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Abstract

Nonparametric spectral density estimates find many uses in econometrics. For sta-

tionary random fields on a regular spatial lattice, we propose an autoregressive nonpara-

metric spectral density estimate that is guaranteed positive even when suitable edge-

effect correction is employed and is simple to compute using least squares. Our estimate

is based on truncating a true half-plane infinite autoregressive representation, while also

allowing the truncation length to diverge in all dimensions to avoid the potential bias due

to truncation at a fixed lag-length. Uniform consistency of the proposed estimate is es-

tablished, and new criteria for order selection are also suggested and studied in practical

settings. The asymptotic distribution of the estimate is shown to be zero-mean normal

and independent at fixed distinct frequencies, mirroring the behaviour for time series. A

small Monte Carlo experiment examines finite sample performance. Technically the key

to the results is the covariance structure of stationary random fields defined on regularly

spaced lattices. We show the covariance matrix to satisfy a generalization of the Toeplitz

property familiar from time series analysis.
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1 Introduction

The analysis of spatial data has seen a great deal of recent econometric work. In this

paper we are interested in the nonparametric estimation of the spectral density of a spatial

process, using an autoregressive technique that has several attractive features. These include

estimation based on least squares model fitting, easier handling of the edge effect and the

possibility of establishing a central limit theorem at distinct frequencies.

Several approaches to dealing with spatial data are available in the econometric litera-

ture. One strand builds on the spatial autoregressive (SAR) model of Cliff and Ord (1972),

assuming the existence of a known economic (not necessarily geographic) distance between

units, and crucial theoretical contributions here include Kelejian and Prucha (1999) and Lee

(2004). There is a very active research programme on SAR models, which are particularly

attractive as they entail no knowledge of locations. On the other hand many spatial data sets

are observed on Rd, d > 1, implying that the locations are known and the distances between

units is geographic, e.g. Sain and Cressie (2007) develop a Markov random field model for

multivariate spatial data and apply it to data in environmental economics. For such data

notions of dependence such as mixing and near epoch dependence have been developed, see

e.g. Jenish and Prucha (2009, 2012).

Assuming then that the locations of the data have a geographic interpretation, we follow

a large econometric literature (see e.g. Conley (1999), Conley and Molinari (2007), Bester

et al. (2011), Wang et al. (2013) and Bester et al. (2016)) in assuming that the distance

between spatial observations is such that the locations can be mapped to the regular integer

lattice Zd. Such data may also be found in environmental, agricultural, regional and urban

economics settings, and are likely to become more prevalent with the rapid advances in

remote sensing and GIS software capabilities, see also Section 1.2 for further discussion. The

structural models of local social interactions studied by Topa (2001) and Conley and Topa

(2007) are linked with certain processes defined on integer lattices in the interacting particle

systems literature. Lattice data arise also in the spatial econometrics literature. Robinson

(2008, 2011) considers tests of spatial correlation and asymptotic theory for nonparametric

regression with lattice data amongst a host of other settings while Roknossadati and Zarepour

(2010) provide theory for M -estimation in a class of unilateral models. Jenish (2016) also

considers a nonlinear autoregressive model on a regular lattice as a motivating example in her

analysis of a spatial semiparametric model. In their study of non-nested spatial correlation

tests Delgado and Robinson (2015) use a lattice setting in their Monte Carlo simulations.

We are concerned with nonparametric estimation of the spectral density of a zero-mean

stationary scalar random field xt, t = (t1, . . . , td)
′ with tj ∈ Z, j = 1, . . . , d. The spectral

density of a spatial process can be useful in many ways in economic applications, some of

which we describe below.

Studentization by nonparametric spectrum estimates in semiparametric estimation and

HAC estimation : In semiparametric estimation econometricians are frequently faced with es-

tablishing asymptotic normality of a sequence of random variables of the form N− 1
2
∑

t∈N zt,
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where zt has spectral density matrix F (∙) and N ⊆ Zd. Under a number of weak dependence

conditions it can be shown that

N− 1
2

∑

t∈N

zt
d

−→ N
(
0, (2π)d F (0)

)
. (1.1)

Thus construction of valid inference rules that make use of (1.1) require a consistent estimate

of F (0). The studentization of statistics based on (1.1) by a nonparametric spectrum esti-

mate is common practice in econometrics (its use in statistics dates back to Jowett (1955))

and underlies the particularly important computation of heteroskedasticity and autocorre-

lation robust (HAC) estimates of the covariance matrix of a spatial process. Consider the

spatial regression model

yt = x′
tβ + ηt, (1.2)

where ηt is a stationary spatial process, t ∈ N and the cardinality of N is N . Suppose that

we have obtained N
1
2 -consistent estimates of the finite-dimensional parameter β and wish

to obtain HAC standard errors. As in the time series case (cf. Newey and West (1987),

Andrews (1991)), a HAC estimate is essentially a smoothed estimate of the spectral density

matrix of a stationary process at zero frequency.

Various types of spatial HAC estimates have been proposed in the literature. Kelejian

and Prucha (2007) propose an estimate based on weights derived from economic distances

between units, implying that knowledge of locations is not needed. Their estimator is gen-

eralized by Kim and Sun (2011), while Vogelsang (2012) builds a fixed-b asymptotic theory

for spatial-dependence robust HAC estimates proposed by Driscoll and Kraay (1998). More

general theory that also applies to panel data models with fixed effects is available in Kim

and Sun (2013). On the other hand, Robinson and Thawornkaiwong (2012) study a HAC

formula based on geographical data, treating the points of observation as discretized loca-

tions on a rectangular grid, while Conley (1999) (possibly the first to suggest a spatial HAC

estimate) and Bester et al. (2016) assume, like this paper, that locations may be mapped to

Zd, a setting also employed by Kim and Sun (2011, 2013) to discuss some of their conditions

and conduct Monte Carlo simulations. An interesting aspect of spectrum estimation in the

context of HAC estimates is that the acronym emphasizes ‘heteroskedasticity’ as much as

‘autocorrelation’, but because the estimate is of the spectrum of a stationary process at zero

frequency only the autocorrelation is explicitly allowed for. To justify heteroskedasticity-

robustness, familiar limit theorems for non-identically distributed variates are invoked, see

e.g. Robinson (2005) for a discussion.

Spectral estimation for errors in efficient frequency domain weighted regression : In some

cases what is of interest is not the spectrum of some observed process. For instance, in the

context of efficient semiparametric estimation of time series regression models via frequency

domain weighted regression, interest centres on spectral estimates of the errors of the model,

see e.g. Hannan (1970), chapter 7. It is natural then that for efficient estimation of β in

(1.2), when the distribution of ηt is nonparametric, frequency domain weighted regression

3



be employed, and spectral estimates be based on the residuals.

Specification and goodness of fit testing : Nonparametric spectrum estimates are required

by Hidalgo (2009), who considers testing for correct parametric covariogram specification for

lattice processes. A similar need arises in Hidalgo and Seo (2014), who propose omnibus-type

specification tests. Hidalgo (2009) is equivalent to a test for whether the spectral density

function of a spatial process is of prescribed parametric form. The nonparametric estimate

of the spectrum via the technique given in this paper can be employed for this as well.

Frequency domain analysis of spatial processes : The natural analogy between lattice and

time series data suggests a more central role for frequency domain analysis. High frequency

spatial components may be interpreted as corresponding to phenomena (possibly noise phe-

nomena) that change rapidly over the space, while low frequency components that change

less frequently are more structural. For Tokyo land price data Matsuda and Yajima (2009)

argue that accurately estimating the spectrum over low frequencies is more desirable than

over high frequencies, interpreting the latter as noise and the former as the structural factors

of interest. In this context they specify that high frequency noise can include environmental

factors, air and noise pollution and sunshine.

1.1 Kernel versus autoregressive nonparametric spectral estimation

Nonparametric spectral estimates for spatial data have typically focused on tapered auto-

covariance or periodogram based techniques, see e.g. Yuan and Subba Rao (1993), Politis

and Romano (1996), Robinson (2007) and Vidal Sanz (2009). The difference between this

approach and an autoregressive one is analogous to estimating a nonparametric regression

function by kernels or series, with the former providing an estimate that is local in nature

and the latter approximating the function globally.

For lattice processes autoregressive estimation can be helpful when handling the edge-

effect. When d = 1 the loss of data at the end of the series while estimating autocovariances

has a negligible asymptotic effect, but this edge-effect, or end-effect, matters when d = 2 and

worsens with increasing d; see Section 2 for a more detailed discussion. Guyon (1982) sug-

gested a version of the covariance estimates which eliminates the bias (asymptotically), but

this was criticised by Dahlhaus and Künsch (1987) as it could yield possible negative kernel

based spectral density estimates. The latter suggested tapering the covariance estimates,

but introduced ambiguity arising from the choice of an appropriate taper. Robinson and

Vidal Sanz (2006) propose an alternative, but again there is an element of ambiguity due to

the practitioner having to choose a function. On the other hand, autoregressive spectral es-

timation delivers a guaranteed non-negative estimate even when using edge-effect correction

and allows us to establish what is, to the best of our knowledge, the first central limit theo-

rem for a nonparametric spatial spectral estimate. Bester et al. (2016)’s fixed-b asymptotic

theory captures the shape of the sampling region, implying edge-effects are reflected in the

reference distribution that generates critical values. Their results may be used to obtain a

nonstandard limit for the spectral estimator that depends on edge-effects, in contrast to our
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results where the limit is normal.

An advantage of the kernel based estimator over our autoregressive approach is that it

can be applied directly to the data given the availability of a distance measure between

observations. This avoids the potentially cumbersome, albeit feasible, mapping to a lattice

that we assume.

1.2 Regular and irregular lattices

Frequency domain techniques are also employed with data on irregular spatial lattices (see

Matsuda and Yajima (2009), Bandyopadhyay et al. (2015)), however irregular spacing will

disturb the Toeplitz property of the covariance matrix that we exploit for our results. But

another, more practical, reason suggests itself for focussing on regular lattices. Many eco-

nomic data sets can be gridded into cells and the analysis of properties carried out as if

the data is observed on a regular lattice of size determined by the number of grid cells,

thereby avoiding many of the problems with irregular data summarized in Bandyopadhyay

et al. (2015). Our empirical example of presidential election voter turnout data across US

counties, presented in the supplementary material, is in this spirit. Chen and Nordhaus

(2011) use regular gridded measures of nighttime lights visible from space as a proxy for

economic statistics in countries where such data may not be reliably collected. Statistics

Finland collects data by map grid for the whole of Finland, from 250m×250m to 5km×5km

cells, while the Geographically based Economic data project seeks to expand gridding glob-

ally, see http://www.stat.fi/tup/ruututietokanta/index en.html, http://gecon.yale.edu/ and

Nordhaus (2008). Gridding of irregularly spaced data is commonplace in statistics, see e.g.

Fuentes (2007) and references therein.

1.3 Scope and structure of this paper

For the case of regularly-spaced time series (d = 1), Berk (1974) assumes an infinite, one-

sided autoregressive representation for xt, driven by independent innovations, and provides

results on the consistency and asymptotic normality of spectral density estimates with the

order of the autoregression allowed to diverge with sample size. We seek to extend this

approach to spatial processes. There is some related work in the signal processing litera-

ture, see e.g. Tjøstheim (1981), McClellan (1982) and Wester et al. (1990), but under the

assumption that the true model is finite, which is a parametric approach that may lead to

bias.

The results in this paper overcome two technical hurdles that arise in the transition from

d = 1 to d > 1: the structure of the covariance matrix of a stationary spatial process and

the number of unique covariances that occur in such a matrix. For the benefit of readers

primarily interested in applying the techniques, we treat these hurdles in an online appendix.

We also mention here that the asymptotic normality result established by us serves to stress

that the difference between the time series and spatial cases is not merely that of extension.

The sufficient condition restricting the growth rate of the AR coefficients when d = 1 cannot
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be regarded as simply a particular case of our theorem for d > 1, as we discuss in detail in

Section 4.

The paper is structured as follows: Section 2 introduces the setting employed throughout

the paper and a theorem on consistency of the truncated AR predictors. Section 3 introduces

the spectral density estimate and establishes its uniform consistency. Section 4 records

results on the asymptotic distribution of the truncated AR predictors as well as the spectral

estimate. Section 5 contains a small Monte Carlo study of finite sample performance, also

comparing our estimates with periodogram based ones as well as applying our method to

data generated by a Cliff and Ord (1973)-type spatial autoregressive (SAR) model, which

entails nonstationarity. We also suggest some model selection crieria to choose the truncation

point, without rigorous proof of their asymptotic properties, and study their finite-sample

performance. Proofs of all results presented in the paper are contained in Appendix A while

Appendix B presents a set of lemmas with proofs mostly included in the online appendix.

The online appendix also contains an empirical example, bounds for absolute moments of

partial sums of rather general lattice processes, a generalisation of the Toeplitz property

familiar from the theory of stationary time series and an upper bound on the number of

unique autocovariances that occur in the covariance matrix of finite, stationary and unilateral

processes.

2 Consistency of truncated AR predictors

Whittle (1954) observed that the estimation of the parameters of multilateral autoregressive

processes by least squares leads to inconsistency. This is due to the presence in the likelihood

function of a Jacobian term which depends on the parameters. A representation on a ‘half-

plane’ permits least squares estimation, however, while in general Whittle likelihood based

estimates lack a closed form. He showed, quite generally, that multilateral spatial processes

have a (possibly infinite) unilateral representation. Helson and Lowdenslager (1958, 1961)

showed that even more generally all stationary, purely non-deterministic spatial processes

have a half-plane (i.e. unilateral), infinite, moving-average representation. Whittle (1954)

points out that the recovery of the parameters of the original multilateral scheme from the

unilateral representation is not as straightforward as with, say, a bilateral d = 1 model,

indeed even impossible. On the other hand, the unilateral representation is extremely useful

if our interest is in prediction or spectral density estimation, because one need not attempt

to recover any underlying parameters of a multilateral model to study the properties of

interest. Instead a straightforward least squares estimate can deliver a spectrum estimate

for the process, regardless of its possibly multilateral underlying structure. Thus the half-

plane representation places no serious limitation on the dependence structure of the process.

As in Tjøstheim (1983) we define the half-plane as all t in the set

S∞
1+ = {t1 > 0; t1 = 0, t2 > 0; ∙ ∙ ∙ ; t1 = ∙ ∙ ∙ = td−1 = 0, td > 0} ∩ Zd. (2.1)
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Figure 2.1: Half-plane illustration for d = 2. In the left panel solid red dots form S∞
1+ while in the right panel

solid blue dots illustrate the quarter-plane. The large black solid dot marks the origin.

The special case with ti ≥ 0, i = 1 . . . , d, is referred to as a quarter-plane. When d = 2,

Figure 2.1 graphically illustrates the half-plane and quarter-plane. Write z = (z1, . . . , zd)
′

with complex-valued elements and s = (s1, . . . , sd)
′ with integer-valued elements, and zs =

∏d
j=1 z

sj

j . For real numbers bs, s ∈ S∞
1+ ∪ 0, define the rational function (see Rosenblatt

(1985), p. 228) B(z) =
∑

s∈S∞
1+∪0 bsz

s, with 0 the d-dimensional zero vector. Then we

assume

Assumption A. There exist unknown scalars bs and independent random variables εt, t ∈ Zd,

with Eεt = 0 and Eε2
t = σ2 such that

xt =
∑

s∈S∞
1+∪0

bsεt−s,
∑

s∈S∞
1+∪0

|bs| < ∞, b0 6= 0, (2.2)

and B(z) is bounded away from zero for |zi| = 1, i = 1, . . . , d.

Martingale assumptions can replace the independence imposition on εt, but we choose to

avoid these as they rely on notions of ordering that can be arbitrary. Identity of distribution

is not assumed at this stage. Writing Π = (−π, π]d, denote by f(λ) the spectral density

of xt, λ ∈ Π. If
∫
Π log f(λ)dλ > −∞, then, e.g., Helson and Lowdenslager (1958) and

Korezlioglu and Loubaton (1986) prove that Assumption A will hold with white noise εt and
∑

s∈S∞
1+∪0 |bs|

2 < ∞, extending the Wold decomposition of time series analysis. We require
∑

s∈S∞
1+∪0 |bs| < ∞ to rule out potential long-memory, which entails unbounded f(λ). Thus

Assumption A does rule out stationary spatial processes with long memory and certainly

doesn’t cover the entire class of stationary processes, while nonstationary processes are not

theoretically considered in the paper.

Under Assumption A,

f(λ) =
σ2

(2π)d

∣
∣
∣
∣
∣
∣

∑

s∈S∞
1+∪0

bse
iλ′s

∣
∣
∣
∣
∣
∣

2

, λ ∈ Π. (2.3)

∣
∣
∣
∑

s∈S∞
1+∪0 bse

iλ′s
∣
∣
∣ being bounded and bounded away from zero guarantees the invertibility

of xt i.e. the existence of ds, s ∈ S∞
1+, such that

xt =
∑

s∈S∞
1+

dsxt−s + εt, t ∈ Zd,
∑

s∈S∞
1+

|ds| < ∞. (2.4)

7



The above is the extension of a time series AR(∞) specification to the spatial case. For

d = 2, (2.4) becomes

xt1,t2 =
∑

s1>0,s2∈Z

ds1,s2xt1−s1,t2−s2 +
∑

s2>0

d0,s2xt1,t2−s2 + εt1,t2 , (t1, t2)
′ ∈ Z2,

and, for example, a parametric analogue of a time series AR(1) model would be

xt1,t2 = d1,−1xt1−1,t2+1 + d1,0xt1−1,t2 + d1,1xt1−1,t2−1 + d0,1xt1,t2−1 + εt1,t2 , (t1, t2)
′ ∈ Z2.

By Assumption A and (2.3) there exist real numbers m,M satisfying 0 < m ≤ M < ∞,

such that

m ≤ f(λ) ≤ M. (2.5)

We denote by C a positive, arbitrarily large but finite generic constant, independent of N .

Assumption B. For some v ∈ (1, 2], E |εt|
2v ≤ C for all t ∈ Zd.

Expressing the moment condition in terms of v delivers conditions restricting the rate of

growth of the truncation point relative to sample size that become more stringent as v →

1. We observe xt on the rectangular lattice L =
{
t ∈ Zd : −nLi ≤ ti ≤ nUi , i = 1, . . . , d

}
,

nUi , nLi ≥ 0, i = 1, . . . , d, with nL1 = 0 without loss of generality in view of the half plane

representation. Define ni = nLi + nUi + 1, i = 1, . . . , d, and N =
∏d

i=1 ni. Note that

we observe the data at locations on a regular grid in d dimensions, and consistency in our

setting is only possible if sample size increases in all directions. We require a mild degree of

regularity in this increase across dimensions, for which we introduce

Assumption C. For each nLi , i = 2, . . . , d, and nUi , i = 2, . . . , d, and sufficiently large N ,

there exists χ > 0 and c1 > 0 such that

nU1(N) ≥ c1N
χ, ni(N) ≥ c1N

χ. (2.6)

Robinson and Vidal Sanz (2006) point out that χ ≤ 1/d always. We will first obtain a least

squares predictor for xt based on a truncated autoregression of order p = (pL1 , pU1 ; . . . ; pLd
, pUd

),

for non-negative integers pLi , pUi , i = 1, . . . , d, where in view of the half-plane representation

we can a priori set, say, pL1 = 0. Now define

S [−pL, pU ] = {t ∈ L : −pLi ≤ ti ≤ pUi , i = 1, . . . , d} ∩ S∞
1+, (2.7)

which is the truncated set of dependence ‘lags’. For d = 2, (2.7) becomes the set of all

t = (t1, t2)
′ ∈ L such that 0 ≤ t1 ≤ pU1 and −pL2 ≤ t2 ≤ pU2 . Denote pi = pLi + pUi ,

i = 1, . . . , d and let h(p) denote the total number of autoregressive coefficients to be estimated

in the truncated predictor. Then

h(p) = pUd
+

d−1∑

j=1

d∏

i=j+1

(pi + 1) pUj . (2.8)
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Our asymptotic theory consists of finding divergent (as N → ∞) functions pLi = pLi(N), pUi =

pUi(N), i = 1, . . . , d, such that we can consistently approximate the infinite representation

with truncated predictors. Thus ni(N) ≥ c1N
χ in Assumption C is taken to hold as both

nLi and nUi diverge with N . We emphasize now the dependence of the orders on N , but for

notational convenience suppress explicit reference to this.

The practitioner may prefer to choose only one truncation length for each dimension,

possibly in the interests of simplicity but more generally if similar regularity in f(λ) is

anticipated across dimensions. In this case pLi = pUi = pU1 = p†, say, i = 2, . . . , d, and (2.8)

indicates that h
(
p†
)

=
((

2p† + 1
)d

− 1
)

/2. A more flexible and data-driven approach to

modelling can be to choose a divergent sequence p̄ (dependent on N , and diverging slower

than N) and take pLi = pUi = pU1 to be the sequence [(ni/N) p̄], i = 2, . . . , d, where [x]

denotes the integer part of x.

As xt is stationary, we define the autocovariances γ(k) = Extxt+k with t, k ∈ Zd. Write

ns =
∏d

i=1 (ni − si) for non-negative integers si, i = 1, . . . , d, and introduce the covariance

estimates γ̂(k) = n−1
p

∑′′
t(p,n)xtxt+k, k ∈ S [−pL, pU ] , where ni > pi ≥ 0 for i = 1, . . . , d

and the sum
∑′′

t(p,n) runs over t satisfying pi − nLi < ti ≤ ni − nLi , indicating that there

are np summands. The estimates γ̂(k) incorporate the device for edge-effect correction

suggested by Guyon (1982). Consider instead the estimates γ̃(k) = N−1
∑′′

t(|k|,n)xtxt+k,

where |k| = (|k1| , . . . , |kd|)
′. Then for fixed k, as the ni → ∞, the bias of γ̃(k) for γ(k) is

of order
∑d

i=1 n−1
i . The inequality between arithmetic and geometric means indicates that

∑d
i=1 n−1

i ≥ dN− 1
d with equality implying that the ni all increase at the same, N

1
d , rate.

This inequality implies that the bias of γ̃(k) is of order no less than N− 1
d . It is clear that

this worsens with increasing d, but for d = 1 gives the usual ‘parametric’ rate of bias. Using

this correction also removes the edge effect when using a kernel based spectral estimate,

however this may lead to negative estimates (see Dahlhaus and Künsch (1987)). A referee

has pointed out that such negative values may be replaced by a small positive number and

thus this issue may not be very serious in practice.

We assume that xt has zero mean, but this may be relaxed to Ext = α, t ∈ Zd. In this

case lag k covariance estimates can be γ∗(k) = n−1
p

∑′′
t(p,n) (xt − x̄) (xt+k − x̄) , where x̄ =

N−1
∑

t∈L xt, and the latter is readily shown to be N
1
2 -consistent for α. This is equivalent to

replacing xt and xt+k by the residuals from a regression on a constant, and one may instead

wish to use residuals from a regression that includes explanatory variables zt, implying that

Ext = z′tβ for some parameter vector β.

For ni and pi satisfying ni > pi, i = 1, . . . , d, define a least squares predictor of order

h(p) by d̂h(p) = arg minas,s∈S[−pL,pU ] n
−1
p

∑′′
t(p,n)

(
xt −

∑
s∈S[−pL,pU ] asxt−s

)2
. Then

d̂h(p) = Ψ̂−1
h(p)ψ̂h(p), (2.9)

and we denote the elements of d̂h(p) by d̂s,h(p), s ∈ S [−pL, pU ]. Here, we denote by ψh(p)

(Ψh(p)) the h(p) × 1 vector (h(p) × h(p) matrix) with typical element γ(k) (γ(k − j)), j, k ∈

S [−pL, pU ], and by ψ̂h(p) (Ψ̂h(p)) the h(p) × 1 vector (h(p) × h(p) matrix) constructed in
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exactly the same way but using γ̂(k) in place of γ(k). Note that our estimate (2.9) is the

least squares estimate and not the Yule-Walker estimate. For spectral estimation, using

the former over the latter has support from the results of Lysne and Tjøstheim (1987), for

example, who show that the use of Yule-Walker estimates can lead to loss of peaks and

strong bias.

A notable difference from the time series case (d = 1) is in the dimension of the AR

coefficient space. When d = 1, this equals the number of unique covariances in Ψh(p), of

which there are h(p). On the other hand, in the spatial case when d ≥ 2, these number at

most C(p) ≥ h(p). We show this in supplementary appendix S.3.2, which indicates that

C(p) = 1 +
d−1∑

l=1

2d−l−1
∑

#(l=0)

d∏

k=1
�0l

d

pk + 2d−1
d∏

k=1

pk, (2.10)

where
∑

#(l=0) sums over all the possible ways in which (p1, p2, . . . , pd)
′ can have l en-

tries equal to 0 and the product
∏d

k=1,�0l
d

multiplies over k such that the l zero entries of

(p1, p2, . . . , pd)
′ are excluded.

Throughout the sequel we assume that h(p)−1 + C(p)−1 → 0, as N → ∞ and write dh(p)

for the h(p) × 1 vector with elements ds, s ∈ S [−pL, pU ]. By a predictor of order l < h(p),

we will mean d̂l with the l lags corresponding to the first l subscripts in the first row of

Ψh(p) as ordered in supplementary appendix S.3. For a generic rectangular matrix B, we will

denote by ‖B‖R and ‖B‖ the largest absolute row-sum of B and square root of the largest

eigenvalue of B′B respectively. These are the maximum absolute row-sum and spectral

norms, respectively. Our first theorem is a consistency result for the estimated predictor

coefficients.

Theorem 2.1. Let Assumptions A, B and C hold, the sequence p be chosen as a function

of N such that
C(p)

N
v−1

v

−→ 0, as N → ∞, (2.11)

and ∑

t∈S∞
1+\S[−pL,pU ]

|dt| −→ 0 as N → ∞. (2.12)

Then
∥
∥
∥d̂h(p) − dh(p)

∥
∥
∥

p
−→ 0, as N → ∞.

Condition (2.12) says that the dependence from ‘distant’ lags must decline sufficiently fast.

The result for d > 1 differs from the case d = 1 in one important sense. In the latter case,

condition (2.11) applies to the dimension of the AR coefficient space because this dimension

is equal to the number of unique covariances in Ψh(p). These unique covariances number

h(p) when d = 1, but at most C(p) ≥ h(p) when d > 1. Define the error variance estimate

based on least squares residuals as σ̂2
h(p) = n−1

p

∑′′
t(p,n)

(
xt −

∑
s∈S[−pL,pU ] d̂s,h(p)xt−s

)2
.

Theorem 2.2. Under the conditions of Theorem 2.1, σ̂2
h(p)

p
−→ σ2, as N → ∞.
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3 Uniform consistency of AR spectral density estimates

We now introduce spectral density estimates. For λ ∈ Π, the spectral density of xt under

(2.4) is given by f(λ) = σ2(2π)−d
∣
∣
∣1 −

∑
s∈S∞

1+
dse

is′λ
∣
∣
∣
−2

, and we estimate this using

f̂h(p)(λ) =
σ̂2
h(p)

(2π)d
∣
∣
∣1 −

∑
s∈S[−pL,pU ] d̂s,h(p)eis′λ

∣
∣
∣
2 .

Berk (1974) established pointwise consistency of such an estimate when d = 1, and Bhansali

(1980) proved that the convergence is uniform under the same conditions. We present a

theorem for uniform consistency below.

Theorem 3.1. Let Assumptions A, B and C hold, the sequence p be chosen as a function

of N such that
C(p)h(p)

1
2

N
v−1

v

→ 0, as N → ∞, (3.1)

and

h(p)
1
2

∑

t∈S∞
1+\S[−pL,pU ]

|dt| → 0, as N → ∞. (3.2)

Then supλ∈Π

∣
∣
∣f̂h(p)(λ) − f(λ)

∣
∣
∣

p
−→ 0, as N → ∞.

The conditions imposed for this theorem were stronger than those for results in Section 2

in two ways. First, the condition restricting the rate of growth of the AR coefficient space

relative to sample size is stronger than the one imposed for Theorems 2.1 and 2.2. For

example, if v = 2 then (2.11) required C(p)/N1/2 → 0 whereas (3.1) in Theorem 3.1 requires

C(p)h(p)1/2/N1/2 → 0. Note that for d = 1 the latter reduces to the condition established

by Berk (1974), which is, in fact, a particular case of the condition in Robinson (1979). The

second aspect of difference is the requirement in (3.2) that the dependence on ‘distant’ lags

decline sufficiently fast to overcome norming by h(p)
1
2 .

4 Asymptotic normality

In this section we prove asymptotic normality of the AR spectral estimate f̂h(p)(λ). We start

by establishing the asymptotic distribution of a linear combination of the autoregression

coefficient estimates d̂s.

Theorem 4.1. Let d > 1, α(p) be as in Lemma B.10, Assumptions A, B and C hold, but

strengthened to

v = 2 and εt identically distributed for all t ∈ L. (4.1)

Choose the sequence p as a function of N such that (2.11) holds and

h(p)

N
χ
4

+ N
1
2

∑

s∈S∞
1+\S[−pL,pU ]

|ds| −→ 0, as N → ∞. (4.2)

11



Then
(
N

1
2 /h(p)

1
2

)
α(p)′

(
d̂h(p) − dh(p)

)
d

−→ N
(
0, σ2μ

)
, as N → ∞, where μ is defined in

(B.11).

Condition (4.2) presents an important difference from the case when d = 1, where the first

term on the LHS of the limit is replaced by the much sharper h(p)/N
1
2 . On the other hand,

(4.2) can never be this sharp as χ = 1 at most when d = 1, thus reflecting the fundamental

difference between time series and lattice cases noted by Robinson and Vidal Sanz (2006),

and imposing a considerable tightening on the rate of growth of h(p) that strengthens with

increasing d. Thus, the explicit imposition of d > 1 in the statement of Theorem 4.1 is

an important feature as we cannot simply regard the case d = 1 as a special case. It is

straightforward to extend the argument to allow for the asymptotic distribution of finitely

many linear combinations by replacing α(p) with an ` × h(p) matrix with full row rank, `

fixed, but we consider ` = 1 for simplicity.

We now proceed to the asymptotic normality result for f̂h(p)(λ), which relies on a

lemma establishing asymptotic normality of certain linear combinations of the d̂s,h(p). We

will write π = (π, . . . , π)′. Define Ĉh(p)(λ) = 1 +
∑

s∈S[−pL,pU ] d̂s,h(p) cos (s′λ) , C(λ) =

1 +
∑

s∈S∞
1+

ds cos (s′λ) , Ŝh(p)(λ) =
∑

s∈S[−pL,pU ] d̂s,h(p) sin (s′λ) , S(λ) =
∑

s∈S∞
1+

ds sin (s′λ) ,

the 2(q + 1) × 1 vector th(p) to have elements

(
Ĉh(p)(0) − C(0)

)
,
(
Ĉh(p)(λ1) − C(λ1)

)
, . . . ,

(
Ĉh(p)(λq) − C(λq)

)
,

(
Ĉh(p)(π) − C(π)

)
,
(
Ŝh(p)(λ1) − S(λ1)

)
, . . . ,

(
Ŝh(p)(λq) − S(λq)

)
, (4.3)

and the 2(q + 1) × 2(q + 1) matrix

Γ =
(
σ2/ (2π)d

)
diag [1/f(0), 1/2f (λ1) , . . . , 1/2f (λq) , 1/f(π),

1/2f (λ1) , . . . , 1/2f (λq)] . (4.4)

Lemma 4.1. Under the conditions of Theorem 4.1, (N/h(p))
1
2 th(p)

d
−→ N(0, Γ), as N →

∞.

Lemma 4.1 is analogous to results in the time series literature, cf. Parzen (1969), Berk

(1974). Now define the (q + 2) × 1 vector sh(p) to have elements

f̂h(p)(0) − f(0), f̂h(p)(λ1) − f(λ1), . . . , f̂h(p)(λq) − f(λq), f̂h(p)(π) − f(π), (4.5)

and the (q + 2) × (q + 2) matrix

Ω = 2 diag
(
2f2(0), f2 (λ1) , . . . , f 2 (λq) , 2f2(π)

)
. (4.6)

Theorem 4.2. Let the conditions of Theorem 4.1 hold with (2.11) replaced by (3.1). Then

(N/h(p))
1
2 sh(p)

d
−→ N(0, Ω), as N → ∞.

The asymptotic distribution of the spectral density estimates at distinct frequencies mirrors

12



d = 2 d = 3
τ 0.05 0.075 0.10 τ 0.0075 0.015 0.03

n∗ p MISE MISE MISE n∗ p MISE MISE MISE

5 1 0.1819 0.3873 0.7297 3 1 0.2878 0.9122 0.8654
7 1 0.1217 0.2923 0.5764 4 1 0.1469 0.2439 0.3832
9 1 0.1132 0.2706 0.5301 5 1 0.1330 0.2329 0.3818
9 2 0.0478 0.0691 0.1166 6 1 0.1391 0.2407 0.3933

11 1 0.1092 0.2717 0.5064 7 1 0.1374 0.2405 0.3835
11 2 0.0287 0.0534 0.1052 8 1 0.1364 0.2387 0.3852
11 3 0.0682 0.0890 0.1056 8 2 0.1381 0.2530 0.5170

Table 5.1: Monte Carlo MISE of f̂h(p)(∙).

τ 0.05 0.075 0.10

n∗ m∗ MISE MISE MISE

5 1 0.2610 0.3896 0.4956
7 1 0.2323 0.3528 0.4682
7 2 0.2464 0.3750 0.5262
9 1 0.2121 0.3405 0.5205
9 2 0.2305 0.3757 0.5110
9 3 0.2296 0.3716 0.4955

11 1 0.2257 0.3495 0.4734
11 2 0.2221 0.3719 0.4861
11 3 0.2288 0.3712 0.4957
11 4 0.2373 0.3788 0.5271

Table 5.2: Monte Carlo MISE of f̂T (∙).

that in the time series case (cf. Anderson (1971), ch. 9, Berk (1974)), albeit under the

stronger condition (4.2) and different condition (3.1).

5 Monte Carlo simulations

We examined finite-sample behaviour in two sets of Monte Carlo simulations, one with sta-

tionary and regularly-spaced data and the second with nonstationary and possibly irregularly-

spaced data.

5.1 Stationary and regularly-spaced data

As in Robinson and Vidal Sanz (2006) and Robinson (2007) we generated xt using

xt = σεt + στ
1∑

s1=−1

∙ ∙ ∙
1∑

sd=−1
s 6=0

εt−s, (5.1)
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d = 2
τ 0.05 0.075 0.10

n∗ p Bias Std. Dev. Bias Std. Dev. Bias Std. Dev.

5 1 0.0238 0.0665 0.0681 0.3063 0.1496 0.4834
7 1 0.0121 0.0312 0.0367 0.0661 0.0876 0.1523
9 1 0.0112 0.0228 0.0321 0.0513 0.0739 0.1024
9 2 0.0090 0.0830 0.0014 0.0551 −0.0028 0.0495

11 1 0.0105 0.0200 0.0317 0.0434 0.0678 0.0838
11 2 0.0023 0.0268 0.0002 0.0317 −0.0063 0.0383
11 3 0.0212 0.1978 0.0263 0.1191 0.0319 0.1165

d = 3
τ 0.0075 0.015 0.03

n∗ p Bias Std. Dev. Bias Std. Dev. Bias Std. Dev.

3 1 0.0064 0.1164 0.0023 0.0161 0.0728 0.8927
4 1 −0.0001 0.0021 0.0003 0.0032 0.0041 0.0094
5 1 −0.0002 0.0013 0.0000 0.0019 0.0029 0.0058
6 1 −0.0004 0.0010 −0.0002 0.0014 0.0028 0.0041
7 1 −0.0003 0.0008 −0.0002 0.0010 0.0024 0.0037
8 1 −0.0003 0.0007 −0.0002 0.0008 0.0022 0.0033
8 2 0.0003 0.0020 0.0027 0.0049 0.0207 0.0314

Table 5.3: Monte Carlo bias and standard deviation of f̂h(p)(0).

for d = 2, 3, similar to a model considered in Haining (1978). Then

f(λ) =
σ2

2πd
(1 + τνd (λ)) , (5.2)

with νd (λ) =
∏d

j=1 (1 + 2 cos λj)−1. Robinson and Vidal Sanz (2006) show that a sufficient

condition for invertibility of (5.1) is

|τ | <
(
3d − 1

)−1
. (5.3)

We took L = {t : −n∗ ≤ ti ≤ n∗, i = 1, . . . , d}, implying N = (2n∗ + 1)d, and generated

NID(0,1) εt (so σ2 = 1) on L in each of the 500 replications. We experimented with more

values of τ and n∗ than Robinson (2007), using the following specifications:

d = 2 : τ = 0.05, 0.075, 0.10; n∗ = 5, 7, 9, 11;

d = 3 : τ = 0.0075, 0.015, 0.03; n∗ = 3, 4, 5, 6, 7, 8.

We maintained pLi = pUi = pU1 = p, i = 2, . . . , d, and for d = 2 took p = 1 for n∗ = 5, 7;

p = 1, 2, for n∗ = 9 and p = 1, 2, 3, for n∗ = 11, while for d = 3 we took p = 1 for

14



τ 0.05 0.075 0.10

n∗ m∗ Bias Std. Dev. Bias Std. Dev. Bias Std. Dev.

5 1 −0.0141 0.0019 −0.0226 0.0029 −0.0237 0.0064
7 1 −0.0095 0.0023 −0.0138 0.0037 −0.0236 0.0057
7 2 −0.0125 0.0013 −0.0214 0.0022 −0.0307 0.0031
9 1 −0.0090 0.0028 −0.0205 0.0029 −0.0248 0.0052
9 2 −0.0103 0.0016 −0.0186 0.0019 −0.0316 0.0029
9 3 −0.0121 0.0010 −0.0199 0.0018 −0.0278 0.0025

11 1 −0.0102 0.0024 −0.0159 0.0031 −0.0258 0.0053
11 2 −0.0112 0.0014 −0.0187 0.0021 −0.0271 0.0030
11 3 −0.0110 0.0010 −0.0201 0.0016 −0.0283 0.0029
11 4 −0.0124 0.0008 −0.0206 0.0012 −0.0307 0.0021

Table 5.4: Monte Carlo bias and standard deviation of f̂T (0).

τ 0.05 0.075 0.10

p F̂PE F̃PE FPE F̂PE F̃PE FPE F̂PE F̃PE FPE

1 0.9751 0.9900 0.9825 0.9660 0.9808 0.9734 0.9386 0.9529 0.9458
2 0.9702 1.0115 0.9906 0.9561 0.9967 0.9762 0.9220 0.9612 0.9414
3 0.9618 1.0456 1.0028 0.9488 1.0315 0.9892 0.9115 0.9909 0.9503
4 0.9489 1.0933 1.0183 0.9343 1.0765 1.0026 0.8989 1.0357 0.9646

Table 5.5: Order selection using FPE, d = 2 and n∗ = 11.

n∗ = 3, 4, 5, 6, 7; p = 1, 2, for n∗ = 8. The choices of τ satisfy (5.3).

We also compare our estimates with those obtained using a tapered average periodogram

estimate, the aim of tapering being to mitigate the edge effect, cf. Dahlhaus and Künsch

(1987). In particular, let hN (t) = 2−d
∏d

i=1 h (ti/ni), where h(∙) is a function taking values

in [0, 1] and define the tapered periodogram of xt by

IT
x (λ) =

(
∑

t∈L

h2
N (t)

)−1 ∣∣
∣
∣
∣

∑

t∈L

hN (t)xte
−it′λ

∣
∣
∣
∣
∣

2

, λ ∈ Π. (5.4)

Like Hidalgo and Seo (2014), we opt for the cosine bell taper, viz. h(z) = 1− cos(2πz). The

estimator we use is one commonly used in time series analysis, see e.g. Brillinger (1975),

p.132, subsequently also studied in the spatial context by e.g. Robinson (2007), and (with

some abuse of notation in the sum index) is given by

f̂T (λ) = (2π)−d

[(

2
d∏

i=1

mi

)

+ 1

]−1 m∑

j=−m

IT
x

(
λ + λF

j

)
, (5.5)

where m = (m1, . . . ,md)
′, the mi are non-negative integer sequences satisfying mi+mi/ni →
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Figure 5.1: Spectral estimates for d = 2, n∗ = 11, τ = 0.05. (a) True spectrum (b) AR estimate with p = 1
(c) AR estimate with p = 2 (d) AR estimate with p = 3

0, i = 1, . . . , d, and λF
k =

(
λF

k1
, . . . , λF

kd

)′
is the k-th Fourier frequency, i.e. λF

ki
= 2πki/ni,

with k1 = 0, . . . , n1, and ki = 0,±1, . . . ,±ni, i = 2, . . . , d. We will report results for d = 2

and take m1 = m2 = m∗ = 1, 2, 3, 4, with higher values of m∗ for bigger n∗.

Π is discretized with gaps of 0.10 in each dimension and we call this grid G. In Tables

5.1 and 5.2 we report Monte Carlo mean integrated squared error (MISE) for f̂h(p)(λ) and

f̂T (λ) respectively. This is defined as the Euclidean norm of f̂h(p)(λ̄) − f(λ̄) evaluated at

frequencies in G, i.e. MISE =

{
∑

λ̄∈G

(
f̂h(p)

(
λ̄
)
− f

(
λ̄
))2
} 1

2

, with an analogous definition

for f̂T (λ).

We first analyze Table 5.1. Regardless of the value of d, MISE is smaller for smaller

values of τ . As n∗ increases MISE decreases for each value of τ , but not monotonically

when d = 3. In the following discussion any triple is to be read as (n∗, d, p). The MISE for

(9, 2, 1) dominates that for (9, 2, 2) for any value of τ , and likewise the MISE for (11, 2, 1)

compared to (11, 2, 2). However there is a cost in allowing increase of p and that is reflected

in the MISE for (11, 2, 3) dominating that for (11, 2, 2). Similar patterns are seen for other

values of n∗ but the results for bigger p than those shown are not worth reporting for either

value of d. The case (8, 3, 1) exhibits very little change from (7, 3, 1), while (8, 3, 2) performs

worse than (8, 3, 1) for all values of τ . Moving to Table 5.2, we observe that MISE of f̂T (∙)

is generally much larger than for f̂h(p)(∙). In fact, the MISE of the latter is smaller for any

values of n∗, p and m∗ for both τ = 0.05, 0.075. Only when τ = 0.10 does it become greater

when n∗ ≤ 7, but here too with larger sample size, i.e. n∗ ≥ 9, it becomes much smaller

than that of the periodogram based estimate as p increases.

Tables 5.3 and 5.4 report Monte Carlo bias and standard deviation (SD) for f̂h(p)(0) and

f̂T (0), respectively. The biases decrease monotonically for all values of τ when d = 2, while

for d = 3 the decrease is not monotonic always, although the values seem quite acceptable.

The biases are much smaller for d = 3, almost vanishing for larger n∗ and smaller τ . Like
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Figure 5.2: Spectral estimates for d = 2, n∗ = 11, τ = 0.075. (a) True spectrum (b) AR estimate with p = 1
(c) AR estimate with p = 2 (d) AR estimate with p = 3

Figure 5.3: Spectral estimates for d = 2, n∗ = 11, τ = 0.10. (a) True spectrum (b) AR estimate with p = 1
(c) AR estimate with p = 2 (d) AR estimate with p = 3

Robinson (2007), we find that all biases for f̂T (0) are negative, unlike the mostly positive

values observed for f̂h(p)(0). For d = 2 the biases of f̂h(p)(0) sometimes dominate (in absolute

value) those of f̂T (0), but can become better e.g. for n∗ = 11. For both f̂h(p)(0) and f̂T (0)

we find that the smallest values of SD also reduces monotonically with n∗. For d = 3, SD of

f̂h(p)(0) becomes zero up to two decimal places when n∗ ≥ 4 for all τ , with just one exception

for (8, 3, 2). For d = 2 such behaviour is not observed, but SD does decline as n∗ increases.

The behaviour of f̂h(p)(∙) relative to true spectra for d = 2 is illustrated graphically over

G with n∗ = 11 for τ = 0.05, 0.075, 0.10 in Figures 5.1, 5.2 and 5.3 respectively. In each figure

the top-left surface, labelled (a), plots the true spectral density. The figures labelled (b), (c),

(d) show plots of the autoregressive spectral density estimate computed using p = 1, 2, 3,

respectively. All spectra are plotted on a log10 scale. Figure 5.1 shows that the estimated

spectrum when τ = 0.05 has too sharp a peak for p = 1, but this flattens to one resembling
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Figure 5.4: Average periodogram spectral estimates for d = 2, n∗ = 11, τ = 0.075. (a) m∗ = 1 (b) m∗ = 2
(c) m∗ = 3 (d) m∗ = 4.

the true peak for p = 2. As seen in Tables 5.1 and 5.3, estimates worsen for p = 3, illustrated

by the choppy and very sharp-peaked surface in Figure 5.1(d). For τ = 0.075, Figure 5.2

exhibits similar features, with p = 2 giving (visually) the best estimate. Finally, for τ = 0.10

we see again from Figure 5.3 that p = 2 does best but compared with Figures 5.1(c) and

5.2(c) the contours of the true spectrum are not as well estimated, as observed numerically

in Tables 5.1 and 5.3. For p = 3 the estimated surface exhibits poor properties by flattening,

as opposed to the sharp peaks exhibited by Figures 5.1(d) and 5.2(d). We illustrate using a

similar figure for f̂T (∙) in Figure 5.4, but to conserve space only report results for τ = 0.075,

so that the true spectrum is displayed in Figure 5.2(a). We see from panels (a) and (b) that

when m∗ ≤ 2 a number of ridges appear in the plot and it doesn’t quite resemble the true

spectrum. However the resemblance becomes much stronger in panels (c) and (d), which

display the estimated spectrum for m∗ = 3 and m∗ = 4 respectively, and looks the closest in

panel (d). An interesting point to note is the greater levels of local detail (e.g. dimples and

ridges) in the plots of Figure 5.4 as opposed to Figures 5.1, 5.2 and 5.3. This is in keeping

with the ‘local’ character of the kernel based estimate f̂T (∙) in comparison with the ‘global’

approximation that a sieve estimate like f̂h(p)(∙) entails.

5.2 Order selection

We now discuss order selection for the AR spectral estimate. We begin by briefly dis-

cussing the time series case, where we write h(p) = pU1 as p for simplicity. Shibata (1981)

deduced that for a Gaussian, stationary linear process xt, t ∈ Z, the asymptotic lower

bound for the integrated relative squared error (IRSE) of the AR spectral estimate, defined

as
∫
Π

{(
f̂p(λ) − f(λ)

)
/f(λ)

}2
dλ, is achieved by the p∗ minimizing SN (p) = (N + 2p)σ̂2

p.

f̂p∗(∙) is then termed an optimal or asymptotically efficient AR spectral estimate. The result

requires
∑∞

s=1 |ds| < ∞ and also that xt does not degenerate to a finite order AR process.
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If the Gaussianity assumption is dropped, Karagrigoriou (1997) establishes similar results

under the conditions supt Eε16
t < ∞ and

∞∑

s=1

s |ds| < ∞. (5.6)

The condition (5.6) is required to satisfy a form of mixing condition on the cumulants

introduced by Brillinger (1969). For d > 1 and some generic vector norm ‖∙‖gen a sufficient

condition would be ∑

s∈S∞
1+

‖s‖gen |ds| , (5.7)

indeed conditions of this type have been shown to be related to other notions of mixing

for lattice processes, see e.g. Corollary (1.7.2), pg. 32, in Guyon (1995) and Robinson

(2007). Conditions like (5.6) and (5.7) impose greater smoothness on the spectral density

as compared to absolute summability of the ds. As both Shibata (1981) and Karagrigoriou

(1997) show, the optimality property of p∗ minimizing SN (p) is shared by Akaike Information

Criterion (AIC)-like criteria, such as the AIC itself and Final Prediction Error (FPE). On

the other hand, these criteria are inconsistent. Furthermore, Karagrigoriou (1997) also shows

that consistent criteria such as BIC (Bayesian Information Criterion) and the φ criterion of

Hannan and Quinn (1979) are asymptotically inefficient in the sense of Shibata (1981), i.e.

they do not attain a lower bound for the IRSE. A referee has pointed out that consistency of

order selection criteria is proved in settings where the true autoregression is finite, whereas

we consider an approximation to a true infinite model (as does Shibata (1981)). Thus we

opt for potentially optimal, as opposed to potentially consistent, criteria in the following

paragraph. We say ‘potentially’ because we do not establish asymptotic properties of the

criteria in this paper. Further support for this choice is provided by the results of Shibata

(1986), which show that a consistent model selection criterion can lead to the loss of the

N
1
2 -consistency property of parameter estimates.

In view of the above discussion, we propose versions of the FPE criterion. For spatial

processes, the FPE has been extended at least in the quarter-plane case, see e.g. Tjøstheim

(1981). Following this approach, for the half-plane setting we can take

F̂PE(p) = σ̂2
h(p)

(
N + h(p)
N − h(p)

)

, (5.8)

However, the preceding sections stress that unlike in the case when d = 1 or indeed the

quarter-plane case, we have C(p) ≥ h(p) when using a half-plane representation. Thus while

we fit an AR model with h(p) coefficients in fact the estimation is based on up to C(p)

autocovariances. The formula in (5.8) penalizes only with respect to h(p), but realizing that

in fact the correct penalty term is C(p) suggests a degrees of freedom correction of the form

F̃PE(p) = σ̂2
h(p)

(
N + C(p)
N − C(p)

)

. (5.9)
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Finally because C(p) is only an upper bound, the degrees of freedom penalty imposed in

(5.9) may be too strong so, taking a(p) = (h(p) + C(p)) /2, we define

FPE(p) = σ̂2
h(p)

(
N + a(p)
N − a(p)

)

. (5.10)

Note that the paper does not present rigorous justification of these criteria, rather treating

them as reasonable empirical rules.

The order selection criteria (5.8), (5.9) and (5.10) are displayed in Table 5.5, for d = 2

and n∗ = 11. For all values of τ , F̂PE(p) tends to overfit, which corresponds to our discus-

sion above about this criterion imposing an insufficiently large penalty for larger truncation

points. On the other hand, both F̃PE(p) and FPE(p) suggest a very parsimonious fit with

p = 1 in all but one case, and from the analysis of Figures 5.1, 5.2 and 5.3 this certainly seems

a better automatic data-driven choice of p than p ≥ 4 suggested by F̂PE(p). Furthermore,

FPE(p) suggests p = 2 when τ = 0.10, which seems to be a very reasonable choice based

on the discussions above. Further illustration of the order selection criteria with real data is

provided in supplementary appendix S.1.

5.3 Nonstationary and possibly irregularly-spaced data

In this subsection we illustrate the method further by also applying it to data simulated

from a nonstationary process with irregular spacing. For n∗ = 9, 15, let W be an N × N

circulant matrix with zero diagonals and first row given by (0, 1/2, 0, . . . , 0, 1/2). In each of

500 replications, generate the N × 1 vector of data x by the Cliff and Ord (1973)-type SAR

model as follows

x = (IN − 0.05W )−1 ε, (5.11)

where ε is generated by independent standard normal draws. Clearly, the elements xt,

t = 1, . . . , N , of x are nonstationary stochastic processes. We compare spectrum estimates

from two settings: the first one assumes the availability of data at all lattice points, i.e. a

regular lattice, and the second method assumes a certain proportion of lattice points have

no data available, i.e. an irregular lattice. These missing points of observation are randomly

assigned in each Monte Carlo trial and are approximately 8% of the data when n∗ = 9 and 7%

of the data when n∗ = 15. Following the approach of practitioners, missing data are replaced

with zeros. We wish to compare the performance of these estimates, which we carry out via

analysis of Figures 5.5 and 5.6 for the regular and irregular lattices respectively. Figure 5.5

plots the estimated spectrum for n∗ = 9 when p = 1, 2 in panels (a) and (b) respectively, and

for n∗ = 15 when p = 1, 2, 3, 4 in panels (c), (d), (e) and (f) respectively. Figure 5.6 displays

exactly the same plots for the irregular lattice. In both figures we see clearly the pitfalls of

overfitting: too large a value of p leads to a spectrum that is very uninformative, evident

in panels (b), (e) and (f) of both figures. On the other hand, comparing the Figures 5.5(a)

and 5.6(a) we see that irregular spacing leads to a smaller estimated peak at frequency 0.

In the same vein, when n∗ = 15 a comparison of Figures 5.5(c) and 5.6(c) suggests that a
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Figure 5.5: Spectral estimates for d = 2, n∗ = 9, 15, τ = 0.05, nonstationary data generated by (5.11). Regular
lattice. (a) n∗ = 9, p = 1, (b) n∗ = 9, p = 2, (c) n∗ = 15, p = 1, (d) n∗ = 15, p = 2, (e) n∗ = 15, p = 3, (f)
n∗ = 15, p = 4.

similar problem does not arise in this case, perhaps due to loss of data being mitigated by

a larger sample. However, this conclusion may be misleading. Indeed, when p = 2 we can

compare Figures 5.5(d) and 5.6(d) to notice that the peak at frequency 0 is indeed flatter

in the latter, as is a ripple that runs through the spectrum at across the zero frequency axis

in one dimension.

A Proofs

This section contains proof of all results in the paper. We will write ΔC(p) = Ψ̂h(p) − Ψh(p)

and δh(p) = ψ̂h(p) − ψh(p) throughout the appendices.

Proof of Theorem 2.1. We have

d̂h(p) − dh(p) = Ψ̂−1
h(p)

(
ψ̂h(p) − Ψ̂h(p)dh(p)

)
= Ψ̂−1

h(p)

(
δh(p) − ΔC(p)dh(p) + ψh(p) − Ψh(p)dh(p)

)
,

so that the norm of the LHS above is bounded by

∥
∥
∥Ψ̂−1
h(p)

∥
∥
∥
(∥∥δh(p)

∥
∥+

∥
∥ΔC(p)

∥
∥
∥
∥dh(p)

∥
∥+

∥
∥Ψh(p)dh(p) − ψh(p)

∥
∥) . (A.1)

Now
∥
∥
∥Ψ̂−1
h(p)

∥
∥
∥ ≤

∥
∥
∥Ψ̂−1
h(p) − Ψ−1

h(p)

∥
∥
∥+

∥
∥
∥Ψ−1
h(p)

∥
∥
∥ ≤

(∥∥
∥Ψ̂−1
h(p)

∥
∥
∥
∥
∥ΔC(p)

∥
∥+ 1

)∥∥
∥Ψ−1
h(p)

∥
∥
∥ , so

∥
∥
∥Ψ̂−1
h(p)

∥
∥
∥
(
1 −

∥
∥
∥Ψ−1
h(p)

∥
∥
∥
∥
∥ΔC(p)

∥
∥
)
≤
∥
∥
∥Ψ−1
h(p)

∥
∥
∥ . Using Markov’s inequality and Lemma B.5 it fol-

lows that
∥
∥ΔC(p)

∥
∥ p
→ 0 if C(p)vn1−v

p → 0, i.e., C(p)vN1−v
(∏d

i=1

(
1 − n−1

i pi

))1−v
→ 0,

which is true by (2.11). Thus plimN→∞

∥
∥
∥Ψ̂−1
h(p)

∥
∥
∥ ≤ limN→∞

∥
∥
∥Ψ−1
h(p)

∥
∥
∥ < ∞, from Corol-

lary B.7. Now we deal with the factor in parentheses in (A.1). By Lemma B.4, Markov’s
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Figure 5.6: Spectral estimates for d = 2, n∗ = 9, 15, τ = 0.05, nonstationary data generated by (5.11).
Irregular lattice. (a) n∗ = 9, p = 1, (b) n∗ = 9, p = 2, (c) n∗ = 15, p = 1, (d) n∗ = 15, p = 2, (e)
n∗ = 15, p = 3, (f) n∗ = 15, p = 4.

inequality and (2.11),
∥
∥δh(p)

∥
∥ p

→ 0. For the second term, we have
∥
∥ΔC(p)

∥
∥ p

→ 0 and

also
∥
∥dh(p)

∥
∥ =

(∑
s∈S[−pL,pU ] d

2
s

) 1
2

≤
∑

s∈S[−pL,pU ] |ds| ≤
∑

s∈S∞
1+

|ds| < ∞. Thus the

second term converges to zero in probability. Finally, for the third term note that As-

sumption A implies that Eεtxt−k =
∑

s∈S∞
1+∪0 bsEεtεt−k−s = 0, k ∈ S∞

1+, t ∈ L, because

k + s = 0 is not possible due to our definition of half-plane (2.1). This indicates that

γ(k) = Extxt−k =
∑

t∈S∞
1+

dtγ(t − k), k ∈ S∞
1+, so

∥
∥Ψh(p)dh(p) − ψh(p)

∥
∥2 is

∑

s∈S[−pL,pU ]




∑

t∈S[−pL,pU ]

dsγ(t − s) − γ(s)





2

=
∑

s∈S[−pL,pU ]




∑

t∈S[−pL,pU ]

dsγ(t − s) −
∑

t∈S∞
1+

dtγ(t − s)





2

=
∑

s∈S[−pL,pU ]




∑

t∈S∞
1+\S[−pL,pU ]

dtγ(t − s)





2

≤
∑

s∈S[−pL,pU ]




∑

t∈S∞
1+\S[−pL,pU ]

d2
t








∑

t∈S∞
1+\S[−pL,pU ]

γ(t − s)2





=




∑

s∈S[−pL,pU ]

∑

t∈S∞
1+\S[−pL,pU ]

γ(t − s)2








∑

t∈S∞
1+\S[−pL,pU ]

d2
t





≤ C
∑

s∈Zd

γ(s)2
∑

t∈S∞
1+\S[−pL,pU ]

d2
t ≤ C

∑

t∈S∞
1+\S[−pL,pU ]

d2
t ,

22



using Lemma B.1. Thus
∥
∥Ψh(p)dh(p) − ψh(p)

∥
∥ ≤ C

∑
t∈S∞

1+\S[−pL,pU ] |dt|, which converges to

zero as N → ∞ due to (2.12), completing the proof. Note that we have also shown that

∥
∥
∥d̂h(p) − dh(p)

∥
∥
∥ = Op



 C(p)

N
v−1

v

+
∑

t∈S∞
1+\S[−pL,pU ]

d2
t



 , (A.2)

by Markov’s inequality.

Proof of Theorem 2.2. Note that γ̂(0) = n−1
p

∑′′
t(p,n)x

2
t . Using the definition of least squares

and some algebra, we may write σ̂2
h(p)−σ2 as n−1

p

∑′′
t(p,n)

(
xt −

∑
s∈S[−pL,pU ] d̂s,h(p)xt−s

)2
−σ2,

which equals

γ̂(0) − d̂′h(p)ψ̂h(p) − σ2 = γ̂(0) −
(
d̂h(p) − dh(p)

)′
ψ̂h(p) − d′h(p)ψ̂h(p) − γ(0) +

∑

t∈S∞
1+

dtγ(t)

= γ̂(0) − γ(0) −
(
d̂h(p) − dh(p)

)′
ψh(p) − d′h(p)δh(p) −

(
d̂h(p) − dh(p)

)′
δh(p) − d′h(p)ψh(p)

+
∑

t∈S∞
1+

dtγ(t).

Since d′h(p)ψh(p) =
∑

s∈S[−pL,pU ] dsγ(s), we can write

σ̂2
h(p) − σ2 = (γ̂(0) − γ(0)) −

(
d̂h(p) − dh(p)

)′
ψh(p) − d′h(p)δh(p)

−
(
d̂h(p) − dh(p)

)′
δh(p) +

∑

t∈S∞
1+\S[−pL,pU ]

dtγ(t). (A.3)

The first term on the RHS converges to 0 in probability by Lemma B.3 and Markov’s

inequality, the second by Theorem 2.1 and Lemma B.1, the third term by Lemma B.4,

(2.11) and Assumption A and the fourth term by Theorem 2.1, Lemma B.4 and (2.11). For

the fifth term, convergence to zero follows by (2.12) and Lemma B.1. Note that we have

also proved

σ̂2
h(p) − σ2 = Op



 C(p)

N
v−1

v

+
∑

t∈S∞
1+\S[−pL,pU ]

d2
t



 , (A.4)

because h(p) ≤ C(p) and limN→∞ N/np = 1.

Proof of Theorem 3.1. We recall D
(
eiλ
)

= 1 −
∑

s∈S∞
1+

dse
is′λ and define D̂h(p)

(
eiλ
)

= 1 −
∑

s∈S[−pL,pU ] d̂s,h(p)e
is′λ. Then

f̂h(p)(λ) − f(λ) =

∣
∣D
(
eiλ
)∣∣2
(
σ̂2
h(p) − σ2

)
− σ2

(∣
∣
∣D̂h(p)

(
eiλ
)∣∣
∣
2
−
∣
∣D
(
eiλ
)∣∣2
)

(2π)d |D (eiλ)|2
∣
∣
∣D̂h(p) (eiλ)

∣
∣
∣
2 . (A.5)
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Because D
(
eiλ
)

= σ2
(
(2π)df(λ)

)−1
, by (2.5) we have

c ≤ D
(
eiλ
)
≤ C, uniformly in λ ∈ Π. (A.6)

On the other hand,

sup
λ∈Π

∣
∣
∣D̂h(p)

(
eiλ
)∣∣
∣ ≤ sup

λ∈Π

∣
∣
∣D̂h(p)

(
eiλ
)
− D

(
eiλ
)∣∣
∣+ sup

λ∈Π

∣
∣
∣D
(
eiλ
)∣∣
∣ (A.7)

and

inf
λ∈Π

∣
∣
∣D̂h(p)

(
eiλ
)∣∣
∣ ≥ inf

λ∈Π

∣
∣
∣D
(
eiλ
)∣∣
∣− sup

λ∈Π

∣
∣
∣D̂h(p)

(
eiλ
)
− D

(
eiλ
)∣∣
∣ . (A.8)

∣
∣
∣D̂h(p)

(
eiλ
)
− D

(
eiλ
)∣∣
∣ is bounded by

∑

s∈S[−pL,pU ]

∣
∣
∣d̂s,h(p) − ds

∣
∣
∣
∣
∣
∣eis′λ

∣
∣
∣+

∑

s∈S∞
1+\S[−pL,pU ]

|ds|
∣
∣
∣eis′λ

∣
∣
∣

≤ h(p)
1
2

∥
∥
∥d̂h(p) − dh(p)

∥
∥
∥+

∑

s∈S∞
1+\S[−pL,pU ]

|ds| ,

(A.9)

by the Cauchy Schwarz inequality. By (3.1), (3.2) and (A.2), we have h(p)
1
2

∥
∥
∥d̂h(p) − dh(p)

∥
∥
∥ =

Op

(
C(p)h(p)

1
2 /N

v−1
v

)
, implying that (A.9) is negligible. We have then shown that

sup
λ∈Π

∣
∣
∣D̂h(p)

(
eiλ
)
− D

(
eiλ
)∣∣
∣

p
→ 0. (A.10)

Using (A.6), (A.7) and (A.8) together with (A.10) implies that

c ≤ D̂h(p)

(
eiλ
)
≤ C, uniformly in λ ∈ Π, (A.11)

with probability approaching 1 as N → ∞. The identity a2−b2 = (a−b)2 +2b(a−b) implies∣
∣
∣
∣

∣
∣
∣D̂h(p)

(
eiλ
)∣∣
∣
2
−
∣
∣D
(
eiλ
)∣∣2
∣
∣
∣
∣ is bounded by

(
D̂h(p)

(
eiλ
)
− D

(
eiλ
))2

+ 2
∣
∣
∣D
(
eiλ
)∣∣
∣
∣
∣
∣D̂h(p)

(
eiλ
)
− D

(
eiλ
)∣∣
∣ , (A.12)

where the RHS converges to 0 in probability uniformly in λ by (A.10) and (A.11) so that

sup
λ∈Π

∣
∣
∣
∣

∣
∣
∣D̂h(p)

(
eiλ
)∣∣
∣
2
−
∣
∣
∣D
(
eiλ
)∣∣
∣
2
∣
∣
∣
∣

p
→ 0. (A.13)
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Because (A.5) implies that

∣
∣
∣f̂h(p)(λ) − f(λ)

∣
∣
∣ ≤

σ2

∣
∣
∣
∣

∣
∣
∣D̂h(p)

(
eiλ
)∣∣
∣
2
−
∣
∣D
(
eiλ
)∣∣2
∣
∣
∣
∣+
∣
∣D
(
eiλ
)∣∣2
∣
∣
∣σ̂2
h(p) − σ2

∣
∣
∣

(2π)d |D (eiλ)|2
∣
∣
∣D̂h(p) (eiλ)

∣
∣
∣
2 ,

the theorem now follows by (A.6), (A.11), (A.13) and Theorem 2.2.

Proof of Theorem 4.1. By Lemma B.8 and (2.2), we need to establish the asymptotic distri-

bution of (
N

1
2 /nph(p)

1
2

) ∑

r∈S∞
1+∪0

br

∑

s∈S[−pL,pU ]

α(p)′Ψ(s)
h(p)

∑

t(p,n)

′′εt−r−sεt, (A.14)

with Ψ(s)
h(p) denoting a typical column of Ψh(p). Fixing η > 0, in view of (2.2) we can choose

a positive integer M such that

∑

r/∈S[−M,M ]

br < η/h(p)
1
2 , (A.15)

where S[−M,M ] = {ti : |ti| ≤ M, i = 1, . . . , d} ∩ S∞
1+. Note that r /∈ S[−M,M ] if and only

if r ∈ S∞
1+\S[−M,M ]. The difference between (A.14) and

gh(p),M =
(
N

1
2 /nph(p)

1
2

) ∑

r∈S[−M,M ]

br

∑

s∈S[−pL,pU ]

α(p)′Ψ(s)
h(p)

∑

t(p,n)

′′εt−r−sεt (A.16)

is readily shown to have mean zero and variance that is O
(
η2Nn−1

p

)
= o (1), as η → 0,

because N/np = O(1). Thus we establish asymptotic normality of gh(p),M . A martingale

central limit theorem of Scott (1973) can be applied by mapping Zd into Z+, as in Robinson

and Vidal Sanz (2006). They denote by C
(d)
k the lattice points of on the surface of the

d-dimensional cube with vertices (±k, . . . ,±k), and arbitrarily order them as t
(k)
(1) , . . . , t

(k)

m
(d)
k

,

with m
(d)
k = (2k + 1)d − (2k − 1)d. Introduce the function φ : Zd → Z+, defined as

φ(0) = 1

φ
(
t
(1)
(1)

)
= 2, . . . , φ

(
t
(1)

3d−1

)
= 3d

...
...

φ
(
t
(k)
(1)

)
= (2k − 1)d + 1, . . . , φ

(

t
(k)

m
(d)
k

)

= (2k + 1)d,

and θN (t) = φ(t) − # {s : s /∈ L; φ(s) < φ(t)} , t ∈ L. Having thus ordered on the integer

vertices of a hypercube containing L, we drop points outside L and re-label after closing gaps

and preserving order. Now define the triangular array δN (j), j = 1, . . . , N , of independent

random variables with zero mean, variance σ2 and finite fourth moment by δN (θN (t)) =

εt, t ∈ L. For each summand in
∑

t(p,n) εt−r−sεt either φ(t − r − s) < φ(t) or φ(t − r − s) >

φ(t), and there are a total of N − O
(
N1−χ

)
summands, each of which can be written as
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δN (j)δN (j − `j,N (s, r)) for suitable j and `j,N (s, r) ∈ Z+ (possibly after finite translation

across Zd). Define

υN (j) =
(
N/nph(p)

1
2

) ∑

r∈S[−M,M ]

br

∑

s∈S[−pL,pU ]

α(p)′Ψ(s)
h(p)δN (j)δN (j − `j,N (s, r)) ;

thus by uncorrelatedness of υN (j) over j, gh(p),M differs by Op

(
h(p)N−χ

2

)
= op(1) from

N− 1
2
∑N

j=1 υN (j) . For μ defined in (B.11), we now show that

lim
N→∞

N−1
N∑

j=1

Eυ2
N (j) = σ2μ + o(η), (A.17)

The uncorrelatedness of δN (j) implies Eυ2
N (j) =

(
N2σ2/n2

ph(p)
)
α(p)′Ψ−1

h(p)Ψh(p),MΨ−1
h(p)α(p)

for any j, where Ψh(p),M denotes the symmetric matrix with elements σ2
∑

r∈S[−M,M ] brbr+s−t,

with s, t ∈ S [−pL, pU ]. Elementary inequalities together with (A.15) imply that the latter

differ from a typical element of Ψh(p) by σ2
∑

r/∈S[−M,M ] brbr+s−t = O(η2/h(p)), whence

∥
∥Ψh(p),M − Ψh(p)

∥
∥ = O

(
η2
)

= o(η), as N → ∞. (A.18)

Now N−1
∑N

j=1 Eυ2
N (j) is bounded by

(
N2σ2/n2

ph(p)
)
‖α(p)‖2

∥
∥
∥Ψ−1
h(p)

∥
∥
∥

2 ∥
∥Ψh(p),M − Ψh(p)

∥
∥+

σ2
(
N2σ2/n2

ph(p)
)
α(p)′Ψ−1

h(p)α(p). The first term is easily seen to be o(η) as N → ∞, by

(A.18), while the second converges to σ2μ as N → ∞ by Lemma B.10 and because N/np → 1

as N → ∞. Thus (A.17) is established. The υN (j) form a martingale difference array.

Denote by Fk,N the σ-field of events generated by δN (j), j ≤ k. Writing uN (j) = υN (j)/σμ
1
2 ,

Theorem 2 of Scott (1973) implies that if

N−1
N∑

j=1

E
{

u2
N (j)1

(
|uN (j)| ≥ %N

1
2

)}
→ 0, all % > 0, (A.19)

N−1
N∑

j=1

[
E
{
u2

N (j) |Fj−1,N

}
− Eu2

N (j)
] p

−→ 0, (A.20)

then N− 1
2
∑N

j=1 υN (j)
d
→ N(0, σ2μ).

By (A.17), E
(
N−1u2

N (j)
)

= σ−2μ−1
(
σ2μ + o(η) + o(1)

)
= O(1) uniformly in j, imply-

ing that N−1u2
N (j) is a uniformly integrable array under (4.1), whence (A.19) follows on

noticing that its LHS is bounded above by maxj=1,...,N E
{
u2

N (j)1
(
u2

N (j) ≥ %2N
)}

.

Next, (A.20) is proved if we show

N−1
N∑

j=1









h(p)−

1
2

∑

r∈S[−M,M ]

br

∑

s∈S[−pL,pU ]

α(p)′Ψ(s)
h(p)δN (j − `j,N (s, r))






2
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− E





h(p)−

1
2

∑

r∈S[−M,M ]

br

∑

s∈S[−pL,pU ]

α(p)′Ψ(s)
h(p)δN (j − `j,N (s, r))






2

 p
−→ 0.

(A.21)

Fix s(i) ∈ S[−M,M ] and r(i) ∈ S [−pL, pU ], i = 1, 2, define `j,N,i = `j,N

(
s(i), r(i)

)
and

consider

N−1
N∑

j=1

{δN (j − `j,N,1) δN (j − `j,N,2) − EδN (j − `j,N,1) δN (j − `j,N,2)} . (A.22)

Clearly (A.22) has mean zero, while its variance is

N−2
N∑

j=1

N∑

k=1

[EδN (j − `j,N,1) δN (k − `k,N,1) EδN (j − `j,N,2) δN (k − `k,N,2)

+ EδN (j − `j,N,1) δN (k − `k,N,2) EδN (j − `j,N,2) δN (k − `k,N,1)

+ cum {δN (j − `j,N,1) , δN (k − `k,N,1) , δN (j − `j,N,2) , δN (k − `k,N,2)}] ,

(A.23)

where cum {x, y, z, w} denotes the joint cumulant of x, y, z, w. Robinson and Vidal Sanz

(2006) noted that, for d > 1, the s 6= t terms have a non-zero contribution to (A.23) because

`j,N,i depend on N . They show that (A.23) is O
(
N−χ

2

)
, whence (A.21) is O

(
h(p)N−χ

4

)
=

o(1), unlike when d = 1, when (A.23) is O
(
N−1

)
and (A.21) is O

(
h(p)N− 1

2

)
(cf Berk

(1974)). The theorem now follows by Bernstein’s Lemma (see e.g. Hannan (1970) pg.

242).

Proof of Lemma 4.1. Since (N/h(p))
1
2
∑

s∈S∞
1+\S[−pL,pU ] dse

is′λ → 0 as N → ∞, any λ ∈

Π, we can replace C(λ) and S(λ) in (4.3) by Ch(p)(λ) = 1 +
∑

s∈S[−pL,pU ] ds cos (s′λ) and

Sh(p)(λ) =
∑

s∈S[−pL,pU ] ds sin (s′λ) respectively. Lemma B.8 and Theorem 4.1 immediately

provide the joint asymptotic normality of (4.3), by the Cramér-Wold device. The asymptotic

variance of (N/h(p))
1
2

(
Ĉh(p)(0) − C(0)

)
is obtained by taking w0 = 1 and others zero in

Lemma B.10, while for (N/h(p))
1
2

(
Ĉh(p)(π) − C(π)

)
we take u0 = 1 with others zero. For

j = 1, . . . , q, take wj = uj = 1/2 and others zero for (N/h(p))
1
2

(
Ĉh(p) (λj) − C (λj)

)
, and

wj = −i/2, uj = i/2 and others zero for (N/h(p))
1
2

(
Ŝh(p) (λj) − S (λj)

)
. It is easy to show

using this method that the asymptotic variance of the sum of any pair of terms (4.3) is

the sum of the asymptotic variances, implying that the asymptotic covariance matrix is

diagonal.

Proof of Theorem 4.2. By (3.1) and (4.2), (N/h(p))
1
2

(
σ̂2
h(p) − σ2

)
= op(1), with the five

terms on the RHS of (A.3) shown to be negligible as in Berk (1974), noting that the bound

achieved in (A.4) can be sharpened to the extent required under the conditions of the the-
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orem. Because f̂h(p)(λ) = σ̂2
h(p)(2π)−d

(
Ĉh(p)(λ)2 + Ŝh(p)(λ)2

)−1
the proof is standard by

Lemma 4.1 and the delta method, so we omit the details.

B Lemmas

All proofs not provided below are included in the online appendix.

Lemma B.1. Suppose Assumption A holds. Then
∑

k∈Zd |γ(k)| < ∞.

Proof. Standard.

Lemma B.2. With n = (n1, n2, . . . , nd)
′, for such positive integers ni and integers ki that

satisfy ni > |ki| for i = 1, . . . , d, let

Skn = n|k|
−1
∑

t(|k|,n)

′′
ut, ut =

∑

r∈Zd

∑

s∈Zd

ξrs,t, t ∈ L, (B.1)

with the ξrs,t zero mean, independent (over t ∈ L) random variables. For some w′ ∈ (1, 2],

suppose there exist η1,r, η2,r, r ∈ Zd, such that

E |ξrs,t|
w′

≤ |η1,rη2,s|
w′

,
∑

r∈Zd

|ηj,r| < ∞, j = 1, 2, (B.2)

for all r, s ∈ Zd and t ∈ L. Then E |Skn|
w′

≤ Cn1−w′

|k| .

Lemma B.3. If Assumptions A and B hold, E |γ̂(k) − γ(k)|v ≤ C n1−v
p .

Lemma B.4. If Assumptions A and B hold, E
∥
∥δh(p)

∥
∥v ≤ C h(p)vn1−v

p .

Lemma B.5. If Assumptions A and B hold, E
∥
∥ΔC(p)

∥
∥v ≤ C C(p)vn1−v

p .

Proof. Write Δ̌C(p) = ˆ̌Ψh(p) − Ψ̌h(p), where ˆ̌Ψh(p) is constructed in the obvious way using

estimated covariances. Using the inequality ‖B‖ ≤ ‖B‖R for symmetric matrices B, we

have
∥
∥ΔC(p)

∥
∥ ≤

∥
∥ΔC(p)

∥
∥

R
≤
∥
∥Δ̌C(p)

∥
∥

R
. (B.3)

We will now bound the absolute row-sums of Δ̌C(p) uniformly over all rows. Consider a typical

row of Δ̌C(p). This has γ̂
(
l1 − l̄1, l2 − l̄2, . . . , ld − jd

)
− γ

(
l1 − l̄1, l2 − l̄2, . . . , ld − jd

)
; jd =

0, . . . , pd, for some l1, . . . , ld, li = 0, . . . , pi and all l̄1, . . . , l̄d−1, l̄i = 0, . . . , pi. It follows that

a typical absolute row sum is

∑̄

d−1

pd∑

jd=0

∣
∣γ̂
(
l1 − l̄1, l2 − l̄2, . . . , ld − jd

)
− γ

(
l1 − l̄1, l2 − l̄2, . . . , ld − jd

)∣∣ (B.4)

with
∑̄

d−1 running over l̄1, . . . , l̄d−1, l̄i = 0, . . . , pi. Since the summands are absolute values
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of the elements of a row of a Toeplitz matrix (by construction), (B.4) is bounded by

2
∑̄

d−1

pd∑

kd=−pd

∣
∣γ̂
(
l1 − l̄1, l2 − l̄2, . . . , kd

)
− γ

(
l1 − l̄1, l2 − l̄2, . . . , kd

)∣∣

which in turn is bounded by

2
∑

unique covariances

|γ̂(k) − γ(k)| ,

there being C(p) terms in the sum by Proposition ST.1. This bound is clearly uniform over

all possible rows. So using Hölder’s inequality and Lemma B.3

E
∥
∥Δ̌C(p)

∥
∥v

R
≤ 4vE




∑

unique covariances

|γ̂(k) − γ(k)|





v

≤ 8 C(p)1−v
∑

unique covariances

E |γ̂(k) − γ(k)|v

≤ C C(p)1−v
∑

unique covariances

n1−v
p = C C(p)vn1−v

p .

Then the result follows from the above and (B.3).

Lemma B.6. Let ρ be any eigenvalue of Ψh(p). Then, under Assumption A, (2π)dm ≤ ρ ≤

(2π)dM.

This lemma is a d > 1 generalization of the statement in Grenander and Szegö (1984), p.

64.

Corollary B.7. Under the conditions of Lemma B.6,
∥
∥
∥Ψ−1
h(p)

∥
∥
∥ ≤ C.

For any index t in the sum
∑′′

t(|p|,n) we write Xt(p) for the h(p) × 1 vector with typical

element xt−s, s ∈ S [−pL, pU ]. Denote by α(p) an h(p) × 1 vector of constants, not all zero.

Lemma B.8. Let Assumptions A, B, C and (3.1) hold, with v = 2, and

N
1
2

∑

s∈S∞
1+\S[−pL,pU ]

|ds| −→ 0, as N → ∞, (B.5)

Then, as N → ∞,

N
1
2 α(p)′

(
d̂h(p) − dh(p)

)
/h(p)

1
2 − N

1
2

∑

t(p,n)

′′α(p)′Ψ−1
h(p)Xt(p)εt/nph(p)

1
2

p
−→ 0. (B.6)

Proof. Define ε̄t,h(p) = xt −
∑

s∈S[−pL,pU ] dsxt−s. Then

ε̄t,h(p) − εt =
∑

s∈S∞
1+\S[−pL,pU ]

dsxt−s,
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so that the LHS of (B.6) equals

N
1
2 α(p)′Ψ̂−1

h(p)ΔC(p)Ψ
−1
h(p)

∑

t(p,n)

′′Xt(p)ε̄t,h(p)/nph(p)
1
2

+ N
1
2 α(p)′Ψ−1

h(p)

∑

t(p,n)

′′Xt(p)
∑

s∈S∞
1+\S[−pL,pU ]

dsxt−s/nph(p)
1
2 . (B.7)

Now, α(p)′Ψ−1
h(p)Xt(p)/h(p)

1
2 is a linear process in lags of εt, with mean 0 and variance

h(p)−1α(p)′Ψ−1
h(p)α(p) = O(1), by Lemma B.7. Thus the square of the second term in (B.7)

has expectation bounded by a constant times N
1
2 n

1
2
p
∑

s∈S∞
1+\S[−pL,pU ] d

2
s → 0, by Lemma

2 of Berk (1974), so E
∥
∥
∥
∑′′

t(p,n) Xt(p)ε̄t,h(p)

∥
∥
∥

2
= O

(

h(p)N
1
2 n

1
2
p
∑

s∈S∞
1+\S[−pL,pU ] d

2
s

)

, and

the first term in (B.7) is in turn of order Op

(

h(p)
1
2

∥
∥ΔC(p)

∥
∥N

1
4 n

1
4
p
∑

s∈S∞
1+\S[−pL,pU ] |ds|

)

=

Op

(

h(p)
1
2C(p)/n

1
2
p

)

op(1), by Lemmas B.5, B.7, (B.5). This is negligible by (3.1).

Lemma B.9. Write Dh(p)(z) = 1 −
∑

s∈S[−pL,pU ] ds,h(p)z
s, D(z) = 1 −

∑
s∈S∞

1+
dsz

s and let

Assumption A hold. Then limh(p)→∞ Dh(p)(z) = D(z) for |zi| ≤ 1, i = 1, . . . , d.

Proof. We can take λ = 0 in Theorem 2.2 of Baxter (1962)1, as in Berk (1974), and obtain

∑

r∈S[−pL,pU ]∪0

∣
∣
∣dr,h(p)/σ2

h(p) − dr/σ2
∣
∣
∣ ≤ C

∑

r∈S∞
1+\S[−pL,pU ]

|dr| /σ2, (B.8)

with d0 = d0,h(p) = 1. Also,

σ2
h(p) − σ2 = γ(0) − d′h(p)ψh(p) − σ2 =

∑

r∈S∞
1+\S[−pL,pU ]

drγ(r) → 0, (B.9)

as h(p) → ∞, by (2.4) and Lemma B.1. Combining (B.8) and (B.9) yields the result.

Lemma B.10. Let the conditions of Lemma B.9 hold. Let w1 = ū1, . . . , wq = ūq be complex

numbers for some positive integer q, w0 and u0 real numbers, for t ∈ S∞
1+, λi ∈ (0, π)d

define

βt = w0 + w1e
it′λ1 + ∙ ∙ ∙ + wqe

it′λq + w0e
it′π + u1e

−it′λ1 + ∙ ∙ ∙ + uqe
−it′λq , (B.10)

and α(p) be the h(p) × 1 vector with typical element βs, s ∈ S [−pL, pU ]. Then

lim
h(p)→∞

h(p)−1α(p)′Ψ−1
h(p)α(p) = μ,

1Meyer et al. (2016) have proved a version of this inequality under (5.7), which is a regularity condition
that implies greater smoothness of f(λ).
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where

μ = w2
0/(2π)df(0) + 2w1u1/(2π)df(λ1) + ∙ ∙ ∙ + 2wquq/(2π)df(λq) + u2

0/(2π)df(π). (B.11)
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Dahlhaus, R., Künsch, H., (1987). Edge effects and efficient parameter estimation for sta-

tionary random fields. Biometrika 74, 877–882.

31



Delgado, M., Robinson, P. M., (2015). Non-nested testing of spatial correlation. Journal of

Econometrics 187, 385–401.

Driscoll, J. C., Kraay, A. C.,(1998). Consistent covariance matrix estimation with spatially-

dependent panel data. Review of Economics and Statistics 80, 549–560.

Fuentes, M., (2007). Approximate likelihood for large irregularly spaced spatial data. Journal

of the American Statistical Association 102, 321–331.
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Supplementary appendix to ‘Autoregressive spatial spectral

estimates’

Abhimanyu Gupta

November 20, 2017

This supplementary appendix contains an empirical example in Section S.1, bounds

for absolute moments of partial sums of rather general lattice processes in Section S.2,

a generalisation of the Toeplitz property familiar from the theory of stationary time

series and an upper bound on the number of unique autocovariances that occur in

the covariance matrix of finite, stationary and unilateral processes in Section S.3, and

proofs of most of the lemmas in Appendix B of the paper. It also strengthens the mode

of convergence of estimates to almost sure convergence in Section S.5

S.1 Empirical example

The data used is available at www.spatial-statistics.com. In this example we study

county level voter turnout (defined as votes cast divided by total population) data from

the 1980 US presidential election, used in Pace and LeSage (2003). Following a strategy

similar to Bronars and Jansen (1987) we grid the data over a 16×29 grid of square cells,

each with about a 69.3 km edge, from 30.20◦N to 41.72◦N and 81.52◦W to 102.4◦W.

As Figure S.1.1 illustrates, the choice of coordinates gives the largest possible sample

size while accounting for the irregular border and coastline of the US, as well as the

relative sparsity of observations west of our imposed North-South border that runs from

Nebraska to Texas. The grid covers a total of 1539 counties, and the voter turnout is

taken as recorded at the centroid of each county. The average of the voter turnout for

the centroids that lie in each cell is calculated, and the sample mean subtracted from

each cell, yielding 464 observations. There are no empty cells and since a centroid can

only appear in one cell there is no overlap. Smaller grid cells would lead to empty cells,

and Bronars and Jansen (1987) note that while choice of cell size is somewhat arbitrary

it is analogous to selecting quarterly, monthly or weekly data in time series analysis.

Voter turnout is not a zero mean process, so we subtract the sample mean using the

whole sample from each cell as remarked in Section 2.

We now apply the order selection methods given in (5.8), (5.9) and (5.10). Table

S.1.1 tabulates all the versions of FPE for various truncation order choices p∗ = pU1 =

pL2 = pU2 . The advantage of our degree of freedom correction in F̃PE(p) is immediately

clear. The ‘naive’ extension given by F̂PE(p) continues to fall and suggest p∗ = 5,

which leads to an extremely choppy and uninformative spectrum, as discussed in the

next paragraph. On the other hand, F̃PE(p) gives a choice of p∗ = 3, the estimated

spectrum from which is more informative. The average degrees of freedom corrected

version FPE(p) suffers from the same overfitting problem as F̂PE(p).

1



Figure S.1.1: Gridded county level US voter turnout data

p∗ F̂PE(p) F̃PE(p) FPE(p)

1 0.0032 0.0033 0.0033
2 0.0026 0.0027 0.0026
3 0.0023 0.0025 0.0024
4 0.0023 0.0026 0.0024
5 0.0020 0.0026 0.0023

Table S.1.1: Order selection via FPE for county level US presidential election data

These findings are illustrated in Figure S.1.2, which plots the estimated spectrum

for various choices of p on a log10 scale. Due to symmetry we only plot the results over

(−π, π] × [0, π]. There is a very strong peak at low frequency, indicating the power in

low frequency structural components. For p = 1, panel (a) shows that the estimated

spectrum tends to not pick up the features of the spectrum and seems to suffer from

underfitting. Looking at panel (b), we see that matters improve when p = 2 and more

features of the spectrum, in particular two peaks, can be discerned. For p = 3 (panel

(c)) the peaks appear to at their sharpest and best defined, while the signs of overfitting

that only just start to appear in panel (d) (p = 4) progressively get more deleterious in

panels (e) and (f), i.e. when p = 5 and 6.

The periodogram spectral estimate with m1 = m2 = m∗ = 2, 4, 6, 8 is plotted in

Figure S.1.3. The estimate has features that broadly match those seen in the AR estimate

in Figure S.1.2, viz. it also exhibit two strong peaks. However the peaks are sharper and

well-defined in Figure S.1.2, whereas local features and ripples seem to better represented

in Figure S.1.3. Given the local and global character of the tapered periodogram and AR

estimate respectively, it is not surprising to see these features in the spectrum estimate.

Furthermore, larger values of m∗ lead to better defined peaks.

2



Figure S.1.2: Auotregressive spectral density estimate for county level US presidential election data, (a)
p = 1, (b) p = 2, (c) p = 3, (d) p = 4, (e) p = 5, (f) p = 6.

S.2 Bounds for moments of partial sums of lattice pro-

cesses

In this appendix we establish bounds for w-th absolute moments of partial sums of a

class of lattice processes, with w ∈ (1, 2]. The class of processes under consideration

is one that arises in many applications, so the result may be of independent interest

due to its generality. Consider a scalar lattice process {ζt : t ∈ L} defined by ζt =
∑

s1∈Zd . . .
∑

sq∈Zd ξssst, t ∈ L, where sss =
(
s1, . . . , sq

)
. This definition covers situations

where certain statistics of spatial processes may be expressible in terms of products of

sums of random variables. Assume that this process satisfies the following conditions:

Assumption A. ξssst are mean-zero and independent over t ∈ L.

Assumption B. For some w ∈ (1, 2], there exist positive constants
{
ηks : s ∈ Zd, 1 ≤ k ≤ q

}

and {at : t ∈ L} such that

E |ξssst|
w < ηw

sss aw
t , (S.2.1)

where ηsss =
∏q

k=1 ηksk and

∑

s∈Zd

ηks < ∞, 1 ≤ k ≤ q. (S.2.2)

Before we can introduce our result, we need to establish some more notation and

illustrate it with examples. Write L = (L1, . . . , Ld)
′, 0 < Li ≤ nLi +nUi for i = 1, . . . , d,

and define SL =
∑′

t(L)ζt, where
∑′

t(L) runs over t satisfying −nLi < ti ≤ Li − nLi .

There are
∏d

i=1 Li summands in this sum. For any multiple index t ∈ Zd, write |t| =

(|t1| , . . . , |td|)
′. Also write M = (M1, . . . ,Md)

′, Mi possibly negative, with |Mi| < Li,
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Figure S.1.3: Average tapered periodogram spectral density estimate for county level US presidential
election data, (a) m∗ = 2, (b) m∗ = 4, (c) m∗ = 6, (d) m∗ = 8.

and define SML =
∑′′

t(|M |,L)ζt, where
∑′′

t(|M |,L) runs over t satisfying

−nLi < ti ≤ Li − |Mi| − nLi ; if Mi < 0,

Mi − nLi < ti ≤ Li − nLi ; if Mi ≥ 0, (S.2.3)

indicating that there are
∏d

i=1 (Li − |Mi|) summands in this sum. If Mi ≥ 0 for each

i = 1, . . . , d then, unlike in time series, SML 6= SL − SM . In the d-dimensional lattice

case we may write SML = SL − S∗
ML with S∗

ML =
∑∗

t(M,L)ζt,
∑∗

t(M,L) running over

t satisfying −nLi < ti ≤ Li with at least one i = 1, . . . , d for which ti ≤ Mi − nLi .

There are
∏d

i=1 Li −
∏d

i=1 (Li − Mi) summands in this sum. For d = 2, SL consists of

the sum of observations at those points in the intersection of points to the north-east

of (−nL1 + 1,−nL2 + 1) and to the south-west of (L1, L2). SM is visualised similarly.

SML consists of the sum of observations at those points in the intersection of points to

the north-east of (−nL1 + M1 + 1,−nL2 + M2 + 1) and to the south-west of (L1, L2).

Figure S.2.1 illustrates these definitions for d = 2; nL1 = nL1 = 0; nU1 = nU2 =

6; (L1, L2) = (4, 4) and (M1,M2) = (2, 2). Observations summed in SL are those

recorded at points within the solid-bordered boxed area. For SM , S∗
ML and SML the

points of observation are in the solid-bordered circular area, dashed polygonal area and

dotted circular area respectively. An alternative way of writing
∑′′

t(|M |,L) is
∑

t,t−M∈LL

where LL =
{
t ∈ Zd : −nLi ≤ ti ≤ Li − nLi , i = 1, . . . , d

}
. Now define bwL = 0 if L =

(L1, . . . , Ld), Li ≥ 0 for i = 1, . . . , d with at least one Li = 0, and bwL =
∑′

t(L)a
w
t

if L = (L1, . . . , Ld), Li > 0 for i = 1, . . . , d. Similarly define bwML = 0 if L − |M | =

(L1 − |M1| , . . . , Ld − |Md|), Li−|Mi| ≥ 0 for i = 1, . . . , d with at least one Li−|Mi| = 0,

and bwML =
∑′′

t(|M |,L)a
w
t if L − |M | = (L1 − |M1| , . . . , Ld − |Md|), Li − |Mi| > 0 for
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(0, 0)

Figure S.2.1: Illustration of SL, SM , S∗
ML and SML, d = 2, nL1 = nL2 = 0; nU1 = nU2 = 6; (L1, L2) =

(4, 4) and (M1, M2) = (2, 2).

i = 1, . . . , d. We are now in a position to prove the main result of this section.

Lemma SL.1. Let Assumptions A and B hold. Then E |SML|
w < C bwML.

Proof. SMN =
∑′′

t(|M |,N)

∑
s1∈Zd . . .

∑
sq∈Zd ξssst, which is rewritten as

SMN =
∑

s1∈Zd

. . .
∑

sq∈Zd

η
1−1/w
1s1 η

1/w
1s1

′′∑

t(|M |,N)

(ξssst/η1s1) ,

whence from Hölder’s inequality

|SMN |w ≤




∑

s∈Zd

η1s





w−1
∑

s1∈Zd

η1−w
1s1

∣
∣
∣
∣
∣
∣

∑

s2∈Zd

. . .
∑

sq∈Zd

∑

t(|M |,N)

′′
ξssst

∣
∣
∣
∣
∣
∣

w

.

Similarly
∣
∣
∣
∑

s2∈Zd . . .
∑

sq∈Zd

∑′′
t(|M |,N) ξssst

∣
∣
∣
w

is bounded by




∑

s∈Zd

η2s





w−1
∑

s2∈Zd

η1−w
2s2

∣
∣
∣
∣
∣
∣

∑

s3∈Zd

. . .
∑

sq∈Zd

∑

t(|M |,N)

′′
ξssst

∣
∣
∣
∣
∣
∣

w

.

After q applications of Hölder’s inequality and using (S.2.2) we obtain

|SMN |w ≤ C
∑

s1∈Zd

. . .
∑

sq∈Zd

η1−w
sss

∣
∣
∣
∣
∣
∣

∑

t(|M |,N)

′′
ξssst

∣
∣
∣
∣
∣
∣

w

. (S.2.4)

Also, from von Bahr and Esseen (1965) and (S.2.1)

E

∣
∣
∣
∣
∣
∣

∑

t(|M |,N)

′′
ξssst

∣
∣
∣
∣
∣
∣

w

≤ C
∑

t(|M |,N)

′′
|ξssst|

w ≤ C ηw
sss

∑

t(|M |,N)

′′
aw

t .
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Taking expectations of (S.2.4) and applying the above and (S.2.2) we conclude

E |SMN |w ≤ C
∑

s1∈Zd

. . .
∑

sq∈Zd

ηsss

∑

t(|M |,N)

′′
aw

t ≤ C
∑

t(|M |,N)

′′
aw

t = C bwMN ,

establishing the lemma.

Note that we did not impose stationarity of ζt, nor did we use any half-plane represen-

tation for ζt. In view of this Lemma SL.1 is quite general. It is similar to Lemma 1 of

Robinson (1978) for d = 1.

S.3 Properties of covariance matrices of autoregressive lat-

tice processes

S.3.1 A spatial generalisation of the Toeplitz property

In this appendix we generalise the Toeplitz property of covariance matrices for stationary

time series with finite autoregressive representations to stationary spatial processes with

finite half-plane or quarter-plane representations. It is necessary to introduce an ordering

of the elements of Zd in order to write the objects of interest in matrical and vectorial

form. Such an ordering can be carried out in many ways and as long as a consistent

ordering is followed it should not matter which particular one is used. However certain

orderings may be more beneficial in obtaining a clearer picture of the structure of the

covariance matrix. We consider the cases d = 2 and d = 3, and then discuss the situation

for general d. We also illustrate the relevant quarter-plane situations first and then build

on this treatment to explain the differences in the half-plane case, the latter being more

complicated due to negative entries in the indices. The definitions are recursive in nature.

d = 2

This case is discussed quite extensively in the signal-processing literature for instance in

Tjøstheim (1981) and Wester et al. (1990).

Quarter-plane representations

Here pL2 = 0. For each l = 0, . . . , pU1 , define ψ̌
(1)
l (p) to be the (pU2 + 1)× 1 vector with

typical i-th element γ(l, i), i = 0, . . . , pU2 , and ψ̌(2)(p) =
(
ψ̌
′(1)
0 (p), ψ̌′(1)

1 (p), . . . , ψ̌′(1)
pU1

(p)
)′

,

the latter a nested vector of dimension (pU2 + 1)× (pU1 + 1). Finally denote by ψh(p) the

(pU1 + 1) (pU2 + 1) − 1 × 1 vector got by removing the first element of ψ̌h(p), which has

dimension h(p)×1. For each l = 0, . . . , pU1 , define Ψ̌(1)
l (p) to be the (pU2 + 1)×(pU2 + 1)

Toeplitz matrix with typical (i, j)-th element γ(l, i − j), i, j = 0, . . . , pU2 , Ψ̌h(p) to be

the block-Toeplitz matrix of (block) dimension (pU1 + 1) and (i, j)-th block Ψ(1)
i−j(p),
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i, j = 0, . . . , pU1 , so

Ψ̌h(p) =










Ψ̌(1)
0 (p) Ψ̌(1)

−1(p) . . . . . . Ψ̌(1)
−pU1

(p)

Ψ̌(1)
1 (p) Ψ̌(1)

0 (p) . . . . . . Ψ̌(1)
−pU1

+1(p)
...

...
...

...

Ψ̌(1)
pU1

(p) Ψ̌(1)
pU1

−1(p) . . . . . . Ψ̌(1)
0 (p)










.

Denote by Ψh(p) the (pU1 + 1) (pU2 + 1) − 1 × (pU1 + 1) (pU2 + 1) − 1 matrix formed by

deleting the first row and first column of Ψ̌h(p). Then the dimension of Ψh(p) is h(p)×h(p).

Half-plane representations

Here we have pL2 > 0. For each l = 0, . . . , pU1 , define ψ̌
(1)
l (p) as the (p2 + 1) × 1

vector with typical i-th element γ(l, i), i = −pL2 , . . . , pU2 , and ψ̌h(p) as the (p2 + 1) ×

(pU1 + 1) × 1 nested vector with i-th block ψ̌
(1)
i (p), i = 0, . . . , pU1 . ψ̌h(p) has dimension

(pU1 + 1) (p2 + 1) × 1 with (pU1 + 1) (p2 + 1) = h(p) + pL2 + 1. Therefore, unlike in

the quarter-plane situation, we will now denote by ψh(p) the h(p) × 1 vector formed

by deleting the first pL2 + 1 elements of ψ̌h(p). For each l = 0, . . . , pU1 , define Ψ̌(1)
l (p)

to be the (p2 + 1) × (p2 + 1) Toeplitz matrix with typical (i, j)-th element γ(l, i − j),

i, j = 0, . . . , p2. Now, define Ψ̌h(p) to be the block-Toeplitz matrix of (block) dimension

(pU1 + 1) × (pU1 + 1) and (i, j)-th block Ψ̌(1)
i−j(p), i, j = 0, . . . , pU1 . So we have

Ψ̌h(p) =










Ψ̌(1)
0 (p) Ψ̌(1)

−1(p) . . . . . . Ψ̌(1)
−pU1

(p)

Ψ̌(1)
1 (p) Ψ̌(1)

0 (p) . . . . . . Ψ̌(1)
−pU1

+1(p)
...

...
...

...

Ψ̌(1)
pU1

(p) Ψ̌(1)
pU1

−1(p) . . . . . . Ψ̌(1)
0 (p)










.

Ψ̌h(p) has dimension (pU1 + 1) (p2 + 1) × (pU1 + 1) (p2 + 1) with

(pU1 + 1) (p2 + 1) = h(p) + pL2 + 1. Again, unlike in the quarter-plane case, we will

denote by Ψh(p) the h(p) × h(p) matrix formed by deleting the first pL2 + 1 rows and

columns of Ψ̌h(p).

d = 3

Quarter-plane representations

In this case pL2 = pL3 = 0. We build the definitions analogously to the d = 2 case. For

l = 0, . . . , pU1 and m = 0, . . . , pU2 , define ψ̌
(1)
l,m(p) to be the (pU3 + 1) × 1 vector with

typical i-th element γ(l,m, i), i = 0, . . . , pU3 and ψ̌
(2)
m (p) as the (pU3 + 1)× (pU1 + 1)× 1

nested vector with i-th block ψ̌
(1)
i,m(p), i = 0, . . . , pU1 , and finally ψ̌h(p) as the twice

nested
∏3

i=1 (pUi + 1) × 1 block vector with i-th block ψ̌
(2)
i (p), i = 0, . . . , pU2 . Then

denote by ψh(p) the
∏3

i=1 (pUi + 1) − 1-dimensional vector formed by deleting the first

7



element of ψ̌h(p), which is h(p) × 1. We now define the matrices. For l = 0, . . . , pU1

and m = 0, . . . , pU2 , define Ψ̌(1)
l,m(p) to be the (pU3 + 1)× (pU3 + 1) Toeplitz matrix with

typical (i, j)-th element γ(l,m, i − j), i, j = 0, . . . , pU3 and Ψ̌(2)
m (p) to be the block-

Toeplitz with Topelitz blocks matrix of (block) dimension (pU1 + 1) and (i, j)-th block

given by Ψ̌(1)
i−j,m(p), i, j = 0, . . . , pU1 , and then write Ψ̌h(p) for the (thrice) block-Toeplitz

matrix of (block) dimension (pU2 + 1) × (pU2 + 1) and (i, j)-th block given by Ψ̌(2)
i−j(p),

i, j = 0, . . . , pU2 . Now denote by Ψh(p) the
∏3

i=1 (pUi + 1)−1-dimensional matrix formed

by deleting the first row and first column of Ψ̌h(p). Then the dimension of Ψh(p) is

h(p) × h(p).

Half-plane representations

Now pL2 > 0 or/and pL3 > 0. For l = 0, . . . , pU1 and m = −pL2 , . . . , pU2 , define ψ̌
(1)
l,m(p)

to be the (p3 + 1)×1 vector with typical i-th element γ(l,m, i), i = −pL3 , . . . , pU3 , ψ̌
(2)
m (p)

to be the (p3 + 1)×(pU1 + 1)×1 nested vector with i-th block ψ̌
(1)
i,m(p), i = 0, . . . , pU1 and

ψ̌h(p) to be the
∏3

i=1 (pi + 1)×1 nested vector with i-th block ψ̌
(2)
i (p), i = −pL2 , . . . , pU2 .

ψ̌h(p) has dimension
∏3

i=1 (pi + 1) and also
∏3

i=1 (pi + 1) = h(p)+ pL3 + pL2 (p3 + 1)+1.

Therefore, unlike in the quarter-plane situation, we will now denote by ψh(p) the h(p)×1

vector formed by the following procedure:

1. Delete each of the ψ̌
(1)
0,m(p), m = −pL2 , . . . ,−1.

2. Delete the first pL3 + 1 elements from ψ̌
(2)
0 (p).

The total elements then deleted are pL2 (p3 + 1)+pL3 +1 in number, and the dimension

of ψh(p) follows. For the matrices, we again proceed similarly. For l = 0, . . . , pU1 and

m = −pL2 , . . . , pU2 , define Ψ̌(1)
l,m(p) to be the (p3 + 1) × (p3 + 1) Toeplitz matrix with

typical (i, j)-th element γ(l,m, i − j), i, j = −pL3 , . . . , pU3 , Ψ̌(2)
m (p) to be the block-

Toeplitz with Toeplitz blocks matrix of (block) dimension (pU1 + 1) and (i, j)-th block

Ψ̌(1)
i−j,m(p), i, j = 0, . . . , pU1 , and Ψ̌h(p) to be the (thrice) block-Toeplitz matrix of (block)

dimension (p2 + 1) × (p2 + 1) and (i, j)-th block Ψ̌(2)
i−j(p), i, j = −pL2 , . . . , pU2 . Now

denote by Ψh(p) the
∏3

i=1 (pUi + 1) − 1-dimensional matrix formed by deleting those

rows and columns of Ψ̌(3)(p) corresponding to the elements of Ψ̌h(p) deleted earlier. For

instance, if the i-th element of ψ̌h(p) was deleted then we delete the i-th row and i-th

column of Ψ̌h(p). We repeat this for each deleted element of ψ̌h(p). Then the dimension

of Ψ̌h(p) is h(p) × h(p).

General d

Quarter-plane representations

In this case we have pL2 = pL3 = . . . = pLd
= 0. For li = 0, . . . , pUi , i = 1, . . . , d − 1, de-

fine ψ̌
(1)
l1,...,ld−1

(p) to be the (pUd
+ 1)×1 vector with typical i-th element γ(l1, . . . , ld−1, i),

8



i = 0, . . . , pUd
, for li = 0, . . . , pUi , i = 1, . . . , d − 1 define ψ̌

(2)
l2,...,ld−1

(p) to be the nested

vector of (nested) dimension (pU1 + 1) and i-th block ψ
(1)
i,l2,...,ld−1

(p), i = 0, . . . , pU1 , and

proceeding in this manner, for ld−1 = 0, . . . , pUd−1
define ψ̌

(d−1)
ld−1

(p) to be the nested

vector of (nested) dimension
(
pUd−2

+ 1
)
× 1 and i-th block ψ̌

(d−2)
i,ld−1

(p), i = 0, . . . , pUd−2
.

Finally, define ψ̌h(p) to be the nested vector of (nested) dimension (pUd
+ 1) and i-

th block ψ̌
(d−1)
i (p), i = 0, . . . , pUd−1

. Now denote by ψh(p) the
∏d

i=1 (pUi + 1) − 1-

dimensional vector formed by deleting the first element of ψ̌h(p). Then the dimension

of ψh(p) is h(p) × 1. For the matrices, for li = 0, . . . , pUi , i = 1, . . . , d − 1, we define

Ψ̌(1)
l1,...,ld−1

(p) to be the (pUd
+ 1)-dimensional Toeplitz matrix with typical (i, j)-th ele-

ment γ(l1, . . . , ld−1, i − j), i, j = 0, . . . , pUd
, for li = 0, . . . , pUi , i = 2, . . . , d − 1 define

Ψ̌(2)
l2,...,ld−1

(p) to be the block Toeplitz with Toeplitz blocks matrix of (nested) dimen-

sion (pU1 + 1) and (i, j)-th block Ψ̌(1)
i−j,l2,...,ld−1

(p), i, j = 0, . . . , pU1 , and, proceeding

recursively, for ld−1 = 0, . . . , pUd−1
we define Ψ̌(d−1)

ld−1
(p) to be the nested block-Toeplitz

matrix of (block) dimension
(
pUd−2

+ 1
)
×
(
pUd−2

+ 1
)

and (i, j)-th block Ψ̌(d−2)
i−j,ld−1

(p),

i, j = 0, . . . , pUd−2
. The next step consists of defining Ψ̌h(p) to be the block-Toeplitz

matrix of (block) dimension
(
pUd−1

+ 1
)
×
(
pUd−1

+ 1
)

and (i, j)-th block Ψ̌(d−1)
i−j (p),

i, j = 0, . . . , pUd−1
. Now denote by Ψh(p) the

∏d
i=1 (pUi + 1) − 1-dimensional square ma-

trix formed by deleting the first row and first column of Ψ̌h(p). Clearly the dimension of

Ψh(p) is h(p) × h(p).

Half-plane representations

Now pLi > 0 for some i = 1, . . . , d. For li = −pLi , . . . , pUi , i = 1, . . . , d − 1; pL1 = 0,

define ψ̌
(1)
l1,...,ld−1

(p) to be the (pd + 1) × 1 vector with typical element γ(l1, . . . , ld−1, i),

i = −pLd
, . . . , pUd

. Next, for li = −pLi , . . . , pUi , i = 2, . . . , d − 1 define ψ̌
(2)
l2,...,ld−1

(p)

to be the nested vector of (nested) dimension (pU1 + 1) and i-th block ψ̌
(1)
i,l2,...,ld−1

(p),

i = 0, . . . , pU1 . Proceeding in this manner, for ld−1 = −pLd−1
, . . . , pUd−1

we define

ψ̌
(d−1)
ld−1

(p) to be the nested vector of (nested) dimension (pd−2 + 1) × 1 and i-th block

ψ̌
(d−2)
i,ld−1

(p), i = −pLd−2
, . . . , pUd−2

. Finally, define ψ̌h(p) to be the nested vector of

(nested) dimension (pd + 1) and i-th block ψ̌
(d−1)
i (p), i = −pLd−1

, . . . , pUd−1
. Now ψ̌h(p)

is
∏d

i=1 (pi + 1) × 1 where we note that pL1 = 0, so
∏d

i=1 (pi + 1) = h(p) + pLd
+

pLd−1
(pd + 1) + . . . + pL2 (p3 + 1) . . . (pd + 1) + 1. Define ψh(p) as the h(p) × 1 vector

formed using the following procedure:

(1) Delete each of ψ̌
(1)
0,l2,...,ld−1

(p), l2 = −pL2 , . . . ,−1 and li = −pLi , . . . , pUi , i = 3, . . . , d−

1.

(2) Delete each of ψ̌
(2)
0,l3,...,ld−1

(p), l3 = −pL3 , . . . ,−1 and li = −pLi , . . . , pUi , i = 4, . . . , d−

1.
...

(d − 2) Delete each of the ψ̌
(d−2)
0,ld−1

(p), ld−1 = −pLd−1
, . . . ,−1.

9



(d − 1) Delete the first pLd
+ 1 elements of ψ̌

(d−1)
0 (p).

Thus pL2 (p3 + 1) . . . (pd + 1) + . . . + pLd−1
(pd + 1) + pLd

+ 1 elements are deleted,

and the dimension of ψh(p) is h(p) × 1. By construction ψh(p) has elements γ(s), s ∈

S [−pL, pU ].We now define the matrices. For l1 = 0, . . . , pU1 and li = −pLi , . . . , pUi ,

i = 2, . . . , d − 1, define Ψ̌(1)
l1,...,ld−1

(p) to be the (pd + 1)-dimensional Toeplitz matrix

with typical (i, j)-th element γ(l1, . . . , ld−1, i − j), i, j = −pLd
, . . . , pUd

. Next, for li =

−pLi , . . . , pUi , i = 2, . . . , d− 1 define Ψ̌(2)
l2,...,ld−1

(p) to be the block Toeplitz with Toeplitz

blocks matrix of (nested) dimension (pU1 + 1) and (i, j)-th block Ψ̌(1)
i−j,l2,...,ld−1

(p), i, j =

0, . . . , pU1 . Proceeding in this manner, for ld−1 = −pLd−1
, . . . , pUd−1

we define Ψ̌(d−1)
ld−1

(p)

to be the nested block-Toeplitz matrix of (block) dimension (pd−2 + 1) × (pd−2 + 1)

and (i, j)-th block Ψ̌(d−2)
i−j,ld−1

(p), i, j = −pLd−2
, . . . , pUd−2

. Finally, define Ψ̌h(p) to be the

block-Toeplitz matrix of (block) dimension (pd−1 + 1) × (pd−1 + 1) and (i, j)-th block

Ψ̌(d−1)
i−j (p), i, j = −pLd−1

, . . . , pUd−1
. So in this (most general case) case we obtain the

general form of the covariance matrix as

Ψ̌h(p) =










Ψ̌(d−1)
0 (p) Ψ̌(d−1)

−1 (p) . . . . . . Ψ̌(d−1)
−pd−1

(p)

Ψ̌(d−1)
1 (p) Ψ̌(d−1)

0 (p) . . . . . . Ψ̌(d−1)
−pd−1+1(p)

...
...

...
...

Ψ̌(d−1)
pd−1 (p) Ψ̌(d−1)

pd−1−1(p) . . . . . . Ψ̌(d−1)
0 (p)










.

Now denote by Ψh(p) the matrix formed by deleting those rows and columns of Ψ̌h(p)

corresponding to the elements deleted from ψ̌h(p) above. Then the dimension of Ψh(p) is

h(p) × h(p).

We can straightforwardly extend a representation for Ψ−1
h(p) given for d = 1 by Akaike

(1969) and Kromer (1970). Label the indices of the elements of the first row of Ψh(p)

from left to right as j0, . . . , jh(p)−1, j0 ≡ 0. Denote by ds,h(p) the scalars

arg min
as,s∈S[−pL,pU ]

E



xt −
∑

s∈S[−pL,pU ]

asxt−s





2

, (S.3.1)

the minimum by σ2
h(p), and write Σh(p) = diag

(
σ2

0 , . . . , σ
2
h(p)−1

)
. The lag indices in the

predictor for a generic l are defined by the first l indices in the first row of Ψh(p). Defining

Lh(p) =









1 0 0 . . . 0

dj1,1 1 0 . . . 0

. . . . . . . . .

djh(p)−1,h(p)−1 . . . djh(p)−1,h(p)−1 1









, (S.3.2)
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we have

Ψ−1
h(p)

= L′
h(p)Σ

−1
h(p)

Lh(p). (S.3.3)

S.3.2 Counting covariances in stationary and unilateral lattice autore-

gressive models

Autoregressive models on d-dimensional lattices can generate covariance matrices of the

form Ψh(p) which differ from those in the time series case in the number of unique

covariances amongst their elements. Consider a stationary time series xt with an AR(k)

(here h(k) = k) representation xt =
∑k

j=1 ajxt−j + εt for which Ψk is a Toeplitz matrix

with k unique autocovariances, which is also the dimension of the matrix. On the other

hand, consider a 2-dimensional lattice process xt with an AR(0, 1; 1, 1) representation.

In this case

Ψh(0,1;1,1) =









γ (0, 0) γ (−1, 0) γ (−1, 2) γ (−1, 1)

γ (0, 0) γ (0, 2) γ (0, 1)

γ (0, 0) γ (0,−1)

γ (0, 0)









,

which is a 4×4 matrix with 6 unique covariances. While the above may suggest that the

number of unique covariances in such matrices is
∏d

i=1 (pi + 1), this is in fact incorrect

as the following example shows. A 2-dimensional lattice process xt with an AR(0, 2; 1, 1)

representation has Ψh(0,2;2,1) given by
















γ (0, 0) γ (−1, 0) γ (−2, 0) γ (−1, 2) γ (−2, 2) γ (−1, 1) γ (−2, 1)

γ (0, 0) γ (−1, 0) γ (0, 2) γ (−1, 2) γ (0, 1) γ (−1, 1)

γ (0, 0) γ (1, 2) γ (0, 2) γ (1, 1) γ (0, 1)

γ (0, 0) γ (−1, 0) γ (0,−1) γ (−1,−1)

γ (0, 0) γ (1,−1) γ (−1, 0)

γ (0, 0) γ (−1,−1)

γ (0, 0)
















,

which is a 7 × 7 matrix with 11 unique covariances, and the latter obviously does not

equal (p1 + 1)×(p2 + 1) = 12. We will provide an upper bound for the number of unique

covariances in Ψ̌h(p) for general d.

Proposition ST.1. Suppose that {xt : t ∈ L} is a stationary random field with the

representation (2.4). Then the number of unique covariances in Ψ̌h(p) does not exceed

C(p) = 1 +
d−1∑

l=1

2d−l−1
∑

#(l=0)

d∏

k=1
�0l

d

pk + 2d−1
d∏

k=1

pk, (S.3.4)
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where
∑

#(l=0) sums over all the possible ways in which (p1, p2, . . . , pd)
′ can have l entries

equal to 0 and the product
∏d

k=1,�0l
d

multiplies over k such that the l zero entries of

(p1, p2, . . . , pd)
′ are excluded.

Proof. Autocovariances can involve several types of indices. Consider first the number

of autocovariances with all nonzero entries in the indices. In each dimension there are

pk possible indices, and in all except the first dimension (in which there are no negative

indices due to the half-plane representation), there may be negative indices. Thus there

are at most 2d−1
∏d

k=1 pk such autocovariances, which is the third term in (S.3.4).

The second term in (S.3.4) arises from counting the maximum number of indices that

can have a certain number of zero elements. For example, the case of the first index entry

being zero and the rest nonzero will give rise to at most 2d−2
∏d

k=2 pk autocovariances

with such indices, while case of the first two index entries being zero and the rest nonzero

will give rise to at most 2d−3
∏d

k=3 pk and so on. The second term in (S.3.4) then accounts

for the fact that a single zero index entry may occur in d possible places, two zero index

entries may occur in
(
d
2

)
ways, three zero index entries in

(
d
3

)
ways, etc. This completes

the explanation of the second term in (S.3.4). Finally, the case with all index elements

equal to zero (i.e. the variance) accounts for the last item in (S.3.4).

It is clear from the formulae (2.8) and (S.3.4) that

h(p) ≤ C(p), (S.3.5)

for all d. We now illustrate the formula with examples. For d = 1 with p1 = k (an AR(k)

specification) Ψ̌k is Toeplitz with first row (γ(0), . . . , γ(k)), and the formula (S.3.4)

delivers a bound that holds with equality. For d = 2 the formula indicates a maximum

of 1+20 (p1 + p2)+21p1p2 = 1+p1+p2+2p1p2 unique covariances, delivering bounds of 8

and 13 for the AR(0, 1; 1, 1) and AR(0, 2; 1, 1) models respectively, while for d = 3 there

are at most 1+20 (p1 + p2 + p3)+21 (p1p2 + p1p3 + p2p3)+22p1p2p3 unique covariances.

If equal truncation lengths are chosen in each dimension, so that pUi = pLi = p for each

i = 1, . . . , d, we have p1 = p and pi = 2p for i = 2, . . . , d. Then the formulae become

1 + 3p + 4p2 and 1 + 5p + 20p2 + 16p3 respectively.

S.4 Proofs of lemmas in Appendix B

Proof of Lemma B.2. The result follows from Lemma SL.1 taking N = n, M = k, q = 2

and at = 1 for all t ∈ L.

Proof of Lemma B.3. For γ̂(k) − γ(k) to be of the form of Spn in Lemma B.2, define

ξrs,t = brbr−k

(
ε2t−r − σ2

)
, s = r − k; = brbsεt−rεt−k−s, s 6= r − k. Then the ξrs,t are

clearly zero-mean. They are independent because the εt are. Therefore, they satisfy

Assumption A. By the cr-inequality, Cauchy-Schwarz inequality and Assumption B, we

12



obtain E |ξrs,t|
v ≤ 2 |brbr−k|

v
(
E |εt−r|

2v + σ2v
)
≤ C |brbr−k|

v , s = r− k and E |ξrs,t|
v ≤

|brbs|
v
(
E |εt−r|

2v E |εt−s|
2v
) 1

2
≤ C |brbs|

v , s 6= r−k, verifying that (B.2) holds since the

br are absolutely summable. The result follows immediately from Lemma B.2.

Proof of Lemma B.4.

E
∥
∥δh(p)

∥
∥v ≤ E




∑

s∈S[−pL,pU ]

|γ̂(s) − γ(s)|





v

≤ h(p)v−1
∑

s∈S[−pL,pU ]

E |γ̂(s) − γ(s)|v

≤ C h(p)v−1
∑

s∈S[−pL,pU ]

n1−v
p = C h(p)vn1−v

p ,

using Hölder’s inequality and Lemma B.3.

Proof of Lemma B.6. Eigenvalues of Ψh(p) are determined by the generalized Toeplitz

form
∑

j,k∈S[−pL,pU ] ξjγ(j−k)ξk, for real numbers ξs, s ∈ S [−pL, pU ],
∑

s∈S[−pL,pU ] ξ
2
s =

1, summing over j, k ∈ S [−pL, pU ] by construction of Ψh(p). This equals

∑

j,k∈S[−pL,pU ]

∫

Π
ei(j−k)′λf(λ)dλ ξjξk =

∫

Π

∣
∣
∣
∣
∣
∣

∑

j∈S[−pL,pU ]

eij′λξj

∣
∣
∣
∣
∣
∣

2

f(λ)dλ

∈




∫

Π

∣
∣
∣
∣
∣
∣

∑

j∈S[−pL,pU ]

eij′λξj

∣
∣
∣
∣
∣
∣

2

dλ



× [m,M ] =




∫

Π

∑

j∈S[−pL,pU ]

ξ2
j dλ



× [m,M ]

=
[
(2π)dm , (2π)dM

]
,

using γ(j−k) =
∫
Π ei(j−k)′λf(λ)dλ, (2.5) and the fact that

∫
Π ei(j−k)′λdλ = 0 if j 6= k.

Proof of Corollary B.7. If
∥
∥
∥Ψ−1
h(p)

∥
∥
∥ exists, it is the reciprocal of the smallest eigenvalue,

say μ, of Ψh(p). Using Lemma B.6 we get
∥
∥
∥Ψ−1
h(p)

∥
∥
∥ = μ−1 ≤ (2π)−dm−1 ≤ C.

Proof of Lemma B.10. The proof is a straightforward extension of Theorem 3 of Berk

(1974). Label the indices in the first row of Ψh(p) (these are identical to those in the

first row of Ψ̂h(p)) from, left to right, as as j0, j1, . . . , jh(p)−1, with j0 ≡ 0. Take

ν(p) =
(
1, eij′1λ, . . . , e

ij′
h(p)−1

λ
)′

, η(p) =
(
1, eij′1μ, . . . , e

ij′
h(p)−1

μ
)′

; λ, μ ∈ Π.

For z ∈ Cd such that |zi| ≤ 1, i = 1, . . . , d, define Dl(z) analogously to Dh(p)(z), but using

only the d̂s,h(p) corresponding to the l-th ‘lag-length’ in our ordering, l = 1, . . . , h(p). In

view of (S.3.3) it is sufficient to evaluate limh(p)→∞ h(p)−1ν(p)′Ψh(p)η(p), which equals

lim
h(p)→∞

h(p)−1

h(p)−1∑

l=0

Dl

(
e−iλ

)
Dl

(
e−iμ

)
eij′l(λ+μ)/σ2

l , (S.4.1)
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where ez = (ez1 , . . . , ezd)′ for any s ∈ Cd. If λi = −μi or λi = μi = π, i = 1, . . . , d,

the RHS of (S.4.1) equals liml→∞
∣
∣Dl

(
eiλ
)∣∣2 /σ2

l =
∣
∣D
(
eiλ
)∣∣2 /σ2 =

(
(2π)d f(λ)

)−1
, by

Lemma B.9.

If eij′l(λ+μ) 6= 1 for all jl write Dl

(
e−iλ

)
Dl

(
e−iμ

)
/σ2

l = Ul, eij′l(λ+μ) = Vl and

Vr =
∑r

l=0 Vr. Then the RHS of (S.4.1) equals

lim
h(p)→∞

h(p)−1




h(p)−2∑

l=0

(Ul − Ul+1)Vl + Uh(p)−1Vh(p)−1





= lim
h(p)→∞

h(p)−1

h(p)−2∑

l=0

(Ul − Ul+1)Vl, (S.4.2)

because limh(p)→∞ Uh(p)−1 = D
(
e−iλ

)
D
(
e−iμ

)
/σ2 < C, by Lemma B.9, and Vh(p)−1 =

(
1 − eih(p)(λ+μ)

)
/
(
1 − ei(λ+μ)

)
= O(1). Then, by Lemma B.9 it follows that the RHS

of (S.4.2) equals 0.

Lemmas B.8, B.9 and B.10 are lattice extensions of results in Berk (1974).

S.5 Almost sure convergence of estimates

By restricting the growth of C(p) relative to N further, we can strengthen the mode of

convergence to almost-sure convergence.

Theorem ST.1. Let Assumptions A, B, C and (2.12) hold, the sequence p be chosen

as a function of N such that

C(p) = O

(
N

v−1
v

(log N)
v+1

v (log log N)v

)

and C(p) < K2m as N → ∞, (S.5.1)

for some integer m such that 2m ≤ N and some K < 1. Then

∥
∥
∥d̂h(p) − dh(p)

∥
∥
∥

a.s.
−→ 0, as N → ∞.

Theorem ST.2. Under the conditions of Theorem ST.1, σ̂2
h(p)

a.s.
−→ σ2, as N → ∞.

Theorem ST.3. Let Assumptions A, B, C, (3.2) hold, and choose the sequence p as a

function of N such that

C(p)h(p)
1
2 = O

(
N

v−1
v

(log N)
v+1

v (log log N)v

)

and C(p) < K2m as N → ∞, (S.5.2)

for some integer m such that 2m ≤ N and some K < 1. Then

sup
λ∈Π

∣
∣
∣f̂h(p)(λ) − f(λ)

∣
∣
∣

a.s.
−→ 0, as N → ∞.
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Proof of Theorem ST.1. We first prove that
∥
∥ΔC(p)

∥
∥ a.s.
→ 0 and

∥
∥δh(p)

∥
∥ a.s.
→ 0, as N → ∞.

E
∥
∥ΔC(p)

∥
∥v is bounded (as in the proof of Lemma B.5) by a constant times

C(p)vN1−v ≤ C
{

(log N)v+1 (log log N)v
}−1

≤ Cm−v, (S.5.3)

by (S.5.1), so that
∥
∥ΔC(p)

∥
∥ converges completely to zero, and therefore almost surely.

An identical proof holds for
∥
∥δh(p)

∥
∥, whence the proof follows that of Theorem 2.1.

Proof of Theorem ST.2. Similar to the proof of Theorem 2.2.

Proof of Theorem ST.3. Similar to the proof of Theorem 3.1.
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