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Abstract—A major issue in electroencephalogram (EEG)
based brain-computer interfaces (BCIs) is the intrinsic non-
stationarities in the brain waves, which may degrade the per-
formance of the classifier, while transitioning from calibration
to feedback generation phase. The non-stationary nature of
the EEG data may cause its input probability distribution to
vary over time, which often appear as a covariate shift. To
adapt to the covariate shift, we had proposed an adaptive
learning method in our previous work and tested it on offline
standard datasets. This paper presents an online BCI system
using previously developed covariate shift detection (CSD)-based
adaptive classifier to discriminate between mental tasks and
generate neurofeedback in the form of visual and exoskeleton
motion. The CSD test helps prevent unnecessary retraining of
the classifier. The feasibility of the developed online-BCI system
was first tested on 10 healthy individuals, and then on 10
stroke patients having hand disability. A comparison of the
proposed online CSD-based adaptive classifier with conventional
non-adaptive classifier has shown a significantly (p ≤ 0.01)
higher classification accuracy in both the cases of healthy and
patient groups. The results demonstrate that the online CSD-
based adaptive BCI system is superior to the non-adaptive BCI
system and it is feasible to be used for actuating hand exoskeleton
for the stroke-rehabilitation applications.

Index Terms—Adaptive learning, Brain-computer interface,
Covariate shift detection, Hand-exoskeleton, Neurorehabilitation.

I. INTRODUCTION

S INCE its inception in 1973 by J.J. Vidal, brain-computer
interface (BCI) technology has seen a rapid growth in the

last three decades, thanks to the advancement in neurophys-
iology, electronics, signal processing, and computer science
[1]. The BCI technology has found its utility as a potential
means of communication and control for disabled people to
interact with the outside world [2]. Several features extracted
from the cortical signals such as the slow cortical potentials,
sensory motor rhythms (SMR), and P300, have been exploited
to make several applications using the BCI systems [3].

As BCI requires focused attention which is also a key
factor in regenerating motor skills, many neurorehabilitation
therapies have been designed using this technology [4], [5].

AC and AD are with the Centre of Mechatronics, Indian Institute of
Technology (IIT) Kanpur, India

HR is with School of Computer Science and Electronic Engineering,
University of Essex, UK

YKM and GP are with Intelligent Systems Research Centre, Ulster Uni-
versity, UK

Corresponding authors: AC (anir@iitk.ac.in)
Manuscript received June XX, 2017; revised Month XX, 201X.

These therapies have a potential for faster regeneration and
reorganization of the neuronal networks, often known as neu-
roplasticity [6]. The strong correlation between EEG signals
and mental tasks has led to many user centric applications
such as virtual spellers for the communication [7], func-
tional electrical stimulation (FES) based neuro-prosthesis for
tetraplegics [4], hand exoskeleton control [8], [9], [10], [11]
and telepresence for personal assistance [12]. In spite of the
seemingly bright prospect of the BCI technology, there are
some practical challenges regarding the robustness, accuracy,
and information transfer rate (ITR) of such systems [13],
[14], [15]. The non-stationary nature of neurophysiological
signals and dynamics of brain activity make the EEG-based
BCI, a dynamically varying system, and thus improving its
learning performance is a challenging task [16]. It is well-
known that due to the presence of non-stationarity, the input
data distribution of EEG varies from trial-to-trial and also from
session-to-session transfer. The non-stationarities of the EEG
signals may be caused by various reasons such as changes in
the user attention level, electrode placement, and user fatigue
[17]. As a result, these variations often appear as covariate
shifts, wherein the input data distributions differ significantly
between training/calibration and evaluation/online feedback
phases, while the conditional distribution remains the same
[18]. Within an EEG-based BCI system that operates online
in real-time non-stationary/changing environments, learning
approaches are needed that can track the changes over time,
and adapt in a timely fashion. The BCI systems, wherein the
users are trained to produce a fixed EEG pattern, are often
time-consuming and tiring for the participants [13], while the
advent of Berlin BCI system greatly shortened the subject
specific training protocols by the use of machine learning
techniques [19], [20], [21]. Thus, it speeds up the conven-
tional training protocols for improved performance [13], and
could be more natural and relevant for people with disability
[4]. Adaptive Brain Interface (ABI) was one of the earliest
examples of such BCI systems [17], later many other systems
using error potential based adaptation [22], adaptive autore-
gressive models [23], transductive learning [24], covariate
shift adaptation [18], [25], Kullback-Leiber-Common-Spatial-
Patterns (KLCSP) [26], interval-type-2-fuzzy classifiers [27]
have been implemented.

However, there is always a risk for inappropriate adap-
tation, wherein the user may be confused by the unpre-
dictable changes which may lead to degraded performance
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[22]. Although the common spatial patterns (CSP) based
feature extraction method has been widely explored to com-
pute spatial filters which give maximum feature separability,
they are not invariant against dynamic intra- and inter-session
changes in the signal, as CSP only considers the difference in
means between two classes while ignoring the scatter within
a particular class [20], [28]. Next, Li et al., [18] proposed
a covariate shift adaptation (CSA) method for improving
the performance of BCI systems. Additionally, a covariate
shift minimization (CSM) method was proposed for the non-
stationary adaptation to reduce the feature set overlap and
unbalance for different classes in the feature set domain [29].
Also, most of the covariate shift adaptation (CSA) methods
are commonly implemented in a batch processing manner,
which limits its applicability in real-time application [29],
[18], [30]. It is important to note that the non-stationary
adaptation methods are majorly categorized into passive and
active approaches [31]. However, the traditional BCI systems
are based on passive approach for non-stationary learning in
EEG. In contrast, an active approach based non-stationary
learning method in BCI system may be a possible option that
uses a CSD test to detect the presence of covariate shifts in the
streaming EEG features, and based upon the detected shift, an
adaptive action is initiated. In our previous work [16], we have
implemented the active approach in single-trial EEG classifi-
cation in offline mode and the performance of the system was
superior to existing passive approach based BCI systems [32],
[17], [29], [18], [33], [34]. However, improving the accuracy
of the online BCI system for the neurorehabilitation purpose
is still an open challenge.

Here we present an online adaptive BCI system based on
a two-stage CSD test. In the first stage of online CSD test,
it generates a shift detection warning using the exponentially
weighted moving average (EWMA) model and in the second
stage, this warning is validated by Hotelling’s T-square statis-
tical test. The second stage of the CSD test aims to reduce the
false detection rates [35], [36]. A combination of CSD test
and supervised adaptation helps to build an online adaptive
BCI system that aims to trigger a hand exoskeleton device
to provide a neurofeedback for healthy volunteers, and stroke
patients suffering from finger impairment. We have chosen
this specific area of disability as EEG pattern recognition for
finger movements is relatively challenging due to low signal-
to-noise ratio (SNR) and finger representative areas in the
somatosensory cortex are spatially over-lapping [37]. Also,
there is a need for undertaking such work because BCI systems
requiring quick calibration and user adaptation in real-time are
in high demand, while there is a real shortage of such studies
on stroke patients [38]. The key contributions of the research
in the paper are summarized as follows:

1) It implements an online adaptive BCI system and tests
it for feasibility on healthy and post-stroke individuals.

2) For user-specific adaptation, the system uses the two
stage CSD-based adaptation technique, which reduces
the rate of false shift and is applicable to online stream-
ing data..

3) It uses two feedback modes: visual feedback is given

on computer screen and proprioceptive feedback is pro-
vided through a hand exoskeleton, which also motivates
the user, for adapting to the system. Thus it facilitates
mutual learning.

4) The performance of the proposed system is demonstrated
to be superior to the conventional system non-adaptive
classifier.

The remainder of this paper proceeds as follows: Section II
presents materials and methods that include system overview,
experimental protocol, data acquisition, and signal processing
for the proposed adaptive BCI system. Next, section III
presents the performance analysis and results. Finally, Section
IV includes the discussion and section V summarizes the
findings of this study.

II. MATERIALS AND METHODS

A. System Overview

The adaptive BCI system developed for the experimentation,
uses g.USBamp (g.tec, Graz, Austria) biosignal amplifier, EEG
cap (g.tec), Ag/AgCl based EEG electrodes for recording scalp
EEG data. The experimental paradigm and software for the
signal processing and feedback generation were built in-house
using MATLAB-Simulink environment. The neurofeedback
was provided in the form of a visual hand grasp on the
computer screen and actual motion of the same grasping action
was provided using a hand-exoskeleton for moving coupled
index-middle fingers and thumb.

The exoskeleton was developed using a nylon based light
weight material by a rapid prototyping method and it is
portable and comfortable to wear [39]. It does the flexion and
extension motion of the fingers for the patients suffering from
finger impairment after stroke. The index and middle fingers
are coupled and a four-bar mechanism drives them jointly.
Although they are coupled, the finger attachments are made
in such a manner, that it doesn’t put unnecessary pressure on
the fingers. For driving the thumb, there is another four-bar
mechanism. The four-bar linkages are driven by servo motors
in position control mode for following a predefined human
finger trajectory of flexion and extension motion.
B. Experimental Protocol

An overview of the experimental protocol is shown in Fig.
1. It follows a conventional SMR BCI architecture consisting
of two stages. The first stage is the data acquisition without
giving any feedback, from which an initial classifier is trained
using the extracted features and the initial parameters for CSD
based classifier adaptation is obtained. This is followed by the
online BCI stage that issues neurofeedback on the basis of the
classifier outputs. Data acquisition during first stage consists of
two runs of 40 trials and each run takes about 7 minutes and 30
seconds. Next, the classifier was trained in the off-line mode
and it takes nearly 30 s, which is followed by one feedback
run of 40 trials in online BCI mode. In each run 20 trials are
left and remaining 20 trials are right hand MI. Therefore it is
a balanced classification problem where the chance accuracy
of the classifier is 50%. This transition from calibration to
feedback stage nearly takes only 16 mins, which is desirable
in a rehabilitation scenario, as patients may get tired and loose
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Fig. 1. An overview of the experimental protocol showing the EEG electrode placements (top-left); calibration, and online feedback generation stages (right)
and also the participant interacting with the BCI system (bottom-left).

Fig. 2. Timing diagram of a trial during online BCI run. Here feedback
trigger time instant (FTTI) = 5. The FTTI is not fixed but it varies depending
upon the selection of suitable time segment from the calibration phase. A
time-segment of 1.5 s before the FTTI is used for feature extraction, CSD
test and feedback trigger generation.

attention if the session is excessively longer. Each trial period
in the calibration phase was of 8 s (similar to that shown in
the timing paradigm of online BCI in Fig. 2), within which
first three seconds was the preparatory phase where a message
stating “Get Ready” appeared in the middle of a computer
screen. After a 2 s period, a beep sound occurred and then at
the end of the 3rd second, a cue in the form of a hand-image
appeared on the screen, either on the left or in the right side.
According to the appearance of the cue, the participants were
instructed to perform an MI task of a left or right-hand grasp.
In the calibration stage, the cue lasted up to the end of 8th

second, after which the screen goes blank for a random period
of 2 s to 3 s before the start of another trial. The acquired EEG
signals along with the class-labels are then fed into a feature
extraction module, which extracts the CSP features to train
a support vector machine (SVM) classifier with linear kernel
and also calculates the CSD parameters, later to be used in
the online-feedback BCI phase for adapting the classifier. The
process of feature extraction and classifier training was done
by taking a sliding window of 1.5 s and shifted in steps of 0.5
s to find out the interval of maximum decoding accuracy by
means of a randomized 10 fold cross-validation. This interval
was then locked to be used in the online evaluation stage to
generate neurofeedback according to the classifier’s output.
This selection of time-segment is specific to a participant. An
example of the timing diagram of a trial during online BCI
phase is shown in Fig. 2, where the feedback was triggered
at 5 s, which means that the EEG data over the period 3.5
to 5 s was used for feature extraction in this case. The time

when the feedback was triggered is termed here as feedback
trigger time instant (FTTI). Once the feedback is triggered, it
takes 3 s to complete, and hence the trial ended at 8 s. FTTI
varies from participant to participant, and it could take any
of the following [4.5, 5.0, 5.5, . . . , 8] s time points. It is to be
noted that as the feedback duration is fixed for 3 s, the trial
length extends beyond 8 s if FTTI > 5, and the trial length
is shorter than 8 s if FTTI < 5 s. The online BCI stage starts
with the initial classifier model calculated from the calibration
stage but as the trials progress, and the covariate shifts were
detected, the classifier was also retrained on new features to
adapt the changes in the new input data distribution.

C. Data Acquisition

Several fMRI studies have shown that the MI of the se-
quential hand movements involves ipsilateral cortical regions
mainly in the overlapping supplementary motor area (SMA)
and primary motor cortex (M1) [40]. Also a coupled fMRI
and EEG study pointed out that the current sources of the
finger movements are in frontal medial and parietal regions
[41]. Therefore in our study the scalp EEG was recorded with
12 electrodes covering these areas at F3, FC3, C3, CP3, P3,
FCz, CPz, F4, FC4, C4, CP4, and P4 locations according to
10-20 international system. Surface EMG electrodes were also
placed on flexor-digitorum-superficialis (FDS) muscles in the
right and left forearm to monitor any overt hand movement
during MI trials. The signals were sampled at 512 Hz and
initially filtered with 0.1 Hz to 100 Hz pass-band filter and a
notch filter at 50 Hz during data acquisition.

D. Study Participants

10 healthy volunteers and 10 hemiplegic patients partici-
pated in the experiment. All of them had no prior experience in
undergoing BCI trials. The healthy participants were in the age
group of 20-50 (mean = 41±9.21) years and the demographics
of the participating patients are given in Table. I. The patients
were recruited ensuring they had no history of epilepsy. The
cognitive impairment was also checked and patients scoring
at least 7/10 in Hodgekinson’s mini-mental test score were
considered for the experiment [42]. The participants signed
a written consent form before starting the experiments and
the experimental protocol was approved by the institute ethics
committee of IIT Kanpur, India.
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TABLE I
DEMOGRAPHICS OF THE PATIENTS

Participants Age
(Years) Gender IS

(L/R)
DS

(L/R)
TSS

(Months)
S01 48 Male Left Right 8
S02 71 Male Left Right 20
S03 63 Male Right Right 8
S04 35 Female Right Right 3
S05 24 Male Left Right 8
S06 45 Female Left Right 6
S07 48 Male Left Right 2
S08 62 Female Left Right 6
S09 28 Male Left Right 1
S10 51 Female Right Right 48

IS: Impaired Side, DS: Dominant Side, TSS: Time Since Stroke
L: Left Hand, R: Right Hand

E. Methods

The EEG-based online BCI implemented using CSD-based
adaptive classifier is abbreviated here as EEG-CSAC. For
comparative evaluation, its decoding accuracy is compared
with the case where the same classifier is not adapted (i.e. cal-
ibration stage classifier parameters remain unchanged), named
as EEG-based non-adaptive classifier (EEG-NAC). The EEG-
NAC only lacks the CSD-based adaptation part, while the rest
are same for both the methods. It is to be noted that the online
BCI was implemented only using the EEG-CSAC method and
EEG-NAC was applied later in off-line mode on the same
data, once the online BCI run is completed. This was done
to check the decoding accuracy with and without adaptation.
The methods are described as follows: First the temporal and
spatial filtering, which are common to both the EEG-NAC and
EEG-CSAC are described. Then the algorithm of EEG-NAC is
outlined followed by the details of the additional steps relating
to EEG-CSAC, which are covariate-shift detection, validation,
and adaptation.

1) Temporal and Spatial Filtering: The recorded sig-
nals have been band-pass filtered for two frequency bands
(i.e. µ= [8-12] Hz, β= [16-24] Hz). These two frequency
ranges have been chosen empirically as they provide stable
frequency response for Event-Related-Desynchronization or
Event-Related-Synchronization (ERD/ERS) [43]. Due to vol-
umetric conduction raw EEG scalp potentials do not have
good spatial resolution. If our signal of interest is dominated
by the other sources having stronger signal in the same
frequency range, EEG signal classification is affected [20].
An effective spatial filtering algorithm is common-spatial-
pattern (CSP) algorithm [44]. It is an efficient tool to analyze
multichannel EEG data for binary classification. It is basically
a supervised decomposition of signals parameterized by a

matrix W ∈ R
{
C×C

}
(C: number of channels). The matrix is

used to project the original sensor space E into the surrogate
sensor space, using eq.(1)

Z = WE (1)

where, E ∈ R
{
C×T

}
is the EEG measurement of a single-

trial and T is the number of samples per channel. W is the CSP

projection matrix. The rows of W are the spatial filters and the
columns are the common spatial patterns. A small number of
spatially filtered signals are used as features for classification
purpose. These are generally first and last rows of Z, i.e. Zt,
where t ∈

{
1...2m

}
. The feature vector is derived from Zt

by eq.(2) as,

xt = log

(
var(Zt)

2m∑
i=1

var(Zt)

)
(2)

After doing the temporal and spatial filtering, and finally
taking the log variance using (2), we obtain the feature vector
of 12 elements from which the first and last features are kept,
ignoring the elements in between. These two elements we
designate as first and second best features in Fig. 3. Thus from
two different frequency bands (i.e. µ and β) we obtain four
elements which forms the feature vector of 1 × 4 dimension
for a single trial.

2) EEG-based Non-Adaptive Classifier (EEG-NAC): In
this, a support-vector-machine (SVM) based pattern classifier
with linear kernel is built upon the common assumption that
the distribution of extracted features remains stationary over
time. In the EEG-NAC method initially an inductive classifier
is trained on the calibration dataset that consists of labeled
trials. Then, in the online BCI stage, unlabeled features from
streaming data are processed sequentially for the classification.
In this method, only EEG-based CSP features are considered
for the classification.

3) EEG-based Covariate Shift Adaptive Classifier (EEG-
CSAC): The EEG-based covariate shift adaptive classifier
(EEG-CSAC) belongs to the category of active learning ap-
proach [16], wherein the classifier parameters are updated at
each CSD during the online feedback phase. This adaptive
classifier is implemented using SVM with linear kernel. The
shift-detection is performed using the covariate shift detection
(CSD) test based on EWMA model [35], [36], [45]. The
algorithm is provided with a calibration dataset, and a classifier
f is trained. In the online BCI phase, the CSD-EWMA test is
used to detect the covariate shift and the classifier f is retrained
to update its classification decision boundary, and then the
updated classifier f is used to classify the upcoming input
data from online BCI paradigm. The interactions between the
covariate shift-detection, validation, and adaptation stages are
explained in Fig. 4 and in the following subsections.

a) Covariate Shift Warning (CSW): The first stage in
a CSD-EWMA test provides covariate shift warning in the
process. It makes an initial estimate of the covariate shift
(i.e. whether the actual shift has occurred) and is performed
by an EWMA model. If the CSD test outcome is positive,
then the second stage test gets activated, and a validation is
performed in order to reduce the number of false-alarms [35].
The EWMA model is explained by the following equation,

z(i) = λx(i) + (1− λ)z(i−1) (3)

where, the importance of the current and historical obser-
vations is decided by the parameter λ(0 < λ ≤ 1). z(i) is
the exponentially weighted moving average (EWMA) of the
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Fig. 3. Shift in the decision boundary from calibration to online feedback phase due to covariate shift, in (a) µ[8 − 12 Hz] band and (b) β[16 − 24 Hz]
band for healthy participant S01. TDB is showing the initial decision boundary after the calibration phase and FDB is showing the change in the decision
boundary due to covariate shift adaptation in the online feedback phase. The blue cross (’+’ symbols are showing the left MI features and blue circle (’o’)
symbols are showing the right MI features in the online feedback phase.

current trial and x(i) is the observation in the current trial.
By observation we mean here the first principal component of
the CSP feature of the current trial. As the EEG features are
generally multivariate, it could be misleading to monitor such
input processes independently. For example, if the probability
of one feature variable to exceed the control limit is 0.0027
then 0.27% of false detection rate is expected. Thus the use
of d independent control charts for d independent feature
variables can result into highly distorted outcomes. For this
reason principal component analysis (PCA) was used to reduce
the dimension of the feature vector and a single component
was used as the observation x(i) [16]. The CSP feature vector
(Featcsp of dimension 1 × 4) obtained from a particular
trial in the online feedback phase is transformed using PCA
coefficient matrix COEFFpca (dimension 4 × 4), calculated
from the calibration phase to get the principal components
(xpcs).

xpcs = COEFFpca.F eat
′
csp (4)

From xpcs, the first principal component is taken as the ob-
servation xi for that trial. Now, the one-step-ahead prediction
of x(i) is EWMA z(i−1), from which we can calculate the
prediction error as,

err(i) = x(i) − z(i−1) (5)

Then according to [46] the upper and lower control limits
for x(i) can be calculated as,

UCL(i) = z(i−1) + Lσerr(i−1)
(6)

LCL(i) = z(i−1) − Lσerr(i−1)
(7)

where, UCL(i) and LCL(i) are the upper and lower control
limits respectively for trial i. L is the control limit multiplier.
The value of L is chosen to be equal to 2, which is suitable
for detecting minor shifts in trial-to-trial transfer [16]. The
standard deviation σerr of the one-step ahead error err is

calculated directly using smoothed variance [35] from the
following relation,

σ2
err(i) = αerr2(i) + (1− α)σ2

err(i−1) (8)

where, α is the 5% level of significance for the confidence
interval of (1− α).

Finally, x(i) is checked whether it lies within the control
limit i.e. UCL(i) ≥ x(i) ≥ LCL(i). If x(i) falls outside
the control limit then only the covariate shift detection(CSD)
warning is raised. Once CSD warning is raised, the process
goes for the CSD validation in stage-II, to confirm the covari-
ate shift.

The CSD parameters has been generated in the calibration
phase, on the basis of which the two stage CSD test detects
the trial-to-trial shifts in the online feedback phase. There are
mainly four parameters to be obtained after the end of the
calibration phase. These are λ, z(0), σ2

err(0)
and COEFFpca.

We obtain λ by minimizing the sum of the squared one-
step-ahead prediction error, on the data recored during the
calibration phase. z(0) is the mean of the observations x
in the calibration dataset, σ2

err(0)
is obtained by dividing

the sum of squared one-step-ahead prediction errors by the
length of the calibration dataset, and COEFFpca is the PCA
coefficient matrix. These four parameters λ, z(0), σ2

err(0)
and

COEFFpca calculated from the calibration phase acts as the
initial parameters at the online feedback phase. Later, z and
σ2
err changes trial by trial during the online feedback phase,

while λ remains fixed from the calibration phase. L is a
parameter in the EEG-CSAC and it is used as the control
limit multiplier, which defines the upper and lower limits of
the shift-detection boundary. Hence, a small value of L (e.g.
L = 2) makes the shift-detection test sensitive to minor shifts,
which may occur during the trial-to-trial transfer; whereas, a
larger value of L (e.g. L = 3) is accounted for long-term
non-stationaries such as run-to-run or session-to-session [16].
As, in our study the objective is to detect the shift in trial-to-
trial transfer, the value of L = 2. The same value was chosen
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Fig. 4. Interaction between difference modules of the shift detection and
classifier adaptation for single trial detection of MI tasks.

Fig. 5. An example of CSD test is shown from many trials recorded over
several participants. Observations (x) from each trial are plotted along with
their upper and lower control limits, calculated from the EWMA model. Shift
points, detected from the two-stage CSD test are marked with arrows.

experimentally, in our previous study [16], where the same
CSD test was applied on offline analysis of BCI competition
datasets.
To show the changes in the observation of a particular trial,
with and without the shift detection the first principal compo-
nent of the CSP feature (xi) has been plotted against the upper
(UCL) and lower (LCL) control limit in Fig 5. This figure
clearly shows the trials where the x went beyond the control
limit for which shift-detection warning has been generated.
We picked a chunk of 300 trials over several runs from the
recored datasets to plot the graph in Fig. 5.

b) Covariate Shift Validation (CSV): The stage-II of the
two stage CSD test is the CSV and it is executed only if the
stage-I (i.e. CSW) raises a shift-detection warning. This stage
is introduced to reduce the number of false warnings which
leads to unnecessary retraining of the classifier. It relies on
the two sets of observations (n1 and n2); one which has been
generated during training phase (n1) and another one, which is
generated by the CSW instant (n2). The set n1 is assumed to
be stationary as it is a set of multivariate feature obtained after
spatial filtering from the calibration phase and compared with
the set n2 from the current trial at the CSW time point with
same number of multivariate features obtained after spatial
filtering in online feedback phase. Multivariate Hotelling’s T-
Squared test [47] is applied to validate the stationarity. The

advantage of using this hypothesis test is that it is a non-
parametric test and it can provide a decision whether the two
subsequences n1 and n2 are stationary with similar means.
The Hotelling’s T-Square test is based on the equation,

HT 2 = (µ1 − µ2)

{(
Σ1

|n1|
+

Σ2

|n2|

)}−1
(µ1 − µ2)′ (9)

where, Σ1 and Σ2 are the covariances and µ1 and µ2 are the
means of the two subsequences n1 and n2 respectively. The
lengths of the sub-sequences n1 and n2 are denoted as |n1|
and |n2| respectively. The covariate shift warning is validated
only if the p value of the test is less than 0.05 and thus the
detection of shift is confirmed.

c) Covariate Shift Adaptation (CSA): Once the CSD is
validated, the adaptation phase starts (see Fig. 4). It is assumed
that in each trial, the true label is available (as is the case
in a rehabilitation application, where the MI instruction is
provided with a cue in each trial). The data corresponding
to correct labels are appended to the existing training data
used for classifier training and the updated data are then used
to retrain the classifier. The retrained classifier is then used
to classify the upcoming data. On each CSD, the calibration
data thus gets updated and a classifier is built and adapted
incrementally.

4) Classification and Evaluation Metrics: The performance
of the system is measured on the basis of the classification
accuracy. The classification accuracy of the SVM pattern
classifier f is given in percentage (%). The performance of
the CSD test is measured in percentage (%) for the CSW and
CSV, which are as given in (10) and (11) respectively.

CSW (%) =

(
Number of shift detected

Total number of trials

)
× 100 (10)

CSV (%) =

(
Number of shift validated

Total number of trials

)
× 100 (11)

The statistical significance of the results is assessed using
the Wilcoxon signed rank test for the pairwise comparison
between EEG-NAC and EEG-CSAC at confidence level 0.01.

III. RESULTS

The superiority of the proposed EEG-CSAC method is
shown by comparing its decoding accuracy with the conven-
tional EEG-NAC method, both in case of healthy and patient
groups. Also the performance of the two-stage CSD algorithm
in reducing the false detection by CSV is shown by comparing
the percentage of CSW and CSV for each participant. We also
investigated the co-relation between CSV and the improvement
in accuracy due to EEG-CSAC, to get an idea of how sensitive
EEG-CSAC is with respect to the occurrence of the actual
covariate-shifts in the streaming data.

The classification accuracies of EEG-NAC and EEG-CSAC
for the healthy participant group are shown in Table II and
that for patient group are shown in Table III. In case of the
EEG-NAC method, the average classification accuracy for the
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healthy group was found to be 75.25 ± 5.46%, while for the
same group EEG-CSAC method yielded an significantly (p <
0.01) increased average accuracy of 81.5± 4.89%. In case of
the patient group, we obtained an average accuracy of 70.25±
3.43% for EEG-NAC while for the patient group also EEG-
CSAC performed significantly (p < 0.01) superior with an
average accuracy of 75.75 ± 3.92%. The comparison of the
classification accuracy distribution for the methods used in
the experimental process is shown in Fig. 6 for healthy and
patient groups. Tables II & III also show the time-points of
feedback trigger in the 5th column with the heading FTTI, i.e.
Feedback trigger time instance. The average FTTI for healthy
is 6.35 ± 1.06 s and average FTTI of patient is 7.30 ± 0.67
s. A two tailed paired t-test reveals that the healthy group’s
FTTI is significantly lesser than the patient group’s FTTI.

The Kappa values are also calculated apart from the accu-
racy to highlight the efficiency of the classifiers as sensitivity
and specificity measures are implicit in its calculation process
and it is also feasible to show the performance for all the
participants within a limited space. The comparison of kappa
values between the two classifiers also show the significantly
(p-value< 0.01) higher performance of EEG-CSAC than EEG-
NAC, which further reinforces our claim. The kappa values are
shown in Table IV.

TABLE II
CLASSIFICATION ACCURACIES IN HEALTHY GROUP (H)

Healthy Group (H)
Calibration Online Feedback

Participants 10-CV
(%)

EEG-NAC
(%)

EEG-CSAC
(%) FTTI

S01 68.75 70.00 72.50 7
S02 75.00 85.00 87.50 4.50
S03 87.50 80.00 82.50 7.00
S04 82.50 75.00 80.00 8.00
S05 87.50 77.50 80.00 6.50
S06 87.50 80.00 87.50 6.50
S07 75.00 75.00 82.50 6.50
S08 67.50 70.00 82.50 5.00
S09 87.50 67.50 85.00 5.50
S10 66.25 72.50 75.00 7.00

Mean 78.50 75.25 81.50 6.35
Std 9.01 5.46 4.89 1.06

p value (between EEG-NAC vs. EEG-CSAC) <0.01
FTTI: Feedback Trigger Time Instant; 10-CV = 10-Fold Cross

Validation

Estimation of the information transfer rate (ITR) is also
necessary to measure the performance of the system imple-
mented online. Table V shows the ITR for each classifier for
all the participants (healthy and patients). The ITR has been
calculated in bits/trial according to the formula given in [48].

B = log2N + P log2 P + (1− P ) log2

1− P
N − 1

(12)

where, B is the information transfer rate, N = number of
classes, P = accuracy (expressed between 0 to 1). Results
show that the average increase in the accuracy of 5.88% leads
to an average increase in ITR of 9.84%, which is 1.6735 times
of the increase in accuracy. This finding is in harmony with

TABLE III
CLASSIFICATION ACCURACIES IN PATIENT GROUP (P)

Patient Group (P)
Calibration Online Feedback

Participants 10-CV
(%)

EEG-NAC
(%)

EEG-CSAC
(%) FTTI

S01 87.50 70.00 72.50 8.00
S02 91.25 67.50 72.50 6.50
S03 90.00 75.00 82.50 7.50
S04 77.50 65.00 72.50 7.50
S05 91.25 75.00 77.50 6.00
S06 91.25 67.50 72.50 7.00
S07 68.75 67.50 75.00 8.00
S08 78.75 72.50 75.00 7.50
S09 53.75 72.50 82.50 8.00
S10 66.25 70.00 75.00 7.00

Mean 79.63 70.25 75.75 7.30
Std 13.11 3.43 3.92 0.67

p value (between EEG-NAC vs. EEG-CSAC) <0.01
FTTI: Feedback Trigger Time Instant; 10-CV = 10-Fold Cross

Validation

TABLE IV
KAPPA VALUES IN HEALTHY (H) AND PATIENT (P) GROUPS

Healthy Group (H) Patient Group (H)
Participants EEG-NAC EEG-CSAC EEG-NAC EEG-CSAC

S01 0.40 0.45 0.40 0.45
S02 0.70 0.75 0.35 0.45
S03 0.60 0.65 0.50 0.65
S04 0.50 0.60 0.30 0.45
S05 0.55 0.60 0.50 0.55
S06 0.60 0.75 0.35 0.45
S07 0.50 0.65 0.35 0.50
S08 0.40 0.65 0.45 0.50
S09 0.35 0.70 0.45 0.65
S10 0.45 0.50 0.40 0.50

Mean 0.51 0.63 0.41 0.52
Std 0.10 0.09 0.06 0.07

the argument provided in [48], that a slight improvement in
accuracy can influence the information transfer rate to a great
extent.

The choices of the smoothing constant λ for the CSD tests
are given in Table VI (2nd column) & Table VII (2nd column)
for healthy and patient groups respectively. The results of
CSW & CSV are shown in the 3rd and 4th columns of the
Table VI & Table VII, respectively for healthy and patient
groups. The average rate of CSW in healthy group was
found as 15.75 ± 5.65%, while in the patient group it was
16.75 ± 2.89%. However, after the CSV at stage II, the rate
of CSD reduced significantly (p < 0.01), as the average CSV
rates for healthy group and patient group were 9.25 ± 3.54
and 9 ± 2.10 respectively. We also investigated the corre-
lation between the variation of accuracy difference between
EEG-CSAC and EEG-NAC and the variation in CSV rates,
which reveals that there is a positive correlation (r = 0.853,
p < 0.01) between these two quantities, as seen in Fig. 7.
The CSV rate and accuracy difference between EEG-NAC and
EEG-CSAC are shown in Table VIII for all participants across
the two participant groups.
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TABLE V
THE ITRS FOR TWO DIFFERENT CLASSIFIERS ACROSS ALL THE

PARTICIPANTS

ITR(bits/trial)
Group Participants EEG-NAC EEG-CSAC Difference

Healthy

S01 0.1187 0.1515 0.0327
S02 0.3902 0.4564 0.0663
S03 0.2781 0.3310 0.0529
S04 0.1887 0.2781 0.0894
S05 0.2308 0.2781 0.0473
S06 0.2781 0.4564 0.1784
S07 0.1887 0.3310 0.1423
S08 0.1187 0.3310 0.2123
S09 0.0903 0.3902 0.2999
S10 0.1515 0.1887 0.0373

Patients

S01 0.1187 0.1515 0.0327
S02 0.0903 0.1515 0.0612
S03 0.1887 0.3310 0.1423
S04 0.0659 0.1515 0.0855
S05 0.1887 0.2308 0.0421
S06 0.0903 0.1515 0.0612
S07 0.0903 0.1887 0.0985
S08 0.1515 0.1887 0.0373
S9 0.1515 0.3310 0.1795
S10 0.1187 0.1887 0.0700

Mean 0.1644 0.2629 0.0984

TABLE VI
λ VALUES AND CSD TEST METRICS IN HEALTHY (H) GROUP

Healthy Group
Participants lambda λ CSW in (%) CSV in (%)

S01 0.10 10.00 7.50
S02 0.80 7.50 5.00
S03 0.20 10.00 7.50
S04 0.10 20.00 7.50
S05 0.10 12.50 7.50
S06 0.10 20.00 12.50
S07 0.70 15.00 12.50
S08 0.30 17.50 12.50
S09 0.90 25.00 15.00
S10 0.20 20.00 5.00

Mean 0.35 15.75 9.25
Std 0.32 5.65 3.54

p-value (CSW vs. CSV) < 0.01

IV. DISCUSSION

The results produced by the experiments prove two major
claims made in the paper. The first is that EEG-CSAC based
online adaptation leads to superior performance of the BCI
system in terms of classification accuracy (p < 0.01), as
compared to the conventional EEG-NAC method. The fact
that it occurred both in the case of healthy as well as patient
groups, establishes the robustness of the method. The second
is that the two-stage covariate shift detection test significantly
(p < 0.01) reduced the number of re-training of the classifier
in a single run of the online BCI. As each time a valid shift is
detected, the classifier needs to be re-trained; the CSV values
in Table VI & Table VII show the requirement of classifier
re-training for each participant. Similarly, CSW values in
Table VI & Table VII show the re-training requirement of the
classifier without using the second stage of the two-stage CSD

TABLE VII
λ VALUES AND CSD TEST METRICS IN PATIENT (P) GROUP

Patinet Group
Participants lambda λ CSW in (%) CSV in (%)

S01 0.1 20.00 7.50
S02 0.3 15.00 7.50
S03 0.2 15.00 10.00
S04 1.0 20.00 12.50
S05 0.7 12.50 7.50
S06 0.1 12.50 7.50
S07 0.1 17.50 12.50
S08 0.3 17.50 7.50
S09 0.2 17.50 100
S10 0.2 20.00 7.50

Mean 0.32 16.75 9.00
Std 0.2974 2.89 2.1

p-value (CSW vs. CSV) < 0.01

TABLE VIII
RELATION BETWEEN EEG-NAC TO EEG-CSAC ACCURACY

IMPROVEMENT AND CSV FOR HEALTHY (H) AND PATIENTS (P) GROUPS

EEG-NAC to
Group Subject CSV in (%) EEG-CSAC change(%)

Healthy

S01 7.50 2.50
S02 5.00 2.50
S03 7.50 2.50
S04 7.50 5.00
S05 7.50 2.50
S06 12.50 7.50
S07 12.50 7.50
S08 12.50 12.50
S09 15.00 17.50
S10 5.00 2.50

Patients

S01 7.5 2.50
S02 7.50 5.00
S03 10.00 7.50
S04 12.50 7.50
S05 7.50 2.50
S06 7.50 5.00
S07 12.50 7.50
S08 7.50 2.50
S9 10.00 10.00
S10 7.50 5.00

test. It’s worth mentioning that the comparison between CSW
and CSV values reveal that the introduction of the second
stage significantly reduced the need for classifier re-training.
This two-stage CSD test serves two important purposes; 1) it
reduces the delay in system by avoiding unnecessary retraining
and 2) it minimizes the risk for inappropriate adaptation of
the classifier during the online feedback phase, which is one
of the major concerns of adaptive BCI technique[13]. The
difference between healthy and patient groups in terms of
FTTI suggests that healthy participants’ MI-activation, related
to cue presentation, was quicker than the patients’. This is
also expected, as in patients brain lesions may disturb the
brain networks responsible for the MI. Additionally, it may
be possible that the patients tend to get more fatigued than
the healthy participants during the experiments which may
lead to such delayed response. Moreover, we investigated how
susceptive is the performance of the newly proposed EEG-
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Fig. 6. Comparison of classifier performance in Healthy(EEG-CSAC(H) and
EEG-NAC(H)) and Patient(EEG-CSAC(P) and EEG-NAC(P)) groups

Fig. 7. Correlation between EEG-NAC to EEG-CSAC accuracy improvement
and CSV. Red dots indicating the data for each participant and the black line
drawn is the linear-least-square estimate of the data distribution.

CSAC method to the detection of covariate shifts. To this
end we have computed the correlation between the number
of covariate shifts that occurred in a particular run of the
online BCI, and the improvement in accuracy due to classifier
adaptation, which showed a significantly high correlation
(r = 0.853, p < 0.01). This establishes the fact that the
covariate shifts were correctly estimated and the classifiers
were appropriately updated leading to the improvements in
the accuracy and thus the covariate shift adaptation was in
general meaningful and robust.

The CSD-based adaptive online BCI system, proposed here
requires a total of 16 min of calibration time which is
comparable to the other adaptive BCIs found in literature [49].
Mutual learning is also promoted in the current implementa-
tion of adaptive BCI system by introducing visual as well
as proprioceptive neurofeedback [9]. The visual feedback is
anthromorphic and plays a key role in neurorehabilitation as
it is related to the activation of action-observation networks
[50]. The motor imagery activated proprioceptive feedback (by
moving the patient’s paretic fingers with the help of the hand-
exoskeleton), also engages the neurons in the neighboring
areas of the lesion, through intact afferent pathways [51].
Thus simultaneous application of both of these modes of
giving neurofeedback is very important for stroke patients
in recovering lost motor skills. The computation cost asso-
ciated with the two-stage CSD test and classifier adaptation

is in milliseconds, using a standard mobile workstations and
a MATLAB/Simulink platform, therefore it can be easily
extended for generating continuous feedback, (although in
the current study it is one time in a trial). The fact that
the EEG-CSAC based online BCI enabled all the healthy
and stroke participants to trigger the hand-exoskeleton by
their motor imagery task with satisfactory levels of accuracy,
which are superior (p < 0.01) to that obtained with EEG-
NAC, clearly demonstrates the effectiveness of the technique
in adapting to the non-stationarity of the brain-waves and
providing neurofeedback with enhanced accuracy. Here the
non-stationarity includes changes from calibration to online
feedback generation stage as well as inter-trial changes within
a single run of the online BCI. Several studies have tried
to improve the power of CSP-based BCIs by introducing
KL divergence based loss functions to minimize within class
mismatching [26] or optimizing CSP algorithm [20]. Time
series prediction and adaptive auto-regression based feature
extraction were also investigated to minimise the adverse effect
of non-stationarity in BCI [52]. While these studies focus in
finding features that are invariant to non-stationary effects; our
attempt is to take conventional feature extraction methods and
try to update the classifier with the occurrence of covariate
shifts. The advantage is that our method is independent of what
feature extraction technique is used. Similar approaches are
already popular to make adaptive BCI systems [29], [17], [32],
[22], [18]. Although our approach have some resemblance to a
recent off-line study where EWMA based adaptive processing
is used before stack regularized LDA based classification [53],
the two-stage CSD test and classifier updating strategy are
novel in the current work. Also here it is implemented in online
BCI and its feasibility is tested on stroke patients. However,
Alonso et al. validated their algorithm on multiclass decoding,
whereas our current work is implemented on binary classifi-
cation [53]. Hence, there is further scope for extending it to
multiclass decoding. Indeed both of the methods dealt with the
temporal variability considering different time segments, but
unlike Alonso et al. the subject specific frequency variability
is not considered in the current work, rather the frequency
bands [8− 12] Hz and [16− 24] Hz are kept fixed for all the
participants. The main reason was to keep the method simple
and to focus on the validity of the CSD-based adaptation in
online BCI. A direct comparison of classification accuracies
with other adaptive BCI systems is not possible as it is difficult
to produce exact experimental conditions for each one of them.
Therefore we took a state-of-the-art conventional CSP-based
non-adaptive classification method, EEG-NAC for comparing
the performance of the current EEG-CSAC algorithm.

In online studies the scope of pre-processing is generally
limited as it increases the time complexity of the system and
reduces the speed of response. Therefore the classification
accuracy sometimes gets heavily affected due to contamination
of artifacts and external noises. It can be seen in the Tables
II-III, that the classification accuracy dropped below 70% for a
few participants in EEG-NAC. The CSP-based spatial filtering
technique was used here as it improves the signal to noise
ratio in the data and increases inter-class feature separability.
Although PCA-based dimensionality reduction may have neg-
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ative effects on the EEG data quality as it lumps the variance,
but Xiao and Ding 2013 [54] used PCA-based spectral features
in successfully decoding individual finger movements from
EEG. The CSD-based adaptation approach proposed here is
supervised in nature as we implemented synchronous online
BCI, where the label of a particular trial is known before hand
and we assumed full compliance with cues. As this assumption
may be questionable, partially supervised adaptation using a
well-known technique of Error-Potentials can be explored in
conjunction with CSD for better performance [22].

Future work may include extending the proposed EEG-
CSAC based adaptive online BCI for continuous control
with increased information transfer rate to generate smoother
feedback. Also the current scope of synchronous BCI may
be extended to asynchronous cases for more practical use in
activities of daily living using assistive technologies.

V. CONCLUSION

The paper implements an online BCI system with a two-
stage CSD test based classifier adaptation. The online BCI
system, capable of generating MI triggered visual and hand
exoskeleton based neurofeedback, was tested for its practical
feasibility and effectiveness on both healthy individuals and
stroke patients. In comparison to the conventional CSP-based
non-adaptive method, EEG-CSAC performed significantly bet-
ter in terms of classification accuracy. The classification ac-
curacy improvements strongly correlated with the number of
validated CSD occurrences, further proving the consistency of
EEG-CSAC algorithm. The two-stage CSD test comprising
of EWMA test and Hotellings T-square statistical test was
demonstrated to be effective in reducing the false detection rate
and thereby preventing unnecessary adaptation of the classifier.
Overall, the EEG-CSAC has been proven to be a practical and
significantly superior method for designing adaptive BCI based
hand-exoskeleton integrated neurorehabilitation therapies for
stroke patients.
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