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Abstract

Event-related potential (ERP) studies feature among the most cited papers in the field of

body representation, with recent research highlighting the potential of ERPs as neuropsychi-

atric biomarkers. Despite this, investigation into how reliable early visual ERPs and body-

sensitive effects are over time has been overlooked. This study therefore aimed to assess

the stability of early body-sensitive effects and visual P1, N1 and VPP responses. Partici-

pants were asked to identify pictures of their own bodies, other bodies and houses during an

EEG test session that was completed at the same time, once a week, for four consecutive

weeks. Results showed that amplitude and latency of early visual components and their

associated body-sensitive effects were stable over the 4-week period. Furthermore, correla-

tional analyses revealed that VPP component amplitude might be more reliable than VPP

latency and specific electrode sites might be more robust indicators of body-sensitive corti-

cal activity than others. These findings suggest that visual P1, N1 and VPP responses,

alongside body-sensitive N1/VPP effects, are robust indications of neuronal activity. We

conclude that these components are eligible to be considered as electrophysiological bio-

markers relevant to body representation.

Introduction

In a pioneering study [1], a bilateral region in the lateral occipito-temporal cortex (extrastriate

body area; EBA) was identified as a module for body processing as it was found to respond

strongly and selectively to images of the human body and human body parts. Subsequent

research has revealed that EBA activity is likely involved with processing body parts and body

shape as well as possibly distinguishing identity and emotion [2, 3]. The fusiform body area

(FBA), a second body-sensitive region found ventrally on the fusiform gyrus, was described a

few years later [4]. It has been suggested that FBA and EBA contribute functionally distinct

representations of the body to person perception [5] although this is somewhat debated [6–8].

Nonetheless, it is widely accepted that the visual perception of human bodies recruits highly

specialised and selective neuronal networks in the occipital cortex [2].

Event related potential (ERP) studies have corroborated these findings, with reports of a

functional difference in early electrophysiological responses over occipito-parietal and fronto-

central electrodes when bodies are viewed in comparison to other stimuli [9]. This study was
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particularly interested in these early electrophysiological indicators of body representation.

Temporal differences between responses to bodies and other stimuli have been reported as

early as 100 ms after stimulus onset [10]. Most typically however, body-sensitive ERP

responses are reported as an enhanced negative deflection peaking at around 150 ms– 190 ms

after body viewing in comparison to viewing non-body stimuli [10–13]. Evidence from source

localisation techniques [10, 14], direct intracranial recordings [12], magnetoencephalography

[15] and transcranial magnetic stimulation (TMS) [16] has implicated EBA activity in the ori-

gins of this effect. The reported timing of the component has seen body-sensitive responses

variably referred to as N1, N170 or N190 [3, 17]. We will refer to this component as a body-

sensitive N1 throughout this paper.

In addition, reports have described a body-sensitive enhancement of the vertex positive

potential (VPP), evident over fronto-central sites, when participants view bodies in compari-

son to non-body stimuli [16, 18, 19]. Studies on the selective processing of faces suggest that

VPP responses are generated by the same neural sources as N1 responses and thus reflect the

same process [20]. Although this has been questioned [21, 22], TMS delivered to EBA has been

found to increase VPP amplitudes to bodies but not to faces, whereas TMS delivered to the

occipital face area (OFA) resulted in the reverse pattern [16]. This therefore suggests that, simi-

larly to the body-sensitive N1, body-sensitive VPP responses may also arise from EBA activity.

Investigations into body-sensitive ERP effects have typically focused on whether responses

are modulated by emotion, and whether they provide an indication of the visual processing

mechanisms employed during body perception (i.e., whether bodies are processed as a sum of

their parts or whether they are processed on a feature-by-feature basis) [11, 13, 18, 19, 23]. The

value of these findings is heavily reliant on the validity and reliability of the ERPs measured; in

other words, the extent to which they can be considered trustworthy. A trustworthy measure

must be both reliable (yields the same outcome when repeated) and valid (measures only what

it claims to measure), with the validity of a scientific measurement dependent on its reliability

[24].

Reliability is a serious concern for ERP research [25], important not only to establish

whether reported effects are trustworthy, but also in order to ascertain whether ERPs and their

associated effects are stable. It is therefore surprising that research into the reliability of visual

ERPs is sparse. To the best of our knowledge, no study has investigated the test-retest reliability

of body-sensitive ERP effects, whilst very few studies have investigated the test-retest reliability

of early visual ERP components more generally [26–28]. This is a rather worrying oversight as

ERP studies produce some of the most cited papers in the field of face and body representation.

Not only this, but the electroencephalogram (EEG) is already a useful tool in the clinical, rou-

tine assessment of neurological conditions such as cerebrovascular disease, dementia and epi-

lepsy [29]. In addition, at least two studies have reported encouraging results for the use of

ERPs as ‘neuromarkers’ or ‘vital signs’ of cognitive (dys)function [30, 31]. Thus, with a move

towards more objective neuropsychiatric evaluation techniques gathering momentum, ERPs

have been proposed as a promising tool for the assessment of cognitive processes [32]. In par-

ticular, preliminary evidence suggests that early visual processing as indexed by P1 and N1

components, may provide a ‘bio-signature’ of an important phenotype in disorders of body

image such as anorexia, bulimia and BDD [33]. Furthermore, it has been suggested that gen-

der-sensitive body processing in N1 and VPP amplitudes may be potential ERP markers of

body image disturbances in both bulimia and anorexia [34].

With reports stating that anorexia nervosa has the highest mortality rate of all psychiatric

conditions [35, 36], there have been calls to implement more evidence-based treatments and

early interventions [37]. The identification of objective, biological markers of ED symptoms is

therefore imperative work. However, it will be fruitless if such measures cannot be applied
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because the reliability of early visual ERPs and their associated body-sensitive effects has not

been established.

Thus, the primary aim of this study was to address the test-retest reliability of early visual

ERPs, namely the P1, N1 and VPP, as well as the test-retest reliability of body-sensitive ERP

effects. The reason for this was not only to inform the validity of research in the body process-

ing field, but also to address whether these components have the potential to be trustworthy

neural markers. With that in mind, participants were invited to complete the same image clas-

sification task, once a week for four consecutive weeks, (as stable visual responses have been

found within this time frame, [38]) whilst we recorded their brain’s EEG response to body and

non-body (house) stimuli. Reaction time and accuracy were also monitored in order to ascer-

tain whether potential ERP effects were related to behaviour.

Previous research has found the amplitudes of early face selective components, error-related

components and both early and late visual and auditory components to be highly reliable,

whilst their latencies appear to be less reliable [26–28, 39–42]. Reliable ERP responses to emo-

tional face stimuli within individuals have also been reported, as one study found no changes in

N170, VPP, medial frontal negativity (MFN), feedback-related negativity (FRN), P3, and late

positive potential (LPP) amplitude over a 4-week period [26]. Also, it has been reported that

face-selective ERP responses are stable at 4 years, 17 years and adulthood, as P1, N170 and

N250 amplitude, latency and topography presented similarly in all three age groups [43].

Although body perception is understood to be distinct from face perception [3, 10, 16, 17, 44],

the underlying processes are thought to be similar [9]. Therefore, in line with previous research,

we predicted that early visual ERP amplitudes and body-sensitive effects (i.e. amplitude differ-

ences between body and non-body stimuli) would be reliable, whereas early visual ERP laten-

cies may be less reliable. Finding stable ERPs and body-sensitive effects would suggest that

these electrophysiological responses could potentially serve as neuropsychiatric biomarkers.

Materials and methods

Participant information

Seven men and seven women from the University of Essex were recruited to participate.

Demographic information such as age, exercise habits and area of work and/or study were col-

lected in order to determine whether participants were primed by their lifestyle to recognise or

focus on bodies. The average age of male participants was 26 years (SD 3.45 years) and of

female participants was 31 years (SD 6.03 years). The average amount of exercise per week was

approximately 7 hours (SD 2.65 hours) for men, and 6.5 hours (SD 4.76 hours) for women.

For all participants this was generally aerobic in nature. One man and one woman reported an

area of study with particular focus on the body: Sports Science. Participants were financially

reimbursed for their time.

Exclusion criteria

Those who reported a clinical history of body perception disorders, eating disorders, or a

major psychiatric disorder such as schizophrenia or bipolar disorder, were not permitted to

take part.

One male participant failed to return after the first session so his data were not included.

During the study, another participant disclosed a transgender identity and informed us that

they were beginning the gender reassignment procedure. We felt the conflict between the

physical sex of the body and gender identity could be a potential confound to the requirements

of the task and thus excluded these data. Therefore, data were analysed from six men and six

women who completed the full 4-week test-retest protocol.
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Ethical declaration

The study was conducted in line with the 2008 Declaration of Helsinki, and was approved by

the Ethics Committee for the Department of Psychology at the University of Essex. Informed

written consent was obtained from each participant before the study commenced and all par-

ticipants consented to photographs of their body (without the head) being used as stimuli for

other participants in this study.

Apparatus and stimuli

Questionnaire. A ‘week-to-week comparison’ questionnaire was also devised and admin-

istered for the purpose of this study. It consisted of self-report questions designed to probe

how focused, stressed, tired and hungry the participants were from one session to the next. It

also assessed caffeine and medication intake whilst giving the opportunity for participants to

report ‘any other information’ that they thought may affect their performance. This was done

in order to assess consistency between sessions and also to act as a reminder to the participant

about the importance of controlling as many of these factors as possible from week to week.

EEG stimuli. Each participant saw images of houses, their own body and other partici-

pants’ bodies. Responses to own-body stimuli were collected in line with hypotheses relevant

to another research project. In particular, we were interested in a potential modulation of

body-sensitive P1, N1 and VPP components in response to own-body viewing.

Using a Minolta Dimage A2 camera, participants were photographed standing, sitting and

lying in white vest top and briefs that were provided by the experimenter. This photoshoot was

conducted against a black background that was lit by two 3x36W fluorescent units, with a cool

white colour temperature of 4100K. Images were edited using Adobe PhotoShop to ensure

backgrounds were completely black and the head was cropped.

In total, 11 pictures of each participant’s full body, without the head, were used. These

included 3 standing, 3 sitting and 3 lying down, with views of each position from the front,

side and back. There were also 2 kneeling positions included; 1 to the front and 1 to the side.

In addition, 16 pictures of each participant’s body parts were used. These depicted varying

viewpoints and included 3 of the extended torso (neck to mid-thigh), 2 of the stomach, 1 of the

chest, 1 of the torso (neck to hips), 2 of the leg bent at the knee, 3 of the whole legs and 4 of the

whole arm.

Two stimulus sets were created, one for male participants and one for female participants,

whereby ‘other’ body stimuli were images of the ‘other’ participants of the same gender. Thus,

a set of 162 ‘other-body’ stimuli and 27 ‘own-body’ stimuli, was created for each participant

(see Fig 1 for examples).

In addition, 66 whole-house images of varying viewpoints and 96 images of house parts

were downloaded from the Worldwide Web; this included 14 conservatories, 14 doors, 14

porches, 14 roofs, 14 windows, 13 images of the top half of a house and 13 images of the bot-

tom half of a house (see Fig 1).

All stimuli were 1024 pixels in width and 768 pixels in height and had their brightness

adjusted to control for luminance across all images.

Procedure

Participants were asked to individually attend five sessions; one photo session, and four EEG

test sessions that ran at the same time for four consecutive weeks. Prior to participation, each

individual was fully briefed on the procedure of each session via email.

Photograph session. The duration of the photo session was one hour. Upon arrival, par-

ticipants were given written instructions and the opportunity to ask questions before written
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consent was obtained. Following this, each participant was shown to a private booth where

they changed into a white vest top and white briefs provided by the experimenter. Sizes had

been requested in advance. All jewellery was removed and long hair was tied back. Those who

requested to wear white underwear underneath the clothing provided were permitted to.

Participants were directed by the experimenter to pose in the centre of the photographic

set-up. Each participant was given the option to view the images and delete those they did not

find satisfactory before leaving the session. None did so.

Test sessions. Participants returned for the first test session from between 1 week to 1

month after the photograph session. A standardised overview of procedures was read and writ-

ten consent was obtained at the start of each session. The week-to-week questionnaire was

completed during EEG preparation.

Participants were seated approximately 60 cm from the screen to complete an identification

task in which they had to decide whether the image shown was of their own body, another

body or a house. Emphasis was placed on speed and accuracy. They were asked to fixate on the

centre of the screen whereby a white cross was presented for 250 ms on a black background.

Stimuli were then shown for 250 ms, followed by a 1500 ms response interval that terminated

once a response was given. A random intertrial interval of between 300 ms and 700 ms sepa-

rated individual trials.

Fig 1. Example stimuli controlled for overall image brightness. (Top: whole stimuli, bottom: parts of stimuli, far left panel: house stimuli, middle

panel: female body stimuli, far right panel; male body stimuli).

https://doi.org/10.1371/journal.pone.0192583.g001
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Participants were instructed to give one of three responses by pressing either the ‘O’ key to

‘other’ with the right index finger, the ‘S’ key to ‘self’ with the left index finger, or the space bar

to ‘house’ with both thumbs.

Own-body stimuli were shown 6 times, ‘other’ body stimuli taken from the 6 other partici-

pants of the same gender and house stimuli were shown once. Thus, there were 486 trials in

total, separated into 12 blocks of 40 trials and a final block of 6 trials. The timing between

blocks was at the participant’s discretion. Stimuli were randomised with a cumulative sum-

mary of detection times and errors displayed during inter-block intervals.

ERP/EEG recording

EEG acquisition. Continuous EEG was sampled at a rate of 500 Hz from 64 Ag/AgCl elec-

trodes placed according to the international 10–10 system (EASYCAP GmbH, Herrsching,

Germany). Online, the signal was referenced to the left earlobe with impedances kept below 10

kO. Signals from the right earlobe were also recorded. Bipolar channels recorded vertical

(VEOG) and horizontal (HEOG) electro-oculogram from above and below the midpoint of

the right eye and beside the outer canthi of both eyes. Recording and offline analysis of EEG

and EOG data was conducted with Neuroscan Synamps2 system and SCAN 4.5 software

(Compumedics, Melbourne, Australia).

Offline, EEG and EOG signal were digitally filtered using a 30-Hz lowpass filter with 24 dB

slope, then re-referenced to the average of the left and right earlobes.

Segmentation. The data were divided into 600 ms epochs beginning 100 ms prior to stim-

ulus onset and baseline corrected against the mean voltage during the 100 ms pre-stimulus

period.

Artifact detection. Trials with horizontal eye movements (HEOG exceeding ± 50 μV rela-

tive to baseline), eye blinks or other artefacts (a voltage exceeding ± 100μV at any electrode rel-

ative to baseline) were rejected from further analysis.

Statistical analyses

Because we expected ‘own-body’ viewing to modulate early visual body processing, [7, 45–50],

and in order to avoid any potential confounding effects, responses to ‘own body’ stimuli were

removed from both behavioural and ERP analyses. That is, only trials in which others’ bodies

and houses were shown were entered into analyses. This is also in keeping with other studies

of early visual body processing, [10].

To allow for clearer inferences about the probabilities of both significant and nonsignifi-

cant effects in our data, Bayesian probabilities associated with the occurrence of both the null

hypothesis (H0|D) and the experimental hypothesis (H1|D) were calculated alongside stan-

dard statistics [51]. These probabilities range from 0 (no evidence) to 1 (very strong

evidence).

Behavioural analyses. Accuracy and reaction time data were subjected to a separate 2 x 4

(picture type vs. week) repeated measures ANOVA in order to assess how accurate and how

fast participants were at identifying body and house stimuli across the weeks.

Electrophysiology. ERP waveforms were averaged across the viewing conditions to be

included in analyses (other body stimuli and house stimuli) and the average number of

rejected trials per condition can be viewed in Table 1.

In order to assess the reliability of early visual ERPs and body-sensitive processing, peak

amplitude and peak latency data were analysed in P1, N1 and VPP time ranges (time windows

determined on the basis of the aggregated grand average, P1: 100 ms– 130 ms, N1: 155 ms–

195 ms, VPP: 155 ms– 195 ms) at all electrodes previously implicated in body processing.
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These included O1/2, PO3/4, PO5/6, PO7/8, P7/8, P5/6, TP7/8 and CP5/6 for P1 and N1 [10, 11,

18, 19, 23, 52–54] and F1/2, F3/4, FC1/2, FC3/4, C1/2, Fz, Fcz, Cz, CPz and Pz for the VPP [16,

18, 19, 55]. Topographic maps of individual visual components in the current sample con-

firmed this selection for occipito-parietal electrodes, whilst suggesting VPP activity might not

be as posterior as has been found in other studies (see Fig 2).

ERPs to body and house stimuli were compared to assess for selective responses to bodies

over occipito-parietal (P1 and N1 components) and fronto-central (VPP component) elec-

trodes. Body-sensitive effects and overall amplitudes and latencies of these components were

compared between weeks to assess whether early visual components and/or body processing

effects were stable over time. Reliability analyses thus addressed two questions; first, whether

early visual components are stable and second, whether body-sensitive effects are stable. Con-

sequently, both amplitude and latency data for each component were subjected to a repeated

measures ANOVA with week (week 1 vs. week 2 vs. week 3 vs. week 4), picture type (houses

vs. bodies) hemisphere (left vs. right for P1/N1 analyses only) and electrode (as above) as

within-subjects factors. To get a comprehensive idea of the robustness of each ERP at individ-

ual electrode sites, amplitudes and latencies of each component were subject to Pearson’s

product-moment correlations between weeks, separately at each electrode. To quantify the

reliability of components and body-sensitive effects, between-week robustness was further

compared to within-week robustness between nearby electrodes.

Results

Behavioural results

Accuracy analyses. A 2 x 4 (picture type vs. week) repeated measures ANOVA revealed a

main effect of picture type (F(1, 11) = 17.72 p = .001, ηp
2 = .62, p(H1|D)>.99) as participants

responded to houses more accurately than bodies each week, and a main effect of week (F(3,

33) = 4.59, p = .033, ηp
2 = .29, p(H1|D)>.71) as accuracy increased over the weeks (see Fig 3).

These main effects were qualified by a significant two-way interaction between the factors (F
(3, 33) = 5.99, p = .005, ηp

2 = .35, p(H1|D)>.92). Bonferroni corrected follow-up comparisons

showed that accuracy did not differ between the weeks in response to houses (t(11)� .843,

p = 1.00), whilst there was a significant increase in accuracy to body stimuli between weeks 2

and 3 (t(11) = 4.03, p = .012). No other differences were found (see Fig 3).

Reaction time analyses. A 2 x 4 (picture type vs. week) repeated measures ANOVA also

revealed a main effect of picture type (F(1, 11) = 45.07, p< .001, ηp
2 = .80, p(H1|D) >.99) as

participants responded to houses more quickly than bodies each week (see Fig 3) and a main

effect of week (F(3, 33) = 29.71, p< .001, ηp
2 = .73, p(H1|D)>.99) as RT decreased as the weeks

progressed. The two main effects were qualified by a significant two-way interaction (F(3, 33)

= 7.86, p = .003, ηp
2 = .42, p(H1|D)>.99). As suggested by Fig 3, Bonferroni adjusted follow-up

comparisons found that in response to bodies, performance improved between weeks 1, 2 and

3 (t(11)� 3.59, p< .025) but did not differ then between weeks 3 and 4 (t(11) = .20, p = 1.00).

In response to houses however, performance only differed between weeks 1 and 3 (t(11) =

3.59, p = .026) such that RT was quicker in week 3 (309 ms) compared to week 1 (376 ms).

Table 1. Average number of rejected trials per condition each week (n = 12), rounded to the nearest integer, out

of 162 trials. Standard deviations are in parentheses.

Week 1 Week 2 Week 3 Week 4

Bodies 40 (29) 28 (25) 28 (20) 23 (21)

Houses 40 (32) 27 (22) 34 (35) 26 (20)

https://doi.org/10.1371/journal.pone.0192583.t001
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ERP results

Both peak amplitude and peak latency data for each component were subjected to a repeated

measures ANOVA with week (week 1 vs. week 2 vs. week 3 vs. week 4), picture type (houses

Fig 2. Voltage maps for the time window of the visual P1 component, visual N1 component and visual VPP component peaks (P1 at 120 ms, N1

at 174 ms, VPP at 178 ms), collapsed over viewing conditions, confirming areas of strongest activation. Electrodes analysed, which were selected

primarily based on previous literature, have been highlighted.

https://doi.org/10.1371/journal.pone.0192583.g002

Fig 3. Left panel shows task accuracy in percent over the 4 testing weeks. Participants were more accurate to identify house stimuli (grey line) than

body stimuli (black line). Right panel shows reaction time in ms over the four testing weeks, which systematically decreased. Participants responded

faster to houses (grey line) than to body stimuli (black line).

https://doi.org/10.1371/journal.pone.0192583.g003
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vs. bodies) hemisphere (left vs. right for P1/N1 analyses only) and electrode (as above) as

within-subjects factors.

P1 peak amplitude. P1 amplitudes were found to be stable over time as ANOVA found

no effect of week (F(3, 36) = .90, p = .449, ηp
2 = .07, p(H1|D) < .01). Furthermore, amplitudes

were not modulated by picture type (F(1, 12) = .03, p = .856, ηp
2 < .01, p(H1|D) < .23), which

was a stable finding as this did not interact with week (F(3, 36) = 1.61, p = .207, ηp
2 = .12, p(H1|

D)< .04). Picture type did interact with electrode however, (F(7, 84) = 10.13, p = .003, ηp
2 =

.46, p(H1|D)>.99), with Bonferroni-adjusted follow-up comparisons revealing larger ampli-

tudes to houses (M� 3.59 μV) than to bodies (M� 2.81 μV) at electrodes TP7/8, CP5/6, P5/6

(F(1, 12)� 5.61, p�.036, ηp
2� .32), whilst at O1/2 amplitudes were larger to bodies

(M = 5.86) than to houses (M = 3.75) (F(1, 12) = 5.71, p = .034, ηp
2 = .32). This suggests that

there may be some distinction between bodies and other stimuli as early as the P1 time range

over some electrode sites (see Fig 4). Hemispheric differences were also found, (F(1, 12) =

8.67, p = .012, ηp
2 = .42, p(H1|D)>.88), as amplitudes were larger in the right hemisphere

(5.84 μV) compared to the left hemisphere (4.75 μV). In sum, P1 amplitudes are seemingly sta-

ble, are larger in the right hemisphere, and differentiate between bodies and other stimuli over

some electrodes only.

P1 peak latency. P1 latencies were found to be stable over time as ANOVA revealed no

effect of week (F(3, 33) = .05, p = .920, ηp
2 < .01, p(H1|D) < .01). Body sensitive effects were

not observed on P1 latency (F(1, 11) = 2.33, p = .155, ηp
2 = .18, p(H1|D)< .48), which was a

stable finding as there was no interaction with week (F(3, 33) = 1.02, p = .380, ηp
2 = .09, p(H1|

D)< .02) (see Fig 4). Picture type did interact with electrode however, (F(7, 77) = 14.70, p<
.001, ηp

2 = .58, p(H1|D) = 1) with faster responses to bodies compared to houses at more lateral

sites TP7/8, CP5/6, P7/8 and P5/6 (F(1, 11)� 7.86, p�.017, ηp
2� .42). Accordingly, P1 laten-

cies appear to be stable and there may be some distinction between bodies and other stimuli

over specific electrode sites.

N1 peak amplitude. ANOVA revealed that N1 amplitudes were stable over time as no

effect of week was found (F(3, 36) = 1.69, p = .210, ηp
2 = .12, p(H1|D)< .04). Body-sensitivity

was identified as a main effect of picture type (F(1, 11) = 47.98, p< .001, ηp
2 = .80, p(H1|

D)>.99), such that amplitudes were more negative to bodies (M = -5.45 μV) in comparison to

houses (M = -.22 μV). This was a stable finding as there was no interaction between picture

type and week (F(3, 36) = .56, p = .624, ηp
2 = .05, p(H1|D) < .01) (see Fig 4). Picture type was

found to interact with electrode however (F(7, 84) = 13.75, p< .001, ηp
2 = .53, p(H1|D)>.99).

Follow-up comparisons revealed body-sensitive effects at all electrode sites (F(1, 12)� 16.24, p
�.002, ηp

2� .58) but mean differences (MD) appeared to be larger at more posterior sites (P7/
8, P5/6, PO7/8, PO5/6 MD� 6.39 μV) compared to lateral and occipital sites (TP7/8, CP5/6,

PO3/4, O1/2 MD� 4.29 μV). Thus, N1 amplitudes appear to be stable and reliably body-

sensitive.

N1 peak latency. ANOVA found N1 peak latencies to be stable over time as there was no

effect of week (F(3, 33) = 1.69, p = .214, ηp
2 = .13, p(H1|D) < .05). There was also no difference

in latency between body viewing and house viewing (F(1, 11) = .43, p = .524, ηp
2 = .04, p(H1|D)

< .27), which was a stable finding as this did not interact with week (F(3, 33) = 2.88, p = .072,

ηp
2 = .21, p(H1|D) < .23). Picture type was found to interact with electrode however, (F(7, 77)

= 5.19, p< .013, ηp
2 = .32, p(H1|D)>.67). Follow-up comparisons revealed no differences

between body and house viewing at any of the electrode sites (F(1, 12)� 3.92, p� .073, ηp
2�

.26), although MD appeared to be smaller at posterior sites (P7/8, P5/6 MD� .34 ms) com-

pared to temporal (TP7/8, CP5/6 MD� 1.42 ms) or occipito-parietal sites (PO7/8, PO5/6, PO3/
4, O1/2 MD� 2.15 ms). Nonetheless, in sum, N1 latencies appear to be stable over time with-

out differentiating between bodies and other stimuli (see Fig 4).

Early visual ERPs show body sensitivity and stability over 4 weeks
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VPP peak amplitude. ANOVA found VPP amplitudes were stable over time as there was

no effect of week (F(3, 33) = 1.37, p = .276, ηp
2 = .11, p(H1|D) < .04). A body-sensitive effect

was found (see Fig 5), such that amplitudes were more positive to bodies (M = 6.48 μV) in

comparison to houses (M = 3.20 μV) (main effect of picture type: F(1, 11) = 19.58, p = .001, ηp
2

= .64, p(H1|D)>.99). This effect was also stable as picture type was not found to interact with

week (F(3, 33) = .78, p = .471, ηp
2 = .07, p(H1|D) < .02) (see Fig 5). A picture type by electrode

interaction was also found (F(14, 154) = 24.61, p< .001, ηp
2 = .69, p(H1|D) = 1), with Bonfer-

roni-adjusted follow-up comparisons revealing body-sensitive effects at all electrodes (F(1, 11)

� 10.77, p� .007, ηp
2� .50) except CPz and Pz (F(1, 11)� 4.36, p�.061, ηp

2� .28). These

findings therefore suggest that VPP amplitudes and body-sensitive effects over the VPP are sta-

ble, although such body sensitivity might not occur over more posterior regions in all studies.

VPP peak latency. VPP latencies were found to be stable as ANOVA revealed no effect of

week (F(3, 33) = 2.92, p = .073, ηp
2 = .21, p(H1|D) < .24). A main effect of picture type was

found (F(1, 11) = 13.08, p = .004, ηp
2 = .54, p(H1|D)>.97), such that VPP responses were

shorter to houses (M = 169 ms) in comparison to bodies (M = 185 ms) (see Fig 5). This effect

Fig 4. Grand averaged ERP responses during house and body viewing over the four weeks (bodies with solid lines, houses with dotted lines and

week 1 to week 4 colour coded) collapsed over electrodes O1/2, PO3/4, PO5/6, PO7/8, P7/8, P5/6, TP7/8, CP5/6. A body-sensitive N1 response is

evident each week, whilst amplitudes and latencies for both components were not found to differ between weeks.

https://doi.org/10.1371/journal.pone.0192583.g004
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was also stable as there was no interaction between picture type and week (F(3, 33) = 1.59, p =

.224, ηp
2 = .13, p(H1|D) < .05) (see Fig 5). A significant picture type by electrode interaction

was found, however (F(14, 154) = 7.33, p< .001, ηp
2 = .40, p(H1|D)>.99), with Bonferroni-

adjusted follow-up comparisons revealing differences in VPP latency between bodies and

houses at all electrodes (F(1, 11)� 5.07, p�.046, ηp
2� .32) except Pz (F(1, 11) = .08, p = .781,

ηp
2 = .01). This further suggests that body sensitivity over VPP may occur at more anterior

sites. In sum, there appears to be a distinction between bodies and other stimuli evident in

VPP latencies, which, like VPP latency itself, is a seemingly stable finding.

Interim summary of reliability analyses

Amplitudes and latencies of early visual components over occipito-parietal (P1, N1) and

fronto-central (VPP) sites appear to be stable over time. Body-sensitive effects measured here

(for some electrodes over P1, most electrodes over VPP, and all electrodes over N1) also appear

to be stable.

Fig 5. Grand averaged ERP responses during house and body viewing over the four weeks (bodies with solid lines, houses with dotted lines and

week 1 to week 4 colour coded as above) collapsed over electrodes F1/2, F3/4, FC1/2, FC3/4, C1/2, Fz, Fcz, Cz, CPz and Pz. A body-sensitive VPP

response is evident each week, whilst amplitudes and latencies were not found to differ between weeks.

https://doi.org/10.1371/journal.pone.0192583.g005
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Assessing the robustness of early visual ERPs and their associated body-

sensitive effects; the relationship between weeks at each electrode site

Visual components. The above analyses demonstrate that early visual amplitudes and

latencies are stable over time at the group level. Nevertheless, those analyses do not rule out the

possibility that some individuals show poor reliability over time, but that this is obscured by

the group-level analysis (i.e., there is no consistent time-dependence across the group to reach

statistical significance). To investigate this possibility, and to further assess the reliability of

these early visual ERPs, amplitudes and latencies for each week were averaged across condi-

tions at each electrode site used in the P1, N1 and VPP ANOVAs. Both amplitude and latency

data for each week were then subjected to separate Pearson’s product-moment correlational

analyses at each electrode. Six relationships between the weeks, representing each possible

pairing of weeks, were therefore obtained at each electrode site separately for amplitude and

latency data, and are summarised below (see Fig 6). In order to compare the reliability, across

weeks, of latency versus amplitude, r-values representing all six bivariate between-week corre-

lations were averaged for each electrode and entered into pairwise t-tests. These test revealed

that, frontally, correlations of VPP amplitudes across time were larger than correlations of

VPP latencies (t(14) = 6.82, p< .001) suggesting that VPP amplitude is more reliable that VPP

latency. However, posteriorly, analogous correlations across time for amplitudes were not sig-

nificantly different from correlations across time for latencies for either P1 (t(14) = 1.98, p =

.068) or N1 (t(14) = .60, p = .56).

For electrode sites that did not yield six significant relationships, the pairings are listed sepa-

rately in Fig 7. Upon viewing this, it is clear that early posterior amplitude and latency are less

robust at lateral sites. At least for studies that utilise body stimuli, this suggests that occipito-

parietal, rather than more temporal, sites may be a more reliable source of the P1-N1 complex.

Body-sensitive effect. In order to further assess the reliability of body-sensitive ERP

effects, the difference in amplitude between body and house viewing was calculated at each

electrode site, for each week, for both N1 and VPP components. Fig 8 illustrates these body-

sensitive ERP effects for each participant, each week, over electrodes sites where maximal

responses were recorded. This was over P7/8 for N1 and F1/2 for VPP.

Data from each week were then subjected to separate Pearson’s product-moment correla-

tional analyses at each electrode. Similarly to the previous analysis, six relationships between

the weeks, representing each possible pairing of weeks, were therefore obtained at each elec-

trode site separately for N1 and VPP data (see Fig 9). At electrode sites where six significant

relationships were not found, the pairings are listed separately in Fig 10. Upon viewing this, it

seems that fronto-central body-sensitivity might be a more robust indication of body process-

ing over time, compared to more posterior body-sensitive processing.

Between-weeks versus within-weeks comparisons of body-sensitive effects. Finally, we

sought to establish whether our reliable body-sensitive between-week amplitude correlations

were comparable in size to within-week correlations between different but overlapping clusters

of electrodes. For this analysis, body/house differences were computed at each electrode site

and four arbitrary and similar clusters of electrodes were defined: Cluster 1, FC1/2 & CZ & PZ;

Cluster 2, F3/4 & C1/2; Cluster 3, F1/2 & FC3/4; and Cluster 4, FZ & FCZ & CPZ. For each of

the four clusters and for each of the four weeks the mean amplitude VPP and N1 were calcu-

lated for each participant. These data were then correlated in two ways: (A), within each clus-

ter, all six pairs of weeks were correlated, yielding 24 correlations between weeks; and (B),

within each week, all six pairs of clusters were correlated, yielding 24 correlations within

weeks. Note that, within a given week, all clusters’ amplitude measurements were driven by

identical underlying brain activity, and recorded by very similarly located electrodes. Such
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correlations represent a notional maximum correlation for this experiment. Thus, as expected

these within-week, between-cluster correlations were very high (N1: Mean r(12) = .979, SE =

.010. VPP: Mean r(12) = .985, SE = .018. See also Fig 11). The analogous N1 and VPP between-

week, within-cluster correlations approached our notional maximum values very closely,

being 93% and 98% of the within-week r-values (N1: Mean r(12) = .909, SE = .056. VPP: Mean

r(12) = .965, SE = .016. See also Fig 12).

Discussion

The present study aimed to test the reliability, over time, of early visual ERPs and body-sensi-

tive ERP effects. We did so in order to inform the validity of research in the body processing

field, especially with respect to whether these body-sensitive components have the potential to

be trustworthy neural markers.

Fig 6. Visual ERP amplitude and latency correlations between the weeks at each analysed electrode site are depicted separately above. For each

electrode site the weakest correlation (lowest Pearson’s r-value) is depicted out of the six possible combinations of the four weeks. Left panel shows the

r-value scale: darker colours indicate stronger relationships. Shades above the solid black line were significant after FDR correction (α = .046). Right

panel shows scalp maps of analysed electrodes for each component (posterior electrodes for visual P1/N1 and anterior electrodes for visual VPP) for

both amplitude and latency. Where all relationships between all weeks were significant the electrode is outlined in black. When at least one non-

significant relationship was found between two of the weeks the electrode is outlined in grey.

https://doi.org/10.1371/journal.pone.0192583.g006
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Amplitude and latency of P1, N1 and VPP responses to body and house stimuli, recorded

over a 4-week period in six men and six women, showed that early visual components, as well

as body-sensitive effects, were reliable and stable over time. Specifically, ANOVA has shown

that group ERP values are consistent over time, as null effects for all components were

reported. Strong correlation co-efficients in the correlational analyses also show that individu-

als’ ERP values are stable over time. For example, if group averages were stable but individuals’

ERP values were randomly fluctuating, then that would lead to weak correlation coefficients.

As this is not the case, we are confident that the observed effects are due to stability, and not

random individual changes.

In addition, correlational analyses between the weeks at each electrode site showed that

VPP amplitude may be a more robust indication of early visual processing than VPP latency.

This is in line with similar findings from previous research on the reliability of other visual,

auditory, face-selective and error-related components early-, late- and face-selective visual,

auditory and error-related components [26, 40, 42].

Correlational analyses also indicated specific electrode sites that may yield more reliable

reflections of body-related N1 and VPP cortical activity, respectively. In particular, body-sensi-

tivity observed over VPP may be more robust than that which is observed more posteriorly,

over N1.

Fig 7. Visual ERP amplitude and latency correlations between weeks at electrode sites that did not yield six significant relationships. Left panel

shows the scale pertaining to Pearson’s r values, with darker colours indicative of a stronger relationship. Relationships indicated by a shade above the

solid black line were significant after FDR correction (α = .046). Right panel shows separate week-to-week correlations at electrode sites where not all

relationships were significant for P1 amplitude and P1, N1 and VPP latency. Non-significant relationships are outlined in grey; significant relationships

are outlined in black.

https://doi.org/10.1371/journal.pone.0192583.g007
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Extending on the understanding of electrophysiological body-sensitive

mechanisms

Consistent with previous research [9, 17, 56], an enhancement of electrophysiological activ-

ity over occipito-parietal and fronto-central sites was observed in the N1 and VPP time

range. This adds to the literature which proposes that bodies, like faces, are processed by spe-

cialised cortical areas [14, 57]. With respect to body sensitivity per se, these results support

the notion that N1 and VPP responses are generated from the same neuronal sources [16,

20].

We also observed relatively early temporal differences between body and house viewing

over lateral occipito-temporal sites (TP7/8, CP5/6, P7/8, and P5/6) such that the P1 peaked

earlier in response to bodies as compared to houses. Such rapid category-selective cortical acti-

vation has been shown for bodies in at least two other studies [10, 58] but seems to be a rela-

tively rare finding [17]. As we did not observe this effect at all electrode sites, it is possible that

the sites over which effects are reported may be at least partly responsible for whether early

category-specific activity is uncovered in studies of visual body perception. Moreover, we

found body-sensitive P1 latency effects to be most robust over occipito-parietal sites (particu-

larly in the right hemisphere), rather than temporal sites. As the effect in our study was seen

Fig 8. Body-sensitive effects for each participant (1–12), each week, over electrodes P7/8 for N1 and F1/2 for VPP. The left panel

shows left hemisphere electrodes, whilst the right panel shows right hemisphere electrodes. The top panel shows body-sensitivity

over N1, whilst the bottom panel shows body-sensitivity over VPP.

https://doi.org/10.1371/journal.pone.0192583.g008
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specifically over lateral occipito-temporal sites, this too may help to explain why such rapid

categorical distinctions are not always observed. Nonetheless, the present study contributes

additional evidence for rapid distinctions between bodies and non-body stimuli during the

early stages of visual analysis.

Correlational analyses also revealed that the fronto-central body-sensitivity observed

in VPP amplitudes might be more robust than the body-sensitive effects observed more

posteriorly, over N1, at least with the particular EEG montage we employed in this study

[20].

Early visual components, and early body-sensitive effects, are stable over

time

Our findings show that early visual ERP components and the body-sensitive effects within

their time ranges are stable over time within the same individuals, in line with what has been

reported for auditory, face-selective and error-related ERP components [28, 39, 43]. Moreover,

Fig 9. Correlations of body-sensitive N1/VPP effects, between the weeks, at each analysed electrode site are depicted separately above. For each

electrode site the weakest correlation (lowest Pearson’s r-value) is depicted out of the six possible combinations of the four weeks. Left panel shows the

r-value scale: darker colours indicate stronger relationships. Shades above the solid black line were significant after FDR correction (α = .046). Right

panel shows scalp maps of analysed electrodes for each component (posterior electrodes for body-sensitivity over N1 and anterior electrodes for body-

sensitivity over VPP). Where all relationships between all weeks were significant the electrode is outlined in black. When at least one non-significant

relationship was found between two of the weeks the electrode is outlined in grey.

https://doi.org/10.1371/journal.pone.0192583.g009
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correlations between the weeks at each electrode site for each component showed that ampli-

tude may be more reliable over time than latency. These correlational analyses also revealed

that P1 amplitude and latency and VPP latency may be less robust at certain sites. Specifically,

our results suggest that anterior (F1/2, F3/4, FC1/2, FC3/4, Fz and Fcz), rather than central or

posterior (C1/2, CZ, CPZ, PZ), sites may be the most robust indicators of the cortical activity

reflected at VPP. At the same time, occipito-parietal (O1/2, PO3/4, PO5/6, PO7/8, P7/8, P5/6),

rather than more temporal (TP7/8, CP5/6), sites (particularly in the right hemisphere) may be

the most robust source of cortical processes reflected at the P1-N1 complex. This is a finding

of particular significance with regards to the study of visual body perception, as it strongly sug-

gests that there are electrode sites whereby a more reliable indication of cortical activity may

be obtained (i.e. electrode sites where all correlations were significant). We therefore suggest

that our findings are considered as a potential guide for electrode selection in future studies of

visual processing and in particular, visual processing of the human body form using a similar

EEG montage.

Previous research has suggested that visual ERPs and body-sensitive ERP effects may pro-

vide a potential bio-signature of disorders characterised by body image disturbance [33, 34,

59]. The implications of such claims advocate the use of neural markers to identify ‘at risk’

individuals, or to track the severity of symptoms and the efficacy of treatment over time. How-

ever, such possibilities rely on the inherent assumption that the ERPs and their associated

effects are stable and reliable biological phenomena that are not subject to random changes

Fig 10. Correlations of body-sensitive effects between weeks at electrode sites that did not yield six significant relationships. Left panel shows the

scale pertaining to Pearson’s r values, with darker colours indicative of a stronger relationship. Relationships indicated by a shade above the solid black

line were significant after FDR correction (α = .046). Right panel shows separate week-to-week correlations at electrode sites where not all relationships

were significant for N/VPP body sensitivity. Non-significant relationships are outlined in grey; significant relationships are outlined in black.

https://doi.org/10.1371/journal.pone.0192583.g010
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within the same individual. For the first time, we provide explicit evidence in support of this

assumption. In line with previous findings for other cortical (dys)functions [30, 31], visual P1,

N1 and VPP responses, as well as body-sensitive effects, appear to have potential as

electrophysiological biomarkers.

Conclusion

The results of this study show that early visual ERPs and body-sensitive effects are stable over

time, with amplitudes relatively more stable than latencies. As a result, we confirm that P1,

N1 and VPP responses, as well as their associated body-sensitive effects, are eligible candi-

dates for research into bio-signatures of cognitive (dys)function related to body

representation.

The results of this investigation also suggest that future studies of visual perception, and

perhaps visual body perception in particular, should carefully consider the electrode sites from

which data are analysed, as some sites appear to provide a more robust indication of relevant

cortical activity than others.

Fig 11. Body-sensitive ERP amplitude correlations within-weeks between the four electrode clusters are depicted above. N1 data for the four weeks

are drawn posteriorly, while VPP data are shown anteriorly. For each week, the weakest correlation (lowest Pearson’s r-value) is depicted out of the six

possible combinations of the four clusters. Left panel shows the r-value scale: darker colours indicate stronger relationships. Shades above the solid

black line were significant after FDR correction (α = .046). Since all relationships between all clusters were significant, the circles are all outlined in

black.

https://doi.org/10.1371/journal.pone.0192583.g011
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