond involving a CTR backbone atom and a hCT or sCT side chain. If not specified, the hydrogen bond refers to 
both the CTR and the hCT or sCT side chains. Only values higher than 2% for hydrogen bonds and 20% for 
generic contacts are reported.  
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