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ON THE INTEGRATION OF VECTOR-VALUED FUNCTIONS

D.H. FREMLIN AND J. MENDOZA

Introduction

A large number of different methods of integration of Banach-space-
valued functions have been introduced, based on the various possible con-
structions of the Lebesgue integral. They commonly run fairly closely to-
gether when the range space is separable (or has w*-separable dual) and
diverge more or less sharply for general range spaces. The McShane integral
as described by [7] is derived from the ‘gauge-limit’ integral of [11]. Here we
answer some questions left open in [7] concerning the relationship between
the McShane and Pettis integrals. Our original objectives were simply to
confirm that McShane integrable functions are Pettis integrable (2C) and to
find a Pettis integrable function which is not McShane integrable. Seeking
interesting examples of such functions we were led to investigate the connec-
tions between the McShane and Talagrand integrals (2L, 2M, 3A, 3C). As far
as we know, the ‘Talagrand integral’ of 1Ab below is explicitly described here
for the first time, although all the significant facts we use are given in [13] and
[14].

Perhaps we should make some remarks on the context of our results. The
ordinary functional analyst is naturally impatient with the multiplicity of
definitions of ‘integral’ which have been proposed for vector-valued func-
tions, and would much prefer to have a single canonical one for general use.
In our view the only integral with any claim to such pre-eminence is the
Bochner integral (1Ac). But elementary examples (3D below is a classic)
show that the Bochner integral is highly restrictive, in that it integrates few
functions; and quite simple problems lead us to demand extensions. In this
paper we work with three such extensions. We hope that our positive results
(e.g., McShane integrable functions are Pettis integrable) will make the
jungle seem a little less impenetrable, while our negative results (e.g., the
domains of the McShane and Talagrand integrals are incomparable) will at
least clarify the irreducible difficulties of the subject. In passing, we prove a
weak convergence theorem for the McShane integral (21I-2)), showing that
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this integral is at least an option to consider when faced with a question in
vector integration.

There is a survey of methods of vector integration in [9]. Among
the integrals discussed there the closest to the work of this paper is the
Birkhoff integral [2]. We believe that we can show that the Birkhoff and
McShane integrals are closely related, though not identical; we hope to
publish our findings elsewhere. Two more recent papers to which our ideas
may be relevant are [6], [8).

1A DeriNiTions.  We recall the following definitions. Let (S, 2, u) be a
probability space and X a Banach space, with dual X*.

(a) A function ¢: S — X is Pettis integrable if for every E € 3, there is a
wg € X such that [;f(¢(x))u(dx) exists and is equal to f(wg) for every
f € X*; in this case wg is the Pettis integral of ¢, and the map E — wyg:
3, — X is the indefinite Pettis integral of ¢.

(b) A function ¢: S — X is Talagrand integrable, with Talagrand integral w,
if w=1lim,_,(1/n)L;_,¢(s;) for almost all sequences ¢s;);cn € SV, where
SN is given its product probability. (See [14], Theorem 8.)

(c) A function ¢: S — X is Bochner integrable, with Bochner integral w, if
for every € > 0 we can find a partition E,, ..., E, of S into measurable sets
and vectors x,,...,x, € X and an integrable function A: S — R such that

Jr<ello(t) - x| <h(1)

forteE,i<nand |lw-L,_,nExl <e.

1B. Now we come to an integral which has been defined for functions with
domains which are intervals in R. In fact it can be satisfactorily generalized to
very much wider contexts; but as the extension involves ideas from topologi-
cal measure theory unnecessary for the chief results of this paper, we confine
ourselves here to the original special case.

DEerINITIONS A McShane partition of [0, 1] is a finite sequence

<([a,'a bi], ti)>isn

such that {[a;, b;]); <, is a non-overlapping family of intervals covering [0, 1]
and ¢, € [0,1] for each i. A gauge on [0,1] is a function §: [0, 1] —]0, «[.
A McShane partition {([a;, b;], ¢,))i <, is subordinate to a gauge & if ¢, —
8(t;)) <a; <b, <t + 8@) for every i < n.

Now let X be a Banach space. Following [7], we say that a function ¢:
[0,1] — X is McShane integrable, with McShane integral w, if for every € > 0
there is a gauge &: [0, 1] — 10, o[ such that [[w — X, _ (b, — a,)¢(t)|l < ¢ for
every McShane partition {([a;, b,], ¢,)); < » of [0, 1] subordinate to 8.
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1C Summary of results. With four integrals to play with, a good many
questions can be asked; and the situation is complicated by the fact that
certain natural restrictions which may be put on the space X and the
function ¢ change the answers. We therefore set out the facts in a semi-tabu-
lar form. We give references to the literature for those which are already
known, and references to paragraphs below for those which we believe to be
new.

(a) Consider first the situation in which no restriction is placed on the
Banach space X nor on the function ¢: [0, 1] — X. In this context, a Bochner
integrable function is Talagrand integrable, a Talagrand integrable function
is Pettis integrable, and the integrals coincide whenever defined [14, Theo-
rem 8]. A Bochner integrable function is McShane integrable [7, Theorem 16]
(in fact, a measurable Pettis integrable function is McShane integrable—see
[7], Theorem 17); a McShane integrable function is Pettis integrable (2C
below).

None of the implications here can be reversed. To see this, it is enough to
find a McShane integrable function which is not Talagrand integrable (3A,
3E) and a Talagrand integrable function which is not McShane integrable
(30).

(b) Now suppose that the unit ball B,(X*) of the dual X* of X is
separable (that is, that X is isometric to a subspace of [*(N)) and that ¢ is
bounded. In this case, a McShane integrable function must be Talagrand
integrable (2M). We ought to observe at this point that in these circum-
stances the continuum hypothesis, for instance, is enough to make any Pettis
integrable function Talagrand integrable [13, 6-1-3], and that it remains
conceivable that this is a theorem of ZFC (see [12]). But our result in 2M
does not depend on any special axiom.

In this context it is still true that a McShane integrable function need not
be Bochner integrable (3D) and that a Talagrand integrable function need
not be McShane integrable (3C).

(c) If we take X to be separable, but allow ¢ to be unbounded, then the
Bochner and Talagrand integrals coincide (see 2K below), and the McShane
and Pettis integrals coincide (2D).

There is still a McShane integrable function which is not Talagrand
integrable (3E).

(d) For separable X and bounded ¢, the Bochner and Pettis integrals
coincide (2K), so all four integrals here coincide.

(e) Finally, the same is true, for unbounded ¢, if X is finite-dimensional.

2. Positive results

In this section we give our principal positive results. A McShane integrable
function is Pettis integrable (2C); using this we are able to prove a conver-
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gence theorem for McShane integrable functions (2I) with some corollaries
(2J). We conclude by showing that a bounded McShane integrable function
from [0, 1] to a space with w*-separable dual unit ball is Talagrand integrable
M).

2A. We approach the first result by means of the ‘Dunford integral’. Recall
that a function ¢: [0,1]1 » X is Dunford integrable if h¢: [0,1] - R is
integrable for every A € X*; in this case we have an indefinite Dunford
integral v: 3, — X** where 2 is the algebra of Lebesgue measurable subsets
of [0,1], given by the formula (WEXh) = [gh¢ for every h € X*, E€ 3,
[13], 4-4-1 or [4], p. 52, Lemma 1). Thus a Pettis integrable function is just a
Dunford integrable function whose indefinite integral takes values in X
(identified, of course, with its canonical image in X**). Now we have the
following general characterization of Pettis integrable functions on [0, 1]
(which in part, at least, is already known; cf. [5], 4.2).

2B ProrosITION. Let X be a Banach space and ¢: [0,1] - X a Dunford
integrable function with indefinite integral v: 3, — X**. Suppose that v([a, b])
€ X for every subinterval [a, b] of [0, 1]. Then the following are

(i) ¢ is Pettis integrable;

(ii) for every sequence {[a;, b;]1); =~ of non-overlapping subintervals of [0, 1],
L env(a;, b)) exists in X (for the norm of X),

(iii) for every & > 0 there is an m > 0 such that ||\vE| <& whenever
RE <m;

(iv) v is countably additive.

Proof. (i) = (ii). This is a theorem of Pettis (see [4], I1.3.5).
(i) = (iii). The point is that {h¢: h € B,(X*)} is uniformly integrable. To
see this, it is enough to show that

lim sup{f lhepl: h € BI(X*)} =0
n—oo Gn

for every disjoint sequence {G,),en Of open sets in [0, 1] (see [3], VIL.14).
But given such a sequence, and a sequence {A,),<n in B{(X*), set a, =
Jg,|h,¢| for each n. Then we can find for each n a set F, C G,, a finite
union of closed intervals, such that [ |h,¢| = @, — 27". Now we can find a
sequence {[a;, b;])>;en of non-overlapping intervals, and an increasing se-
quence {k,)nen of integers, such that F, = U, ;.  [a; b;] for each n.
So

a,—27"<

S vl b))

k,<i<k,.

for each n. But as L, . yv([a;, b;]) exists in X, lim,_,, a, = 0, as required.
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Now it follows that for every & > 0 there is an n > 0 such that [g|h¢| < &
whenever h € B(X*), E €3 and uE <, writing p for Lebesgue mea-
sure; so that ||vE|| < & whenever uE < 7.

(iii) = (iv). Elementary.

(iv) = (i). Our original hypothesis was that vE € X for intervals E; it
follows that vE € X whenever E is a finite union of intervals. Because » is
countably additive, vE € X whenever E is open, and therefore whenever E
is G,; but also of course vE = 0 € X whenever uE =0, so vE € X for
every E € 3, and ¢ is Pettis integrable.

2C THEOREM. Let X be a Banach space and ¢: [0,1] > X a McShane
integrable function. Then ¢ is Pettis integrable.

Proof. As remarked in [7], Theorem 8, ¢ is Dunford integrable; let v:
3, —» X** be its indefinite Dunford integral. We know also that v([a, b)) € X
for every subinterval [a, b] of [0, 1] ([7], Theorem 4). So we seek to show that
(ii) of 2B above holds true.

Let € > 0. Let 8: [0,1] —»]0, [ be a gauge such that

y([0.1]) - T (b - a)d(t)| < ¢

i<n

whenever {([a;, b;],t,)): <» is a McShane partition of [0, 1] subordinate to 8.
Fix a particular McShane partition {((a;, b;], ¢,)): < » Of [0, 1] subordinate to 3,
and set M = sup,_,ll¢(¢,))ll. We claim that if E c[0,1] is a finite union of
closed intervals then |[vE| < MuE + 2e. To see this, express E as
U ;<nlc;, d;1 where the [c;, d;] are non-overlapping, and let n > 0. For each
i <n, we can express [a;, b;]\ int E as a (possibly empty) finite union of
non-overlapping intervals [a;, b, ] for k < r(i); write t, =t for i <n,
k < r(). Then we see that

Y(bi—a)d(t) — X X (by —ay)d(ty)

i<n i<n k<r@i)

<MuE.

Next, for each j < m we can find a McShane partition {([c;;, di ], 4 )k < 40
of [c;, d;], subordinate to 8, such that

V([CJ’ 1]) Y (di — cp)d(up)

k=q())

Assembling these, we see that

(L@ bik s tia)Vi<n, k <riys ([ Cjar dik] » Wik ) Vi< m, & <aiy
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together form a McShane partition of [0, 1] subordinate to 8, so that

v([0,1]) - Y (b —ay)d(ty)

isn, k<r@)

- X (e —di)od(tn)

j<m, k<q(j)

‘Ss.

Also, of course,

v([0.1]) = T (b - a) (1) | < e.

isn

Putting these formulae together, we get

L v([e;d)])

j<m

ISM/.LE+28+m’7].

But n was arbitrary, so ||[vE|| < MuE + 2¢, as claimed.

Now this means that if {[c;, d;]);en is any sequence of non-overlapping
intervals,

lim sup sup
m-oo I>m

) V([cjadj])“ < 2e.

m<j<l

But of course & was arbitrary, so the limit must actually be 0; accordingly
L;cnvlc;, d;D is defined.
Thus (ii) of 2B is satisfied, and ¢ is Pettis integrable.

2D CoroLLARY. Let X be a separable Banach space. Then a function ¢:
[0, 1] — X is McShane integrable iff it is Pettis integrable.

Proof. If ¢ is Pettis integrable, it is measurable, because X is separable;
so it is McShane integrable by Theorem 17 of [7]. Now 2C gives the reverse
implication.

2E. As a further consequence of 2C we have the following.

THEOREM. Let X be a Banach space and ¢: [0,1]1 = X a McShane inte-
grable function. Then for any measurable E C [0, 1] the function ¢p = ¢ X
X(E): [0,1] — X, defined by writing ¢(t) = ¢(¢) if t € E and 0 otherwise, is
McShane integrable.

Proof. Again write v for the indefinite integral of ¢; we now know that v
takes all its values in X. Let ¢ > 0. By 2B, we can find an n > 0 such that
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lvH|l < & whenever uH < n.Let F; CE, F, < [0,1]\ E be closed sets such
that uF, + wF, > 1 — n. Let §: [0,1] =10, «[ be a gauge such that

v([0.1)) - T (b - a)(t)| < &

izn

whenever {([a;, b;], t,)): <» is @ McShane partition subordinate to 8. Let §;:
[0, 1] =10, [ be such that §,(¢) < 8(¢) for every ¢ and [t — §,(¢), t + §,()] N
F; = @& whenever ¢t & F,, for both j € {1,2}.

Suppose that {((a;, b;], ,)): <» is a McShane partition of [0, 1] subordinate
to 8,. We seek to estimate |[vE — L, _ (b, — a)ég(t)]l. Set

I= {i:isn, t,EE}’H= U [aiibi]’

iel

Then we must have F, € H € [0,1]\ F,. Consequently u(HAE) < n and
lvE — vH|| < 2e. But now recall that by Theorem 5 of [7] we know that
"VH - Ziel(bi - a,)¢(t,)|| S E. SO

vE - T (b, - a)éu(t)| =

i<n

vE — Y (b; - ai)d’(ti)“ < 2e.

iel
As ¢ is arbitrary, ¢ is McShane integrable.

2F. For the next theorem of this section, we need to recall some well-
known facts concerning vector measures. Suppose that ¥ is a o-algebra of
sets and X a Banach space.

(a) Let us say that a function »: 3 — X is ‘weakly countably additive’ if

(U E)) - £ e

ieN

for every disjoint sequence E,;);cn in % and every f € X*. The first fact is
that in this case v is countably additive, that is, ¥, . y¥E; is unconditionally
summable to v(U;.nE;) for the norm topology whenever (E;);en is a
disjoint sequence of measurable sets with union E (‘Orlicz-Pettis theorem’,
[13], 2-6-1 or [4], p. 22, Cor. 4).

(b) Now, if u is a measure with domain 3 such that vE = 0 whenever
wE = 0, then for every ¢ > 0 there is a 8 > 0 such that ||[vE|| < ¢ whenever
wE <6 [4, p. 10, Theorem 1].

(c) Thirdly, suppose that {v,),en is a sequence of countably additive
functions from 3, to X such that vE = lim, _,, v, E exists in X, for the weak
topology of X, for every E € 3; then v is countably additive. (Use Nikodym’s
theorem [3, p. 90] to see that v is weakly countably additive.)
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2G LemMmA. Let X be a Banach space. If ¢: [0,1] - X is McShane
integrable with McShane integral w, then

wll < fll¢(e) lu(dr).

Proof. Take any f in the unit ball of X*. By [7], Theorem 8, f(w) is the
McShane integral of f¢: [0,1] — R, and by 6-4 and 6-5 of [11] this is the
ordinary integral of f¢. So we have

| £(w)] =|ff¢|sf|f¢| sinqbu.

As f is arbitrary, |Iwll < [l

2H LemMA. Let X be a Banach space and ®: [0,11 » X a McShane
integrable function; let € > Q. Then there is a gauge 8: [0,1] - 10, [ such that
lfzd — Z; o s Eidp(t)Il < & whenever E,, ..., E, are disjoint measurable sub-
sets of [0,1] with union E,t,...,t, €[0,1] and E; C [t; — 8(¢), t; + 8(¢,)]
for every i.

Proof. Let & be a gauge such that || /¢ — L, _ (b, — a)¢(t)| < & when-
ever {([a;, b;),%,))i<» is a McShane partition of [0, 1] subordinate to §. Let
E,,...,t,, E be as in the statement of the lemma; set M = max; _,,|l¢()ll.
Take n > 0; let o' > 0 be such that (n + DMn' < and |[yoll <n
whenever uH < (n + 1)’ (see 2B(iii)). Then we can find a family
(la;j, b;Di<n, j<r@y of non-overlapping closed intervals such that
W(E; AU ., ola;,b;D <n' and ¢, — 8(¢) < a;; <b;; <t; + 8(t,) for each
i<n, j<r@). Write t,; = ¢, for i <n, j <r@). Then {(a;, b;), t;i<n,
j<ray can be extended to an McShane partition of [0, 1] subordinate to 8. So

writing F; = U ; _,la;;, b;] for each i, F = U, ,F;, we have

<e

"fp 6— L (by-a,)e(t;)

i<n, j<r@)

by [7], Theorem 5; that is,

< €.

“ ]F ¢ — ¥ uF(t)

isn
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Next,

o= o] =2m

because w(EAF) < (n + 1)7'. Also

L uFb(t) = T uEd(t)| < M(n + D' <.

i<n i<sn

Putting these together,

<ée+ 3n;

N fE ¢ — Y REd(1)

i<n

as 7 is arbitrary we have the result.

21 THEOREM. Let X be a Banach space. Let {$,)nen be a sequence of
McShane integrable functions from [0,1] to X, and suppose that ¢(t) =
lim, _,, ¢,(t) exists in X for every t € [0, 1]. If moreover the limit

vE = lim j¢,,

n—oo E

exists in X, for the weak topology, for every measurable E c [0,1], ¢ is
McShane integrable and (¢ = v([0, 1]).

Proof. Fix &€ > 0. Write u for Lebesgue measure, 3 for the algebra of
Lebesgue measurable subsets of [0, 1].
(a) For t €[0,1], n € N set

0,(t) = sup [|g,(¢) — ()]
j=i=zn
For each ¢, write

r(t) = min{n: q,(¢t) <e,|d(t)| <n};

set A, ={t: r(t) =k} for each k. For each k €N, let W, 2 A4, be a
measurable set with u (W, \ 4,) = 0; set V; = W, \ U ., W, for each k, so
that (V,)ren is a disjoint cover of [0,1] by measurable sets, and A4, C
U;<+V; and u,(V,\A4,) = 0 for each k. For each k, write V;* = U, _,
V; = U, W; take m; > 0 such that |[vE|| < 27%¢ whenever uE < 7, (see
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(b) and (c) of 2F above); let G, 2 V;* be an open set such that u(G, \ V;*)
< min(n,, 2 %e).
(b) If k €N and E C V}* is measurable, then [|vE — [g¢,ll < enE. To

see this, it is enough to consider the case E C V; where j < k. In this case,
observe that

vE = [ b

< lim sup

n—o

[0 [ 9

by Lemma 2G. Now 4 (E \ 4;) = 0 and for ¢ € A, we have [|$,(t) — ¢, (0|l
< q{(t) < e for every n > k, so

< sup [ 16,(t) = (1) lu(dr)

nxzk -

J16.06) = (0 ) < e

for every n > k, giving the result.
(c) For each k € N let §;: [0,1] —]0, [ be a gauge such that

< 27k¢

”[E¢k - L nEd(t)

i<n

whenever E,..., E, are disjoint measurable sets with union E and ¢,,...,
t, € [0,1] are such that E; C [¢; — §,(¢), t; + 8,(¢;)] for each i; such a gauge
exists by Lemma 2H. Choose §: [0, 1] =10, o[ such that 8(¢) < min(e, §,(¢))
and [0,1]1 N [z — 8(8),t + 8(¢)] c G, for t € 4,.

(d) Let {([a;, b;], t,)); e~ be a McShane partition of [0, 1] subordinate to 8.
We seek to estimate ||v([0, 1]) — wll, where w = £, _ (b, — a)¢(2)).

Set I, ={i: i <n, t; € A,} for each k; of course all but finitely many of
the I, are empty. For i € I, set E;, = [a;, b;] N V,;*. We have

[a;,b,] < [t, = 8(t), t; + 8(1,)] € Gy,

SO

> r(la;, b;]\E) < 27%e,

iel,

and

Z #([ai: b;] \Ez)"‘l’(tz) " <2 %ke

iel,
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because ||p(2)|| < k for ¢t € A,. Consequently, if we write

wy = Y wE (1),

i<n

we shall have [lw — w,|l < T, cn2 ke = 2e.
For each i < n, let k(i) be such that ¢; € 4, ;). Then we have

|I¢(tt) - ¢k(i)(t,')" <e

for each i. So

Y /"'Eil|¢(ti) - ¢k(i)(ti)" < Y (b—a)e<s,

i<n isn
because {[a;, b;]); < is non-overlapping. Accordingly, writing

wy= ), REdri(t),

isn
we have [lw — w,ll < 3e.

Set H, = U{E;: i € I} for each k. Because E; C [t; — §,(¢,), t; + 8,(¢)]
for each i € I, we have

< 27k,

Y wE () — [H o

iel,

Consequently, writing
Wi = > f bi»
keN "Hy

we have [lw — wsll < 5e.
Next, for any k, H, C V}*, so we have

vH, - /H b
k

< equ’

by (b) above. So writing w, = L, .yvH, we have [w; —w,ll <& and
”W - W4” < 6e.



138 D.H. FREMLIN AND J. MENDOZA

If we set H, = U{la;, b;]: i € I}, then u(H; \ H,) < m,, so that |[vH} —
vH, || < 27 e, for each k. Accordingly |lw — ws|l < 8¢, where

ws= ¥ vHi=»( U Hi) =»( Ula,b]) = v(0.1]).

keN keN i<n
As ¢ is arbitrary, [¢ exists and is equal to v ([0, 1]).

Problem. In this theorem we are supposing that ¢(¢) = lim,, _,,, ¢,(¢) in
the norm topology for every t. Is it enough if ¢(z) is the weak limit of
(¢, (t)nen for every t?

2] CoroLLARY. Let X be a Banach space.
(a) Let {¢,)nen be a sequence of McShane integrable functions from [0, 1]
to X such that ¢(¢) = lim,, _,, ¢,(t) exists in X for every t € [0,1]. If

C={fé.: feXx* Ifl <1,neN)

is uniformly integrable, then ¢ is McShane integrable. In particular, if {||,|:
n € N} is dominated by an integrable function, then ¢ is McShane integrable.

(b)Let ¢:[0,1] = X be a Pettis integrable function and {E;);en a cover of
[0, 1] by measurable sets. Suppose that ¢ X x(E;) is McShane integrable for
each i. Then ¢ is McShane integrable.

Proof. (a) The point is that ¢,, ¢ satisfy the conditions of Theorem 2I.
To see this, take E € 3, and € > 0. Because C is uniformly integrable, there
is an m > 0 such that [,|g| < & whenever g € C and uH < 7; consequently
I f4¢,ll <& for all n € N whenever H € 3, and uH < 1. Now set

A, = {e:]8) = 80| s & Virj = n);

then (A,),cn is an increasing sequence with union [0, 1], so there is an n
such that u*4, > 1 — n. Let G € 3 be such that 4, € G and uG = u*4,,.
Then whenever i, j > n we have

<[ |ir) = &;(1)||u(dr)

f d’i - ¢j
ENG ENnG Z_ENG

<uG suj) [#:(8) — d,()| < e.

Also |lfg\g®;ll and |lfg\g¢;Il are both less than or equal to &, so
Il fed; — [e®;ll < 3e. This shows that { [z¢,;);en is a Cauchy sequence and
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therefore convergent, for every E € 3. Accordingly the conditions of 2I are
satisfied and ¢ is McShane integrable.

(b) We apply 2I with ¢,(t) = ¢(¢) for t € U, _,E;, 0 elsewhere.

Remark. Part (a) is a version of Vitali’s lemma. Part (b) is a generaliza-
tion of [7], Theorem 15.

2K. We now give a result connecting the McShane and Talagrand inte-
grals. Recall that if (S, 3, u) is a probability space, a set A of real-valued
functions is stable (in Talagrand’s terminology) if for every E € 3, with
wE >0, and all real numbers a < B, there are m,n > 1 such that
wr o Z(A, E,m,n,a, B) < (WE)"*", where throughout the rest of paper we
write Z(A, E, m, n, a, B) for

{(t,u):t € E™,ueE",Af € A,f(t(i)) <a Vi<m,f(u(j)) =BVj<n},

and u* , . is the ordinary product outer measure on S” X §”. Now if X is a
Banach space, a function ¢: S — X is properly measurable if

{he¢:h e X*, |lhll < 1}

is stable. Talagrand proved [14, Theorem 8] that ¢ is Talagrand integrable iff
it is properly measurable and the upper integral [||¢(¢)[|u(dt) is finite.

In particular, a Talagrand integrable function ¢: S — X must be scalarly
measurable for the completion of w [13, 6-1-1]. So if X is separable, ¢ must
be measurable for the completion of u ([4], I1.1.2 or [13], 3-1-3); now as
[l¢lldu < =, ¢ is Bochner integrable.

2L ProposITION. Let X be a Banach space such that the unit ball of X* is
w*-separable. If ¢: [0,1] > X is a McShane integrable function then it is
properly measurable.

Proof. Let w be the McShane integral of ¢. Set
A ={h¢: h € X*, ||l <1} c RO,

we have to show that A is stable. Note that because the unit ball of X* is
separable for the w*-topology on X*, and the map & — h¢: X* - RO js
continuous for the w*-topology on X* and the topology of pointwise conver-
gence on RI®! 4 has a countable dense subset A,.

Take a non-negligible measurable E € [0,1] and « <&’ <8 < B in R.
From m,n > 1set H,,, = Z(A,E,m,n, a, B), H,,, = Z(A,, E,m,n, o', B');
then H,, € H,,, and H,,, is measurable for the usual (completed) product
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measure on E™ X E". We seek an m with u,,,H,,,, < (wE)*™, writing u for
Lebesgue measure on [0,1] and w,, for Lebesgue measure on [0, 1]” X
[o, 1}™.

Set ¢ = (B’ — o' )uE, and choose a function 8: [a, b] —10, «[ such that

”W"'Z<h—aJMewsE

i<n

for every McShane partition {(a;, b,],¢,)); <» of [a, b] subordinate to 3.
Take k > 1 such that u*D > suE, where D = {s: s € E, 8(s) > 1/k}.
Let {[a;, b;1>i<m be an enumeration of the intervals of the form [j/k,
(j + 1)/k] which meet D in a set of positive measure; set G = U, ., la;, b,
so that G is open and uG > IuE.
Now suppose, if possible, that w,,, H},,, = (wE)*™. The set

{(t,u): t,ue [T(D n]a,.,b,.[)> CE™ X E™

i<m

has non-zero outer measure, so must meet H, ,; take (¢,u) in the intersec-
tion. Write

A(s) = {s":|s' —s| <min(8(s),1/k)}

for each s €[0,1]. Let {#(i)),, <;<» be a finite sequence in [a, b]\ G such
that [a, D]\ G € U, .., A(t(i)). Because [a, b] \ G is itself a finite union
of closed intervals, we can find a family {[a;, b;))n <i<» of non-overlapping
closed intervals such that [0,1]\ G = U, .;.la; b;] and [a;, b;] € At(i))
for each i. Now if we set u(i) =t(i) for m <i <n, we see that
{(a;, b;], t(i)))i < » and {(a;, b;], u(i))); < , are both McShane partitions of [a,
b] subordinate to 8. So we must have

T (b~ a)($(:(0)) - $(u(D))|

i<m

¥ (b — a)(6(1(i)) — d(u(i))) " < 2e.

i<n

Now (t,u) € H],,,, so there is an f € A such that f(¢+(i)) < o' and f(u(i))
> B’ for every i < m. f is of the form h¢ for some 4 of norm at most 1, so

Y (b; — a)(f(2(D)) — f(u(i)))]| < 2e.

i<m
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However, f(¢(i)) < o’ for each i and T, _,,b;, — a; = uG, so

Y (b, = a)f(t(i)) < duG;

i<m
similarly X, _ (b, — a,)f(u(i)) > B'nG, and we get

2¢e 2 (B — @)uG = (B' — &')zuE = 3e,
which is absurd.

2M CoroLLARY. Let X be a Banach space such that the unit ball of X* is
w*-separable. If ¢:[0,1] = X is a McShane integrable and [||¢(s)|lu(ds) < o,
then ¢ is Talagrand integrable.

3. Examples

In this section we give examples to show that the results above are more or
less complete in their own terms. In particular, a McShane integrable
function need not be Talagrand integrable (3A, 3E) and a Talagrand inte-
grable function need not be McShane integrable (3C).

3A Example. There is a bounded McShane integrable function ¢: [0, 1]
— [°(¢) which is not properly measurable and therefore not Talagrand
integrable.

Proof. Enumerate as (H,);<. the family of all Borel subsets of any
power [0, 1]” of the unit interval which have positive Lebesgue measure in the
appropriate dimension. Then we can choose inductively a disjoint family
(D, )¢ < of finite sets such that DF®> N H, + & for each ¢, taking k(£) such
that H, c [0,11*®. Define ¢: [0,1] — I(c) by saying that ¢(s) = e, when
s € D, 0 when s € [0,1]\ U ;. Dy, writing e, for the unit vector of /*(c)
with e ,(n) = 1if n = £, 0 otherwise.

To see that ¢ is McShane integrable, with integral 0, let ¢ > 0. For each
¢ < ¢ let G, 2 D; be a relatively open subset of [0, 1] of measure at most &;
let 8(s) be the distance from s to [0,1]1\ G, if s € D,, 1 if s €[0,1]\
UgDp If ([a;, b;), t,)): < 1 is any McShane partition of [0, 1] subordinate to
8, then

(Ee-arew)©|- T (5,-a)<ut,se

ieJ ieJ, t,-eDg
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for any J C I, £ < ¢, so that

X (b - ai)(b(ti)“ <e¢

ieJ

for every finite J CI. As ¢ is arbitrary, ¢ is McShane integrable, with
integral 0.

To see that ¢ is not properly measurable, set
A ={h¢:h e (I°(c))*, Inll <1},

and consider, for m,n > 1, the set H,,, = Z(A4,[0,1], m,n,0,1).
Suppose, if possible, that there are m,n > 1 such that u* H,, <1 In

this case there is a non-negligible measurable H c ([0, 1]" % [0,1]") \ H,,,
Set

H = {u: uE [0,1]",p,m{t: (t,u) € H} > 0};

then u,H' > 0, so there is a ¢ < ¢ such that H, C H', and a u € D N H'.
Now

H'[{u)] = (t: (t,u) < H)

is non-negligible, and D, is finite, so there is a t € H ~1[{u}] such that no
coordinate of ¢ belongs to D,. In this case, taking h.(x) = x(¢) for x € I"(c),
and f = h,¢ € A, we see that f(u(j)) = 1for each j < n, but that f(¢()) = 0
for each i < m; so that (¢,u) € H,,, and (¢,u) & H, which is absurd.

Thus ¢ is not properly measurable and therefore not Talagrand integrable.

Remark. Observe that ¢ is not measurable, and either for this reason, or
because it is not Talagrand integrable, cannot be Bochner integrable.

3B. We need the following long-known fact which we do not find in print.
LemMa. Let (S, 3, u) be a probability space and (F;);en a stochastically
independent sequence of measurable sets in S such that, for some k € N,
T en(uF)* < . Then the family A = {x(F)): i € N} of their characteristic

functions is stable.

Proof. Take E €3 with uE >0,and a<Bin R If a<0or g>1
then

u,Z(A,E,1,1,a,B) =0 < (RE).
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If0 <o < B < 1take I solarge that L, (uF,)* < (wE)* and uF, < pE for
every i > [;then L, (uF,)"™ < (wE)™ for every m > k. Set

J={i:i<l,u(ENF)>0},

and let m > k be so large that

> (M(E\E) )m <1

ieJ I.LE

Now

Y (#(E\F))" < (rE)"and ¥ (m(ENF))" <(nE)".
ieJ ieN\J

So
H= (EM\ igj(S\Fi)m) X (E’"\ ieLIJ\JFim)

has u,,,H > 0. But also H N Z(A, E,m,m, a, B) = &, s0

tomZ(A, E,m,m,a,B) < (LE)*",
as required.

3C Example. There is a bounded Talagrand integrable function ¢: [0, 1]
— [*(N) which is not McShane integrable.

Proof. (a) Let {F,)nen be a stochastically independent sequence of
measurable subsets of [0, 1] with uF,, = 1/(m + 1) for each m, where u is
Lebesgue measure on R. Then the set A = {x(F,,) m € N} of their charac-
teristic functions is stable, by 3B. So the closed absolutely convex hull of A4 in
R 1 js also stable [13, 11-2-1], and if we define ¢: [0, 1] — [°(N) by writing

1 ifteF,
0 otherwise,

a1y = |

¢ is properly measurable, therefore Talagrand integrable. Its Talagrand
integral is w, where w(n) = uF, = 1/(n + 1) for each n.
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(b) Suppose, if possible, that ¢ is McShane integrable; then its McShane
integral must be w. Let §: [0,1] — 10, «[ be a gauge such that

“W— Z(bi—ai)(ﬁ(ti)" <1

isn

for every McShane partition {((a;, b;], ¢,)): <, of [0, 1] subordinate to 8.
For each m € N, set

G,=1[0,1]1n U {lr—8(¢),t +8(¢)[: t €F,}.
For ¢t € [0, 1] set
A(t) =[0,1]1n N (G,:m eN,t €FE,};

then A(z) is a measurable set including [0,1] N 1t — &8(¢), t + 8(t)[. For
measurable sets H c [0, 1] set

H* = {t: p(HN A(t)) > %/.LH};

observe that H* is always measurable, because

[0,1]\H*= U { ﬂFi:IgNisfinite,p,(Hn N G,-) < %,u,H}.

iel iel
Let &% be the set of non-negligible measurable subsets H of [0, 1] such that
wH* > 0.
(c) If E [0, 1] is measurable and not negligible, there is an H € # such

that H C E. To see this, start by taking E' = E\ U{U: U C [0, 1] is relatively
open, w(U N E) = 0}; then uE' = wE > 0 and

w(E 0 A(t)) = w(E' Nt —8(t),t +8(t)[) >0
for every t € E’. Next, for each t € E’, take r(¢) € N such that
p(E'nA(1) 2 3u(E' 0 N(Gi:i<r(t),t €F});
set J(¢1) = {i: i <r(¢),t € F}. Let K be such that

w{t:t € E',J(t) =K} >0,
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andset H=E' N N,.xG;. If t € E', J(¢t) = K then
p(H N A(1)) = w(E' nA(2)) = 3uH;

so H* 2 {t: J(t) = K} has positive outer measure.
(d) We can therefore find, by exhaustion, a finite disjoint family H,, ..., H,
in &% such that u(U;_,H,) = 3. Now observe that for each i < r,

Y A{uF;: F,nH = @} <=,

so there is an n > 3 such that F, N H* # & for every i < r. Foreach i <r,
therefore, we can find a ¢, € F, N H*, in which case

w(H; N G,) = u(H; N A(ti)) > juH,
and accordingly uG, = 3)* > 1.

(e) Returning to the definition of G,, we see that there will be ¢,...,¢
F, such that

m €

w(10.110 U I = 808, 0,+ 5()1) > .

ism

It is now possible to find non-overlapping intervals [a,, by),...,la,,, b, ] C
[0, 1] such that ¢; — 8(¢,) < a; < b; < t; + 8(¢,) for each i and

U la:, b1 =10,11n U [t - 8(2,), 1, + 8(8)].

ism ism

(Induce on m.) Next, we can extend {((a;, b;], ¢,)); < m to @ McShane partition
{(a;, b;), ;)i <, of [0,1] subordinate to §, by covering each component of,
[0,1]1\ U, ,la;, b;] separately. Now consider

v=3 (b—a)eé(t).

i<p
By the choice of 8, lw — vl < 1, so

1
n+1

<

N =

1 1
lo(n)| < 7 +lw(n)| = 7 +
On the other hand,

v(n) = Y {b—azi<p,t;€F} 2 Zbi—ai>%’

ism

which is impossible.
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This contradiction shows that ¢ is not McShane integrable.

Remark. Because ¢ is Talagrand integrable, it must be Pettis integrable;
thus we see that the condition ‘¢ is measurable’ in Gordon’s theorem (1Ca)
is necessary.

3D. We conclude with notes on two well-known examples.
Example. There is a bounded McShane integrable, Talagrand integrable
function ¢: [0, 1] — L*([0, 1]) which is not Bochner integrable.

Proof. Let ¢(t) be the equivalence class in L* of the characteristic
function of the interval [0, ] for each . (See [2], §22, Example 1.) As
remarked in [13], exercise 3-3-2, ¢ is Talagrand integrable but not Bochner
integrable; as remarked in [7], p. 567, in a slightly different context, ¢ is
McShane integrable.

Remark. We observe indeed that ¢ above could be called ‘Riemann
integrable’, as its integrability can be witnessed by constant gauge functions.
It is easy to see that such a function must be both McShane integrable and
Talagrand integrable.

Because the unit ball of L*(0,1]) is w*-separable, there is an isometric
embedding of L0, 1] in I*(N) (indeed, L*([0, 1]) is isomorphic to I"(N)—see
[10], p. 111), so there is a bounded McShane integrable, Talagrand integrable
function from [0, 1] to /*(N) which is not Bochner integrable.

3E Example. There is a McShane integrable function ¢: [0,1] — I?(N)
which is not Talagrand integrable.

Proof. Let c,, be the nth unit vector of /2(N) and set ¢(¢) = 2"(n + D7 le,
for 277! < ¢t < 27" Then [|l¢|| = © so ¢ is not Talagrand integrable, but
by [7], Theorem 15, it is McShane integrable.
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