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Abstract

The Generalized Traveling Salesman Problem (GTSP) is a well-known combinatorial optimization prob-
lem with a host of applications. It is an extension of the Traveling Salesman Problem (TSP) where the
set of cities is partitioned into so-called clusters, and the salesman has to visit every cluster exactly once.

While the GTSP is a very important combinatorial optimization problem and is well studied in many
aspects, the local search algorithms used in the literature are mostly basic adaptations of simple TSP
heuristics. Hence, a thorough and deep research of the neighborhoods and local search algorithms specific
to the GTSP is required.

We formalize the procedure of adaptation of a TSP neighborhood for the GTSP and classify all other
existing and some new GTSP neighborhoods. For every neighborhood, we provide efficient exploration
algorithms that are often significantly faster than the ones known from the literature. Finally, we compare
different local search implementations empirically.

Keywords: Heuristics, Local Search, Neighborhood, Generalized Traveling Salesman Problem,
Combinatorial Optimization.

1. Introduction

The Generalized Traveling Salesman Problem (GTSP) is an extension of the Traveling Salesman
Problem (TSP). In the GTSP, we are given a set V of n vertices, weights w(x, y) of going from x ∈ V to
y ∈ V and partition of V into clusters C1, C2, . . . , Cm. A feasible solution, or a tour, is a cycle visiting
exactly one vertex in every cluster. The objective is to find the shortest tour.

If the weight matrix is symmetric, i.e., w(x, y) = w(y, x) for any x, y ∈ V , the problem is called
symmetric. Otherwise it is an asymmetric GTSP.

Observe that the TSP is a special case of the GTSP when |Ci| = 1 for each i and, hence, the GTSP
is NP-hard.

The GTSP has a host of applications: warehouse order picking with multiple stock locations, sequenc-
ing computer files, postal routing, airport selection and routing for courier planes, and some others, see,
e.g., (Fischetti et al., 1995, 1997; Laporte et al., 1996; Noon and Bean, 1991) and references therein.

Much attention was paid to solving the GTSP. Several researchers (Ben-Arieh et al., 2003; Laporte and Semet,
1999; Noon and Bean, 1993) proposed transformations of a GTSP instance into a TSP instance. At first
glance, the idea of transforming a little-studied problem into a well-known one seems to be promising.
However, this approach has a very limited application. Indeed, it requires exact solutions of the obtained
TSP instances because even a near-optimal solution of such TSP may correspond to an infeasible GTSP
solution. At the same time, the produced TSP instances have a rather unusual structure which is hard for
the existing TSP solvers. A more efficient approach to solve the GTSP exactly is the branch-and-bound
algorithm designed by Fischetti et al. (1997). By using this algorithm, the authors solve several instances
of size up to 89 clusters; solving larger instances to optimality is still too hard nowadays. Two approx-
imation algorithms for special cases of the GTSP were proposed in the literature; alas, the guaranteed
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solution quality is rather low for the real-world applications, see (Bontoux et al., 2010) and references
therein.

In order to obtain good (but not necessarily exact) solutions for larger GTSP instances, one should con-
sider heuristic approach. Several construction heuristics and local searches were discussed in (Bontoux et al.,
2010; Gutin and Karapetyan, 2010; Hu and Raidl, 2008; Renaud and Boctor, 1998; Snyder and Daskin,
2006) and some others. A number of metaheuristics were proposed by Bontoux et al. (2010); Gutin and Karapetyan
(2010); Gutin et al. (2008); Huang et al. (2005); Pintea et al. (2007); Silberholz and Golden (2007); Snyder and Daskin
(2006); Tasgetiren et al. (2007); Yang et al. (2008). However, none of these studies provides a review of
GTSP neighborhoods or discusses in detail different local search algorithms. Since most of the solution
methods applied to GTSP are somehow based on local search, we believe that a deeper understanding of
this subject is of great importance.

In this paper, we define and analyze all known and some new GTSP neighborhoods and the corre-
sponding exploration algorithms. We consider only the classical local search which guarantees to find
a local minimum within a certain neighborhood. Note that several GTSP neighborhoods were used in
(Gutin and Karapetyan, 2010; Gutin et al., 2008; Snyder and Daskin, 2006; Silberholz and Golden, 2007;
Tasgetiren et al., 2007), but they were not systematized or analyzed in detail. We aim to classify all known
and new neighborhoods and provide efficient exploration algorithms for all of them. Note that many of
the neighborhoods discussed below are already known from the literature but, because their exploration
algorithms were rather slow, some of them were considered practically useless. Our improvements, of
both heuristic and theoretical nature, dramatically speed up the exploration algorithms, making the
corresponding neighborhoods of practical interest.

In our classification, we divide all the GTSP neighborhoods into three classes:

1. Cluster Optimization neighborhoods consist of solutions which differ from the original one in vertex
selection but have the same cluster order. This class is discussed in Section 2.

2. TSP-inspired neighborhoods are GTSP neighborhoods derived from TSP neighborhoods. Such
neighborhoods normally consist of solutions obtained from the original one by some global rear-
rangements of the cluster order. The vertex selection within clusters may or may not be preserved
in these solutions. In Section 3.2, we show that there exist several ways to adapt an arbitrary
TSP neighborhood to the GTSP and propose a number of ways to make the exploration of these
adaptations efficient.

3. Fragment Optimization neighborhoods consist of solutions which are different from the original one
in some small tour fragment. Neighborhoods of this type were not widely used before. In Section 4,
we propose two efficient algorithms for exploration of such neighborhoods.

Note that there exists another class of very successful local searches based on the Lin-Kernighan
idea (Karapetyan and Gutin, 2011a), but they are not discusses in this paper because they are not
‘neighborhood-based.’

In this paper we use the following notation:

• n is the number of vertices in the graph.

• m is the number of clusters.

• s is the maximum cluster size. Obviously, ⌈n/m⌉ ≤ s ≤ n−m+ 1.

• γ is the minimum cluster size. Obviously, 1 ≤ γ ≤ ⌊n/m⌋.

• Cluster(x) is the cluster containing vertex x.

• w(v1, v2) is the weight of edge (v1, v2).

• w(v1, v2, . . . , vk) = w(v1, v2) + w(v2, v3) + . . .+ w(vk−1, vk).

• wmin(X1, X2, . . . , Xk) = min
x1,x2,...,xk

w(x1, x2, . . . , xk), where xi ∈ Xi and Xi is a set of vertices, i =

1, 2, . . . , k. Function wmax(X1, X2, . . . , Xk) is defined similarly.
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• Ti denotes the vertex at the ith position in tour T . We assume that Ti+m = Ti.

• Tour T is also considered as a set of its edges, i.e., T = {(T1, T2), (T2, T3), . . . , (Tm−1, Tm), (Tm, T1)}.

• Turn(T, x, y) denotes the tour obtained from T by reversing the fragment Tx+1, Tx+2, . . . , Ty:

Turn(T, x, y) = T1, . . . , Tx, Ty, Ty−1, . . . , Tx+1
︸ ︷︷ ︸

Reversed

, Ty+1, . . . , Tm, T1 .

Observe that for a symmetric GTSP

Turn(T, x, y) = T \ {(Tx, Tx+1), (Ty, Ty+1)} ∪ {(Tx, Ty), (Tx+1, Ty+1)}

and, hence, the weight of the obtained tour can be calculated in time O(1):

w(Turn(T, x, y)) = w(T )− w(Tx, Tx+1)− w(Ty, Ty+1) + w(Tx, Ty) + w(Tx+1, Ty+1) . (1)

1.1. Experiments Prerequisites

Although this paper does not suggest the ‘best’ GTSP local search, as a result of extensive computa-
tional experiments, we select the most efficient exploration algorithms and compare different neighborhood
variations. In this section we discuss details of our experimentation techniques.

Our test bed includes several TSP instances taken from TSPLIB (Reinelt, 1991) and converted
to the GTSP by the standard clustering procedure of Fischetti, Salazar, and Toth (Fischetti et al.,
1997); the same approach is widely used in the literature, see, e.g., (Gutin and Karapetyan, 2010;
Silberholz and Golden, 2007; Snyder and Daskin, 2006; Tasgetiren et al., 2007). In particular, we use all
the instances with 10 ≤ m ≤ 217 like in (Bontoux et al., 2010; Gutin and Karapetyan, 2010; Silberholz and Golden,
2007); in other papers the bounds are more restrictive. However, to save space, we usually include only
every fifth instance in our tables.

Every instance name in the testbed consists of three parts: ‘m t n’, where m is the number of clusters,
t is the type of the original TSP instance (see (Reinelt, 1991) for details) and n is the number of vertices.

Observe that the optimal solutions are known only for some instances with at most 89 clusters (Fischetti et al.,
1997). For the rest of the instances we use the best known solutions, see (Bontoux et al., 2010; Gutin and Karapetyan,
2010; Silberholz and Golden, 2007).

In order to generate the starting tour for the local search procedures, we use a simplified Nearest
Neighbor (Noon, 1988) construction heuristic. Unlike the algorithm proposed by Noon, our implemen-
tation tries only one starting vertex. According to our experiments, trying every vertex as the starting
point significantly slows down the heuristic and almost does not influence the quality of solutions obtained
after applying local search. Note that in what follows, the running time of a local search includes the
running time of the construction heuristic.

All the algorithms are implemented in Visual C++; the evaluation platform is based on an Intel Core i7
2.67 GHz processor.

1.2. Local Search Strategy

Most commonly, one uses the first improvement local search strategy, i.e., applies an improvement
as soon as it is found. Alternatively, one can use the best improvement strategy which first explores
the whole neighborhood and then applies the best found improvement. Note that the first improvement
strategy is normally faster while the best improvement strategy gives better solution quality.

We implemented and tested both strategies for most of the algorithms discussed below. Our exper-
iments show that the difference in solution quality between these two strategies is negligible while the
running time of the best improvement is significantly higher. In what follows, we use the first improvement
strategy.
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2. Cluster Optimization

In this section we discuss GTSP neighborhood structures preserving the order of clusters in the tour.
Virtually, the smallest neighborhood of T of this type is

NL(T, i) = {(T1, T2, . . . , Ti−1, T
′
i , Ti+1, . . . , Tm, T1) : T ′

i ∈ Cluster(Ti)} .

Its size is |NL(T, i)| = |Cluster(Ti)| and it takes O(s) operations to explore it. One can extend it for two
or more clusters: NL(T, I), where I is a set of cluster indices to be varied. The size of such a neighborhood
is |NL(T, I)| =

∏

i∈I |Cluster(Ti)|.
Observe that it takes only O(|I|s) operations to explore NL(T, I) if all the clusters selected in I are

‘independent’, i.e., there is no i such that i ∈ I and i + 1 ∈ I. If I = {i, i + 1}, the neighborhood
NL(T, I) changes its structure. Now it takes O(s2) operations to explore it. One may assume that for
I = {i, i+ 1, . . . , i + k − 1} the time complexity of the local search is O(sk). Next we will show that, in
fact, it takes only O(ks2) operations to find the best solution in such a neighborhood.

Let (T1, T2, . . . , Tm, T1) be a tour and I = {i, i+1, . . . , i+k−1}, where k < m. Let Tj = Cluster(Tj).
Construct a layered network as shown in Figure 1. Find the shortest path from Ti−1 to Ti+k in this
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Figure 1: In order to get the best tour in NL(T, {i, i+ 1, . . . , i + k − 1}), construct a layered network as
shown here (all the weights in this network correspond to the original weights in the GTSP instance) and
find the shortest path from Ti−1 to Ti+k.

network and update the vertices in the tour accordingly. This will yield the shortest tour T ′ ∈ NL(T, {i, i+
1, . . . , i+ k − 1}), and the time complexity of this algorithm is O(ks2).

Consider the case where k = m. This is the largest neighborhood of this type and we denote it
NCO(T ) = NL(T, {1, 2, . . . ,m}). Since NCO(T ) does not fix any vertices, it is now impossible to use
straightforwardly the optimization technique shown above. However, the problem of finding the short-
est tour T ′ ∈ NCO(T ) can be brought to several problems of finding the shortest tour inNL(T, {2, . . . ,m}).
For every v ∈ Cluster(T1) find the shortest tour T ′v ∈ NL(T

v, {2, 3, . . . ,m}), where T v = (v, T2, T3, . . . , Tm).
The shortest tour among T ′v is the shortest tour T ′ ∈ NCO(T ). The procedure takes O(ms3) operations.
In what follows, we call this algorithm Cluster Optimization (CO).

CO was introduced by Fischetti et al. (1997) (for detailed description see also (Fischetti et al., 2002))
and used in (Gutin and Karapetyan, 2010; Gutin et al., 2008; Hu and Raidl, 2008; Pintea et al., 2007;
Renaud and Boctor, 1998) and others.

A formal implementation of CO is presented in Algorithm 1. Note that NCO(T
′) = NCO(T ) for any

T ′ ∈ NCO(T ) and, thus, unlike usual local search procedures, CO does not need to be run several times
to get the local minimum.

2.1. Cluster Optimization Refinements

In this section we discuss several improvements that can noticeably reduce the running time of CO.
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Algorithm 1 Cluster Optimization. Basic implementation.

Require: Tour T = (T1, T2, . . . , Tm).
Let Ti = Cluster(Ti) for every i.
for all v ∈ T1 and r ∈ T2 do
Initialize the shortest path from v to r: pv,r ← (v, r).

for i← 3, 4, . . . ,m do
for all v ∈ T1 and r ∈ Ti do
Set pv,r ← pv,u ∪ (u, r), where u ∈ Ti−1 is selected to minimize w

(
pv,u ∪ (u, r)

)
.

return pv,r ∪ (r, v), where v ∈ T1 and r ∈ Tm are selected to minimize w
(
pv,r ∪ (r, v)

)
.

2.1.1. First Cluster Selection

Observe (see Algorithm 1) that the time complexity of CO grows linearly with the size of cluster T1.
Thus, before applying CO, we rotate the solution such that |T1| = γ. This technique reduces the time
complexity of the algorithm to O(nγs), that was widely used in the literature.

Note that NCO(T ) is a ‘very large neighborhood’ since it is of an exponential size and there exists
a polynomial exploration algorithm for it. Sometimes, neighborhoods of this class are very effective
(Gutin and Karapetyan, 2009b).

2.1.2. First Cluster Reduction

Since the running time of CO significantly depends on the size γ of the smallest cluster, it is worth
checking whether we can reduce its size. Some attempts to reduce the cluster sizes in the GTSP were
proposed by Gutin and Karapetyan (2009a). The idea was to remove a vertex r ∈ R, where R is a cluster,
if for every pair of vertices v and u, Cluster(v) 6= Cluster(u) 6= R, there exists some r′ ∈ R \ {r} such
that w(v, r′, u) ≤ w(v, r, u).

In our case, the reduction can be significantly more efficient. Indeed, we do not need to consider all
u and v. Let R = T1. Then consider only u ∈ Tm and v ∈ T2.

A straightforward reduction algorithm would take O(s2γ2) operations. We propose Algorithm 2 which
reduces the cluster T1 in O(s2γ) time. One can try to apply this procedure to reduce every cluster but

Algorithm 2 Reduction of a cluster in a tour.

Require: Tour T = (T1, T2, . . . , Tm, T1), where |Cluster(T1)| = γ.
Let U = Cluster(Tm), R = Cluster(T1) and V = Cluster(T2).
for all u ∈ U and v ∈ V do
Find the shortest distance lu,v ← minr∈R w(u, r, v).
Find the number cu,v of paths (u, r, v) such that w(u, r, v) = lu,v, i.e., cu,v ←

∣
∣{r : r ∈

R and w(u, r, v) = lu,v}
∣
∣.

for all r ∈ R do
for all u ∈ U and v ∈ V do
if w(u, r, v) = lu,v and cu,v = 1 then
Go to the next r.

for all u ∈ U and v ∈ V do
if w(u, r, v) = lu,v then
Update cu,v ← cu,v − 1.

Remove r from R.

this would likely slow down the CO algorithm. We apply this reduction only to the smallest cluster
T1 = Cluster(T1) as shown in Algorithm 2. Moreover, we never apply this reduction if |Tm||T2| ≥ n.
Indeed, in the best case, CO takes only Θ(γn) operations (consider, e.g., the case when |T2i−1| = γ for
every i) so it is unreasonable to run the reduction if its time complexity is more than O(γn).

Note that this reduction is valid only for a certain cluster order and, hence, the cluster T1 must be
restored after the run of CO.
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2.1.3. Calculations Order

The procedure of finding the shortest paths in a layered network can be described as follows. Assume
that the layers of the network are T1, T2, . . . , Tm, T ′

1 , where T
′
1 is a copy of T1, and the objective is to find

all the shortest (v, v′)-paths from every v ∈ T1 to its copy v′ ∈ T ′
1 . Observe that removing any layer Ti,

1 < i ≤ m, and adding edges from every u ∈ Ti−1 to every v ∈ Ti+1 such that w(u, v) = minr∈Ti
w(u, r, v)

preserves the lengths of the shortest (v, v′)-paths. After repeating this procedure m − 2 times, we get
exactly three layers T1, T2 and T ′

1 such that minr∈T2
w(v, r, v′) is the length of the shortest (v, v′)-path

(we assume that the layers are renumbered after every iteration). This interpretation is exploited in
Algorithm 3.

Algorithm 3 Sequential CO implementation. This algorithm is equivalent to Algorithm 1.

Require: Network layers T1, T2, . . . , Tm, Tm+1, where Tm+1 = T1.
for i← 1, 2, . . . ,m− 2 do
Set w(u, v)← minr∈T2

w(u, r, v) for every u ∈ T1 and v ∈ T3.
Remove layer T2; renumber the layers accordingly.

return minv∈T1, r∈T2
w(v, r, v).

Observe that Algorithm 3 removes the layers sequentially but this can be done in an arbitrary order.
A generalized dynamic programming implementation of CO can be described as in Algorithm 4. Here

Algorithm 4 A generalized dynamic programming implementation of CO.

Require: Network layers T1, T2, . . . , Tm, Tm+1, where Tm+1 = T1.
for i← 1, 2, . . . ,m− 2 do
Set w(u, v)← minr∈TXi

w(u, r, v) for every u ∈ TXi−1 and v ∈ TXi+1.
Remove the layer TXi

; renumber the layers accordingly.
return minv∈T1, r∈T2

w(v, r, v).

X is a sequence of m − 2 numbers, 1 < Xi ≤ m − i + 1. It defines the algorithm’s behavior: on the
ith iteration the algorithm removes cluster TXi

from the sequence by calculating the shortest paths from
TXi−1 to TXi+1. Note that Algorithms 4 and 3 coincide when X = (2, 2, . . . , 2).

Let us count the number of times Algorithm 4 obtains an edge weight (we will call it weight operation).
This number adequately reflects the running time of an implementation.

In general, Algorithm 4 requires

tgeneral = 2 ·

[

|T1||Tk|+

m−2∑

i=1

|Txi
||Tyi
||Tzi |

]

weight operations, (2)

where x, y and z are ordered lists and 1 < k ≤ m, all derived from X (we had to introduce these indices
because of renumbering performed on every iteration of the algorithm). Note that in (2), the expression
in brackets is the number of 3-vertex paths considered by Algorithm 4, and the factor 2 is the number of
weight operations per path. Without loss of generality, let xi < yi < zi.

Algorithm 3 always removes the second layer in the current sequence of layers, i.e., the number of
weight operations required for the sequential algorithm is as follows:

tseq = 2 ·

[

|T1||Tm|+

m−2∑

i=1

|T1||Ti+1||Ti+2|

]

. (3)

Consider the following example. Let m be even, |T2i| = z > 1 and |T2i−1| = 1 for every i =
1, 2, . . . ,m/2. According to (3), the sequential algorithm performs 2(m−1)z weight operations. Consider
the general implementation Algorithm 4 with X = (2, 3, . . . , m

2 , 2, 2, . . . , 2). It starts from removing all
the layers of size z and then acts as the sequential algorithm. Observe that it requires only mz +m− 2
weight operations. Hence, the asimptotic ratio is:

lim
m→∞

lim
z→∞

2(m− 1)z

mz +m− 2
= lim

m→∞
2 ·

m− 1

m
= 2 .

6



Note that the weight operations ratio between the sequential calculation and the improved one can be
significant in practice. Even for the modest values m = 7 and z = 7 in this example the ratio is 1.5.

The natural question that arises is how much it is possible to speed up the sequential algorithm by
changing the calculation order.

Theorem 1. Let the first layer in a layered network be the smallest one. Then the sequential imple-
mentation of CO (see Algorithm 3) is at most 2 times slower than the optimal dynamic programming
algorithm (see Algorithm 4), and this bound is asymptotically sharp.

Proof. Let T1, T2, . . . , Tm, Tm+1 = T1 be the layers of the network. Let 2 < k < m (see (2)). For every
j = 1, 2, . . . ,m, equation (2) contains a term |Txi

||Tyi
||Tzi | such that either xi = j and yi = j + 1 or

yi = j and zi = j+1. Indeed, it is impossible to calculate the shortest paths in a layered network without
consideration of weights between every pair of consequent layers. Note that |Txi

||Tyi
||Tzi | ≥ γ|Tj ||Tj+1|

if |Txi
||Tyi
||Tzi | contains |Tj ||Tj+1|. Observe also that a term |Txi

||Tyi
||Tzi | may contain both |Tj ||Tj+1|

and |Tj+1||Tj+2|. Based on this, we can provide the following lower bound:

2

m−2∑

i=1

|Txi
||Tyi
||Tzi | ≥ γ

m∑

i=1

|Ti||Ti+1| . (4)

Observe that

γ

m∑

i=1

|Ti||Ti+1| = |T1||Tm||Tm+1|+

m−1∑

i=1

|T1||Ti||Ti+1| ≥
1

2
tseq .

Hence, tgeneral ≥
1
2 tseq.

If k = 2, weights between T1 and T2 are considered in the last line of Algorithm 4 and, hence, (4)
must be replaced with

2

m−2∑

i=1

|Txi
||Tyi
||Tzi | ≥ γ

m∑

i=2

|Ti||Ti+1| ,

that does not change the outcome.
If k = m, (4) must be replaced with

2

m−2∑

i=1

|Txi
||Tyi
||Tzi | ≥ γ

m−1∑

i=1

|Ti||Ti+1| .

In this case

tgeneral = 2

[

|T1||Tm|+

m−2∑

i=1

|Txi
||Tyi
||Tzi |

]

≥ 2|T1||Tm|+ γ

m−1∑

i=1

|Ti||Ti+1| ≥
1

2
tseq .

The example before the theorem implies that the bound tgeneral ≥
1
2 tseq is asymptotically sharp. �

It is not hard to see that the number of distinct dynamic programming implementations of CO is
exponential in m, and it is usually impractical to search for the optimal calculations order. Instead, we
propose a simple heuristic that improves the sequential algorithm. On every iteration, out heuristic looks
one step ahead; if the condition

|T1||T2||T3|+ |T1||T3||T4| > |T2||T3||T4|+ |T1||T2||T4| , (5)

is satisfied for the current numbering of clusters, then it removes cluster T3 before removing T2; otherwise
it removes T2 and proceeds to the next iteration. For details see Algorithm 5.

Note that Algorithms 3, 4 and 5 find the shortest cycle weight but not the shortest cycle itself. It will
be shown below that it is usually required to find only the weight of the shortest cycle. In the rare cases
that we need the shortest cycle itself, we use the basic sequential implementation (Algorithm 1).
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Algorithm 5 Cluster Optimization with an improved order of calculations.

Require: Tour T = (T1, T2, . . . , Tm, T1), where |Cluster(T1)| = γ.
Let Ti = Cluster(Ti) for every i.
for i← 2, 3, . . . ,m− 1 do
if i < m− 1 and |T1||Ti||Ti+1|+ |T1||Ti+1||Ti+2| > |Ti||Ti+1||Ti+2|+ |T1||Ti||Ti+2| then
Calculate the shortest paths from Ti to Ti+2.
Calculate the shortest paths from T1 to Ti+2.
Set the weights between T1 and Ti+2 to the calculated values.
Set i← i+ 1.

else
Calculate the shortest paths from T1 to Ti+1.
Set the weights between T1 and Ti+1 to the calculated values.

return minv∈T1, r∈Tm
w(v, r, v).

Instance Running time, ms

Name γ s CO1 CO2

12brazil58 1 16 1.1 0.7
20kroa100 1 8 1.8 1.7
26bier127 1 27 2.8 3.0
32u159 1 16 2.3 2.2
41gr202 1 17 4.4 4.4
53pr264 1 12 5.1 5.3
87gr431 1 58 11.8 12.6
107att532 1 20 12.1 12.1
131p654 1 25 20.9 21.3
200dsj1000 1 19 25.8 25.9

Average 1.0 21.8 8.8 8.9

(a) Instances with γ = 1.

Instance Running time, ms

Name γ s CO1 CO2 CO3 CO4

10gr48 2 10 1.1 1.1 0.8 0.8
11eil51 2 7 1.5 1.3 0.9 0.9
20rat99 2 11 3.0 2.8 1.9 1.9
20kroc100 2 13 2.9 2.8 2.3 2.3
20krod100 2 9 3.7 3.1 2.4 2.3
20rd100 2 8 3.0 2.5 3.3 2.9
21lin105 2 12 3.0 2.3 3.1 2.4
22pr107 3 7 5.2 5.1 2.3 2.2
25pr124 2 13 3.8 3.7 2.2 2.2
26ch130 2 10 4.2 3.9 2.5 2.5
29pr144 2 10 4.5 3.9 2.7 2.6
30ch150 2 15 5.6 5.2 3.3 3.3
30kroa150 2 11 5.5 4.9 5.7 5.0
36brg180 2 110 2.7 2.8 2.8 2.9
39rat195 2 9 7.0 6.4 4.0 4.0
45ts225 3 9 8.1 6.0 8.6 6.4
56a280 2 10 9.6 8.9 5.3 5.6
207si1032 2 15 50.1 46.2 27.3 27.4

Average 2.1 16.1 6.9 6.3 4.5 4.3

(b) Instances with γ > 1.

Table 1: Experimental results for the different variations of CO. Note that here and below we show
the average values in every table. These should not be considered as the main performance indicators
because sometimes they are too much biased to the results obtained for large instances. However, large
instances are of most interest and, thus, averages, being properly understood, can be helpful in analysing
experimental results.

2.2. Computational Experiments

In order to check the efficiency of the proposed improvements, we provide the results of computational
experiments in Tables 1a and 1b. Table 1a includes only the instances with γ = 1 (to save space, every
fifth instance is taken) while Table 1b includes all the instances with γ > 1.

All the implementations CO1, CO2, CO3 and CO4 apply the first improvement, i.e., rotate the tour
such that |Cluster(T1)| = γ. In addition, CO2 and CO4 optimize the calculations order according to
Algorithm 5, and CO3 and CO4 try to reduce the size of the smallest cluster according to Algorithm 2.

In spite of the fact that all the instances in the test bed have small γ (the largest γ in the test bed
is 3), the experiments clearly show that the cluster reduction technique is very efficient (see the results
for CO3 and CO4). It was able to significantly improve the running times for almost every instance in
Table 1b (these implementations are obviously not included in Table 1a).

The optimized calculations order is also beneficial, but not so much. It is more efficient when γ > 1
(moreover, if γ = 1, it often slows down the algorithm). Indeed, it is easy to show that if γ = 1 then, in
order to meet (5), either T2 or T4 should be of size 1. Hence, if γ = 1, this improvement can be applied
quite rarely and only in some relatively easy cases.
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We conclude that the proposed refinements are usually insignificant if γ = 1 but they are very efficient
if γ > 1. In what follows, we use a hybrid implementation of CO, see Algorithm 6.

Algorithm 6 Hybrid implementation of CO.

Require: Tour T = (T1, T2, . . . , Tm, T1).
Rotate the tour T such that |Cluster(T1)| = γ.
if γ > 1 then
Reduce cluster T1 (see Algorithm 2).

if γ = 1 then
Apply sequential implementation of CO (see Algorithm 3).

else
Apply CO with improved calculations order (see Algorithm 5).

return T .

3. TSP-inspired Neighborhoods

Since the GTSP is an extension of the TSP, it is natural to use TSP neighborhood adaptations for
the GTSP. In this section we discuss different ways to adapt a TSP neighborhood for the GTSP. These
approaches are later applied to the most efficient TSP neighborhoods. Note that some of these ideas are
presented in (Karapetyan and Gutin, 2011a) but in this study they are generalized, further developed
and discussed in detail.

It is worth saying that the adaptation of a TSP neighborhood for the GTSP is not as straightforward
as it may seem to be. Among other approaches, Renaud and Boctor (1998) propose decomposing GTSP
into two problems: solving the TSP instance induced by the given tour to find the cluster order and
then applying CO algorithm to it (see Section 2). We will show now that this method is generally poor
with regard to solution quality. Let Nind(T ) be a set of tours which can be obtained from the tour T by
reordering vertices in T . Observe that one has to solve a TSP instance induced by T to find the best
tour in Nind(T ). Let NCO(T ) be the neighborhood of the CO local search (see Section 2).

The following theorem shows that decomposing the GTSP into two problems (iteratively search
in Nind(T ) and then search in NCO(T )) does not guarantee any solution quality. For a proof, see
Karapetyan and Gutin (2011a).

Theorem 2. The best tour among NCO(T ) ∪ Nind(T ) can be a longest GTSP tour different from a
shortest one.

3.1. TSP Neighborhoods

In order to continue this discussion, let us briefly list the most well-known TSP neighborhoods. Here
we assume that m is the number of vertices in the TSP instance.

k-opt is the most general TSP neighborhood. It includes all the tours that are different from the given
one in at most k edges. Obviously any tour can be obtained from a given one by an m-opt move.

Insertion neighborhood includes all the tours that can be obtained from the given one by removing a
vertex and inserting it at some other position. It can be viewed as a special case of 3-opt.

Swap (also known as Exchange) neighborhood includes all the tours that can be obtained from the
given one by swapping two vertices. It can be viewed as a special case of 4-opt.

Lin-Kernighan is a sophisticated heuristic exploring some areas of k-opt without fixing the value of k.
It does not have any certain neighborhood and, thus, is not considered in this paper.

For more information on these and some other TSP local searches, see, e.g., (Johnson and McGeoch,
2002; Johnson et al., 2002).
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Algorithm 7 Typical local search with neighborhood N(T ).

Require: Solution T .
for all T ′ ∈ N(T ) do
if w(T ′) < w(T ) then
T ← T ′.
Rerun the for loop again.

return T .

3.2. Adaptation of TSP local search for GTSP

A typical local search with a neighborhood N(T ) is shown in Algorithm 7. Let N1(T ) ⊆ Nind(T ) be a
neighborhood of some TSP local search LS 1(T ). Let N2(T ) ⊆ NCO(T ) be a neighborhood of the Cluster
Optimization class and LS 2(T ) an exploration algorithm for it. Then one can think of the following two
ways to combine these local searches in one GTSP local search:

(i) Enumerate all candidates T ′ ∈ N1(T ). For every candidate T ′ find T ′′ ← LS2(T
′) to optimize it in

N2(T
′). If w(T ′′) < w(T ), replace T with T ′′ and continue.

(ii) Enumerate all candidates T ′ ∈ N2(T ). For every candidate T ′ find T ′′ ← LS1(T
′) to optimize it in

N1(T
′). If w(T ′′) < w(T ), replace T with T ′′ and continue.

Observe that the neighborhood N1(T ) is normally much harder to explore than the cluster optimiza-
tion neighborhood N2(T ). Consider, e.g., N1(T ) = Nind(T ) and N2(T ) = NCO(T ). Then both options
yield an optimal GTSP solution but Option (i) requires only O(nγs ·(m−1)!) operations while Option (ii)
requires O(sm · (m− 1)!) operations.

Moreover, many practical applications of the GTSP have some localization of clusters, i.e., typically,
|w(x, y1) − w(x, y2)| ≪ w(x, y1) if Cluster(y1) = Cluster(y2) 6= Cluster(x). Hence, the dependency of
the N2(T ) landscape on the cluster order is higher than the dependency of the N1(T ) landscape on the
vertex selection and, thus, Option (i) is preferable.

Option (ii) was used by Hu and Raidl (2008). Note that using N2(T ) = NCO(T ) would lead to a
non-polynomial algorithm; the cluster optimization neighborhood N2(T ) they use includes only the tours
which differ from T in exactly one vertex. For every T ′ ∈ N2(T ), the Chained Lin-Kernighan heuristic is
applied. This results in n runs of Chained Lin-Kernighan which makes the algorithm unreasonably slow
while the vertex selection is given a very little freedom.

Option (i) may be improved as shown in Algorithm 8. Here QuickImprove(T ) and SlowImprove(T )

Algorithm 8 Improved adaptation of a TSP neighborhood for the GTSP according to Option (i).

Require: Tour T .
for all T ′ ∈ N1(T ) do
T ′ ← QuickImprove(T ′).
if w(T ′) < w(T ) then
T ← SlowImprove(T ′).
Rerun the for loop again.

return T .

are some tour improvement heuristics of the Cluster Optimization class. Formally, these heuristics should
meet the following requirements:

• QuickImprove(T ), SlowImprove(T ) ∈ NCO(T ) for any tour T ;

• w(QuickImprove(T )) ≤ w(T ) and w(SlowImprove(T )) ≤ w(T ) for any tour T .

QuickImprove is applied to every candidate T ′ before its evaluation. SlowImprove is only applied to
successful candidates in order to further improve them. One can think of the following implementations
of QuickImprove and SlowImprove:
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• Trivial I(T ) which leaves the solution without any change: I(T ) = T .

• Local cluster optimization L(T ) = L(T, I), see Section 2. It updates vertices only within clus-
ters Ci, i ∈ I, affected by the latest solution change. E.g., if a tour (x1, x2, x3, x4, x1) was
changed to (x1, x3, x2, x4, x1), we can use L(T, {2, 3}) which will yield the best solution among
(x1, x

′
3, x

′
2, x4, x1), where x′

2 ∈ Cluster(x2) and x′
3 ∈ Cluster(x3). The time complexity of L(T ) is

O(|I|s) or O(|I|s2), depending on the affected clusters.

• Global cluster optimization CO(T ) which applies the CO algorithm to the given solution. The time
complexity of CO is O(nγs).

There are five meaningful combinations of QuickImprove and SlowImprove :

Basic QuickImprove(T ) = I(T ) and SlowImprove(T ) = I(T ). This actually yields the original TSP
local search applied to the TSP instance induced by the GTSP tour T .

Basic with CO QuickImprove(T ) = I(T ) and SlowImprove(T ) = CO(T ), i.e., the algorithm explores
the original TSP neighborhood but every time an improvement T ′ is found, it is optimized in
NCO(T

′). One can also consider SlowImprove(T ) = L(T ), but such adaptation has no practical
interest. Indeed, SlowImprove is used quite rarely and so its influence on the total running time
is negligible. At the same time, CO(T ) is much more powerful than L(T ) with respect to solution
quality.

Local QuickImprove(T ) = L(T ) and SlowImprove(T ) = I(T ), i.e., every candidate T ′ ∈ N1(T ) is
improved locally before it is compared to the original solution.

Local with CO QuickImprove(T ) = L(T ) and SlowImprove(T ) = CO(T ), which is the same as Local
but in addition it optimizes every improvement T ′ globally in NCO(T

′).

Global QuickImprove(T ) = CO(T ) and SlowImprove(T ) = I(T ), i.e., every candidate T ′ ∈ N1(T ) is
optimized globally in NCO(T

′) before it is compared to the original solution T .

For a TSP local search LS we use LSB, LS
co
B , LSL, LS

co
L and LSG to denote the Basic, Basic with

CO, Local, Local with CO and Global adaptations of LS , respectively.
Some of these adaptations were applied in the literature. For example, the heuristics G2 and

G3 (Renaud and Boctor, 1998) are actually Global adaptations of 2-opt and 3-opt TSP heuristics, re-
spectively. An enhanced implementation of the Global 2-opt adaptation is proposed by Hu and Raidl
(2008); asymptotically, it is faster than the naive implementation by factor 3. Local adaptations of 2-
opt and some other neighborhoods were used by Fischetti et al. (1997); Gutin and Karapetyan (2010);
Silberholz and Golden (2007); Snyder and Daskin (2006); Tasgetiren et al. (2007). Some Basic adapta-
tions were used by Bontoux et al. (2010); Gutin and Karapetyan (2010); Silberholz and Golden (2007);
Snyder and Daskin (2006).

3.3. Global Adaptation

The most powerful adaptation of a TSP local search for the GTSP is the Global adaptation. It applies
CO to every candidate tour before it is evaluated. In other words, if N1(T ) ⊆ Nind(T ) is the original TSP
neighborhood, then the adapted neighborhood N(T ) is as follows:

N(T ) =
⋃

T ′∈N1(T )

NCO(T
′) .

Observe that the Global adaptation turns a polynomial size TSP neighborhood into a very large neighbor-
hood, i.e., into a neighborhood of the exponential size that can be explored in polynomial time. Indeed,
NCO(T1) ∩NCO(T2) = ∅ if the tours T1 and T2 have different cluster order. Hence, the size of N(T ) is
exactly

|N(T )| = |N1(T )| ·
m∏

i=1

|Ci| ∈ O(|N1(T )| · s
m) ,
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while it takes onlyO(|N1(T )|·γsn) operations to explore it. This approach was applied by Renaud and Boctor
(1998) and it was slightly improved by Hu and Raidl (2008).

We propose a new technique that can further speed up the Global adaptation. In particular, it is mγ/s
times faster than a straightforward adaptation described above. It was first applied in (Karapetyan and Gutin,
2011a) for the Lin-Kernighan heuristic. In this paper we generalize this approach and also provide some
additional improvements.

The main idea of our technique is to generate candidates T ′ ∈ N1(T ) in a certain order such that
previously calculated shortest paths could be reused. Observe that any TSP local search is a special case
of k-opt. Indeed, any transformation of a TSP tour may be represented as a k-opt move, subject to a
sufficiently large value of k.

Let k -opt(T, α, β) be a tour obtained from T by removing edges α and adding edges β, where α and
β are edge sets, |α| = |β| = k. We need to group all the candidates T ′ ∈ N1(T ) into g groups, each group
meeting the following requirements:

• Let T 1, T 2, . . . , T l be a group of candidates and T i = k -opt(T, αi, βi). Without loss of generality,
we may assume that k = const for the whole group of candidates.

• Let α =
⋂l

i=1 α
i and let α′i = αi \ α. Similarly, β =

⋂l
i=1 β

i.

• Let Q = (T \α) ∪ β, i.e., Q is a set of paths and/or cycles produced from T by removing the edges
α and adding the edges β.

• Removing the edges α′i from Q yields a number of paths, let us say P i
1 , P

i
2, . . . , P

i
k−|β|. Our require-

ment for each group is that every of these paths has at least one fixed end:

beginning(P i
x) = beginning(P j

x) for every i, j ∈ {1, 2, . . . , l}, or

end(P i
x) = end(P j

x) for every i, j ∈ {1, 2, . . . , l}

for every x = 1, 2, . . . , k − |β|.

• In order to achieve an mγ/s times speed up, the number g of groups must be g ∈ O( |N1(T )|
m ), and

the number of edges in every αi must be fixed: k − |α| ∈ O(1).

If the above requirements are satisfied, the Global adaptation may be implemented as in Algorithm 9.
Observe that finding the shortest paths in a series of fragments P 1

j , P 2
j , . . . , P l

j takes only O(ns2)

operations: start from the fixed end of P i
j and calculate the shortest paths to every vertex in the required

direction. Since the number of fragments k − |β| is fixed, finding the shortest paths in all fragments P i
j ,

i = 1, 2, . . . , k − |β|, j = 1, 2, . . . , l, also takes O(ns2) time. All the runs of CO take O(ns2) operations.
Thus, instead of O(mnγs) operations needed for a ‘naive’ implementation to explore a group of Θ(m)
candidates, Algorithm 9 takes O(ns2) time.

Observe that this algorithm can be used for both symmetric and assymmetric GTSP. Indeed, even
if orientation of some path in the candidate tour does not coincide with orientation of this path in the
original tour, one can calculate the shortest paths within this fragment in the backward direction.

3.3.1. Implementation Example

Let us consider the 2-opt TSP neighborhood and its Global adaptation. Algorithm 10 enumer-
ates all the candidates in N2-opt(T ). Consider a group of candidates {T 1, T 2, . . . , T l} ⊂ N2-opt(T )
such that T i = k -opt(T, αi, βi) for i = 1, 2, . . . , l, where αi = {(Tx, Tx+1), (Ty(i), Ty(i)+1)} and βi =
{(Tx, Ty(i)), (Tx+1, Ty(i)+1)} (see Figure 2a). We get α = {(Tx, Tx+1)} and β = ∅. Hence, Q is a path
obtained from T by removing the edge (Tx, Tx+1). Further removing the edge α′i = {(Ty(i), Ty(i)+1)}
splits Q into two paths (Tx+1, . . . , Ty(i)) and (Ty(i)+1, . . . , Tx). Observe that (Tx+1, . . . , Ty(i)) has a fixed
beginning, and (Ty(i)+1, . . . , Tx) has a fixed end. Observe also that the number of candidate groups is

Θ(m) while the total number of TSP candidates is Θ(m2), and, hence, g ∈ O(
|N2-opt(T )|

m ).
Algorithm 11 explores the neighborhood N2-opt(T ) for some fixed x. Compare the time complexity of

the naive exploration of N2-opt(T ), which is O(m2nγs), with our adaptation, which takes only O(mns2)
operations. If s/γ ≪ m, which is a very natural assumption, our implementation is significantly faster
than the naive one.

12



Algorithm 9 General implementation of the Global adaptation of a TSP local search.

Require: Tour T optimal in NCO(T ), i.e., T = CO(T ).
Require: A group of candidates T 1, T 2, . . . , T l such that T i = k -opt(T, αi, βi) for i = 1, 2, . . . , l.

Let α←
⋂l

i=1 α
i and β ←

⋂l
i=1 β

i. Let α′i ← αi \ α for i = 1, 2, . . . , l.
Let Q← (T \α) ∪ β. Let Q \αi = {P i

1, P
i
2, . . . , P

i
k−|β|} for i = 1, 2, . . . , l. Note that the paths P i

j have
to meet the conditions above, see Section 3.3.
for j ← 1, 2, . . . , k − |β| do
Calculate all the shortest paths through the cluster sequences corresponding to P 1

j , P
2
j , . . . , P

l
j .

for i← 1, 2, . . . , l do
Construct a layered network L as follows:
• Each layer 2j − 1, j = 1, 2, . . . , k − |β|, corresponds to the cluster beginning(P i

j );

• Each layer 2j, j = 1, 2, . . . , k − |β|, corresponds to the cluster end(P i
j );

• The weights between layers 2j − 1 and 2j are equal to the shortest paths in P i
j ;

• The weights between layers 2j and 2j + 1 are equal to the weights between corresponding
clusters.

• Layer 2(k−|β|)+1 is a copy of layer 1, and the weights between layers 2(k−|β|) and 2(k−|β|)+1
are equal to the weights between corresponding clusters.

Find the shortest cycle C in the layered network L using the CO algorithm.
if w(C) < w(T ) then
Update tour T according to the cycle C.
Restart the algorithm.

return T .

Algorithm 10 Enumeration of all the candidates in the TSP 2-opt neighborhood.

Require: Tour T .
for x← 1, 2, . . . ,m− 2 do
for y ← x+ 2, x+ 3, . . . ,min{m,x+m− 2} do
List the candidate Turn(T, x, y) (see Section 1).

3.4. Global Adaptation Refinements

Observe that the above proposed implementation of the global adaptation consists of (a) calculating
the shortest paths through tour fragments, and (b) calculating the shortest cycles. Both parts are time
consuming; for example, in 2-optG, each (a) and (b) takes O(mns2) operations. In Section 3.4.1 we try
to predict if a candidate can improve current solution without running CO. This only or almost only
affects part (b). To improve (a), in Sections 3.4.2 and 3.4.3 we propose an approach that dramatically
reduces the number of shortest paths to be calculated. It also saves time on part (b) by selecting smaller
clusters for the layers in networks L.

3.4.1. Lower Bound

In the proposed adaptation, we calculate the shortest cycle on every iteration. Having a lower bound
for the shortest cycle, one could omit some of these calculations.

Assume that the rearranged tour T consists of k cluster sequences P 1, P 2, . . . , P k such that end(P i) is
connected to beginning(P i+1) and end(P k) is connected to beginning(P 1), where beginning(P i) (end(P i))
is the first (the last) cluster in P i. Let pi be the weight of the shortest path through the cluster sequence
P i. Then the following is a lower bound for the shortest cycle in this sequence of clusters:

w(CO(T )) ≥
k∑

i=1

[
pi + wmin

(
beginning(P i), end(P i+1)

)]
,

where P k+1 = P 1. Recall that wmin(X,Y ) is the weight of the shortest edge from cluster X to cluster Y .
It would take too much time to calculate the shortest paths pi on every iteration. Instead, we propose

a lower bound for pi according to Theorem 3.
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Figure 2: Global adaptation of the 2-opt heuristic.

Algorithm 11 Global adaptation of 2-opt.

Require: Tour T .
Let Ti ← Cluster(Ti).
for x← 1, 2, . . . ,m− 2 do
Calculate the shortest paths along the tour T from every vertex in Ty to every vertex in Tx+1 and
from every vertex in Ty+1 to every vertex in Tx for every y = x+ 2, x+ 3, . . . ,min{m,x+m− 2}.
for y ← x+ 2, x+ 3, . . . ,min{m,x+m− 2} do
Construct a layered network L as in Figure 2b.
Apply CO to L to get the shortest cycle C.
if w(C) < w(T ) then
Replace T with C.
Restart the whole algorithm.

Theorem 3. For the shortest path from an arbitrary vertex in Ta to an arbitrary vertex in Tb in a layered
network T1 ∪ T2 ∪ . . . ∪ Tm we have:

wmin(Ta, Ta+1, . . . , Tb) ≥ w(Ta, Ta+1, . . . , Tb)

− wmax(Ta, Ta+1)− wmax(Tb−1, Tb) + wmin(Ta, Ta+1) + wmin(Tb−1, Tb) , (6)

where (T1, T2, . . . , Tm, T1) is the shortest cycle through all the layers of the network.

Proof. Observe that (Ta, Ta+1, . . . , Tb) is the shortest path from Ta to Tb through the layers Ta+1, Ta+2,
. . . , Tb−1. Indeed, if there was a shorter path, the shortest cycle (T1, T2, . . . , Tm, T1) could be improved.

Assume that there exists some path (T ′
a, T

′
a+1, . . . , T

′
b), T

′
i ∈ Ti, shorter than the lower bound provided

in (6):

w(T ′
a, T

′
a+1, . . . , T

′
b) < w(Ta, Ta+1, . . . , Tb)

− wmax(Ta, Ta+1)− wmax(Tb−1, Tb) + wmin(Ta, Ta+1) + wmin(Tb−1, Tb) . (7)

Observe that

w(Ta, T
′
a+1)− wmax(Ta, Ta+1) ≤ w(T ′

a, T
′
a+1)− wmin(Ta, Ta+1) and (8)

w(T ′
b−1, Tb)− wmax(Tb−1, Tb) ≤ w(T ′

b−1, T
′
b)− wmin(Tb−1, Tb) (9)

because the left-hand sides of (8) and (9) are non-positive and the right-hand sides are non-negative. We
have w(T ′

a, T
′
a+1, . . . , T

′
b) = w(T ′

a, T
′
a+1)+w(T ′

a+1, T
′
a+2, . . . , T

′
b−1)+w(T ′

b−1, T
′
b). By substitution of lower
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bound for w(T ′
a, T

′
a+1) and w(T ′

b−1, T
′
b) obtained from (8) and (9), respectively, to (7) we get:

w(Ta, T
′
a+1)− wmax(Ta, Ta+1) + wmin(Ta, Ta+1) + w(T ′

a+1, T
′
a+2, . . . , T

′
b−1)

+ w(T ′
b−1, Tb)− wmax(Tb−1, Tb) + wmin(Tb−1, Tb)

< w(Ta, Ta+1, . . . , Tb)− wmax(Ta, Ta+1)− wmax(Tb−1, Tb) + wmin(Ta, Ta+1) + wmin(Tb−1, Tb) .

From that we have

w(Ta, T
′
a+1) + w(T ′

a+1, T
′
a+2, . . . , T

′
b−1) + w(T ′

b−1, Tb) < w(Ta, Ta+1, . . . , Tb) or

w(Ta, T
′
a+1, T

′
a+2, . . . , T

′
b−1, Tb) < w(Ta, Ta+1, . . . , Tb) .

Hence, the path (Ta, T
′
a+1, T

′
a+2, . . . , T

′
b−1, Tb) is shorter than (Ta, Ta+1, . . . , Tb), a contradiction. �

Observe that, having precalculated wmin(X,Y ) for every pair of clusters X and Y and wmax(x, Y ) and
wmax(Y, x) for every pair of vertex x and cluster Y , it takes only O(1) time to compute the lower bound
(6). A drawback of this approach is that it needs the shortest cycle (T1, T2, . . . , Tm, T1) corresponding to
the current solution, i.e., every time an improvement is found, one has to use CO to find the tour itself
(recall that we normally need only the cluster order and the weight of current solution). These additional
calls of CO, however, do not take much time in practice.

In our experiments the use of the lower bound speeds up the 2-opt Global adaptation in about three
times, on average. The lower bound works better for large instances because the lower bounds for large
instances have better relative precision. Indeed, the number of edges calculated imprecisely is always
fixed while the total number of edges included in the lower bound increases with the increase of the
instance size.

In certain cases the lower bound (6) can be improved using Theorem 4.

Theorem 4. For the shortest path from an arbitrary vertex in T1 to an arbitrary vertex in Tm in a
layered network T1 ∪ T2 ∪ . . . ∪ Tm we have:

wmin(T1, T2, . . . , Tm) ≥ w(T1, T2, . . . , Tm, T1)− wmax(Tm, T1) ,

where (T1, T2, . . . , Tm, T1) is the shortest cycle through all the layers of the network.

Proof. Assume that there exists a path (T ′
1, T

′
2, . . . , T

′
m), T ′

i ∈ Ti, such that

w(T ′
1, T

′
2, . . . , T

′
m) < w(T1, T2, . . . , Tm, T1)− wmax(Tm, T1) .

Close up this path with the edge (T ′
m, T ′

1). Observe that the weight of the obtained cycle is

w(T ′
1, T

′
2, . . . , T

′
m, T ′

1) < w(T1, T2, . . . Tm, T1) + w(T ′
m, T ′

1)− wmax(Tm, T1) . (10)

Thus, w(T ′
1, T

′
2, . . . , T

′
m, T ′

1) < w(T1, T2, . . . , Tm, T1), a contradiction. �

3.4.2. Supporting Cluster

Observe that, in general, skipping some of the shortest cycles calculations (see Section 3.4.1) does
not decrease the time spent to find the shortest paths. Indeed, even if the shortest paths between some
clusters Ti and Tj are not required due to the lower bound, these paths are still needed, e.g., to find the
shortest paths between Ti and Tj+1.

We propose an approach that significantly reduces the number of shortest paths required for the
global adaptation. It also guarantees that the layered network L constructed on every iteration will
always contain the smallest cluster (recall that the CO performance significantly depends on the size of
the smallest cluster in L). This is achieved at the cost of a larger number of layers in L.

Consider the 2-optG implementation discussed in Section 3.3.1. Observe that the fragment (Ty+1, Ty+2, . . . , Tx)
always contains cluster T1. Let us calculate all the shortest paths in fragments (T1, T2, . . . , Ti) and
(Ti+1, Ti+2, . . . , Tm, T1) for every i = 2, 3, . . . ,m − 1. Now, by adding T1 as an additional layer to the
layered network L, we avoid calculations of the shortest paths from Ty+1 to Tx, see Figure 3. We call T1
a supporting cluster.

15



Ty+1
Shortest
paths

❴ *4 T1 Shortest
paths

❴*4 Tx

w(u, v)
u ∈ Tx+1 and v ∈ Ty+1

✤JT

w(u, v)
u ∈ Tx and v ∈ Ty

✤

�

Tx+1
Shortest
paths

❴jt Ty

Figure 3: T1 is a supporting cluster in the layered network L. instead of calculating the shortest paths
from every Ty+1 to every Tx, i.e., for O(m2) combinations of x and y+1, we only need the shortest paths
from every Ty+1 to T1, i.e., for O(m) values of y + 1, and from T1 to every Tx, i.e., for O(m) values of x.

Let us find out how a supporting cluster influences the algorithm’s performance. Observe that adding
an extra layer to L requires O(mns2) extra operation to calculate the shortest cycle. However, adding an
extra layer may also save some operations. Since we are allowed to rotate the tour, let T1 be the smallest
cluster, i.e., |T1| = γ. Then a more accurate estimation shows that the implementation of 2-optG proposed
in Algorithm 11 spends O(mn(2s2 + s)) operations on all the CO runs, and with a supporting cluster it
would take O(mnγ(3s+ 1)) operations on it. Hence, if γ/s < 2/3, which is very typical, introducing the
supporting cluster speeds up the algorithm.

Observe that supporting cluster can be used only if a group of fragments shares some cluster, preferably
of a small size. Next we propose an improvement of this technique that gives more flexibility and improves
the time complexity of the algorithm.

3.4.3. Multiple Supporting Clusters

Let us consider the problem of finding the shortest paths along a sequence of clusters (T1, T2, . . . , Tm),
i.e., finding the shortest path from every u ∈ Ti to every v ∈ Tj through (Ti+1, Ti+2, . . . , Tj−1) for every
1 ≤ i < j ≤ m. Using the dynamic programming approach straightforwardly, one can solve the problem
in O(ns2m) time. We propose an algorithm that, by introducing several supporting clusters, solves it in
O(ns2 log2 m) operations such that every (u, v)-path contains at most one supporting cluster.

For m = 2, no calculations are required because the shortest (u, v)-path, u ∈ T1 and v ∈ T2, is
(u, v). For m > 2, let us introduce a supporting cluster Tm/2 and calculate all the shortest paths in
(Ti, Ti+1, . . . , Tm/2) and (Tm/2, Tm/2+1, . . . , Tj) for every i ≤ m/2 and every j ≥ m/2. This takes O(ns2)
operations. Using the same technique, find the shortest paths in the subsequences (T1, T2, . . . , Tm/2−1) and
(Tm/2+1, Tm/2+2, . . . , Tm). Using recursion, we can solve the whole problem in O(n log2 ms2) operations.
Now, in order to obtain the shortest (u, v)-paths, where u ∈ Ti, v ∈ Tj and 1 ≤ i < j ≤ m, do the
following. If either i = m/2 or j = m/2, corresponding shortest paths are already calculated. If i < m/2
and j > m/2, take the shortest paths from Ti to Tm/2 and from Tm/2 to Tj and use Tm/2 as a supporting
cluster. If j < m/2 or i > m/2, refer to the corresponding subproblem.

Note that splitting the sequence of clusters into two parts is optimal. For example, splitting it
into three parts requires O(53mns2) operations to calculate the shortest paths for these two supporting
clusters, i.e., the recursive procedure takes O(53 log3 ms2) operations. Note that 5/3 log3 m > log2 m for
every m > 1.

Selecting Tm/2 as a supporting cluster is the optimal choice when |Ti| = s for every i. In practice, it
is often better to select some other cluster Tt such that t ≈ m/2 if |Tt| < |Tm/2|. Indeed, the size of the
supporting cluster is important during both calculating the shortest paths and running CO. Finding the
optimal t, however, is hard. We use the following simple heuristic to find a good value of t. We select
the supporting cluster Tt such that

|Tt| = min
|i−m/2|≤m/6

|Ti| and |t−m/2| is minimized. (11)

Since the positions of the supporting clusters are variable, there has to be a data structure to store
them, and an algorithm is required to find the necessary supporting cluster when seeking for the shortest
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path between Ti and Tj for some 1 ≤ i < j ≤ m. For this purpose we build a binary tree of supporting
cluster positions. The root of this tree is the index t of the supporting cluster selected for the sequence
(T1, T2, . . . , Tm). The root has two children corresponding to the supporting clusters selected in the
sequences (T1, T2, . . . , Tt) and (Tt, Tt+1, . . . , Tm), respectively, etc.

We do not calculate all the shortest paths to and from the supporting clusters in advance but use the
dynamic programming approach. This saves significant time if some local search move is accepted.

Note that it takes O(log2 m) operations to find the necessary supporting cluster. However, we can
usually do this search in O(1) operations by reusing the result of the previous search, see Algorithm 12.
In this algorithm, we exploit the fact that two supporting clusters can never have the same position.

Algorithm 12 Search for the supporting cluster for 2-optG.

Require: Fixed position x (see Algorithm 10).
Require: The supporting cluster tree defined by root , left(i) and right(i).
Let k ← 0.
Initialize current supporting cluster position t← root .
while t < x or t > x+ 2 do
if t > x+ 2 then
Set k ← k + 1 and save pk ← t.
t← left(t).

else
t← right(t).

t← pk.
for y ← x+ 2, x+ 3, . . . ,min{m,x+m− 2} do
if k > 1 and y = pk−1 then
k ← k − 1.
Use the distances from Ty to Tx+1.
Update current supporting cluster t← pk.

else
Use the distances from Ty to Tt and from Tt to Tx+1 with supporting cluster Tt.

Thus, the whole supporting cluster tree can be stored in an array of size m, and a supporting cluster can
be located by its position.

With all the improvements, 2-optG takes only O(γsn + ns2 log2 m) operations on shortest paths
calculation and O(γsmn) operations on running CO on every iteration. Recall that the original imple-
mentation of 2-optG takes O(s2mn) operations to proceed. Hence, the time complexity of the refined

2-optG implementation is O(sn(s log2 m+ γm)) which is O
(

s
γ

)

times faster than O(s2mn).

In the discussion above, we assumed exploration of a full neighborhood and, hence, calculated all the
needed shortest paths along (T1, T2, . . . , Tm). However, in practice, we do not normally explore the whole
neighborhood but rearrange the tour as soon as we find an improvement. Hence, heavy preprocessing of
a tour is usually unacceptable. This means that we should calculate as few shortest paths as necessary
for every particular candidate and when an improvement is accepted we should reuse the precalculated
shortest paths as many times as possible.

We propose the following implementation. A matrix Su,v is used to store the shortest distances along
the given fragment, where u and v are the origin and the destination vertices, respectively. There arem−2
possible supporting clusters; for every possible supporting cluster Ti we store positions left(i), right(i),
leftmost(i) and rightmost(i). Positions left(i) and right(i) point to the child supporting clusters of Ti;
leftmost(i) is the position of the leftmost cluster from which the shortest distance to Ti are calculated
and valid; rightmost(i) is the position of the rightmost cluster to which the shortest distances from Ti
are calculated and valid.

First, we initialize leftmost(i) ← i, rightmost(i) ← i, left(i) ← −1 and right(i) ← −1 for every i
and select the root position root according to (11). The values left(i) or right(i) are then calculated on
demand according to the same procedure.
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In Algorithm 12, prior to using the shortest distances from cluster Tj to supporting cluster Ti, we
check if leftmost(i) ≤ j. If not, we update the shortest distances S and leftmost(i) accordingly. Similarly,
we use the value rightmost(i) when we need the shortest distances from Ti to Tj .

When a tour fragment (Tx, Tx+1, . . . , Ty) is modified, we update all the information for every possible
supporting cluster. In particular, in the 2-optG implementation, if x ≤ i ≤ y, we reset all the corre-
sponding information: leftmost(i) ← i and rightmost(i) ← i. Otherwise, if leftmost(i) ≤ y, we update
leftmost(i)← y+1 and if rightmost(i) ≥ x, we update rightmost(i)← x− 1. We also reset all the values
left = right = −1. Finally, we choose the root position root according to the procedure above. Note that,
although we destroy the supporting cluster tree every time the tour is updated, it is likely that the new
tree will reuse some of the old supporting clusters with all accumulated data.

3.5. k-opt

k-opt neighborhood is widely used for the TSP and some other combinatorial optimization problems,
see, e.g., (Fischetti et al., 1997; Karapetyan and Gutin, 2011b; Gutin and Karapetyan, 2010; Snyder and Daskin,
2006). It was shown to be very efficient for the TSP (Helsgaun, 2009). In general, Nk-opt(T ) contains
all the solutions that can be obtained from T by selecting k elements in T and then replacing them with
k new elements such that the feasibility of the solution is preserved. In the TSP and the GTSP, k-opt
means replacing k existing edges in the solution with k new edges.

The time complexity of k-opt increases exponentially with the growth of k. In practice, only 2-opt
and 3-opt are used for the TSP (Helsgaun, 2000; Lin, 1965) with rare exceptions (Helsgaun, 2009). We
do not consider k-opt for k > 3.

3.6. 2-opt

For k = 2 and for a fixed pair of edges (Tx, Tx+1), (Ty, Ty+1) there are only two options for every
2-opt move, i.e., to replace these edges either with (Tx, Ty) and (Tx+1, Ty+1) or with (Ty+1, Tx+1) and
(Ty, Tx). However, for the symmetric case both options are identical and it takes only O(1) operations
to evaluate a 2-opt move, see (1). Hence, it takes O(m2) operations to explore the whole neighborhood
N2-opt(T ) in the symmetric case.

We consider two algorithms to explore the 2-opt neighborhood, namely ‘simple’ and ‘advanced’. The
‘simple’ one tries all feasible pairs of x and y with y > x, see Algorithm 13. Note that after an improvement

Algorithm 13 Basic 2-opt algorithm, ‘simple’ implementation (symmetric case).

Require: Tour T = (T1, T2, . . . , Tm, T1).
Initialize b(Ti)← true for every i = 1, 2, . . . ,m.
repeat
Initialize optimal ← true.
Initialize b′(Ti)← false for every i = 1, 2, . . . ,m.
for x← 1, 2, . . . ,m− 2 do
for y ← x+ 2, x+ 3, . . . ,min{m,x+m− 2} do
if b(Tx) = false and b(Ty) = false then
Go to the next y.

∆← w(Tx, Ty) + w(Tx+1, Ty+1)− w(Tx, Tx+1)− w(Ty, Ty+1).
if ∆ < 0 then
Replace edges (Tx, Tx+1) and (Ty, Ty+1) in T with edges (Tx, Ty) and (Tx+1, Ty+1).
‘Invalidate’ vertices: b′(Ti)← true for every i = x, x+ 1, . . . , y.
Set optimal ← false.
Continue to the next x.

Swap b and b′.
until optimal = true

is applied, it is not necessary to explore the whole neighborhood again. We use an efficient approach to
avoid such repetitions. In particular, the algorithm stores a flag b(Ti) for every vertex Ti. This flag shows
if the edge starting from Ti was changed since the last check. Observe that a move of Turn(T, x, y) is
redundant if both edges (Tx, Tx+1) and (Ty, Ty+1) stay unchanged since the last check of Turn(T, x, y).
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The second, ‘advanced’, algorithm is only suitable for symmetric problems. It considers all the
values x ∈ {1, 2, . . . ,m} and for every x it takes all feasible y such that w(Tx, Ty) < w(Tx, Tx+1) or
w(Tx+1, Ty+1) < w(Tx, Tx+1). Indeed, if a pair of edges was not considered at all (neither when x > y
nor when x < y), then both w(Tx, Ty) ≥ w(Tx, Tx+1) and w(Tx+1, Ty+1) ≥ w(Ty, Ty+1) which cannot be
an improving move. For details see (Johnson and McGeoch, 2002).

An efficient implementation of the ‘advanced’ algorithm requires some precalculation. Let l(v) be a
list of all vertices v′ 6= v ordered such that w(v, l(v)i) ≤ w(v, l(v)j) for every i < j. For a fixed x, try
Ty ← l(Tx)i for every i = 1, 2, . . . until w(Tx, Ty) ≥ w(Tx, Tx+1). Similarly, try Ty+1 ← l(Tx+1)i for every
i = 1, 2, . . . until w(Tx+1, Ty+1) ≥ w(Tx, Tx+1). This will exhaust all necessary values of y. Note that
for the GTSP, one has either to precalculate lists l(v) every time before the 2-opt run or, instead, keep
clusters in the lists l(v) such that wmin(v, l(v)i) ≤ wmin(v, l(v)j) for any i < j.

For the asymmetric problem, one standalone move Turn(T, x, y) of 2-opt requires O(m) operations.
There are two options to reconnect the fragments and each of the options requires one of these fragments
to be inverted. However, it is still possible to explore the whole neighborhood N2-opt(T ) in O(m2). For
this purpose the 2-opt moves should be carried out in a certain sequence, see Algorithm 14. On every

Algorithm 14 Basic 2-opt implementation for asymmetric problem.

Require: Tour T = (T1, T2, . . . , Tm, T1).
for x← 1, 2, . . . ,m− 2 do
Initialize δ ← 0.
for y ← x+ 2, x+ 3, . . . ,min{m,x+m− 2} do
Update δ ← δ + w(Ty−1, Ty)− w(Ty , Ty−1).
∆← w(Tx, Ty) + w(Tx+1, Ty+1)− w(Tx, Tx+1)− w(Ty, Ty+1)− δ.
if ∆ < 0 then
The tour Turn(T, x, y) is an improvement over T .

iteration, the variable δ stores the weight difference caused by inverting the fragment (Tx+1, Tx+2, . . . , Ty),
i.e.,

δ = w(Tx+1, Tx+2, . . . , Ty)− w(Ty, Ty−1, . . . , Tx+1) .

In order to consider the movesTurn(T, x, y) where x > y, invert the given tour Tinv = (Tm, Tm−1, . . . , T1, Tm)
and apply the procedure again.

Observe that the time complexity of Algorithm 14 is O(m2).

Our Local adaptation of 2-opt (2-optL, 2oL) is based on Algorithm 13. For every pair x and y
it finds the shortest paths (Tx−1, T

′
x, T

′
y, Ty−1) and (Tx+2, T

′
x+1, T

′
y+1, Ty), where T ′

i ∈ Cluster(Ti) for
i ∈ {x, x+ 1, y, y + 1}. The time complexity of 2-optL is O(mns).

Our Global adaptation of 2-opt (2-optG, 2oG) exploits all the approaches proposed in Section 3.3.
Some further discussion of the 2-optG implementation performance can be found below.

Note that 2-optG is naturally suitable for both symmetric and asymmetric problems. However, in
order to explore the whole neighborhood for an asymmetric problem, the procedure has to be applied
twice: for a tour T and then for an inversed tour Tinv = (Tm, Tm−1, . . . , T1, Tm).

Table 2 reports the running times of two Basic and three Global adaptations of 2-opt. 2-optG is a
fully optimized implementation that applies all the improvements discussed in Section 3.4. 2-optG simple

is a simplified variation of the algorithm that constructs layered networks L and applies CO to them on
every iteration but does not introduce any supporting clusters or lower bounds. 2-optG naive is a naive
implementation of 2-optG that applies CO to every candidate T ′ ∈ N2-opt(T ).

One can see that 2-optB adv. (the ‘advanced’ implementation, see above) is usually inefficient for the
GTSP. Observe that the time required to generate lists l(v) is O(m2 logm) while it takes only O(m2)
operations to explore the whole neighborhood N2-opt(T ) with the ‘simple’ algorithm. To speed up the
precalculation part, we tried to include in l(v) only the closest to v vertices but with no success. We
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Table 2: Comparison of different 2-opt implementations. The reported values are running times, in ms.

Basic Global

Instance 2oB 2oB adv. 2oG 2oG simple 2oG naive

10att48 0.5 0.4 0.3 0.5 0.1
12brazil58 0.0 0.2 0.1 0.5 0.4
20rat99 0.0 0.1 0.3 1.6 0.9
20kroe100 0.0 0.1 0.2 1.1 0.8
24gr120 0.0 0.1 0.3 3.3 1.1
28gr137 0.0 0.4 0.5 4.4 3.7
31pr152 0.0 0.2 0.2 3.7 3.3
40d198 0.1 0.5 1.3 17.9 20.1
45tsp225 0.1 0.3 1.3 13.5 20.6
56a280 0.1 0.5 2.2 24.2 37.1
87gr431 0.1 1.1 2.6 56.9 187.3
107att532 0.2 1.7 4.2 85.4 296.5
131p654 0.3 2.6 4.9 171.8 842.6
200dsj1000 0.9 6.8 28.0 780.4 6942.4

Average 0.2 1.1 3.3 83.2 596.9

assume that 2-optB adv. may be useful as a part of a powerful metaheuristic that needs to run 2-opt many
times for one instance.

As regards the Global implementations, it follows from Table 2 that, on average, 2-optG is more
than 10 times faster than 2-optG simple and more than 100 times faster than 2-optG naive. Note that the
speed-up highly depend on m and is better visible for large instances. This is because 2-optG simple is
Θ(mγ/s) times faster than 2-optG naive and also because the lower bound in 2-optG is very efficient when
m si large, see Section 3.4.1.

Different adaptations of 2-opt are compared in Table 3. We measure solution error as e(T ) =

Table 3: 2-opt adaptations comparison.

Solution error, % Running time, ms

Instance 2oB 2o
co
B 2oL 2o

co
L 2oG 2oB 2o

co
B 2oL 2o

co
L 2oG

10att48 8.5 6.3 2.3 2.3 2.3 0.52 0.22 0.21 0.21 0.28
12brazil58 14.0 2.1 4.2 1.5 1.1 0.01 0.01 0.01 0.02 0.08
20rat99 22.1 17.1 16.5 13.7 0.8 0.01 0.05 0.03 0.04 0.33
20kroe100 15.2 1.3 5.4 2.7 0.0 0.01 0.03 0.03 0.03 0.18
24gr120 30.2 16.8 9.1 10.3 15.2 0.01 0.03 0.06 0.10 0.27
28gr137 9.6 1.9 3.6 2.7 1.9 0.02 0.05 0.05 0.06 0.46
31pr152 9.8 4.1 6.6 2.4 1.3 0.02 0.03 0.04 0.06 0.21
40d198 7.3 8.7 3.8 5.0 1.5 0.05 0.14 0.14 0.28 1.34
45tsp225 20.8 14.0 12.0 9.4 6.8 0.05 0.15 0.13 0.23 1.26
56a280 26.9 13.3 18.9 10.8 14.6 0.06 0.15 0.19 0.30 2.17
87gr431 10.3 4.8 8.7 6.9 4.2 0.14 0.48 0.37 0.52 2.63
107att532 16.8 9.2 16.1 14.2 7.9 0.22 0.69 0.58 1.02 4.21
131p654 4.1 6.9 9.0 7.7 4.0 0.33 1.42 0.74 1.48 4.88
200dsj1000 23.3 12.9 17.9 16.1 12.9 0.91 3.27 3.11 5.28 28.04

Average 15.6 8.5 9.6 7.5 5.3 0.17 0.48 0.41 0.69 3.31

w(T )−w(Toptimal)
w(Toptimal)

· 100%, where Toptimal is the optimal solution.

The Basic adaptation 2-optB is the fastest but also the weakest one. It takes only 1 ms to proceed
even for the largest instances, however, it is not able to change vertex selection which makes its solution
quality noncompetitive. The 2-optcoB and 2-optL adaptations, thus, are significantly better with respect
to solution quality. The most powerful adaptation 2-optG is only about five times slower than the next
powerful one 2-optcoL although the neighborhood of 2-optG is significantly larger than the one of 2-optcoL .
This shows again the efficiency of the refinements proposed in Section 3.4.

3.7. 3-opt

After removing edges (Tx, Tx+1), (Ty, Ty+1) and (Tz, Tz+1) from a tour T , depending on the symmetry
of the problem, we get four or eight options to reconnect the tour fragments to obtain a feasible tour T ′

such that (Tx, Tx+1), (Ty, Ty+1), (Tz, Tz+1) /∈ T ′. However, we limit ourselves to only one of these options,
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which does not turn any of the tour fragments. Note that all the other options can be replaced with
sequences of two non-independent 2-opt moves (Rego and Glover, 2002) such as Turn(Turn(T, x, y), x, z)
or Turn(Turn(T, x, y), y, z).

We implemented all the adaptations (see Section 3.2) of the 3-opt neighborhood and found out that
the obtained algorithms are rather slow than powerful. However, it is worth noting that the Global
adaptation for 3-opt can be implemented quite efficiently. Indeed, it takes O(ns2 log2 m) time to find
the shortest paths from every vertex u to every vertex v /∈ Cluster(u) along the tour, see Sections 3.4.2
and 3.4.3. Then, it takes only O(γsm2n) time to perform cluster optimization for all the triples x, y,
z. Hence, the whole algorithm’s time complexity is O(sn(s log2 m+ γm2)) which is at most O(m) times
slower than 2-optG. In addition, one can apply the lower bound for the shortest cycle (see Theorem 3)
which significantly sped-up the algorithm in our experiments.

3.8. Insertion

The Insertion TSP neighborhood includes all the solutions which can be obtained from the given
one by removing a vertex and inserting it into some other position. Observe that Nins(T ) ⊂ N3-opt(T )
(consider 3-opt where one of the fragments consists of exactly one vertex). The size of the Insertion
neighborhood is |Nins(T )| = m(m− 2).

We implemented all the adaptations (see Section 3.2) for Insertion (Ins). As a quick improvement
(QuickImprove) for the local adaptations InsL and InscoL , we optimize the vertices within inserted cluster
and two clusters around its old position. For a lower bound in the Global adaptation (InsG) we use the
results of Theorem 4.

Some of these adaptations have already been used in the literature. For example, InsL was used by
Snyder and Daskin (2006) (it is called Swap there) and by Renaud and Boctor (1998) (G-opt heuristic).
TheMove heuristic by Bontoux et al. (2010) is InsG. However, in (Bontoux et al., 2010) the neighborhood
is explored with a heuristic algorithm which does not guarantee that it finds a local minimum.

In Table 4, we provide experimental results for all the adapations of Ins. One can see the same

Table 4: Ins adaptations comparison.

Solution error, % Running time, ms

Instance InsB Ins
co
B InsL Ins

co
L InsG InsB Ins

co
B InsL Ins

co
L InsG

10att48 4.7 2.4 0.9 0.9 0.0 0.50 0.21 0.21 0.21 0.31
12brazil58 14.0 2.1 14.5 0.1 0.0 0.01 0.01 0.01 0.01 0.13
20rat99 32.0 16.5 13.1 11.1 0.0 0.01 0.05 0.04 0.05 1.07
20kroe100 18.5 7.7 14.0 9.3 6.6 0.01 0.03 0.03 0.06 0.72
24gr120 35.1 20.7 6.4 9.1 2.0 0.02 0.03 0.05 0.09 0.81
28gr137 9.6 8.2 12.1 2.3 0.0 0.02 0.03 0.04 0.09 1.25
31pr152 12.6 8.5 8.0 7.1 5.9 0.03 0.05 0.08 0.08 0.49
40d198 25.6 21.3 14.2 20.6 15.8 0.04 0.12 0.16 0.27 2.78
45tsp225 36.2 33.1 22.5 21.5 15.2 0.05 0.10 0.14 0.26 3.16
56a280 31.9 22.3 26.8 23.4 20.9 0.07 0.12 0.18 0.16 4.83
87gr431 11.0 7.8 10.1 8.5 6.7 0.16 0.47 0.42 0.56 6.71
107att532 22.4 16.7 15.5 15.2 11.6 0.29 0.59 0.63 1.16 15.43
131p654 23.0 22.7 23.7 22.5 19.0 0.48 1.82 0.96 2.31 20.38
200dsj1000 40.7 31.1 29.1 26.6 27.4 1.09 3.07 3.08 6.90 71.71

Average 22.7 15.8 15.1 12.7 9.4 0.20 0.48 0.43 0.87 9.27

tendency here as in 2-opt adaptations. Despite their quite different implementations, InscoB and InsL have
very similar performance. The Basic adaptation is extremely fast but of poor solution quality. InscoL
produces slightly better solutions in roughly twice larger times. InsG is significantly slower than InscoL but
its solution quality is noticeably better, especially for the small instances.

3.9. Swap

The Swap TSP neighborhood Nswap(T ) contains all the solutions obtained from tour T by swapping
two vertices in it, see Figure 4. Observe that |Nswap(T )| = m(m− 1).

An important message is that Swap does not work well for near-optimal solutions. Indeed, a Swap

move can be replaced with a sequence of two Ins or 2-opt moves. Moreover, the following theorem proves
that a 2-opt local minimum is also a Swap local minimum for a symmetric TSP.
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Figure 4: A Swap move.

Theorem 5. Let T be a local minimum in N2-opt(T ). Then T is also a local minimum in Nswap(T ) if
the problem is symmetric.

Proof. Assume that the tour T is a local minimum in N2-opt(T ) but it is not a local minimum in
Nswap(T ). Then, there exist some x and y such that w(T ′) < w(T ), where T ′ is a tour obtained T by
swapping Tx and Ty (see Figure 4):

w(Tx−1, Ty, Tx+1) + w(Ty−1, Tx, Ty+1) < w(Tx−1, Tx, Tx+1) + w(Ty−1, Ty, Ty+1) . (12)

Let us consider two tours: A = Turn(T, x − 1, y) and B = Turn(T, x, y − 1). (Without loss of
generality, one may assume that x < y.) According to (1),

w(A) = w(T ) + w(Tx−1, Ty) + w(Tx, Ty+1)− w(Tx−1, Tx)− w(Ty , Ty+1) and

w(B) = w(T ) + w(Tx, Ty−1) + w(Tx+1, Ty)− w(Tx, Tx+1)− w(Ty−1, Ty) .

If T is a local minimum in N2-opt(T ), then both w(A)−w(T ) and w(B)−w(T ) are non-negative and
their sum is also non-negative. Since we consider a symmetric problem,

[w(A) − w(T )] + [w(B) − w(T )] =
[
w(Tx−1, Ty) + w(Tx, Ty+1)− w(Tx−1, Tx)− w(Ty , Ty+1)

]

+
[
w(Tx, Ty−1) + w(Tx+1, Ty)− w(Tx, Tx+1)− w(Ty−1, Ty)

]

=
[
w(Tx−1, Ty, Tx+1) + w(Ty−1, Tx, Ty+1)

]
−
[
w(Tx−1, Tx, Tx+1) + w(Ty−1, Ty, Ty+1)

]
.

However, according to (12), this expression is negative and, hence, our assumption is wrong and the tour
T is a local minimum in Nswap(T ). �

Note that this result was also observed empirically by Gutin and Karapetyan (2010).
Until now, we considered only the TSP Swap neighborhood. Obviously, this result can be extended

to the Basic adaptation but it is unclear if it holds for the Local and Global adaptations.

Theorem 6. The result of Theorem 5 does not hold for the Local or Global adaptations of Swap, i.e., a
local minimum in N2-opt G(T ) is not necessarily a local minimum in Nswap L(L) even if the problem is
planar with Euclidean distances.

Proof. We will show an example of a GTSP tour T which is a local minimum in N2-opt G(T ) but not
a local minimum in Nswap L(T ). Consider an example on Figure 5. It is a planar GTSP with Euclidean
distances and 8 clusters: {1}, {2}, {3, 3′}, {4}, {5}, {6}, {7, 7′} and {8}. The original tour T is T =
(1, 2, 7′, 4, 5, 6, 3′, 8, 1). Observe that swapping 3′ and 7′ together with optimizing the swapped vertices
(i.e., replacing 3′ and 7′ with 3 and 7, respectively) produces the optimal tour (1, 2, 3, 4, 5, 6, 7, 8, 1). At
the same time, no adaptation of 2-opt is able to improve T because whatever is the vertex selection, any
2-opt move will yield a tour with two intersecting (and, hence, long) edges. �

4. Fragment Optimization

All the adaptations of the TSP local searches discussed in Section 3 are intended to improve the whole
tour structure. In this section we discuss local improvements. In other words, the neighborhoods below
consist of the tours that can be obtained from the original one by altering only a small fragment of it.
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Figure 5: An example of a local minimum in N2-opt G(T ) which is not a local minimum in Nswap L(T ).
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Figure 6: An example of a search tree of the F1 algorithm for k = 3

One can think of many kinds of fragment optimization, but we focus only on the most powerful
option, i.e., a neighborhood containing all possible rearrangements in a fragment of some fixed length k.
Consider a tour T = (T1, T2, . . . , Tm, T1). Let a = Tm, b = Tk+1, Ωi = Cluster(Ti) for i = 1, 2, . . . , k and
Ω = {Ω1,Ω2, . . . ,Ωk}. Let FO(a, b,Ω) be the set of all paths from the vertex a to the vertex b through
all the clusters in Ω being taken in an arbitrary order. Note that |FO(a, b,Ω)| ∈ O(k!sk).1

Using the routine for finding the shortest paths in a layered network (see Section 2), one can find the
best path among FO(a, b,Ω) in O(k! · (k− 1)s2) operations. In this paper, we propose two algorithms F1

and F2 that find the best path in FO(a, b,Ω) in O(s2k!) and O(s2k22k) time, respectively.
The F1 algorithm is a branch and bound algorithm. Let S(v) be a sequence of distinct clusters

selected from Ω assigned to search tree node v. Then S(p) = (S(v)1, S(v)2, . . . , S(v)|S(v)|−1) if p is the
parent node of v. Set S(root) = ∅. For an example, see Figure 6.

Let C = S(v) and {x1, x2, . . . , xc} = C|C| be the last cluster in C. For i = 1, 2, . . . , c, let l(v)i be the
weight of the shortest path from a to xi through C1, C2, . . . , C|C|−1. For i = 1, 2, . . . , c, let l(v)i = w(a, xi)
if |C| = 1. Otherwise, if p is the parent node of v, P = S(p), {y1, y2, . . . , yc′} = P|P | and we know l(p)j
for every j = 1, 2, . . . , c′, let l(v)i = minj=1,2,...,c′ l

′(p)j + w(yj , xi) for every i = 1, 2, . . . , c. If |C| = |Ω|,
i.e., v is a tree leaf, we also calculate the shortest path from a to b as follows: mini=1,2,...,c l(v)i+w(xi, b).

The search tree contains
∑k

i=0
k!

(k−i)! < k! · e nodes. It takes O(s2) to calculate the weights l(v) for a

node v. Hence, the time complexity of F1 is O(s2k!).
We can improve the performance of F1 by calculating the lower bound at every node v. Let lmin =

mini=1,2,...,c l(v)i. Let λ = minX,Y ∈R,X 6=Y wmin(X,Y ), where R = Ω \ P ∪ {Cluster(b)}. Then, if
lmin + λ(|Ω| − |P |) ≥ wbest, where wbest is the weight of the shortest (a, b)-path found so far, the node v
and its branch are discarded.

The second algorithm F2 is preferable for large values of k. It is a dynamic programming algorithm
that combines the idea of the Held and Karp’s TSP algorithm (Papadimitriou and Steiglitz, 1998) with

1The two algorithms below show that the Fragment Optimization problem is fixed-parameter tractable with respect to the
parameter k. From the theoretical point of view, the second algorithm is more efficient than the first one, but experiments
described later on show that for very small values of k the first algorithm is actually faster. For more information on
fixed-parameter tractability see, e.g., (Downey and Fellows, 1999; Niedermeier, 2006).
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finding the shortest path in a layered network. Let ∆ ⊂ Ω be a subset of the given clusters. We wish
to find the shortest path p∆x from a to every x /∈

⋃

Ωi∈∆ Ωi via all the clusters ∆ taken in an arbitrary

order. Observe that p∅x = w(a, x). Assume that, for every Y ∈ ∆, we know the shortest paths p
∆\{Y }
y

from a to every y ∈ Y through clusters ∆ \ {Y }. Then

p∆x = min
Y ∈∆

min
y∈Y

{

p∆\{Y }
y + w(y, x)

}

.

Hence, having the required information, one can find the shortest path from a to x via clusters ∆ taken
in an arbitrary order in O(|∆|s) time. Observe that for ∆ = Ω and x = b the algorithm finds the shortest
path from a to b via all the clusters in the fragment.

There are
(

k
|∆|

)
possible subsets of clusters ∆ of a given size and for every subset there are O((k−|∆|)s)

vertices x. It takes O(|∆|s) operations to find each of these shortest paths. Thus, the whole procedure
takes

O





k∑

|∆|=1

(
k

|∆|

)

· (k − |∆|)s · |∆|s



 = O(s2k22k) operations.

Hence, for small values of k, the first algorithm F1 is preferable while the second algorithm F2 is
faster for large fragments.

The Nk-FO(T ) neighborhood includes all the tours that can be obtained from T by reordering any k
consequent vertices and, maybe, replacing these vertices with some other vertices from the corresponding
clusters. Let Φk

i (T ) be a set of all tours that can be obtained from T by rearranging and ‘reselecting’
vertices Ti+1, Ti+2, . . . , Ti+k within the corresponding cluster. Then Nk-FO(T ) =

⋃m
i=1 Φ

k
i (T ), and to

explore this neighborhood we can run either the F1 or F2 algorithm m times. Observe that |Φk
i (T ) ∩

Φk
j (T )| ≫ 1 for some i and j and, hence, our algorithm explores some of the candidates in Nk-FO(T )

more than once. It is a natural question if avoiding multiple evaluations of these candidates can save any
noticeable time.

Let Ak
i (T ) = {T

′ ∈ Φk
i (T ) : T ′

i+1 6= Ti+1}. We assume that k ≤ m/2. Then observe that Ak
i (T ) ∩

Ak
j (T ) = ∅ for any i 6= j. Indeed, if some T ′ ∈ Ak

i (T ) ∩A
k
j (T ) then T ′

i+1 6= Ti+1 and T ′
j+1 6= Tj+1. Since

T ′ ∈ Ak
j (T ) and the vertex T ′

i+1 is modified, we get j < i+1 ≤ j+k. At the same time, since T ′ ∈ Ak
i (T )

and the vertex T ′
j+1 is modified, i < j + 1 ≤ i+ k. This is only possible if i = j.

Observe that
m⋃

i=1

Φk
i (T ) ⊆ {T } ∪

m⋃

i=1

Ak
i (T ) .

Indeed, if T ′ ∈ Φk
i (T ) for some i, then either T ′ = T or there exists i < j ≤ i+ k such that T ′

j 6= Tj and

T ′
p = Tp for every p = i+ 1, i+ 2, . . . , j − 1. In the latter case T ′ ∈ Ak

j (T ). At the same time,

{T } ∪

m⋃

i=1

Ak
i (T ) ⊆

m⋃

i=1

Φk
i (T )

since Ak
i (T ) ⊂ Φk

i (T ) and T ∈ Φk
i (T ) for any i. Hence,

{T } ∪

m⋃

i=1

Ak
i (T ) =

m⋃

i=1

Φk
i (T ) = Nk-FO(T ) .

Recall that Ak
i (T )∩A

k
j (T ) = ∅ and observe that |Ak

i (T )| = O
(
(ks− 1)sk−1(k − 1)!

)
. Hence, |Nk-FO(T )| =

O
(
m(ks− 1)sk−1(k − 1)!

)
.

Compare it to O(mskk!), which is the number of candidates considered by m runs of either F1 or F2.
The difference is only in Θ( ks

ks−1 ) times. We conclude that this relatively small overhead is not worth
further complication of the algorithm.

Let FOk be a local search with the Nk-FO(T ) neighborhood. Then, depending on the implementation,
its time complexity is either O(mk!s2) or O(mk22ks2).
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Table 5: FO implementations comparison. The reported values are running times, in ms.

Algorithm 1 Algorithm 2

Instance k = 3 k = 4 k = 5 k = 6 k = 7 k = 3 k = 4 k = 5 k = 6 k = 7

10att48 0.6 0.3 0.6 1.9 7.0 0.3 0.4 0.6 1.3 2.7
12brazil58 0.0 0.2 0.6 2.2 8.8 0.1 0.2 0.6 1.6 3.9
20rat99 0.1 0.3 1.2 3.5 13.5 0.1 0.4 1.3 2.9 7.4
20kroe100 0.1 0.2 0.8 4.0 17.4 0.2 0.4 1.0 3.4 8.9
24gr120 0.1 0.4 1.3 4.8 20.4 0.2 0.5 1.3 3.5 9.1
28gr137 0.1 0.3 1.4 5.4 22.5 0.1 0.5 1.6 4.7 13.5
31pr152 0.2 0.4 1.2 3.7 14.4 0.2 0.6 1.6 3.7 9.7
40d198 0.2 0.5 1.9 6.8 43.4 0.3 0.8 2.3 6.4 23.8
45tsp225 0.2 0.7 2.5 9.1 55.9 0.3 1.0 2.7 7.5 27.1
56a280 0.2 0.7 2.2 8.0 34.5 0.3 1.0 2.9 8.1 24.8
87gr431 0.5 1.7 6.4 25.3 96.2 0.9 2.5 7.6 20.9 55.2
107att532 0.6 1.7 5.5 18.5 80.1 0.8 2.4 7.1 20.0 62.0
131p654 0.9 2.4 8.4 31.0 125.0 1.4 3.7 10.9 33.4 85.2
200dsj1000 1.4 3.5 10.1 35.3 125.2 1.9 4.9 13.1 35.7 95.6

Average 0.4 0.9 3.1 11.4 47.5 0.5 1.4 3.9 10.9 30.6

Although we know that F1 is more efficient for small values of k and vice versa, empirical evaluation
is required in order to find which algorithm is more efficient for particular values of k. We compare these
implementations in Table 5. From there we see that the first implementation is faster for k < 6 while
for k > 6 the second implementation is preferable, and this result holds for all the instances. For k = 6
both implementations perform similarly but the second one is slightly faster on average. Hence, in what
follows, we use F1 when k ≤ 5 and F2 otherwise.

In Table 6 we provide results of experimental evaluation for the FO algorithm. It is predictable that

Table 6: FO performance for different values of k.

Solution error, % Running time, ms

Instance FO2 FO4 FO6 FO8 FO10 FO2 FO4 FO6 FO8 FO10

10att48 8.2 0.0 0.0 0.0 — 0.5 0.3 1.3 6.4 —
12brazil58 2.1 0.0 0.0 0.0 0.0 0.0 0.2 1.6 9.1 38.8
20rat99 18.5 17.9 6.8 0.8 0.0 0.0 0.3 3.0 43.8 171.6
20kroe100 24.3 24.3 23.4 23.4 0.0 0.0 0.2 3.3 23.3 140.4
24gr120 34.6 11.9 12.4 0.0 0.0 0.0 0.5 3.6 44.9 171.6
28gr137 15.0 12.8 2.4 2.1 6.3 0.0 0.3 4.7 34.8 171.6
31pr152 11.0 7.2 7.2 0.7 0.7 0.0 0.4 3.7 34.8 202.8
40d198 29.6 24.7 23.9 15.9 4.5 0.1 0.6 6.3 67.2 468.0
45tsp225 43.8 39.5 31.5 24.4 12.3 0.1 0.7 7.5 51.8 436.8
56a280 25.4 25.2 21.6 18.1 18.1 0.1 0.7 8.1 73.1 421.2
87gr431 11.1 7.6 6.6 6.0 5.9 0.2 1.7 21.2 140.5 826.9
107att532 24.0 22.4 21.7 20.6 13.5 0.3 1.7 19.8 140.5 1123.4
131p654 33.4 31.3 29.4 27.3 26.6 0.4 2.4 33.2 218.6 1419.8
200dsj1000 43.7 39.1 37.4 35.9 34.3 0.6 3.5 35.6 250.0 1669.6

Average 23.2 18.9 16.0 12.5 9.4 0.2 1.0 10.9 81.4 558.7

the heuristic yields very good solutions for small instances, i.e., when k is close to m. On average,
however, solution quality of FO is relatively low. We conclude that FO neighborhood is more interest-
ing in combination with some other neighborhoods than as a stand-alone heuristic. Combining several
neighborhoods, however, is a subject of a separate research.

5. Data Structures

Apart from the theoretical properties of an algorithm, implementation details may also have great
influence on its performance. In this section, we discuss what data structures are the most efficient and
convenient for a GTSP heuristic.

5.1. Tour Representation

It is a non-trivial question how one should store a GTSP solution. The most common approach
is to store a sequence of vertices in the visiting order. It was used by Silberholz and Golden (2007);
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Tasgetiren et al. (2010) and many others. The advantages of this method are simplicity, compactness (it
requires only one integer array of size m) and quickness of weight calculation. The disadvantages are
difficulty in some tour modifications (observe that an Ins move takes O(m) operations) and absence of
a trivial tour correctness test. In addition, sliding along a tour in this representation requires additional
measures to process a tour as a cycle, not as a finite sequence.

Another tour representation, random-key, was used by Snyder and Daskin (2006). It represents the
tour as a sequence of real numbers (x1, x2, . . . , xm); the ith number xi corresponds to the ith cluster
Ci of the problem. The integer part ⌊xi⌋ of the number is the vertex index within the cluster Ci and
the fractional part xi − ⌊xi⌋ determines the position of the cluster in the tour—the clusters are ordered
according to these fractional parts, in ascending order. The main advantage of random-key tours is that
almost any sequence of numbers represent a correct tour; one only needs to ensure that 1 ≤ ⌊xi⌋ ≤ |Ci|
for every i. It is also relatively easy to implement some modifications of the tour. The disadvantages are
difficulty in sliding along the tour and a high cost of the tour weighing.

We propose a new tour representation which is based on double-linked lists. We store three integer
arrays of size m: prev , next and vertices , where prev i is a cluster preceding cluster Ci in the tour, next i
is a cluster succeeding cluster Ci in the tour, and vertices i is a vertex within cluster Ci. There are several
important advantages of this representation. Unlike other approaches, it naturally represents the cycle
which simplifies the algorithms. Consider, e.g., a typical local search implementation (Algorithm 15): the

Algorithm 15 Typical implementation of a local search with a double-linked list based tour represen-
tation. The algorithm performs as few iterations as possible to ensure that the tour is a local minimum.

Initialize current cluster index i← 1.
Initialize counter t← m.
while t > 0 do
if there exist some improvements for the current cluster Ci then
Update the tour accordingly.
Update the counter t← m.

else
Decrease the counter t← t− 1.

Move to the next cluster i← nexti.

algorithm smoothly slides along the tour until no improvement is found for exactly one loop. Observe
that one does not need the concept of position when using this tour representation; it is possible to use
cluster index instead. In this context, the procedure of tour rotation becomes meaningless; one can simply
consider any cluster as the first cluster in the tour. Moreover, it allows one to find a certain cluster in
O(1) time; we use it, e.g., to start the CO calculations from the smallest cluster with no extra effort.

Our representation clearly splits the cluster order and the vertex selection; note that some algorithms
do not require the information on the vertex selection while some others do not modify the cluster order.
It is useful that linked lists allow quick removing and inserting of elements. Moreover, to turn the tour
backwards, one only needs to swap the arrays prev and next . Observe that this tour representation
is deterministic, i.e., each GTSP tour has exactly one representation in this form. If the problem is
symmetric, every tour (prev , next, vertices) has exactly one clone (next , prev , vertices).

The main disadvantage of this representation is that it takes three times more space than the sequence
of vertices. In practice, however, many algorithms do not require backward links so one can avoid using
the prev array and reduce the memory usage to two m-elements arrays. When necessary, there is an
efficient procedure to restore the prev array according to next.

Note that a similar tour representation was used by Tasgetiren et al. (2007).

5.2. Weight Matrix Representation

Another important decision is how to store the weights in a GTSP instance. There are two obvious
solutions of this problem:

1. Store a two dimensional matrix M of size n × n as follows: Mi,j = w(Vi, Vj). Note that this data
structure stores

∑m
i=1 |Ci|

2 redundant weights.
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2. Store m(m− 1) matrices, one matrix MX,Y of size |X | × |Y | per every pair of distinct clusters X
and Y .

If we have a pair of vertices and need to find the weight between them, it is obviously better to use the
first approach. However, if we need to use many weights between two clusters (consider, e.g., calculation
of the smallest weight between clustersX and Y : wmin(X,Y )), the second approach is preferable. Indeed,
in the first approach we have to look for the absolute index of every vertex in X and Y . In the second
approach, we just use the entries of the matrix MX,Y . Observe also that the second approach provides a
sequential access to the weight matrix which is friendly with respect to computer architecture and, hence,
faster.

Our experimental analysis shows that the second approach improves the performance of CO approx-
imately twice. However, it is not efficient, e.g., for the Basic adaptations (see Section 3.2). In our
implementations, we store the weights in both forms.

6. Conclusion

Three classes of GTSP neighborhoods are selected and discussed in this study. The most interesting
neighborhood in the first class is Cluster Optimization. Having nice theoretical properties, it can be
explored very quickly which makes the CO algorithm an essential subroutine in many heuristics. Thus,
the performance of CO is of great importance. We introduce several improvements to the algorithm and
prove that our implementation almost reaches the best performance possible for this neighborhood.

The TSP-inspired neighborhoods is a large class of neighborhoods derived from TSP neighborhoods.
We formalize the procedure of adaptation of a TSP neighborhood for the GTSP. Among other results,
by proposing several new approaches, we significantly speed up, both theoretically and in practice, ex-
ploration of the most powerful, ‘Global’, adaptation making it practically useful. This is particularly
interesting since Global adaptation is well-known from the literature and was used or considered many
times. This indicates that there is still great room for further improvements of local search algorithms
for GTSP and other fundamental problems.

The neighborhoods of the Fragment Optimization class were not widely used before, probably because
of their relatively poor performance. In this study, we propose an efficient exploration algorithm for the
largest neighborhood of this class. However, this algorithm is not intended to be used as a stand-alone
local search. We believe that it can be very effective as a part of a more sophisticated heuristic.

Further research is required to study possible combinations of GTSP local searches. We also believe
that one can significantly improve the performance of GTSP metaheuristics by using several results of
this paper.
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