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This paper develops consistency and asymptotic normality of parameter estimates for a higher-order spa-
tial autoregressive model whose order, and number of regressors, are allowed to approach infinity slowly
with sample size. Both least squares and instrumental variables estimates are examined, and the permis-
sible rate of growth of the dimension of the parameter space relative to sample size is studied. Besides
allowing the number of parameters to increase with the data, this has the advantage of accommodating
some asymptotic regimes that are suggested by certain spatial settings, several of which are discussed.
A small empirical example is also included, and a Monte Carlo study analyses various implications of the
theory in finite samples.
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1. Introduction

Correlation in cross-sectional data poses considerable chal-
lenges, complicating both modelling and statistical inference.
When information on geographical locations is available, it may be
possible to extendmodels developed for time series data. However,
when locations are irregularly-spaced serious difficulties arise, and
frequently only information on economic (not necessarily geo-
graphic) distances is available. Spatial autoregressive (SAR) mod-
els, due to Cliff and Ord (1973), have become widely used in this
setting. Given a sample of size n, these employ a known n× n spa-
tial weights matrix whose (i, j)th element is inversely related to
somemeasure of economic distance between units i and j. The ele-
ments may also be binary, for instance taking equal values 1 when
two units are contiguous and 0 otherwise, but many other specifi-
cations are possible.

To be specific, for an n × 1 vector of observations yn, an n × k
matrix of regressors Xn and n×nweightmatricesWin, i = 1, . . . , p,
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it is assumed that there exist unknown scalars λ1, λ2, . . . , λp and
an unknown k × 1 vector β such that

yn =

p
i=1

λiWinyn + Xnβ + Un, (1.1)

where Un is an n × 1 vector of disturbances. This model, allow-
ing p > 1, has been studied by, e.g., Blommestein (1983), Huang
(1984), Huang and Ahn (1992), Anselin (2001), Lee and Liu (2010)
and Badinger and Egger (2013). In this paper we will refer to the
above as the SAR model while the SAR model without Xn will be
the pure SAR model.

Weight matrices need not be symmetric and can contain neg-
ative elements, but their diagonal elements are zero, and they are
frequently row-normalized such that each row sums to 1. IfWin has
non-negative elements, this implies that its (j, l)th element can be
interpreted as wjl,in = djl,in/

n
h=1 djh,in, where djl,in measures in-

verse distance between units j and l. Thus elements of the Win are
allowed to depend on n, so those of yn form a triangular array. Since
Xn may also depend on spatial weights, we also allow its elements
to depend on n. See e.g. Arbia (2006) for a review of spatial autore-
gressions.
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By far the most popular version of (1.1) takes p = 1, when we
write

yn = λWnyn + Xnβ + Un. (1.2)

Due to the spatially lagged yn on the right, ordinary least squares
(OLS) estimation of λ and β is problematic, but Lee (2002)
showed that under suitable conditions OLS can be consistent, and
asymptotically normal and efficient. In particular, for a divergent
positive sequence hn that is bounded away from zero uniformly in
n, consistency follows if wij,n = O


h−1
n


and asymptotic normality

if also n
1
2 /hn → 0 as n → ∞.

Instrumental variables (IV) estimation (see Kelejian and Prucha
(1998)) is n

1
2 -consistent under less restrictive conditions than OLS,

but inefficient. On the other hand, it is computationally simpler
than procedures whichmay have better statistical properties, such
as generalizedmethod ofmoments (Kelejian and Prucha, 1999; Lee
and Liu, 2010), optimal IV (Lee, 2003), Gaussian pseudo maximum
likelihood (Lee, 2004), and adaptive estimation (Robinson, 2010).
Additionally, desirable asymptotic properties of OLS and IV require
Xn to contain at least one non-intercept regressor.

In this paper we allow the spatial lag order p in (1.1) and the
number of regressors k to increase slowly with n, as opposed
to being fixed. This scheme reflects the practical reality that the
richness of a parametric model often deepens with sample size,
and has been explored previously in various settings. The model
studied in this paper is defined explicitly in the next section.

Higher-order SARmodels (such that p > 1 in (1.1)) raise serious
identifiability problems, which become more acute if p is allowed
to increase with n. Our assumptions for consistency and asymp-
totic normality imply identifiability, but the practitioner needs to
be aware of what choices of the Win can potentially afford it. It is
obvious that no Win can be a linear combination of the others, but
this property is far from sufficient (see e.g. Anselin (2001)). One
particular class ofWin will transparently avoid identifiability prob-
lems, in particular ones with ‘single nonzero diagonal block struc-
ture’. To define these, denote by Vn an n × n block diagonal matrix
with ith block Vin, a mi × mi matrix, where

p
i=1 mi = n, and for

i = 1, . . . , p obtain Win from Vn by replacing each Vjn, j ≠ i, by a
matrix of zeros. Thus Vn =

p
i=1 Win.

This structure can be thought of as extending a choice of Wn
in (1.2) suggested by Case (1991, 1992), where each of p districts
contains m farmers, so n = mp, and there is interdistrict inde-
pendence, implying a block diagonal Wn, and also homogeneous
within-district reactions, so

Wn = Ip ⊗ Bm, with Bm = (m − 1)−1 lml′m − Im

, (1.3)

where prime denotes transposition, lm is them-dimensional vector
of ones (1, . . . , 1)′, Im is the m-dimensional identity matrix and ⊗

denotes Kronecker product. For (1.1) we might then take the Win
to have single nonzero diagonal block structure such that

mi = m, Vin = Bm, i = 1, . . . , p, (1.4)

allowing SAR coefficients to vary across districts. In asymptotic
theory for (1.1) using (1.3), p is sometimes allowed to diverge with
n, and if that happens with (1.4) the number of possibly distinct λi
likewise increases. Of course (1.4)might then be extended to allow
unequal mi and Vin across i, and Vin with more complex structure.
As in the statistical literature on regressionmodels, we also allow k
to increase slowlywith n. This theme has been pursued in a variety
of models (see e.g. Huber, 1973; Berk, 1974; Robinson, 1979, 2003;
Portnoy, 1984, 1985), but not previously with SAR models. Pinkse
et al. (2002) consider nonparametric series estimation of a model
with spatial weights determined by an unknown function of eco-
nomic distances.
The following section introduces some assumptions that
are basic to our theoretical results. Further assumptions, and
theorems, for the consistency and asymptotic normality of IV and
OLS estimates are presented in Sections 3 and 4 respectively. In
Section 5 we consider some illustrations, followed by an empirical
example in Section 6.We conduct aMonte Carlo study in Section 7,
while Section 8 concludes. Proofs are in Appendices A and B

2. Model and basic assumptions

We rewrite (1.1) to stress the possible dependence of the
parameter dimension, and the parameters themselves, on n and
also introduce an endogenous regression component:

yn =

pn
i=1

λinWinyn + Hnγ(n) + Xnβ(n) + Un, (2.1)

where λ(n) =

λ1n, . . . , λpnn

′, γ(n) =

γ1n, . . . , γsnn

′ and β(n) =
β1n, . . . , βknn

′. We may write (2.1) as

Snyn = Hnγ(n) + Xnβ(n) + Un, (2.2)

where Sn = In −
pn

i=1 λinWin, or equivalently yn = Rnλ(n) +

Hnγ(n) + Xnβ(n) + Un with Rn = (W1nyn, . . . ,Wpnnyn). Xn will be
taken to comprise exogenous elements, while sn can also diverge
and the elements of Hn are allowed to be correlated with un. We
now introduce some basic assumptions.

Assumption 1. Un = (u1, . . . , un)
′ has iid elements with zero

mean and finite variance σ 2.

Assumption 2. For i = 1, . . . , pn, the diagonal elements of each
Win are zero and the off-diagonal elements of Win are uniformly
O

h−1
n


, where hn is some positive sequence which is bounded

away from zero and which may be bounded or divergent, with
n/hn → ∞ as n → ∞.

Different hin sequences for each of the Win may be used. However
for OLS estimation, even for fixed p, Lee (2002) demonstrated
that consistency requires divergence so that mini=1,...,pn hin →

∞ must be assumed. He also provided a detailed discussion of
this assumption. In IV estimation, any mixture of bounded and
divergent hin sequences may be employed. Boundedness away
from zero is crucial as even consistency of the error variance
estimate based on IV residualsmay fail if this does not hold, Indeed,
in the ‘farmer-district’ setting discussed in the previous section,
hn = m − 1.

Assumption 3. Sn is non-singular for sufficiently large n.

This assumption ensures that (2.2) has a solution for yn. In certain
special cases such as the farmer-district setting presented above,
a sufficient condition can be provided for Assumption 3. For any
s × q matrix A =


aij

we define ∥A∥R = maxi=1,...,s

q
j=1

aij, the
maximum absolute row-sum norm. The proof of the following can
be found in the Appendix.

Proposition 2.1. When for each i = 1, . . . , pn, ∥Win∥R ≤ 1 and
each Win has a single nonzero diagonal block structure, a sufficient
condition for invertibility of Sn is that |λin| < 1, i = 1, . . . , pn.

Assumption 4.
S−1

n


R,
S ′−1

n


R, ∥Win∥R and

W ′

in


R are bounded

uniformly in n and i, i = 1, . . . , pn, for sufficiently large n.

This assumption is standard, the parts pertaining to S−1
n ensuring

that the spatial correlation is curtailed to a manageable degree
because the covariance matrix of yn conditional on the regressors
is σ 2S−1

n S ′−1
n , while those for the Win are satisfied trivially if one

unit is assumed to be a ‘neighbour’ of only a finite number of other
units, and more generally satisfied if, for each i, the elements of
Win decline fast enough with n, as is natural if they are inverse
distances.
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3. Instrumental variables estimates

Because of endogeneity of the Winyn, i = 1, . . . , pn, IV estima-
tion has been employed for estimation of SAR models, and we also
introduce instruments for the endogenous component Hn. Let Zn
be an n × rn matrix of instruments, with rn ≥ pn + sn for all
n. For (1.2), Kelejian and Prucha (1998) noted that WnE (yn) can
be written as an infinite linear combination of the columns of the
matrices Xn, WnXn, W 2

n Xn, W 3
n Xn, . . . , assuming the existence of a

convergent power series for (In − λWn)
−1. The existence of such

a series is guaranteed if any matrix norm of λWn is less than 1
(see e.g. Kreyszig (2011), pg. 398). It was suggested that the part
of the instrument matrix pertaining to the spatially lagged yn be
constructed from linearly independent subsets of the columns of
Xn,WnXn,W 2

n Xn, . . . ,W
j
nXn, for some j ≥ 1. Our theory allows the

number of instruments rn to increase with n.
Write η̄(B) (respectively η(B)) for the largest (smallest) eigen-

value of a square, symmetric matrix B. For a rectangular matrix A,

define the spectral norm ∥A∥ =

η

A′A
 1

2 . For the specification
(2.1) with γ(n) = 0,

E (yn) = S−1
n Xnβ(n) =

 ∞
k=0


pn
i=1

λinWin

k
 Xnβ(n), (3.1)

assuming that the power series is well-defined, for which a suffi-
cient condition is pn

i=1

λinWin

 < 1. (3.2)

For example, (1.4) implies
pn

i=1 λinWin = diag(λ1nBm, λ2nBm, . . . ,

λpnnBm), so that
pn

i=1 λinWin
 ≤ maxi=1,...,pn |λin| ∥Bm∥. Bm has

one eigenvalue equal to 1 and also −1/(m − 1) as an eigenvalue
withmultiplicitym−1. Hence ∥Bm∥ = 1 andmaxi=1,...,pn |λin| < 1
suffices for (3.2). See also Proposition 2.1 for a similar result. If (3.1)
is indeed valid, instruments may be constructed as subsets of the
linearly independent columns of

Xn,W1nXn,W 2
1nXn, . . . ,W2nXn,W 2

2nXn, . . . ,WpnnXn,

W 2
pnnXn, . . . (3.3)

ColumnsofXn pre-multiplied by cross-products of theWin mayalso
be employed in view of (3.1). Other choices of instruments from
outside the model may be available to the practitioner, who will
also need to find instruments for Hn.

Denoting θ(n) =


λ′

(n), γ
′

(n), β
′

(n)

′

, define the IV estimate of θ(n)

as

θ̂(n) = n−1 ¯̄Q
−1

n
¯̄K

′

n J̄
−1
n [Zn, Xn]′ yn = θ(n) +

¯̄Q
−1

n
¯̄K

′

n J̄
−1
n qn, (3.4)

where ¯̄Q n =
¯̄K

′

n J̄
−1
n

¯̄K n (dimension pn + sn + kn) and ¯̄K n = n−1

[Zn, Xn]′ [Rn,Hn, Xn] (dimension (rn + kn) × (pn + sn + kn)), J̄n =

n−1 [Zn, Xn]′ [Zn, Xn] (dimension rn + kn), qn = n−1 [Zn, Xn]′ Un.
Assumption 3 implies that yn = S−1

n Hnγ(n) + S−1
n Xnβ(n) + S−1

n Un,
so Rn = An + Bn where An =


G1n


Hnγ(n) + Xnβ(n)


, . . . ,Gpnn

Hnγ(n) + Xnβ(n)

, Bn = [G1nUn, . . . ,GpnnUn] and Gin = WinS−1

n

for i = 1, . . . , pn. Also define K̄n = n−1 [Zn, Xn]′ [An,Hn, Xn], Q̄n =

K̄ ′
n J̄

−1
n K̄n, L̄n = n−1

[An,Hn, Xn]
′
[An,Hn, Xn] (dimension pn + sn +

kn). Write, respectively, a′

in, pin and aij,n for the ith row, ith column
and a typical element of [Zn, Xn], and zin for the ith column of Z ′

n.
Let C denote a generic, arbitrarily large positive constant that is
independent of n.

Assumption 5. Xn and zin are independent of ui, i = 1, . . . , n, and
max1≤i≤n, 1≤j≤rn+kn Ea2ij,n < C .
The elements of the instrument matrix corresponding to spatial
lags typically contain elements from different rows of Xn by
construction, hence the independence requirement on all ofXn. The
assumption implies E ∥ain∥2

= O (rn + kn) and E ∥pin∥2
= O (n),

uniformly in i.

Assumption 6. As n → ∞, η(J̄n) = Op(1) and

η(K̄ ′

nK̄n)
−1

=

Op(1).

Assumption 7. As n → ∞,

η(J̄n)

−1
= Op(1) and η(K̄ ′

nK̄n) =

Op(1).

These are asymptotic non-multicollinearity and boundedness
conditions, which can to some extent be checked. For instance,
if Xn contains a column of ones (i.e. (2.1) has an intercept), for
a row-normalized Win with equal off-diagonal elements (such as
(1.4)) Winyn is asymptotically collinear with the intercept. In this
case the second part of Assumption 6 fails, and in fact so does
Assumption 12, introduced later. This problem is discussed further
in Kelejian and Prucha (2002). However this does not preclude
inclusion of an intercept, as the identification conditions may in
fact hold if weight matrices are not row-normalized. A necessary

condition for both Assumption 12 and

η(K̄ ′

nK̄n)
−1

= Op(1) to
hold is that, for all i = 1, . . . , pn, Win are linearly independent for
sufficiently large n, failing which some of the λin are not identified.

Lemma 3.1. Under Assumptions 6 and 7 respectively, as n → ∞,

(i)

η

Q̄n
−1

= Op(1).

(ii) η

Q̄n


= Op(1).

Theorem 3.1. Let Assumptions 1–6 hold and

1
pn

+
1
rn

+
1
sn

+
1
kn

+
pn (rn + kn)

n
→ 0 as n → ∞. (3.5)

Thenθ̂(n) − θ(n)

 p
−→ 0, as n → ∞.

Condition (3.5) details the restrictions on the growth of the
numbers of instruments and regressors, and implies a restriction
on the growth of the parameter space because pn + sn ≤ rn. The
theorem also holds when rn (therefore pn and sn) and/or kn are
fixed, with (3.5) being altered to exclude reference to the fixed
quantity. Slightly weakened conditions yield the same result for
the just identified case pn + sn = rn, where ¯̄K n and K̄n are square

matrices so that θ̂(n) = n−1 ¯̄K
−1

n [Zn, Xn]′ yn and Q̄−1
n = K̄−1

n J̄nK̄ ′−1
n .

Corollary 3.2. Let pn + sn = rn, Assumptions 1–5 hold, and let
η(K̄ ′

nK̄n)
−1

= Op(1), (3.6)

and

1
pn

+
1
sn

+
1
kn

+
pn (pn + sn + kn)

n
→ 0 as n → ∞. (3.7)

Thenθ̂(n) − θ(n)

 p
−→ 0, as n → ∞.

A natural estimate of σ 2 is

σ̂ 2
(n) = n−1

yn − [Rn, Xn] θ̂(n)

2 . (3.8)
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Assumption 8. As n → ∞, η(L̄n) = Op(1).

Theorem 3.2. Let Assumptions 1–6 and 8 hold, and

1
pn

+
1
rn

+
1
sn

+
1
kn

+
(pn + sn + kn) (rn + kn)

n
→ 0 as

n → ∞. (3.9)

Then

σ̂ 2
(n)

p
−→ σ 2 as n → ∞.

A similar theorem holds in the just identified case pn + sn =

rn but we omit the statement for brevity. Here the requirement
that hn be bounded away from zero is crucial (see (A.7)), with
consistency possibly failing otherwise.We can also record a central
limit theorem for finitely many arbitrary linear combinations of
θ̂(n) − θ(n) under stronger conditions which restrict the growth of
pn and rn relative to n further.

Assumption 9. n−1 max1≤i≤n ∥ain∥2 p
−→ 0 as n → ∞.

This is a standard kind of requirement for a Lindeberg condition
to hold. In particular if Zn and Xn have uniformly bounded non-
stochastic elements, it is satisfied if rn + kn = o(n).

Assumption 10. There exist constant matrices Kn and Jn (Jn sym-
metric) satisfying limn→∞

η

K ′
nKn


> 0, limn→∞ η

K ′
nKn


< ∞,

limn→∞
η (Jn) > 0 and limn→∞ η (Jn) < ∞, such that (rn + kn)

1
2K̄n − Kn

 ,
J̄n − Jn

= op(1), as n → ∞.

We define Qn = K ′
nJ

−1
n Kn, and note that limn→∞ η (Qn) < ∞

and limn→∞
η (Qn) > 0 can be shown using Assumption 10, as

in Lemma 3.1. The presence of Xn in both Zn and An makes it diffi-
cult to establish elementwise laws of large numbers (or stochas-
tic orders) for the matrices inside norms, but we illustrate the
restriction imposed by the rate above using the bound derived in
(A.2) in Appendix A as an example of a rate for the norm of a ma-
trix of increasing dimension in the context of this paper. Indeed,

(rn + kn)
1
2

 ¯̄K n − K̄n

 = Op


p

1
2
n (rn + kn) /n

1
2


, which would be

negligible under (3.10) below. Another example is found in the fa-
miliar X ′

nXn/n block. If the rows x′

in of Xn are iid with elements hav-
ing finite fourth moments, then (rn + kn)

1
2
X ′

nXn/n − Exinx′

in

 =

Op


(rn + kn)

1
2 k

1
2
n /n

1
2


, which is again negligible under (3.10).

Denote by Ψn a generic q × (pn + kn) matrix of constants with full
row-rank.

Theorem 3.3. Let Assumptions 1–10 hold and

1
pn

+
1
rn

+
1
sn

+
1
kn

+
pn

r2n + k2n


n

+
(kn + sn) (rn + kn)

n
→ 0

as n → ∞. (3.10)

Then

n
1
2

(pn + sn + kn)
1
2
Ψn


θ̂(n) − θ(n)


d

−→N (0, Ξ1) , as n → ∞,

where Ξ1 = σ 2 limn→∞ (pn + sn + kn)−1 ΨnQ−1
n Ψ ′

n, which may be

consistently estimated by σ̂ 2
(n) (pn + sn + kn)−1 Ψn

¯̄Q
−1

n Ψ ′
n.
Corollary 3.3. Let pn + sn = rn, Assumptions 1–5, 7–10, (3.6) hold
and

1
pn

+
1
sn

+
1
kn

+
p3n
n

+
pn

s2n + k2n


n

+
snkn
n

→ 0

as n → ∞. (3.11)

Then

n
1
2

(pn + sn + kn)
1
2
Ψn


θ̂(n) − θ(n)


d

−→N (0, Ξ2) as n → ∞,

where Ξ2 = σ 2 limn→∞ (pn + sn + kn)−1 ΨnK−1
n JnK ′−1

n Ψ ′
n, which

may be consistently estimated by σ̂ 2
(n) (pn + sn + kn)−1 Ψn

¯̄K
−1

n J̄n
¯̄K

′−1

n Ψ ′
n.

Note that in Theorem 3.3 the condition pnr2n/n → 0 implies
pnk2n/n → 0 so long as kn = O (rn) i.e. the number of regressors in-
creases no faster than the number of instruments. In particular if rn
is fixed (implying that pn and sn are fixed), kn = O (rn) is not satis-
fied unless kn is also fixed. Similarly rnkn/n → 0 implies k2n/n → 0
if kn = O (rn).

The n
1
2 / (pn + sn + kn)

1
2 -norming is needed to ensure a finite

asymptotic covariance matrix, and implies slower than n
1
2 -con-

sistency due to the growing parameter space dimension, while
conditions (3.10) and (3.11) restrict the growth. Indeed, if only
n

1
2 -norming was employed the rows of Ψn would have to be as-

sumed to have uniformly bounded norm, which implies a simi-
lar normalization as these rows have increasing dimension. The
norming can change if the rows of Ψn contain many zero elements,
indeed the number of nonzero elements can even be allowed to in-
crease at a rate slower than the rate of increase of the parameters.
In particular, Theorem 3.3 may be easily rewritten if the interest is
in obtaining a central limit theorem for a fixed number of the pa-
rameters rather than an increasing number. If we are interested in
the first l elements of θ(n), we may take Ψn to be a 1 × (pn + kn)
non-null row vector with all elements after the lth entry equal to
zero.We then recover a n

1
2 -consistency result which indicates that

the behaviour of simple t-statistics does not change from the fixed-
dimension model (1.1) to (2.1).

Corollary 3.4. (i) Let Assumptions 1–10 and (3.10) hold. Then

n
1
2


θ̂(n) − θ(n)


l

d
−→N


0, σ 2Ω l

1


, as n → ∞,

where

θ̂(n) − θ(n)


l
denotes the first l elements of θ̂(n) − θ(n)

while the limiting top-left l × l block of Q−1
n is denoted Ω l

1.
(ii) Let pn + sn = rn, Assumptions 1–5, 7–10, (3.6) and (3.11) hold.

Then

n
1
2


θ̂(n) − θ(n)


l

d
−→N


0, σ 2Ω l

2


, as n → ∞,

where Ω l
2 denotes the limiting top-left l × l block of K−1

n JnK ′−1
n . The

asymptotic covariance matrices are estimated as in Theorem 3.3.

The setting of Case (1991, 1992) was discussed in Section 1 as a
natural motivation for the work in this paper. From an applied
point of view a parsimonious model may be desirable, and so
some districts can be allowed to have the same λi on the basis
of some homogeneity e.g. geography or demographics. There are
other reasons to allow for a slower increase of the λi than with p.
For instance, in this setting the condition p3n/n → 0 (keeping kn
fixed for simplicity) translates to p2/m → 0. For finite samples an
approximation to this would be that the ratio p2/m be small, but
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this may not be reasonable if, say, p = 10 and m = 100. It would
be natural then to allow a slower increase of the parameter space
than p, and attempts can be made to combine some λi to reduce
the ratio p2/m. Section 7 illustrates the behaviour of estimates in
this setting.

4. Least squares estimates

The model we consider in this section is (2.1) without the en-

dogenous component Hn. Redefine θ(n) =


λ′

(n), β
′

(n)

′

, and define
its OLS estimate

θ̃(n) = n−1 ¯̄L
−1

n [Rn, Xn]′ yn = θ(n) +
¯̄L
−1

n wn, (4.1)

where ¯̄Ln = n−1 [Rn, Xn]′ [Rn, Xn], wn = n−1 [Rn, Xn]′ Un. Note
that in the context of this section L̄n = n−1 [An, Xn]′ [An, Xn]. Write
t ′in, min and tij,n for the ith row, ith column and typical element of
[An, Xn] respectively.

Assumption 11. Xn is independent of ui, i = 1, . . . , n,
max1≤i≤n, pn<j≤pn+kn Et2ij,n < ∞ and max1≤i≤n, 1≤j≤pn Et2ij,n < Ck2n.

The independence of the entire regressor matrix Xn from ui is
needed due to each element of An containing elements from
different rows of Xn. The assumption implies that E ∥tin∥2

=

O

kn + pnk2n


and E ∥min∥

2
= O


nk2n

, uniformly in i. The second

part imposes finite secondmoments on elements of Xn. A sufficient
condition for the last part is E ∥Xn∥

2
R < Ck2n. This part restricts the

expectation of the squared elements of An, motivated by the fact
that the elements of An are O(kn) if Xn is taken to consist of non-
stochastic, uniformly bounded constants.

Assumption 12. As n → ∞,

η(L̄n)

−1
= Op(1).

Theorem 4.1. Let Assumptions 1–4, 8, 11, 12 hold, and

1
pn

+
1
kn

+
pnk2n (pn + kn)

n
+

pn
hn

→ 0 as n → ∞. (4.2)

Thenθ̃(n) − θ(n)

 p
−→ 0, as n → ∞.

Lee (2002) demonstrated consistency of OLS estimates for the
model (1.1), for p = 1, when hn → ∞. This condition ensures that
the endogeneity problem caused by the spatially lagged yn van-
ishes asymptotically. Our condition (4.2) is suitably strengthened
to also account for the increasing pn and kn. To obtain a central limit
theorem, we additionally assume

Assumption 13. Eu4
i = µ4 ≤ C for i = 1, . . . , n.

This is slightly weaker than Lee’s (2002) condition E |ui|
4+ϵ

≤ C
for some ϵ > 0, for both consistency and asymptotic normality.
We now introduce the OLS residual-based estimate of σ 2, defined
as

σ̃ 2
(n) = n−1

yn − [Rn, Xn] θ̃(n)

2 . (4.3)

Theorem 4.2. Let Assumptions 1–4, 8, 11–13 hold, and

1
pn

+
1
kn

+
pnk2n (pn + kn)

n
+

pn
hn

→ 0 as n → ∞. (4.4)

Then

σ̃ 2
(n)

p
−→ σ 2 as n → ∞.
Assumption 14. n−1 max1≤i≤n ∥tin∥2 p
−→ 0 as n → ∞.

This condition can be satisfied for uniformly bounded and constant
Xn elements if pnk2n = o(n), as discussed for Assumption 9.

Assumption 15. There exists a constant, symmetric matrix Ln
with limn→∞

η (Ln) > 0 and limn→∞ η (Ln) < ∞, and such that

max

p

1
2
n kn, n

1
2 p

1
2
n h−1

n

L̄n − Ln
= op(1), as n → ∞.

A similar comment to that after Assumption 10 pertaining to the
rate condition holds. Here (A.19) in Appendix A can be used as a
guide rate, and it is straightforward to see that the resulting orders
would be negligible under (4.5).

Theorem 4.3. Let Assumptions 1–4, 8, 11–15 hold, and

1
pn

+
1
kn

+
p2nk

4
n (pn + kn)

n
+ n

1
2
p

1
2
n

hn
→ 0 as n → ∞. (4.5)

Then

n
1
2

(pn + kn)
1
2
Ψn


θ̃(n) − θ(n)


d

−→N (0, Ξ3) as n → ∞,

where Ξ3 = σ 2 limn→∞ (pn + kn)−1 ΨnL−1
n Ψ ′

n, which may be esti-

mated consistently using σ̃ 2
(n) (pn + kn)−1 Ψn

¯̄L
−1

n Ψ ′
n.

Corollary 4.1. Let Assumptions 1–4, 8, 11–15 and (4.5) hold. Then

n
1
2


θ̃(n) − θ(n)


l

d
−→N


0, σ 2Ω l

3


, as n → ∞,

where

θ̃(n) − θ(n)


l
denotes the first l elements of θ̂(n)−θ(n) while the

limiting top-left l × l block of L−1
n is denoted Ω l

3, and the asymptotic
covariance matrix is estimated as in Theorem 4.3.

5. Illustrations

5.1. Panel data SAR models with fixed effects

Consider a balanced spatial panel data set with N observations
in each of T individual panels, so that n = NT . Let yt,N be the N ×1
vector of observations on the dependent variable for the tth panel,
where t may correspond to a time period or a more general spatial
unit like a school, village or district. Also let XtN and FN be N × k1
and N × k2 matrices of regressors respectively. XtN contains panel-
varying regressors while FN does not. Consider the model

ytN = lNαt + XtNβ + FNζt +

p
i=1

λiWiNyt,N + UtN ,

t = 1, . . . , T (5.1)

whereUtN is theN×1 vector of disturbances for each panel, formed
of iid components. The αt , t = 1, . . . , T , are scalar fixed effect
parameters, the λi, i = 1, . . . , p, are scalar and β is a k1 × 1
panel-invariant parameter vector, whereas ζt is a k2 ×1 parameter
vector that can vary with t . For this reason, FN may be thought of
as controlling for ‘quasi’ fixed-effects. Denote yn =


y′

1n, . . . , y
′

Tn

′,
Xn =


X ′

1n, . . . , X
′

Tn

′, Un =

U ′

1n, . . . ,U
′

Tn

′, α = (α1, . . . , αT )
′ and

ζ = (ζ1, . . . , ζT )
′. We can then stack (5.1) to obtain

yn = (IT ⊗ lN) α + Xnβ + (IT ⊗ FN) ζ

+

p
i=1

λi (IT ⊗ WiN) yn + Un. (5.2)
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Thismodel extends that of Kelejian et al. (2006), andwas employed
by Yuzefovich (2003). As n → ∞, N → ∞ and/or T → ∞, and
the dimension of ζ can diverge. Also, since the IT ⊗ WiN are block
diagonal it would be natural to fear that spatial autoregressive
parameters differ across panels, or at least among subsets of the
panels. For example, allowing a separate spatial parameter for each
panel when p = 1 implies the model

yn = (IT ⊗ lN) α + Xnβ + (IT ⊗ FN) ζ +

T
i=1

λiW
(i)
N yn + Un (5.3)

where W (i)
N has a single nonzero diagonal block structure with

Vin = WN , say, i = 1, . . . , T . (5.3) has k1 +T (k2 +1) regression pa-
rameters and T spatial parameters, making it fit naturally into the
asymptotic regime discussed in Sections 3 and 4. In this context
condition p3nk

4
n = o(n) (a sufficient condition for asymptotic nor-

mality of OLS in Section 4) translates to T 6/N → 0 as N, T → ∞.

5.2. Models with circulant weight matrices

Define W ∗

in as the symmetric circulant matrix with first row
elements given by

w∗

1j,in =


0 if j = 1 or j = i + 2, . . . , n − i;
1 if j = 2, . . . , i + 1 or j = n − i + 1, . . . , n. (5.4)

Thus the weight matrix W ∗

in encapsulates a binary neighbourhood
criterion for i neighbours on either ‘side’ of a unit (see Das et al.
(2003)). For instance, with n = 4

W ∗

1n =

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 .

Now define

Win =
W ∗

in

−1 W ∗

in, (5.5)

where
W ∗

in

 = η

W ∗

in


= 2i becauseW ∗

in is a symmetric, circulant
matrix (see e.g. Davis (1979) p. 73), implying that (5.5) is row-
normalization. Then Win is also a symmetric circulant matrix with
first row elements given by w∗

1j,in/2i.
The maximum number of neighbours is determined by n. We

must have pn < ⌈n/2⌉ where ⌈a⌉ denotes the smallest inte-
ger greater than or equal to a. The Win are easily seen to be lin-
early independent by showing linear independence of the first
rows. Indeed take any finite set {Win : i = 1, . . . , s}, and suppose
that

s
i=1 ξiw

′

1,in = 0, where w′

1,in denotes the first row of Win
and ξi are scalars. It immediately follows that ξs = 0, implyings−1

i=1 ξiw
′

1,in = 0 so ξs−1 = 0. We conclude that ξi = 0 for each
i = 1, . . . , s.

Note that OLS cannot be used to estimate (2.1) with these
Win, because as the number of neighbours increases with n this
is reflected in additional weight matrices. It is possible to obtain
consistent and asymptotically normal IV estimates, however.

6. Empirical example

In this section we provide a small empirical illustration of
how a richer model may provide more insight into economic
problems. Kolympiris et al. (2011) (henceforth KKM) attempt to
explain the level of venture capital funding (provided by venture
capital firms (VCFs)) for dedicated biotechnology firms (DBFs)with
a SAR model. In particular, the hypotheses are that the level of
VC funding for a DBF increases with the number of VCFs located
in close proximity to the DBF and with the number of other
DBFs located in close proximity to the DBF. To model this (1.1) is
employed. Denoting by dlk the distance in miles between the lth
and kth DBFs, they estimated

yn =

3
i=1

λiW b
inyn + Xnβ + Un, (6.1)

whereW b
in is the row-normalized version of aweightmatrix having

off-diagonal (l, k)th element equal to 1 if 10(i − 1) < dlk ≤ 10i,
i = 1, 2, 3, and if dlk = 0 for i = 1. Thus each weight matrix
is based on one of 3 sequential 10-mile rings from the origin DBF.
Because the number of neighbours may be taken to increase with
sample size, OLS was used. yn is taken to comprise the natural
logs of the amount of VC funding (million $) received by each of
n = 816 DBFs. The authors include several explanatory variables
in Xn, described below. The number of VCFs within 10 miles of
the origin DBF (VC010), between 10.01 and 20 miles (VC1020),
between 20.01 and 30 miles (VC2030), similarly the number
of DBFs within three 10-mile rings of the origin DBF (DBF010,
DBF1020, DBF2030) capture the effects of being in areas of high
VCF or DBF concentration. There are also firm-specific factors
for the VCFs. These include a variable that measures the natural
logarithm of the average (weighted by funding share) distance
from each DBF to the VCFs that fund it (VCDist), the average
total amount invested in all firms by each VCF that funded the
origin DBF (VCSize), the average age of each VCF (as of 2007) that
funded the origin DBF (VCAge), the average number of other DBFs
a funding VCF of the origin DBF co-invested in through syndication
(VCSynd), a dummy variable (Foreign) that equals 1 if the origin
DBF received funds from non-US VCFs (and equals 0 otherwise).
Variables controlling for DBF-specific factors include the age of a
DBF (Age, Age2) to capture concavity in the sense that a mature
firm will rely less on VCF, yet also be more attractive to VCFs. The
dummy variable SBIR equals one if the DBF received Small Business
Innovation Research (SBIR) grants (and equals 0 otherwise), while
another dummy variable (Tax) equals one if the DBF’s state had an
R&D tax credit from 1990 to 2007. Also included are an index of
the cost of doing business in the DBF’s state (Business), the distance
from a DBF to the closest university (University) and the average
total number of non-biotech establishments (Establishments) in the
DBF’s zip code from1990 to 2007. The final two variables recognize
that additional factors can affect the cost of doing business in
ways that influence the VC funding levels of a given DBF. The
first is defined as Cross = WNS × D, where WNS is a n × n non-
standardized spatial weightmatrix that identifies the firms located
within a 1-mile radius from the origin firm, and D is the n × 1
vector of the weighted distance for each firm from its financing
VCFs. Cross increases in both the number of firms within 1-mile
and in distance from funding VCFs, so it captures the potential
increase of VC funds realized by firms closely surrounded by a
large number of firms funded by distant VCFs. The second (LocalVC)
measures the number of DBFs located less than 10 miles from
the origin DBF which were funded by VCF(s) located in the same
radius that also funded the originDBF, accounting for potential cost
efficiencies realized by VCFs when they invest in proximate firms.
An intercept is also included. We omit a more detailed discussion
of the variables to conserve space, but this is available in KKM.

KKM discover that only the spatial lag corresponding to the
first 10 mile ring is significant. Of the regressors in Xn, only the
following were found to be significant at the 5% level: Age, Age2,
SBIR, VCFSynd, Foreign, LocalVC , VCDist and DBF010, apart from the
intercept. We extend the analysis by reducing the radius of the
rings used in defining neighbours to 1 mile, in keeping with our
suggestion that with a fairly large sample of 816 observations a
richer model can be estimated. The specification is

yn =

10
i=1

λiW b
inyn + Xnβ + Un, (6.2)
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Table 6.1
OLS estimates of λi in (6.2) and (6.3).

Parameter Specification
(6.2) (6.3)

λ1 0.0964* 0.1051*

(2.7428) (4.6698)
λ2 0.0823*

(2.1982)
λ3 −0.0058

(0.1482)
λ4 0.0594

(1.5344)
λ5 0.0046

(0.1299)
λ6 0.0128

(0.3753)
λ7 0.0261

(0.8168)
λ8 0.0265

(0.7951)
λ9 0.0560

(1.5007)
λ10 0.0408

(1.1477)
In parentheses are absolute t-ratios (based on heteroskedasticity-consistent
standard errors).

* 5% significance.

where now W b
in is the row-normalized version of a weight matrix

having off-diagonal (l, k)th element equal to 1 if i − 1 < dlk ≤ i,
i = 1 . . . , 10, and if dlk = 0 for i = 1.

The first columns on the right of Tables 6.1 and 6.2 report the
autoregressive and regression coefficient estimates, respectively,
from (6.2). Only the first two spatial lags are significant at the
5% level, implying that spatial dependence is restricted to a small
geographical radius. A test of λ1 = λ2 returned a t-statistic of
0.2609, not ruling out equal spatial dependence from each ring.
The regression coefficient estimates broadly correspond in sign
and magnitude to those in KKM, with three exceptions. Allowing
for ‘thinner’ rings increases the significance of DBF010, DBF2030
and VC010. The first was found to be significant at the 10% level by
KKM but is now significant at even 0.1%, while the latter two were
insignificant but are now significant at the 5% level. The impact
on VC funding of having competing DBFs in the geographical area
may operate in two opposite directions. On the one hand areas
of high DBF concentration may attract more VC funding for all
firms, while on the other the competition for VC funds may have a
negative impact. It is evident that allowing for a richer model has
enabled us to pick up the non-negligible latter impact. Similarly a
concentration of VCFs in close vicinity has a positive impact on DBF
funding. In light of the analysis above we also estimate

yn = λ1

W b

1n + W b
2n


yn + Xnβ + Un. (6.3)

The results are reported in the second columns on the right of
Tables 6.1 and 6.2. There are no major changes in the conclusions
qualitatively. DBF010 remains significant but DBF2030 no longer
does, while VC1020 also becomes significant. The intercept loses
significance marginally.

7. Monte Carlo experiments

Two sets of Monte Carlo experiments were carried out with
three aims. First, to assess the extent to which more data improve
precision of estimates despite increasing number of parameters,
and to understand the rate at which this may happen. Second, to
check the relative performance of the OLS and IV estimates for
various values of p2n/n. Third, to examine the rate of change of the
precision of estimates as the ratio p2n/n changes.
Table 6.2
OLS estimates of (6.2) and (6.3): regression coefficients.

Variables Specification
(6.2) (6.3)

Intercept −1.4542*
−1.1678

(2.1906) (1.9235)
Age (years) 0.2499* 0.2520*

(5.1138) (5.1236)
Age2 (years) −0.0120*

−0.0120*

(4.3680) (4.3631)
SBIR (binary) 0.2368* 0.2120*

(2.3253) (2.0637)
Tax (binary) −0.1503 −0.0674

(0.6215) (0.2861)
VCDist (miles) −0.0020 −0.0028

(0.6485) (0.9147)
Business 0.0034 0.0003

(0.5681) (0.0721)
Establishments 0.0174 0.0315

(0.2938) (0.5469)
VCSize 0.0000 0.0000

(0.9062) (0.9063)
VCAge 0.0049 0.0037

(0.7880) (0.6048)
VCSynd level 0.0336* 0.0350*

(5.4671) (5.7465)
Foreign (binary) 1.1754* 1.1819*

(12.6853) (12.8610)
VCDist 0.2172* 0.2214*

(5.8581) (6.0478)
Cross 0.0012 0.0000

(1.2103) (0.0618)
LocalVC 0.0229* 0.0226*

(3.3887) (3.3145)
DBF010 −0.0057*

−0.0032*

(2.9790) (2.0458)
DBF1020 −0.0022 −0.0016

(0.8710) (0.6400)
DBF2030 −0.0061*

−0.0052
(2.0223) (1.8100)

VCF010 0.0049* 0.0071*

(2.1070) (3.2732)
VCF1020 0.0052 0.0065*

(1.5818) (2.0636)
VCF2030 0.0048 0.0043

(1.5528) (1.4227)
In parentheses are absolute t-ratios (based on heteroskedasticity-consistent
standard errors).

* 5% significance.

In the first set of experiments we choseweightmatrices as (1.3)
and (1.4). The number of regressors was kept fixed at kn = 2
for simplicity, and we experimented with p = 2, 6, 18 and m =

50, 150, 450. Note that in this setting we have pn = p and n = pm
so that p2n/n = p/m. The elements of Xn were generated from a
uniformdistribution on (0, 1), and kept fixed over replications. The
ui were generated as iid draws from a standard normal (σ 2

= 1)
distribution, and instruments were constructed as in (3.3) using
only first-order spatial lags of the regressors (j = 1). The vector yn
was generatedusing (1.1) and (1.4) (withoutHn) in each of the 1000
replications. We chose β1 = 1, β2 = 0.5 and λ1 = 0.7, λ2 = 0.8,
λ3 = 0.5, λ4 = 0.8, λ5 = 0.3, λ6 = 0.6, λ7 = 0.7, λ8 = 0.8,
λ9 = 0.5, λ10 = 0.8, λ11 = 0.3, λ12 = 0.6, λ13 = 0.7, λ14 = 0.8,
λ15 = 0.5, λ16 = 0.8, λ17 = 0.3, λ18 = 0.6. For our analysis we
employ Monte Carlo average mean-squared error (AMSE) defined
as AMSE


θ̂(n)


= s−1s

i=1 MSE

θ̂in


, withMSE


θ̂in


denoting the

Monte Carlo MSE for the IV estimate of the ith element θ̂in in the
s × 1 vector θ̂(n). AMSE


θ̃(n)


is defined analogously.

Define the relative AMSE (RAMSE) as RAMSE (Q1,Q2) =

AMSE(Q1)/AMSE (Q2), for two generic estimators Q1 and Q2.
Table 7.1 presents AMSE and RAMSE of the IV and OLS estimates
for various combinations of p and m. The AMSE for both reduces
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Fig. 7.1. Monte Carlo log RAMSE for IV estimates θ̂(n) .
for fixed p and increasing m. Interestingly this happens also for
fixed m and increasing p, indicating that the claim of being able
to precisely estimate increasingly many parameters is reasonable.
The RAMSE indicates that even though OLS is asymptotically
efficient IV outperforms it in many cases. Additional simulations
(not reported here) indicate that OLS tends to perform better for
larger values of m. For instance, when p = 2 and m = 3000 the
RAMSE is 1.0301. Recall that in this setting hn = m−1, supporting
the theory that hn → ∞ is required for consistency of OLS with
a fast rate of divergence required for asymptotic normality, while
the properties of IV do not depend on the divergence of hn.

Figs. 7.1(a)–(c) and 7.2(a)–(c) plot the log RAMSE (LRAMSE)
for θ̂(n) and θ̃(n) for all possible ratios p/m. Fig. 7.1(a) illustrates
LRAMSE for the IV estimate θ̂(n) when p = 2. The points on the
horizontal axis correspond to all choices of p/m and the vertical
axis measures LRAMSE. Each solid dot on the figure marks out the
LRAMSE of θ̂(n) for a particular value ofm relative to that of θ̂(n) for
the corresponding ratio on the horizontal axis. The solid line joins
the LRAMSE form = 50, the heavy dotted line form = 150 and the
light dotted line for m = 450. Fig. 7.1(b), (c) repeats the analysis
for p = 6 and p = 18 respectively, again the solid lines joining the
LRAMSE for m = 50, the heavy dotted lines for m = 150 and the
light dotted lines form = 450. Fig. 7.2(a)–(c) does exactly the same
for the OLS estimate θ̃(n). By definition the LRAMSE of an estimate
with itself corresponds to a value of zero. Negative LRAMSE values
indicate that the estimate for which a line is plotted outperforms
the comparator indicated on the horizontal axis,while the opposite
holds true for positive values. For ease of interpretation a thin solid
horizontal line is passed through zero.
Table 7.1
Monte Carlo AMSE and RAMSE of IV and OLS estimates using (1.4).

p m 50 150 450

2 AMSE

θ̂(n)


0.0693 0.0219 0.0076

AMSE

θ̃(n)


0.0714 0.0232 0.0076

RAMSE

θ̂(n), θ̃(n)


0.9706 0.9450 1.0000

6 AMSE

θ̂(n)


0.0243 0.0071 0.0022

AMSE

θ̃(n)


0.0283 0.0074 0.0023

RAMSE

θ̂(n), θ̃(n)


0.8594 0.9599 0.9663

18 AMSE

θ̂(n)


0.0115 0.0033 0.0010

AMSE

θ̃(n)


0.0184 0.0038 0.0011

RAMSE

θ̂(n), θ̃(n)


0.6250 0.8479 0.9218

We now analyse Fig. 7.1(a) in detail. The solid line increases
through LRAMSE comparisons for estimates with p = 2 but higher
values of m. While the value of LRAMSE then dips for p = 6 and
m = 50, it is still positive. This indicates that 8 parameters are
more accurately estimated with 300 observations as opposed to
4 parameters with 100 observations. The LRAMSE then increases
in the p = 6 range, before dropping and then increasing again in
the p = 18 range. We make two comments about these results,
reflective of the discussion of Table 7.1. First, estimates become
more precise for given p with increasing m. Second, many more
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Fig. 7.2. Monte Carlo log RAMSE for OLS estimates θ̃(n) .
Table 7.2
Monte Carlo AMSE of IV estimates using (5.5).

p n 108 432 864

2 AMSE

θ̂(n)


0.3981 0.0810 0.0350

4 AMSE

θ̂(n)


2.4391 0.5684 0.2355

parameters can be estimated much more accurately with increas-
ing data. The first point suggests that in practice, when a data set of
a given size is available, researchers should try to reduce the num-
ber of parameters to obtain more precise estimates. This may be
achieved in a variety of ways in SAR models, as discussed earlier.
The heavy dotted (m = 150) and light dotted (m = 450) lines
behave in the same way, the difference being that the initial val-
ues of LRAMSE are negative. This is because, for instance, the first
point on the heavy dotted line corresponds to the LRAMSE of the
estimate with p = 2 and m = 150 to the estimate with p = 2 and
m = 50. This is simply the log of the reciprocal of the value whose
log is the secondpoint on the solid line. Analysis of the other figures
indicates the same pattern in the rate of change of the LRAMSE.

The second set of experiments employed the weight matrices
(5.5). We considered p = 2, 4, n = 108, 432, 864 and chose
λ1 = 0.2, λ2 = 0.1, λ3 = 0.2, λ4 = 0.1 to satisfy (3.2). The
remainder of the design was kept identical to that considered in
the first set of experiments. In this setting only IV estimates were
considered (cf. Section 5), with instruments given again by first-
order spatial lags of Xn. Table 7.2 presents the results. The AMSE
is seen to decline with increasing n but remain rather high for
p = 4 even when n = 864. The choice of lag order should be
economically motivated but seems to depend heavily on n, with
rather large n needed to justify even moderate choices of p.

Table 7.3 displays average Monte Carlo sizes of tests based on
IV and OLS and Theorems 3.3 and 4.3, for various combinations of
p and n, and using both specifications for weight matrices. These
Table 7.3
Monte Carlo average sizes.

p m Using (1.4) p n Using (5.5)
50 150 450 108 432 864

2 θ̂(n) 0.0590 0.0473 0.0520 2 θ̂(n) 0.0305 0.0403 0.0498
θ̃(n) 0.0612 0.0443 0.0460

6 θ̂(n) 0.0464 0.0484 0.0452 4 θ̂(n) 0.0172 0.0428 0.0535
θ̃(n) 0.0623 0.0530 0.0507

18 θ̂(n) 0.0488 0.0493 0.0511
θ̃(n) 0.0771 0.0560 0.0542
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sizes should be compared with the nominal 5%. The table indicates
that the sizes approach the nominal value as n increases, though
not always monotonically. When using (5.5) there tends to be
mostly undersizing, quite severe for smaller n owing to the issues
discussed above. On the other hand, when using (1.4) OLS usually
oversizes while IV usually undersizes, but neither does so greatly.
On the whole, the asymptotic distributions seem to provide a
reasonable approximation.

8. Conclusion

Asymptotic theory has been presented for a general class of
spatial autoregressive models with increasingly many parameters,
and with at least one non-intercept regressor. The theory is thus
not applicable to the pure SAR model or the SAR model with
only an intercept regressor, though analogous theory for this can
be developed using parameter estimates such as the Gaussian
pseudo maximum likelihood estimate (PMLE). The latter (studied
by Lee (2004) in the p = 1 case) provides consistent and efficient
estimates under weaker conditions on hn than OLS and also, unlike
OLS and IV, can estimate models with no explanatory variables, or
only an intercept. It may be worth investigating data-dependent
choices of p, though in the SAR context a higher order does not
necessarily reflect greater distance.
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Appendix A. Proofs of results in Sections 2–4

Write an = pn + sn + kn, bn = rn + kn, cn = pnk2n + kn and

τn = n
1
2 /a

1
2
n . For any matrices Fn, F̄n and ¯̄F n of equal dimension, we

will write ¯̄∆
F

n = F̄n −
¯̄F n, ∆̄F

n = Fn − F̄n.

Proof of Proposition 2.1. By definition, Sn = In − diag

λ1nV1n,

. . . , λpnnVpn


, with unit diagonal elements. With vlk,in denot-

ing a typical element of Vin, due to row-normalization we have
s≠r,m≠l |λin|

2
vrs,in

 vlm,in
 < 1 if λ2

in < 1, whence the claim
follows from Horn and Johnson (1985), p. 381, Corollary 6.4.11
(b). �

Proof of Lemma 3.1. (i) For any an ×1 vector xn satisfying ∥xn∥ =

1, x′
nK̄

′
n J̄

−1
n K̄nxn ≥ η


K̄ ′
nK̄n

/η

J̄n

, whence the lemma follows by

Assumption 6. The proof of (ii) is similar. �

Proof of Theorem 3.1. Write

θ̂(n) − θ(n) = Q̄−1
n

¯̄∆
Q

n


θ̂(n) − θ(n)


− Q̄−1

n
¯̄∆
K ′

n J̄−1
n qn + Q̄−1

n K̄ ′

n J̄
−1
n qn. (A.1)

By elementary norm inequalities
 ¯̄∆

Q

n

 ≤

 ¯̄∆
K

n

 J̄−1
n

  ¯̄∆
K

n

 +

2
K̄n

, where E
 ¯̄∆

K

n

2 is bounded by σ 2bn
i=1 E ∥pin∥2pn

j=1Gjn
2 /n2

= O (pnbn/n), by Assumption 5 and Lemma B.1. We
conclude that ¯̄∆

K

n

 = Op


n−

1
2 p

1
2
n b

1
2
n


, (A.2)
by Markov’s inequality. Then ¯̄∆
Q

n

 = Op


max


n−1pnbn, n−

1
2 p

1
2
n b

1
2
n


= Op


n−

1
2 p

1
2
n b

1
2
n


, (A.3)

by Assumption 7. Likewise E ∥qn∥2
= σ 2n

i=1 E ∥ain∥2 /n2
=

O (bn/n), by Assumption 5. By Markov’s inequality

∥qn∥ = Op


n−

1
2 b

1
2
n


. (A.4)

From (A.1),
1 −

Q−1
n

  ¯̄∆
Q

n

 θ̂(n) − θ(n)


≤
Q̄−1

n

 J̄−1
n

 ∥qn∥
 ¯̄∆

K

n

+
K̄n

 . (A.5)

By (A.3) the first factor on the LHS converges in probability to
one by (3.5) and Lemma 3.1(i), the first two factors on the RHS of
(A.5) are Op(1) by Assumption 7. The third and fourth factors have
orders given in (A.2) and (A.4) respectively, implying thatθ̂(n) − θ(n)

 = Op


max


n−1p

1
2
n bn, n−

1
2 b

1
2
n


= Op


n−

1
2 b

1
2
n


. (A.6)

This is negligible by (3.5). The proof of Corollary 3.2 is similar. �

Proof of Theorem 3.2. Write

σ̂ 2
(n) = n−1U ′

nUn − 2

θ̂(n) − θ(n)

′

wn

+


θ̂(n) − θ(n)

′
¯̄Ln

θ̂(n) − θ(n)


.

From Assumption 1, n−1U ′
nUn = σ 2

+op(1). Also by (A.6) and

(A.17) the modulus of the second term is bounded by
θ̂(n) − θ(n)


∥wn∥ = Op


max


b

1
2
n c

1
2
n /n, p

1
2
n b

1
2
n /n

1
2 h

1
2
n


while the third term

has modulus bounded byθ̂(n) − θ(n)

2 L̄n+

 ¯̄∆
L

n


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
bn max


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3
2 p
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2
n kna

1
2
n , (nhn)

−1 pn



using (A.6), (A.19) and Assumption 8. Because p
1
2
n kna

1
2
n bn/n

3
2 and

pnbn/nhn are dominated by b
1
2
n c

1
2
n /n and p

1
2
n b

1
2
n /n

1
2 h

1
2
n respectively

under (3.9), we have

σ̂ 2
(n) − σ 2

= Op


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
n−1b
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2
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2
n ,


n

1
2 h

1
2
n

−1

p
1
2
n b

1
2
n , n−1bn


, (A.7)

which is negligible by (3.9) and because hn is bounded away from
zero. �
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Proof of Theorem 3.3. Let α be any non-null q × 1 vector of
constants and write

τnα
′Ψn


θ̂(n) − θ(n)


= τnα

′ΨnQ̄−1
n

¯̄∆
Q

n


θ̂(n) − θ(n)


− τnα

′Ψn


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n

¯̄∆
K ′

n J̄−1
n

− Q̄−1
n ∆̄Q

n Q
−1
n K̄ ′

n J̄
−1
n + Q−1

n ∆̄K ′

n J̄−1
n

− Q−1
n K ′

n J̄
−1
n ∆̄J

nJ
−1
n


qn + τnα

′ΨnQ−1
n K ′

nJ
−1
n qn. (A.8)

We first show that the first term on the RHS of (A.8) is op(1). It
hasmodulus boundedby τn ∥α∥ ∥Ψn∥

θ̂(n) − θ(n)

 Q−1
n

  ¯̄∆
Q

n

 =

Op


p

1
2
n bn/n

1
2


, by (A.3), (A.6) and Assumption 7, 10. This is neg-

ligible by (3.10) because b2n ≤ 2

r2n + k2n


. Similarly (A.4), As-

sumption 6, 7, 10 and Lemma 3.1 imply that the second term on

the RHS of (A.8) is Op


b

1
2
n max

 ¯̄∆
K

n

 ,
∆̄Q

n
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∆̄K

n

 ,

∆̄J
n

,
which is negligible by (A.2), Assumption 10 and (3.10), noting that∆̄Q

n

 ≤
∆̄K

n

 J−1
n

 ∆̄K
n

+ 2 ∥Kn∥

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Because τnα
′ΨnQ−1

n K ′
nJ

−1
n qn = n−

1
2 a

−
1
2

n
n

i=1 α′ΨnQ−1
n K ′

nJ
−1
n ain

ui, we will consider nα′ΨnQ−1
n K ′

nJ
−1
n qn/vn =

n
i=1 cinui, where cin

= α′ΨnQ−1
n K ′

nJ
−1
n ain/vn and vn = σ

n
i=1(α

′ΨnQ−1
n K ′

nJ
−1
n ain)2

 1
2 .

{cinui, i = 1, . . . , n, n ≥ 1} forms a martingale difference se-
quence, by Assumption 5. It suffices to show

n
i=1 cinui

d
→N(0, 1),

conditional on zin, Xn, which follows by Theorem 2 of Scott (1973)
if conditional on zin, Xn, as n → ∞,

E


n

i=1

c2inu
2
i | uj, j < i


p

→ 1 (A.9)

and for all ξ > 0

E


n

i=1

c2inE

u2
i 1 (|cinui| > ξ) | zin, Xn


→ 0, (A.10)

with 1(·) denoting indicator function. The LHS of (A.9) equals 1,
while the LHS of (A.10) is bounded by

max
1≤i≤n

E

u2
i 1

u2
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ξ 2
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1≤i≤n
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
n
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
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Since the u2
i are uniformly integrable, it suffices to show that

max1≤i≤n c2in
p

→ 0 as n → ∞, as the last factor equals 1/σ 2. Now,
max1≤i≤n c2in ≤

Q−1
n K ′

nJ
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2 Ψ ′
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2 σ−2η (Qn) /n for large n, becausen
i=1 aina

′

in = nJ̄n. This is negligible as n → ∞ by Assumptions 6,
7 and 9. The asymptotic covariance matrix exists, and is positive
definite, by Lemma 3.1. The proof of consistency of the covariance
matrix estimate is omitted, while the proof of Corollary 3.3 is
similar, existence and positive definiteness of the asymptotic
covariance matrix guaranteed by Assumptions 6 and 7. �

Proof of Theorem 4.1. Note that sn = 0 for the proofs of the
results in Section 4. Write

θ̃(n) − θ(n) = L̄−1
n

¯̄∆
L

n


θ̃(n) − θ(n)


+ L̄−1

n wn. (A.11)

It is clear that
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Now
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
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as in the proof Theorem 3.1, but using Assumption 11.
Write grs,in for the (r, s)th element of Gin. Though we do not as-

sume that the uin have finite fourth moment in the statement of
Theorem 4.1, it is convenient to present in the current proof also
some calculations that use Assumption 13 and will be useful in
the proof of Theorem 4.3. In this case, the square of the second
term on the RHS of (A.12) has expectation
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so that
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However, with only second moments for the ui we have
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by calculations used for bounding the first term on the RHS of
(A.18), and so
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The expectation of the first term on the RHS is bounded by
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By (A.19) the first factor on the LHS above converges in probability
to one by (4.2) and Assumption 12. The first factor on the RHS of
(A.20) is Op(1) by Assumption 12, soθ̃(n) − θ(n)
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by (A.15) under Assumptions 1 and 13 butθ̃(n) − θ(n)
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by (A.17) under Assumption 1 only. These are both negligible by
(4.2). �
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Proof of Theorem 4.2. As in the IV case, we write
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This is negligible by (4.4). �

Proof of Theorem 4.3. With α any non-null q × 1 vector, write
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+ τnα

′ΨnL−1
n wn. (A.24)

We first show that first term on the RHS of (A.24) is negligible
in probability. It has modulus bounded by Cτn ∥Ψn∥

L̄−1
n

 ¯̄∆
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1
2
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1
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1
2
n /
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1
2
n kna

1
2
n /n

1
2 ,
∆̄L

n

}), by (A.15), (A.19), (A.21) and

Assumption 12. This is Op(max{p
1
2
n kna

1
2
n c

1
2
n /n

1
2 , pnc

1
2
n /hn, pnkn

a
1
2
n /hn, n

1
2 p

3
2
n /h2

n}), (using Assumption 15) which is negligible by
(4.5) because

pnk2nancn ≤ C

p3nk

4
n + p2nk

5
n


, p2ncn ≤ Cp3nk

2
n,

np3n = n2p2nn
−1pn

p2nk
2
nan = p3nk

2
n + p2nk

3
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
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2
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
.

The second term on the RHS of (A.24) is

τnα
′ΨnL−1

n wn = τnα
′ΨnL−1

n n−1 [An, Xn]′ Un

+ τnα
′ΨnL−1

n n−1 [Bn, 0]′ Un. (A.25)

The modulus of the second term on the RHS of (A.25) is bounded
by τn times

∥α∥ ∥Ψn∥
L̄−1

n

 n−1 [Bn, 0]′ Un
 . (A.26)

The second factor on the RHS above is O


a

1
2
n


, the third is

Op(1) by Assumption 12, and the fourth is Op


p

1
2
n /hn


by (A.14).

Therefore (A.26) is Op


p

1
2
n a

1
2
n /hn


and so the second term on

the RHS of (A.25) is Op


n

1
2 p

1
2
n /hn


. Under (4.5) this is op(1),

so we need to compute only the asymptotic distribution of
the first term on the RHS in (A.25), which we write as

n
i=1

finui with fin = α′ΨnL−1
n tin/dn and dn = σ

n
i=1(α

′ΨnL−1
n tin)2

 1
2 .

As in the proof of Theorem 3.3, max1≤i≤n f 2in ≤ n−1 max1≤i≤n ∥tin∥2
L−1
n

2 σ−2η (Ln) , for large enough n. This is negligible as n → ∞

by Assumptions 8, 12 and 14. The asymptotic covariance matrix
exists, and is positive definite, by Assumptions 8 and 12. The proof
of consistency of the covariance matrix estimate is omitted. �

Appendix B. Technical lemmas

Lemma B.1. Let Assumptions 3 and 4 hold. Then ∥Gin∥R and
G′

in


R

are uniformly bounded for all i = 1, . . . , pn and n ≥ 1.

Proof. For any i = 1, . . . , pn, ∥Gin∥R =
S−1

n Win

R ≤

S−1
n


R

∥Win∥R ≤ C where the last inequality follows from Assumption 4.
The claim for G′

in follows similarly. �

Lemma B.2. Let Assumptions 2–4 hold. Then, for all i = 1, . . . , pn,
the elements of Gin are uniformly O


h−1
n


as n → ∞.

Proof. Denote byw′

j,in the jth row ofWin. Then the (j, k)th element
of Gin is given by w′

j,inS
−1
n ek,n, where ek,n is the n × 1 vector with

unity in the kth position and zeros elsewhere. Then
w′

j,inS
−1
n ek,n

 ≤wj,in

R

S−1
n


R

ek,nR = O

h−1
n


. �

Lemma B.3. Let Assumptions 2–4 hold. Then, for all i = 1, . . . , pn,
the elements of a product consisting of any finite number of the Gin or
their transposes are uniformly O


h−1
n


as n → ∞.

Proof. Similar to proof of Lemma B.2. �
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