Probabilistic Verification for Obviously Strategyproof Mechanisms

Diodato Ferraioli
University of Salerno, Italy
dferraioli @unisa.it

Abstract

Obviously strategyproof (OSP) mechanisms main-
tain the incentive compatibility of agents that are
not fully rational. They have been object of a num-
ber of studies since their recent definition. A re-
search agenda, initiated in [Ferraioli and Ventre,
20171, is to find a small set (possibly, the small-
est) of conditions allowing to implement an OSP
mechanism. To this aim, we define a model of
probabilistic verification wherein agents are caught
misbehaving with a certain probability, and show
how OSP mechanisms can implement every social
choice function at the cost of either imposing very
large fines or verifying a linear number of agents.

1 Introduction

Will people strategize against an incentive-compatible mech-
anism? The answer depends on whether they will understand
that doing so is against their own interest and, ultimately, on
their rationality and cognitive skills. This question has of-
ten been raised in literature (see, e.g., [Sandholm and Gilpin,
2003; Ferraioli et al., 2015]) and much of the recent research
in mechanism design is motivated by this question. Sev-
eral definitions for “simple” mechanisms have been recently
given in literature [Hartline and Roughgarden, 2009; Chawla
et al., 2010; Babaioff et al., 2014; Adamczyk et al., 2015;
Branzei and Procaccia, 2015]. This quest for the right defini-
tion for simple mechanisms culminated with the introduction
of obviously strategyproof (OSP) mechanisms [Li, 2017].
Obvious strategyproofness focuses on how a mechanism is
executed (e.g., English auction vs. sealed bid second price
auction), and requires that whenever an agent takes an action
during the execution of the mechanism, the “truthful behav-
ior” must be dominant for that agent, even if no reasoning
is done about the future actions of other agents. This con-
cept is motivated by the experimental evidence that some
mechanism implementations (e.g., clock auction) are easier
to understand than other theoretically equivalent ones (e.g.,
sealed-bid auction). OSP mechanisms have also solid theo-
retical foundations: they are the only ones that preserve the
incentive-compatibility of agents who lack contingent reason-
ing skills [Li, 2017] and they satisfy a natural generalization
of standard decision theory axioms [Zhang and Levin, 2017].

Carmine Ventre
University of Essex, UK
c.ventre @essex.ac.uk

This concept has attracted a considerable amount of re-
cent work [Ashlagi and Gonczarowski, 2015; Bade and
Gonczarowski, 2017; Ferraioli and Ventre, 2017; Pycia and
Troyan, 2016] that mainly focuses on the properties and the
limitations of these mechanisms. Of particular interest for our
study are the results proved by [Ferraioli and Ventre, 2017]
showing that OSP mechanisms cannot have good approxi-
mation guarantees for machine scheduling and facility loca-
tion, two canonical optimization problems studied in the area.
However, monetary transfers are sufficient for the existence
of optimal OSP mechanisms when the designer can “moni-
tor” all agents (meaning that a lying agent is artificially made
to receive an utility that is the worst between the one com-
puted according to her true type and the one computed as if
her type coincided with her bid). Since money is often unde-
sirable (cf. [Procaccia and Tennenholtz, 2013]) our main aim
here is to understand whether there are novel ways to exert
control over the agents that can reconcile approximation and
OSP mechanisms with limited or absent transfer of money.

Our Contribution. We introduce a model of probabilistic
verification wherein the mechanism designer has access to
a (potentially faulty) verification device that she can use at
runtime to check whether an agent has lied or not. The de-
vice will catch the lie of the checked agent with certainty,
or with a certain probability if faulty. For example, when-
ever the type ¢ of an agent is her location on the real line
(as in facility location), the designer can use a GPS logger
to check whether the agent location is the same as her re-
ported type b. In our terminology, such a tool is faulty if its
reading t’ of ¢ is subject to some measurement error § and,
therefore, the agent would be caught only if |b — ¢'| > §;
more generally, one could imagine different tools that make
mistakes in their measurements with some probability rather
than in range (e.g., it gets better as the difference between
reported and real type increases). This notion generalizes
and combines the different notions of verification introduced
in related literature (see, e.g., [Caragiannis et al., 2012;
Penna and Ventre, 2014]). With respect to monitoring, the
mechanism designer has in our probabilistic model a more
general way to define fines for lying agents, whilst, on the
other hand, might have a faulty verification device.

We begin by studying what we call the full probabilistic
verification model, wherein every agent is verifiable. We

prove that, in this setting, it is possible to obtain an OSP
mechanism for every specific problem of interest; we essen-
tially show that we can always define verification probabili-
ties and fines to make any lie obviously dominated. On the
technical level, we show that there is a trade-off between the
kind of verification device needed (i.e., the verification prob-
abilities) and the amount of fines imposed to lying agents that
are caught. Our results imply that we can set the fines so that
only a constant number of agents is verified in expectation.

The result above requires all the agents to be verifiable —
in some contexts this might be impossible (e.g., not all the
agents might have been equipped with a GPS logger) or ex-
pensive (e.g., in tax auditing). We therefore look at the par-
tial probabilistic verification model, where for some agents
we cannot use any verification (and so the combination of
fines and probabilistic checks will not make lying obviously
dominated). In the main technical contribution of this work,
we prove that there is a problem such that all e-OSP mecha-
nisms (i.e., agents will not deviate for small gains ¢) that solve
this problem need to verify in expectation a linear number of
agents. We focus on the well studied public project problem
[Jackson and Moulin, 1992] and identify a small domain for
which “many” agents need to be verified by any e-OSP mech-
anism that solves the problem.

We finally prove that this result is tight for mechanisms that
implement a social choice function only asymptotically and,
in expectation, are e-OSP. In detail, we connect OSP with dif-
ferential privacy and show how the exponential mechanism
[Nissim et al., 2012] can be implemented with partial proba-
bilistic verification, so that, in expectation, it becomes e-OSP
and verifies n — o(n) agents. Although the proofs basically
follow the known ones, we regard this result interesting for
two main reasons (in addition to showing the tightness of the
lower bound). Firstly, it shows how, through verification, dif-
ferential privacy can be related to OSP just like truthfulness.
Secondly, the mechanism becomes implementable not just in
our probabilistic framework but also with selective verifica-
tion (cf, e.g., [Fotakis et al., 2016]).

2 Preliminaries

A mechanism design setting is defined by a set of n selfish
agents and a set of allowed outcomes S. Each agent ¢ has
atype t; € D,;, where D; is called the domain of i. The
type t; is assumed to be private knowledge of agent . Each
selfish agent ¢ has a valuation function v;: D; x S — R. For
t; € D;and X € S, v;(¢t;, X) is the valuation that agent i
has for outcome X when her type is t;. We will often use
t;(X) as a shorthand for v;(t;, X). The domain D; of agent ¢
is bounded if t;(X) € [tins, tsup] foralli,t € D;, X € S.

A mechanism is a process for selecting an outcome X € S.
To this aim, the mechanism interacts with agents. Specifi-
cally, agent 7 is observed to take actions (e.g., saying yes/no)
that may depend on her presumed type b; € D; (e.g., saying
yes could “signal” that the presumed type has some properties
that b; alone might enjoy). We say that agent ¢ takes actions
according to b; to stress this. Observe that the presumed type
b; can be different from the real type ¢;. For a mechanism M,
we let M(b) denote the outcome returned when agents take

actions according to types b = (b1, ..., by).

A mechanism M is strategy-proof if for every i, every
b_i = (bl, e ,bi_l, bi—‘—l, ey bn) and every bz S Di,
vi (i, M(t;, b_y)) > v;(t;, M(b;, b_;)), where t; is the true
type of 7. That is, in a strategy-proof mechanism it is domi-
nant for all agents to take actions according to the true type.

Given a social choice function f: D — S, where D =
Dy x -+ x D, is the set of type profiles (by,...,b,), a
mechanism M is said to implement f (in expectation) if
M(b) = f(b) (E[M(b)] = f(b)) for every b. M is in-
stead said to implement f asymptotically (in expectation) if
limn,, 0 M(b) = f(b) {lim, oo EIM(b)] = f(b)).

Obvious Strategyproofness. We now define the concept
of OSP mechanism. We follow [Ashlagi and Gonczarowski,
2015] and assume w.l.o.g. complete information, but we al-
low concurrent updates. An extensive-form mechanism M is
defined by a directed tree 7 = (V, E) such that:

e cvery leaf ¢ of the tree is labeled by a possible outcome
X (¢) € S of the mechanism;

e cvery internal vertex u € V either is labeled by an agent
S(u) € [n], or is a chance vertex labeled by character c;

e cvery edge e = (u,v) € F going out from a non-chance
vertex is labeled by a set T'(e) C D of type profiles s.t.:

— the sets of profiles that label the edges outgoing from the
same vertex u are disjoint, i.e., for every triple of vertices
u, v, v’ such that (u,v) € E and (u,v') € E, we have
that T'(u,v) N T (u,v") = 0;

— the union of the sets of profiles labeling the edges outgo-
ing from non-root vertex w is equal to the set of profiles
labeling the edge going in u, i.e., U, . (4 »)ep I'(w,v) =
T(¢p(u),u), where ¢(u) is the parent of w in T

— the union of the sets of profiles that label the edges out-
going from the root vertex r is equal to the set of all
profiles, i.e.. U,. (. p)ep T'(r,v) = D;

— for every w, v such that (u,v) € E and for every two
profiles b, b’ € T'(¢(u),u) such that bg(,) = b’S(u), if
b € T'(u,v), then also b’ € T'(u, v);

e cvery e = (u,v) € E, u being a chance vertex, has label

T(e) = Difuisaroot,and T'(e) = T(¢(u), u) otherwise;

e every non-chance vertex u is associated to an information
set I(u) € D, where I(r) = D, and, for u # r, either

I(u) = Dor I(u) = T(¢(v),v) for some v being a non-

root vertex in the path from r to u.

Roughly speaking, the tree represents the steps of the exe-
cution of the mechanism. As long as the current visited ver-
tex w is not a leaf, if w is a chance vertex, then the mechanism
decides the next step by using its own random coin tosses,
otherwise it interacts with the agent in S(u). If the current
visited vertex u is a leaf, then it returns the outcome that la-
bels u. Different edges outgoing from a non-chance vertex
u are used for modeling the different actions that agents can
take during this interaction with the mechanism. In particular,
each possible action is assigned to an edge outgoing from w.
As suggested above, the action that agent ¢ takes may depend
on her presumed type b; € D;. That is, different presumed
types may correspond to taking different actions, and thus to

different edges. The label T'(e) on edge e = (u, v) then lists
the type profiles that enable agent S(u) to take those actions
that have been assigned to e. In other words, when the agents
take the actions assigned to edge e, then the mechanism (and
the other agents) can infer that the type profile must be con-
tained in T'(e). Clearly, chance vertices do not change the
current information available to the mechanism, and thus they
do not change the edges’ label. The constraints on the edges’
label can be then explained as follows: first we can safely as-
sume that different actions must correspond to different type
profiles (indeed, if two different actions are enabled by the
same profiles we can consider them as a single action); sec-
ond, we can safely assume that each action must correspond
to at least one type profile that has not been excluded yet by
actions taken before node u was visited (otherwise, we could
have excluded this type profile earlier); third, we have that
the action taken by agent S(u) can only inform about types
of this agent and not about the type of the other agents. The
execution ends when we reach a leaf ¢ of the tree. In this case,
the mechanism returns the outcome that labels /.

We do not necessarily assume that agents take their ac-
tions sequentially. Indeed, we use information sets to model
a mechanism that concurrently interacts with multiple agents.
The information set at node wu is, indeed, the set of profiles
that player S(u) selected at this node believes can be real-
ized given her current information: thus, if ¢ interacts with
the mechanism at the same time as agent j, then the set of
profiles that can be realized for ¢ is the same as for j. Hence,
even if we model 7 and j as taking their actions at two differ-
ent nodes, the information sets of these two nodes are exactly
the same (i.e., j ignores 7’s action and viceversa).

Observe that for every profile b there is only one leaf ¢ =
¢(b) such that b belongs to T'(¢(¢),¢). For this reason we
say that M(b) = X (). Moreover, for every type profile b
and every node u € V, we say that b is compatible with u
if b € I(u). Finally, two profiles b, b’ are said to diverge at
vertex v if there are two vertices v, v such that (u,v) € E,
(u,v") € Eand b € T(u,v), whereas b’ € T'(u,v").

Now we define obvious strategyproofness. An extensive-
form mechanism M is e-obviously strategy-proof (e-OSP)
if for every agent ¢ with real type ¢;, for every vertex w
such that ¢ = S(u), for every b_;, b’ ; (with b’ ; not nec-
essarily different from b_;), and for every b; € D;, with
b; # t;, such that (¢;,b_;) and (b;,b",) are compatible
with u, but diverge at u, it holds that v;(t;, M(t;,b_;)) >
v (t;, M(b;,b’_,)) —e. M is obviously strategy proof (OSP)
if e = 0. Roughly speaking, an obvious strategy-proof mech-
anism requires that, whenever agent 7 is asked to take a de-
cision that depends on her type, the worst valuation that she
can get if at this time step she behaves according to her true
type is at most the same as the best valuation achievable by
behaving as she had a different type.

Observe that if a mechanism is obviously strategy-proof,
then it is also strategy-proof. Indeed, the latter requires that,
for every b_;, truthtelling is the best choice of agent i. In-
stead, the definition of OSP requires that truthtelling is the
best choice even if all the other players also change their strat-
egy (in a way that is compatible with the action that they pre-
viously took during the execution of the mechanism).

Probabilistic Verification. We introduce a general model
of probabilistic verification, inspired by [Caragiannis et al.,
2012; Penna and Ventre, 2014]. Fix ¢ and b_;. Let ¢
and ¢’ denote the true and reported type of agent 4, re-
spectively. A mechanism with probabilistic verification M
catches agent 4 lying with probability (1 — p}, ,(b_;)) and
punishes the agent caught lying with a fine F}, ,(b_;) >
0. (So pj, ;(b_;) denotes the probability that the verifica-

tion has nor worked — clearly, p; ,(b_;) = 0.) We drop
1 from the notation when clear from the context. We fol-
low the literature and assume that verification occurs after
the outcome has been computed. Moreover, when a mech-
anism with probabilistic verification M catches agent 7 ly-
ing it acquires knowledge of ¢(M(t',b_;)). Except for
the fines, the mechanism does not use any other form of
transfers. In this sense, our research extends the literature
on mechanisms that trade money with verification to en-
sure incentive—compatibility', see, e.g., [Fotakis er al., 2017,
Ferraioli et al., 2016]. When misreporting her type to a mech-
anism with probabilistic verification, agent ¢ will then have a
valuation t(M(t',b_;)) — (1 —p}, ,(b_;))F}, ,(b_;). There
are two complementary interpretations of this formula, de-
pending on the power of the verification device used. The
first assumes that the verification device is faulty (e.g., sub-
ject to measurement errors) and even if ¢ is verified there is
a chance that depends on type, bid and what the others re-
ported that she is not caught (e.g., error might depend on the
“distance” between t and t’). The second, instead, is closer to
the selective verification of [Fotakis et al., 2016] in that the
device is faultless and once an agent is selected to be veri-
fied she will be fined with certainty if she lied. Naturally, as
the mechanism has no knowledge of ¢, the probability with
which the mechanism selects agent ¢ for verification can only
depend, in this case, on her identity, report and bids of the
others but not on her type t; i.e., pi, ,(b_;) reads pi, (b_;).

We will consider two different categories of mechanisms
with probabilistic verification: the full model wherein all the
agents are verifiable, so that we can define p, ,(b_;) € [0,1]
for every (i,t,t',b_;), and the partial model wherein there
exists at least one agent ¢ that is not verifiable, i.e., for which
pir(b_i) = 1 for every b_; and every t,t" with t # t'.
The non-verifiable agents might be given a priori (e.g., agents
without GPS loggers) or be determined by the designer’s lim-
ited resources (e.g., with & out of n loggers available to allo-
cate, there would remain n — k non-verifiable agents).

3 Full Probabilistic Verification

In this section we prove that full probabilistic verification is
very powerful. Specifically, we prove the following theorem.

Theorem 1. [f the domains of agents are bounded, then for
every social choice function f there is an OSP mechanism
with full probabilistic verification that implements f and ver-
ifies in expectation only a constant number of agents.

'Indeed, in classical mechanisms money must be effectively
transferred to enforce (obvious) strategy-proofness, here fines are,
in a sense, only threats and they are never effectively transferred.

Hence, there are social choice functions for which an OSP
mechanism is implementable in the full probabilistic verifica-
tion model but not implementable in the standard model with
money (e.g., facility location [Ferraioli and Ventre, 2017]).

Unfortunately, the mechanism of Theorem 1 needs very
large fines. However, we prove that full probabilistic verifica-
tion still turns out to be a powerful tool even if large fines are
not available. In particular, we observe that there is a trade-off
between fines and the number of verified agents. Hence, one
may be able to work with lower fines, by simply having more
accurate verification (in a sense, we can reduce fines only if
we spend more for our verification tools). Hence, we can
show that if an upper bound on fines is given, it is possible,
under opportune conditions, to compute verification probabil-
ities such that the resulting mechanism with full probabilistic
verification is OSP. We also consider the opposite direction.
That is, we assume that verification probabilities are given,
and investigate the lowest fines that one needs to set in or-
der to have an OSP mechanism. Hence, our results actually
consider all the following possible cases: (i) we are given
bounded fines, and we need to decide how faulty we can allow
the verification device to be in order to have an OSP mech-
anism (cf. Lemma 2); (ii) the faultiness of the verification
device is given, and we need to set fines for the mechanism to
be OSP (cf. Proposition 3); (iii) we require that the expected
number of verified agents is limited, and we design a corre-
sponding OSP mechanism, by computing both the faultiness
of the verification device and the fines (cf. Theorem 1).

OSP ‘Mechanism with Few Verified Agents. For every 1,
let Fy, = arg, ,vy, , F} (b_;), with arg € {min, max}.

arg

Lemma 2. For every social choice function f and fines
Ft’/’t(b,i) such that FL, > teup — tint for all i, let Mp
be the mechanism with full probabilistic verification that re-
quires agents to sequentially reveal their type, implements f,

uses fines Fy, ,(b_;), and sets p}, ,(b_;) = %‘ﬂ
Then Mg is OSP.

max

Proof. The mechanism is well defined since P> tsup —

min —
tinf implies pi,j(b_i) > 0 for every (i,t,t',b_;). Moreover,
since ting < ts‘;p and Félin < anax
1 for every (i,t,t',b_;). _
For OSP-ness, fix agent 4. Since p;, ,(b” ;) < 1 for each

(£,#,b,), then 1 — pyy(boy) = 1 — faijpetfunm —

then we get p§/7t(b,i) <

Flax
(Fiax = Fanin) +(baup—tint) < taup—tint ~ taup—tint
2%, Inin. - - , wWhere the
(FéﬁaxiFmin)+Fmin - Fmin - Ftl,t(b*i)
first inequality follows since, for every C' > 0, giZ > 5

whenever < y. The lemma follows since, for every b_;,
Mt D)) > tint = taup — (1= prra(boi)) 2ot >
taup — (1= per e (b)) FYs (bi) > t(Mp(t', b)) — (1 -
pt’,t(b/—i))F:’,t(b/—i)‘

Lemma 2 allows us to understand how the choice of F}\;
and F .. changes the probabilities. In particular, pj, , is
higher when F!. = F! __ = F. Moreover, this probability

min max

quickly grows to 1 as F increases (simply look at the deriva-
tive of (—tsup + tinf + x)/x): this shows that according to
the choice of fines, there is a sort of all-or-nothing verifica-
tion, in which one quickly passes from mechanisms requiring
very precise verification devices to mechanisms that can be
implemented even in presence of very faulty devices.

Proof of Theorem 1. Set, for each (i, ¢,t',b_;), F}, ,(b_;) =
Y(tsup — tinf) for some v > 1 that will be fixed later, and
let My be the mechanism with full probabilistic verifica-
tion that requires agents to sequentially reveal their type, im-

plements f, sets pj, ,(b_;) = min {1, t““;ip*Fn}, and
uses fines F, ,(b_;). Since F, = F

max
min max

! = Fti',t(bfi) 2
tsup — tinf, then, according to Lemma 2, Mg is OSP. It veri-
fies Z?:l(lfpihti (b_;))=n—>1, (17%) = * agentsin
expectation. The theorem follows by taking v = Q(n). O

OSP-ness for Given Verification Probabilities. Fix i and
let ¢ be her true type. Let p! . = maxp_, pep, Por(b_;).
Proposition 3. For every social choice function f and ver-
ification probabilities p such that pi,)t(b_i) %+ 1 for all
(i, by, t, "), let My, be the mechanism with full probabilistic
verification that requires agents to sequentially reveal their
type, implements [, uses fines Fti/’t(b,,») > W
and verification probabilities p. Then M, is OSP. ‘

Proof. Since p' .. # 1, then
inf t(My(t,by)) = tins > sup {t(Mp(t’,b_,»))
i b;
t(M,(t',b_;))

_tinf
(1= py (b : }
(1 = pert(b—i)) =i

> sup {t(Mp(t', b)) — (1 = py+(b—i))Fys(b_i)}. O

—1

A close inspection to the proof reveals that our lower
bounds on fines are tight, i.e., for any ¢, ¢, s and b_; there is
no smaller F}, ,(b_;) that would guarantee OSP. This in par-
ticular means that once the probabilities to verify have been
set there is not much flexibility in the fines imposed on agents.

4 Partial Probabilistic Verification

One limitation of Theorem 1 is that the fines have a very high
value (linear in the number of agents) which makes their en-
forceability doubtful. Looking at the proof, if the mechanism
were able to verify a constant number of agents, then the sum-
mation would have a constant number of addends, v would
become a constant and, ultimately, the fines would be reduced
significantly. Here, we investigate whether it is possible to
obtain OSP mechanisms that verify few agents.

We let V(b) denote the subset of verifiable agents for type
profile b. Such a subset, just like the outcome, can be chosen
randomly and can depend on agents’ declaration. Note that
V(b) = n in the full probabilistic verification model. Here,
we consider partial probabilistic verification, and we ask how
large should V' (b) be in order to have an OSP mechanism.

As in Proposition 3, for bounded domains we can guar-
antee through fines that, no matter the quality of the verifi-
cation device, truthtelling will be obviously dominant for all
the agents in V(b). Therefore, the mechanism “only” needs
to obviously incentivize the agents that are not in V'(b). In-
terestingly, we next prove the number of these agents needs
to be small for any OSP mechanism with partial probabilistic
verification, even in the case in which the designer can choose
the agents to verify in V(b). In fact, we next show that for
every ¢ > (there is a problem for which every e-OSP mech-
anism needs to verify at least n — o(n) agents, where n is the
total number of agents. We prove that this bound is tight: for
every € > 0 there is a mechanism that, in expectation, is -
OSP, and it is able to implement asymptotically every social
choice function, by verifying at most n — o(n) agents.

How Many Agents Must Be Verified? Consider the fol-
lowing problem, known as public project problem. We need
to decide whether to implement or not a public project (e.g.,
building a bridge) whose cost is c. The society is comprised
of a set IV of n individuals (also termed agents or customers)
that we denote as integers from 0 to n — 1. The valuation of
agent 7 if the project is implemented may be either v;(1) = 1
orv;(1) =0 > 0, where, 6 < 1(e.g.,0 = n%). We say that
the type of 7 is 1 in the first case, and & otherwise. Moreover,
each agent has valuation v;(0) = 0 if the project is not im-
plemented. The designer would like to implement the project
only if at least c individuals have type 1. In other words, the
designer would like to implement the public project function
f thatreturns 1if) . v;(1) > ¢, and returns 0 otherwise. This
has been introduced by [Jackson and Moulin, 1992] and it is
a basic and very well studied problem in economics and com-
puter science (see, e.g., [Apt and Estévez-Ferndndez, 2009]).
Every mechanism for the public project problem queries
the agents about their type for the project. We will denote as
b; € {9, 1} the declaration (bid) of the agent < when queried.
Indeed, since there are only two types, every query that is able
to distinguish subsets of agent’s types, directly reveals the
type, and every query that is not able to make this distinction
is equivalent to not querying at all. Hence, we can safely
assume that either the mechanism does not query an agent,
or, if it does, it just queries once to directly reveal the type.
We will denote as 7: N> — 2% the order in which agents
are queried, where 7(t) denotes the subset of agents queried
at time ¢. As stated above, for every agent ¢ there is at most
one time step t; for which ¢ € m(¢;). Moreover, given a query
order 7 and an agent ¢ queried at time ¢; according to this
order, we will denote with n; and k; the number of agents
that have been queried, and the ones that declared to have
type 1, before 7 is queried for her type, respectively. That is,
n; = |Ut<ti ’/T(t)| and k; = ‘{j € Ut<t71 W(t) | bj = 1}|
Lemma 4. For every ¢ € [0,1), every e-OSP mechanism
that implements the public project function has to verify every
queried customer i as long as n; < n+k; —c— 1 and
k; < ¢ — 2. Moreover, if b; = 1, then i must be verified even
ifni=n+k;—cork; =c—1.

Proof. Let us first suppose that ¢ has type 1. Observe that
if k; > ¢ — 2, then it is obviously dominant for ¢ to declare

her type truthfully. Indeed, since the mechanism implements
the public project function, it returns 1 in this case, and 7 will
achieve her maximum possible utility, regardless of others’
declarations. Similarly, if n — n; — 1 < ¢ — k;, then it is
obviously dominant for ¢ to declare her type truthfully, oth-
erwise she will achieve the minimum possible utility, i.e., 0,
regardless of what the remaining agents declare. However,
ifc+mn;+1—n < k; < c— 2, then truthtelling ceases
to be obviously dominant: the worst outcome for ¢ when she
is truthful is achieved when no remaining individual declares
type 1, so that the mechanism outcomes 0 (since there are at
most ¢c— 1 customers with type 1), and this outcome has value
0 for ¢; instead, by declaring 4, the best outcome would oc-
cur when at least ¢ — k; among the remaining agents (that are
n —n; —1 > ¢ — k;) declare type 1, so that the service is
activated, by giving to ¢ utility 1 > 0 4 €.

Hence, in order for the mechanism to be £-OSP it is nec-
essary to verify the agent ¢ that declares type § whenever
ki € [c+n;+1—mn,c—2]. A similar argument also can
be adopted when 4’s type is J, from which we achieve that, if
the mechanism is e-OSP, then the agent ¢ that declares 1 must
be verified whenever k; € [c + n; — n,c— 1]. O

The order m may be defined by the mechanism or by
nature (that is, the mechanism processes agents as they
come). Unless differently specified, we do not make be-
low any difference about this feature and our results hold
no matter the source of w. The history at time t > 1 is
Hy = ((m(1),br)),- -, (7(t),br))), where for a sub-
set of agents S C N, bg = (b;)ics. We will denote
with H, the set of all possible histories at time ¢ and with
Nl = ;<;7(j) the set of agents queried by 7 before
time ¢. Moreover we set Hg = Hg = 0. A selection rule
o = (01,...,01),1 < n, where each a;: H;_ 1 — A(2N),
associates to each possible history H;_; a probability dis-
tribution o;(H;_1) over the subsets of agents in N \ N:7t.
Roughly speaking, the selection rule specifies how the mech-
anism (nature, resp.) selects which players will be queried
next. This definition allows us to represent every selection
rule, even adaptive ones (in which players are selected based
also on the bids submitted by previously queried agents).

The uniform selection rule U returns, for every ¢ and for ev-
ery history, the uniform distribution over non-queried agents.
Given c and a selection rule o, for a type profile t such that
[{i: t; = 1}| = ¢, we let 75 .(t) be the random variable that
measures the number of agents that have been verified by the
mechanism on type profile t. When clear from the context,
we omit ¢ from the subscript. Next we show that for every
selection rule o there is an instance t in which o performs
worse than the uniform selection rule, in terms of the ex-
pected number of agents verified E[7, (t)].

If a selection rule queries more than one agent at the same
time, then it can only reach the thresholds of Lemma 4 later
than when these queries are serialized. Moreover, as high-
lighted in [Bade and Gonczarowski, 2017; Mackenzie, 20171,
serialization does not affect the OSP-ness of the mechanism.

Lemma 5. Fore € [0,1), ¢ > 0 and selection rule o for a e-
OSP mechanism that implements the public project function,
thereis t s.t. |{i: t; = 1}| = cand E[1,(t)] > E[ry(t)].

Proof. As stated above, we can assume that at each time step
o assigns positive probability only to singletons.

Let P be the uniform distribution on the type profiles t
such that [{i: t; = 1}| = ¢, ie. P(t) = (()(n— o)) if
[{i: t; = 1}| = cand P(t) = 0 0.w.. Forevery (¢, H;_1) and
for agent i selected at time ¢, Prp (¢; = 1| Hy—1) = fL:fM

We prove by induction on i that Eep (7o (ty yo-i) |
Hpni] = Egwpltu(ty yo-) | Hni] for every H,_; (and
thus tn—). Since Ho = (), we have that Fy.p[7(t)] >
Eip[ry(t)]. The lemma follows because it must exist t*
s.t. [{i: t7 =1}| = cand E[75(t*)] > E[rv (t")].

The base case is ¢+ = 1. Observe that every selection rule
will query exactly the same agent, i.e., the one that has not
been queried in H,,_;. For the given history, let £ denote
the number of agents who declared 1. It must be that either
k = cor k = ¢ — 1 (since we are only considering profiles
with exactly c¢ agents with type 1). According to Lemma 4,
in the first case the last agent must not be verified, whereas in
the last case it is necessary to verify the last agent only if she
declares 1. However, since this choice is independent from
the selection rule and from t yn—1, the claim trivially holds.

Assume now that the claim holds for i — 1. We prove it also
for i. Consider a history H,,_;. If at least ¢ agents declar-
ing type 1 have been queried, or the number of those whose
type is still unknown is too low for reaching the threshold
¢, then no further verification needs to be made regardless
of the selection rule adopted in the remaining steps. Hence,
the claim trivially holds. If instead £ < ¢ — 1 customers
declared 1 and there are exactly ¢ — k non-queried agents,
then for every t such that |{i: t; = 1}| = ¢, it will occur
that all non-queried agents have type 1 and thus, according
to Lemma 4 they must be all verified, and the claim trivially
holds. Consider now the case that £ < ¢ — 1 customers de-
clared 1 and there are p > ¢ — k + 1 agents that have not been
queried yet. If 0,41 (Hp—;) = U(Hp—i), then the claim
directly follows from the inductive hypothesis. Otherwise,
let S = N\ NI'~*. By Lemma 4 the agent selected at the
(n — i + 1)-th time step will be surely verified. Then, by e-
OSPness and the inductive hypothesis, ¢ p[7o (t 5 o) |

Hooi] 2143 cgOn—it1(Hn—i)(2) - Yo geqs1y Pro(t: =
ﬂ)EtNP[TU(tN\N,?*i) | Hp—i U (2, 8)].

By anonymity of U, E[ry(t) | H:] depends only on how
many agents have type 1 in H;. Then, Etp[75(t N N;H-) |
Hp—i]=Eep[ru(ty no-1) | Hnoi- O

We can now state the main theorem of this section.

Theorem 6. For all -OSP mechanisms implementing the
public project function, with e € [0, 1), there is an instance on
which the mechanism verifies in expectation n. — o(n) agents.

Proof. Letc =14 +/n — 1. We next show that if the mecha-
nism adopts the uniform selection rule, then for every t such
that [{i: t; = 1}| = ¢, E[ry(t)] > n — o(n). The theorem
then follows by merging this result with Lemma 5; in fact,
Elrg®)]=2n—c—=1)- (1 =Pr(ry(t) <n—c—1))
=(mn—omn))(1—=Pr(y(t) <n—c—1)).

We next prove that Pr(7y(t) < C') = o(1). For 7y (t) to be
less than n—c—1 it must be the case that c—1 customers with
value 1 have been selected among the first n — ¢ — 2 queried
agents. Indeed, since a mechanism that implements the pub-
lic project function must query all agents until either c agents
have declared 1 or the number of agents left to query is insuf-
ficient to reach this threshold, the (n —c—1)-th agent must be
necessarily queried, and, by Lemma 4, verified. Observe that
there are (”;f;Q) ways to query customers so that this prop-
erty is satisfied among the (’CL) ways in which the c customers
with value 1 can be queried. Since we are using the uniform
selection rule, these arrangements have the same probability,

and thus Pr(7y(t) <n—c—1) = (”7672)/(”) =o(1). O

c—1 c

We now prove that Theorem 6 is essentially tight. For a
social choice function f, the sensitivity of f is the smallest
integer d such that | f((t;,t—;),s) — f((ti,t_;),s)| < < for
every i, every t;,t. € T;, every t_; € T_;, and every s.

Fix ¢ = o(n) and € > 0 such that % =o(n)andlet 8 =
%. Consider the following mechanism, that we will name
Mg query agents for their type in sequential order; given a
declaration profile b € D, choose the outcome s € S accord-
ing to the probability distribution M” (b, s) = #ﬁ’fﬁ)
for the first n — c agents, verify if her declared ty[e)e b; coin-
cides with her real type t;. We have the following theorem,
whose proof mimics [Nissim et al., 2012, Thm. 2].

Theorem 7. For every social choice function f, if |S| <
eo(”), then the Mg mechanism is 2e-OSP in expectati0n2 and
it implements f asymptotically.

5 Conclusions

[Li, 2017] formally proved that OSP is the “right” definition
of truthfulness for a kind of “bounded rational” agents, where
the kind of bounded rationality (i.e., those who have limited
who lack contingent reasoning skills). is exactly the one ob-
served in many experimental settings. This motivated the
analysis of what can and cannot be done with these partially
rational agents. This investigation led both positive [Li, 2017;
Pycia and Troyan, 2016; Ferraioli er al., 2018] and neg-
ative results [Ashlagi and Gonczarowski, 2015; Bade and
Gonczarowski, 2017; Ferraioli and Ventre, 2017] The lat-
ter encourage to find alternative methods to achieve the OSP
property (just as impossibility theorem by Gibbard and Sat-
terwhaite [Gibbard, 1973; Satterthwaite, 1975] encouraged
research about implementation with payments). From this
point of view, our results indeed can be seen as providing an
useful engineering tool to achieve obvious strategyproofness
whenever one can afford costly verification or set large penal-
ties, and an impossibility result otherwise.

However, at light of the many negative results, it would
also be interesting to investigate mechanism design for other
(possibly, less stringent) notions of bounded rationality.

In Section 4, we focused on the binary public project prob-
lem. The simplicity of this problem has two advantages: (i)

For the formal definition of e-OSP in expectation mechanisms,
we refer to the full version of the paper [Ferraioli and Ventre, 2018].

it makes our result stronger, since we are giving a negative
result; (ii) it improves the readability of the proof. However,
our proof uses the structure of the problem only to prove that:
(i) one needs to verify almost every queried agent until you
find a solution; (ii) there is an instance for which it is unlikely
to find a solution after few queries. But these properties are
enjoyed not only by the public project problem, but also by its
combinatorial counterpart and many other different problems
(e.g., facility location). It would, however, be interesting to
find settings in which an OSP mechanism with partial proba-
bilistic verification exists that verifies only few agents.

References

[Adamczyk et al., 2015] Marek Adamczyk, Allan Borodin,
Diodato Ferraioli, Bart de Keijzer, and Stefano Leonardi.
Sequential posted price mechanisms with correlated valu-
ations. In WINE 2015, pages 1-15, 2015.

[Apt and Estévez-Fernandez, 2009] Krzysztof R. Apt and
Arantza Estévez-Ferndndez. Sequential pivotal mecha-
nisms for public project problems. In SAGT 2009, pages
85-96, 2009.

[Ashlagi and Gonczarowski, 2015] Ttai Ashlagi and Yan-
nai A Gonczarowski. No stable matching mech-

anism is obviously strategy-proof. arXiv preprint
arXiv:1511.00452, 2015.

[Babaioff ef al., 2014] Moshe Babaioff, Nicole Immorlica,
Brendan Lucier, and S Matthew Weinberg. A simple and
approximately optimal mechanism for an additive buyer.
In FOCS 2014, pages 21-30, 2014.

[Bade and Gonczarowski, 2017] Sophie Bade and Yannai A.
Gonczarowski. Gibbard-satterthwaite success stories and
obvious strategyproofness. In EC 2017, page 565, 2017.

[Branzei and Procaccia, 2015] Simina Brinzei and Ariel D
Procaccia. Verifiably truthful mechanisms. In ICTCS
2015, pages 297-306, 2015.

[Caragiannis e al., 2012] Toannis Caragiannis, Edith Elkind,
Mario Szegedy, and Lan Yu. Mechanism design: from par-
tial to probabilistic verification. In EC 2012, pages 266—
283, 2012.

[Chawla et al., 2010] Shuchi Chawla, Jason D Hartline,
David L Malec, and Balasubramanian Sivan. Multi-
parameter mechanism design and sequential posted pric-
ing. In STOC 2010, pages 311-320, 2010.

[Ferraioli and Ventre, 2017] Diodato Ferraioli and Carmine
Ventre. Obvious strategyproofness needs monitoring for
good approximations. In AAAI 2017, pages 516-522,
2017.

[Ferraioli and Ventre, 2018] D. Ferraioli and C. Ventre.
Probabilistic Verification for Obviously Strategyproof
Mechanisms. ArXiv e-prints, 2018.

[Ferraioli et al., 2015] Diodato Ferraioli, Carmine Ventre,
and Gabor Aranyi. A mechanism design approach to mea-
sure awareness. In AAAI 2015, pages 886—892, 2015.

[Ferraioli et al., 2016] Diodato Ferraioli, Paolo Serafino, and
Carmine Ventre. What to verify for optimal truthful mech-
anisms without money. In AAMAS 2016, pages 68-76,
2016.

[Ferraioli et al., 2018] Diodato Ferraioli, Adrian Meier,
Paolo Penna, and Carmine Ventre. On the approximation
guarantee of obviously strategyproof mechanisms. 2018.

[Fotakis et al., 2016] Dimitris Fotakis, Christos Tzamos, and
Manolis Zampetakis. Mechanism design with selective
verification. In EC 2016, pages 771-788, 2016.

[Fotakis et al., 2017] Dimitris Fotakis, Piotr Krysta, and
Carmine Ventre. Combinatorial auctions without money.
Algorithmica, 77(3):756-785, 2017.

[Gibbard, 1973] Allan Gibbard.
schemes: A general result.
601, 1973.

[Hartline and Roughgarden, 2009] Jason D Hartline and Tim
Roughgarden. Simple versus optimal mechanisms. In EC
2009, pages 225-234, 2009.

[Jackson and Moulin, 1992] Matthew Jackson and Herve
Moulin. Implementing a public project and distributing its
cost. Journal of Economic Theory, 57(1):125-140, 1992.

[Li, 2017] Shengwu Li. Obviously strategy-proof mecha-
nisms. American Economic Review, 107(11):3257-87,
2017.

[Mackenzie, 2017] Andrew Mackenzie. A revelation princi-
ple for obviously strategy-proof implementation. 2017.

[Nissim e al., 2012] Kobbi Nissim, Rann Smorodinsky, and
Moshe Tennenholtz. Approximately optimal mechanism
design via differential privacy. In ITCS 2012, pages 203—
213, 2012.

[Penna and Ventre, 2014] Paolo Penna and Carmine Ventre.
Optimal collusion-resistant mechanisms with verification.
Games and Economic Behavior, 86:491-509, 2014.

[Procaccia and Tennenholtz, 2013] Ariel D. Procaccia and
Moshe Tennenholtz. Approximate mechanism design
without money. ACM Trans. Economics and Comput.,
1(4):18:1-18:26, 2013.

[Pycia and Troyan, 2016] Marek Pycia and Peter Troyan.
Obvious dominance and random priority. 2016.

[Sandholm and Gilpin, 2003] Tuomas Sandholm and An-
drew Gilpin. Sequences of take-it-or-leave-it offers: Near-
optimal auctions without full valuation revelation. In
AMEC 2003, pages 73-91, 2003.

[Satterthwaite, 1975] Mark Allen Satterthwaite. Atrategy-
proofness and arrow’s conditions: Existence and corre-
spondence theorems for voting procedures and social wel-
fare functions. Journal of Economic Theory, 10(2):187 —
217, 1975.

[Zhang and Levin, 2017] Luyao Zhang and Dan Levin. Par-
tition obvious preference and mechanism design: Theory
and experiment. 2017.

Manipulation of voting
Econometrica, 41(4):587 —

