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Plant Propagation Algorithms (PPA) are powerful and flexible solvers for optimisation problems. They are nature-inspired
heuristics which can be applied to any optimisation/search problem. There is a growing body of research, mainly experimental,
on PPA in the literature. Little, however, has been done on the theoretical front. Given the prominence this algorithm is gaining
in terms of performance on benchmark problems as well as practical ones, some theoretical insight into its convergence is needed.
The current paper is aimed at fulfilling this by providing a sketch for a global convergence analysis.

1. Introduction

The theoretical analysis of stochastic algorithms for global
optimisation is not new and can be found in a number
of sources such as [1–5]. The majority of the algorithms
considered use random search one way or another to find the
optimum solution [6–13]. Here, we consider the algorithmic
scheme of the Plant Propagation Algorithm for continuous
optimisation or PPA-C [14] and theoretically investigate its
global convergence to the optimum solution. The optimisa-
tion problems of concern are continuous and defined in finite𝑛-dimensional domains.

The basic version of PPA [15] models the propagation
of strawberry plants. The scheme uses short runners for
exploitation or local search refinement while long runners
are used for diversification and exploration of the search
space. Since the propagation of strawberries is due to seeds as
well as runners, a Seed-based Plant Propagation Algorithm
(SbPPA) has also been introduced in [16]. Both PPA-C and
SbPPA have been shown to be efficient on continuous uncon-
strained and constrained optimisation problems; statistical
convergence analyses of PPA-C and SbPPA can be found in
[9–11, 14–16].

PPA-C [14, 15] consists of two steps:
(1) Initialization: a population of parent plants is gener-

ated randomly.
(2) Propagation: a new population is created from per-

sistent parents (strawberry plants) and their children
(new strawberry plants at the end of runners, i.e., a
distance away from parent plants).

Let 𝑆 denote the search space such that 𝑆 ⊂ 𝑅𝑛, where𝑛 is its dimension. By an iteration of PPA-C we mean a new
generation of child plants produced by parent plants. These
child plants are the result of either short or long runners [14,
16]. This is the basic setup that we consider to sketch a proof
of convergence to the global optimum of a given continuous
optimisation problem.

The paper is organised as follows. Section 2 presents the
terminology used in the analysis of PPA-C. Section 3 analyses
a population of plants. Section 3.1 describes the convergence
analysis of PPA-C. Section 4 is the conclusion.

2. Terminology and Notation

We consider single objective minimization problems [17].𝑋optimal ∈ 𝑆 such that 𝑓(𝑋optimal) ≤ 𝑓(𝑋) for all 𝑋 ∈ 𝑆,
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where the objective function is defined as 𝑓 : 𝑆 ⊂ 𝑅𝑛 → 𝑅,
denotes the best spot for a plant in the search space. 𝑋 is an𝑛-dimensional position vector.

The population at the 𝑔th iteration is denoted by pop𝑔 ={𝑋1,𝑔, 𝑋2,𝑔, . . . , 𝑋𝑁𝑃,𝑔}, where 𝑁𝑃 is the population size. The
coordinates of runners, or more precisely their endpoints,
are denoted by 𝑋𝑖 = (𝑥1𝑖 , 𝑥2𝑖 , . . . , 𝑥𝑛𝑖 )𝑇, where 𝑛 is the space
dimension of the given problem.

2.1. Search Equations and Evaluation of New Plants. Variants
of PPA can be found in [14–16]. In this paper we analyse PPA-
C as Algorithm 1 of [14].

In order to send a short or long runner, 𝑋󸀠𝑖 is generated
[14, 19–21], as in (1a), (1b), and (1c)

𝑥󸀠𝑖,𝑗 = 𝑥𝑖,𝑗 + 𝛽𝑗𝑥𝑖,𝑗 if rand𝑗 ≤ 𝑃𝑚, 𝑟 ≤ 𝑁𝑃, (1a)

𝑥󸀠𝑖,𝑗 = 𝑥𝑖,𝑗 + (𝑥𝑙,𝑗 − 𝑥𝑘,𝑗) 𝛽𝑗 if rand𝑗 ≤ 𝑃𝑚, 𝑟 ≤ 𝑁𝑃 (1b)

𝑥󸀠𝑖,𝑗 = 𝑥𝑖,𝑗 + (𝑥𝑖,𝑗 − 𝑥𝑘,𝑗) 𝛽𝑗
if rand𝑗 ≤ 𝑃𝑚 or 𝐼𝑁𝑗 < 4, 𝑟 > 𝑁𝑃, (1c)

where 𝑁𝑃 is the population size, 𝑟 is the Monte Carlo trial
run counter, 𝑃𝑚 is the modification probability, and rand𝑗 ∈(0 1) is a randomly generated number for each 𝑗th entry,𝑗 = 1, 2, . . . , 𝑛. The indices 𝑖, 𝑙, 𝑘 = 1, 2, . . . , 𝑁𝑃 are mutually
exclusive; that is, 𝑖 ̸= 𝑘 ̸= 𝑙. Another version of PPA
called SbPPA [16] which is inspired by propagation via seeds
implements the following search equation instead:

𝑥∗𝑖,𝑗 = {{{
𝑥𝑖,𝑗 + 𝐿 𝑖 (𝑥𝑖,𝑗 − 𝜃𝑗) if 𝑃𝑅 ≤ 0.8, 𝜃𝑗 ∈ [𝑎𝑗𝑏𝑗] 𝑖 = 1, 2, . . . , 𝑁𝑃; 𝑗 = 1, 2, . . . , 𝑛
𝑥𝑖,𝑗 Otherwise, (2)

where 𝐿 𝑖 is a step drawn from the Lévy distribution [22] and𝜃𝑗 is a random coordinate within the search space. Equations
(1a), (1b), (1c), and (2) perturb the current solution, the results
of which can be seen in Figures 1(a) and 1(b), respectively.

2.2. A Case Study. Let 𝑐 be the class of runners sent by the𝑖th parent plant and stored in 𝐹. Each runner in class 𝑐 is
decomposed into two vectors 𝜏𝑐 and 𝜔𝑐, where 𝜏𝑐 denotes
the vector of indices which are perturbed with respect to the
current position of the plant, while 𝜔𝑐 represents the vector
of corresponding indices of the unperturbed coordinates
with respect to the current position of plants. This can be
represented as

𝜏𝑐 ∪ 𝜔𝑐 = {1, 2, . . . , 𝑛} . (3)

To clarify this idea, let us take an example [17] of a newly
generated runner by the 𝑖th plant as

𝑋󸀠𝑖 = [𝑥󸀠1, 𝑥󸀠2, 𝑥󸀠3, 𝑥󸀠4, 𝑥󸀠5]𝑇 , (4)

such that

𝜏𝑐 = {1, 2, 4} ,
𝜔𝑐 = {3, 5} ; (5)

then we can write

𝑋󸀠𝑖 = (𝑋󸀠𝜏𝑐 , 𝑋󸀠𝜔𝑐) , (6)

where

𝑋󸀠𝜏𝑐 = [𝑥󸀠1, 𝑥󸀠2, 0, 𝑥󸀠4, 0] ,
𝑋󸀠𝜔𝑐 = [0, 0, 𝑥󸀠3, 0, 𝑥󸀠5] . (7)

The dot product of these vectors is zero, which shows
that they are mutually orthogonal. Mathematically, this can
be written as

𝑋󸀠𝜏𝑐 ∙ 𝑋󸀠𝜔𝑐 = 0. (8)

Let 𝑉𝜏𝑐 and 𝑉𝜔𝑐 denote two vector spaces such that

𝑉𝜏𝑐 = containing vectors having dimensions as in 𝜏𝑐,
𝑉𝜔𝑐

= containing vectors having dimensions as in 𝜔𝑐.
(9)

𝑉𝜏𝑐 and𝑉𝜔𝑐 are subspaces of𝑅𝑛.This implies that𝑋󸀠𝜏𝑐 ∈ 𝑉𝜏𝑐
and𝑋󸀠𝜔𝑐 ∈ 𝑉𝜔𝑐 .

A scalar objective function 𝑓 defined over 𝑋󸀠𝑖 can be
represented as

𝑓 (𝑋󸀠𝑖) = 𝑓 (𝑥󸀠1, 𝑥󸀠2, 𝑥󸀠3, 𝑥󸀠4, 𝑥󸀠5) , (10)

where 𝑥󸀠1 = 𝑋𝜏1 , 𝑥󸀠2 = 𝑋𝜏2 , 𝑥󸀠4 = 𝑋𝜏3 and 𝑥󸀠3 = 𝑋𝜔1 , 𝑥󸀠5 = 𝑋𝜔2 ,
󳨐⇒ 𝑓(𝑋𝜏1 , 𝑋𝜏2 , 𝑋𝜔1 , 𝑋𝜏3 , 𝑋𝜔2) = 𝑓 (𝑋𝜏𝑐 , 𝑋𝜔𝑐) , (11)

where (11) represents an objective value corresponding to a
new runner in position 𝑋󸀠𝑖 . Similarly, different runners are
produced to correspond to different classes 𝑐 and evaluated
by the same procedure.This procedure can be generalized for𝑛-dimensional problems [1–3].

3. Graphical and Theoretical Analysis of a
Population of Plants

Algorithm 1 states that the 𝑗th coordinate of an 𝑖th par-
ent plant is perturbed with probability 𝑃𝑚 and it remains
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(1) 𝑟 ← Counter for trial runs;𝑁𝑃 ← Population size
(2)
(3) 𝐹 ← Population of runners
(4)
(5) for 𝑟 = 1 : 100 do
(6)
(7) if 𝑟 ≤ 𝑁𝑃 then
(8)
(9) Create a random population of plants pop = {𝑋𝑖 | 𝑖 = 1, 2, . . . , 𝑁𝑃}, and

gather the best solution from each run.
(10)
(11) end if
(12)
(13) while 𝑟 > 𝑁𝑃 do
(14)
(15) Use population pop𝑔 formed by gathering all the best solutions of previous runs.

Calculate 𝐼𝑁𝑗 value for each column 𝑗 of pop𝑔.
(16)
(17) end while
(18)
(19) Evaluate the population pop.
(20)
(21) Assume number of runners to be 𝑛𝑟 = 3,
(22)
(23) while (the stopping criteria is not satisfied) do
(24)
(25) for 𝑖 = 1 to𝑁𝑃 do
(26)
(27) for ℎ = 1 to 𝑛𝑟 do
(28)
(29) if 𝑟 ≤ 𝑁𝑃 then
(30)
(31) if rand ≤ 𝑃𝑚 then
(32)
(33) Generate a new solution𝑋󸀠1 according to Equation (1a);
(34)
(35) Evaluate it and store it in 𝐹;
(36)
(37) end if
(38)
(39) if rand ≤ 𝑃𝑚 then
(40)
(41) Generate a new solution𝑋󸀠2 according to Equation (1b);
(42)
(43) Evaluate it and store it in 𝐹;
(44)
(45) end if
(46)
(47) else
(48)
(49) for 𝑗 = 1 : 𝑛 do
(50)
(51) if (𝐼𝑁𝑗 < 4) or (rand ≤ 𝑃𝑚) then
(52)
(53) Update the 𝑗th entry of𝑋𝑖, 𝑖 = 1, 2, . . . , 𝑁𝑃, by using Equation (1c);
(54)
(55) end if
(56)
(57) Evaluate new solution𝑋󸀠3 and store it in 𝐹;
(58)
(59) end for
(60)

Algorithm 1: Continued.
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(61) end if
(62)
(63) end for
(64)
(65) end for
(66)
(67) Append 𝐹 to current population;
(68)
(69) Sort the population in ascending order of objective values;
(70)
(71) Update current best;
(72)
(73) end while
(74)
(75) Return: Updated population and global best solution.
(76)
(77) end for
(78)

Algorithm 1: PPA for constrained optimisation [14].
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(a) Perturbations by (1a), (1b), and (1c)
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Figure 1: Overall performance of (1a), (1b), (1c), and (2) on a design optimisation problem given in Appendix [16].

unchanged with probability 1−𝑃𝑚.Thus there are 2𝑛 possible
runners to be generated for each 𝑖th parent plant using (1a),
(1b), and (1c), where 𝑛 is the space dimension of the given
problem.

Let, at any generation 𝑔, the random population be
represented as pop = {𝑋1,𝑔, 𝑋2,𝑔, . . . , 𝑋𝑁𝑃,𝑔}, where 𝑁𝑃
denotes the population size. To create a runner by using (1a),
(1b), and (1c), for next generation 𝑔+1, PPA uses a population
of parent plants at generation 𝑔 for this purpose. It is not
required to know about any other runner in generation 𝑔+1.

This shows that all runners created at generation 𝑔 + 1 are
statistically mutually independent. Furthermore, the initial
population is random and all parent plants do not depend
on each other. Thus, by induction, the runners at any further
generations are mutually independent.

From (1a), (1b), and (1c), a runner 𝑋󸀠𝑖 may be formed
by itself or by choosing three different coordinates from
current population. In case of using (1a) [19], there are 𝑁𝑃
possibilities to send (long or short) runners as in Figure 1.
On the other hand, by using (1b) or (1c), 𝑁𝑃 − 1 vectors
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are used to send a new runner. Thus, in later cases there
are 𝑁𝑃−1𝑃3 possibilities to send new runners. In (1a)–(1c),
different possibilities are of the form

𝑋󸀠1𝑔 = 𝑋𝑖,𝑔 + 𝛽 ⋅ 𝑋𝑖,𝑔,
𝑋󸀠2𝑔 = 𝑋𝑖,𝑔 + 𝛽 ⋅ 𝑋𝑗,𝑔,
𝑋󸀠3𝑔 = 𝑋𝑖,𝑔 + 𝛽 ⋅ 𝑋𝑘,𝑔,

(12)

where 𝑋𝑖,𝑔, 𝑋𝑗,𝑔, and 𝑋𝑘,𝑔 are calculated according to (1a),
(1b), and (1c), in which 𝑔 denotes the current generation and𝛽 is an 𝑛-dimensional random vector within interval [−1 1].
The probability density functions (PDFs) [17, 23] of these new
vectors 𝑋𝑖,𝑔, 𝛽 ⋅ 𝑋𝑖,𝑔, 𝛽 ⋅ 𝑋𝑗,𝑔, and 𝛽 ⋅ 𝑋𝑘,𝑔 can be written
as𝑝𝑋𝑖,𝑔(𝑥𝑖,𝑔),𝑝𝑋𝑖,𝑔(𝑥𝑖,𝑔/𝛽)/𝛽,𝑝𝑋𝑗,𝑔(𝑥𝑗,𝑔/𝛽)/𝛽,𝑝𝑋𝑘,𝑔(𝑥𝑘,𝑔/𝛽)/𝛽,
respectively.

The PDFs of new runners created with (1a)–(1c) are given
in (15).

Definition 1 (convolution operation ⋆ [24]). Let 𝑓(𝑥) and𝑔(𝑥) be Laplace transformable piecewise continuous func-
tions defined on [0 ∞]. The convolution product of these
two functions is again a function of 𝑥 defined as

(𝑓 ⋆ 𝑔) (𝑥) = ∫𝑥
0
𝑓 (𝜉) 𝑔 (𝑥 − 𝜉) 𝑑𝜉, (13)

𝑝𝑋󸀠1𝑔 (𝑥󸀠1𝑔 ) = 1𝛽 (𝑝𝑋𝑖,𝑔 (𝑥󸀠1𝑔 ) ⋆ 𝑝𝑋𝑖,𝑔 (𝑥󸀠1𝑔𝛽 )) ,
𝑝𝑋󸀠2𝑔 (𝑥󸀠2𝑔 ) = 1𝛽 (𝑝𝑋𝑖,𝑔 (𝑥󸀠2𝑔 ) ⋆ 𝑝𝑋𝑗,𝑔 (𝑥󸀠2𝑔𝛽 )) ,
𝑝𝑋󸀠3𝑔 (𝑥󸀠3𝑔 ) = 1𝛽 (𝑝𝑋𝑖,𝑔 (𝑥󸀠3𝑔 ) ⋆ 𝑝𝑋𝑘,𝑔 (𝑥󸀠3𝑔𝛽 )) ,

⇓

(14)

𝑝𝑋󸀠1𝑖,𝑔 (𝑥󸀠1𝑖,𝑔)
= 1𝛽𝑖,1𝑁𝑃 (∑∑𝑝𝑋𝑖,𝑔 (𝑥󸀠1𝑖,𝑔) ⋆ 𝑝𝑋𝑖,𝑔 (𝑥󸀠1𝑖,𝑔𝛽𝑖,1)) ,

𝑝𝑋󸀠2𝑖,𝑔 (𝑥󸀠2𝑖,𝑔)
= 1𝛽𝑖,2𝑁𝑃−1𝑃3 (∑∑

𝑖 ̸=𝑗

𝑝𝑋𝑖,𝑔 (𝑥󸀠2𝑖,𝑔) ⋆ 𝑝𝑋𝑗,𝑔 (𝑥󸀠2𝑖,𝑔𝛽𝑖,2)) ,
𝑝𝑋󸀠3𝑖,𝑔 (𝑥󸀠3𝑖,𝑔)

= 1𝛽𝑖,3𝑁𝑃−1𝑃3 (∑∑
𝑖 ̸=𝑘

𝑝𝑋𝑖,𝑔 (𝑥󸀠3𝑖,𝑔) ⋆ 𝑝𝑋𝑘,𝑔 (𝑥󸀠3𝑖,𝑔𝛽𝑖,3)) .

(15)

Let 𝑋𝑔+1 be any plant in generation 𝑔 + 1, 𝑋𝑔 a plant
position in current generation, and𝑋󸀠ℎ𝑔 the runner produced

by the 𝑖th plant 𝑋𝑖,𝑔 at the generation 𝑔. Then the joint PDF
of the parent plant in the next generation 𝑋𝑔+1 based on the
parent𝑋𝑔 and runner𝑋󸀠ℎ𝑔 , where ℎ = 1, 2, 3, is given by

𝑝𝑋𝑔+1 ,𝑋𝑔 ,𝑋󸀠ℎ𝑔 (𝑥𝑔+1, 𝑥𝑔, 𝑥󸀠ℎ𝑔 )
= 𝑝𝑋𝑔+1|𝑋𝑔 ,𝑋󸀠ℎ𝑔 (𝑥𝑔+1 | 𝑥𝑔, 𝑥󸀠ℎ𝑔 ) ⋅ 𝑝𝑋󸀠ℎ𝑔 |𝑋𝑔 (𝑥󸀠ℎ𝑔 | 𝑥𝑔)

⋅ 𝑝𝑋𝑔 (𝑥𝑔) ⋅ 𝑝𝑋󸀠ℎ𝑔 (𝑥󸀠ℎ𝑔 ) .
(16)

Note that a runner is selected for the next population
only if its rank is less than or equal to 𝑁𝑃, the population
size. Its objective value is less than the maximum objective
value (in case of minimization problem) in the current
population. Note also that instead of greedy selection we
sort the population and eliminate those plants whose rank is
higher than𝑁𝑃. Themodel for this selection mechanism can
be represented as follows:

𝑝𝑋𝑔+1|𝑋𝑔 ,𝑋󸀠ℎ𝑔 (𝑥𝑔+1 | 𝑥𝑔, 𝑥󸀠ℎ𝑔 ) = 𝛿 (𝑥𝑔+1 − 𝑥󸀠ℎ𝑔 ) ,
∀𝑋󸀠ℎ𝑔 ∈ 𝐹; ∀𝑋𝑔 ∈ pop; 𝑓 (𝑋𝑔) ≥ 𝑓 (𝑋󸀠ℎ𝑔 ) . (17)

3.1. ConvergenceAnalysis of PPA-C. For illustration purposes,
we have implemented a combined version of (1a), (1b), (1c),
and (2). This version of PPA-C called H-PPA-SbPPA is a
hybridisation of PPA and SbPPA [10]. We have plotted the
position of plants in populations through solving the Branin
and Matyas test functions (see Figures 2, 3, 4, and 5). It
is obvious from Figures 2 and 4 that (1a), (1b), and (1c)
have generated short runners which exploit the search space
locally. On the other hand, in Figures 3 and 5, (2) has
generated a diverse range of solutions which are spread over
the whole search space. This equation helps the algorithm
escape from local minima and to explore the solution space
better and hence the global search qualities of this algorithm.
Mathematically this can be shown as follows.

Let 𝑆 denote the search space containing the solution of a
given optimisation problem defined as

min {𝑓 (𝑋) | 𝑋 ∈ 𝑆} , (18)

where 𝑓(𝑋) is the objective function. Then the optimal
solution set [25] can be represented as

𝑆∗
= {𝑋optimal | 𝑓 (𝑋optimal) = min {𝑓 (𝑋)} , ∀𝑋 ∈ 𝑆} , (19)

where𝑋optimal is the optimum solution. The region of attrac-
tion [25] of the solution set 𝑆∗ is defined as

𝑆∗𝜉 = {𝑋 | 𝑓 (𝑋best) − 𝑓 (𝑋) < 𝜉} , (20)

where 𝜉 is a small positive real number and𝑋best is the current
best solution.

In PPA-C, each parent plant produces𝑋󸀠ℎ𝑔 runners (solu-
tions), where ℎ = 1, 2, 3. The probability that at generation
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Figure 2: The exploitation capability of PPA while solving Branin
test function.
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Figure 3:The exploration capability of SbPPA while solving Branin
test function.

𝑔 a subset of the temporary population 𝐹󸀠 ⊂ 𝐹, containing
solutions which are not good enough to be retained in the
next generation by the selection model as in (17), is given as

𝑝 {𝐹󸀠𝑔 ∩ 𝑆∗𝜉 = ⌀} ≤ 1 − 𝜉𝑔, (21)

where 𝜉𝑔 is a small positive real number. Obviously, in all
previous generations 𝑔 − 1, some of the solutions died and
some succeeded to survive into the next generation. This
shows that in previous generations we have some solutions𝑋󸀠ℎ𝑔 which do not belong to the region of attraction 𝑆∗𝜉 .

𝑔−1∏
𝑖=1

𝑝 {𝐹󸀠𝑖 ∩ 𝑆∗𝜉 = ⌀} ≤ 𝑔−1∏
𝑗=1

(1 − 𝜉𝑗) . (22)

At the end of each generation, the temporary population𝐹 is appended to the main population pop𝑔. Then all
individuals are sorted with respect to their objective values.
The individuals with higher rank than size of population are
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Figure 4: A scatter plot of plants produced by PPAwhen optimising
Matyas function [15].
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Figure 5: A scatter plot of plants produced by SbPPA when
optimising Matyas function [16, 18].

omitted. Thus the probability that a generation 𝑔 does not
contain an optimum is given below

𝑝 {pop𝑔 ∩ 𝑆∗𝜉 = ⌀} ≈ 𝑔−1∏
𝑖=1

𝑝 {𝐹󸀠𝑖 ∩ 𝑆∗𝜉 = ⌀}
≤ 𝑔−1∏
𝑗=1

(1 − 𝜉𝑗) .
(23)

After sorting the final population at the end of each
generation, the probability that the optimum may exist
in a subpopulation 𝐹󸀠 (population of weak or dead run-
ners/solutions) is less than that of the population pop𝑔. This
can be represented as

lim
𝑔→∞

𝑝 {pop𝑔 ∩ 𝑆∗𝜉 ̸= ⌀} ≥ lim
𝑔→∞

𝑝 {𝐹󸀠𝑔 ∩ 𝑆∗𝜉 ̸= ⌀}
= 1 − lim

𝑔→∞
𝑝 {𝐹󸀠𝑔 ∩ 𝑆∗𝜉 = ⌀} = 1 − +∞∏

𝑔=1

(1 − 𝜉𝑔) . (24)
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Following [25–27], the right hand side term of inequality (24)
is zero if the series∑+∞𝑔=1(𝜉𝑔) diverges.The convergence of PPA
follows and can be summarised in the theorem below.

Theorem 2. PPA converges to the global optimumwith proba-
bility 1 if it is left to run for a reasonable amount of time [1–3];
in other words,

lim
𝑔→∞

𝑝 {pop𝑔 ∩ 𝑆∗𝜉 ̸= ⌀} = 1. (25)

Remark 3. Every population pop𝑔 includes some solutions
which are in set 𝑆∗𝜉 .
Remark 4. The above remark is due to the exploitation
characteristic of PPA-C.

Remark 5. Remark 3 implies that 𝑋best is always improving
or changing its position until the optimum is reached.

Remark 6. 𝑋best converges approximately to 𝑋optimal, as
generation 𝑔 grows.

4. Conclusion

The Plant Propagation Algorithm (PPA) and its variants for
continuous optimisation problems are getting notoriety as
flexible and powerful solvers. PPA is a heuristic inspired
by the way plants and in particular the strawberry plant
propagate. It is also referred to as the Strawberry Algorithm.
While there is a growing body of experimental and computa-
tional works that show its good behaviour and performance
against well-established algorithms and heuristics, there is
very little if any in terms of theoretical investigation.This gap,
therefore, needs to be filled. The aim of course, in analysing
the convergence of any algorithm (in this case PPA-C), is
to give confidence to the potential users that the solutions
that it returns are of good quality. The convergence analysis
put forward in this paper relies on the exploitation and
exploration characteristics of the algorithm. Since it does
not get stuck in local optima and explores thoroughly the
search space it is only a matter of time before the global
optimum is discovered. The approach is probabilistic in
nature and ascertains that the global optimum will be found
with probability 1 provided the algorithm is run reasonably
long enough. The argument for this to hold is that at each
iteration new and better solutions are generated whichmeans
that, in the limit, the global optimum is reached. Questions
still remain concerning what is considered a reasonable
amount of time. Bounds on the time it will take to converge
are being developed and results will be presented in a follow-
up paper.

Appendix

Spring Design Optimisation

Themain objective of this problem [28, 29] is tominimize the
weight of a tension/compression string, subject to constraints
of minimum deflection, shear stress, surge frequency, and

limits on outside diameter and on design variables. There
are three design variables: the wire diameter 𝑥1, the mean
coil diameter 𝑥2, and the number of active coils 𝑥3 [30].
The mathematical formulation of this problem, where 𝑥𝑇 =(𝑥1, 𝑥2, 𝑥3), is as follows:

Minimize 𝑓 (𝑥) = (𝑥3 + 2) 𝑥2𝑥21,
subject to 𝑔1 (𝑥) = 1 − 𝑥32𝑥37,178𝑥41 ≤ 0,

𝑔2 (𝑥)
= 4𝑥22 − 𝑥1𝑥212,566 (𝑥2𝑥31) − 𝑥41 +

15,108𝑥21 − 1
≤ 0,
𝑔3 (𝑥) = 1 − 140.45𝑥1𝑥22𝑥3 ≤ 0,
𝑔4 (𝑥) = 𝑥2 + 𝑥11.5 − 1 ≤ 0.

(A.1)

The simple limits on the design variables are 0.05 ≤ 𝑥1 ≤ 2.0,0.25 ≤ 𝑥2 ≤ 1.3, and 2.0 ≤ 𝑥3 ≤ 15.0.
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