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Abstract 1 

The genome-wide association studies (GWAS) dominating genetic discovery are based on 2 

large meta-analyses that combine data from diverse historical time periods and populations. 3 

Polygenic scores constructed from GWAS explain only a fraction of the heritability derived 4 

from twin and whole-genome studies on single-populations, known as the ‘hidden heritability’ 5 

puzzle. Using seven sampling populations (N=35,062), we test whether hidden heritability is 6 

attributed to genetic heterogeneity, showing that estimates are substantially and generally 7 

smaller from across compared to within populations. We show that the hidden SNP-based 8 

heritability ranges from zero (height), 20% (BMI), 37% (education), 40% (age at first birth) to 9 

75% (number of children). Simulations demonstrate that our results more likely reflect 10 

heterogeneity in phenotypic measurement or gene-environment interaction than genetic 11 

explanations. These findings have substantial implications for gene discovery, suggesting that 12 

large homogenous datasets are required for behavioural phenotypes and that gene-environment 13 

interaction is a central challenge for genetic discovery.  14 

 15 

Keywords: human reproduction; age at first birth; educational attainment; gene-environment 16 

interaction; missing heritability; hidden heritability  17 
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 1 

Introduction 2 

The genome-wide association studies (GWAS) that dominate genetic discovery are based on 3 

diverse samples that span vast historical time periods and populations.1 The proportion of 4 

phenotypic variance accounted for by single-nucleotide polymorphisms (SNPs) that reach 5 

genome-wide significance, and the polygenic scores constructed from all SNPs using GWA 6 

study results, however, represent only a fraction of heritability estimates derived from twin and 7 

other whole-genome studies. 2–4  8 

 To understand this disparity, it is essential to explain three central ways to measure 9 

heritability (see Box 1 for detailed definitions). First, narrow-sense heritability stems from 10 

family-based studies and often twin research (h2
family) and produces the highest heritability 11 

estimates. These studies demonstrated a genetic basis for anthropometric traits such as height 12 

and body mass index (BMI), but also behavioral phenotypes such as educational attainment 13 

and human reproductive behavior (i.e., number of children, age at first birth).5–7A recent meta-14 

analysis of twin studies from 1958-20125 estimated, for instance, heritability for educational 15 

attainment as 52% (N=24,484 twin pairs) and 31% for reproductive traits (N=28,819 twin 16 

pairs).  17 

GWAS heritability estimates (h2
GWAS) use whole genome-data to estimate the proportion 18 

of phenotypic variance accounted for by genetic variants known to be robustly associated with 19 

the phenotype of interest and produce the lowest estimates. The polygenic score from a recent 20 

meta-GWAS of educational attainment with over 300,000 participants, explains around 4% of 21 

the variance4 with another GWAS for age at first birth explaining only 1%.2  22 
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Yang and colleagues argued that most genetic effects are too small to be reliably 1 

detected in GWAS of current sample sizes and proposed an alternative approach: whole 2 

genome restricted maximum likelihood estimation (GREML) performed by GCTA software.8,9 3 

This third measure is often referred to as SNP- or chip-based heritability (denoted by h2
SNP), and 4 

is the proportion of phenotypic variance explained by additive genetic variance jointly 5 

estimated from all common variants on standard GWAS chips. These estimates are typically 6 

between h2
family and (h2

GWAS) estimates. Contrary to the low h2
GWAS estimates of between 1–4% for 7 

these phenotypes, the SNP-heritability for educational attainment has been estimated as 22%, 8 

15% for age at first birth.3,10  9 

This stark discrepancy in heritability estimates has spawned debates about ‘missing 10 

heritability’ (difference between h2
GWAS and h2

SNP with h2
family) and ‘hidden heritability’ 11 

(difference between whole-genome derived estimates from h2
GWAS and h2

SNP ) (for full 12 

definitions see Box 1 and11).12–15 ‘Missing heritability’ has been linked to fundamental 13 

differences in study designs between family and whole-genome studies12 and that non-additive 14 

genetic effects 13,14 and inflated estimate from twin studies due to shared environmental factors 15 

16 might explain part of this phenomenon. , Empirical studies find no evidence for either of 16 

these reasons. A recent investigation on height and BMI, however, demonstrates that the 17 

inclusion of rare genetic variants can strongly influence the heritability estimate.15 The 18 

underlying reason for the discrepancy of ‘hidden heritability’ between h2
SNP versus h2

GWAS 19 

estimates, are less well understood.17  20 

Here, we interrogate the common assumption underlying GWA studies’ meta-analyses, 21 

that genetic effects are ‘universal’ across environments. The large GWAS meta-analyses 22 

required to detect SNP associations consist of a wide array of samples across historical periods 23 
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and countries, representing heterogeneous populations subject to diverse environmental 1 

influences. Heterogeneity across environments can emerge for different reasons such as 2 

differences in population structure, genotype or phenotype measurement, heterogeneous 3 

imputation quality across populations or sensitivity of the phenotype to environmental change. 4 

Demographic research has shown, that education and reproductive behavior is strongly 5 

modified by environmental changes such as female educational expansion or the introduction 6 

of effective contraception.18  If genetic effects are not universal but rather heterogeneous across 7 

populations, heritability estimates from GWAS meta-analyses should produce weaker signals 8 

and we would witness a reduction in both the discovery rate and the variance explained from 9 

SNPs across populations.19  10 

We conduct a mega-analysis using whole-genome methods, which entails pooling all 11 

cohorts to estimate genetic relatedness not only within, but also across populations. We first 12 

apply models based on GREML estimation9 on primary data from seven pooled sampling 13 

populations, which estimates the average common SNP-based heritability (h2
SNP) between and 14 

within environments. We subsequently apply a gene-environment interaction models adding a 15 

within population matrix to estimate the average SNP-based heritability within populations in 16 

our data and decompose the variance explanation of common SNPs within and between 17 

sampling populations and birth cohorts.9,20 If SNP-based heritability is significantly higher 18 

within than across environments, we conclude that this is evidence for hidden heritability due 19 

to heterogeneity across the sample population or cohort.  20 

Our approach allows us to decompose average heritability levels across historical 21 

cohorts and countries into a genetic component that is either ‘universal’ across all environments 22 

versus ‘environmentally specific’, enabling a test of whether the same genes are explaining 23 
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variance in the phenotype to the same extent in different geographical (country) and historical 1 

(birth cohort) environments. To test for alternative explanations for heterogeneity across 2 

sampling populations, such as genotyping error, we conduct a series of simulation studies to 3 

evaluate the role of gene-environment interaction in contrast to  alternative explanations. A 4 

recent study used bivariate GREML models to investigate genetic heterogeneity in height and 5 

BMI between two populations in the US and Europe, providing evidence for homogeneity in 6 

both phenotypes.21 We expect negligible gene-environment interaction for these 7 

anthropometric traits and compare findings for these homogeneous phenotypes to those from 8 

our behavioural phenotypes (education, human reproductive behavior) using the same 9 

modeling framework.  10 

Material & Methods 11 

Data 12 

We pooled a series of large datasets consisting of unrelated genotyped men and women 13 

(individuals with a >0.05 relatedness as estimated using common SNP markers were removed) 14 

from six countries and seven sampling populations in the US (HRS (N=8,146), ARIC 15 

(N=6,633)), the Netherlands (LifeLines (N=6,021)), Sweden (STR/SALT (N=6,040)), 16 

Australia (QIMR (N=1,167)), Estonia (EGCUT (N=3,722)); and the UK (TwinsUK 17 

N=3,333)), for total sample size of N=35,062 (see Text S1 for details on data sources).  18 

We used genotype data from all cohorts, imputed to the 1000 genome panel. We then 19 

selected HapMap3 SNPs with an imputation score larger than 0.6,  excluded SNPs with a 20 

missing rate greater than 5%, a lower minor allele frequency than 1% and those which failed 21 

the Hardy-Weinberg equilibrium test for a threshold of 10��. We subsequently applied these 22 
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criteria again after merging each dataset. We utilized 847,278 SNPs in analyses. The software 1 

PLINK22 was used for quality control and merging. 2 

 3 

Phenotypes  4 

The phenotypes under study are education, human reproductive behavior (number of children 5 

ever born (NEB) and age at first birth (AFB)), height, and BMI. We received measures of 6 

height and BMI from all cohorts in centimeters and kg/m2 respectively or already Z-7 

transformed by sex. For education and human reproductive behavior, we received the 8 

phenotypes, which cohorts have used in the respective large-scale GWAS meta-analyses, or 9 

constructed them based on raw data and Z-transformed the phenotypes for sex and birth cohorts 10 

by dataset.4,23 11 

The number of years of education was constructed based on educational categories with 12 

the typical years of education in the countries following the standard ISCED scale.3,4 The 13 

number of children ever born (NEB) measures number of children a woman has given birth to 14 

or a man has fathered.2 This measure was available in all cohorts, although in ARIC and 15 

TwinsUK, only available for women. Information on age at first birth (AFB) was available for 16 

all cohorts except for ARIC and HRS. We focus only on individuals who reached the end of 17 

their reproductive period of 45 for women and 50 for men (for more details see Text S2). 18 

Reproductive phenotypes are frequently recorded, virtually immune to measurement error and 19 

used as key parameters for demographic forecasting.24   20 

 21 

GREML Models 22 

We first describe the baseline GREML model, which assumes the absence of gene-23 

environment interactions. We then extend this model to the GCI-GREML model 9,20 including 24 
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genetic relatedness matrices where we stratify data by environments, setting pairwise 1 

relatedness for individuals in different environments to zero.9 Doing so allows us to test 2 

whether the pairwise genetic relatedness is a better predictor of pairwise phenotypic similarity 3 

if both individuals live in the same environment, and thus test for gene-environment 4 

interaction. Note that we define the various genetic variance components of the models 5 

explicitly, and will refer to ℎ���	  as the sum of all genetic effects relative to the phenotypic 6 

variance within the respective model specification. 7 

 8 

Baseline model (GREML) 9 

The genetic component underlying a trait is commonly quantified in terms of SNP-based 10 

heritability  as the proportion of the additive genetic variance explained by common SNPs 11 

across the genome over the overall phenotypic variance (
�	) of the trait: 8 12 

ℎ�
�	 = ���
���

   13 

The phenotypic variance is the sum of additive genetic and environmental variance, 14 

i.e., 
�	 = 
�	 + 
�	 , where 
�	 is the additive genetic variance explained by all common SNPs 15 

across the genome and 
�		is residual variance. The methods we applied have been detailed 16 

elsewhere.8,9,25–27 Briefly, we applied a linear mixed model:  17 

 � = 	�� + � + �	 18 

where y is an N×1 vector of dependent variables, N is the sample size, β is a vector for fixed 19 

effects of the M covariates in N×M matrix X (including the intercept and potential confounders 20 

such as birth year), g is the N×1 vector with each of its elements being the total genetic effect 21 

of all common SNPs for an individual, and e is an N×1 vector of residuals. We have g~N(0, 22 

�
�	) and e~N(0, �
�	). Hence, the variance matrix � of the observed phenotypes is: 23 
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� = �
�	 + �
�	, 1 

 2 

To estimate the GRM, 847,278 HapMap3 SNPs were used to capture common genetic 3 

variation in the human genome.28 For each individuals (j and k), the corresponding element of 4 

the GRM is defined as:  5 

�� = 1
!"

($%� − 2(%)($% − 2(%)
2(%(1 − (%) ,

+

%,-
 6 

where $%� denotes the number of copies of the reference allele for the i th SNP for 7 

the j th individual and (% the frequency of the reference allele and K the number of SNPs. If two 8 

individuals had a higher genetic relatedness than 0.05, one was excluded from the analyses to 9 

avoid bias due to confounding by shared environment amongst close relatives. GCTA was used 10 

for the construction of the GRM and GREML analyses. 9 11 

In the baseline model we apply this approach to the pooled data sources without 12 

environmental strata. Hence, the baseline model creates a reference point for SNP-based 13 

heritability in the mega-analysis.  14 

Gene × sampling population (G×P) GCI-GREML model  15 

In the case where genetic effects are heterogeneous across sampling populations, SNP-based 16 

heritability estimates obtained from the baseline model will be deflated when sampling 17 

populations are pooled. We therefore apply a gene × sampling population model (G×P) to 18 

simultaneously estimate within- and between variance explanations of common SNPs (see also 19 

9,20 for GCI-GREML models). 20 

The G×P model jointly model estimates global genetic effects for the outcome 21 

variables, effectively between and within samples (
�	) and the averaged additional genetic 22 

effects within sampling populations (
�×/	 ).  23 
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 1 

� = �
�	 + ��×/
�×/	 + �
�	 2 

where A is the genetic relatedness matrix and ��×/ is a matrix only with values for pairs of 3 

individuals within Populations 1–7: 4 

 5 

� =

0
1
1
1
1
1
1
2�3-3-�3-3	
�3-34
�3-35
�3-36
�3-3�
�3-37

�3	3-
�3	3	
�3	34
�3	35
�3	36
�3	3�
�3	37

�343-
�343	
�3434
�3435
�3436
�343�
�3437

�353-
�353	
�3534
�3535
�3536
�353�
�3537

�363-
�363	
�3634
�3635
�3636
�363�
�3637

�3�3-
��3	3
�3�34
�3�35
�3�36
�3�3�
�3�37

�373-
�373	
�3734
�3735
�3736
�373�
�37378

9
9
9
9
9
9
:

 6 

 7 

��×/ =

0
1
1
1
1
1
2�3-3-0

0
0
0
0
0

0
�3	3	
0
0
0
0
0

0
0

�3434
0
0
0
0

0
0
0

�3535
0
0
0

0
0
0
0

�3636
0
0

0
0
0
0
0

�3�3�
0

0
0
0
0
0
0

�37378
9
9
9
9
9
:

 8 

 9 

 10 

The sum of both variance components (
�	 + 
�×/	 ) are therefore expected to 11 

correspond with the results of a meta-analysis of the sample-specific ℎ���	  of sufficient sample 12 

size. We quantify the hidden heritability due to heterogeneity as the discrepancy between 13 

ℎ���	 = ���
���

 from the baseline model and ℎ���	 	= ���;��×/�
���

 from the GxP model.  14 

 15 

Gene × demographic birth cohort (G×C) GCI-GREML model  16 
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We are likewise interested in gene-environment interaction across birth cohorts. Fertility 1 

behavior and educational attainment have dramatically changed during the 20th century.18,29 2 

Figure 1 shows the trends in age at first birth (AFB) during the 20th century for the countries 3 

in our study (see Text S3 for details on the data sources). We see the well-established U-shaped 4 

pattern of a falling AFB in the first half of the 20th century followed by an upturn in the trend 5 

of AFB towards older ages. This widespread fertility postponement18 –  referred to as the 6 

Second Demographic Transition 30 – was related to the spread of effective contraception, a 7 

drop in the NEB, changes in the economic need for children and female educational 8 

expansion.18,31  9 

Environmental changes occurred at different periods in each country, with Australia 10 

having the earliest onset of fertility postponement (1939) and Estonia having the latest due to 11 

post-socialist transitions (1962; see Table S1 for all turning points and details). To test for gene-12 

environment interaction, we grouped the birth cohorts into environmentally homogeneous 13 

conditions by those born before and after each country-specific fertility postponement turning 14 

point. To investigate the moderating effect of turning points, we follow the previous modeling 15 

strategy, but divide individuals into these turning point birth cohorts.  16 

(Figure 1 here) 17 

The G×C model is a joint model estimating the universal genetic effects for the traits, 18 

effectively between and within samples (
�	) and the averaged additional genetic effects 19 

within defined birth cohorts (
�×<	 ): 20 

� = �
�	 + ��×<
�×<	 + �
�	 21 

where A is the genetic relatedness matrix and ��×< is a matrix only with values for pairs of 22 

individuals within the same demographic birth Cohorts c1– c2: 23 
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��×< = =�>?>?
@

@
�>�>�

A  1 

 2 

Genes × Population × Demographic birth cohorts (G×P×C) GCI-GREML model  3 

In the G×P×C model, we included both interaction terms mentioned above and an additional 4 

interaction term ��×/×< which is equal to zero for all pairs of individuals living in different 5 

time periods or in different cohorts represented by: 6 

� = �
�	 + ��×/
�×/	 + ��×<
�×<	 +	��×/×<
�×/×<	 + �
�	 7 

where A is the genetic relatedness matrix,  ��×/ is a matrix only with non-zero values for 8 

pairs of individuals within populations from the G×P Model, ��×< is a matrix only with non-9 

zero values for pairs of individuals within the same demographic periods from the G×C 10 

Model, and ��×/×<  is a matrix only with values for pairs of individuals with both the same 11 

demographic periods and the same populations. 12 

 13 

Control variables 14 

All phenotypes have been Z-transformed by sampling population, birth year and sex. We 15 

furthermore added fixed effects for sex, birth year, sampling population (with reference 16 

category Lifelines, the Dutch dataset) and the first 20 principal components calculated from 17 

the GRM across all populations to account for population stratification.32 For the interaction 18 

model with birth cohorts, we included an additional fixed effect for the respective birth cohort 19 

turning point. In the G×P×C model, we additionally controlled for the interactions between 20 

the respective sampling population and the birth cohort division. 21 

 22 

Model-fitting approach 23 
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The variance components are estimated using GREML estimation. When comparing the 1 

respective model specifications, to determine the best-fitting model, we rely on a model-fitting 2 

approach that compares the full model with reduced models that constrain specific effects to 3 

be zero. Since the models are nested, we perform likelihood-ratio tests and prefer the more 4 

parsimonious models if there is no significant loss in model fit (where the test statistic is 5 

distributed as a mixture of chi-squared with a probability of 0.5 and 0 9; p-values from these 6 

tests are provided in Tables S3-7). 9 This strategy is also robust against the violation of the 7 

assumption of requiring a normal distribution of the dependent variable – as for example in the 8 

case of NEB (number of children ever born).33 9 

 10 

Simulation Study 11 

We conducted a series of simulation studies to illustrate how our models interpret gene-12 

environment interaction and to evaluate the role of potential alternative sources of 13 

heterogeneity in our data. All simulation studies are detailed in Text S4 (for the theory behind 14 

them see 20). First, we were interested in how the model construes heterogeneity in heritability 15 

levels across populations. Since heritability is a ratio of the proportion of total phenotypic 16 

variance that is attributable to additive genetic effects, differences in the residual variance for 17 

example due to heterogeneous phenotypic measurement error can lead to different levels of 18 

heritability across populations, even though genetic effects are perfectly correlated. In contrast 19 

to twin studies, we are not interested in comparing levels of heritability across populations, but 20 

in the question of whether genes have the same effect on the phenotype across environments. 21 

We thus decompose the heritability in the pooled data into additive genetic variance, both 22 

within and between environments.  23 
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In simple terms, we simulated phenotypes without gene-environment interaction across 1 

sampling populations and with gene-environment interaction across sampling populations 2 

based on 5000 SNPs that were in approximate linkage equilibrium (pairwise r2 between SNPs 3 

below 0.05) and repeated this across 50 replications. First, to test for a model without gene-4 

environment interaction, we set ℎ���	  of the trait to 0.50 and the genetic correlations across 5 

environments to 1 (Text S4 Sim 1).  Second, we repeated the simulations with varying residual 6 

phenotypic variance across populations 34, resulting in simulated ℎ���	  between 0.25–0.625, 7 

but still with a genetic correlation of 1 across populations (Text S4 Sim 2). Third, to illustrate 8 

weak levels of gene-environment interaction, we simulated ℎ���	  to be 0.50 and the genetic 9 

correlations of traits across populations to be 0.80 (Text S4 Sim 3). Finally, to illustrate stronger 10 

gene-environment interaction, we simulated ℎ���	  to 0.50 and the genetic correlations of traits 11 

across populations to 0.50 (Text S4 Sim 4). 12 

The stacked bars in Figure 2 depict the average estimates of the four types of 13 

simulations for the simulated 50 phenotypes for the baseline model and the G×P model 14 

(individual estimates are presented as black dots for the full model and stripes in the bars 15 

represent variance components). Examining the first model (Sim 1) assumed no gene-16 

environment interaction by sampling populations and thus homogeneous heritability, ℎ���	  as 17 


�	/
�	 (blue bar) is estimated at 0.324 and therefore around three fifths of the simulated 18 

heritability of 0.50 since the GRM is based not only on quantitative trait loci. Central to our 19 

approach is that for the phenotypes with no G×P interaction, the variance explanation that is 20 

effective both within and between populations (
�	/
�	) is nearly identical to the baseline model 21 

(0.318). The gene-environment interaction term (
�×/	 /
�	) estimates a small additional 22 

explanation of variance within populations of on average 0.026, with the full model estimate 23 
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of ℎ���	   within populations at 0.344 C= ���;��D/�
���

E. Importantly, the same holds if we simulate 1 

differences in ℎ���	  across populations due to varying residual variance. Sim 2 in Figure 2 2 

shows an average ℎ���	  of 0.205 and the G×P interaction model estimates of ‘universal’ genetic 3 

variance (
�	/
�	) of 0.200, with a gene-environment interaction term (
�×/	 /
�	) of 0.0217. We 4 

therefore conclude that the model does not interpret heterogeneity in heritability levels due to 5 

differences in the residual variance as gene-environment interaction. 6 

(Figure 2 here) 7 

Sim 3 and 4 in Figure 2 depict how gene-environment interaction across sampling 8 

populations affects model estimates in scenarios of cross population genetic correlations of 9 

0.80 (weak) and 0.50 (strong) gene-environment interaction respectively, but the same 10 

population specific ℎ���	  of 0.050 as in Sim 1. First, we observe that ℎ���F	  in the baseline 11 

models are deflated in the pooled data C������ = 0.261		and	0.105E and therefore only capture 12 

around four-fifths and one-third of the estimates in the absence of G×P.  Second, when taking 13 

G×P into account, the full model estimate reaches the same level as the baseline model in the 14 

absence of G×P C���;��×/�
���

= 0.328	and	0.315E due to a larger fraction of genetic variance 15 

explained within populations	C��×/�
���

= 0.082	and	0.256E	 and do not appear to be inflated 16 

whatsoever. Third, the genetic variance explained effectively within and between populations 17 

in the G×P model is even smaller than in the baseline model C������ = 0.246	and	0.059E. 18 

Therefore, while in the case of a genetic correlation of 0.5 across populations, within 19 

population estimates of ℎ���	  capture around one third of the overall heritability; the shared 20 

genetic variance explanation across populations would be only around 19% (=0.059/0.315) of 21 

this value.  22 
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Based on the findings from Sim 4 for example, we would expect that in the case of 1 

meta-analyses of population specific GWAS on the gene-environment interaction phenotypes, 2 

that genome-wide significant SNPs could explain only up to 10% of the variance while ℎ���	  3 

of within populations could explain on average 32%. Around 68% of ℎ���	  ((1-10/32)*100) 4 

would therefore be ‘hidden’ in the mega-analysis due to heterogeneity and in this case due to 5 

gene-environment interaction.  6 

Figure 3 shows hidden heritability estimates for the simulations without gene-7 

environment interaction (Sim 1) and with gene-environment interaction (Sim 3 and Sim 4). We 8 

were furthermore interested to what extent genetic heterogeneity across populations such as 9 

differences in genetic measurement, in linkage disequilibrium across sampling populations, or 10 

heterogeneous imputation quality across population can lead to observed heterogeneity or 11 

deflate ℎ���	  in pooled data sources. To investigate this we removed the 5,000 causal SNPs 12 

from the genetic data, which was the basis of how we simulated the phenotypes. We then re-13 

estimated the GRM and repeated the analyses on Sim 1, of phenotypes without gene-14 

environment interaction and homogeneous heritability across populations (depicted in Figure 15 

3 as Sim 1 LD). If the causal SNPs are removed, estimates are based on correlated SNPs, which 16 

are in linkage disequilibrium (LD). To the extent that the structure in the genetic data we use 17 

is heterogeneous across populations due to the aforementioned reasons, we can expect that our 18 

models interpret it as heterogeneous genetic effects resulting in hidden heritability. 19 

In Figure 3, we see that hidden heritability is estimated to be around 68% for a genetic 20 

correlation of 0.50, around 20% for a genetic correlation of 0.80 and around 5% for the model 21 

without gene-environment interaction as well as a model based on SNPs in LD with the causal 22 

SNPs. This allows us to draw two conclusions. First, in the complete absence of gene-23 
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environment interaction (Sim 1), our models interpret on average across 50 simulations that 1 

5% of the heritability in the G×P model is hidden in a standard model with a statistically 2 

significant G×P term in 10 simulation studies (10/50 =	20%; not listed) at the 5%-level. This 3 

is important to keep in mind when analyzing our phenotypes of interest. To evaluate phenotype 4 

specific model inflations, we conducted complementary permutation analyses generating a 5 

matrix with randomly stratified environments to see how estimates are inflated in the real data 6 

for specific phenotypes. This will be reported when discussing the findings. Second, we find 7 

no difference in inflation between the simulations including and excluding causal SNPs (Sim 8 

1 LD and Sim 1). We conclude from this that heterogeneity in the genetic structure of the 9 

populations does not affect our interpretation of gene-environment interaction in comparison 10 

to the standard model. This is likely due to the fact that we only look at common SNPs and 11 

applied rigorous quality control. To investigate whether gene-environment interaction is 12 

present for education and human reproductive behavior, we estimate the above models as well 13 

as G×C and G×P×C models to these phenotypes in seven sampling populations.  14 

 15 

Sex differences 16 

Previous studies find no evidence for gene-sex interaction of common genetic effects on BMI, 17 

height35 and also human reproductive behavior2 . We also tested for G x Sex interaction within 18 

sampling populations, as:  19 

� = ��×/
�×/	 + ��×/×Q�D
�×/×Q�D	 + �
�	 20 

where ��×/ is the genetic relatedness matrix only with values for pairs of individuals within 21 

the same population and ��×/×Q�D is a matrix with only values for pairs of individuals of the 22 

same sex and same sampling population.  23 
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(Figure 3 here) 1 

Decomposing the genetic variance of all five phenotypes, height, BMI, education, 2 

number of children ever born (NEB) and age at first birth (AFB) into within population effects 3 

shared between sexes (
�×/	 ) and the averaged additional genetic effects within sexes 4 

(
�×/×Q�D	 ), we find no evidence for sex-specific effects (
�×/×Q�D	 ) for education (p-value 5 

0.49), AFB (p-value 0.5), NEB (p-value 0.41) or height (p-value 0.5). Only for BMI do we find 6 

evidence of around a 3% sex-specific variance explanation (p-value 0.046; for full results see 7 

Table S2). Given that we focus on education and reproductive behavior, we applied all models 8 

to pooled data including both sexes, keeping in mind the findings for BMI. 9 

 10 

Results 11 

SNP-based heritability across model specifications by phenotypes 12 

When we ignore environmental differences, h2
SNP in the standard GREML model (G) is 13 

significant for all phenotypes, but at different levels (Figure 4 and Tables S3-S7 for full model 14 

estimates). For height, h2
SNP is estimated as 0.40 (SE 0.01), meaning that 40% of the variance 15 

in height can be attributed to common additive genetic effects. h2
SNP is smaller for BMI (0.17 16 

SE 0.01) and years of education (0.16 SE 0.01) and low for both reproductive behavior 17 

outcomes, NEB (0.03 SE 0.01) and AFB (0.08 0.02) respectively.  18 

More importantly, however, for our question, h2
SNP in all phenotypes increases if we 19 

include stratified GRMs in addition to the baseline GRM (e.g., yielding the G×C model when 20 

stratifying by birth cohorts, the G×P model when stratifying by sampling populations, and the 21 

G×P×C model when stratifying by both). Particularly for the complex behavioral outcomes of 22 

education and reproductive behavior, the increase is substantial. For education, h2
SNP increases 23 
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by 80% (up to 0.28 SE 0.03) in the G×P×C model compared to the standard GREML model 1 

(G). For AFB, the increase is 60% (0.13 SE 0.04) and for NEB it is as high as 342% (0.13 SE 2 

0.03). In contrast, the increase in the full G×P×C model was considerably smaller at 12% (0.44 3 

SE 0.03) for height and 30% (0.22 SE 0.03) for BMI. 4 

 5 

Best model by phenotype 6 

Based on likelihood ratio tests, we identified the best fitting and parsimonious model (in Figure 7 

4 marked as BM; for full results see Table S8). For height, the best fitting model includes no 8 

gene-environment interaction and therefore corroborates previous findings from the literature. 9 

35  10 

(Figure 4 here) 11 

For BMI, and the reproductive phenotypes of AFB and NEB, the G×P specification shows the 12 

best model fit. This indicates significant gene-environment interaction across sampling 13 

populations, while there is no evidence for an interaction by birth cohort. For BMI, additive 14 

SNP variance, or effectively between and within populations (i.e., the blue column that 15 

assumes it is effective across the defined environments or ‘universal’ respectively; 
�	/
�	),  16 

16% of the variance in the phenotype and an additional 5% can be explained on average within 17 

populations (
�×/	 /
�	, green column). For AFB, around 6% of the variance can be explained 18 

by universal genetic effects while 7% are environmentally specific, and for NEB only 1% of 19 

the variance can be explained between populations, with 12% within them. Finally, for 20 

education, the best-fitting model (G×P×C) implies that both sampling population and birth 21 

cohort moderate genetic effects from the whole genome and that there are genetic effects 22 
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unique to sampling populations within the defined birth cohorts. In contrast to reproductive 1 

behavior, however, 12% of the overall variance can still be explained by additive common 2 

genetic effects even between populations. Additionally, there is 2% variance explained within 3 

birth cohorts (
�×<	 /
�	, red column), 6% within populations and 8% which is unique within 4 

populations and birth cohorts (
�×/×<	 /
�	, orange column). 5 

Quantifying ‘universal effects’ and ‘hidden heritability’ due to heterogeneity 6 

Figure 5 visualizes: (i) the ‘universal effects’ or ratio for genetic variance captured by the 7 

normal GRM in the best fitting model (i.e., blue column, 
�	/
�	 in the model with the best fit) 8 

and the total ℎ���	  (i.e., across all genetic components in the best fitting model). It also shows 9 

(ii) in red the ‘hidden heritability’ due to gene-environment interaction (i.e., the differences in 10 

total ℎ���	  between the best fitting model and the baseline model, divided by the total ℎ���	  of 11 

the best fitting model) for all phenotypes.  12 

(Figure 5 here) 13 

 14 

The Figure illustrates hidden heritability due to gene-environment interaction 15 

particularly for the complex phenotypes we are most interested in, namely: education, and the 16 

reproductive outcomes of AFB and NEB. For education, only 55% of ℎ���	  in the best fitting 17 

model is ‘universal’ or effectively both within and between environments. A standard GREML 18 

model (G) would only capture around 63% of ℎ���	  in the best fitting model resulting in 37% 19 

hidden heritability. For reproductive behavior, this becomes even stronger. For NEB only 6% 20 

of ℎ���	  of ℎ���	
 of the best fitting model is universal, with 75% hidden in the baseline model. 21 

For AFB, 45% of ℎ���	  is universal with around 40% of the ℎ���	  hidden in the baseline model. 22 

For height, in contrast, we see that the ℎ���	  in the best fitting model is effectively between 23 

environments and we find no evidence for hidden heritability. For BMI, around 75% of ℎ���	  24 
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in the best fitting model is effectively between and within environments (i.e., universal). The 1 

standard GREML model (G) for BMI thus captures 80% of ℎ���	
 from the best fitting model 2 

with 20% hidden heritability.  3 

 4 

Discussion  5 

Using whole-genome data from seven populations, we demonstrate heterogeneity in genetic 6 

effects across national populations and birth cohorts for educational attainment and human 7 

reproductive behavior in a mega-analysis framework. Our findings imply substantial ‘hidden 8 

heritability’ due to heterogeneity for educational attainment (37%) and reproductive behavior 9 

(40% for AFB and 75% for NEB) in the cohorts under study. Comparative analysis with 10 

anthropometric traits (height and BMI) corroborates previous findings from whole-genome 11 

methods of a more homogeneous genetic architecture of these phenotypes across environments 12 

(while for BMI GWA studies also find evidence for gene-environment interaction across birth 13 

cohorts in the HRS 36,37).  14 

Our findings indicate that the lower predictive power of polygenic scores from large 15 

GWA studies compared to SNP-based heritability on single or very few populations partly 16 

reflects the fact that genetic effects are (to some extent) not universal but rather specific to data 17 

sources for these complex traits. Estimates are well in line with the 36-38% loss in polygenic 18 

score R2 across data sets reported for education.38 They demonstrate therefore that the reference 19 

SNP-based heritability for the predictive power of polygenic scores obtained from the GWAS 20 

meta-analyses amongst several populations is smaller than SNP-based heritability obtained 21 

from single populations. While the need for statistical power often still necessitates large-scale 22 

GWAS meta-analysis combining multiple and diverse data sources, our findings also suggests 23 
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that large homogeneous data sources such as the UK Biobank with around 500,000 genotyped 1 

individuals may trigger genetic discovery for behavioral outcomes. Drawing conclusions or 2 

making predictions out of one discovery sample alone, however, may be inaccurate, since SNPs 3 

may have different effects in different samples, or the phenotype may reflect different 4 

behavioral aspects.  5 

Complementary simulation studies corroborate the interpretation that our findings are 6 

mainly driven by gene-environment interaction in contrast to heterogeneity in residual 7 

environmental variance – including measurement error – or genetic heterogeneity (e.g., 8 

genotyping platform, genetic architecture, imputation quality) across the data sources we 9 

pooled. When applying our models to simulated phenotypes without gene-environment 10 

interaction but rather to different levels of heritability due to varying residual variance, we find 11 

no systematic inflation of the GxP component in our models. Furthermore, both estimates 12 

including and excluding the causal 5000 SNPs result in nearly identical estimates. In the total 13 

absence of gene-environment interaction, estimates show a slight inflation in the GxP model 14 

(5%). First, the substantial findings of hidden heritability between 40–75% for behavioral 15 

phenotypes largely exceeds this potential inflation, corresponding with simulations of a genetic 16 

correlation between 0.5–0.8 across populations for the behavioral phenotypes. Second, we 17 

conducted permutation analyses, generating a random gene-environment interaction, not 18 

stratifying by population or birth cohorts. Here we found no inflation for age at first birth by a 19 

randomly generated matrix included in the models (
�×/	  0.000001, SE 0.03, p-value 0.50), nor 20 

for number of children ever born (
�×/	  0.003, SE 0.02, p-value 0.43) nor education (
�×/	  21 

0.000001, SE 0.02, p-value 0.50; not listed). It remains vital to conclude that although the 22 

estimates of hidden heritability provided in our study are the first estimates of its kind in a 23 
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single design – in contrast to comparing GWAS and whole-genome methods – estimates do 1 

not represent generalizable values of hidden heritability for these traits. The estimates are for 2 

illustrative purposes as they are also dependent on the number of cohorts combined for a study, 3 

the respective level of heterogeneity across them and they might be slightly inflated. 4 

Contrary to our expectations, we did not find any evidence for gene-environment 5 

interaction across birth cohorts for human reproductive behavior. This is particularly surprising 6 

since across time there have been substantial environmental changes such as the introduction 7 

of effective contraception, social norms around the timing of childbearing and educational 8 

expansion – all factors which strongly modifies reproductive behavior. 18 In contrast, we find 9 

cohort specific genetic effects on educational attainment. This contributes to solving the puzzle 10 

of missing heritability in educational attainment, since twin studies with higher heritability 11 

estimates are also conducted within homogeneous birth cohorts. 12 

Our findings expose the challenges in detecting genetic variants associated with human 13 

reproductive behavior or other complex phenotypes in GWAS meta-analyses of multiple 14 

cohorts. First, SNP-based heritability within populations is comparably small and second, we 15 

find limited evidence that genetic effects underlying reproductive behavior in one country 16 

predicts the underlying behavior in another. Our findings likely reflect the interrelated 17 

behavioral nature of reproduction and education, which appears to be more sensitive to cultural 18 

and societal heterogeneity than for example anthropometric traits such as height or BMI. It has 19 

also been shown that pleiotropic genes affecting age at first birth and schizophrenia have 20 

different effects across populations.39 Recently, social scientists have made considerable 21 

efforts to integrate molecular genetics into their research.2–4 When considering the highly 22 

socially- and biologically-related phenotype of reproductive behavior outcomes, 23 

environmental factors are critical in understanding how genetic factors are modified in relation 24 
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to fecundity and infertility.   1 

Finally, our study also has several important limitations. First, it is possible that 2 

heterogeneity in the phenotypic measures influences the patterns we observed. While we find 3 

no evidence that our models interpret changing relative environmental contributions to trait 4 

variation as gene-environment interaction, we cannot rule out the possibility that the trait 5 

definitions differ across environments. We consider this as minor issue for reproductive 6 

behavior. While measures are not perfectly harmonized across birth cohorts (for e.g., some 7 

questionnaires for example explicitly ask for number of still-births and others do not), in 8 

LifeLines and TwinsUK, we compared the live birth measures with number of children ever 9 

born and, as expected, given the low mortality rate in both populations, less than 0.2% of the 10 

children had not reached reproductive age. Moreover, the correlation of number of children 11 

ever born and number of children reaching reproductive age was 0.98. We therefore do not 12 

expect a large bias due to the exclusion of stillbirths in some countries (for details see Text S2). 13 

Nevertheless, we cannot reject the possibility that heterogeneity in the measure of education 14 

remains even after homogenizing it with the standard ISCED scale. In this case, we would 15 

argue that large parts of the gene-environment interaction pattern we observe for education are 16 

due to interaction within populations by birth cohorts where we hypothetically have 17 

homogeneous measures. Furthermore, different cross-national definitions of education 18 

represent a case of gene-environment interaction. Finally, our statistical findings of 19 

heterogeneity are of major importance in shaping our expectations about the ability to locate 20 

genetic loci associated with education in GWAS meta-analyses despite their causal 21 

mechanisms. 22 

Second, notwithstanding the fact that our simulation studies show no inflation of hidden 23 

heritability due to differences in the genetic structure across populations, it is plausible that 24 
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empirical phenotypes are heterogeneous in reference to rare genetic variants, which are not 1 

considered in our models and not present in our data. This is an issue demanding further 2 

consideration in future research. We are suitably cautious that part of hidden heritability in our 3 

models might be driven by rare, population-specific variants. Previous studies of height and 4 

BMI show that rare variants explain a significant part of phenotypic variance,15 while our 5 

models show the least heterogeneity across populations for these phenotypes.  6 

Third, the models we apply average within environmental effects across populations. 7 

An optimal study design would be a multivariate genetic modeling approach, which estimates 8 

SNP-based heritability for each population and the genetic correlations across them. This 9 

approach, however, is feasible for traits with strong or moderate heritability such as height and 10 

BMI,21 but lack statistical power27 for phenotypes with small SNP-based heritability such as 11 

reproductive behavior10 in the current samples. The models we propose allow us to investigate 12 

and compare gene-environment interaction across a range of phenotypes. Multivariate models 13 

may become feasible in the future with larger homogeneous data sources, and will also enable 14 

us to disentangle shared genetic effects across these phenotypes. 2,40,41  15 

Finally, in the current modeling approach, we cannot include childless individuals in 16 

the modeling of AFB, and future research in quantitative genetics may aim to integrate 17 

censored information in their modeling approaches, which is standard in demographic research 18 

(for further discussion see 10,42,43). 19 

In conclusion, our study provides initial evidence that there may be substantial 20 

implications for the estimates of genetic effects due to the extreme heterogeneity of combining 21 

multiple samples across vast historical time periods and populations to conduct large-scale 22 

GWA studies. We likewise uncover challenges for investigations into the genetic architecture 23 

of human reproductive behavior and education and suggest that gene-environment interaction 24 
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is the main driver of heterogeneity across populations. These challenges can only be overcome 1 

by interdisciplinary work between both geneticists and social scientists using ever-larger 2 

datasets, with combined information and substantive knowledge of complex phenotypes and 3 

environmental conditions. 44,45 4 
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 1 

Boxes 2 

Box 1: Definitions of heritability 3 

 4 

Heritability 5 

Heritability is the proportion of the phenotypic variance accounted for by genetic effects and 6 

narrow sense heritability refers to the additive genetic variance component (for discussion also 7 

see 6,46). There are several ways to estimate heritability. First, the highest and prominent 8 

estimates are derived from family-based studies (h2
family), such as twin studies, where, typically, 9 

the genetic resemblance between relatives is mapped to phenotypic similarity, taking unique- 10 

and shared-environment effects into account. Under several assumptions, estimates of h2
family 11 

ought to reflect only additive-genetic effects. A second method is the proportion accounted for 12 

by genetic variants known to be robustly associated with the phenotype of interest, derived 13 

from a GWAS (genome-wide association study) (h2
GWAS). This measure tends to produce the 14 

lowest levels. Finally, there is the proportion of phenotypic variance jointly accounted for by 15 

all variants on standard GWAS chips. This is sometimes referred to as the SNP- or chip-based 16 

heritability (h2
SNP). Typically, h2

SNP is substantially larger than h2
GWAS and provides an ‘upper 17 

level estimate’ of the genetic effects that could be identified with a well-powered GWAS. The 18 

h2
GWAS increases in tandem with GWAS sample sizes and is expected to approach h2

SNP 19 

asymptotically under the assumption that the phenotype of interest is homogeneous in its 20 

genetic architecture across different environments. 21 

 22 

Missing heritability 23 

The gap between the h2
family and h2

GWAS  is referred to as ‘missing heritability’.12 Potential 24 

reasons for missing heritability are for example non-additive genetic effects (although 25 

empirical evidence on this is scarce), 2,13 large effects of rare variants, 15 and potentially inflated 26 

estimates from twin studies due to shared environmental factors. 16 The missing heritability is 27 

commonly defined as the sum of the still-missing and hidden heritability, which we define 28 

below.47 29 

 30 

Still-missing heritability 31 

Yang and colleagues 8 argued that most genetic effects are too small to be reliably detected in 32 

GWAS of current sample sizes which is why they proposed the whole-genome restricted 33 

maximum likelihood estimation performed by GCTA software. 48 Studies applying these 34 

whole-genome methods typically produce estimates that lie between twin studies and 35 

polygenic scores h2
GWAS < h2

SNP < h2
family. The discrepancy h2

SNP < h2
family has been referred to 36 

as ‘still-missing heritability’.11 A stylized fact is that for many traits the still-missing 37 

heritability is roughly equal to h2
SNP.49 It is generally assumed that by genotyping rarer and 38 

structural variants, the still-missing heritability will decrease, as the denser arrays will increase 39 

h2
SNP. 40 

 41 

Hidden heritability 42 

Since we expect to be able to almost fully capture h2
SNP in the long run, the discrepancy 43 

between h2
SNP and h2

GWAS is sometimes referred to as  ‘hidden heritability’.47 The current study 44 

is mainly interested in the question how h2
SNP changes, depending on whether we examine 45 

differences within or between populations. Here we focus on hidden heritability as the genetic 46 

variation due to heterogeneity that cannot possibly be explained by SNP associations based on 47 

meta-analyses of multiple populations. Since h2
GWAS is usually inferred from meta-analyses 48 

that include multiple populations, heterogeneity in genetic effects on a phenotype between 49 



 32

these populations could deflate h2
GWAS and would also deflate h2

SNP – which is typically 1 

obtained within single populations. Within a single design we therefore demonstrate how one 2 

estimate of h2 depends upon population heterogeneity. Missing heritability is thus commonly 3 

defined as the sum of the still-missing and hidden heritability.47 As indicated, the hidden 4 

portion will decrease as sample sizes grow and the still-missing portion will decrease with 5 

denser forms of genotyping. 6 

  7 
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 1 

 2 

Figure legends: 3 

Figure 1. Trends in mean age at first birth of women indicating environmental changes 4 

across cohorts (1903-1970) from the US, UK, Sweden, the Netherlands, Estonia and 5 

Australia. Trends in the mean age at first birth of women are based on aggregated data 6 

obtained from Human Fertility Database and the Human Fertility Collection (for details see 7 

Text S3). For Estonia, from 1962 onwards, we used estimated age at first births based on 8 

women older than 40. For Australia, no official data was available and the trends have been 9 

estimated from the QIMR dataset, averaged for each decade.  10 

 11 

  12 
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Figure 2. Stacked Bar Charts of average between (RST) and within (RSUVT ) variance 1 

explanation by common SNPs estimated across 50 simulated phenotypes in two 2 

model specifications (standard GREML model and the gene-environment 3 

interaction model by study population (GxP) and for four simulated phenotypes: 4 

Sim 1 with homogeneous SNP-based heritability 0.5 without gene-environment 5 

interaction, Sim 2 heterogeneous SNP-based heritability between 0.25-0.625 6 

without gene environment interaction, Sim 3 with homogeneous SNP-based 7 

heritability 0.5 with gene-environment interaction (genetic correlation of 0.8 8 

across populations) and Sim 4 with homogeneous SNP-based heritability 0.5 with 9 

gene-environment interaction (genetic correlation of 0.5 across populations). 10 

Individual model estimates are represented by black dots, individual RST  11 

components in the GxP models in gray stripes. 12 

 13 

  14 
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Figure 3. Bar Charts of average % of hidden heritability due to heterogeneity (% of 1 

h2SNP of the best fitting model which is not captured in standard GREML models) 2 

for Sim 1 including and excluding causal variants (Sim LD), for Sim 3 and 4. 3 

Individual estimates are represented by black dots. 4 

 5 

  6 
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Figure 4. Stacked Bar Charts of average between (RST) and within (RSUV,T RSUWT RSUVUWT ) 1 

variance explanation by common SNPs estimated for Height, BMI, education, age 2 

at first birth (AFB) and  number of children (NEB) in four model specifications 3 

(G, GxP, GxC, GxPxC). The best model (BM in white, in chart) is based on 4 

likelihood ratio tests comparing the full model with one constraining the respective 5 

variance component to 0; see Table S2. 
X	/
�	 = proportion of observed variance in the 6 

outcome associated with genetic variance across all environments,  
XY3	 /
�	 = 7 

proportion of observed variance in the outcomes associated with additional genetic 8 

variance within populations, 
XY>	 /
�	 = proportion of observed variance associated 9 

with additional genetic variance within demographic birth cohorts, 
XY3Y>	 /
�		= 10 

proportion of observed variance associated with additional genetic variance within 11 

populations and demographic birth cohorts. Models specifications G, GxP, GxC, 12 

GxPxC refer to the model specifications including the respective variance components 13 

as well as those of lower order – see Material and Methods. For detailed results see 14 

Table S3-7. 15 

 16 

 17 
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Figure 5. Bar Charts of average % of hidden heritability due to heterogeneity (% of 1 

h2SNP of the best fitting model which is not captured in standard GREML models) 2 

and of universal genetic effects (% of h2SNP of the best fitting model which is 3 

effectively identical across the defined environments)  4 

 5 

 6 


