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Abstract

The genome-wide association studies (GWAS) donmigagjenetic discovery are based on
large meta-analyses that combine data from divieiterical time periods and populations.
Polygenic scores constructed from GWAS explain @nfyaction of the heritability derived
from twin and whole-genome studies on single-padpania, known as the ‘hidden heritability’
puzzle. Using seven sampling populations (N=35,062)test whether hidden heritability is
attributed to genetic heterogeneity, showing treinetes are substantially and generally
smaller from across compared to within populatioe show that the hidden SNP-based
heritability ranges from zero (height), 20% (BM3),% (education), 40% (age at first birth) to
75% (number of children). Simulations demonstrdtat tour results more likely reflect
heterogeneity in phenotypic measurement or gengesmaent interaction than genetic
explanations. These findings have substantial mapbns for gene discovery, suggesting that
large homogenous datasets are required for behaVhenotypes and that gene-environment

interaction is a central challenge for genetic avsery.

Keywords: human reproduction; age at first birtthy@ational attainment; gene-environment
interaction; missing heritability; hidden heritatyil
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Introduction

The genome-wide association studies (GWAS) thatidiat® genetic discovery are based on
diverse samples that span vast historical timeogdseriand population'sThe proportion of
phenotypic variance accounted for by single-nuaeopolymorphisms (SNPs) that reach
genome-wide significance, and the polygenic scoagsstructed from all SNPs using GWA
study results, however, represent only a fractidreatability estimates derived from twin and

other whole-genome studies?

To understand this disparity, it is essential xplan three central ways to measure
heritability (see Box 1 for detailed definitiongjirst, narrow-sense heritability stems from
family-based studies and often twin reseangh.{) and produces the highest heritability
estimates. These studies demonstrated a geneiscfbaanthropometric traits such as height
and body mass index (BMI), but also behavioral piygmes such as educational attainment
and human reproductive behavior (i.e., number dficin, age at first birth):’A recent meta-
analysis of twin studies from 1958-201&stimated, for instance, heritability for educatib
attainment as 52% (N=24,484 twin pairs) and 31%rémroductive traits (N=28,819 twin

pairs).

GWAS heritability estimate$iiwas) use whole genome-data to estimate the proportion
of phenotypic variance accounted for by geneticavais known to be robustly associated with
the phenotype of interest and produce the loweshates. The polygenic score from a recent
meta-GWAS of educational attainment with over 300,Participants, explains around 4% of

the variancéwith another GWAS for age at first birth explaigianly 1%?
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Yang and colleagues argued that most genetic sfi@a too small to be reliably
detected in GWAS of current sample sizes and pexp@n alternative approach: whole
genome restricted maximum likelihood estimation EBR.) performed by GCTA softwarg®
This third measure is often referred to as SNRehgu-based heritabilitydenoted byv?sne), and
is the proportion of phenotypic variance explairt®d additive genetic variance jointly
estimated from all common variants on standard GVWABs. These estimates are typically
betweerZ.miy and (2swas) estimates. Contrary to the lowwas estimates of between 1-4% for
these phenotypes, the SNP-heritability for educatiattainment has been estimated as 22%,

15% for age at first birtfr1°

This stark discrepancy in heritability estimates spawned debates about ‘missing
heritability’ (difference betweem’cwas and hPsnp With Wramiy) and ‘hidden heritability’
(difference between whole-genome derived estiméi@® h’cwas and h%ne ) (for full
definitions see Box 1 aht).!>~!® ‘Missing heritability’ has been linked to fundantan
differences in study designs between family andledgenome studié$and that non-additive
genetic effect$®>!*and inflated estimate from twin studies due tasti@nvironmental factors
16 might explain part of this phenomenon. , Empirigtaidies find no evidence for either of
these reasons. A recent investigation on height Bivd, however, demonstrates that the
inclusion of rare genetic variants can stronglyiuefce the heritability estimate.The
underlying reason for the discrepancy of ‘hiddemitability’ between h%\e versush?was

estimates, are less well understdbd.

Here, we interrogate the common assumption unaeyl@WA studies’ meta-analyses,
that genetic effects are ‘universal’ across envitents. The large GWAS meta-analyses

required to detect SNP associations consist ofla airay of samples across historical periods
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and countries, representing heterogeneous popotatsubject to diverse environmental
influences. Heterogeneity across environments caerge for different reasons such as
differences in population structure, genotype oermtype measurement, heterogeneous
imputation quality across populations or sensifivitthe phenotype to environmental change.
Demographic research has shown, that educationremeductive behavior is strongly
modified by environmental changes such as femaleatbnal expansion or the introduction
of effective contraceptiotf. If genetic effects are not universal but rathetehogeneous across
populations, heritability estimates from GWAS matealyses should produce weaker signals
and we would witness a reduction in both the discpvate and the variance explained from

SNPs across populatiofs.

We conduct a mega-analysis using whole-genome mgthehich entails pooling all
cohorts to estimate genetic relatedness not ortlyinyibut also across populations. We first
apply models based cBREML estimatiof on primary data from seven pooled sampling
populations, which estimates the average common-!&dBd heritabilityrésve) between and
within environments. We subsequently apply a gengrenment interaction models adding a
within population matrix to estimate the averagePShised heritability within populations in
our data and decompose the variance explanatiacomimon SNPs within and between
sampling populations and birth cohotfS.If SNP-based heritability is significantly higher
within than across environments, we conclude thatis evidence for hidden heritability due

to heterogeneity across the sample population loorto

Our approach allows us to decompose average hétjtdbvels across historical
cohorts and countries into a genetic componenidhather ‘universal’ across all environments

versus ‘environmentally specific’, enabling a teéwhether the same genes are explaining
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variance in the phenotype to the same extent faréifit geographical (country) and historical
(birth cohort) environments. To test for alternatigxplanations for heterogeneity across
sampling populations, such as genotyping errorcaveduct a series of simulation studies to
evaluate the role of gene-environment interactiogantrast to alternative explanations. A
recent study used bivariate GREML models to ingaséi genetic heterogeneity in height and
BMI between two populations in the US and Europeyiding evidence for homogeneity in
both phenotype$: We expect negligible gene-environment interactiéor these
anthropometric traits and compare findings for ¢heemogeneous phenotypes to those from
our behavioural phenotypes (education, human regtoegd behavior) using the same

modeling framework.

Material & Methods

Data
We pooled a series of large datasets consistingnoélated genotyped men and women
(individuals with a >0.05 relatedness as estimasaadg common SNP markers were removed)
from six countries and seven sampling populatianghe US (HRS (N=8,146), ARIC
(N=6,633)), the Netherlands (LifeLines (N=6,0219weden (STR/SALT (N=6,040)),
Australia (QIMR (N=1,167)), Estonia (EGCUT (N=3,722 and the UK (TwinsUK
N=3,333)), for total sample size of R5,062(see Text S1 for details on data sources).

We used genotype data from all cohorts, imputeitieéol000 genome panel. We then
selected HapMap3 SNPs with an imputation scoreetatigan 0.6, excluded SNPs with a
missing rate greater than 5%, a lower minor allldquency than 1% and those which failed

the Hardy-Weinberg equilibrium test for a threshofd 0~¢. We subsequently applied these
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criteria again after merging each dataset. Wezetlli847,278 SNPs in analyses. The software

PLINK?2 was used for quality control and merging.

Phenotypes
The phenotypes under study are education, humaadegtive behavior (hnumber of children
ever born (NEB) and age at first birth (AFB)), Haigand BMI. We received measures of
height and BMI from all cohorts in centimeters akgln? respectively or already Z-
transformed by sex. For education and human reptov#u behavior, we received the
phenotypes, which cohorts have used in the resjgeletige-scale GWAS meta-analyses, or
constructed them based on raw data and Z-transtbtimegphenotypes for sex and birth cohorts
by dataset:?®

The number of years of education was constructeddan educational categories with
the typical years of education in the countriedofeing the standard ISCED scélé The
number of children ever born (NEB) measures nurobehildren a woman has given birth to
or a man has fatherédThis measure was available in all cohorts, althoigARIC and
TwinsUK, only available for women. Information ogeaat first birth (AFB) was available for
all cohorts except for ARIC and HRS. We focus amtyindividuals who reached the end of
their reproductive period of 45 for women and 50 feen (for more details see Text S2)
Reproductive phenotypes are frequently recordetijally immune to measurement error and

used as key parameters for demographic foreca®ting.

GREML Models
We first describe the baseline GREML model, whictsummes the absence of gene-

environment interactions. We then extend this moaléhe GCI-GREML model?including
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genetic relatedness matrices where we stratify dgtaenvironments, setting pairwise
relatedness for individuals in different environiseto zerd. Doing so allows us to test

whether the pairwise genetic relatedness is arfqateelictor of pairwise phenotypic similarity

if both individuals live in the same environmentfdathus test for gene-environment
interaction. Note that we define the various geneariance components of the models
explicitly, and will refer toh3yp as the sum of all genetic effects relative to thermtypic

variance within the respective model specification.

Baseline model (GREML)

The genetic component underlying a trait is commaguiantified in terms of SNP-based
heritability as the proportion of the additive g&n variance explained by common SNPs
across the genome over the overall phenotypic vegig) of the trait:®

2
2 9%
hsnp =

oy

The phenotypic variance is the sum of additive erend environmental variance,
i.e.,0f = aé + of , wheredé is the additive genetic variance explained byathmon SNPs
across the genome ang is residual variance. The methods we applied haen lwetailed

elsewheré:®2>-?"Briefly, we applied a linear mixed model:

y=Xp+g+t+e

wherey is anNx1 vector of dependent variablééjs the sample siz@, is a vector for fixed
effects of thevl covariates ilNxM matrix X (including the intercept and potential confounders
such as birth yearyy is theNx1 vector with each of its elements being the tgealetic effect

of all common SNPs for an individual, ards anNx1 vector of residuals. We hageN(0,

Acd) and eN(0, Io#). Hence, the variance matikof the observed phenotypes is:
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V = Acé + 1o,
To estimate the GRM, 847,278 HapMap3 SNPs were taseapture common genetic
variation in the human genorm&For each individualg @ndk), the corresponding element of

the GRM is defined as:

K
A = lz (xij — 2p;) (X — 2p;)
K - 2pi(1 = p) '

where x;; denotes the number of copies of the referencdealier the i'" SNP for
thej™ individual andp; the frequency of the reference allele &nihe number of SNPs. If two
individuals had a higher genetic relatedness th@s, @ne was excluded from the analyses to
avoid bias due to confounding by shared environraerdngst close relatives. GCTA was used
for the construction of the GRM and GREML analy$es.

In the baseline model we apply this approach topbeled data sources without
environmental strata. Hence, the baseline modeltesea reference point for SNP-based

heritability in the mega-analysis.
Genex sampling population (GxP) GCI-GREML model

In the case where genetic effects are heterogerswass sampling populations, SNP-based
heritability estimates obtained from the baselinedet will be deflated when sampling
populations are pooled. We therefore apply a gesampling population modelG&P) to
simultaneously estimate within- and between vaeagplanations of common SNPs (see also
9.20for GCI-GREML models).

The GxP model jointly model estimates global genetic efdor the outcome
variables, effectively between and within samptgg éind the averaged additional genetic

effects within sampling populationsd;p).
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V = Acé + Agxp0ixp + 107
whereA is the genetic relatedness matrix @qgp is a matrix only with values for pairs of

individuals within Populations 1-7:

_Ap1p1Ap2p1Ap3p1Ap4p1Ap5p1Ap6p1Ap7p1_
Ap1p2ApZpZAp3pZAp4p2Ap5p2A6p2pAp7p2
Ap1p3Ap2p3Ap3p3Ap4p3Ap5p3Ap6p3Ap7p3
A = (Ap1paAp2psApspadpapsApspadpepadprps
Ap1psApaps Apsps Apaps Apsps Apeps Ap7ps
Ap1p6Ap2p6Ap3p6Ap4p6Ap5p6Ap6p6Ap7p6

_Ap1p7Ap2p7Ap3p7Ap4p7Ap5p7Ap6p7Ap7p7_

Apipy 0 0 0 0 0 O
0 App, 0 0 0 0 O
0 0 Apzps 0 0 0 0
Agsp=| 0 0 0 Apspsa 0 0 O
0 0 0 0 Apsps 0 0
0 0 0 0 0 Apps O
0 0 0 0 0 0 Aprpr

The sum of both variance components? ¢ oé.p) are therefore expected to
correspond with the results of a meta-analysib@fample-specifikéyp of sufficient sample

size. We quantify the hidden heritability due tdenegeneity as the discrepancy between

2 ' 2 452
héyp = =% from the baseline model andyp = Z<—& from the GxP model.
SNP = oz NP 0§

Gene x demographic birth cohort (&xC) GCI-GREML model

10
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We are likewise interested in gene-environmentrawiion across birth cohorts. Fertility
behavior and educational attainment have drambticanged during the $0century*®2°
Figure 1 shows the trends in age at first birth BA\Buring the 28 century for the countries
in our study (see Text S3 for details on the dateies). We see the well-established U-shaped
pattern of a falling AFB in the first half of th&®® century followed by an upturn in the trend
of AFB towards older ages. This widespread feytifiostponemeft — referred to as the
Second Demographic Transitih— was related to the spread of effective contréaepa
drop in the NEB, changes in the economic need fuldien and female educational
expansion&3?

Environmental changes occurred at different periadsach country, with Australia
having the earliest onset of fertility postponem@®39) and Estonia having the latest due to
post-socialist transitions (1962; see Table Salidurning points and details). To test for gene-
environment interaction, we grouped the birth cthanto environmentally homogeneous
conditions by those born before and after each tepuapecific fertility postponement turning
point. To investigate the moderating effect of tngpoints, we follow the previous modeling

strategy, but divide individuals into these turnpant birth cohorts.

(Figure 1 here)

TheGxC model is a joint model estimating the universalajee effects for the traits,
effectively between and within sampleg) and the averaged additional genetic effects
within defined birth cohortssg,¢):

V = Ac¢ + AgxcOéxc + Lo
whereA is the genetic relatedness matrix @l ¢ is a matrix only with values for pairs of

individuals within the same demographic birth Cafior c.:

11
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0
Agxc = [Aclcl ]

0 Ca2Cp

Genes x Population x Demographic birth cohorts (GxRC) GCI-GREML model
In the GxPxC model, we included both interaction terms mentioakdve and an additional
interaction termA¢y«pxc Which is equal to zero for all pairs of individuals lignn different
time periods or in different cohorts represented by

V = Ac¢ + Agxp0éxp + AaxcOéxc + AcxpxcTéxpxc + 10§
whereA is the genetic relatedness matriXgp iS @ matrix only with non-zero values for
pairs of individuals within populations from tBe<P Model, A« IS a matrix only with non-
zero values for pairs of individuals within the sademographic periods from tlexC
Model, andA¢y«pxc IS @ matrix only with values for pairs of indivials with both the same

demographic periods and the same populations.

Control variables

All phenotypes have been Z-transformed by samptiogulation, birth year and sex. We
furthermore added fixed effects for sex, birth yesampling population (with reference
category Lifelines, the Dutch dataset) and the &6 principal components calculated from
the GRM across all populations to account for pafoih stratificatior?? For the interaction
model with birth cohorts, we included an additiofebd effect for the respective birth cohort
turning point. In theGxPxC model, we additionally controlled for the inteliads between

the respective sampling population and the birtihocodivision.

Model-fitting approach

12
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The variance components are estimated using GRE#iimation. When comparing the
respective model specifications, to determine tre-fitting model, we rely on a model-fitting
approach that compares the full model with redunedels that constrain specific effects to
be zero. Since the models are nested, we perfdehhiood-ratio tests and prefer the more
parsimonious models if there is no significant lassnodel fit (where the test statistic is
distributed as a mixture of chi-squared with a pility of 0.5 and @; p-values from these
tests are provided in Tables S3-7)his strategy is also robust against the violatéthe
assumption of requiring a normal distribution o tlependent variable — as for example in the

case of NEB (number of children ever both).

Simulation Study

We conducted a series of simulation studies tastilhite how our models interpret gene-
environment interaction and to evaluate the role potential alternative sources of
heterogeneity in our data. All simulation studies detailed in Text S4 (for the theory behind
them seé?). First, we were interested in how the model aurest heterogeneity in heritability
levels across populations. Since heritability isaBo of the proportion of total phenotypic
variance that is attributable to additive genetieats, differences in the residual variance for
example due to heterogeneous phenotypic measuramentcan lead to different levels of
heritability across populations, even though gergffiects are perfectly correlated. In contrast
to twin studies, we are not interested in compalengls of heritability across populations, but
in the question of whether genes have the samet&ffethe phenotype across environments.
We thus decompose the heritability in the pooleth diato additive genetic variance, both

within and between environments.

13
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In simple terms, we simulated phenotypes withoaegenvironment interaction across
sampling populations and with gene-environmentration across sampling populations
based on 5000 SNPs that were in approximate linkgg#ibrium (pairwise? between SNPs
below 0.05) and repeated this across 50 replicatibinst, to test for a model without gene-
environment interaction, we skfyp of the trait to 0.50 and the genetic correlatiansss
environments to 1 (Text S4 Sim 1). Second, weatgaethe simulations with varying residual
phenotypic variance across populatidfisresulting in simulatedy, between0.25-0.625,
but still with a genetic correlation of 1 acrospplations (Text S4 Sim 2). Thirth illustrate
weak levels of gene-environment interactiorg simulatedhiyp to be 0.50 and thgenetic
correlations of traits across populations t@80 (Text S4 Sim 3). Finallyo illustrate stronger
gene-environment interactipwe simulatedhdyp to 0.50 and the@enetic correlations of traits
across populations @50 (Text S4 Sim 4).

The stacked bars in Figure 2 depict the averagenasts of the four types of
simulations for the simulated 50 phenotypes for Ilaseline model and th@xP model
(individual estimates are presented as black dwtghie full model and stripes in the bars
represent variance components). Examining the fwedel (Sim 1) assumed no gene-
environment interaction by sampling populations #ngs homogeneous heritabilitydyp as
oé/o¢ (blue bar) is estimated at 0.324 and thereforaratahree fifths of the simulated
heritability of 0.50 since the GRM is based notyomh quantitative trait loci. Central to our
approach is that for the phenotypes withGwP interaction, the variance explanation that is
effective both within and between populatioag(a¢) is nearly identical to the baseline model
(0.318). The gene-environment interaction termg,f/oy) estimates a small additional

explanation of variance within populations of orerage 0.026, with the full model estimate

14
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of hgyp Within populations at 0.34@= T) Importantly, the same holds if we simulate
Y

differences inhdyp across populations due to varying residual vagai®im 2 in Figure 2
shows an averadgyp of 0.205 and th&xP interaction model estimates of ‘universal’ genetic
variance ¢ /o) of 0.200, with a gene-environment interactiomtésZ, p /o) of 0.0217. We
therefore conclude that the model does not intetpterogeneity in heritability levels due to
differences in the residual variance as gene-enmemt interaction.
(Figure 2 here)
Sim 3 and 4 in Figure 2 depict how gene-environmetgraction across sampling

populations affects model estimates in scenariosrags population genetic correlations of
0.80 (weak) and 0.50 (strong) gene-environmentracten respectively, but the same

population specificiZyp of 0.050 as in Sim 1. First, we observe th3{y. in the baseline
2

models are deflated in the pooled dé%éz 0.261 and 0.105) and therefore only capture
Y

around four-fifths and one-third of the estimateshie absence @&xP. Second, when taking
GxP into account, the full model estimate reachesstimae level as the baseline model in the

2 2
0G1+0Gxp
2

absence of5xP ( = 0.328 and 0.315) due to a larger fraction of genetic variance

9y
explained within populatio SCE—E"z 0.082 and 0.256) and do not appear to be inflated
whatsoever. Third, the genetic variance explairfestvely within and between populations
in the GxP model is even smaller than in the baseline mc@élz 0.246 and 0.059).

Therefore, while in the case of a genetic corretatof 0.5 across populations, within
population estimates dféyp capture around one third of the overall heritailthe shared
genetic variance explanation across populationdavoel only around 19% (=0.059/0.315) of

this value.

15
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Based on the findings from Sim 4 for example, wauldceexpect that in the case of
meta-analyses of population specific GWAS on theegenvironment interaction phenotypes,
that genome-wide significant SNPs could explairyard to 10% of the variance whikgyp
of within populations could explain on average 32%ound 68% ofh3yp ((1-10/32)*100)
would therefore be ‘hidden’ in the mega-analysie tlhuheterogeneity and in this case due to

gene-environment interaction.

Figure 3 shows hidden heritability estimates foe thimulations without gene-
environment interaction (Sim 1) and with gene-emwiment interaction (Sim 3 and Sim 4). We
were furthermore interested to what extent gertegterogeneity across populations such as
differences in genetic measurement, in linkageqigérium across sampling populations, or
heterogeneous imputation quality across populat@m lead to observed heterogeneity or
deflate h3yp in pooled data sources. To investigate this weokead the 5,000 causal SNPs
from the genetic data, which was the basis of ha@simnulated the phenotypes. We then re-
estimated the GRM and repeated the analyses onl1S$iof phenotypes without gene-
environment interaction and homogeneous heritglaliross populations (depicted in Figure
3 as Sim 1 LD). If the causal SNPs are removetmagts are based on correlated SNPs, which
are in linkage disequilibrium (LD). To the extehat the structure in the genetic data we use
is heterogeneous across populations due to theraéationed reasons, we can expect that our

models interpret it as heterogeneous genetic sffesulting in hidden heritability.

In Figure 3, we see that hidden heritability isreated to be around 68% for a genetic
correlation of 0.50, around 20% for a genetic datien of 0.80 and around 5% for the model
without gene-environment interaction as well asogleh based on SNPs in LD with the causal

SNPs. This allows us to draw two conclusions. Finstthe complete absence of gene-

16
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environment interaction (Sim 1), our models intetpyn average across 50 simulations that
5% of the heritability in th&5xP model is hidden in a standard model with a stasily
significantGxP term in 10 simulation studie$@{/50 = 20%; not listed) at the 5%-level. This
is important to keep in mind when analyzing ourrpgstgpes of interest. To evaluate phenotype
specific model inflations, we conducted complemenfzermutation analyses generating a
matrix with randomly stratified environments to $@sv estimates are inflated in the real data
for specific phenotypes. This will be reported witkscussing the findings. Second, we find
no difference in inflation between the simulatiomsluding and excluding causal SNPs (Sim
1 LD and Sim 1). We conclude from this that heterwaty in the genetic structure of the
populations does not affect our interpretation efigrenvironment interaction in comparison
to the standard model. This is likely due to thet that we only look at common SNPs and
applied rigorous quality control. To investigate etter gene-environment interaction is
present for education and human reproductive behawve estimate the above models as well

asGxC andGxPxC models to these phenotypes in seven sampling atoos.

Sex differences
Previous studies find no evidence for gene-sexantmn of common genetic effects on BMI,
heigh® and also human reproductive beha¥idie also tested for G x Sex interaction within
sampling populations, as:

V = Agxp0Gxp + AgxpxsexT6xpxsex + 10%
whereAg;«p IS the genetic relatedness matrix only with valigggpairs of individuals within
the same population am;ypxsex IS @ Matrix with only values for pairs of indivigls of the

same sex and same sampling population.

17
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(Figure 3 here)

Decomposing the genetic variance of all five phgpes, height, BMI, education,
number of children ever born (NEB) and age at bigh (AFB) into within population effects
shared between sexesi(p) and the averaged additional genetic effects witbéxes
(0é4pxsex): We find no evidence for sex-specific effectg. <o) fOr education (p-value
0.49), AFB (p-value 0.5), NEB (p-value 0.41) ordtdi(p-value 0.5). Only for BMI do we find
evidence of around a 3% sex-specific variance agplan (p-value 0.046; for full results see
Table S2). Given that we focus on education ancbretive behavior, we applied all models

to pooled data including both sexes, keeping indntine findings for BMI.

Results

SNP-based heritability across model specificationtsy phenotypes

When we ignore environmental differencédsne in the standard GREML model (G) is
significant for all phenotypes, but at differentéés (Figure 4 and Tables S3-S7 for full model
estimates). For heightsypis estimated as 0.40 (SE 0.01), meaning that 408teovariance

in height can be attributed to common additive tjeredfects.h?snpis smaller for BMI (0.17
SE 0.01) and years of education (0.16 SE 0.01) lamdfor both reproductive behavior
outcomes, NEB (0.03 SE 0.01) and AFB (0.08 0.02peetively.

More importantly, however, for our questiditsne in all phenotypes increases if we
include stratified GRMs in addition to the baseliBBRM (e.q., yielding th&xC model when
stratifying by birth cohorts, th@xP model when stratifying by sampling populations] #me
GxPxC model when stratifying by both). Particularly the complex behavioral outcomes of

education and reproductive behavior, the incremasabstantial. For educatidifsnpincreases
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by 80% (up to 0.28 SE 0.03) in tkéxPxC model compared to the standard GREML model
(G). For AFB, the increase is 60% (0.13 SE 0.04)fandNEB it is as high as 342% (0.13 SE
0.03). In contrast, the increase in the @HPxC model was considerably smaller at 12% (0.44

SE 0.03) for height and 30% (0.22 SE 0.03) for BMI.

Best model by phenotype

Based on likelihood ratio tests, we identified lbiest fitting and parsimonious model (in Figure
4 marked as BM; for full results see Table S8). k@ght, the best fitting model includes no

gene-environment interaction and therefore corratesrprevious findings from the literature.

35

(Figure 4 here)

For BMI, and the reproductive phenotypes of AFB AiftB, theGxP specification shows the
best model fit. This indicates significant geneismvment interaction across sampling
populations, while there is no evidence for anraxtBon by birth cohort. For BMI, additive
SNP variance, or effectively between and within ydapons (i.e., the blue column that
assumes it is effective across the defined enviesisnor ‘universal’ respectivelyé /ov),
16% of the variance in the phenotype and an additis% can be explained on average within
populations ¢&.p/ov, green column). For AFB, around 6% of the variacae be explained
by universal genetic effects while 7% are environtally specific, and for NEB only 1% of
the variance can be explained between populatiaith, 12% within them. Finally, for
education, the best-fitting modabkPxC) implies that both sampling population and birth

cohort moderate genetic effects from the whole gem@nd that there are genetic effects

19



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

unique to sampling populations within the definedhbcohorts. In contrast to reproductive
behavior, however, 12% of the overall variance stlh be explained by additive common
genetic effects even between populations. Additignthere is 2% variance explained within
birth cohorts ¢&.c/o¢, red column), 6% within populations and 8% whistunique within

populations and birth cohortsd,pxc/0ov, orange column).

Quantifying ‘universal effects’ and ‘hidden heritability’ due to heterogeneity
Figure 5 visualizes: (i) the ‘universal effects’ @tio for genetic variance captured by the
normal GRM in the best fitting model (i.e., bludwon, o& /oy in the model with the best fit)
and the totah2yp (i.e., across all genetic components in the btstg model). It also shows
(i) in red the *hidden heritability’ due to geneagronment interaction (i.e., the differences in
total h3yp between the best fitting model and the baselindehalivided by the totatZyp of
the best fitting model) for all phenotypes.

(Figure 5 here)

The Figure illustrates hidden heritability due t@ng-environment interaction
particularly for the complex phenotypes we are nmusrested in, namely: education, and the
reproductive outcomes of AFB and NEB. For educattoiy 55% ofhyp in the best fitting
model is ‘universal’ or effectively both within al@tween environments. A standard GREML
model (G) would only capture around 63%hgf;p in the best fitting model resulting in 37%
hidden heritability. For reproductive behavior sthiecomes even stronger. For NEB only 6%
of h3yp Of h3yp Of the best fitting model is universal, with 75%ldien in the baseline model.
For AFB, 45% ofhdyp is universal with around 40% of théyp hidden in the baseline model.
For height, in contrast, we see that #g, in the best fitting model is effectively between

environments and we find no evidence for hidderitddgtity. For BMI, around 75% ohZyp
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in the best fitting model is effectively betweerdamithin environments (i.e., universal). The
standard GREML model (G) for BMI thus captures 86PA3y, from the best fitting model

with 20% hidden heritability.

Discussion

Using whole-genome data from seven populationsg@&maonstrate heterogeneity in genetic
effects across national populations and birth dshfor educational attainment and human
reproductive behavior in a mega-analysis framewowk: findings imply substantial ‘hidden
heritability’ due to heterogeneity for educatioattinment (37%) and reproductive behavior
(40% for AFB and 75% for NEB) in the cohorts undéudy. Comparative analysis with
anthropometric traits (height and BMI) corroborapesvious findings from whole-genome
methods of a more homogeneous genetic architecttinese phenotypes across environments
(while for BMI GWA studies also find evidence fogme-environment interaction across birth

cohorts in the HRS3%,

Our findings indicate that the lower predictive movef polygenic scores from large
GWA studies compared to SNP-based heritability iogle or very few populations partly
reflects the fact that genetic effects are (to sertent) not universal but rather specific to data
sources for these complex traits. Estimates areiwéhe with the 36-38% loss in polygenic
scoreR? across data sets reported for educatidrney demonstrate therefore that the reference
SNP-based heritability for the predictive powepofygenic scores obtained from the GWAS
meta-analyses amongst several populations is snbde SNP-based heritability obtained
from single populations. While the need for statédtpower often still necessitates large-scale

GWAS meta-analysis combining multiple and diveragadources, our findings also suggests
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that large homogeneous data sources such as thigdbignk with around 500,000 genotyped
individuals may trigger genetic discovery for beloaal outcomes. Drawing conclusions or
making predictions out of one discovery sample @ltowever, may be inaccurate, since SNPs
may have different effects in different samples,tloe phenotype may reflect different

behavioral aspects.

Complementary simulation studies corroborate therjmetation that our findings are
mainly driven by gene-environment interaction innttast to heterogeneity in residual
environmental variance — including measurementres@r genetic heterogeneity (e.g.,
genotyping platform, genetic architecture, imputatiquality) across the data sources we
pooled. When applying our models to simulated phgres without gene-environment
interaction but rather to different levels of hability due to varying residual variance, we find
no systematic inflation of th&xP component in our models. Furthermore, both estisnate
including and excluding the causal 5000 SNPs rasulearly identical estimates. In the total
absence of gene-environment interaction, estinstew a slight inflation in th&xP model
(5%). First, the substantial findings of hiddenitaduility between 40-75% for behavioral
phenotypes largely exceeds this potential inflagteamresponding with simulations of a genetic
correlation between 0.5-0.8 across populationgHerbehavioral phenotypes. Second, we
conducted permutation analyses, generating a rangleme-environment interaction, not
stratifying by population or birth cohorts. Here feend no inflation for age at first birth by a
randomly generated matrix included in the modegs ¢ 0.000001, SE 0.03, p-value 0.50), nor
for number of children ever bormd,p 0.003, SE 0.02, p-value 0.43) nor educatiag
0.000001, SE 0.02, p-value 0.50; not listed). mhans vital to conclude that although the

estimates of hidden heritability provided in oundst are the first estimates of its kind in a
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single design — in contrast to comparing GWAS amdle-genome methods — estimates do
not represent generalizable values of hidden Hwlitiafor these traits. The estimates are for
illustrative purposes as they are also dependetiteonumber of cohorts combined for a study,

the respective level of heterogeneity across thadntlaey might be slightly inflated.

Contrary to our expectations, we did not find awyjdence for gene-environment
interaction across birth cohorts for human repraéisadehavior. This is particularly surprising
since across time there have been substantialoemeental changes such as the introduction
of effective contraception, social norms around tiheng of childbearing and educational
expansion — all factors which strongly modifiesrosfuctive behaviort® In contrast, we find
cohort specific genetic effects on educational@tt@nt. This contributes to solving the puzzle
of missing heritability in educational attainmesince twin studies with higher heritability
estimates are also conducted within homogeneotlsdohorts.

Our findings expose the challenges in detectingtienariants associated with human
reproductive behavior or other complex phenotypessWAS meta-analyses of multiple
cohorts. First, SNP-based heritability within pagidns is comparably small and second, we
find limited evidence that genetic effects undenyireproductive behavior in one country
predicts the underlying behavior in another. Ourdifngs likely reflect the interrelated
behavioral nature of reproduction and education¢lvlppears to be more sensitive to cultural
and societal heterogeneity than for example anthmaric traits such as height or BMI. It has
also been shown that pleiotropic genes affecting agfirst birth and schizophrenia have
different effects across populatioifsRecently, social scientists have made considerable
efforts to integrate molecular genetics into theisearcif~* When considering the highly
socially- and biologically-related phenotype of naguctive behavior outcomes,

environmental factors are critical in understandiog/ genetic factors are modified in relation
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to fecundity and infertility.

Finally, our study also has several important latidns. First, it is possible that
heterogeneity in the phenotypic measures influetfttepatterns we observed. While we find
no evidence thabur models interpret changing relative environmieotatributions to trait
variation as gene-environment interaction, we camake out the possibility that the trait
definitions differ across environmenté/e consider this as minor issue for reproductive
behavior. While measures are not perfectly harmezhiacross birth cohorts (for e.g., some
guestionnaires for example explicitly ask for numbée still-births and others do not), in
LifeLines and TwinsUK, we compared the live birtleasures with number of children ever
born and, as expected, given the low mortality rateoth populations, less than 0.2% of the
children had not reached reproductive age. Moredher correlation of number of children
ever born and number of children reaching repradeicige was 0.98Ne therefore do not
expect a large bias due to the exclusion of stilibiin some countries (for details see Text S2).
Nevertheless, we cannot reject the possibility tleterogeneity in the measure of education
remains even after homogenizing it with the statdd&CED scale. In this case, we would
argue that large parts of the gene-environmentaot®n pattern we observe for education are
due to interaction within populations by birth cdisowhere we hypothetically have
homogeneous measures. Furthermore, different oc@ssnal definitions of education
represent a case of gene-environment interactionallfy, our statistical findings of
heterogeneity are of major importance in shapingexpectations about the ability to locate
genetic loci associated with education in GWAS nrastalyses despite their causal
mechanisms.

Second, notwithstanding the fact that our simukasitudies show no inflation of hidden

heritability due to differences in the genetic stune across populations, it is plausible that
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empirical phenotypes are heterogeneous in referencare genetic variants, which are not
considered in our models and not present in oua.dBtis is an issue demanding further
consideration in future research. We are suitahltious that part of hidden heritability in our
models might be driven by rare, population-specificiants. Previous studies of height and
BMI show that rare variants explain a significamtrtpof phenotypic variandg, while our
models show the least heterogeneity across popnsator these phenotypes.

Third, the models we apply average within environtakeffects across populations.
An optimal study design would be a multivariate ggnmodeling approach, which estimates
SNP-based heritability for each population and dgleeetic correlations across them. This
approach, however, is feasible for traits withisgror moderate heritability such as height and
BMI,2! but lack statistical powf for phenotypes with small SNP-based heritabilitgts as
reproductive behaviétin the current samples. The models we proposalito investigate
and compare gene-environment interaction acroaagerof phenotypes. Multivariate models
may become feasible in the future with larger hoemsgpus data sources, and will also enable
us to disentangle shared genetic effects across fifeenotypes:#041

Finally, in the current modeling approach, we cdnnolude childless individuals in
the modeling of AFB, and future research in quatitie genetics may aim to integrate
censored information in their modeling approachésch is standard in demographic research
(for further discussion se&4243,

In conclusion, our study provides initial evidentteat there may be substantial
implications for the estimates of genetic effeats tb the extreme heterogeneity of combining
multiple samples across vast historical time peyiadd populations to conduct large-scale
GWA studies. We likewise uncover challenges foestigations into the genetic architecture

of human reproductive behavior and education agdest that gene-environment interaction
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is the main driver of heterogeneity across popateti These challenges can only be overcome
by interdisciplinary work between both geneticiarsd social scientists using ever-larger
datasets, with combined information and substarknevledge of complex phenotypes and

environmental condition§**°
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Boxes

Box 1: Definitions of heritability

Heritability

Heritability is the proportion of the phenotypicriemce accounted for by genetic effects and
narrow sense heritability refers to the additiveajee variance component (for discussion also
see®49. There are several ways to estimate heritabiffiyst, the highest and prominent
estimates are derived from family-based studiésy), such as twin studies, where, typically,
the genetic resemblance between relatives is magpgidenotypic similarity, taking unique-
and shared-environment effects into account. Usdeeral assumptions, estimates@fmiy
ought to reflect only additive-genetic effects. &cend method is the proportion accounted for
by genetic variants known to be robustly associatgl the phenotype of interest, derived
from a GWAS (genome-wide association studykgas). This measure tends to produce the
lowest levels. Finally, there is the proportionpbienotypic variance jointly accounted for by
all variants on standard GWAS chips. This is somes referred to as the SNP- or chip-based
heritability (Ysnp). Typically, Psnpis substantially larger tharewasand provides an ‘upper
level estimate’ of the genetic effects that coudddentified with a well-powered GWAS. The
h?cwas increases in tandem with GWAS sample sizes anekjgcted to approadifsne
asymptotically under the assumption that the phgrebf interest is homogeneous in its
genetic architecture across different environments.

Missing heritability

The gap between thefamiy and h’cwas is referred to as ‘missing heritabilit}?. Potential
reasons for missing heritability are for examplenqadlditive genetic effects (although
empirical evidence on this is scarcel large effects of rare variant§,and potentially inflated
estimates from twin studies due to shared environahéactors1® The missing heritability is
commonly defined as the sum of the still-missing &rdden heritability, which we define
below?’

Still-missing heritability

Yang and colleaguésargued that most genetic effects are too smaieteeliably detected in
GWAS of current sample sizes which is why they psmal the whole-genome restricted
maximum likelihood estimation performed by GCTA tsafre. *® Studies applying these
whole-genome methods typically produce estimates tle between twin studies and
polygenic scoreB?cwas < h?snp < h2tamiy. The discrepanciPsne < hamiy has been referred to
as ‘still-missing heritability’! A stylized fact is that for many traits the stilissing
heritability is roughly equal th?sne® It is generally assumed that by genotyping rarer a
structural variants, the still-missing heritabiivyll decrease, as the denser arrays will increase
h2snp.

Hidden heritability

Since we expect to be able to almost fully captifegp in the long run, the discrepancy
betweerh?snpandh?cwas is sometimes referred to as ‘hidden heritabifttyThe current study

is mainly interested in the question hd#¥éne changes, depending on whether we examine
differences within or between populations. Herefegais on hidden heritability as the genetic
variation due to heterogeneity that cannot possiblgxplained by SNP associations based on
meta-analyses of multiple populations. Sihéewas is usually inferred from meta-analyses
that include multiple populations, heterogeneitygenetic effects on a phenotype between
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these populations could deflaBswas and would also deflaté’sne — which is typically
obtained within single populations. Within a sindksign we therefore demonstrate how one
estimate oh? depends upon population heterogeneity. Missingatslity is thus commonly
defined as the sum of the still-missing and hiddientability*’ As indicated, the hidden
portion will decrease as sample sizes grow andstiiemissing portion will decrease with
denser forms of genotyping.
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Figure legends:

Figure 1. Trends in mean age at first birth of woma indicating environmental changes
across cohorts (1903-1970) from the US, UK, Swedehe Netherlands, Estonia and
Australia. Trends in the mean age at first birth of womenba®ed on aggregated data
obtained from Human Fertility Database and the Hufertility Collection (for details see
Text S3). For Estonia, from 1962 onwards, we ustichated age at first births based on
women older than 40. For Australia, no officialalatas available and the trends have been

estimated from the QIMR dataset, averaged for dachde.
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=== Aunstralia (Est.)

Estonia

=== Fstonia (Est.)
== Netherlands

== Sweden

== United Kingdom
== United States

Age at First Birth (Years)

1920 1940 1960 1980
Birth Year
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Figure 2. Stacked Bar Charts of average betweelzrg) and within (af,xp) variance

SNP-Based Additive Genetic Variance Components

034

0.2+

0.14

0.0+

explanation by common SNPs estimated across 50 silaied phenotypes in two
model specifications (standard GREML model and thgene-environment
interaction model by study population (GxP) and forfour simulated phenotypes:
Sim 1 with homogeneous SNP-based heritability 0.5itlvout gene-environment
interaction, Sim 2 heterogeneous SNP-based heritdity between 0.25-0.625
without gene environment interaction, Sim 3 with hanogeneous SNP-based
heritability 0.5 with gene-environment interaction (genetic correlation of 0.8
across populations) and Sim 4 with homogeneous SNised heritability 0.5 with
gene-environment interaction (genetic correlation ©0.5 across populations).

Individual model estimates are represented by blackots, individual af,

components in the GxP models in gray stripes.

Sim 1 Sim 2 Sim 3 Sim 4

T T T T T T T T
G GxP G GxP G GxP G GxP
Model Specification

. Mean Oy, /0;: 50 simulations . Mean G2/, 50 simulations
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Figure 3. Bar Charts of average % of hidden heritallity due to heterogeneity (% of
h2snp of the best fitting model which is not captured instandard GREML models)
for Sim 1 including and excluding causal variants$im LD), for Sim 3 and 4.
Individual estimates are represented by black dots.

60% -
40%

.
i
20%+
[ ]
L]
0%

Hidden heritability (%)

...I_.. .

Sim 1 LD Sim 1 Sim 2 Sim 3
Model Specification

35



O 00 N o U A W N PP

[EEN
o

N T
D W N R

16
17

Figure 4. Stacked Bar Charts of average betweew$) and within (6%x, 65x:05xpxc)

SNP—Based Additive Genetic Variance Components

0.31

0.0+

variance explanation by common SNPs estimated foréight, BMI, education, age

at first birth (AFB) and number of children (NEB) in four model specifications

(G, GxP, GxC, GxPxC).The best model (BM in white, in chart) is based on
likelihood ratio tests comparing the full model hvidne constraining the respective
variance component to 0; see Table @2202 = proportion of observed variance in the
outcome associated with genetic variance acrosswitonments,ojy,/o5 =

proportion of observed variance in the outcomes@ated withadditional genetic
variance within populations,y /o5 = proportion of observed variance associated
with additional genetic variance within demographic birth cohm'g';}pXC/aﬁ =
proportion of observed variance associated aattlitional genetic variance within
populations and demographic birth cohorts. ModpécBications G, GxP, GxC,
GxPxC refer to the model specifications including tespective variance components
as well as those of lower order — see MaterialMathods. For detailed results see
Table S3-7.

Education AFB NEB BMI Height

m= AL AN

G GxC GxP GxPxC G GxC GxP GxPxC G GxC GxP GxPxC G GxC GxP GxPxC G GxC GxP GxPxC
Model Specification

D Ctoxel O, D Ol D oyl D oo,
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Figure 5. Bar Charts of average % of hidden heritallity due to heterogeneity (% of

Hidden heritability due to heterogeneity and universal genetic effects (%)

h2snp of the best fitting model which is not captured instandard GREML models)

and of universal genetic effects (% ofi’snp of the best fitting model which is
effectively identical across the defined environmen)

Education

NEB

BMIL

Height

100% 4

Hidden
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