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Abstract—The performance of many nature-inspired
optimization algorithms (NIOAs) depends strongly on their
implemented coordinate system. However, the commonly used
coordinate system is fixed and not well suited for different
function landscapes, NIOAs thus might not search efficiently.
To overcome this shortcoming, in this paper we propose a
framework, named ACoS, to adaptively tune the coordinate
systems in NIOAs. In ACoS, an Eigen coordinate system
is established by making use of the cumulative population
distribution information, which can be obtained based on
a covariance matrix adaptation strategy and an additional
archiving mechanism. Since the population distribution infor-
mation can reflect the features of the function landscape to
some extent, NIOAs in the Eigen coordinate system have the
capability to identify the modality of the function landscape.
In addition, the Eigen coordinate system is coupled with the
original coordinate system, and they are selected according to a
probability vector. The probability vector aims to determine the
selection ratio of each coordinate system for each individual,
and is adaptively updated based on the collected information
from the offspring. ACoS has been applied to two of the most
popular paradigms of NIOAs, i.e., particle swarm optimization
and differential evolution, for solving 30 test functions with
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30D and 50D at the 2014 IEEE Congress on Evolutionary
Computation. The experimental studies demonstrate its
effectiveness.

Index Terms—Adaptive framework, coordinate system, differ-
ential evolution (DE), nature-inspired optimization algorithms
(NIOAs), particle swarm optimization (PSO).

I. INTRODUCTION

NATURE-INSPIRED optimization algorithms (NIOAs)
are a class of meta-heuristic algorithms inspired by

natural phenomenon. NIOAs usually exploit nature-inspired
mechanisms from natural evolution and swarm intelligence to
evolve a population of candidate solutions toward the optimal
solution. Up to now, numerous NIOA paradigms have been
proposed, such as genetic algorithm [1], evolutionary program-
ming [2], evolution strategy (ES) [3], genetic programming [4],
differential evolution (DE) [5], particle swarm optimization
(PSO) [6], bat algorithm (BA) [7], teaching-learning-based
optimization (TLBO) [8], and Jaya algorithm [9]. Compared
with other types of optimization methods, NIOAs have some
advantages, such as ease of use, simple structure, efficiency,
and robustness. Therefore, NIOAs have been broadly applied
to diverse fields, such as renewable energy [10], automotive
design [11], route planning [12], classification [13], image
processing [14], and action recognition [15].

For many NIOAs, their performance relies crucially on
their implemented coordinate system. However, the origi-
nal coordinate system, which is the most frequently used
coordinate system in current NIOAs, is fixed throughout
the search process. Under this condition, NIOAs may fail
to produce promising solutions matching the requirements
of different function landscapes or even one function land-
scape at different search stages. As a result, it is difficult
for NIOAs to search efficiently in the original coordinate
system.

To remedy this issue, in some variants of ES and DE,
the Eigen coordinate system is established by making use
of the population distribution information. As shown in Fig. 1,
the population distribution information can reflect the fea-
tures of the function landscape to a certain degree and the
established Eigen coordinate system (i.e., o′x′1x′2) is more suit-
able for the contours compared with the original coordinate
system (i.e., ox1x2). Therefore, it is expected that NIOAs
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Fig. 1. Advantage of the Eigen coordinate system. In this figure, the dashed
ellipses display the contours, ox1x2 denotes the original coordinate system,
and o′x′1x′2 refers to the Eigen coordinate system. Compared with ox1x2,
o′x′1x′2 is more suitable for the contours since it is established based on the
population distribution information.

implemented in the Eigen coordinate system possess the capa-
bility to identify the modality of the function landscape and
search efficiently. In 2001, a famous ES called CMA-ES was
proposed by Hansen and Ostermeier [16]. In CMA-ES, an
Eigen coordinate system is established by utilizing the cumu-
lative population distribution information (i.e., the current and
historical population distribution information). Afterward, the
offspring population is sampled from this Eigen coordinate
system. Overall, CMA-ES shows very fast convergence speed
and is significantly superior to the ordinary ES. Recently,
three attempts (i.e., DE/eig [17], CoBiDE [18], and CPI-
DE [19]) have been made to enhance DE’s performance by
implementing the crossover operator in both the Eigen coordi-
nate system and the original coordinate system. In DE/eig and
CoBiDE, only the current population distribution information
is extracted to establish the Eigen coordinate system, while
like CMA-ES, in CPI-DE the cumulative population distribu-
tion information is employed to construct the Eigen coordinate
system. It is interesting to note that all these three attempts in
DE draw the similar conclusions: 1) each coordinate system
has its own advantages and is suitable for certain kinds of
optimization problems and 2) combining these two coordinate
systems can obtain better performance than just using one of
them during the evolution. The above conclusions motivate us
to design an adaptive scheme to make full use of these two
coordinate systems.

This paper presents an adaptive framework, called ACoS, to
tune the coordinate systems in NIOAs. ACoS takes advantage
of a covariance matrix adaptation strategy and an additional
archiving mechanism to extract cumulative population distri-
bution information, with the aim of establishing the Eigen
coordinate system. Moreover, this Eigen coordinate system is
synthesized with the original coordinate system, and they are
selected based on a probability vector. This probability vec-
tor determines the selection ratio of each coordinate system
for each individual and is adaptively updated according to
the collected information from the offspring. ACoS has been
applied to two of the most popular NIOA paradigms: 1) PSO
and 2) DE. The effectiveness of ACoS has been validated by

comprehensive experiments on 30 test functions with 30D and
50D at the 2014 IEEE Congress on Evolutionary Computation
(IEEE CEC2014) [20].

The main contributions of this paper are summarized as
follows.

1) This paper provides a new point of view toward how
to describe some common nature-inspired operators in
the original coordinate system, and also offers a con-
venient transformation from a nature-inspired operator
in the original coordinate system to the correspond-
ing nature-inspired operator in the Eigen coordinate
system.

2) A simple yet effective approach is proposed to establish
the Eigen coordinate system, which consists of two main
elements, i.e., a covariance matrix adaptation strategy
and an additional archiving mechanism. In comparison
with the previous methods, the cumulative population
distribution information derived from our approach is
more sufficient.

3) By using a probability vector, this paper presents an
adaptive scheme to select an appropriate coordinate
system from the original coordinate system and the
Eigen coordinate system for each individual during the
evolution.

4) The proposed framework (i.e., ACoS) can be readily
applied to various NIOAs. In this paper, we have ver-
ified that ACoS is able to improve the performance of
two of the most popular NIOA paradigms: PSO and DE.
To the best of our knowledge, it is the first attempt to
improve PSO’s performance by adjusting the coordinate
systems in an adaptive fashion.

The rest of this paper is organized as follows. Section II
briefly introduces PSO and DE. Section III presents the coor-
dinate systems and their related work. The proposed ACoS
and its implementation details are presented in Section IV.
The experimental results and the performance comparisons
are given in Section V. Finally, Section VI concludes this
paper.

II. PARTICLE SWARM OPTIMIZATION

AND DIFFERENTIAL EVOLUTION

PSO and DE have become two of the most popular NIOA
paradigms. In this section, we will briefly introduce them.

A. Particle Swarm Optimization

PSO [6] is inspired by swarm behavior. It searches with a
population (called swarm) of candidate solutions (called par-
ticles or individuals). Each particle moves in the search space
to seek the global optimum, and its movement is guided by its
own personal historical best experience as well as the entire
swarm’s best experience. Due to ease of use and efficiency,
PSO has been successful applied to a variety of real-world
optimization problems [21].

PSO contains two core equations: 1) the velocity updating
equation and 2) the position updating equation. At genera-
tion g, PSO updates the dth dimension of the ith particle’s
velocity −→v g

i = [vg
i,1, vg

i,2, . . . , vg
i,D]T and position −→x g

i =
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[xg
i,1, xg

i,2, . . . , xg
i,D]T as follows:

vg+1
i,d = vg

i,d + c1r1,d

(
pbestgi,d − xg

i,d

)
+ c2r2,d

(
gbestgd − xg

i,d

)

(1)

xg+1
i,d = vg+1

i,d + xg
i,d (2)

where i ∈ {1, . . . , NP}, d ∈ {1, . . . , D}, NP is the popula-

tion size, D is the dimension of the search space,
−−→
pbestgi =

[pbestgi,1, pbestgi,2, . . . , pbestgi,D]T denotes the ith particle’s his-

torical best position,
−−→
gbestg = [gbestg1, gbestg2, . . . , gbestgD]T

means the entire swarm’s best position, c1 and c2 are the accel-
eration parameters, and r1,d and r2,d refer to two uniformly
distributed random numbers between 0 and 1.

From (1) and (2), it is apparent that PSO works dimen-
sion by dimension. Based on the updating of each dimension,
the whole velocity and position of a particle are updated as
follows:

−→v g+1
i = −→v g

i + c1R1

(−−→
pbestgi −−→x g

i

)
+ c2R2

(−−→
gbestg −−→x g

i

)

(3)
−→x g+1

i = −→v g+1
i +−→x g

i (4)

where R1 = diag(r1,1, r1,2, . . . , r1,D) and R2 =
diag(r2,1, r2,2, . . . , r2,D).

Since PSO’s inception, many researchers have improved its
performance in different ways [22], [23]. One way is to control
or adjust the particle’s velocity. Shi and Eberhart [24] incor-
porated an inertial weight w into the original PSO’s velocity
updating, and (3) is thus modified into

−→v g+1
i = w−→v g

i + c1R1

(−−→
pbestgi −−→x g

i

)

+ c2R2

(−−→
gbestg −−→x g

i

)
. (5)

The only difference between (3) and (5) is that in (5) w is
attached to −→v g

i . In (5), the value of w decreases linearly from
0.9 to 0.4 over the course of search. It is because a larger w
in the early stage of evolution is beneficial to exploration, and
a smaller w in the later stage of evolution can facilitate the
exploitation. In addition, Clerc and Kennedy [25] introduced
a constriction factor χ to reformulate the particle’s velocity
updating

−→v g+1
i = χ

[−→v g
i + c1R1

(−−→
pbestgi −−→x g

i

)

+ c2R2

(−−→
gbestg −−→x g

i

)]
(6)

where χ = 2/|2 − ϕ − √ϕ2 − 4ϕ| and ϕ = c1 + c2. χ is
preferably set to 0.729 together with c1 = c2 = 2.05. For the
sake of convenience, the PSO variants in [24] and [25] are
called PSO-w and PSO-cf in this paper, respectively, which
are two of the most popular PSO variants.

B. Differential Evolution

DE [5] is another simple yet efficient NIOA paradigm which
has been successfully used to deal with a wide spectrum
of optimization problems [26]. Similar to other NIOAs, DE
searches with a population of NP individuals: Pg = {−→x g

i =
[xg

i,1, xg
i,2, . . . , xg

i,D]T , i = 1, 2, . . . , NP}, where g denotes the

generation number, NP means the population size, and D
refers to the dimension of the search space. In DE, at gen-
eration g = 0, the initial population P0 is randomly sampled
from the search space. After initialization, DE employs muta-
tion, crossover, and selection operators to steer the population
toward the global optimum.

Mutation: The aim of the mutation operator is to generate
a mutant vector −→v g

i for each individual −→x g
i (also called a

target vector). The following are four commonly used mutation
operators in the literature.

1) DE/rand/1

−→v g
i = −→x g

r1
+ F ∗ (−→x g

r2
−−→x g

r3

)
. (7)

2) DE/rand/2

−→v g
i = −→x g

r1
+ F ∗ (−→x g

r2
−−→x g

r3

)+ F ∗ (−→x g
r4
−−→x g

r5

)
.

(8)

3) DE/current-to-best/1

−→v g+
i = −→x g

i + F ∗ (−→x g
best −−→x g

i

)+ F ∗ (−→x g
r1
−−→x g

r2

)
.

(9)

4) DE/rand-to-best/1

−→v g
i = −→x g

r1
+ F ∗ (−→x g

best −−→x g
r1

)+ F ∗ (−→x g
r2
−−→x g

r3

)

(10)

where the indices r1, r2, r3, r4, and r5 are mutually different
integers randomly selected from [1, 2, . . . , NP] and are also
different from i, −→x g

best denotes the best target vector in the
current population, and F refers to the scaling factor.

Crossover: After mutation, the crossover operator is per-
formed on each pair of −→x g

i and −→v g
i to generate a trial

vector −→u g
i = [ug

i,1, ug
i,2, . . . , ug

i,D]T . The binomial crossover
is expressed as follows:

ug
i,j =

{
vg

i,j, if randj ≤ CR or j = jrand

xg
i,j, otherwise

(11)

where jrand is a random integer between 1 and D, randj is
a uniformly distributed random number between 0 and 1 for
each j, and CR denotes the crossover control parameter. The
condition “j = jrand” makes −→u g

i different from −→x g
i by at least

one dimension.
From (11), it is easy to see that the crossover operator is

implemented dimension by dimension. The updating of the
whole trial vector can be described as follows:

−→u g
i = −→x g

i + Cr
(−→v g

i −−→x g
i

)
(12)

where Cr = diag(s1, s2, . . . , sD), and

sj =
{

1, if randj ≤ CR or j = jrand

0, otherwise
, j = 1, 2, . . . , D.

Selection: The selection operator is designed to select the
better one between −→u g

i and −→x g
i to enter the next generation.

For a minimization problem, it can be described as follows:

−→x g+1
i =

{−→u g
i , if f

(−→u g
i

) ≤ f
(−→x g

i

)
−→x g

i , otherwise.
(13)
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DE has also attracted much attention [27] and a consider-
able number of DE variants have been proposed. Among them,
jDE [28], SaDE [29], and JADE [30] are three state-of-the-art
DE variants. jDE is a DE with self-adaptive control parameter
settings [31]. It encodes the control parameters F and CR into
individual level and evolves them. SaDE adaptively adjusts the
trial vector generation strategies and control parameter settings
simultaneously by learning from the previous experience. It
maintains a strategy candidate pool which contains four dif-
ferent trial vector generation strategies. Each individual selects
a trial vector generation strategy from the pool in an adaptive
way to yield its trial vector. JADE is an adaptive DE with
an optional external archive. In JADE, the “DE/current-to-
pbest/1” mutation operator exploits the information of multiple
best individuals in the population. Moreover, the optional
external archive utilizes the difference between the current
solutions and the recently explored inferior solutions to pro-
duce promising directions. JADE generates F and CR based
on their historical record of success.

III. COORDINATE SYSTEMS AND THEIR RELATED WORK

A. Coordinate Systems

In this section, we will introduce the original coordi-
nate system, the Eigen coordinate system, and the difference
between them.

1) Original Coordinate System: The original coordinate
system is a default coordinate system in most NIOAs. It is
formed by the columns of the unity matrix I, and thus is a
fixed coordinate system. The nature-inspired operators of PSO
and DE introduced in Section II are conducted in the original
coordinate system. By analyzing these operators, we find that
each of them can be described with the usage of three ele-
ments: the coefficients, the diagonal matrixes, and the vectors.
Therefore, we propose a new point of view toward how to
describe these operators in the original coordinate system

−→r O =
m∑

i=1

αi
−→y i +

n∑
i=1

Wi
−→z i (14)

where −→r O denotes the resultant vector, m and n
are non-negative integers, αi is a coefficient, Wi =
diag(w1, w2, . . . , wD), w1, w2, . . . , wD are real numbers, and−→y i and −→z i mean two vectors in the original coordinate
system. (14) can be considered as a general form of the oper-
ators in PSO and DE. For example, if −→r O = −→v g+1

i , m = 1,

αi = 1, −→y 1 = −→v g
i , n = 3, W1 = c1R1, −→z 1 = −−→pbestgi ,

W2 = c2R2, −→z 2 = −−→gbestg, W3 = −(c1R1 + c2R2), and−→z 3 = −→x g
i , then (14) is revised to

−→v g+1
i = −→v g

i +
[
c1R1
−−→
pbestgi + c2R2

−−→
gbestg

− (c1R1 + c2R2)
−→x g

i

]

= −→v g
i + c1R1

(−−→
pbestgi −−→x g

i

)
+ c2R2

(−−→
gbestg −−→x g

i

)
.

(15)

Clearly, (15) is equivalent to (3) and both of them are
the velocity updating equation in PSO. Indeed, apart from

PSO and DE, (14) is also an effective way to describe the
operators in some other NIOA paradigms, such as cultural
algorithm [32], artificial bee colony algorithm [33], fireworks
algorithm [34], brain storm optimization algorithm [35], and
so on.

Note that the right-hand side of (14) involves two parts:∑m
i=1 αi

−→y i and
∑n

i=1 Wi
−→z i. Since the first part is a linear

operation of different vectors, it is irrelevant to the coordi-
nate system. In terms of the second part, Wi is a diagonal
matrix used for scaling −→z i within the original coordinate
system. Since the original coordinate system is a fixed coor-
dinate system, Wi can only optimize −→z i in the deterministic
directions, thus failing to identify the modality of different
function landscapes or even a single function landscape at
different optimization stages. As a result, the search process
guided by (14) may not be efficient.

Remark 1: Each operator in Section II can be rewritten
as (14). It can be found that the right-hand side of the velocity
updating equation in PSO [i.e., (3)] and the crossover operator
in DE [i.e., (12)] contains the second part (i.e.,

∑n
i=1 Wi

−→z i),
which suggests that these two operators may fail to search
efficiently in the original coordinate system.

2) Eigen Coordinate System: In this paper, the Eigen coor-
dinate system is established by the columns of an orthogonal
matrix B, which comes from the Eigen decomposition of the
covariance matrix C

C = BD2BT (16)

where B is an orthogonal matrix, BT is the transposed matrix
of B, and D is a diagonal matrix. Each column of B is an
eigenvector of C, and each diagonal element of D is the square
root of an eigenvalue of C. The fundamental issue in (16)
is how to construct the covariance matrix C. In general, the
covariance matrix C is constructed and updated according to
the feedback information resulting from the search process.
Therefore, unlike the original coordinate system, the Eigen
coordinate system is dynamic throughout the search process,
with the aim of suiting the function landscape.

Next, we will discuss how to construct a nature-inspired
operator in the Eigen coordinate system. It contains three
steps. First, BT is applied to transform the vectors in the
original coordinate system into the Eigen coordinate system.
Subsequently, these vectors in the Eigen coordinate system are
combined with the coefficients and diagonal matrixes follow-
ing (14), and thus an offspring vector is obtained. Finally, this
offspring vector is transformed back into the original coordi-
nate system by making use of B, with the aim of evaluating
its fitness. Specifically, a nature-inspired operator in the Eigen
coordinate system can be described as

−→r E = B

(
m∑

i=1

αi
(
BT−→y i

)+
n∑

i=1

Wi
(
BT−→z i

))

=
m∑

i=1

αi
−→y i +

n∑
i=1

BWiBT−→z i (17)

where −→r E denotes the resultant vector. By comparing (17)
with (14), it can be seen that: if we replace Wi with BWiBT
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(a)

(b)

Fig. 2. PSO works in different coordinate systems. In this figure, the dashed
ellipses display the contours, −→x g

i denotes the current position,
−−→
gbestg means

the entire swarm’s best position, and −→x g+1
i is the new position which is

located in the blue area. (a) PSO in the original coordinate system (i.e., ox1x2).
(b) PSO in the Eigen coordinate system (i.e., ox′1x′2).

on the right-hand side of (14), then a nature-inspired opera-
tor in the original coordinate system is transformed into the
corresponding nature-inspired operator in the Eigen coordinate
system. Compared with Wi

−→z i, in BWiBT−→z i, BT transforms−→z i into the Eigen coordinate system, then Wi scales BT−→z i

within the Eigen coordinate system, and finally B transforms
the vector WiBT−→z i back into the original coordinate system.

Remark 2: PSO’s velocity updating equation [i.e., (3)] and
DE’s crossover operator [i.e., (12)] in the Eigen coordinate
system can be expressed as (18) and (19), respectively

−→v g+1
i = −→v g

i + c1BR1BT
(−−→

pbestgi −−→x g
i

)

+ c2BR2BT
(−−→

gbestg −−→x g
i

)
(18)

−→u g
i = −→x g

i + BCrBT(−→v g
i −−→x g

i

)
. (19)

3) Difference Between the Original Coordinate System and
the Eigen Coordinate System: Next, we will investigate
NIOAs’ search behaviors in the original and Eigen coordi-
nate systems. To make a clear explanation, we take the basic
PSO as an example. For simplicity, suppose that the velocity−→v g

i of a particle is equal to
−→
0 , c1 = c2 = 2, the position −→x g

i

is just its historical best position
−−→
pbestgi , and the dimension of

the search space is equal to two. As a result, in the original
coordinate system, the new velocity −→v g+1

i is updated as (20),

and then the new position −→x g+1
i is renewed as (21)

−→v g+1
i = −→v g

i + c1R1

(−−→
pbestgi −−→x g

i

)
+ c2R2

(−−→
gbestg −−→x g

i

)

= −→0 + c1R1

(−→
0
)
+ 2R2

(−−→
gbestg −−→x g

i

)

= 2R2

(−−→
gbestg −−→x g

i

)
(20)

−→x g+1
i = −→x g

i +−→v g+1
i = −→x g

i + 2R2

(−−→
gbestg −−→x g

i

)
(21)

where R2 = diag(r2,1, r2,2), and r2,1 and r2,2 are two uni-
formly distributed random numbers between 0 and 1. By
replacing R2 with BR2BT in (21), the new position −→x g+1

i
is generated in the Eigen coordinate system

−→x g+1
i = −→x g

i + 2BR2BT
(−−→

gbestg −−→x g
i

)
. (22)

Fig. 2 shows the difference between PSO in the original coor-
dinate system [Fig. 2(a)] and in the Eigen coordinate system
[Fig. 2(b)] for an optimization problem with variable correla-
tion. The original coordinate system is fixed and denoted as
ox1x2. As pointed out, the Eigen coordinate system is dynam-
ically updated during the search process. Suppose that for this
example the Eigen coordinate system is ox′1x′2, which can suit
the contours well. In Fig. 1, −→x g+1

i in the original coordinate
system and the Eigen coordinate system is generated as (23)
and (24), respectively

−→x g+1
i = −→x g

i + 2R2

(−−→
gbestg −−→x g

i

)

= −→x g
i + r2,1 ∗ −→ab + r2,2 ∗ −→ad (23)

−→x g+1
i = −→x g

i + 2BR2BT
(−−→

gbestg −−→x g
i

)

= −→x g
i + r2,1 ∗ −→ab′ + r2,2 ∗ −→ad ′. (24)

Since r2,1 and r2,2 are two uniformly distributed random num-
bers between 0 and 1, −→x g+1

i generated in the original and
Eigen coordinate systems can be any point in the rectangular
areas abcd and ab′cd′, respectively. As shown in Fig. 2, abcd
does not contain the global optimal solution, while ab′cd′ con-
tains the global optimal solution and its neighborhood. This
phenomenon signifies that PSO may search more efficiently
in the Eigen coordinate system.

B. Related Work on the Eigen Coordinate System

In this paper, the related work on the Eigen coordinate
system are classified into two categories, according to the way
of conducting the nature-inspired operators.

In the first category, the nature-inspired operators are imple-
mented only in the Eigen coordinate system. In 2001, CMA-
ES [16] was proposed which samples the offspring population
according to

−→x g+1
i = −→m g + σ gN

(−→
0 , Cg

)
, i = 1, 2, . . . , λ

= −→m g + σ g(Cg)1/2N
(−→

0 , I
)
, i = 1, 2, . . . , λ

= −→m g + σ gBgDg(Bg)TN
(−→

0 , I
)
, i = 1, 2, . . . , λ

(25)
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where −→m g denotes the mean vector of the search distribu-
tion at generation g, σ g denotes the step size, Cg refers to a
covariance matrix, Bg is an orthogonal matrix, Dg is a diag-
onal matrix, N (

−→
0 , Cg) is a multivariate normal distribution

with zero mean and covariance matrix Cg, and N (
−→
0 , I) is a

multivariate normal distribution with zero mean and identity
covariance matrix I. By comparing (25) with (17), it can be
found that (25) is a special case of (17), which means that
the sampling operation of CMA-ES only occurs in the Eigen
coordinate system. In CMA-ES, this Eigen coordinate system
comes from the Eigen decomposition of the covariance matrix
Cg, and two strategies, namely the rank-μ-update strategy and
the rank-one-update strategy [36], are designed to adapt Cg.
In the rank-μ-update strategy, a weighted combination of the
μ best out of λ offspring is used to compute Cg+1

μ , which is
an estimator of the distribution of the current population

Cg+1
μ =

μ∑
i=1

wi

(−→x g+1
i:λ −−→m g

)(−→x g+1
i:λ −−→m g

)T
(26)

where wi is the ith weight coefficient, λ is the population
size, and −→x (g+1)

i:λ means the ith best individual among the λ

offspring. Thereafter, the information from both the previous
and current generations are used to compute the covariance
matrix Cg+1

Cg+1 = (1− cμ

)
Cg + cμ

(σ g)2
Cg+1

μ (27)

where cμ is the learning rate for the rank-μ-update strategy.
In terms of the rank-one-update strategy, it exploits correlation
between consecutive generations and constructs an evolution
path to update the covariance matrix. Thus, its implementation
is much more complex than the rank-μ-update strategy. These
two strategies are combined together in CMA-ES to update the
covariance matrix. Since CMA-ES is able to detect the features
of the function landscape, it shows a significant superiority
over the ordinary ES. To further expand CMA-ES, an adap-
tive encoding mechanism called AECMA [37] is proposed. In
AECMA, a more general approach for covariance matrix adap-
tation is proposed, which can be applied to ES and estimation
of distribution algorithm [38]. Again, in AECMA, the evolu-
tionary operators are executed only in the Eigen coordinate
system.

In the second category, the nature-inspired operators are
considered in both the Eigen and original coordinate systems
at each generation of NIOAs. For instance, DE/eig [17] and
CoBiDE [18] implement the crossover operator of DE in both
the Eigen and original coordinate systems in a random manner.
As a result, similar to the classical DE, one trial vector is cre-
ated for one target vector. In DE/eig, all individuals from the
current generation are used to compute the covariance matrix

Cg+1 = 1

NP− 1

NP∑
i=1

⎛
⎝−→x g

i −
1

NP

NP∑
j=1

−→x g
j

⎞
⎠

×
⎛
⎝−→x g

i −
1

NP

NP∑
j=1

−→x g
j

⎞
⎠

T

(28)

where NP is the population size, and −→x g
i and −→x g

j mean the
ith and jth individuals, respectively. While in CoBiDE, the
NP′ best out of the individuals from the current population
are employed to update the covariance matrix

Cg+1 = 1

NP′ − 1

NP′∑
i=1

⎛
⎝−→x g

i:NP −
1

NP′
NP′∑
j=1

−→x g
j:NP

⎞
⎠

×
⎛
⎝−→x g

i:NP −
1

NP′
NP′∑
j=1

−→x g
j:NP

⎞
⎠

T

(29)

where NP′ = ps ∗ NP, ps ∈ [0, 1] is a user-defined parameter,
and −→x g

i:NP and −→x g
j:NP denote the ith and jth best individ-

uals, respectively. From (28) and (29), it can be seen that
only the current population distribution information is uti-
lized to compute the covariance matrix. Very recently, a novel
DE framework called CPI-DE [19] is proposed. In CPI-DE,
DE’s crossover operator is executed in both the Eigen and
original coordinate systems in a deterministic manner and,
consequently, two trial vectors are generated for each target
vector. Thereafter, the best one among the target vector and
its two trial vectors will survive into the next generation. The
covariance matrix in CPI-DE is estimated by the rank-NP-
update strategy, which can be regarded as an extension of
the rank-μ-update strategy in CMA-ES. This rank-NP-update
strategy contains two steps. In the first step, the NP best out
of 2 ∗NP offspring (note that in CPI-DE, the offspring popu-
lation consists of 2∗NP trial vectors) are used to estimate the
current population distribution

Cg+1
NP =

NP∑
i=1

wi

(−→x g+1
i:2∗NP −−→m g

)(−→x g+1
i:2∗NP −−→m g

)T
(30)

where wi is the ith weight coefficient and −→x g+1
i:2∗NP repre-

sents the ith best individual in the offspring population. In
the second step, the population distribution information from
the current and historical generations are used to adapt the
covariance matrix

Cg+1 = (1− cNP)Cg + cNP

(σ g)2
Cg+1

NP (31)

where cNP is the learning rate and σ g is the step size. It is
claimed in CPI-DE [19] that there is no necessary to adapt the
step size for DE, since DE has a different search pattern with
ES. In fact, σ g is set to 1 in CPI-DE, which means that the
covariance matrix is of equal importance at each generation. It
is necessary to note that CPI-DE does not utilize the rank-one-
update strategy. The reason is that the rank-one-update strategy
plays a less important role when the population size is large,
and DE usually maintains a relatively large population com-
pared with ES. Besides, the rank-one-update strategy is much
more complex than the rank-μ-update strategy. Therefore, by
eliminating the rank-one-update strategy, the adaptation of the
covariance matrix in CPI-DE becomes simpler. There is an
agreement from the above three attempts: the usage of both
the Eigen and original coordinate systems at each generation
can reach better performance than the usage of one of them
during the whole search process.
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Our work in this paper falls into the second category.
Moreover, the Eigen and original coordinate systems are
adaptively tuned as the search process proceeds.

IV. PROPOSED APPROACH

A. ACoS

We continue the work on the coordinate systems and pro-
pose a novel framework named ACoS. The motivation of
ACoS comes from three aspects.

1) A large population can provide more information to
estimate the Eigen coordinate system, compared with a
small population. However, given the maximum number
of fitness evaluations (FEs), the increase of the popu-
lation size will lead to the decrease of the generation
number, which might cause incomplete convergence of
NIOAs. Consequently, it is necessary to design a mech-
anism to strike the balance between the accuracy of
estimation and the convergence performance.

2) As introduced in Section III-B, some researchers have
recognized the importance of combining the original
coordinate system with the Eigen coordinate system in
the design of NIOAs. However, the current methods
adjust these two coordinate systems in either a random
way or a deterministic way. How to exploit the feedback
information from the search process to adaptively tune
them has not yet been investigated.

3) The coordinate systems play a very important role in
the performance of many NIOAs. Note, however, that in
current studies the coordinate systems have been applied
to enhance the performance of few NIOA paradigms
(e.g., ES and DE). It is an interesting topic to boost
the research on the coordinate systems to other NIOA
paradigms.

ACoS aims at addressing the above three issues. In ACoS,
an additional archiving mechanism is designed to maintain the
offspring not only in the current generation but also in the past
several generations. Therefore, sufficient information can be
obtained to estimate an appropriate Eigen coordinate system
without adding the population size and reducing the genera-
tion number. As a result, ACoS achieves a balance between
the accuracy of estimation and the convergence performance.
Afterward, the Eigen and original coordinate systems are
selected in an adaptive way (rather than a random or determin-
istic way) according to a probability vector, which is updated
based on the collected information from the offspring. ACoS
can be readily applied to various NIOAs, and in this paper we
consider two of the most popular NIOA paradigms: 1) PSO
and 2) DE.

The general framework of ACoS has been given in
Algorithm 1. In Algorithm 1, rand denotes a uniformly
distributed random number on the interval [0, 1]. In the ini-
tialization process, the population P0 = {−→x 0

1,
−→x 0

2, . . . ,
−→x 0

NP}
is randomly sampled from the search space, the archive A
is initialized to be empty, the covariance matrix C0 and the
orthogonal matrix B0 are set to be the unity matrix I, and the
probability vector −→p = (p1, p2, . . . , pNP) is initialized to be

Algorithm 1 Framework of ACoS

1: Initialize g = 0, P0 = {−→x 0
1,
−→x 0

2, . . . ,
−→x 0

NP}, archive A =
∅, and C0 = B0 = I;

2: Initialize the probability vector −→p = (p1, p2, . . . , pNP) =
(0.5, 0.5, . . . , 0.5);

3: while the termination criterion is not met do
4: for i = 1 to NP do
5: if rand ≤ pi then
6: Implement the nature-inspired operators in the

Eigen coordinate system to generate the ith off-
spring;

7: else
8: Implement the nature-inspired operators in the

original coordinate system to generate the ith
offspring;

9: end if
10: end for
11: Evaluate the offspring population;
12: Execute the selection operator of NIOAs to get Pg+1;
13: Update A, Cg+1, and Bg+1 based on Section IV-B;
14: Update −→p according to Section IV-C;
15: g = g+ 1;
16: end while

−→p = (0.5, 0.5, . . . , 0.5). During the search process, to gener-
ate the ith offspring, the operators of NIOAs are implemented
in the Eigen and original coordinate systems with the proba-
bilities pi and (1 − pi), respectively. Afterward, the offspring
population is evaluated and the selection operator of NIOAs
is executed to obtain Pg+1. Subsequently, A, Cg+1, and Bg+1

are updated according to Section IV-B. Finally, −→p is renewed
according to Section IV-C.

Obviously, ACoS is different from the canonical NIOAs due
to the simultaneous use and adaptive tuning of the Eigen and
original coordinate systems. Next, we will introduce two core
components of ACoS: 1) the updating of the Eigen coordinate
system and 2) the updating of −→p .

B. Updating of the Eigen Coordinate System

The Eigen coordinate system is updated by making use
of an additional archiving mechanism and the rank-μ-update
strategy [36].

The additional archiving mechanism adopts an external
archive A to store the offspring in both the current generation
and the past several generations. It is because the search area
may not change dramatically in the continuous several gen-
erations of NIOAs, and thus the offspring in the past several
generations, other than the offspring in the current generation,
can also provide important information to estimate an appro-
priate Eigen coordinate system. Actually, the implementation
of this additional archiving mechanism is very simple. First, A
is initialized to be an empty set. Then at each generation, the
newly generated offspring are added into A. If the archive size
(called AS) exceeds a certain threshold, say 3∗NP in this paper,
then the earlier offspring in A will be removed based on the
“first-in-first-out” rule to keep the archive size at 3∗NP. Note
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that unlike the main population Pg, A does not undergo any
nature-inspired operators. Therefore, this additional archiving
mechanism can obtain sufficient information to estimate the
Eigen coordinate system while never affecting the population
size and the generation number.

Subsequently, the rank-μ-update strategy extracts the popu-
lation distribution information from A. The previous research
has demonstrated that the rank-μ-update strategy is an efficient
technique to adapt the covariance matrix [36]. In this paper,
the size of A is larger than that of Pg. Therefore, the rank-
μ-update can benefit from this relatively larger size to get a
reliable estimator of the covariance matrix. Before executing
the rank-μ-update strategy, we need to initialize the mean vec-
tor of the search distribution −→m g in (26) and the covariance
matrix Cg. In this paper, −→m 0 is set to be a randomly generated
point in the search space and C0 is set to be the unity matrix
I. Then, at generation g+ 1, −→m g+1 is updated according to

−→m g+1 =
μ∑

i=1

ωi
−→a i:AS (32)

where μ = AS/2 is the number of the selected solutions,−→a i:AS denotes the ith best solution out of A [i.e., f (−→a 1:AS) ≤
f (−→a 2:AS) ≤ · · · ≤ f (−→a μ:AS)], and ωi refers to the ith weight
coefficient computed as

ωi = ln(μ+ 0.5)− ln i

μ ln(μ+ 0.5)−∑μ
j=1 ln i

, i = 1, 2, . . . , μ. (33)

It can be found that the increase of i will lead to the
decrease of ωi, which implies the better individual will play an
more important role in the updating of the −→m g+1. Afterward,
an estimator of the current population distribution Cg+1

μ is
obtained by

Cg+1
μ =

μ∑
i=1

ωi
(−→a i:AS −−→m g)(−→a i:AS −−→m g)T . (34)

Finally, the covariance matrix Cg+1 is updated by making use
of the cumulative population distribution information

Cg+1 = (1− cμ)Cg + cμCg+1
μ (35)

where cμ ≈ (1/3)μeff/D2 denotes the learning rate, μeff =
(
∑μ

i=1 ω2
i )
−1 is the variance effective selection mass, and D

is the dimension of the search space.
After Cg+1 is obtained, an Eigen decomposition is per-

formed on Cg+1 according to (16) to produce the orthogonal
matrix Bg+1, the columns of which form the Eigen coordinate
system.

C. Updating of the Probability Vector −→p
The probability vector −→p = (p1, p2, . . . , pNP) determines

the selection ratio of each coordinate system for each individ-
ual. To be specific, for the ith (i ∈ {1, . . . , NP}) individual,
ACoS implements the nature-inspired operators in the Eigen
and original coordinate systems with the probabilities pi and
(1−pi), respectively. Since there is no priori knowledge about
the characteristics of the function landscapes, the Eigen and
original coordinate systems are considered to be of equal

Algorithm 2 Updating of the Probability Vector −→p
1: switch (the case of the collected information from the

offspring)
2: case Eigen coordinate system is better:
3: pi ← pi + r(pi);
4: case Eigen coordinate system is worse:
5: pi ← pi − η ∗ r(pi);
6: case original coordinate system is better:
7: pi ← pi − r(1− pi);
8: case original coordinate system is worse:
9: pi ← pi + η ∗ r(1− pi);

10: end switch

importance at the beginning of search process, i.e., −→p =
(0.5, 0.5, . . . , 0.5). Then, −→p is adaptively updated according
to the collected information derived from the offspring.

In this paper, we collect the information including which
coordinate system is used to generate the offspring and how
about the quality of the generated offspring. It is easy to iden-
tify which coordinate system is used to produce the offspring.
However, how to measure the quality of the offspring is usually
dependent on a specific NIOA. For PSO, if a particle’s new
position is better than its personal historical best position, then
the offspring performs better, otherwise, it performs worse. In
terms of DE, if the trial vector outperforms its corresponding
target vector, then the offspring performs better; otherwise, it
performs worse. Without loss of generality, the collected infor-
mation derived from the offspring can be categorized into four
cases.

1) Eigen Coordinate System Is Better: The Eigen coordi-
nate system is used to generate the offspring and the
offspring performs better.

2) Eigen Coordinate System Is Worse: The Eigen coordi-
nate system is used to generate the offspring but the
offspring performs worse.

3) Original Coordinate System Is Better: The original coor-
dinate system is used to generate the offspring and the
offspring performs better.

4) Original Coordinate System Is Worse: The original coor-
dinate system is used to generate the offspring but the
offspring performs worse.

These four cases have been considered fully in Algorithm 2
to adaptively update −→p . The main principle behind
Algorithm 2 is the “use it or lose it” rule: if one coordi-
nate system is used to generate the offspring and the offspring
performs better, the selection ratio for this coordinate system
will increase; otherwise, the selection ratio for this coordinate
system will decrease. More specifically, for the ith individual.

1) In the case of Eigen coordinate system is better, a reward
r(pi) is added to pi. r(·) denotes a reward function
defined as r(x) = ε(1−x)e−2x, x ∈ [0, 1]. In this reward
function, ε = 0.05 is a constriction factor to clamp the
reward value into [0, 0.05], and (1−x)e−2x is a concave
function whose value decreases from 1 to 0 when the
variable x increases from 0 to 1. As a result, a larger
pi will receive a smaller r(pi). It is reasonable since a
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larger pi means that the Eigen coordinate system already
has more potential to be chosen, and a smaller reward
would restrain the dramatic increasing of pi and adapt
pi to a proper value in a more robust way.

2) In the case of Eigen coordinate system is worse, a pun-
ishment η ∗ r(pi) is added to pi. In η ∗ r(pi), η = 0.1 is
a punishment coefficient. Therefore, η ∗ r(pi) is smaller
than r(pi), which implies that the case Eigen coordinate
system is worse has less influence on pi than the case
Eigen coordinate system is better at one time. The reason
is the following. An NIOA usually is a trial-and-error
method and the case Eigen coordinate system is worse
is more likely to happen compared with the case Eigen
coordinate system is better. Therefore, the more likely
occurred case (i.e., Eigen coordinate system is worse)
should have less influence on pi than the less likely
occurred case (i.e., Eigen coordinate system is better)
at one time, due to the fact that these two cases’ whole
effects on pi should be similar.

3) In the case of original coordinate system is better, the
selection ratio of the original coordinate system will
increase and, therefore, pi will decrease. The reduced
value is equal to r(1− pi).

4) In the case of original coordinate system is worse, the
selection ratio of the original coordinate system will
decrease and pi thus will increase. The increased value
is equal to η ∗ r(1− pi).

It is clear that in the above four cases, pi is updated in different
ways. By making use of −→p , NIOAs can dynamically select
an appropriate coordinate system from the original coordinate
system and the Eigen coordinate system for each individual
across the search process.

D. Applying ACoS to PSO and DE

ACoS has a simple structure and can be easily applied to
various NIOAs. For a specific NIOA, if it is under the frame-
work of ACoS, it will dynamically select one of the Eigen and
original coordinate systems according to −→p to generate the
offspring. Since the updating of the Eigen coordinate system
and −→p has been introduced previously, when implementing a
specific NIOA under the framework of ACoS, we only need to
consider how to generate the offspring in different coordinate
systems and how to use the selection operator. In this paper,
we apply ACoS to two of the most popular NIOA paradigms,
namely PSO and DE.

For PSO, the offspring are generated via the velocity updat-
ing equation and the position updating equation. These two
equations in the original coordinate system have been given
in (3) and (4), respectively. According to Section III, (4) is
irrelevant to the coordinate systems. With respect to (3), it
depends on the coordinate systems and its implementation in
the Eigen coordinate system has been given in (18). It is nec-
essary to note that PSO does not employ the selection operator
and, therefore, the selection operator in step 12 of Algorithm 1
can be eliminated.

For DE, the offspring are produced through the mutation
and crossover operators. These two operators in the original

coordinate system have been given in (7)–(11), respectively.
In fact, the mutation operator is independent of the coordinate
systems, while the crossover operator relies on the coordinate
systems, the implementation of which in the Eigen coordi-
nate system has been given in (19). In addition, the selection
operator of ACoS is the same with that of the original DE.

E. Difference Between ACoS and Other Methods

Next, we compare ACoS with other related work introduced
in Section III-B. Compared with CMA-ES which samples all
the individuals in the Eigen coordinate system, ACoS has some
advantages listed as follows.

1) It makes use of both the Eigen and original coordinate
systems. The Eigen coordinate system enables NIOAs
to identify the modality of the fitness landscape and
enhance the search efficiency, while the original coordi-
nate system can maintain the superiority of the original
NIOAs.

2) The updating of the Eigen coordinate system in ACoS
is simpler. ACoS eliminates the much more complex
rank-one-update strategy and only adopts the rank-μ-
update strategy to estimate the Eigen coordinate system.
In addition, an additional archiving mechanism with neg-
ligible computational cost is designed to improve the
estimation accuracy.

3) ACoS can be readily applied to many other NIOAs.
This can be attributed to the fact that the step-size con-
trol, which plays a very important role in CMA-ES, can
be ignored in many other NIOAs due to their different
search patterns with CMA-ES.

Compared with DE/eig, CoBiDE, and CPI-DE which focus
on enhancing DE’s performance, ACoS has the following
advantages.

1) ACoS is designed to improve the performance of not
only DE but also many other NIOAs.

2) To update the Eigen coordinate system, DE/eig and
CoBiDE only utilize the current population distribution
information, therefore the established Eigen coordi-
nate system might be inappropriate due to insufficient
information. In CPI-DE and ACoS, the cumulative pop-
ulation distribution information is used to update the
Eigen coordinate system. Note, however, that ACoS
employs an additional archiving mechanism which can
obtain more sufficient information while having no
influence on the population size and the generation
number.

3) Although both the Eigen and original coordinate systems
are utilized in DE/eig, CoBiDE, CPI-DE, and ACoS,
DE/eig and CoBiDE adjust these two coordinate systems
in a random manner which ignores the feedback infor-
mation from the search process and, therefore, is not
well suited for different kinds of fitness landscapes. In
addition, CPI-DE generates two offspring for each tar-
get vector, one in the Eigen coordinate system and the
other in the original coordinate system, which inevitably
spends more FEs at each generation. In contrast, ACoS
adapts these two coordinate systems in an adaptive way
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(a) (b) (c)

Fig. 3. Contours of three ellipsoidal functions, the trial vectors (marked as red asterisks) of ACoS-DE/rand/1/bin, and the Eigen coordinate systems (denoted
as o′x′1x′2) after 15 generations. (a) Nonrotated ellipsoidal function. (b) Rotated ellipsoidal function (rotate 45◦). (c) Rotated ellipsoidal function (rotate -45◦).

as the search process proceeds, thus exploiting the feed-
back information and producing only one offspring for
each target vector simultaneously.

V. EXPERIMENTAL STUDY

In this section, our experiments were conducted on 30 test
functions with 30D and 50D at IEEE CEC2014. These 30 test
functions are denoted as cf 1−cf 30, and their details can be
available from [20]. In general, these 30 test functions can
be grouped into four classes: 1) unimodal functions cf 1–cf 3;
2) simple multimodal functions cf 4–cf 16; 3) hybrid functions
cf 17–cf 22; and 4) composition functions cf 23–cf 30.

In our experiments, we performed 51 independent runs for
each algorithm on each test function. All the experiments
were implemented on a PC with Intel Core i5-4590 CPU @
3.30 GHz and 64-bit Windows 10 operating system. A run will
terminate if the maximum number of FEs is reached, which
was recommended to be 10 000 ∗D [20]. At the end of a run,
the function error value (f (−→x best) − f (−→x ∗)) was recorded,
where −→x ∗ is the optimal solution and −→x best denotes the best
solution found. If the function error value is less than 10−8,
it was taken as zero. The average and standard deviation of
the function error values in all runs (denoted as “mean error”
and “std dev”) were used to measure the performance of an
algorithm. Besides, to test the statistical significance of the
experimental results between two algorithms, the Wilcoxon’s
rank sum test at a 0.05 significance level was performed.

For the sake of convenience, if a specific NIOA is under the
framework of ACoS, the name of this NIOA will be modified
by adding four letters “ACoS-.” For example, PSO-w under
our framework is named as ACoS-PSO-w.

A. Principle Analysis

First, we intend to verify whether ACoS can detect the
modality of a function or not. To answer this question, we
took ACoS-DE/rand/1/bin as an example, and tested it on three
ellipsoidal functions with two dimensions. Among these three
ellipsoidal functions, one is nonrotated problem and the other
two are rotated problems which rotate 45◦ and −45◦, respec-
tively. Therefore, these three ellipsoidal functions can provide
different function landscapes for testing. For the parameters

(a) (b)

Fig. 4. Evolution of the average function error values derived from two
popular PSO versions (PSO-w and PSO-cf) and their augmented algorithms
versus the number of FEs on (a) cf 1 with 30D and (b) cf 18 with 30D.

of ACoS-DE/rand/1/bin, the population size was set to 100,
F was set to 0.9, and CR was set to 0.5. Afterward, we run
ACoS-DE/rand/1/bin with 15 generations and calculated the
orthogonal matrix B via the Eigen decomposition in (16).
Fig. 3 depicts the contours of these three ellipsoidal functions,
the trial vectors (marked as red asterisks), and the Eigen coor-
dinate systems (denoted as o′x′1x′2) obtained by making use of
B at the 15th generation.

From Fig. 3, we can observe that the coordinate axes of
the Eigen coordinate system rotate about 0◦, 45◦, and −45◦
compared with the coordinate axes of the original coordinate
system for nonrotated ellipsoidal function, rotated ellipsoidal
function with 45◦, and rotated ellipsoidal function with −45◦,
respectively. This phenomenon indicates that the Eigen coor-
dinate system in ACoS can be adapted to suit different fitness
landscapes. As for the generated trial vectors, they spread out
along the valleys, and their distributions are in accordance
with the three different function landscapes. Therefore, it can
be concluded that ACoS has the capability to identify the
modality of a function at hand.

B. ACoS for Two Popular PSO Variants

Subsequently, we applied ACoS to two of the most popu-
lar PSO variants: 1) PSO-w and 2) PSO-cf, which have been
introduced in Section II-A. The resultant methods are denoted
as ACoS-PSO-w and ACoS-PSO-cf, respectively.
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The population size of these two PSO variants and their aug-
mented algorithms was set to be 40 and 60 when the dimension
of the search space was equal to 30 and 50, respectively. The
experimental results on cf 1–cf 30 with 30D and 50D are given
in Tables S-I and S-II in the supplementary material, where +,
−, and ≈ denote that PSO-w or PSO-cf performs better than,
worse than, and similar to its augmented algorithm, respec-
tively. The last three rows of Tables S-I and S-II summarize
the experimental results.

Important observations can be obtained from
Tables S-I and S-II:

1) In the case of D = 30, ACoS-PSO-w, and ACoS-
PSO-cf have an edge over their original algorithms on
27 and 24 test functions, respectively. With respect to
D = 50, both ACoS-PSO-w and ACoS-PSO-cf achieve
better performance than their original algorithms on 26
test functions. However, PSO-w and PSO-cf cannot sur-
pass their augmented algorithms on more than three test
functions when D = 30 and D = 50.

2) ACoS-PSO-w and ACoS-PSO-cf are never inferior to
their original algorithms on any unimodal functions,
hybrid functions, and composition functions, regardless
of the number of the decision variables.

3) ACoS is able to achieve great performance improvement
toward PSO-w and PSO-cf on all the unimodal functions
(i.e., cf 1−cf 3), five simple modal functions (i.e., cf 4,
cf 7, and cf 13−cf 15), four hybrid functions (i.e., cf 17,
cf 18, cf 20, and cf 21), and two composition functions
(i.e., cf 29 and cf 30). Moreover, ACoS offers the optimal
solutions for three cases in all runs, which have been
highlighted in boldface in Tables S-I and S-II.

4) It seems that the increase of the dimension (i.e., from
D = 30 to D = 50) does not have a remark-
able influence on the performance improvement of our
framework.

From the above observations, our framework significantly
improves the performance of these two popular PSO variants,
which indicates that: 1) there is a necessity to consider both
the Eigen and original coordinate systems in the design of
PSO variants and 2) the adaptive scheme in ACoS is capable
of effectively utilizing these two coordinate systems. The con-
vergence graphs of the average function error values derived
from these two PSO variants and their augmented algorithms
are plotted in Fig. 4 for two test functions (i.e., cf 1 with 30D
and cf 18 with 30D).

C. ACoS for Three State-of-the-Art DE Variants

Thereafter, we investigated the influence of ACoS on three
famous DE variants: 1) JADE; 2) jDE; and 3) SaDE, which
have been introduced in Section II-B. To ensure the compari-
son fair, the parameter settings of JADE, jDE, and SaDE were
identical with their original papers, and remained unchanged
when they were under the framework of ACoS. Tables S-III
and S-IV in the supplementary material show the compar-
ison results on cf 1–cf 30 with 30D and 50D, where +, −,
and ≈ denote that a state-of-the-art DE variant performs bet-
ter than, worse than, and similar to its augmented algorithm,

(a) (b)

Fig. 5. Evolution of the average function error values derived from three state-
of-the-art DE variants (JADE, jDE, and SaDE) and their augmented algorithms
versus the number of FEs on (a) cf 1 with 30D and (b) cf 20 with 30D.

respectively. The last three rows of Tables S-III and S-IV
summarize the experimental results.

As can be seen from Tables S-III and S-IV, ACoS signifi-
cantly improves JADE, jDE, and SaDE on many test functions.
Specifically, compared with their original algorithms, when
D = 30, ACoS-JADE, ACoS-jDE, and ACoS-SaDE obtain
significance on 17, 13, and 21 test functions, respectively;
meanwhile in the case of D = 50, they outperform on 12,
14, and 23 test functions, respectively. In contrast, JADE,
jDE, and SaDE cannot beat their augmented algorithms on
more than four test functions. Besides, under our frame-
work, these three state-of-the-art DE variants can consistently
solve 13 cases, which have been highlighted in boldface in
Tables S-III and S-IV. Moreover, the superiority of ACoS-jDE
and ACoS-SaDE over their original algorithms increases as the
dimension of the search space increases (i.e., from D = 30 to
D = 50).

The above comparison demonstrates that ACoS can effec-
tively improve the performance of these three state-of-the-art
DE variants, which verifies the necessity to consider both the
Eigen and original coordinate systems in an adaptive fash-
ion when designing DE variants. Two convergence graphs
are given in Fig. 5 for the performance comparison between
these three state-of-the-art DE variants and their augmented
algorithms.

D. Comparison Between ACoS and Other Eigen Coordinate
System-Based Methods

The aim of this section is to compare ACoS with other Eigen
coordinate system-based methods: CMA-ES, CoBiDE, DE/eig,
and CPI-DE, which have been introduced in Section III-B.
Due to its outstanding performance, JADE was selected as the
instance algorithm. It should be noted that the updating of the
Eigen coordinate system in CMA-ES is particularly designed for
ES and cannot be used to JADE. With respect to ACoS, CoBiDE,
DE/eig, and CPI-DE, we applied them to JADE and obtained
ACoS-JADE, CoJADE, JADE/eig, and CPI-JADE, respectively.
For a fair comparison, ACoS-JADE, CoJADE, JADE/eig, and
CPI-JADE adopted the same parameter settings of F, CR, and
NP with the original JADE, while the other parameter settings
were identical with their own original papers. cf 1–cf 30 with
30D were employed in the comparative study, and Table S-V
in the supplementary material summarizes the experimental
results, where +, −, and ≈ denote that the performance of the



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON CYBERNETICS

corresponding algorithm is better than, worse than, and similar
to that of ACoS-JADE, respectively.

As shown in Table S-V, ACoS-JADE exhibits the best
performance among the five compared methods. It outper-
forms CMA-ES, CoJADE, JADE/eig, and CPI-JADE on 22,
14, 16, and 10 test functions, respectively; while only loses
on no more than two test functions. It is worth noting that
ACoS-JADE is never inferior to the four competitors on any
unimodal functions, hybrid functions, and composition func-
tions. Compared with CoJADE and JADE/eig, CPI-JADE,
and ACoS-JADE reach better performance, which demon-
strates the potential of utilizing the cumulative population
distribution information rather than the single population
distribution information to estimate the Eigen coordinate
system. Compared with CPI-JADE, ACoS-JADE’s superior
performance is largely attributed to the usage of the additional
archiving mechanism and the probability vector −→p .

E. Benefit of ACoS’s Components

We are interested in identifying the benefit of two crucial
components of ACoS: 1) the additional archiving mechanism
and 2) the probability vector −→p . To this end, we still selected
JADE as the instance algorithm and two groups of experiments
were carried out. In the first group, the archiving mechanism
was eliminated and the offspring in the current generation
played the role of the archive A in ACoS accordingly, while
the other parts were kept untouched. This compared method
is denoted as nonAr-ACoS-JADE. With respect to the second
group, instead of adaptive tuning, −→p was fixed during the
evolution. We tested three different values for each element of−→p : 0, 0.5, and 1. These three values represent different con-
ditions, i.e., only the original coordinate system is used, the
Eigen and original coordinate systems have an equal proba-
bility to be selected, and only the Eigen coordinate system
is utilized, respectively. It is evident that the first condition
is equivalent to the original JADE. These compared methods
are named as JADE, half-ACoS-JADE, and Eig-ACoS-JADE,
respectively.

We conducted the experiments on cf 1–cf 30 with 30D.
Experimental results are presented in Table S-VI in the
supplementary material, where +, −, and ≈ denote that the
performance of the corresponding algorithm is better than,
worse than, and similar to that of ACoS-JADE, respectively.
From Table S-VI, ACoS-JADE performs the best among the
five compared methods. Compared with nonAr-ACoS-JADE,
ACoS-JADE is significantly better on 11 test functions and
does not lose on any test functions. Although ACoS-JADE and
nonAr-ACoS-JADE achieve comparable performance on the
unimodal functions, ACoS-JADE outperforms nonAr-ACoS-
JADE on more complex functions (i.e., simple multimodal
functions, hybrid functions, and composition functions). The
reason is probably that the additional archiving mechanism
preserves the offspring not only in the current generation but
also in the past several generations, thus providing sufficient
information to estimate a more reliable Eigen coordinate
system in complex environments. Compared with JADE, half-
ACoS-JADE, and Eig-ACoS-JADE, ACoS-JADE produces

better results on 13, 11, and 21 test functions, respectively;
while the three competitors cannot outperform ACoS-JADE
on more than three test functions. This phenomenon suggests
that the updating of −→p in our framework has the capability
to provide a more proper coordinate system. It is noteworthy
that ACoS-JADE and half-ACoS-JADE have an advantage
over JADE and Eig-ACoS-JADE, which again verifies the
effectiveness of combining both the Eigen and original
coordinate systems together.

From the above discussion, one can conclude that both the
additional archiving mechanism and the probability vector −→p
play very important roles in ACoS. The former is beneficial
to estimate a more reliable Eigen coordinate system, and the
latter enables each individual to select a more appropriate coor-
dinate system. In addition, the utilization of both the Eigen and
original coordinate systems is quite necessary in the design of
an NIOA.

F. Evolution of the Probability Vector −→p in ACoS

Since the probability vector −→p = (p1, p2, . . . , pNP) deter-
mines the selection ratio of each coordinate system for each
individual, one may be interested in investigating the dynamic
changes of −→p over the course of search. For this purpose,
the mean value of −→p , referred as pm = (1/NP)

∑NP
i=1 pi, is

monitored in this section.
We still chose JADE as the instance algorithm and tested

ACoS-JADE on three test functions with 30D from IEEE
CEC2014: 1) the unimodal function cf 1; 2) the simple
multimodal function cf 10; and 3) the composite function cf 23.
These three different kinds of test functions aim to provide a
comprehensive study on the changes of −→p . To visualize the
results, Fig. 6 plots the evolution of the average values of pm

and (1− pm) over 51 independent runs.
As shown in Fig. 6, there are three different types of curves.

In the first type [see Fig. 6(a)], the Eigen coordinate system
has a larger probability to be selected than the original coordi-
nate system. Nevertheless, in the second type [see Fig. 6(b)],
the situation is opposite. For the third type [see Fig. 6(c)],
these two coordinate systems have the similar probability to be
chosen over the course of search process. It can be seen from
Table S-VI in the supplementary material that Eig-ACoS-JADE
outperforms JADE on cf 1, JADE surpasses Eig-ACoS-JADE
on cf 10, and Eig-ACoS-JADE and JADE reach the similar
performance on cf 23, which implies that the Eigen coordi-
nate system is more appropriate for cf 1, the original coordinate
system is a better choice for cf 10, and these two coordinate
systems are both important for cf 23, respectively. Interestingly,
the changes of pm and (1− pm) in Fig. 6 are consistent with
the above analysis, which indicates that ACoS is able to adapt−→p to a reasonable value to match different function land-
scapes. In summary, the following concludes can be made: 1)
there does not exist a one-size-fits-all coordinate system and 2)
our proposed framework can effectively select the appropriate
coordinate system for different optimization problems.

G. Applying ACoS to Other NIOAs

Apart from PSO and DE, we applied ACoS to two other
well-known NIOAs: 1) BA [7] and 2) TLBO [15] to validate
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(a) (b) (c)

Fig. 6. Evolution of the average values of pm and (1− pm) in ACoS-JADE during the optimization of (a) cf 1 with 30D, (b) cf 10 with 30D, and (c) cf 23
with 30D.

the generalization of ACoS. According to Sections III and IV,
ACoS can be easily applied to BA and TLBO. The compar-
ative experiments were conducted on cf 1−cf 30 with 30D. To
make a fair comparison, the parameter settings of BA and
TLBO were identical with their original papers, and kept
the same when they were under the framework of ACoS.
Table S-VII in the supplementary material provides the exper-
imental results, where +, −, and ≈ denote that BA or TLBO
performs better than, worse than, and similar to its augmented
algorithm, respectively. The last three rows of Table S-IX
summarize the experimental results.

From Table S-VII, it is obvious that ACoS has the capa-
bility to enhance the performance of both BA and TLBO on
a vast majority of test functions. To be specific, ACoS-BA
and ACoS-TLBO outperform their original algorithms on 19
and 25 test functions, respectively. In contrast, BA and TLBO
cannot beat their augmented algorithms on any test functions.
Hence, we can conclude that ACoS is also an effective frame-
work to improve the performance of these two NIOAs (i.e.,
BA and TLBO).

Remark 3: In Sections S-I and S-II in the supplementary
material, we also analyzed the effect of the parameter settings
and the computational time complexity of ACoS, respectively.

VI. CONCLUSION

An adaptive framework for tuning the coordinate systems in
NIOAs, referred as ACoS, was proposed in this paper. ACoS
provided a simple yet efficient approach to establish the Eigen
coordinate system via an additional archiving mechanism and
the rank-μ-update strategy. Thereafter, it adopted a probabil-
ity vector, which was adaptively updated by making use of the
collected information from the offspring, to select an appropri-
ate coordinate system from the Eigen and original coordinate
systems for each individual. This paper also presented a new
point of view toward how to transform a nature-inspired oper-
ator in the original coordinate system into the corresponding
nature-inspired operator in the Eigen coordinate system. We
applied ACoS to two of the most popular NIOA paradigms,
namely PSO and DE, for solving 30 test functions with 30D
and 50D from IEEE CEC2014. Simulation results demon-
strated that ACoS is capable of significantly enhancing the
performance of both PSO and DE. Compared with some
other Eigen coordinate system-based methods, ACoS exhib-
ited superior performance. We verified the importance of both

the Eigen and original coordinate systems in the design of
an NIOA, and the effectiveness of the adaptive tuning of
them in ACoS. In addition, ACoS was also applied to two
other well-known NIOAs (i.e., BA and TLBO) and achieved
improved performance. In the future, we will apply ACoS to
some multimethod NIOAs [39], [40].

The MATLAB source code of ACoS can be downloaded
from Y. Wang’s homepage: http://www.escience.cn/people/
yongwang1/index.html
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