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Abstract—Finding multiple roots of nonlinear equation systems
(NESs) in a single run is one of the most important challenges
in numerical computation. We tackle this challenging task by
combining the strengths of the repulsion technique, diversity
preservation mechanism, and adaptive parameter control. First,
the repulsion technique motivates the population to find new roots
by repulsing the regions surrounding the previously found roots.
However, to find as many roots as possible, algorithm designers
need to address a key issue: how to maintain the diversity of the
population. To this end, the diversity preservation mechanism
is integrated into our approach, which consists of the neigh-
borhood mutation and the crowding selection. In addition, we
further improve the performance by incorporating the adaptive
parameter control. The purpose is to enhance the search abil-
ity and remedy the trial-and-error tuning of the parameters of
differential evolution (DE) for different problems. By assembling
the above three aspects together, we propose a repulsion-based
adaptive DE, called RADE, for finding multiple roots of NESs in
a single run. To evaluate the performance of RADE, 30 NESs with
diverse features are chosen from the literature as the test suite.
Experimental results reveal that RADE is able to find multiple
roots simultaneously in a single run on all the test problems.
Moreover, RADE is capable of providing better results than the
compared methods in terms of both root rate and success rate.
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I. INTRODUCTION

NUMEROUS real-world applications can be modeled as
nonlinear equation systems (NESs) [1]–[3]. In 1998,

Fields Medalist Steve Smale listed 18 challenging problems
for the twenty-first century including “Does P = NP?” [4].
Among them, the following three challenging problems are
related to NESs.

1) Problem 4: Integer zeros of a polynomial.
2) Problem 8: Introduction of dynamics into economic

theory.
3) Problem 17: Solving polynomial equations.

Therefore, finding the roots of NESs is not only of great sig-
nificance for solving practical problems but also one of the
core problems of mathematics [5].

Without loss of generality, an NES can be defined as
follows:

⎧
⎪⎨

⎪⎩

e1(x) = 0
...

em(x) = 0

(1)

where m is the number of equations, x = (x1, . . . , xn) is an
n-dimensional decision vector, n is the number of decision
variables, x ∈ S, and S ⊆ R

n denotes the search space. Usually

S =
n∏

j=1

[
xj, xj

]
(2)

where j = 1, . . . , n, and xj and xj are the lower and upper
bounds of xj, respectively.

If ∀i ∈ {1, . . . , m}, ei(x∗) = 0, then x∗ is said to be a root (or
an optimal solution) of an NES. An NES may have multiple
roots, especially when n ≥ m. For example, taking the eighth
test problem (F08) in the supplementary material into account,
Fig. 1 depicts its seven roots. In F08, there are two nonlinear
equations [e1(x) and e2(x)] and two decision variables (x1 and
x2), i.e., n = m = 2. In real-world applications, each root may
be equally important; therefore, the main task of solving NESs
is to simultaneously find these roots in a single run, which is
nondeterministic polynomial-time hard and thus poses a grand
challenge in numerical computation [6].

The repulsion technique (also known as the polarization
technique) [7]–[9] has great potential to guide an optimization
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Fig. 1. Illustration of the eighth test problem (F08) in the supplementary
material and its seven roots.

algorithm toward new roots by creating repulsion areas around
the roots previously identified. However, to find as many roots
as possible, the diversity and search ability of the optimization
algorithm also play crucial roles other than the repulsion tech-
nique. On the one hand, after finding a root, if the diversity of
the optimization algorithm is poor and if all the solutions of
the optimization algorithm already gather in a small region, it
is very hard to find new roots in the subsequent search. On the
other hand, the optimization algorithm with weak search abil-
ity may not be capable of probing unexplored yet promising
regions. Therefore, the repulsion technique should be equipped
with an optimization algorithm with good diversity and strong
search ability when solving NESs, which has not yet been
systematically investigated in current research.

Based on this analysis, this paper makes the first attempt to
combine the repulsion technique, diversity preservation mech-
anism, and adaptive parameter control in an effective way,
with the purpose of developing a powerful method for find-
ing multiple roots of NESs. We call the proposed method
a repulsion-based adaptive differential evolution (RADE).
In RADE, differential evolution (DE) [10] serves as the
optimization algorithm, and the aim of the repulsion technique
is to assist DE in finding multiple roots of NESs simultane-
ously in a single run. In addition, the diversity preservation
mechanism is employed to diversify the population of DE, in
which each individual implements mutation and crossover with
its neighbors to generate a trial vector, and the trial vector is
compared with the nearest individual in the parent population
for survival. Moreover, the adaptive parameter control is used
to automatically adapt the control parameters of DE to appro-
priate values, thereby enhancing the search ability for solving
different NESs.

The main contributions of this paper can be summarized as
follows.

1) As aforementioned, three aspects are elaborated in
RADE to solve NESs, i.e., the repulsion technique—
avoiding repeated search in the regions previously
explored; the diversity preservation mechanism—
maintaining the diversity of the population and increas-
ing the possibility to find new roots; and the adaptive
parameter control—enhancing the search ability with-
out trial-and-error parameter settings. As a result, RADE
can be considered as an effective alternative for solving
NESs.

2) Thirty NESs were chosen from the literature as the test
suite, which can be used as the benchmark test prob-
lems to evaluate the performance of different methods.

Experimental results verify that RADE can not only
consistently find multiple roots of different NESs in a
single run but also yield better results than the compared
methods with respect to both root rate and success rate.

3) The effectiveness of the three important aspects
of RADE has been experimentally investigated.
Furthermore, we have empirically discussed the influ-
ence of other repulsion techniques, other diversity
preservation mechanisms, other adaptive parameter con-
trols, other mutation operators, and different parameter
settings on the performance of RADE.

The rest of this paper is organized as follows. Section II
introduces the background, including the repulsion techniques
and the classical DE. Section III discusses the related work and
motivation. In Section IV, the proposed RADE is described in
detail. The experimental studies and comprehensive discus-
sions are given in Section V. Finally, Section VI concludes
this paper.

II. BACKGROUND

A. Repulsion Techniques for NESs

When solving an NES by an optimization algorithm, it is
usually transformed into a minimization problem as follows:

minimize f (x) =
m∑

i=1

e2
i (x) (3)

or

minimize f (x) =
m∑

i=1

|ei(x)|. (4)

Afterward, to detect the roots of an NES is equivalent to
finding the global minimizers of the transformed optimization
problem in (3) or (4).

In the NES literature, several repulsion techniques have
been developed to find multiple roots [7]. The basic idea
behind the repulsion technique is that a repulsion function is
designed based on f (x) to create repulsion areas around the
roots previously found so that these roots will not be the global
minimizers anymore. Therefore, the repulsion technique aims
at motivating the optimization algorithm to explore new search
regions and to search for new roots. Next, we briefly introduce
two representative (i.e., multiplicative and additive) techniques
which will be utilized in this paper.

1) Multiplicative Repulsion Technique: Pourjafari and
Mojallali [9] presented a multiplicative repulsion func-
tion as follows:

minimize R(x) = (f (x)+ ε)

K∏

j=1

∣
∣coth

(
αδj

)∣
∣ (5)

where

δj =‖ x− x∗j ‖. (6)

K is the number of roots that have been found, x∗j is
the jth root, δj is the Euclidean distance between x and
x∗j , α ≥ 1 is a density factor to adjust the radius of the
repulsion regions, and ε is a very small positive constant
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(a) (b)

Fig. 2. Comparison between the original objective function f (x) and the
repulsion function R(x). (a) Original objective function f (x) = sin2(x/π), x ∈
[−10, 10]. (b) Repulsion function R(x). If one root x = 0 was obtained, then
R(x) creates a repulsion area around x = 0 to penalize the solutions in this
repulsion area. As shown in Fig. 2(b), x = 0 is no longer a global minimizer
because R(x)	 0 around x = 0.

or equal to 0. In this paper, ε = 1E-10 and α = 10 as
suggested in [9]. In [11], another multiplicative repulsion
function based on the error function “erf” is presented

minimize R(x) = (f (x)+ ε)

K∏

j=1

ζρ′
(
γ, δj

)
(7)

where

ζρ′
(
γ, δj

) =
{ |erf

(
γ δj

)|−1, if δj ≤ ρ′
1, otherwise.

(8)

γ > 0 scales the penalty, and ρ′ adjusts the radius of
the repulsion regions. In this paper, γ = 0.1 and ρ′ =
0.1 minn

i=1(xi − xi) as suggested in [11].
2) Additive Repulsion Technique: In [7], an additive repul-

sion function is formulated as follows:

minimize R(x) = f (x)+ β

K∑

j=1

e−δjχρ

(
δj

)
(9)

where

χρ

(
δj

) =
{

1, if δj ≤ ρ

0, otherwise.
(10)

χρ(δj) is the characteristic function, ρ is a small constant
to adjust the radius of the repulsion regions, and β is a
large constant to control the penalty scale. In this paper,
ρ = 0.01 and β = 1000 as suggested in [7].

Fig. 2 gives an example to explain the principle of the repul-
sion technique. In this example, the repulsion technique in (9)
with ρ = 0.1 and β = 10 is used. The original objective
function is: f (x) = sin2(x/π), x ∈ [−10, 10]. It is clear from
Fig. 2(a) that there are three roots with f (x) = 0, i.e., x = −10,
x = 0, and x = 10. Suppose that one root (e.g., x = 0) was
obtained. Afterward, the original objective function is modi-
fied according to the repulsion function. As a result, x = 0 is
not a global minimizer anymore. As shown in Fig. 2(b), the
solutions in the repulsion area (i.e., the area around x = 0)
are penalized while other solutions outside the repulsion area
are not affected, which signifies that the repulsion area is
unpromising.

There are also other similar repulsion techniques presented
in [8] and [12]–[14]. In this paper, we only use the above-
mentioned three repulsion techniques; other repulsion tech-
niques are not described to save space. Note that different

repulsion techniques have different features, Section V-E1
will empirically evaluate the influence of the above-mentioned
three repulsion techniques.

B. Differential Evolution

DE is a simple yet powerful evolutionary algorithm (EA) for
numerical optimization [10]. Similar to other EAs, DE con-
tains four main steps, i.e., initialization, mutation, crossover,
and selection. Initially, the population is randomly generated
in the search space. After initialization, DE generates the trial
vectors by making use of the mutation and crossover. Then,
the trial vectors are evaluated by the fitness function. Finally,
in the selection, each trial vector is compared with its corre-
sponding parent, and replaces the parent only if it has an equal
or better fitness value. DE repeats the mutation, crossover,
and selection until a predefined termination criterion is satis-
fied. More details of DE can be found in [15]. Originally,
DE was developed for single-objective optimization prob-
lems. Recent advances have successfully adapted DE to other
kinds of optimization problems, such as dynamic bias cur-
rent control [16], constrained optimization [17], multiobjective
optimization [18], and multimodal optimization [19].

III. RELATED WORK AND MOTIVATION

A. Related Work

As reviewed in [6], [20], and [21], several different classical
methods have been proposed to solve NESs, which can be
classified as follows.

1) Newton and Quasi-Newton Type Methods: These meth-
ods may obtain super-linear convergence when the initial
guess is close to one of the roots, e.g., [22] and [23].

2) Homotopy Continuation (Embedding) Methods: In these
methods, a hard problem is first transformed into a much
simpler one, and then this simpler problem gradually
deforms into the original one, e.g., [24] and [25].

3) Interval-Newton Methods: The classical Newton-like
iterative methods are applied to the interval variables
in the interval-Newton methods, e.g., [26] and [27].

4) Deterministic Branch-and-Bound Methods: These meth-
ods transform an NES into a global optimization
problem, and then the transformed optimization
problem is solved by the branch-and-bound methods,
e.g., [20] and [28].

Besides the classical methods, there are also some stochas-
tic methods to find multiple roots of NESs. Generally, these
methods can be classified into three categories.

1) Clustering-Based Methods: In the literature, the clus-
tering techniques are used to gather similar solutions
into different clusters to locate different roots of NESs.
For example, a clustering method is used at the exact
search phase in [9]. In addition, the clustering-based
Minfider is used to find multiple roots in [29] and the
fuzzy clustering means is employed in [30].

2) Multiobjective Optimization-Based Methods: Similar to
NESs, multiobjective optimization problems also have
multiple Pareto optimal solutions. Recognizing this sim-
ilarity, some researchers have tried to locate multiple
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roots of NESs based on multiobjective optimization. For
example, an NES is transformed into an m-objective
optimization problem in [31]. Additionally, a biob-
jective transformation technique called multiobjective
optimization based NES (MONES) is presented in [32]
and Qin et al. [33] presented a (n + 1)-objective
transformation technique for NESs. Very recently,
Gong et al. [34] presented a weighted biobjective trans-
formation for NESs.

3) Repulsion-Based Methods: As mentioned in
Section II-A, the repulsion techniques are able to
construct the areas of repulsion around the found
roots. Based on the repulsion techniques, different
methods are designed to find multiple roots of NESs,
such as continuous GRASP [7], two-phase root-finder
using IWO [9], improved harmony search (I-HS)
algorithm [11], multistart simulated annealing [12],
Nelder–Mead (N–M)-based repulsion algorithm [14],
and biased random-key GA [35].

B. Motivation

As pointed out in [6] and [21], the classical methods
have some weaknesses. For example, the performance of the
Newton and quasi-Newton type methods is highly sensitive
to the initial guess; the embedding methods cannot directly
deal with variable bounds and inequality constraints; the
interval-Newton methods are computationally expensive; and
the deterministic branch-and-bound methods need the speci-
fication of bounded intervals. More importantly, the classical
methods only focus on one of the roots in a single run.

With respect to the clustering-based methods, it is difficult
to determine the number of clusters if no priori information
is available for the problem at hand. Moreover, the data set
to be clustered and the clustering period are also problem-
dependent [30].

For the multiobjective optimization-based methods, the
approaches in [31] and [33] may suffer from the “curse of
dimensionality” due to the fact that the number of objectives
in them is related to m or n. With the drastic increase of
m or n, they will transform an NES into a many-objective
optimization problem, which is a grand challenge in the field
of evolutionary computation [36].

As far as the repulsion-based methods are concerned, most
of them need to restart many times so as to obtain different
roots [7], [9], [11], [12], [35]. Under this condition, some use-
ful information discovered previously may be lost in a new run.
For example, some solutions in [9] and [35] may lie within the
attraction basins of certain roots in the current run. However,
such useful information is neglected unreasonably in a new
run because of the population reinitialization, thus leading to
inefficiency.

The reason why the restart is frequently used in the
repulsion-based methods seems straightforward: if without
restart, the diversity of the population will gradually decrease
after one or several roots have been identified due to the lack of
diversity preservation. Therefore, it is believed that if the diver-
sity of the population can be maintained, we can eliminate the

restart while keeping the advantage of the repulsion technique.
Motivated by the above considerations, we present a repulsion-
based adaptive DE in this paper, named RADE. In RADE, the
repulsion technique is exploited to assist DE in locating differ-
ent roots. In addition, the diversity preservation mechanism,
consisting of the neighborhood mutation and the crowding
selection, is used to diversify the population. In principle,
after a new root has been found, the repulsion function should
be modified according to the information of this root, which
means that the repulsion technique will construct a sequence
of minimization problems based on the sequentially modified
repulsion function. Note that to locate a root of a specific
minimization problem, the search ability of an optimization
algorithm is vital. To this end, the adaptive parameter con-
trol is implemented to enhance the search ability of DE and
to avoid the trial-and-error tuning of DE’s parameters. The
synergy of the repulsion technique, the diversity preservation
mechanism, and the adaptive parameter control provides an
effective way to find multiple roots of NESs simultaneously
in a single run: when some roots have been detected, the popu-
lation will continue to search new regions and find undetected
roots because of the repulsion property, good diversity, and
strong search ability. To the best of our knowledge, it is the
first attempt to integrate these three aspects together to solve
NESs.

IV. PROPOSED APPROACH

In this section, a repulsion-based adaptive DE (RADE)
is proposed to find multiple roots of NESs. In RADE, DE
serves as the search engine. Actually, RADE can be con-
sidered as a generic framework since it can accommodate
different repulsion techniques, diversity preservation mecha-
nisms, and adaptive parameter controls. The details of RADE
are described in the following sections.

A. Repulsion in RADE

After an initial population is generated, RADE will search
for the first root of an NES by minimizing f (x) in (3) or (4).
Once the first root has been located, RADE will change to
optimize R(x) in (5), (7), or (9) during the rest of evolution.
Therefore, for each individual, its fitness function F(x) can be
defined as follows:

F(x) =
{

f (x), if no root has been found
R(x), otherwise.

(11)

It can be seen from (5), (7), and (9) that when comput-
ing R(x), the information of all the roots previously found
should be used. Therefore, we store all the obtained roots into
a predefined archive A. In RADE, if a new root is identified,
we will update A according to Algorithm 1. If this new root
can be added into A, then we will implement the following
processes: 1) modifying R(x) by incorporating the information
of this new root and 2) re-evaluating all the individuals in the
population based on the modified R(x). In Algorithm 1, θ is a
very small positive number to judge whether an individual is
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Algorithm 1: Archive Updating
Input: Individual x, archive A, accuracy level θ , distance

radius τd, and maximum archive size maxs

Output: The updated A and the archive size s
1 if f (x) < θ then // x is a root
2 if s = 0 then // A is empty
3 A = A ∪ x;
4 s = s+ 1;

5 else
6 Find the closest solution x′ ∈ A to x in the

decision space;
7 if ‖ x− x′ ‖< τd then // x and x′ are too

close
8 if f (x) < f (x′) then
9 x′ = x;

10 else
11 if s < maxs then
12 A = A ∪ x;
13 s = s+ 1;

14 else // A is full
15 if f (x) < f (x′) then
16 x′ = x;

a root or not, τd is a distance radius to avoid redundant roots
in A, and maxs is the maximum archive size.1

Over the course of evolution, R(x) will be sequentially mod-
ified with the information of the newly found roots in A, and
any individual lying within one of the repulsion areas deter-
mined by R(x) will be penalized as introduced in Section II-A
and Fig. 2.

B. Diversity Preservation Mechanism

In evolutionary computation, the diversity of population
plays a crucial role in balancing the exploitation and explo-
ration [37], [38]. The diversity is also a major factor which
affects the finding of multiple roots of NESs in a single
run. In general, different diversity preservation mechanisms
in evolutionary computation can be incorporated into the
proposed RADE. As an illustration, we introduce a diversity
preservation mechanism inspired by [39], which integrates the
neighborhood mutation and the crowding selection with DE.

Suppose that the population P of DE consists of NP individ-
uals: x1, . . . , xNP. In contrast to the traditional DE mutation,
the neighborhood mutation only selects several similar indi-
viduals measured by Euclidean distance in the decision space
to generate a mutant vector for each individual.

1) For each individual xi = (xi,1, . . . , xi,n) (i = 1, . . . , NP),
select  individuals with the smallest Euclidean distances
to xi in P to form the subpopulation subpopi.

1Note that the parameter maxs is not mandatory. In this paper, it is used
in order not to save too many solutions into A.

2) Generate a mutation vector vi = (vi,1, . . . , vi,n):

vi = xr1 + F · (xr2 − xr3) (12)

where xr1, xr2, and xr3 are randomly chosen from
subpopi, and F is the scaling factor of DE.

It is obvious that the neighborhood mutation produces a mutant
vector within a local area, which enables P to distribute around
the attraction basins of different roots.

After the crossover, a trial vector ui = (ui,1, . . . , ui,n) is
created:

ui,j =
{

vi,j, if randj < CR or j = jrand

xi,j, otherwise
(13)

where randj is a uniformly distributed random number from
[0, 1], jrand is a random integer uniformly generated from
{1, . . . , n}, and CR is the crossover rate of DE.

In the crowding selection, the trial vector ui compares with
the closest individual (denoted as u′i) in P for survival

u′i =
{

ui, if F(ui) ≤ F(u′i)
u′i, otherwise.

(14)

The crowding selection is able to facilitate multiple conver-
gence since it is carried out between the most similar two
individuals.

Overall, the neighborhood mutation and the crowding selec-
tion make P converge toward different roots of an NES by
diversifying it.

C. Adaptive Parameter Control

DE has three parameters (i.e., the population size NP, the
scaling factor F, and the crossover rate CR) that need to
be set by the users. It is noteworthy that the search ability
of DE is strongly dependent on the parameter settings [40].
To enhance the search ability and alleviate the tedious tasks
of parameter tuning for different problems, F and CR are
adaptively controlled based on their successful experience in
RADE. As an example, the parameter adaptation technique
presented in SHADE [41] is used, because of its superior
performance on IEEE CEC2005 and IEEE CEC2013 bench-
marks [41], [42]. Note that the influence of other parameter
adaptation techniques will be studied in Section V-E3.

In SHADE [41], each individual xi (i = 1, . . . , NP) in the
population is associated with a pair of F and CR, denoted as
Fi and CRi. In addition, SHADE also maintains a historical
memory with Hm entries, i.e., MF,j and MCR,j (j = 1, . . . , Hm),
for F and CR. Initially, the elements of MF,j and MCR,j (j =
1, . . . , Hm) are set to 0.5.

At each generation, Fi and CRi are generated for xi as
follows:

Fi = randc
(
MF,hi , 0.1

)
(15)

CRi = randn
(
MCR,hi , 0.1

)
(16)

where randc(·, ·) is the Cauchy random number, randn(·, ·) is
the Gaussian random number, and hi is an integer randomly
selected from {1, . . . , Hm}.

During the evolution, if the trial vector is able to success-
fully replace the parent, then the corresponding Fi and CRi
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will be recorded in SF and SCR, respectively. At the end of
each generation, MF and MCR are updated as follows:

MF,k =
{

meanWL(SF) if SF = ∅
MF,k otherwise

(17)

MCR,k =
{

meanWA(SCR) if SCR = ∅
MCR,k otherwise

(18)

where meanWL(SF) is the weighted Lehmer mean of SF
and meanWA(SCR) is the weighted arithmetic mean of SCR.
In (17) and (18), k is an index between 1 and Hm. k is set to
1 at the beginning of evolution and increases by 1 after one
generation. If k > Hm, then it is reset to 1.

We make a simple modification to the parameter adapta-
tion in SHADE [41]: the weighted means meanWL(SF) and
meanWA(SCR) are replaced with the means meanL(SF) and
meanA(SCR) presented in JADE [43],2 respectively. The rea-
son is that the fitness-based weights calculated in [41] are not
suitable for NESs with multiple roots. For example, a parent
xi with f (xi) = 0 generates a different trial vector ui with
f (ui) = 0. Hence, � = f (ui) − f (xi) = 0. In this way, the
influence of F and CR will be ignored if the weighted means
of SHADE [41] are used. However, in fact, they are successful
parameters since they generate a new root ui.

D. Framework of RADE

By integrating the above-mentioned repulsion technique,
diversity preservation mechanism, and adaptive parameter
control, the framework of RADE is given in Algorithm 2.

1) In line 16, the repulsion technique is applied when the
archive is not empty. Note that, since f (x) has been
computed in (3), we do not need to recomputer f (x)

in (11).
2) In line 12, the neighborhood mutation is used.
3) In lines 15 and 17–19, the crowding selection occurs.
4) In lines 3, 9, 11, and 20–22, the adaptive parameter

control is implemented.
Initially, the population P containing NP individuals is ran-

domly generated and all the individuals in P are evaluated by
f (x) in (3). At each iteration, the archive A is updated with the
individuals in P by making use of Algorithm 1. Thereafter, NP
trial vectors are generated via the neighborhood mutation and
crossover of DE, and evaluated by f (x) in (3). Subsequently,
the crowding selection is applied to each trial vector and its
closest individual in P . If A = ∅, the comparison between
them is based on the repulsion function R(x); otherwise f (x).
After the crowding selection, the parameters CR and F of DE
will be updated adaptively. Finally, A will be output if the
maximum number of fitness evaluations (i.e., Max_FEs) is
reached.

Remark 1: From Algorithm 2, we can see that there are two
major differences between RADE and neighborhood mutation-
based crowding DE (NCDE) [39].

1) The repulsion technique is used in RADE to find
multiple roots of NESs. It is able to avoid convergence

2For the sake of brevity, we omit the detailed descriptions of meanWL(SF)

and meanWA(SCR) in SHADE [41], and meanL(SF) and meanA(SCR) in
JADE [43]. More details can be found in the corresponding references.

Algorithm 2: Framework of RADE
Input: Control parameters: NP, Hm, and Max_FEs
Output: The final archive A

1 Randomly generate an initial population P , which
contains NP individuals: x1, . . . , xNP;

2 Calculate f (xi) (i = 1, . . . , NP) with (3);
3 Set all values in the historical memory MCR,j and MF,j

(j = 1, . . . , Hm) to 0.5;
4 k = 1;
5 Set the archive A = ∅ and FEs = NP;
6 while FEs < Max_FEs do
7 for i = 1 to NP do
8 Update A with xi using Algorithm 1;

9 Set SCR = ∅ and SF = ∅;
10 for i = 1 to NP do
11 Implement (15) and (16) to produce Fi and CRi

for xi;
12 Generate the trial vector ui via the neighborhood

mutation and crossover in (12) and (13) ;
13 Calculate f (ui) with (3);
14 FEs = FEs+ 1;
15 Find the closest solution u′i in the decision space

to ui in P;
16 Calculate F(u′i) and F(ui) with (11);
17 if F(ui) ≤ F(u′i) then
18 u′i = ui;
19 f (u′i) = f (ui);
20 SF ← Fi, SCR ← CRi;

21 if SF = ∅ and SCR = ∅ then
22 Update MF,k and MCR,k based on SF and SCR

(see (17) and (18));
23 k = k + 1;
24 if k > Hm then
25 k = 1;

to the previously found roots. Since the repulsion tech-
nique is employed, an external archive A is used to store
the roots that have already been found.

2) The adaptive parameter control is implemented in
RADE, which can enhance the search ability and elim-
inate the trial-and-error parameter tuning of DE.

Remark 2: In [11], I-HS is proposed to detect multiple roots
of an NES in a single run. Unfortunately, several algorithmic
parameters in [11] should be set properly. It is worth noting
that RADE is similar to the work in [11], because both of
them employ EAs and the repulsion technique to find multiple
roots of an NES. However, there are two significant differences
between them.

1) This paper combines the neighborhood mutation, the
crowding selection, and the adaptive parameter control
together to form an effective optimizer for NESs.

2) In [11], the population reinitialization is used to maintain
the diversity, whereas in RADE the neighborhood muta-
tion and the crowding selection are adopted to preserve
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TABLE I
BRIEF INFORMATION OF THE 30 NESS, WHERE n IS THE NUMBER OF

DECISION VARIABLES, LE AND NE ARE THE NUMBER OF LINEAR

AND NONLINEAR EQUATIONS, RESPECTIVELY, NOR IS THE

NUMBER OF THE KNOWN ROOTS OF AN NES, AND Max_FEs
IS THE MAXIMUM NUMBER OF FITNESS EVALUATIONS

the diversity. As we mentioned before, a possible draw-
back of the population reinitialization is the loss of some
useful information previously obtained.

V. EXPERIMENTAL STUDIES AND DISCUSSIONS

A. Test Problems and Performance Criteria

To comprehensively evaluate the performance of different
methods, we chose 30 NESs (denoted as F01-F30) from the
literature. These test problems have different features, and
some of them come from real-world applications, such as the
interval arithmetic problem (F05) [31], multiple steady states
problem (F08) [6], robot kinematics problem (F17) [44], and
molecular conformation (F23) [45]. Table I briefly describes
them and their detailed information has been provided in the
supplementary material.

The transformed optimization problems of NESs
in (3) and (4) are similar to multimodal optimization
problems, because both of them are required to find
multiple roots/optimal solutions. Therefore, we borrowed two
performance criteria in [46] for multimodal optimization to
compare the performance of different methods for NESs.

1) Root Rate (RR): It computes the average ratio of roots
found over multiple runs

RR =
∑Nr

i=1 NORi

NOR · Nr
(19)

where Nr is the number of runs, NORi is the number of
roots found in the ith run, and NOR is the number of

the known roots of an NES. In this paper, we made use
of the archive A to compute NORi in each run based on
Algorithm 1. The three parameters in Algorithm 1 were
set as follows and kept unchanged.

a) Accuracy Level: θ = 1E-06, if n ≤ 5; otherwise,
θ = 1E-04.

b) Distance Radius: τd = 0.001, if n ≤ 5; otherwise,
τd = 0.01.

c) Maximum Archive Size: maxs = NP.
2) Success Rate (SR): It measures the ratio of successful

runs

SR = Nsr

Nr
(20)

where Nsr is the number of successful runs. A successful
run is defined as a run where all the known roots of an
NES are found.

To test the statistical differences among different methods,
based on the RR and SR values, we conducted the multiple-
problem Wilcoxon’s test and the Friedman’s test via KEEL
software [47]. In the multiple-problem Wilcoxon’s test, p <

0.05 means that there is a significant difference between the
two compared methods.

B. Methods for Comparison and Their Parameter Settings

RADE is compared with five different methods.
1) NCDE: This method is presented in [39]. It is cho-

sen based on two considerations: a) it obtains very
promising results for multimodal optimization problems
and b) similar to NCDE, the neighborhood mutation
and the crowding selection are also adopted in RADE.
For NCDE, (3) is considered as the objective function.
Through comparing with NCDE, the influence of the
repulsion technique and adaptive parameter control in
RADE can be evaluated.

2) R-JADE, R-CLPSO, and I-HS: They are repulsion-
based methods. In repulsion-based JADE (R-JADE) and
repulsion-based CLPSO (R-CLPSO), JADE proposed
in [43] and CLPSO proposed in [48] are considered as
the optimization algorithms, respectively. The reason
why the repulsion technique is integrated with JADE
and CLPSO is the following: JADE and CLPSO exhibit
outstanding performance among different DE variants
and particle swarm optimization (PSO) variants, respec-
tively. In [11], I-HS proposed in [49] is combined with
the repulsion technique to solve NESs. By comparing
with R-JADE, R-CLPSO, and I-HS, we can assess
the influence of different optimization algorithms on
solving NESs.

3) MONES: It is a recent multiobjective optimization-based
method [32], which is able to locate multiple roots of
NESs. Note that MONES originally uses NSGA-II [50]
as the search engine. In this paper, SHADE replaces
the crossover and mutation operators as well as the
algorithmic parameters in NSGA-II. It is because
DE operators are able to achieve better results than
the original operators in NSGA-II for multiobjective
optimization problems [51].
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(a) (b) (c) (d)

Fig. 3. Evolution of RADE-WoR over a typical run on F03. Circles denote the individuals in the population, pentagrams denote the known roots, and
diamonds denote the found roots in the archive. (a) gen = 1. (b) gen = 100. (c) gen = 300. (d) gen = 500.

(a) (b) (c) (d)

Fig. 4. Evolution of RADE-WoD over a typical run on F03. Circles denote the individuals in the population, pentagrams denote the known roots, and
diamonds denote the found roots in the archive. (a) gen = 1. (b) gen = 100. (c) gen = 300. (d) gen = 500.

TABLE II
PARAMETER SETTINGS OF THE SEVEN METHODS USED IN THIS PAPER

For the six compared methods, the parameter settings are
given in Table II.3 All the parameter settings were kept the
same in our experiments unless a change was mentioned.
Max_FEs is given in the last column of Table I. It is nec-
essary to emphasize that Max_FEs was set according to the
difficulties of different test problems. Each test problem was
optimized over 100 independent runs. For a fair comparison,
all of the compared methods started with the same initial
population in each of 100 runs.

Note that the repulsion technique in (5) was used in R-
JADE, R-CLPSO, I-HS, and RADE. The effect of other
repulsion techniques introduced in Section II-A is discussed
in Section V-E1.

C. Proof-of-Principle Results

First, we are interested in analyzing the working principle
of RADE. For this purpose, we chose the third test problem
F03 as an instance and considered three variants of RADE.

3As suggested in [39], the neighborhood size  was dynamically con-
trolled as  = 5 + �5 · (max_gen − gen)/max_gen� for RADE and NCDE,
where gen and max_gen are the current and maximum number of generations,
respectively.

1) RADE-WoR, in which the repulsion technique was
removed from RADE and F(x) = f (x) in (14) during
the evolution.

2) RADE-WoD, where we eliminated the diversity preser-
vation mechanism from RADE and the classic
DE/rand/1/bin was utilized.

3) RADE-WoA, in which the adaptive parameter control of
RADE was not used and F and CR were fixed to 0.9
and 0.1 according to the suggestion in [39], respectively.

For F03, since Max_FEs = 50, 000 and NP = 100, the max-
imum number of generation is equal to 500. As shown in
Table I, F03 contains two decision variables; thus it is easy
to monitor the evolutionary status of a method. When solv-
ing F03, RADE and its three variants used the same initial
population to ensure a fair comparison.

Figs. 3–6 provide the evolution of RADE and its three vari-
ants over a typical run on F03. From Figs. 3–6, we can give
the following comments.

1) RADE-WoR loses some of the roots. Although some
individuals already surround the attraction basins of
some roots, they cannot be stored into the archive due
to the low precision. Moreover, as shown in Fig. 3, if
two roots are very close to each other, RADE-WoR is
likely to miss one of them. The reasons of the above phe-
nomena are twofold: a) due to the lack of the repulsion
technique, if some roots have been found, the individuals
near these roots will continue to search in the attraction
basins of these roots, which inevitably wastes a lot of
computational resource and results in low precision of
other individuals, and b) if two roots are very close and
if one of them has been identified, the individuals around
the unfound root may be replaced with other individuals
surrounding the found root.
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(a) (b) (c) (d)

Fig. 5. Evolution of RADE-WoA over a typical run on F03. Circles denote the individuals in the population, pentagrams denote the known roots, and
diamonds denote the found roots in the archive. (a) gen = 1. (b) gen = 100. (c) gen = 300. (d) gen = 500.

(a) (b) (c) (d)

Fig. 6. Evolution of RADE over a typical run on F03. Circles denote the individuals in the population, pentagrams denote the known roots, and diamonds
denote the found roots in the archive. (a) gen = 1. (b) gen = 100. (c) gen = 300. (d) gen = 500.

2) It is clear from Fig. 4 that RADE-WoD also fails to
locate all the roots. Actually, we can observe that during
the evolution, RADE-WoD is able to find some of the
roots. It is because in the early and middle stages of
evolution, the diversity of the population is good and
the repulsion technique can guide the population to find
some roots. However, at the end of evolution, all the
individuals converge to one of the roots as shown in
Fig. 4. It is not difficult to understand since the diversity
of the population gradually decreases. Note that if all
the individuals already get stuck in one of the roots, it
is very difficult for them to jump out from the search
region even though the repulsion technique is available,
owing to the poor diversity.

3) As depicted in Fig. 5, again, it is a very challenging
task for RADE-WoA to find all the roots. This can be
explained as follows: the search ability of RADE-WoA
is weak because of the unsuitable parameter settings for
F and CR, which results in the low precision of some
individuals.

4) From Fig. 6, RADE succeeds in finding all the roots
of F03. The success of RADE can be attributed to the
facts that: a) the repulsion technique has the capabil-
ity to avoid searching around the roots found previously
and, as a result, increases the possibility to detect more
roots; b) the diversity preservation mechanism can main-
tain the diversity of the population, which is definitely
beneficial for finding multiple roots during the evolution;
and c) the adaptive parameter control is able to pursue
suitable parameters, thus enhancing the performance of
RADE.

To further investigate the effectiveness of the three aspects
of RADE, we applied RADE and its three variants to solve the

TABLE III
RESULTS OBTAINED BY THE MULTIPLE-PROBLEM WILCOXON’S TEST

FOR THE FOUR COMPARED METHODS. IN RADE-WOR, THE REPULSION

TECHNIQUE WAS NOT USED; IN RADE-WOD, THE DIVERSITY

PRESERVATION MECHANISM WAS NOT USED; AND IN RADE-WOA,
THE ADAPTIVE PARAMETER CONTROL WAS NOT USED. RR IS THE

AVERAGE RATIO OF ROOTS FOUND OVER MULTIPLE RUNS,
AND SR IS THE RATIO OF SUCCESSFUL RUNS

TABLE IV
RANKINGS OF THE FOUR COMPARED METHODS BY THE FRIEDMAN’S

TEST. RR IS THE AVERAGE RATIO OF ROOTS FOUND OVER MULTIPLE

RUNS, AND SR IS THE RATIO OF SUCCESSFUL RUNS

30 NESs. Table S-R-I in the supplementary material summa-
rizes the detailed results. Tables III and IV report the statistical
test results based on the multiple-problem Wilcoxon’s test
and the Friedman’s test, respectively. From Table III, RADE
achieves higher R+ values than R− values in all the cases.
Moreover, RADE performs significantly better than RADE-
WoD and RADE-WoA because the p-values are less than 0.05.
According to the Friedman’s test in Table IV, RADE ranks the
first in both RR and SR criteria.

Clearly, the above results verify the motivation of this
paper—the repulsion technique, the diversity preservation



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

TABLE V
AVERAGE RR AND SR VALUES OF THE SIX COMPARED METHODS FOR

ALL TEST PROBLEMS. RR IS THE AVERAGE RATIO OF ROOTS FOUND

OVER MULTIPLE RUNS, AND SR IS THE RATIO OF SUCCESSFUL RUNS

TABLE VI
RESULTS OBTAINED BY THE MULTIPLE-PROBLEM WILCOXON’S

TEST FOR THE SIX COMPARED METHODS. RR IS THE AVERAGE

RATIO OF ROOTS FOUND OVER MULTIPLE RUNS, AND

SR IS THE RATIO OF SUCCESSFUL RUNS

mechanism, and the adaptive parameter control are three indis-
pensable elements for RADE to effectively find multiple roots
of NESs.

D. Comparison With NCDE, R-JADE, R-CLPSO, I-HS,
and MONES

The performance of RADE is compared with that of the
five methods introduced in Section V-B. The detailed results
in terms of RR and SR are reported in Table S-R-II and
Table S-R-III in the supplementary material, respectively. The
average RR and SR values of the six compared methods are
shown in Table V. From Tables S-R-II, S-R-III, and V, it can
be seen that RADE provides the highest average RR value,
i.e., 0.9491 and the highest average SR value, i.e., 0.8247.
Furthermore, RADE successfully solves 13 out of 30 test prob-
lems over 100 runs. In contrast, NCDE, R-JADE, R-CLPSO,
I-HS, and MONES successfully solve five, eight, eight, nine,
and five test problems over 100 runs, respectively.

The statistical test results obtained by the multiple-problem
Wilcoxon’s test are reported in Table VI. Additionally, the
rankings of the six compared methods derived from the
Friedman’s test are presented in Table VII. From Table VI,
RADE consistently provides significantly better results than
NCDE, R-JADE, R-CLPSO, MONES, and I-HS because the
p-values are less than 0.05 in all the cases. In addition, RADE
has the best ranking as shown in Table VII. Therefore, we can
draw the following conclusions.

1) Comparing RADE with NCDE, we can conclude that the
repulsion technique and the adaptive parameter control
significantly improve the performance of NCDE.

2) Comparing RADE with R-JADE, R-CLPSO, and I-HS,
we can conclude that although the repulsion technique
can be exploited to find different roots of NESs, the
performance of the repulsion-based methods is remark-
ably influenced by the optimization algorithms.

TABLE VII
RANKINGS OF THE SIX COMPARED METHODS BY THE FRIEDMAN’S TEST.

RR IS THE AVERAGE RATIO OF ROOTS FOUND OVER MULTIPLE

RUNS, AND SR IS THE RATIO OF SUCCESSFUL RUNS

TABLE VIII
RESULTS OBTAINED BY THE MULTIPLE-PROBLEM WILCOXON’S TEST

FOR RADE WITH DIFFERENT REPULSION TECHNIQUES. RR IS THE

AVERAGE RATIO OF ROOTS FOUND OVER MULTIPLE RUNS,
AND SR IS THE RATIO OF SUCCESSFUL RUNS

TABLE IX
RANKINGS OF RADE WITH DIFFERENT REPULSION TECHNIQUES BY THE

FRIEDMAN’S TEST. RR IS THE AVERAGE RATIO OF ROOTS FOUND OVER

MULTIPLE RUNS, AND SR IS THE RATIO OF SUCCESSFUL RUNS

The above comparison indicates that, on the whole, the
cooperation of the repulsion technique, the diversity preserva-
tion mechanism, and the adaptive parameter control is really
effective. As a consequence, RADE is able to yield improved
performance compared with the five competitors.

E. Discussions on Different Components

As mentioned before, our proposed RADE is a generic
framework. This section discusses the effectiveness of different
components in RADE.

1) On Other Repulsion Techniques: In Section II-A, three
representative repulsion techniques were introduced. In the
previous experiments, the repulsion technique in (5) was used.
To investigate the effectiveness of other repulsion techniques,
we replaced (5) with (7) and (9) in RADE. As a result, two
RADE variants are obtained, called RADE-1 and RADE-2.

The detailed results in terms of RR and SR are provided
in Table S-R-IV in the supplementary material. The statistical
test results are reported in Tables VIII and IX. From Table IX,
we can see that RADE with the repulsion technique in (5)
performs the best, followed by RADE-1. However, there is no
significant difference between RADE and each of RADE-1
and RADE-2 according to the multiple-problem Wilcoxon’s
test in Table VIII since p > 0.05.

2) On Other Diversity Preservation Mechanisms: In
RADE, the crowding selection was used as the selection
operator. To study the effectiveness of other diversity preser-
vation mechanisms, the speciation selection [39] was applied
to replace the crowding selection in RADE. The resulting
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TABLE X
RESULTS OBTAINED BY THE MULTIPLE-PROBLEM WILCOXON’S TEST

FOR THE SIX COMPARED ALGORITHMS. RR IS THE AVERAGE RATIO OF

ROOTS FOUND OVER MULTIPLE RUNS, AND SR IS THE RATIO OF

SUCCESSFUL RUNS

TABLE XI
RESULTS OBTAINED BY THE MULTIPLE-PROBLEM WILCOXON’S TEST

FOR RADE WITH DIFFERENT ADAPTIVE PARAMETER CONTROLS. RR IS

THE AVERAGE RATIO OF ROOTS FOUND OVER MULTIPLE RUNS,
AND SR IS THE RATIO OF SUCCESSFUL RUNS

TABLE XII
RANKINGS OF RADE WITH DIFFERENT ADAPTIVE PARAMETER

CONTROLS BY THE FRIEDMAN’S TEST. RR IS THE AVERAGE

RATIO OF ROOTS FOUND OVER MULTIPLE RUNS, AND SR
IS THE RATIO OF SUCCESSFUL RUNS

method is referred to as RADE-3. In RADE-3, all other param-
eter settings were kept the same with RADE. Table S-R-V, in
the supplementary material, reports the RR and SR values of
RADE-3. In addition, Table X compares RADE-3 with RADE,
NCDE, R-JADE, and MONES according to the multiple-
problem Wilcoxon’s test, by integrating the experimental
results in Tables S-R-II and S-R-III.

Table S-R-V indicates that RADE-3 is slightly worse than
RADE in terms of the average RR and SR. However, from
Table X, it can be seen that RADE-3 obtains significantly
better performance than NCDE, R-JADE, and MONES. It
also significantly outperforms R-CLPSO in terms of RR at
p = 0.05 and in terms of SR at p = 0.1, respectively. Hence,
one can conclude that other advanced diversity preservation
mechanism could also be applicable to the RADE framework.

3) On Other Adaptive Parameter Controls: In the DE lit-
erature, there are also other techniques for adaptive parameter
control, e.g., jDE [52] and JADE [43]. The effectiveness of
the techniques in jDE and JADE was investigated by incorpo-
rating them into RADE. The resultant methods are denoted as
RADE-4 (RADE with jDE’s adaptive parameter control) and
RADE-5 (RADE with JADE’s adaptive parameter control),
respectively.

The detailed results are provided in Table S-R-VI in the sup-
plementary material. Additionally, Tables XI and XII report
the statistical test results based on the multiple-problem
Wilcoxon’s test and the Friedman’s test, respectively. It is clear
from Table XII that RADE yields better ranking than RADE-4

TABLE XIII
RESULTS OBTAINED BY THE MULTIPLE-PROBLEM WILCOXON’S TEST

FOR RADE WITH DIFFERENT MUTATION OPERATORS. RR IS THE

AVERAGE RATIO OF ROOTS FOUND OVER MULTIPLE RUNS,
AND SR IS THE RATIO OF SUCCESSFUL RUNS

and RADE-5. However, there are no significant differences
among these three methods from Table XI.

Remark 3: Based on the above empirical discussions, it
seems that there exist some other options for the repulsion
techniques, diversity preservation mechanisms, and adaptive
parameter controls under our RADE framework, which verifies
its robustness.

4) On Different Mutation Operators: There is a variety
of mutation operators in the DE community [15]. Generally,
different mutation operators are suitable for different prob-
lems [53]. In RADE, “DE/rand/1” was originally employed
in the neighborhood mutation as shown in (12). We replaced
DE/rand/1 with other widely used mutation operators, with the
aim of evaluating the effectiveness of different mutation oper-
ators for solving NESs. To this end, we tested four RADE
variants: 1) RADE-6, i.e., RADE with “DE/rand-to-best/1”;
2) RADE-7, i.e., RADE with “DE/rand/2”; 3) RADE-8, i.e.,
RADE with “DE/current-to-best/2”; and 4) RADE-9, i.e.,
RADE with “DE/current-to-rand/1.”4 In addition, since the
adaptation technique for mutation operators has been proved
to be effective for improving the performance of DE in single-
objective optimization problems [53], SaDE, a representative
adaptation technique, was also assessed in this section. Note
that for the four RADE variants and SaDE, the neighborhood
mutation and the crowding selection were also adopted. The
parameter settings were kept unchanged for the four RADE
variants. For SaDE, the parameter settings were the same as
in the original paper [53] and shown in Table II.

Tables S-R-VII and S-R-VIII in the supplementary mate-
rial report the RR and SR values, respectively. The statistical
test results derived from the multiple-problem Wilcoxon’s and
Friedman’s tests are given in Tables XIII and XIV, respec-
tively. Tables S-R-VII, S-R-VIII, XIII and XIV reveal the
following.

a) Mutation operators have a significant effect on the
performance of RADE. Overall, DE/rand/1 accom-
plishes the best results, followed by DE/rand/2 and
DE/current-to-rand/1. Whereas, the mutation opera-
tors with the best solution drastically degenerate the
performance of RADE.

4“best” in “DE/rand-to-best/1” and DE/current-to-best/2 means the best
individual in the current population based on F(x) in (14). For RADE-6,
RADE-7, and RADE-8, the binomial crossover in DE was used, however for
RADE-9, the crossover was not used.
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TABLE XIV
RANKINGS OF RADE WITH DIFFERENT MUTATION OPERATORS BY THE

FRIEDMAN’S TEST. RR IS THE AVERAGE RATIO OF ROOTS FOUND OVER

MULTIPLE RUNS, AND SR IS THE RATIO OF SUCCESSFUL RUNS

TABLE XV
RESULTS OBTAINED BY THE MULTIPLE-PROBLEM WILCOXON’S TEST

FOR RADE WITH DIFFERENT NP VALUES. RR IS THE AVERAGE RATIO OF

ROOTS FOUND OVER MULTIPLE RUNS, AND SR
IS THE RATIO OF SUCCESSFUL RUNS

TABLE XVI
RANKINGS OF RADE WITH DIFFERENT NP VALUES BY THE FRIEDMAN’S

TEST. RR IS THE AVERAGE RATIO OF ROOTS FOUND OVER MULTIPLE

RUNS, AND SR IS THE RATIO OF SUCCESSFUL RUNS

b) SaDE provides the second best results in terms of both
RR and SR, which means that mutation operator adap-
tation could be a good choice when solving different
NESs.

F. Discussions on Different Parameter Settings

This section discusses the influence of different parameter
settings of NP, Hm, and α on the performance of RADE.

1) Effect of Different Population Sizes: In the previous sec-
tions, the population size NP was fixed to 100, which has
been widely adopted in the DE literature [41], [43], [52]. We
empirically investigated the effect of population size by test-
ing different NP values: 50, 80, 120, 150, and 200. All other
parameter settings in RADE were kept the same as in Table II.
Tables S-R-IX and S-R-X in the supplementary material report
the detailed results of RR and SR, respectively. In addition,
Tables XV and XVI show the statistical results obtained by
the multiple-problem Wilcoxon’s test and the Friedman’s test,
respectively.

From Table XVI, we can observe that NP = 120 is able
to provide the best performance on the whole. The results
in Table XV indicate that there are no significant differences
among RADE with different population sizes. However, by
carefully looking at the results in Tables S-R-IX and S-R-X,
we find that RADE with a smaller population size provides
better results on F04, F09, F16, and F19; while on F02, F03,

TABLE XVII
RESULTS OBTAINED BY THE MULTIPLE-PROBLEM WILCOXON’S TEST

FOR RADE WITH DIFFERENT Hm VALUES. RR IS THE AVERAGE

RATIO OF ROOTS FOUND OVER MULTIPLE RUNS,
AND SR IS THE RATIO OF SUCCESSFUL RUNS

TABLE XVIII
RANKINGS OF RADE WITH DIFFERENT Hm VALUES BY THE

FRIEDMAN’S TEST. RR IS THE AVERAGE RATIO OF ROOTS

FOUND OVER MULTIPLE RUNS, AND SR IS

THE RATIO OF SUCCESSFUL RUNS

F12, F13, F17, and F23, the better results are obtained by
RADE with a larger population size. This phenomenon could
motivate us to study the dynamic or adaptive control of pop-
ulation size to further improve the performance of RADE.
However, it is out of the scope of this paper. We will leave
it to our future work. In general, NP ∈ [80, 120] can yield
promising results.

2) Influence of Different Hm Values: In RADE, the param-
eter Hm controls the size of history memory for adaptively
updating F and CR in Section IV-C. In the previous experi-
ments, Hm = 200 was used. We tested the following Hm val-
ues: 5, 10, 30, 50, 100, 300, 400, 500, 800, and 1000. All other
parameter settings were kept unchanged. The detailed results
of RR and SR are reported in Tables S-R-XI and S-R-XII in the
supplementary material, respectively. Furthermore, the statis-
tical test results obtained by the multiple-problem Wilcoxon’s
test are shown in Table XVII and the rankings resulting from
the Friedman’s test are given in Table XVIII.

Tables S-R-XI and S-R-XII indicate that Hm = 800 pro-
vides the highest average RR and SR values. For Hm > 200,
RADE gets better results in both RR and SR criteria compared
with the default setting Hm = 200. However, for Hm < 200,
the performance degradation occurs as Hm decreases. The
reason might be the following: most of NESs in this paper
contain many roots, when some of them are found dur-
ing the previous generations, the fitness function will be
altered according to the repulsion function. Subsequently,
the optimizer will face a new optimization problem, and
the previous suitable parameters recorded in the historical
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TABLE XIX
RESULTS OBTAINED BY THE MULTIPLE-PROBLEM WILCOXON’S TEST

FOR RADE WITH DIFFERENT α VALUES. RR IS THE AVERAGE

RATIO OF ROOTS FOUND OVER MULTIPLE RUNS, AND SR
IS THE RATIO OF SUCCESSFUL RUNS

TABLE XX
RANKINGS OF RADE WITH DIFFERENT α VALUES BY THE FRIEDMAN’S

TEST. RR IS THE AVERAGE RATIO OF ROOTS FOUND OVER MULTIPLE

RUNS, AND SR IS THE RATIO OF SUCCESSFUL RUNS

memory may be not suitable for the new optimization problem.
Therefore, performance seems to be improved as Hm increases.
Table XVIII also verifies the above observation: RADE with
Hm ≥ 200 provides better rankings than Hm < 200.

Table XVII shows that the performance differences among
RADE with different Hm values are not significant compared
with Hm = 800, which means that the influence of Hm is not
significant in RADE. According to Tables S-R-XI, S-R-XII,
and XVIII, the value of Hm can be chosen from a large range,
e.g., [200, 1000].

3) Influence of Different α Values: The repulsion func-
tion in (5) has two parameters ε and α. The parameter α,
which is used to adjust the radius of the repulsion areas, plays
a more important role than ε.5 Therefore, the influence of
different α values on the performance of RADE was empiri-
cally studied. The detailed results of RR and SR are shown in
Tables S-R-XIII and S-R-XIV in the supplementary material,
respectively. Table XIX reports the statistical test results pro-
vided by the multiple-problem Wilcoxon’s test for RADE with
different α values. The rankings obtained by the Friedman’s
test are described in Table XX.

It can be seen from Tables S-R-XIII, S-R-XIV, and XX
that RADE with α = 1 achieves the highest average RR and
SR values and the best ranking, followed by α = 2. Although
the default setting α = 10 is not the best, it still obtains
acceptable results. RADE with larger α values (α ≥ 20)
performs worse than RADE with smaller α values (α ≤ 10).
The reason can be explained as follows: as mentioned in [9],
if α decreases, the radius of the repulsion regions generated
by | coth(αx)| will be enlarged. It means that the penalty term∏K

j=1 | coth (αδj)| in (5) increases with the decrease of α. In

5We also set different ε values (e.g., 1E-08, 1E-10, 1E-15, 1E-20, and 0) in
RADE, the experimental results show that the influence of ε can be negligible.
Interested readers can find the detailed results in Tables S-R-XV and S-R-XVI
in the supplementary material.

TABLE XXI
EXPERIMENTAL RESULTS OF RADE AND N-M BASED ON 12 TEST

PROBLEMS PRESENTED IN [14]. THE ORIGINAL RESULTS IN [14] WERE

CONVERTED INTO THE RR AND SR VALUES BASED ON (19) AND (20),
RESPECTIVELY. RR IS THE AVERAGE RATIO OF ROOTS FOUND OVER

MULTIPLE RUNS, AND SR IS THE RATIO OF SUCCESSFUL RUNS

this way, the method with smaller α values will pay more
attention to search for new roots, due to the higher penalty
on the solutions that are closer to the roots found previously.

From Table XIX, there are no significant performance
differences among RADE with different α values. Suggested
by the results in Tables S-R-XIII, S-R-XIV, XIX, and XX,
the reasonable value of α is between 1 and 10.

G. Comparison With Other Reported Results

In the previous experiments, the superior performance of
RADE has been demonstrated through the 30 NESs in Table I.
To further understand the performance of RADE, it was
compared with other reported results in [14]. Twelve NESs
collected in [14] were used in this paper, which are referred
to as c01–c12. In [14], the repulsion technique is integrated
with the N–M method to find multiple roots of NESs. To make
a fair comparison, RADE implemented the same number of
fitness evaluations for each test problem as in [14] over 100
independent runs. In addition, the original results in [14] were
converted into the RR and SR values based on (19) and (20),
respectively.

The experimental results are summarized in Table XXI. On
six out of 12 test problems, RADE provides better results in
terms of both RR and SR criteria. However, N–M outperforms
RADE on only one test problem. In addition, the number of
test problems which can be successfully solved by RADE and
N–M over all 100 runs is nine and six, respectively. Therefore,
it can be concluded that RADE is also better than N–M for
solving NESs.

VI. CONCLUSION

Solving NESs is a very important area in numerical com-
putation. Very often, NESs contain multiple roots. However,
it is a very challenging task to find multiple roots of NESs
simultaneously in a single run. To address this issue, in this
paper, we proposed a repulsion-based adaptive DE, called
RADE, in which the repulsion technique, the diversity preser-
vation mechanism, and the adaptive parameter control were
combined to solve NESs effectively. The performance of
RADE was evaluated by 30 NESs selected from the literature.
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The experimental results suggested that RADE is able to find
multiple roots simultaneously in a single run on all the test
problems. It can also provide very competitive performance
compared with other well-established methods. In addition,
we carried out extensive experiments to systematically analyze
the working principle of RADE, as well as the effectiveness of
different components of RADE and the influence of parameter
settings. According to the experiments, we demonstrated that
the repulsion technique, the diversity preservation mechanism,
and the adaptive parameter control are three indispensable
elements of RADE, which verifies the motivation of this paper.

For the repulsion techniques introduced in Section II-A,
several parameters need to be set properly. In the future, we
will attempt to design dynamic or adaptive parameter controls
for the repulsion techniques, such as the dynamic or adaptive
radius of the repulsion regions. Additionally, we will apply
RADE to deal with complex real-world NESs.

The source code of RADE can be obtained from
W. Gong’s homepage: http://www.escience.cn/people/wygong
or Y. Wang’s homepage: http://www.escience.cn/people/
yongwang1.
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