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Highlights

• In both humans and cognitive robots, real and imagined actions must seamlessly alternate during any goal directed behavior
and /or social interaction.

• A novel perspective on the shared cortical/computational basis for action “generation, imagination” in humans and robots is
proposed connecting motor neurosciences to cognitive robotics.

• Even real movements are consequences of an internal simulation. This viewpoint circumvents the need for kinematic inver-
sions to synthesize motor commands in highly redundant bodies (humans, robots).

• A “plastic, configurable” internal model of the body is a critical link facilitating the synthesis of real and imagined move-
ments.

• Goal oriented animation of the internal body model enables both synthesis of motor commands and prediction of conse-
quences of potential actions (of oneself, others).
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Response to the reviewer Comments- 

This paper presents a series of computational studies on robot motor control inspired by the 
neuroscience concept of muscle synergies, and the Equilibrium Point Hypothesis. One peculiar 
novelty of the paper is the focus on motor synergies without actual movement/action generation. 

 Overall the paper is interesting, and the syncretic presentation of the various studies is good and 
deserves publication. 

Thanks for the positive remarks. 

 However. I’d like to suggest improvements for the logical narrative linking the theoretical parts, the 
neuroscience part, and the computational/robotics one. For example, the 5 numbered points which 
arte prominently presented in the abstract and in the introduction, prepare the reader to a logical 
sequence of arguments (and paper sections). However, this mapping is not linear. With respect to 
the main section headings. Thus, especially in the abstract and initial parts, I would remove the 
numbered list approach. 

Agree that the mapping was nonlinear and might prepare the reader to follow some sequence. The 
numbered list has been removed and the abstract has been modified accordingly (also resulted in a 
reduced word count). In the initial section has also been modified appropriately. The subsections in 
the introduction have been number and one line added to guide the reader on the organization of 
the article. 

 Also, when we look at the second third of the paper on the computational studies presentation, the 
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schemas and tool use behaviours, with section 2 on the methods and 3 on the results. But again, 
the non-linearity of the link does not help the flow of integration of the information. Is the 
separation of section 2 and 3 really the right one? Would presenting a method for body schema 
model and its direct results be a possible alternative, with then a follow-up section on tool use body 
scheme methods extension and its results be viable? 

We understand this suggestion, various results in section 3 use different networks described in 
section 2 (arm, upper body, upper body+tool, both arms for real and simulated actions). However, 
what network is used is completely driven by the goal, the networks are synthesized at runtime. Our 
idea was to present the computational basis in section 2 and results in section 3- in an order of 
increasing complexity (action generation, bimanual coordination, tool use, combining real and 
imagined action for goal directed reasoning). Reorganizing this might inversely create a disconnect 
between computational aspects. Instead, we have added text in section 2 to point towards specific 
applications of the networks in section 3. 

 The discussion is very thorough and sound. 

Thanks 

 Finally, I’d like to suggest to extend further the acknowledgement of the (wider) field on internal 
simulation models for robotics (with ad-hoc section on state of the art in robotics). For example, 
one could cite work by Demiris, Di Nuovo, and others on internal simulations models. 
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Abstract 
 
   Emerging trends in neurosciences are providing converging evidence that cortical networks in 

predominantly motor areas are activated in several contexts related to ‘action’ that do not cause any overt 

movement. Indeed for any complex body, human or embodied robot inhabiting unstructured environments, 

the dual processes of shaping motor output during action execution and providing the self with information 

related to feasibility, consequence and understanding of potential actions (of oneself/others) must 

seamlessly alternate during goal-oriented behaviors, social interactions. While prominent approaches like 

Optimal Control, Active Inference converge on the role of forward models, they diverge on the underlying 

computational basis. In this context, revisiting older ideas from motor control like the Equilibrium Point 

Hypothesis and synergy formation, this article offers an alternative perspective emphasizing the functional 

role of a ‘plastic, configurable’ internal representation of the body (body-schema) as a critical link enabling 

the seamless continuum between motor control and imagery.  With the central proposition that both “real 

and imagined” actions are consequences of an internal simulation process achieved though passive goal-

oriented animation of the body schema, the computational/neural basis of muscleless motor synergies (and 

ensuing simulated actions without movements) is explored. The rationale behind this perspective is 

articulated in the context of several interdisciplinary studies in motor neurosciences (for example, 

intracranial depth recordings from the parietal cortex, FMRI studies highlighting a shared cortical basis for 

action ‘execution, imagination and understanding’), animal cognition (in particular, tool-use and neuro-

rehabilitation experiments, revealing how coordinated tools are incorporated as an extension to the body 

schema) and pertinent challenges towards building cognitive robots that can seamlessly “act, interact, 

anticipate and understand” in unstructured natural living spaces. 

Keywords: Synergy formation, Motor Imagery, Forward/Inverse models, Body Schema, Tool use and Motor 

skill learning, Embodied cognition 



1. Introduction 

     Even during common daily activities like dining together, playing a game, using a tool, assembling an object 

from constituent parts etc., we effortlessly generate dexterous actions, predict potential consequences’ of 

possible actions of oneself (and others). Emerging trends in motor neurosciences now provide converging 

evidence that seemingly disparate functions of action ‘generation, simulation, and observation’ consistently 

engage an overlapping network of cortical areas in the predominantly motor region of the brain (see Ptak et 

al 2017, Pickering and Clark 2014, Grafton et al 2009, Pulvenmuller 2013, Gallese and Sinigaglia, 2011,  for 

reviews). The general insight emerging is that the fundamental problems of shaping motor output during 

action execution and providing the self with critical information related to feasibility, consequence and 

understanding of potential actions are closely intertwined than previously conceived. From an evolutionary 

perspective too, in any organism with complex body (human or embodied robot) inhabiting unstructured 

environments, actions are ‘goal oriented’ and not just stimulus oriented. This fundamentally requires ‘covert 

simulation and overt execution of action’ to incessantly alternate during the evolution of purposive behaviors 

and social interactions. In this sense, real and imagined actions are like Siamese twins, inseparable but to 

some extent independent. How is this delicate balance realized in the brain? How are cortical substrates 

basically involved in organization of overt action functionally ‘recycled’ in other contexts (i.e. actions without 

movements)? While the prevalent computational modelling approaches generally converge on the role of 

internal models, they diverge on the perspective of how they might be realized in the brain (Pickering and 

Clark 2014) or modelled computationally (Friston, 2011).  

   Revisiting older ideas from motor control like the Equilibrium Point Hypothesis (EPH) and synergy 

formation (Bernstein 1935; Asatryan and Feldman 1965; Bizzi, Polit and Morasso 1978) in the context of 

emerging trends in motor neuroscience, this article offers an alternative perspective emphasizing the 

functional role of a ‘plastic, expandable’ internal representation of the body i.e. the ‘body schema’, as a 

fundamental connecting link to facilitate the seamless continuum between motor control and motor 

imagery. In general, synergies are often associated with muscles and actions with movements. Instead, we 

posit that muscleless motor synergies emerging from the goal-oriented animation of the body schema (and 



expandable to coupled tools) is the basic mechanism to unify the computational basis of actions with and 

without movements while we ‘act, anticipate and understand’. The underlying rationale is put in the context 

of several recent studies in motor cognition in both humans and embodied robots, in particular a) Recording 

from the parietal cortex in patients undergoing awake brain surgery suggesting the coupling between motor 

imagery and internal representation of the body; b) Functional imaging studies emphasizing the shared 

cortical basis for ‘execution, imagination and understanding’ of action. c) Studies related to tool-use learning, 

revealing how tools are incorporated as an extension to the body schema during coordination, highlighting 

the blurred distinction between tool and the body (other bodies); d) The still pertinent problems in making 

complex redundant robots more dexterous, cognitive and social: opening up practical issues like need for 

computational simplicity, task specific configurability, effective human robot interaction. e) How all of this 

influences our understanding of synthesis of overt movements itself, a pertinent topic that has also been in 

recent debate. The next subsections review the literature and various issues related to coordination of a 

complex body (human/robot) inhabiting unstructured environments and their link to muscleless motor 

synergies and simulation of action to support goal directed reasoning and  social interaction.  

1.1 Coordinating a Complex body (Human or embodied robot): Problems, Solutions and Synergies 

    Unlike the range of direct problems in conventional physics (like computing effects of forces on objects), 

during the production of common day to day movements our brains have to deal exactly with the inverse 

problems of determining muscle activations, joint rotations, movement trajectories, speed profiles that 

would allow the desired goal-directed interaction with the environment. Strikingly, many of the inverse 

problems faced by the brain to control movements are indeed similar to the ones roboticians must solve to 

make their robots move dexterously. Note that, while coordinating any complex body (human or robot), the 

underlying control system has to deal with two typically contrasting requirements: the need to choose ‘one’ 

from infinite possible solutions (Bernstein’s Degrees of Freedom problem) and the need to produce ‘one 

solution’ in an infinite number of ways (Lashley’s Principle of Motor equivalence). As a simple example, even 

the task of aimlessly moving the finger from one point to another can be achieved in an infinite number of 

ways (motion trajectories, joint rotations, speed profiles, muscle activations). Further in most manipulation 



tasks, the solution must be compatible with a combination of multiple bodily (joint limits, torque limits etc.) 

and task specific (desired end-effector pose, obstacles etc.) constraints. How does the brain deal with this 

‘problem of plenty’ and how can embodied robots efficiently coordinate their complex bodies to generate 

dexterous goal oriented movements? The present understanding of the plausible underlying computational 

basis is broadly based on three interrelated yet diverging frameworks i.e. Optimal Control (OCT: Diedrichsen 

et al. 2009; Todorov 2009), Active Inference (AI: Friston 2011) and Equilibrium Point hypothesis (EPH: 

Asatryan and Feldman 1965; Bizzi, Polit and Morasso 1978), see (Pickering and Clark 2014; Mohan and 

Morasso 2011) for reviews on the pros and cons and interrelations between these approaches.  

   While OCT has emerged as a dominant theory for interpreting a range of motor behaviors (Scott 2004; Li 

2006; Chhabra et al. 2006; Shadmehr et al, 2010; Diedrichsen 2015), online movement corrections (Saunders 

and Knill 2004; Liu and Todorov 2007), structure of motor variability (Kutch et al. 2008; Guigon et al. 2008a), 

Fitts’ law and control of precision (Guigon et al. 2008b), and coordinating anthropomorphic robots (Nori et 

al. 2008; Mitrovic et al. 2010; Ivaldi et al. 2010; Simpkins et al. 2011), several open questions like the massive 

computational cost to perform the necessary complex optimizations especially in highly redundant systems 

like robots and humans (Doya 2009; Friston 2011), hence the neuro-biological plausibility (Todorov 2006), 

the nature of the cost function itself given that multiple cost functions (minimum jerk, torque change, end 

point variance, object crackle etc.) make similar predictions on basic qualitative characteristics of movement 

and the issue of sub-optimality (Kodl, Ganesh & Burdet 2011) have been in recent debate.  

    In this context, multiple authors (Friston 2011; Mohan and Morasso 2011; Herbort and Butz 2012; Pickering 

and Clark 2014) have raised an even deeper pertinent question i.e. do muscle activations cause joint rotations 

that cause the end effector motion ‘or’ is it the other way round?  This perspective sounding like the classical 

‘chicken vs. egg’ problem draws upon ideas from different disciplines like active inference and predictive 

coding (Friston 2009; Kilner 2007), Ideomotor theory (Herbort  and  Butz 2012), the EPH (Feldman and Levin 

1995), and has at least three following ramifications towards shaping our understanding of coordination of 

action in humans/robots:  

(a) Computational cost / Simplicity: this line of thinking converts an ‘ill posed’ problem of motor control (one 

from many) into a ‘well posed’ problem (one to one) thus circumventing the need for explicit kinematic 



inversions (Mohan and Morasso 2011, Pickering and Clark, 2014) and cost function computations that can 

be prohibitive for example while coordinating a 53-DoF humanoid; 

 (b) Real and Imagined actions: the idea of action being understood as consequences of our own predictions 

concerning the flow of sensation i.e. a version of the Ideomotor theory of James (1890) and Lotze (1852), 

resonates with emerging studies form neurosciences suggesting that action ‘generation, perception, 

simulation’ share cortical substrates (thus complementing (a)); 

 (c) Embodiment: emphasizing that it might be possible to simplify the computational process of coordination 

of action by actively exploiting properties and constraints of the physical system that is being coordinated 

(like, stiffness, compliance, reflex, local-to-global distributed processing) drawing upon ideas from EPH and 

Embodied simulation (hence complementing (a) and (b));  

These topics (a)-(c) will be connected gradually with both empirical studies from humans and experiments 

with robots as we progress. 

1.2 Computing with the Body: Muscle synergies and EPH 

    A general concept that was in the background of many studies to explain neural control of movement 

during the mid-60s to mid-80s was the Equilibrium Point Hypothesis (EPH: Asatryan & Feldman 1965; 

Feldman 1966; Bizzi et al 1976; Bizzi et al 1992; Feldman & Levin 1995). Innovative aspects of the EPH was its 

strong grounding in the biomechanics of the body and the apparent computational simplicity in solving the 

degrees of freedom problem. The basic Idea was that posture is not directly controlled by the brain in a 

detailed way but is a ‘biomechanical consequence’ of equilibrium among a large set of muscular and 

environmental forces. In other words, complex actions can indeed be achieved (i.e. choosing of one from 

many) without a complex, high dimensional optimization process by simply allowing the intrinsic dynamics 

of the neuromuscular system to seek its equilibrium state when trigged by intended goals.  

The EPH idea exploited two beneficial properties of the neuromuscular apparatus of the body: 1) to induce, 

locally (in a muscle-wise manner), an instantaneous disturbance compensation action, and 2) to induce, 

globally (in a total body-wise manner), a multi-dimensional force field with attractor dynamics. Numerous 

studies carried out with intact and spinalized animals (Bizzi et al 1991; Mussa-Ivaldi and Bizzi 2000; d’Avella 

and Bizzi 2005; Cheung and Bizzi 2013) demonstrated that complex motor behaviours can be constructed by 



muscle synergies, with the associated force fields organized within the brain stem and spinal cord, and 

activated by descending commands from supraspinal areas. Muscle synergies were also shown to be 

correlated to the control of task-related variables (e.g. endpoint kinematics, displacement of the center of 

pressure; (Ivanenko et al. 2003; Torres-Oviedo et al. 2006).  

  On the other hand, it is still an open question whether or not the motor system represents equilibrium 

trajectories (Karniel 2011). Motor adaptation studies, starting with the seminal paper by Shadmehr & Mussa-

Ivaldi (1994), demonstrate that equilibrium points or equilibrium trajectories per se are not sufficient to 

account for adaptive motor behaviour, but this is not sufficient to rule out the existence of neural 

mechanisms or internal models capable of generating equilibrium trajectories. Rather, as suggested by 

Karniel (2011), such findings should induce the research to shift from the lower level analysis of reflex loops 

and muscle properties to the level of internal representations and the structure of internal models. This 

viewpoint is also supported by recent electrophysiological experiments in the lower vertebrates, cat, and 

monkey that provide evidence that the temporal activations of muscle synergies identified by computational 

algorithms are ultimately expressions of neural activities (Cheung and Bizzi 2013). 

     In this context, only recently advanced brain imaging techniques have allowed to gain direct access to 

cognitive/mental states in absence of movement, thus making clear that actions involve a covert stage. In 

this renewed context, it is worth pondering how the computational principles captured by the EPH idea 

proposed for coordination of overt movement could be recycled to explain actions without movements and 

without muscle contractions. Here, a problem with EPH is that, given neural circuits in motor areas are 

activated in other contexts related to ‘action’ that do not cause any overt movement, attributing only the 

intrinsic properties of the musculoskeletal system to explain movement might be a fallacy. Otherwise, as 

pointed out by Martin (2009), reading words like “lick, pick, and kick” would result in licking, picking and 

kicking. While motor synergies have traditionally been associated with muscles, a way to resolve this 

conundrum is to take the EPH idea beyond its manifestation ‘in flesh’ and look instead at ‘muscleless’ motor 

synergies and how they could be realized computationally and in the neocortex, so as to support a diverse 

set of cognitive functions related to action generation, perception, simulation and understanding.    This is 



indeed the motivation of our proposal connecting emerging results from functional imaging, neuro-

rehabilitation, tool-use in animals and cognitive robotics. 

1.3 Muscleless motor synergies, Actions without movements and the Body Schema 

       Presently, there is growing consensus that cortical networks in the predominantly motor areas are 

activated in other contexts related to ‘action’ that do not cause any overt movement. Emerging studies (see 

Ptak et al, 2017 for recent review) suggests that the dorsal frontoparietal network forms a core system for 

action emulation, internal representation/manipulation of movement kinematics to support inference in 

diverse cognitive/social tasks. Distributed multi-center neural activation in the parietal and premotor areas 

are consistently detected not only during the production of overt movements (Kanwisher, 2001) but also 

during disparate cognitive functions like observation and imitation of others actions (Frey & Gerry 2006; 

Grafton et al. 2009; Iacoboni 2009; Rizzolatti et al. 2010; Grafton et al. 2014), comprehension of language 

namely action related verbs and nouns (Pulvermüller 2013; Pulvermüller and Fadiga 2010, 2011; Glenberg 

and Gallese 2012; Andres et al. 2015) and action interpretation / perspective taking during social interactions 

(Gallese and Cuccio 2015; Koster-Hale and Saxe, 2013). The central insight that emerges out of these results 

is that action simulation and action execution draw on a shared set of cortical networks in the parietal-

premotor areas of the brain. Further when observing others actions, people recruit motor representations 

as if they were themselves acting (Gallese and Sinigaglia 2011). Simply put, understanding may be conceived 

as an internal simulation that entails the reuse of our own ability to act with our bodily resources in order to 

functionally attribute meaning to others’ actions, importantly recycling some of the same cortical substrates 

the enable our own selves to act.  

     A provocative proposal to explain a shared/recycled ‘cortical and computational basis’ for covert 

simulation and overt generation of action is to posit that even real movements are consequences of a ‘covert 

internal simulation’. This idea, formulated in its basic essence in the Mental Simulation Theory of Marc 

Jeannerod (2001) is relevant presently given the trends in motor neurosciences. Undoubtedly, there must be 

a continuum with the scope of similar computational principles applied at different levels: physical and 

mental. Even during the generation of overt actions as posited by EPH, the ‘compositionality’ of the muscle 



synergies is ultimately made possible by the ‘compositionality’ of the underlying force fields and attractor 

dynamics. A plausible extension to EPH while retaining its beneficial properties (computational simplicity, 

biomechanical grounding) and at the same time connect to emerging trends in motor neuroscience is  to 

consider that what occurs in the brain during both mental simulation and overt execution of action reflects 

an endogenous cortical dynamics very similar to the physical dynamics implicit in EPH, but realized through 

‘animation’ of a ‘flexible, plastic and configurable’ internal representation of the body, with the attractor 

dynamics of force fields induced by the intended goal. This line of thought is not new but emerged infact 

during the 80’s formally extending the EPH idea from muscles to an internal representation of the body in 

the brain: body schema (Mussa-Ivaldi et al. 1988; Hogan 1987, Mohan and Morasso 2011).  

  That humans have an integrated, internal representation of their body is strongly suggested by the variety 

of pathological conditions which can only be explained by a deficient internal representation (Haggard and 

Wolpert 2005; Ramachandran 2011) or by sensory illusions (Botvinick 1998; Ehrsson et al. 2008). Modern 

neuroscience has greatly enriched the concept, with numerous studies identifying cortical areas in parietal 

cortex with multimodal neurons integrating proprioceptive and exteroceptive sensory information to 

maintain a coherent/updated internal representation of the spatio-temporal organization of the body, see 

(Berlucchi et al. 2010; Blanke 2012 for recent reviews). However, the functional role of the body schema in 

synergy formation and coordination/simulation of movements has not been investigated in depth. Intriguing 

insights are now emerging in this direction, particularly in support of body schema being the connecting link 

between overt and covert action. As Desmurget et al. (2008) and Desmurget and Sirigu (2009) demonstrate, 

stimulating right inferior parietal regions (in patients undergoing awake brain surgery) triggers a strong 

intention to move the contralateral hand, arm, or foot with participants believing that they performed the 

movements, although no movement was performed and even no electromyography activity was detected. 

Conversely, stimulating the premotor region triggered overt limb movements, though the patients firmly 

denied that they moved. Such results from direct intracranial recordings from humans highlight, on one hand, 

the coupling between motor imagery and the internal representation of the body, and, on the other hand, 

the link between actions with and without movements. Further, the cortical representation of the body is 

susceptible to plasticity as has been demonstrated from several experiments related to coordinating tools 



coupled to the body in primates (Iriki and Sakura 2008; Iriki et al. 2012; Umiltà et al 2008), virtual reality 

experiments and neuro-rehabilitation studies (Blanke 2012; Shokur et al. 2013) where coordinating common 

tools, virtual avatars and neuro-prosthetic limbs result in task-specific assimilation of such additional Tool 

DoF into the body schema. During movement generation, the body and the tool act as one cohesive unit, 

tool effector assuming the role of end effector (like pliers becoming fingers: Umiltà et al 2008). This analogy 

can be extended from coordinated tools to other bodies (conspecifics) as hypothesized by Gallese et al. 

(2015). Recent studies on infants (Marshall and Meltzoff, 2015), are also pointing out that body maps in 

infants facilitate early registration of the similarity between self and the other, a foundation to developing 

social cognition. 

    In sum, numerous studies from different disciplines are pointing towards the central function of the body 

schema in synergy formation, motor imagery, tool use and social cognition. However, the underlying 

computational basis is still blurred. This issue is highly relevant also in the context of embodied cognitive 

robotics given that dexterity in overt movement, purposive behavior with anticipation of the consequences 

of one’s actions, other’s actions are critical desirable features if robots are to become commonplace 

assistants in numerous application domains: domestic, industrial, elderly care to mention a few. In the 

following sections, we review both how emerging results from diverse empirical studies summarized so far 

can guide development of biomimetic architectures for action generation/simulation in cognitive robots and 

what the interrelations imply on our understanding of neural control of movement in general.  

2. The computational basis for Muscleless Motor Synergies: From Humans 

to Embodied Robots 

  Why does an embodied robot need a body schema? For the same reason a human or a chimp needs it: 

simply put, without one, it would be unable to use its ‘complex body’, take advantage of it, and ultimately 

survive. Given that the linkage between perception and action is complex (because the body is complex) and 

is not unique (because the body is redundant), we believe the internal representation i.e. body schema 

functionally serves as a central building block to simulate interactions of body with the environment, to 



anticipate the actions of other animate entities and thus effectively plan goal oriented behaviors. While the 

concept of embodiment has been popular in cognitive robotics (Vernon, von Hofsten & Fadiga, 2010), the 

computational basis and functions of body schema in cognitive robots has not yet been addressed in detail 

(see, Hoffmann et al. 2010 for a review of the gap between the concept and computational implementations). 

Note that embodiment and body schema are not the same things: if you have a body schema you also have 

embodiment but not the other way around. Especially, in light of the emerging results from neurosciences 

(summarized in the previous section), we believe the body schema is an internal body model shared by real 

and imagined actions in a way to unify the computational basis of the different aspects of purposive actions: 

execution, imagery, observation, imitation, understanding.  

      Let us revisit older ideas from motor control and synergy formation. In the classical view of EPH, the 

attractor dynamics that underlies production of overt movement is based on the elastic properties of the 

skeletal neuromuscular system of the body and its ability to store/release mechanical energy. However, this 

may not be the only possibility. The discovery of motor imagery and the strong similarity of the recorded 

neural patterns in overt and covert movements, it is plausible that attractor dynamics and the associated 

force fields may not be uniquely determined by physical properties of the neuromuscular system but might 

arise as well from similar neural dynamics due to interaction among brain areas that are active in both 

situations. This line of thought resonates with several prominent ideas like  internal simulation theory of 

Marc Jeannarod (2001), emulation theory of functional simulation (Hesslow 2012), Ideomotor theory 

(Herbort  and  Butz, 2012) and embodied simulation hypothesis (Gallese and Sinigaglia 2011). However, a 

principled computational framework incorporating such ideas and that can be deployed in any embodiment 

(robots, animated avatars, industrial manipulators though with lesser DoF) to realize diverse cognitive 

functions related to action generation/simulation is lacking till date.  

   A simple way to computationally realize such a mechanism is to posit that both overt and covert actions 

are the consequences of ‘animation’ of a ‘plastic and configurable’ internal representation of the body 

(human or robot), with the attractor dynamics of force fields induced by the intended goals (and constraints). 

This concept took shape as the Passive motion paradigm (Mussa Ivaldi et al. 1988) and extension of the EPH 

idea from muscles to the body schema (Mohan and Morasso, 2011). Such an animation process a) offers a 



low cost solution to coordinate overt movements’ highly redundant systems (exploiting the computational 

ideas of EPH); b) offers a means to recycle the same computational building blocks to engage in covert 

simulation of movement for goal directed reasoning and social inference. While formally extending the EPH 

idea, the emphasis is on the fact that covert and overt stages must represent a continuum, such that every 

overtly executed action implies the existence of a covert stage, whereas a covert action needs not necessarily 

turn out into an overt action. The synergistic interaction between the body schema and the attractor 

dynamics induced by the intended goal could be a means to computationally realize such continuum. 

2.1 A Plastic, Configurable “Internal body model” for embodied robots: Synthesis, 

Animation and Learning 

        We posit that the computational formulation of the body schema (for both humans and embodied 

robots) must facilitate mainly:  

a) Somatotopic organization with relative correspondence among body parts and model components 

(Berlucchi et al. 2010; Grush 2004; Hersh et al. 2008; Mohan and Morasso 2011; Sturm et al. 2009); 

b)  Plasticity and learning so as to incorporate external objects as tool by learning (Iriki et al, 2012) and 

task oriented configurability so as to either prune or incrementally recruit various DoF (of the body 

and coupled tools as necessary). 

Such a representation is naturally composed of multiple interconnected body chains (figure 1A), available 

for connection in the context of a task with possibility of extension to couple tools. Some end effectors 

are ubiquitously used in most daily activities like hands and feet (but other DoF like elbow, head etc. are 

also flexibly available based on physical and task constraints). The schema/internal representation can 

be animated by the attractor dynamics of force fields ‘attached’ to one or more body parts/ effectors in 

a goal-oriented fashion to both generate actions (i.e. compute motor commands) or simulate actions (i.e. 

predict sensory consequences of the actions of self or other bodies by analogy).  



  Figure 1B-C, depicts three body schema networks of increasing complexity: a simple serial kinematic 

chain (like a 6 DoF arm or industrial manipulator), an upper body network (i.e. left arm-torso-right arm 

chain of a human or robot) and a bimanual tool use network (i.e. upper body + coordinated tool). 

While the networks get complex from 1B-D, we will use them together to elucidate connecting principles 

that in our opinion forms the basis for goal oriented synergy formation,  action generation/simulation 

for any ‘body’ (human, humanoid, industrial robots) with arbitrary redundancy and complexity.  In 

particular, we summarize four pertinent issues 1) goal oriented synthesis of “body schema networks” at 

runtime based on the task at hand; 2) the animation of such networks to both generate motor commands 

to coordinate the body (in case of overt movement) or simulate the consequences (in case of covert 

movement); 3) how such an internal representation can be learnt so as to seamlessly incorporate other 

DoF i.e. coupled tools within the same computational framework (and hence reason about them); 4) the 

possible extension from coupled tools to other bodies during social interactions (to anticipate others 

actions);  

2.1.1 Synthesis of a Task specific Body Schema networks for action generation/simulation 

   Figure 1A shows the articulated body schema that in principle encompasses all the DoF’s of the body and 

naturally composed of multiple interconnected body chains. Different parts of the body (i.e. the effectors) 

are available for connection with various external objects (i.e tools, other bodies) to perform various tasks. 

Based on the intended goal, such a representation must be configured in a task specific fashion (with coupled 

tools, other task constraints) to realize diverse internal models at runtime to be used to both compute motor 

commands (for action execution) or predict the consequences if the action were to be actually performed 

(hence facilitating goal directed reasoning). Figure 1B-D shows three such networks of increasing complexity. 

The three networks are presented together to enable the reader to visualize the underlying modularity 

(reusing basic building blocks) and common general principles while composing such body schema networks 

of increasing complexity to be used in diverse motor tasks, that we summarize below.    

The Basic Ingredients- Nodes, Motor Spaces and Work Units:  An interesting aspect of motor control is the 

multitude of ways in which a single motor coordination task can be described/represented. For example the 



task of coordinating a steering wheel of a car (like figure 1D); it can be equally described using mono-

dimensional steering wheel pattern or a 6-dimentional hand movement pattern or a 17- dimensional joint 

rotation pattern or multi-dimensional muscle contraction patterns. Based on the task there are multiple 

motor spaces involved: for a simple kinematic chain there is a hand space and arm joint space (1A), for upper 

body coordination the motor spaces include both hands, arm joints and the waist (1B) and a tool space when 

coordinating coupled tools (1C). In this sense, tools during coordination are treated as an extension to the 

body: tool effector essentialy becoming the end effector as substantiated by several studies from tool use in 

primates (Iriki and Sakura 2008, Umiltà et al 2008), sensory illusions (Ehrrson et al 2008), coordination of 

virtual avatars and prosthetic limbs (Shokur et al 2013), which will be further elaborated in the concluding 

discussion. All motor spaces consist of two nodes: one representing generalised force (pink nodes) and other 

representing generalized position (blue nodes). We call the pair of force-displacement nodes as a work-unit 

(WU), because the scalar work  is the structural invariant across different motor 

spaces. In other words, the invariance of energy by coordinate transformations (principle of virtual works) is 

used to relate different motor spaces. To sum up, in the case of a simple kinematic chain (1B), there are two 

motor spaces i.e. hand space (with two nodes: representing force and position of the hand) and arm joint 

space (with two nodes representing torque and rotation of the various joints). The same representational 

framework is conserved during upper body coordination (1C) and tool use (1D).  

Connectivity:  One key feature in all the Body Schema networks (1B-D) is their cyclic connectivity that enables 

every node to reach to every other node in the network. There are only two connecting links i.e. Vertical 

(connecting the force and position node within a work unit) and Horizontal (connecting one motor 

space/work unit to another). Take for example a case in figure 1C, if we disengage the right arm and the waist 

space and enter the network at the left arm end effector dxl and exit at left arm joint space dql, we get the 

following rule for computing incremental joint angles: lL
T

Ll dxKJAdq = .  

Horizontal links/ Geometric Causality: Horizontal links in the network (green blocks) represent the geometric 

relationship between two motor spaces. This relationship is realized through Jacobian matrices that causally 

link one motor space to the other. Regardless of connections being serial or parallel, the causal mapping 



between two motor spaces is generally ‘non-linear’ and ‘irreversible’. However the mapping can be linearized 

by considering small displacements (or velocities), whose representations in any two motor spaces are 

related through a Jacobian matrix: for example, dxl=JL(q)dql. Moreover, the irreversibility is dealt with the use 

of transpose Jacobians rather than computing in the direction inverse to the causal flow. Hence, while the 

Jacobian maps the small displacements between motor spaces in one direction, the transpose Jacobian 

determines the dual mapping among forces in the opposite direction (principle of virtual works). For example, 

in figure 1C, the Jacobians JR and JL relate the rotations in joints of the two arms and waist into displacements 

of the two hands, whereas the corresponding transpose Jacobians project the forces F applied on the hands 

into corresponding joint torques. Similarly in the case of use of tools, a tool Jacobian JT signifies the geometric 

relationship between the tool space and the end-effector space to form an interface between the tool and 

the body for coupled coordination. These tool Jacobians representing the causal relationship between the 

body and the tool can be learnt by experience with the tool-use via multiple learning streams like imitation, 

physical interaction and exploration (Mohan and Morasso, 2012). 

Vertical Links/ Elastic Causality: Vertical links in the PMP network signify elastic relationships between forces 

and displacements and are realized by stiffness and admittance matrices (denoted as K and A respectively). 

Correspondingly, the links connect generalized force nodes to displacement nodes (or vice versa) in each WU. 

To account for nonlinearity, Hooke’s law of linear elasticity can be used to derive effort from position or vice 

versa by considering differential variations: dF =K·dX and dX= A⋅dF, where K is the virtual stiffness and A is 

the virtual admittance. For example, in figure 1D, the virtual stiffness KR and KL determine the intensity and 

shape of the force fields applied in the network for right and left hands respectively. For simple cases K is 

taken as an identity matrix and this denotes an isotropic field, converging to the goal target along straight 

flow lines. More complex curved trajectories like in case of obstacle avoidance or use of tools, can be 

obtained by either actively modulating or learning the appropriate values of the virtual stiffness (Mohan et 

al., 2011b; Bhat and Mohan, 2015). At the same time admittance matrix regulates the contribution of 

different motor elements to the overall movement in a ‘local’ way. Every constituent element (for example, 

a joint in the arm or the waist) responds to the goal-induced ‘force-field’ based on its own ‘local’ admittance. 

But it is finally the overall synergetic balance between the admittances of all joints and not their individual 



values that direct the net dynamics of the system in achieving the solution. However, the ‘local’ tunability of 

the joint admittances allows the overall dynamics to be tweaked in ‘task specific’ ways. In normal settings, 

all the joints contributing to the overall relaxation process are considered to be equally complaint. Hence an 

identity matrix is used to represent the admittance of a motor space, e.g. for a 7 DoF arm, it would be a 7x7 

identity matrix. On the other hand, by locally modulating individual joint values, it is possible to alter the 

degree of contribution of each joint to the overall movement while not affecting the solution at the end 

effector space. The issue of generating different solutions by actively modulating the admittance of different 

joints has been demonstrated for whole body coordination tasks (Morasso et al. 2010, 2015). 

Directionality, Well Posed computations: A critical issue arises with regards to the directionality of the 

information flow in any cyclic connected network. In Body Schema networks the directionality determines 

the cost of computation, hence must be considered not only when highly redundant bodies are to be 

controlled, but also when tools with controllable degrees of freedom are to be coupled to the body. A simple 

and graceful solution to this issue is that the direction of information flow is constrained by the fact that such 

body schema networks always operate through ‘well posed’ computations/ transformations. Which 

direction offers ‘well posed’ transformations is determined by the motor spaces recruited and the type of 

connectivity between them i.e. Serial or Parallel (this is analogous to electrical circuits).   

   Serial Connections:  Take for example a kinematic chain like an arm that comprises of two motor spaces (a 

low-dimensional end-effector space and a high-dimensional arm-joint space) connected serially. The 

Jacobian matrix for transformation from joint space to end effector space has more columns than rows (for 

example, if the end effector state is represented in 3D Cartesian coordinates and the arm has 7 joints, then 

the Jacobian matrix has 3 rows and 7 columns). In such a case, given the joint angles of the arm, it is possible 

to compute the position of the end effector uniquely. Hence the transformation from the position node in 

joint space to the position node in end effector space is well posed. In contrast, the transformation in the 

opposite direction is ill posed, in the sense that given an end effector position in Cartesian space, it is not 

possible to compute the value of the joint angles uniquely. This is because the number of available equations 

is less that the number of unknowns (joint values) leading to infinite solutions. Same is the case with force 

nodes; the transformation from the end-effector forces to joint torques through the transpose Jacobian is 



well posed (T=JTF: there are 7 unknowns and 7 equations if the kinematic chain has 7 joints). Conversely, the 

transformation in the opposite direction is not well posed, i.e. it is not possible to compute the hand forces 

from a set of given joint torques because there are more constraint equations than unknowns. This sets the 

direction in the networks of figure 1A to flow information from the position node in arm space to the position 

node in end effector space and the force node in end-effector space to the force node in joint space. In this 

way, the cyclic connectivity in the network is also preserved. 

 



 

Figure 1. 1A illustrates the articulated body schema of an embodied robot that is configurable (based on task at hand) 

and plastic (to incorporate coupled tools) as extension to the body through skill learning. Figure 1B-D shows three 

networks of the body schema of increasing complexity for coordinating/simulating a simple kinematic chain (like an 

arm), whole upper body forward/inverse model (typical in bimanual coordination tasks) and upper body coordination 

with coupled tool. The three networks are presented together to enable the reader to visualize the underlying 

modularity (reusing basic building blocks) and common general principles while composing such forward/inverse 



networks of increasing complexity to be used in diverse motor tasks. Note that the basic sub network (1B) is recycled in 

1C-D (upper body coordination, bimanual tool use like steering when control). All networks are grouped into multiple 

motor spaces involved in the action i.e. tool, hand, arm joint and waist space. Each motor space consists of a 

displacement (blue) and force node (pink) grouped as a work unit. There are two kinds of connections: Vertical 

connections (purple) that connect the force and displacement node within a motor space and denote impedances. 

Horizontal connections (green) connect different motor spaces denote the geometric transformation between them 

(Jacobian: J). The connecting links can be learnt through a combination of sensorimotor exploration and imitation. Also 

note that all networks are fully connected, connectivity articulated in a fashion that all transformations are ‘well posed’: 

from the joint velocities it is possible to uniquely compute the end effector position (1B, C). Similarly, from the force 

exerted by the two hands (pink nodes in hand space of 1D that are added) it is possible to uniquely compute the tool 

rotation, but not the other way round. 

Parallel Connections: Parallel connections are duals of their serial counterparts. A typical biological example 

of parallel connections is the relationship between the muscles and the skeleton. Given the muscle forces, 

the problem of finding the joint torque is well posed; however the inverse problem results in infinite 

solutions.  Another example of a parallel connection is that between the two arms and a tool, a steering 

wheel (figure 1D). Generation of a desired steering wheel torque is possible through an infinite combinations 

of forces exerted by the two hands ‘in parallel’, but the transformation in the opposite direction is unique 

and hence, well posed. Similarly, it is possible to uniquely compute the position of the two hands for any 

given steering wheel rotation. Hence in figure 1D, there is a force to force transformation from the hand 

space to steering wheel space, and position to position transformation from the steering wheel space to hand 

space. 

       In sum, the directionality of causality in a PMP network is governed by the fact that all computations in 

the network should be ‘well posed’. Operating with well posed computations and circumventing kinematic 

inversions of a causally noninvertible redundant system significantly simplifies the computational process. 

Further, since such computations are always well posed and linearized, PMP mechanisms do not struggle 

with the curse of dimensionality and can be easily up-scaled to any number of degrees of freedom.  



Special Nodes for Branching (+/=): In order to put together multiple kinematic chains through serial and 

parallel connections to represent complex structures, two additional nodes i.e. Sum (+) node and Assignment 

(=) node are used to add or assign displacements and forces from one set of motor spaces/ work units to 

other.  For example, in figure 1C the assignment node assigns the contribution of the waist in the overall 

upper body movement towards a goal, to the sub-networks of right and left arms. On the other hand, the 

net torque experienced at the waist is the ‘sum’ of torques coming from the right and left arm PMP sub-

networks. A sum and an assignment node come as a duo. If an assignment node appears in the displacement 

transformation between two work units, then a sum node appears in the force transformation between the 

same work units. This can be understood as a result of conservation of energy between two work units. 

Similarly, sum and assignment nodes can appear at the interface to couple the body with a tool, as shown in 

figure 1D.  

   To summarize, with two types of nodes (force and position), two types of connections (geometric and elastic) 

and some basic rules to direct causality between multiple motor spaces it becomes possible to synthesize 

incrementally complex networks to represent for diverse motor tasks coordinated by multiple body chains 

with coupled tools, in a modular, distributed fashion with basic principles recycled. The next two sections 

summarize how such a body-schema network can be animated to simulate/generate actions and how such 

an internal representation of the body (and coordinated tools) can be learnt. 

2.1.2 Animation of the generated task specific body schema network 

The networks of Figure 1B-D can be animated by attaching force-fields to one or more body parts/ effectors 

in a goal-oriented fashion. The animation process is analogous to the coordination of marionette with 

attached strings (that represent the attractor dynamics of the force field induced by the intended goal). The 

computational mechanism involves a process of passive simulation of movement as if it was imposed by an 

external agent (i.e. the sought goal), in such a way to distribute the desired motion to the global kinematic 

structure by recruiting joints, actuators, and tools while pulling the dynamical system to the equilibrium state. 

In the simplest case of reaching, as the end effector reaches the target the rest of the body elastically 

reconfigures so as to position the end effector at the goal. When motor commands computed by this process 



of passive simulation are actively fed to the actuators, the robot will perform the motion. Otherwise, the 

results of such simulation can be used to predict feasibility and consequences of potential actions. While 

reaching is a simplest case with a fixed point attractor (at the target), the body schema can be animated with 

moving point attractors to produce diverse spatiotemporal trajectories, as shown in the case of drawing 

(Mohan et al. 2011b), tool use (Mohan & Morasso 2012; Bhat & Mohan 2015).  

    Let q be the set of all the degrees of freedom (DoFs) that characterize the body of a human or robot, 

possibly extended by including the DoFs of a manipulated object (like a tool). Any given task identifies one or 

more ‘end-effectors’ and is defined by the motion x(t) of one end-effector with respect to some reference 

point. In general, the dimensionality of q is generally much greater than the dimensionality of x. Then the 

kinematic transformation   can be expressed as:   where  is the Jacobian matrix 

of the transformation. Then, the relaxation process in the simplest case for a serial kinematic chain involves 

the following steps: 

(1) Generate a target-centered, virtual force field in the extrinsic space: 

           (1) 

Where  is the target and  the virtual stiffness of the attractive field in the extrinsic space.   

determines the shape and intensity of the force field. In the simplest case, K is proportional to an identity 

matrix and this corresponds to an isotropic field, converging to the target along straight flowlines. 

(2) Map the force field from the extrinsic space into virtual torque field in the intrinsic space: 

    

(3) Relax the arm configuration to the applied field: 

   

Where  is the virtual admittance matrix in the intrinsic space: the modulation of this matrix affects the 

relative contributions of the different joints to the overall reaching movement. 

(4) Map the arm movement into the extrinsic workspace: 

      

(5) Integrate over time until equilibrium: 



    

The last step integration gives us a trajectory with the equilibrium configuration  defining the final 

position of the robot in the extrinsic space.  It should be noted that all the computations in the loop 1-5 are 

“well posed” and the relaxation mechanism does not require any cost function to be specified in order to 

solve the indeterminacy related to the excess DOF’s (the redundancy problem). In the case of a simple 

reaching task with an arm (using the network of 1B-1C), at the end of the animation process, we get four sets 

of trajectories (as a function of time): 1) trajectory of joint angles given by the position node in the joint space 

(arm and waist); 2) the resulting consequence i.e. the trajectory of end effectors  given by the position node 

in end effector space; 3) the trajectory of torques at the different joints (arm and waist), given by the force 

node in the joint space; 4) the resulting consequence i.e. the trajectory of forces applied by the end effector 

given by the force node in the end effector space. 

At the same time it is possible to integrate a range of internal and external constraints at runtime based on 

the requirements of the task that needs to be performed, in the form of force fields defined either in the 

extrinsic space or intrinsic space.  
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       (2)  

A constraint in the extrinsic space could be an obstacle to avoid, an appropriate hand pose with which to 

reach an object so as to allow further manipulation actions to be performed (like grasp or push). In the 

intrinsic space a constraint could take into account the range of motion of a joint, the saturation power or 

torque of an actuator etc. 

Time and Timing:  There are always temporal deadlines associated with any goal. Control over ‘time and 

timing’ is crucial for successful action synthesis, be it simply reaching a target in a finite time or complex 

scenarios like coordination of multiple kinematic chains (bimanual actions), trajectory formation, multi-

tasking etc. A way to explicitly control time, without using a clock, is to insert in the non-linear dynamics of 

the relaxation process (steps 1-5), a time-varying gain )(tΓ  according to the technique originally proposed 

by Zak (1988) for speeding up the access to content addressable memories and then applied to a number of 



problems in neural networks. This mechanism can be applied to any dynamics where a state vector x  is 

attracted to a target Tx  by a potential function, such as ( ) ( )TT
T xxKxxxV −−= 2/1)( , according to a 

gradient descent behavior: )(xVx ∇−= , where )(xV∇  is the gradient of the potential function, i.e. the 

attracting force field. Based on the nature of the task, there can either be single or multiple timing signals, 

hence allowing action sequencing, synchronization, mixing of force fields generated by multiple spatial goals, 

generation of a diverse range of spatio-temporal trajectories (Mohan et al, 2011). The timing function can be 

considered as a kind of “Neural pace-maker” (Barhen, Gulati, Zak, 1989) and a biologically plausible 

representation can be identified in the cortico-basalganglia-thalamo-cortical loop and the well-established 

role of the basal ganglia in the initiation and speed-control of voluntary movements. While in this article, we 

have restricted to the upper body (as presently deployed in the robot iCub), in a recent article Morasso et al. 

(2015) show how the framework can be extended for whole body coordination in humans. 

2.1.2 Learning the internal representation of the body (and extending it to coupled tools) 

   Learning the internal model of the body has been a subject of few interesting studies in cognitive robotics. 

Hersh and Billard (2008) presented an algorithm enabling an embodied robot to visually learn its body 

schema, knowing only the number of degrees of freedom in each limb. Learning was performed by visually 

observing its end-effectors when moving them. Sturm et al (2009) developed a model based on Bayesian 

networks that allows a robot to simultaneously identify its kinematic structure and learn the geometrical 

relationships between its body parts as a function of the joint angles. The body schema based framework 

also allows seamless learning of relationship between multiple motor spaces (both the body model) and 

coupling to coordinated tools, using multiple learning streams (motor babbling, imitation and motor 

knowledge reuse). Figure 2 pictorially shows the process to learn both the internal body model and learning 

to use tools coupled to the body. 



 

 

Figure 2. Shows the block diagram of the information flow to generate data and learn the mapping between different 

motor spaces (Hand space to body joints, hand to tool). The data in the case of the former is acquired by a process of 

sensorimotor babbling while in the case of latter i.e. tool use can be generated by a combination of imitating the teacher 

and interacting with the object/tool. A standard backpropogation network is used, and from the learnt connectivity 

matrix, the corresponding Jacobians are extracted. 

In the former case, data is generated by motor babbling while in the latter i.e. extension to tools, the same 

data (for linking tool to hand space) can be generated by a combination of imitation of the teacher’s 

demonstration, physical interaction with the tool and reuse of past motor experience (see Mohan and 

Morasso 2012, 2011b for details). For learning the internal body model itself, the robot performs random 

movements in its workspace always tracking the end effector. This process generates data i.e. the set of arm 

joint rotation and the corresponding end effector locations (figure 2 shows 1.5 K points sampled in the iCub 

end effector space). Once such data is generated, a standard backpropagation network with two hidden 

layers learns the mapping   . In this case,  is the input vector (of joint angles, in the upper 

body: in the case of iCub the left arm-torso-right arm chain has 17 DoF),   is the output vector 

(representing 3D position/orientation of the end-effector) and  and  vectors are the output 

of first and second hidden layer units of the neural network respectively. Equation 3 expresses the mapping, 

where  are connection weights from the input layer to first hidden layer,  are the connection 



weights between two hidden layers,   are the connection weights from the second hidden layer 

to the output layer,  are the net inputs to the neurons of the first hidden layer and  are net 

inputs to the second hidden layer. Neurons of the two hidden layers fire using the hyperbolic tangent function; 

the output layer neurons are linear.  

 

 

 

In relation to use of external objects as tools, the same procedure can be applied with the data (end effector 

motion and the corresponding consequence on the tool effector) acquired also by imitating the teachers 

demonstration (Mohan et al. 2011b; Mohan and Morasso 2012) thus constraining the domain of random 

exploration (because a spatiotemporal trajectory comes from the teachers demonstration). 

 From the learnt neural net to the Jacobians:  The critical aspect is that from the learnt weights of the neural 

network (based on the generated data by different learning streams: babbling, imitation, physical 

interaction), it is possible to extract the Jacobians encoding the geometric relationship between the 

respective motor spaces (joint space-end effector space or end effector–coordinated tool effector space) 

using chain rule (equation 4).  

 

   The internal model of the body itself is constant and is represented by the learnt neural network of the 

body from which the body Jacobians (that encapsulate the geometric relationship between the end effectors 

and the internal body joints) can be computed. At the same time, the representation framework is plastic in 

the sense that while coordinating different tools, the corresponding learnt neural network encapsulating the 

relation between tool effector and end effector (i.e. the tool Jacobian)  has to be loaded from procedural 

memory to synthesize the task specific ‘tool+body network’ (like figure 1D). In this sense, motor knowledge 



related to use various tools are learnt and stored in a local fashion, available for connection with the body-

schema in a flexible, task-oriented fashion. At the same time, tools during coordination are an extension to 

the body schema: tool effector essentially becoming the end effector as substantiated by several studies 

from tool use in primates, coordination of virtual avatars. 

    To summarize, this section presented the basic computational principles for the synthesis of task specific 

body schema networks, how such  internal models can be animated to both generate motor commands or 

predict consequences of actions and finally how such an internal model of the body can be learnt and 

extended to coordinated tools. The next section describes the multifunctional use of the computational 

framework for action generation and simulation with diverse experiments on 53-DoF robot iCub and two 

industrial robots.    

3. The multifunctional use of the Body Schema in Action generation and 

Simulation 

    This section illustrates various results related to the use of networks in figure 1B-C in diverse tasks ranging 

from whole body coordination, tool use and simulation of action for goal directed reasoing.  

3.1 Body Schema networks for  Action Generation 

  Figure 3A shows the accuracy of the network in coordinating the 17-DoF robot upper body while reaching-

grasping objects in the workspace (using the upper body network of figure 1C). The blue cube shows a set of 

500 target points in the workspace and the green cube the final hand position obtained  when motor 

commands computed by the animation process (section 2.2) is transmitted to the actuators to execute the 

movement. The jacobians in the relaxation dynamics are computed using the weight matrices emerging from 

learnt internal nerual representation of the body (section 2.3). Within the reachable workspace, all the goal 

targets are reached with a mean variance of 5mm, thus allowing the robot to inter- 

 



 

Figure 3. Illustrates various results related to the use of networks in figure 1B-C in unimanual and bimanual coordination 

tasks with the iCub.  Figure 3A shows the accuracy of the network in coordinating the 17-DoF robot upper body while 

reaching-grasping objects in the workspace. The blue cube shows a set of 500 target points in the workspace and the 

green cube the final hand position obtained  when motor commands computed by the animation process (section 2.2) 

is transmitted to the actuators to execute the movement. Note that even when the targets are unreachable a solution 

is guarenteed and the robot nevertheless tries to approach the target as much as possible by fully extending the arm to 

a position that is at a minimum distance from the target. 3B shows the hand trajectories while the robot assembles a 

tower with three constituent obejcts. 3D illustrates the concept of grounding with an assymetric bimanual coordiantion 

task. Left panel shows the solution when the network is grounded at the shoulder and right panel when the network is 

grounded at the waist. In other words, additional DoF freedom can be incrementally recuited during synergy formation.  

3D shows the scenario of whole body coordination using both upper and lower limbs. 3E shows the final solution when 

the goal i.e to grasp the red cylinder is unrealizable. Such movements need not be executed, instead, the outcome of 

forward simulation or the residual error can be used to drive further reasoning about other affordances (like the desired 

length of a tool). 



-act with a range of objects and tools. Importanly, note that even when targets are in the unreachable zone 

of the body, a solution is guarenteed: the robot nevertheless tries to approach the target as much as possible 

by fully extending the arm to a position that is at a minimum distance from the target. What we see in such 

cases is a gentle degradation of performance that characterizes humans in the same situations. Although 

there is no exact solution to the problem, the network “does its best” (see figure 3E). In such cases, the non-

convergence of the animation provides critical information to reason about affordances of other objects 

available in the environment (for example, the green stick). Several studies from animal cognition show that 

a wide range of primates are able to engage in such reasoning about possible tools (sticks, rakes, hooks etc.) 

to reach unreachable rewards/goals (Visalbergi and Tomasello 2005, Weir et al, 2002, Iriki et al 2008). Further 

it is also known that if presented with tools of different lengths during a trial, both corvids and chimps often 

chose the most appropriate tool directly and do not employ any trial and error based policy. Figure 1B shows 

the end effector trajectories of the right and the left arm (position nodes in hand space of 1C) during a 

bimanual task of assembling a stack (see supplementary information for a video of the assembly). Note that 

all motor commands for action generation are computed without any explicit kinematic inversion or cost 

function optimization.  

  Another interesting observation is the incremental recruitment of additional DoF as necessary (and readily 

available in a highly redundant body like human or robot).  For example, figure 3C (left panel) shows the final 

solution while bimanually reaching the large cylinder (placed far away and asymmetrically with respect to 

the robot’s body) using only both arms with the admittance AT of the three DoF of the waist (figure 1C) is 

reduced 10 times as compared to the two arms. Simply, without the contributions of the additional DoF of 

the torso, it impossible to bimanually reach the target. Figure 3C (left panel) shows the solution when the 

waist admittance is made equal to the arms. In this case, note the contributions from all three degrees of 

freedom of the torso, hence enabling iCub to bimanually reach the cylinder successfully in this case. An 

alternative way to interpret this behavior is that, in the former case the force field induced by the goal did 

not propagate through the waist network. In other words, the propagation of goal induced force field across 

different intrinsic elements of the body-schema can be modified by altering their local admittance. This 



relates to the issue of ‘grounding’ (similar to electrical networks). Since there are many possible kinematic 

chains that can be coordinated simultaneously in a complex human/robot body, based on the nature of the 

motor task it is necessary to identify the start and end points in the body schema between which the force 

fields generated by the goal will propagate, and beyond which the force fields generated by the goal will not 

propagate.  

3.2 Coordinating coupled tools (as an extension of the Body Schema) 

   This subsection depicts the behavior of the ‘body+tool’ network (figure 1D), with an interesting example of 

bimanually coordinating a toy crane to reach otherwise unreachable goal objects. The fact that the desired 

goal object cannot be reached/grasp can be inferred from the animation the basic body schema (figure 1B-

C) at the same time allowing to bimanually grasp the toy crane handle.  We now see the behavior of the 

system when the coordinated tool is coupled to the body in different conditions (normal, pathological) to 

further understand the internal dynamics and properties of the computational framework. The first aspect 

to observe is that the representational framework does not make any special distinction between the ‘body’ 

and the ‘tool’. The tool space is represented exactly in the same manner as any other motor space with a 

force node and position node (section 2.1), linked vertically by impedance and horizontally by tool Jacobian 

JT that is learnt based on the tool and retrieved from memory (section 2.3). During goal directed coordination 

the body and the tool act as one cohesive unit. The goal now acts on the ‘tool effector’ which is the most 

distal part of the extended body schema. The pull of the goal acting on the tool tip is incrementally circulated 

to the proximal spaces (end effector, arm joints, waist etc.). As the magnetized tip is being pulled towards 

the goal target, iCub’s end effectors are simultaneously being pulled towards the required positions so as to 

allow the tool tip to reach the goal. These positions are the goals for the end effector space. As a 

consequence, the joints are concurrently pulled so as to allow the end effectors to reach the position that 

allows the tool tip to reach the goal. These are the goals for the intrinsic space. If motor commands derived 

through this incremental internal simulation of action are transmitted to the robot, it will reproduce the 

motion, hence allowing iCub to perform goal directed movements using the ‘body + toy crane’ network. This 

kind of goal-centered functional organization of action is reminiscent of the results of Iriki and colleagues 

(Iriki and Taoka 2012), who showed that, with practice, a rake becomes a part of the acting monkey body 



schema and recent work of Umiltà et al. (2008). Figure 4 shows results related to goal directed coordination 

of the toy crane using the extended body schema+tool network. The rows reflect different situations: normal 

condition (row 1), pathological condition (row 2). 

 

Figure 4. Row 1.Tool use under Normal Conditions (Tool is compliant AT=0.1,  Both arms are equally active to generate 

force Ke=0.01); As seen the tool tip is successfully steered to the goal (panel 2); the components of the forces transmitted 

by the two hands to the tool are approximately bell-shaped and terminate with null values (panel 3); Row 2: Tool use 

when right arm functionality is compromised i.e its force generating capabilities is reduced. (Tool is compliant AT=0.1, 

but Ke, Right Arm=0.001, Ke, Left Arm=0.01); Note that to compensate for the dysfunctional right arm, the left arm generates 

greater force so as to still realize the goal (i.e. steers the toy crane). The synergy formation mechanism has self-adapting 

properties that allow the robot to exhibit acceptable performance, with a graceful degradation of performance in 

pathological conditions.  

  In the normal condition (panels 1-4) both the tool is compliant (AT=0.01) and both arms equally functional 

to generate force (Ke=0.01 for both arms). The observed behavior is characterized by the following patterns: 

the green tool angle faithfully tracks the planned red attractor or goal (panel 1); the tool tip is successfully 

steered to the goal (panel 2); the components of the forces transmitted by the two hands to the tool are 

approximately bell-shaped and terminate with null values (panel 3); a similar evolution characterizes the 



torque applied to the tool (panel D) as well as the tool rotation speed. The second row (panels 5-8) illustrates 

a ‘pathological case’: the right arm is functionally compromised, in the sense that its force generating 

capability is reduced. In the reported experiment the elastic coefficient Ke is reduced 10 times (from 0.01 to 

0.001 N/m) while retaining the same previous value for the other arm. Panels 5-8 illustrate the resulting 

behavior: Note that to compensate for the dysfunctional right arm, the left arm generates greater force so 

as to still realize the goal (i.e. steers the toy crane). Further in spite of the strongly different patterns of force 

delivered by the two arms (panel 7) the tool tip behaves in a consistent way, although with some error (panels 

1, 2) and the tool torque is still approximately bell-shaped (panel 8). Summing up, the synergy formation 

mechanism has self-adapting properties that allow the robot to exhibit acceptable performance for large 

variations of the system’s parameters. Remarkably, no learning is needed to accomplish this; it is in fact the 

property of the attractor dynamics of the ‘elastic’ body schema system to take into account unaccounted 

situations and yet do the best in achieving the goal.  

3.3 Actions with and without movements during the evolution of goal directed behaviors 

  In this sub section, we present an assembly task to illustrate how covert simulation and overt execution of 

action alternate, hence facilitating the robot to generate a goal directed behaviour to realize an otherwise 

unrealizable goal. This example also illustrates the joint role of the body schema animation in the prediction 

of feasibility, consequences of potential actions and generation of overt movements. We believe that such 

sequences of action simulation and execution are ubiquitous in any goal oriented physical or social 

interaction. The goal for the robot is to assemble a Fuse Box (Figure 5A). Note that the task is challenging also 

in terms of action generation, hence demonstrates the accuracy of the computational model in coordinating 

the robot. 



 

Figure 5 A-E: The task is to insert “object 1” (fuse) into “object 2” (fuse box), to assemble a fuse box. Panel B shows the 

first 3 simulated actions using the network of Figure 1C. In simulation 1 and 3 the robot infers that though the “fuse” is 

directly reachable with the right arm, the “fuse box” is located so far that inserting it will not be successful. At the same 

time the left arm network is not coupled to any goal, so is available as a ‘tool’ that could be exploited. Coupling part 2 

as a ‘goal’ to the available left arm, the robot can infer that the fuse box is indeed reachable by the left arm. Exploiting 

the knowledge of pushing (learnt in the past and recalled from memory as a feasible action here) the robot infers that 

if part 2 is slowly displaced close to the “fuse”, it then becomes reachable by the right hand. In such an altered 

environment (Panel C) the assembly goal can be realized. Panel D shows the full combination of real and virtual actions 

that basically enable the robot to infer how the world can change through ones actions hence make it more conducive 

towards realization of its internal goals. Panel’s E:  Shows the sequence of actions initiated by the robot to realize the 

goal along with perceptual feedback. 

However, in an unstructured world, the complexity of the environment under which the goal needs to be 

realized further plays a significant role in the causal sequence of actions an agent must generate to realize 

its goals. Preprogramed sequences (like “pick and insert” in this case) very often may not work. In such cases, 

firstly, there is a need to infer this without blindly executing the standard/default action plan and secondly 

find alternative plans that transform the environment in a way that makes it feasible to realize the goal. Using 

the body schema network for the iCub upper body (figure 1C) the robot internally simulates the standard 

sequence of assembly (i.e. picking up the face and inserting it in the body) and its resulting consequence 



(given by the forward model). These are three simulated actions (figure 5B). As seen from the simulated right 

hand trajectories (1-2), the robot infers that though the ‘fuse is directly reachable with the right arm, the 

‘fuse’ is located so far from reach that inserting it will not be successful. This leads to the inference that the 

goal cannot be directly realized (there is a large error between the attempted goal and predicted forward 

model consequence). At the same time, the left arm network is not coupled to any goal, so is available as an 

additional degree of freedom (or tool) that can be used. Coupling part 2 as a goal to the left arm network, 

the robot can infer that the object 2 is indeed reachable by the left arm (virtual action 3). Information in the 

working memory indicates that pushing is a feasible action supported by object 2. Interested reader is 

referred to Mohan et al. (2014) for details of how pushing is learnt by the robot. The predicted consequence 

of pushing is shown in figure 5C. The result of simulated actions 1-4 is an ‘imagined environment’ that allows 

the goal to be realized. Panel 5D shows the full combination of real and simulated actions. The robot basically 

uses the left hand to slide the ‘fuse box’ close to the ‘fuse’, picks up the face with its right hand and inserts 

it, hence assembling a composite object and realizing the goal. Figure 5E show snapshots of the real actions 

executed by the robot. In sum, simulated actions allow the robot to infer that while the default plan will not 

work it is indeed possible to causally transform the world such that it becomes more conducive towards 

realizing the goal at hand. The simple scenario illustrates the fundamental necessity of action simulation and 

execution to coevolve during the generation goal oriented behaviours in unstructured setups. At the same 

time both action simulation and execution emerge from a shared computational substrate i.e. the animation 

of a configurable body schema. 

4. Discussion 

   The link between the body and its incessant shadow is infact intricately captured in Disney’s animated 

character Peter Pan, with the female protagonist Wendy Darling finally sewing his shadow back to his body. 

Similarly, connecting the ‘metal and wire’ body of an embodied robot with its ubiquitous shadow (i.e. an 

internal representation of its body), this article explored the functional role of the body schema as a 

connecting link facilitating the seamless continuum between real and imagined action while we ‘act, interact, 

anticipate and understand’. While doing so, older ideas from neural control of movement like the equilibrium 



point hypothesis were revisited and reformulated in light of diverse emerging results from motor 

neuroscience. In this concluding section, we briefly discuss the rationale behind the proposed ‘animated body 

schema’ formulation in terms of understanding movement in humans and robots: linking evolutionary 

constraints (complexity of the body and environmental habitats), neurobiological constraints (neuronal reuse 

in the neocortex, learning), engineering constraints (computational cost, task specific configurability), social 

constraints (self vs. other) and other prominent approaches in the field. 

4.1 Body Schema in Humans and Embodied Robots: Why now? 

   Undoubtedly, for any complex body inhabiting unstructured environments, human or a Embodied robot, 

the dual problems of shaping motor output during action execution and providing the self with critical 

information related to feasibility, consequence and understanding of potential actions (of oneself or others) 

must seamlessly alternate during the evolution of any goal oriented behavior or social interaction. Emerging 

results from different directions such as functional imaging (Frey and Gerry 2006; Grafton 2009), mirror 

neuron systems (Rizzolatti et al 1996; Rizzolatti et al. 2001; Rizzolatti et al. 2010), language understanding 

(Pulvermuller 2013), social perspective taking (Koster-Hale and Saxe 2013; Gallese and Sinigaglia 2011), tool 

use and virtual reality (Iriki et al. 2012; Shokur et al. 2013), now provide converging evidence suggesting that 

action ‘generation, imagery, observation and understanding’ consistently engage an overlapping network of 

cortical areas in the predominantly motor areas of the brain, particularly the parietal-premotor networks 

(Desmurget and Sirigu 2009; Blanke 2012) involved in maintaining an updated multimodal representation of 

the body and adaptively extended to coupled tools. Patak et al (2017) review evidence that the dorsal 

frontoparietal network forms a core system for action emulation used in diverse contexts related to action 

planning and imagination. Given the diversity of situations with and without movement leading to parietal 

activations, it is absurd to suggest that the parietal areas are specialized in any of these diverse functions 

(Culham and Kanwisher 2001). It is nevertheless plausible to hint that the underlying processing may be of 

more a general nature thus deeming recruitment (hence functional recycling) in a wide range of situations. 

We believe that such a basic function is the ability to simulate the interaction of the body with the 

environment, the same underlying computations also recycled while coordinating tools or simulating actions 

of other bodies. Cortical areas involved in functionally representing the body in the brain form the core 



building blocks of such a computational architecture, to be recycled to find feasible solutions in a multitude 

of situations that any complex body interacting in a unstructured world (with other bodies) will face. In this 

context, building up on the Mental Simulation theory (Jennerod 2001), suggesting that even overt actions 

are the products of an internal simulation), we posited that both overt and covert actions are the 

consequences of ‘animation’ of a ‘plastic and configurable’ internal representation of the body (human or 

robot), with the attractor dynamics of force fields induced by the intended goals. This formulation itself is 

not new and has its roots in the ideas emerging from impedance control (Hogan 1985, 1987) and kinematic 

networks (Mussa-Ivaldi et al. 1988), but nevertheless reformulated both in the context of emerging empirical 

studies in humans and provides a unified principled computational basis to coordinate/simulate movements 

of a robot. Such an animation (similar to a puppet coordinated by strings) has various consequences: a) It 

extends the basic computational idea of EPH from muscles to the body schema; b) offers a low cost solution 

to coordinate overt movements in highly redundant systems (without explicit inversions or cost function 

optimization); c) offers a means to recycle the same computational building blocks to engage in covert 

simulation of movement i.e. to predict the feasibility, consequence, understanding and meaning of ‘potential 

actions’ of oneself and other interacting agents. The internal representation of the body i.e. the body schema 

from the core processing layer to carry out computations related to action simulation/generation. In general, 

both for a human or a robot, we believe the body schema is somatotopic (in accordance with the well-known 

cortical layout), action-oriented (not movement-oriented, action defined henceforth as the animation of the 

body schema), multi-referential (as a synergy generation machine coordinating multiple motor spaces: joints, 

end effector, tools), plastic, task-oriented and expandable (in order to support skill learning and incorporate 

the internal representation of tools and constraints), mass-less (and not involving precise details of muscle 

activations etc., so as to operate equally in overt and covert conditions where there is no neuromuscular 

activity), global but configurable (in the sense that each action implicitly recruits all the degrees of freedom 

but configuration is equivalent to a task-dependent pruning). General ideas related to how such an internal 

representation of the body can be learnt, configured in a task specific fashion, extended to coordinated tools 

and used for both covert simulation and overt execution of movement was described with a range of 

experiments on the iCub. 



4.2 Quest for Computational Simplicity, Configurability and Functional Recycling  

   Dexterity in overt movement, purposive behavior with anticipation of the consequences of one’s actions, 

and social intelligence are critical desirable features if robots are to become commonplace assistants in 

numerous application domains: domestic, industrial, elderly care to mention a few. Prevalent computational 

modelling approaches generally converge on the role of internal models, but diverge on the perspective of 

how they might be realized in the brain or modelled computationally (Pickering and Clark, 2014). In cognitive 

robotics, there has been significant interest in the development of internal model based mental imagery and 

simulation (see, Di Nuovo and Cangelosi 2015 for a review). Such processes have been deployed to enhance 

performance diverse tasks like visuo-motor coordination (Schilachi, 2014), imitation (Demiris and Khandouri, 

2006), object manipulation using tools (Takahashi et al, 2014), grounding of linguistic labels to body postures 

(Morse et al, 2010). Simple mobile robots with simulation-based internal models have also been deployed 

for safety in highly dynamic environments (Blum et al, 2018). While some of the models do not explicity deal 

with the issue of body representation, others use diverse formulations like  kinematic models, self-organizing 

maps, Bayesian networks (see Shilachi et al 2016 for a detailed review of various studies in robotics). In this 

context, our proposal brings back the critical role of body and its internal representation in the brain as a 

means to both simplify the computational process of coordination of action and at the same time recycle the 

same mechanism to engage in diverse forward simulations. The proposed body schema networks serve as a 

“task agnostic” middleware to connect lower level sensorimotor representations to diverse higher level 

cognitive functions. Consider that the explosive growth in the complexity of the body in a limited number of 

species is typically concentrated in two body parts (the hand and the vocal tract) that do not have a specific 

function but are general-purpose tools (for manipulation and communication, respectively) to be employed 

in infinite numbers of possible manners and purposes. In this sense, given the brain’s constraints, critical 

desirable features for any biologically plausible realization of forward models is computational simplicity (to 

tackle the curse of dimensionality) and goal-specific configurability (to ensure flexibility, at the same time 

reusing/recycling the same hardware as far as possible). In relation to the former aspect, all networks 

described in this article operate with ‘well posed’ computations, hence avoiding the critical need to choose 

one from many through a computationally expensive optimization process. In this sense, the forward/inverse 



models resulting from configured body schema networks has similar computational properties like forward 

models emerging from predictive coding and active inference (Friston 2011, Pickering and Clark 2014). 

    The degree of analogy between the active inference based approach (Friston, 2011) and our body schema 

based formulation, in spite of numerous formal differences, is apparent if we consider the distinguishing 

feature of the Active Inference framework as reviewed in (Friston 2011): (C1) AI complies with imperatives 

that apply to all biological systems, (C2) dissolves some hard problems in optimal control, (C3) provides a 

complete specification of control, (C4) is neurobiologically plausible, and (C5) accounts for action without 

reference to value. The present article is also answering the same questions: (C1) the notion that movement 

is a transition from an equilibrium state to another is a rather general feature of all biological organisms; (C2) 

body schema networks do not suffer the curse of dimensionality as they operate through well posed 

computations; (C3) hence can be easily scaled up and down according to the task and the environmental 

interactions; (C4) are equally biologically plausible and biomimetic; (C5) do not require value functions for 

action generation but may incorporate value functions for action selection and skill learning. At the same 

time, the body schema based formulation is closer to both biomechanics (being an extension to EPH) and the 

cybernetics of action (to drive goal oriented internal simulation) than the AI formulation. Here, a more 

general question can be asked as to ‘How and Why’ computations turn out to be well posed in the proposed 

computational formulation? The answer is that they are ‘constrained’ by the physical properties of the 

system they intend to model i.e. the body. For example, natural direction of causality for a muscle is to receive 

flow and yield force, and the natural direction of causality for the joint is to receive force and yield flow 

(which is the reason the joint space receives the force field as input and yields joint rotations as output, which 

in turn uniquely determines end effector displacement). In fact, a detailed analysis of issues related to 

modularity and causality in physical system modeling goes back to a seminal paper by Hogan (1987), with 

contributions from Henry Paynter (i.e. the Bond graph approach, Paynter (1961)),  that we exploit in our 

computational architecture.   

4.3  Ongoing extensions: Connecting the body-schema to a dynamic processor 

    While experiments in this article particularly focussed on coordinating the upper body of iCub, an ongoing 

extension to the computational architecture is related to whole body coordination: with coupled loads that 



alter both the kinematics and dynamics during coordination. In general, physically-coupled load is a 

ubiquitous constraint on any human action as well as robotic plant dynamics: Consider that, humans often 

wear and carry items during manipulative tool use (sometimes even under greater visual & aural 

encapsulation for protection like fire fighters, soldiers). The same applies to both industrial robots that wield 

and transport different tools and items as part of their tasks (e.g. car manufacturing and robotic surgery 

devices). While most humans wear some form of personal protective equipment (PPE; heavy footwear, rain 

jackets) or carry loads (book bags), the particular interest in PPE is for those in critical situations (fire fighters, 

soldiers) who often wear loads in excess of 40% body weight and who need to pick-up information for 

prospective control of action in dangerous environments. In these critical situations, the investigation into 

the constraints of PPE and its consequences on ‘perception-action-cognition’ loop is critical to foster 

enhanced ‘survivability’, ‘self-protection’ and success in ‘realization of task goals’. First simulation results in 

this context are summarized in a recent article (Morasso et al. 2015). This has resulted in the development 

of a software package PeterPan that incorporates (1) the configurable body schema described in the previous 

section; (2) a biomechanical simulator of whole-body dynamics based on OpenSim and Simbody softwares; 

(3) a set of neuromuscular controllers for the different DoFs; (4) a software middleware YARP for integrating 

in a robust way the multimodal streams of information related to the whole body simulation. The hope is 

that this direction of activity can potentially provide greater insights into: a) the functional capability and 

survivability of people wearing different kinds of personal protective equipments (PPE) while performing 

their day to day tasks; b) use this knowledge to redistribute loading of their bodies in an optimal fashion; c) 

create ergonomic designs of PPE’s, safety gears etc worn by people who are expected to perform precision 

tasks in critical conditions (like soldiers, fire fighters among others).    

4.4 Connecting the Body to inanimate Tools and Other animate agents 

  The argument of configurability and recycling is interesting because it can be extended to coordinated tools 

and other bodies. As demonstrated by (Iriki and Sakura 2008), with practice a rake becomes a part of the 

acting monkey body schema. Recording from monkeys trained to use pliers to grasp otherwise unreachable 

food rewards, Umiltà et al. (2008) demonstrated that the end effect of learning skilled tool use was the 

transfer of the temporal discharge patterns that control ‘hand grasping’ (area F5) to the tool, as if the tool 



was the hand of the monkey and its tips were the monkey’s fingers. The body schema based PMP framework 

closely resonates with these results. The tool space is represented exactly in the same manner as any other 

intrinsic motor space. And during coordination, the body and the tool act as one cohesive unit to realize a 

goal at hand or afford mental simulations related to ensuing consequences of possible use of the tool itself 

(figure 1D, figure 5). An intriguing idea proposed by Iriki (2012) is that the ability to literally incorporate 

external objects into one’s own body schema and the ability to ‘objectify’ other bodies, thus recycling the 

same neural machinery, are two sides of the same coin. The consequence is quite remarkable. As soon as 

one’s own body becomes objectified and separate, one must assume a subject with an independent status 

that is orchestrating the movements of both the body and its tools. In this way, the ‘mind’ could emerge 

naturally as a sort of ‘virtual concept’, a placeholder for the link between the ‘subject’ and the ‘objects’ of 

manipulation, which includes the body itself (and other bodies). There is already some evidence in this 

regards. It has been shown that significant intracortical connections between the intraparietal cortex (IPS) 

and the temporo-parietal junction (TPJ) can be forged by tool-use training in adult monkeys (Hihara et al, 

2003). In human subjects, activation of the homologous circuitry at the temporo-parietal junction is detected 

in self-objectification paradigms (Corradi-Dell’Acqua et al, 2008, Blanke 2012). Harnessing this basic concept 

of extension of body (body schema) to coupled tools, virtual avatars, neuroprosthetic limbs, recent 

developments in virtual reality and neuroprosthetics are opening novel avenues for human enhancement of 

sensorimotor and cognitive function. In the field of social cognition, now there is growing consensus that that 

when interpreting others actions, people recruit motor representations as if they were themselves acting 

(Gallese and Sinigaglia, 2011, Gallese and Cuccio 2015). Simply put, understanding may be conceived as an 

internal simulation that entails the reuse of our own ability to act with our bodily resources in order to 

functionally attribute meaning to ‘others’ actions, recycling some of the same cortical substrates the enable 

us to act ourselves. A ‘configurable, plastic’ internal model of the body serves as a fundamental 

computational layer to facilitate such inferences.  

  In sum, overt movements are just the tip of the iceberg, under the surface is hidden a vast territory of 

actions ‘without movements’, decoding their neural/computational basis is the essence of motor cognition. 

The goal specific animation of a ‘plastic, configurable’ body schema to both simulate, generate actions is one 



perspective in this direction, grounded on the biomechanics of the body (as an extension to EPH) and 

connected to emerging trends in motor neurosciences. 
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