
 

1 
 

Can microbial ecology help improve biogas production in AD? 1 

Robert M. W. Fergusona, Frédéric Coulonb, Raffaella Villab† 2 

 3 

aSchool of Biological Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK 4 

dDepartment of Environmental Science and Technology, Cranfield University, Cranfield, 5 

MK43 0AL, UK.   6 

 7 

Running Head: Microbial ecology in AD 8 

 9 

†Address correspondence to Raffaella Villa, r.villa@cranfield.ac.uk 10 

 11 

Keywords: FOGs, Glycerol, Synergistaceae, Ruminococcaceae, Veillonellaceae, Next-12 

generation sequencing.  13 

14 



 

2 
 

Highlights 15 

 Irrespective of the feedstock, changes in bacterial community could be related to 16 

digester performance 17 

 Reactors with > 60 % biogas methane content had a more even distribution of 18 

bacterial diversity 19 

 Methane content < 30 % correlated to a 50 % increase in Firmicutes 20 

(Ruminococcaceae) 21 

 Methane content > 60 % correlated to unidentified operational taxonomic units 22 

(OTUs) and Synergistaceae 23 

 24 

25 
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Abstract: 454-pyrosequencing and lipid fingerprinting were used to link anaerobic digestion 26 

(AD) process parameters (pH, alkalinity, volatile fatty acids (VFAs), biogas production and 27 

methane content) with the reactor microbial community structure and composition. AD 28 

microbial communities were subjected to stress conditions by changing digestion substrates 29 

and organic loading rates. 454-pyrosequencing analysis showed that methane content and 30 

pH were significantly and positively correlated with community evenness, regardless of the 31 

substrate digested. In AD, microbial communities with more even distributions of diversity 32 

are able to use more parallel metabolic pathways and have greater functional stability; 33 

hence they are more capable of adapting and responding to disturbances. A decrease in 34 

methane content to less than 30 % was always correlated with a 50 % increase of Firmicutes 35 

sequences (particularly in operational taxonomic units (OTUs) related to Ruminococcaceae 36 

and Veillonellaceae). Whereas digesters producing higher methane content (above 60 %), 37 

contained a high number of sequences related to Synergistetes and unidentified bacterial 38 

OTUs. Finally, lipid fingerprinting demonstrated that, under stress, the decrease in archaeal 39 

biomass was higher than the bacterial one, and that archaeal Phospholipid etherlipids (PLEL) 40 

levels were correlated to reactor performance. These results demonstrate that across a 41 

number of parameters (lipids, alpha and beta diversity, and OTUs) knowledge of the 42 

microbial community structure can be used to predict, monitor, or optimise AD 43 

performance. 44 

 45 

46 
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1. Introduction 47 

Anaerobic digestion (AD) is a widely implemented technology for the treatment of 48 

wastewater and organic mixed solid wastes. Notwithstanding this, poor anaerobic digester 49 

performance and system failure are still common issues. Most of these problems originate 50 

from inadequate operational and process control and a lack of understanding of the 51 

dynamics of the microbial processes taking place in the digesters (Leitao, van Haandel, 52 

Zeeman, & Lettinga, 2006). Plant management is mainly achieved through the monitoring of 53 

the physicochemical parameters rather than the biological ones. However, there is a general 54 

consensus among the scientific community that in-depth understanding of the AD microbial 55 

communities and their ecology is vital to optimise and adequately manage the process 56 

(Ferguson et al. 2014; Rittmann et al. 2006). Developments in culture independent 57 

molecular methods have led to a number of studies analysing the microbial communities in 58 

AD reactors, both at laboratory (Ferguson et al. 2016; Goux et al. 2015; Vanwonterghem et 59 

al. 2015) and at full-scale (Werner et al. 2012; Valentin-Vargas et al. 2012). Most of these 60 

studies demonstrated that the microbial ecology of AD is highly diverse and dynamic. 61 

Unstable communities have been observed in digesters with stable performance and 62 

functional redundancy renders it difficult to formulate any generic trends/relationships 63 

between microbial community response and digester performance (Fernández et al., 1999; 64 

Goux et al., 2015; X. Wang et al., 2011). Recently, studies of the microbial ecology of 65 

wastewater anaerobic digesters showed that it was possible to link digester performance 66 

with fundamental ecological parameters such as community evenness, as well as ecological 67 

theories such as the biogeography model, the species-area relationships and the taxa-time 68 

relationships (Wells et al. 2011; Valentin-Vargas et al. 2012; Werner et al. 2012). Therefore, 69 
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as discussed by a number of authors, the possibility of integrating the engineering of 70 

anaerobic digesters with microbial ecological theory is now a genuine prospect (Rittmann et 71 

al. 2006; Vanwonterghem et al. 2014). 72 

In this context, there are still a number of key problems that need to be addressed; in 73 

particular and the relationship between AD performance and microbial community 74 

structure (alpha and beta diversity) and the consistency of these correlations. In short, to 75 

what extent do deterministic or stochastic processes determine the structure of microbial 76 

communities in AD. If stochastic processes dominate then unique functionally redundant 77 

microbial communities will exist in different digesters, making prediction of AD based on 78 

microbial community impossible. However, if deterministic processes dominate it will be 79 

possible predict species turnover and hence use this to monitor and predict AD performance 80 

(Måren, Kapfer, Aarrestad, Grytnes, & Vandvik, 2018). The syntrophic relationships involved 81 

in methanogenic degradation of most organic substrates in AD mean that species co-82 

occurrence will be relatively even, and that species with similar ecological requirements will 83 

respond in similar ways (Schink, 2002). This means that it is probable that monitoring based 84 

on the presence of certain phylogenetic or functional groups should be possible, if we first 85 

gain a deeper understanding of the AD microbial community.     86 

Molecular based lipid fingerprinting and PCR-based 454-pyrosequencing analyses were 87 

carried out to investigate the microbial community structure, biomass and dynamics in 88 

digesters running under different conditions (with varying co-digestion substrates and 89 

changing organic loading rate (OLR)). Molecular based lipid fingerprinting analysis provided 90 

insights into the microbial biomass changes and microbial community structure in the 91 

digesters. Whereas, 454-pyrosequencing was used to gain detailed phylogenetic 92 
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information on both the dominant and minor important members of the microbial 93 

community.  94 

2. Methods 95 

2.1 Digester operational parameters 96 

Laboratory-scale semi-continuous digesters consisted of 1-L borosilicate glass bottles with a 97 

700 ml working volume and 5-L bottles with a 4.5-L working volume maintained at 38 °C 98 

using a water bath. All reactors were seeded with digested sludge from a commercial 99 

Sewage Treatment digester (in a ratio of 30:70 %) and fed with autoclaved primary sludge 100 

three times a week to achieve a retention time of 7 days and an organic loading rate (OLR) 101 

of 1.4 kg VS m-3 d-1. A different organic waste (glycerol or fat rich – FOG waste collected 102 

from a restaurant grease trap) was used to induce periods of unstable performance in the 103 

digesters (see table 1 for details of feedstocks). Glycerol or FOG was added to the 104 

autoclaved primary sludge to increase the OLR from 1.4 kg VS m-3 d-1 to 2.9 for one hydraulic 105 

retention time (HRT = 7 days) and then returned to 1.4 kg VS m-3 d-1. These OLRs were 106 

selected as they were known to cause digester failure based on our preliminary work. All the 107 

reactors were run for more than 130 days (18-20 HRT) depending on the substrate. The 108 

effects of one or two sequential changes in OLR were investigated using the same feedstock 109 

(glycerol - glycerol) or with a different feedstock (glycerol - FOG waste). Feedstock and 110 

feeding regimes are those reported previously (Ferguson et al.  2016). 111 

2.2. Biogas production, methane concentration and physicochemical characterisation 112 

Gas production was measured daily by water displacement in a glass column (150 x 5 cm) 113 

and volumes corrected to standard atmospheric conditions. Methane content was 114 
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measured using a SERVOPRO1400 CH4 gas analyser (Servomex, UK) according to 115 

manufacturer recommendations. pH and alkalinity were measured according to standard 116 

APHA methods (APHA 1989).  117 

2.3. Volatile fatty acids analysis 118 

A 40 ml aliquot of the digestate was centrifuged at 5000 g for 5 min and the supernatant 119 

was filtered to < 0.45 μm with a syringe filter (Eduok, Ferguson, Jefferson, Villa, & Coulon, 120 

2017). 5 μl of 97 % sulphuric acid was added (to avoid acid degradation during storage) and 121 

the sample was stored at – 20 °C until analysis. 100 μl of the sample was injected into a 122 

HPLC (535 Kontron, Bio-TEK, UK) equipped with a Bio-Rad fermentation column (Cat 125-123 

0115) 300 x 7.8 mm maintained at 65ºC, and a UV detector at 210 nm. The mobile phase 124 

was 0.001 M sulphuric acid in HPLC grade water with a flow rate of 0.8 ml/min. Acetic, 125 

propionic, n-butyric, iso-butyric and lactic acids were quantified using an external multilevel 126 

calibration ranging from 0.1 g l-1 to 5 g l-1. The % error in the repeatability of 127 

measurements for each acid was less than 4 %. 128 

2.4. Phospholipids (PLFA) and ether-linked isoprenoids (PLEL) analysis 129 

For PLFA, total lipids were extracted from 40 g aliquot of freeze-dried digestate using a 130 

modified version of the Bligh-Dyer technique as described by Frostegård, et al. (1991). The 131 

dried fatty acid methyl esters (FAMEs) were resuspended in 0.2 ml of hexane and analysed 132 

by gas chromatography equipped with flame ionisation detector (GC-FID Agilent 133 

Technologies 6890N) as described by Pankhurst et al. (2012). FAMEs were identified by 134 

comparison of retention times with the 26 bacterial acid methyl ester (BAME) mix standard 135 
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(SUPELCO, Sigma, UK). Nonadecanoic acid methyl ester (Sigma, UK) was added (24.44 µg ml-136 

1) as an internal standard to each sample after solid phase extraction (SPE).      137 

For PLEL another aliquot of the phospholipids fraction, equivalent to 40 g of the digestate 138 

was used for PLEL analysis according to the method described by Gattinger, et al. (2003). 139 

The dried ether-linked isoprenoids were reconstituted in 0.2 ml of hexane and analysed by 140 

gas chromatography coupled to mass spectrometry (GCMS Agilent Technologies 6890N) 141 

according to the operating conditions described by Gattinger, et al. (2003). Nonadecanoic 142 

acid methyl ester (Sigma, UK) was added as an internal standard to each sample after SPE. 143 

The taxonomic affiliations are summarised in TS1. Gram-positive bacteria were represented 144 

by the series of iso and anteiso branched saturated PLFA. Gram-negative bacteria were 145 

represented by cyclopropane, hydroxyl and monounsaturated PLFA. The 16:0 straight chain 146 

PLFA has been previously demonstrated as an ubiquitous bacterial marker (Piotrowska-147 

Seget and Mrozik 2003). The PLFA 18:2w9cis and 18:1w7trans used as markers for clostridia. 148 

The PLEL i20:0 was used as a marker for the Euryarchaeota, i20:1 as a marker of the 149 

aceticlastic methanogens belonging to Methanosarcina and i40:0 as a marker for 150 

hydrogenotrophic methanogens belonging to Methanobacterium, Methanococcus, 151 

Methanopyrus, and Methanothermus (Gattinger et al. 2002). 152 

2.5. 454-pyrosequencing analysis and Bioinformatics 153 

The microbial diversity and dynamics of the digesters was investigated by extracting total 154 

genomic DNA from 200 mg wet weight digestate samples using a MoBio Power Soil kit (MO 155 

BIO Laboratories, Inc, UK). Samples were then processed for NGS by 454-Pyrosequencing on 156 

the GS FLX System (Roche) as described in Eduok et al. (2015) using the following primers: 157 
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for amplification of the bacterial 16S rRNA gene PCR primers were adapted for 454 amplicon 158 

sequencing by attaching the M13 adapter (italics) to the target forward primer M13-16S-IA-159 

FL (5’-CACGACGTTGTAAAACGACCATGCTGCCTCCCGTAGGAGT-3’), whereas the 25-mer Lib-L 160 

specific sequence adapter B (italics ) was followed by the reverse template specific primer 161 

sequence 16S-IA-RL (5’-CCTATCCCCTGTGTGCCTTGGCAGTCTCAGAGAGTTTGATCCTGGCTCAG -162 

3’). For amplification of the archaeal 16S rRNA gene PCR primers ARC-344F (5’-163 

CACGACGTTGTAAAACGAACGGGGYGCAGCAGGCGCGA) and ARC-915R (5’-164 

CCTATCCCCTGTGTGCCTTGGCAGTCTCAGGTGCTCCCCCGCCAATTCCT- 71 3’) where used; and 165 

were adapted for 454 sequencing as described above. To multiplex the samples unique 10-166 

mer barcode sequences were included in the M13 adapter. 167 

The sequences obtained were processed as described in Dumbrell et al. (2017). Denoising of 168 

454-Pyrosequencing amplicons was carried out by the sequencing provider using 169 

AmpliconNoise (Quince, Lanzen, Davenport, & Turnbaugh, 2011). The obtained sequence 170 

data were then processed in QIIME using Biolunix version 8; Sequences with > 6 ambiguous 171 

bases, a homopolymer run of > 6, a read length of < 300 or > 800, and a quality score < 25 172 

were excluded (Caporaso et al., 2010; Ferguson, Gontikaki, Anderson, & Witte, 2017; Field 173 

et al., 2006).  After quality control there were 19,633 reads. De novo operational taxonomic 174 

units (OTUs) were picked using Usearch (with de novo chimera removal) at 97 % percent 175 

similarity using the script pick_otus.py, 2137 OTUs were identified (Edgar, 2010; Edgar, 176 

Haas, Clemente, Quince, & Knight, 2011). A representative sequence for each OTU was then 177 

identified with pick_rep_set.py and used to assign taxonomy with using assign_taxonomy.py 178 

and the default parameters and the Green Genes reference taxonomy (13_8_99) (McDonald 179 

et al. 2012; Werner et al. 2012; Wang et al. 2007). Cumulative sum scaling was used to 180 
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normalise the OTU table and account for differing sampling depth using the QIIME script 181 

normalize_table.py (Paulson, Stine, Bravo, & Pop, 2013) 182 

2.6. Statistical analysis 183 

Statistical analysis was carried out in R (v 3.2.0) and cited packages (R Development Core 184 

Team, 2015). Analysis of variance (ANOVA) was used to test for significant differences 185 

between digester group means (e.g. lipid biomass and alpha diversity metrics) significance 186 

was accepted at P < 0.05. To investigate patterns of beta diversity in the digesters a distance 187 

matrix using the Bray-Curtis method was calculated in Vegan 2.3.0 (Bray & Curtis, 1957; 188 

Oksanen et al., 2015).  Permutational multivariate analysis of variance using distance 189 

matrices (PERMANOVA) was used to determine if the microbial communities were 190 

significantly different for the 6 digester groups (Anderson, 2001). Generalized additive 191 

models (GAMs) were used to correlate physicochemical parameters to the microbial 192 

community (e.g. pH, biogas methane content, biogas production, acetic acid concentration, 193 

and propionic acid concentration) with significance accepted at P < 0.05 (Oksanen, 2013). To 194 

test for significant changes in OTU abundance between digester groups the QIIME script 195 

group_significane.py was used to carry out a Kruskal-Wallis test. Ecological indexes were 196 

calculated as: Shannon-weaver index (H’), Simpsons index (D) and Pielou's evenness (J).  197 

3. Results 198 

3.1. Reactors performances: VFAs, alkalinity, biogas and methane production 199 

Reactor performances over time and detailed results of the analysis have been reported 200 

previously (Ferguson et al. 2016). For the purpose of this work methane percentages were 201 

averaged across each HRT and reported in Figure 1 (a-d). The figures clearly show the 202 
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periods of low methane production following an increase in OLR. At times of ‘balanced’ 203 

anaerobic performance, when the OLR was maintained at 1.4 kg VS m-3 d-1, biogas 204 

production was around 0.28 m3 kg-1 VS day -1 and methane content around 75 %.  When 205 

organic loading rate was increased to 2.9 kg VS m-3 d-1 biogas production dropped to around 206 

1 m3 kg-1 VS day -1 and methane content was lower than 30 % for a period of one or more 207 

HRTs, depending on the digester history. For example, reactors that received two OLR 208 

change with the same feedstock (Gly-Gly; Figure 1b) returned to ‘balanced’ conditions much 209 

faster after the second change (3HRTs vs 4HRTs; Figure 1a and 1b). VFA content, alkalinity, 210 

pH and VFA/alkalinity ratio changed as expected with changes in methane content (table 2).  211 

In order to identify whether there were any general trends, correlation between microbial 212 

community structure and dynamics and digesters performance, the digesters were grouped 213 

according to the methane content of their biogas. Overall 6 groups were identified which 214 

further related to VFA production, alkalinity and VFA/Alkalinity ratio (table 2). 215 

3.2. Microbial lipid fingerprinting (PLFA and PLEL) 216 

Many of the bacterial lipid markers (PLFA) were associated to Actinobacteria, low GC Gram 217 

positive bacteria, CFB, δ-Proteobacteria, Bacillus, and Clostridia (table 3). There were 218 

relatively little changes in the contribution of many of the individual PLFAs to the total 219 

fingerprint at different biogas methane content. The only PLFAs that varied between the 220 

digester groups were the PLFA18:1w9cis and 18:1w9trans, used as marker for clostridia, 221 

(Table 3). The trans oleic acid (18:1w9trans) doubled in concentration when methane 222 

content was ≥ 60 % in comparison to digesters with a methane content ≤ 20 %. In contrast, 223 

the cis oleic acid (18:w9cis) doubled in digesters with a methane content ≤ 30 %. This finding 224 
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suggests changes in the community structure and/or metabolic function of the associated 225 

bacterial groups (Anaerobes/CFB group). No change in the ratio of cyclopropyl to mono-226 

unsaturated fatty acids (cy17:0/16:1ω7c and cy19:0/18:1ω7c) was observed suggesting that 227 

the microbial community of the digesters were not experiencing significant stress conditions 228 

despite varying the OLR of the digesters (Frostegård et al. 2011). The PLFA 18:2w6,9 which is 229 

associated with fungi made up approximately 3.5 for mol % in all digesters conditions. Fungi 230 

are not often considered in studies of the microbial communities in AD and their potential 231 

role in AD remains to date unresolved. It is possible that they could play a role in cellulose 232 

digestion as this has been observed in cattle rumen, therefore fungi could be a key 233 

hydrolytic group in AD (Bauchop & Mountfort, 1981).  234 

The archaeal biomass, calculated from PLEL as number of cells ml-1 kg-1 VS added, was 235 

always correlated with methane content for all the digestion substrates (sludge, sludge and 236 

glycerol and sludge and FOG) at P < 0.001 (Figure 2b). The digesters with biogas production 237 

higher than 0.2 m3 kg-1 VS day -1 had an average archaeal biomass of 9.1 ± 0.4 log cells ml-1 238 

kg-1 VS added, in contrast digesters with biogas production < 0.2 had average archaeal 239 

biomass of 8.3 ± 0.4 log cells ml-1 kg-1 VS added. In contrast, no clear relationship between 240 

the bacterial biomass, calculated from PLFA as number of cells ml-1kg-1 VS added, and biogas 241 

methane content was observed (Figure 2a). Thus, archaeal biomass is a key parameter in 242 

biogas quality, this is not surprising as the methanogens do not have metabolic pathways 243 

available other than methane production (Garcia et al. 2000).  In contrast the bacterial 244 

biomass growth is not restricted to methane production; bacteria are more resilient and are 245 

able to switch to other pathways when methane production is inhibited. Indeed, the high 246 

concentration of VFA and changes in VFA profiles to longer chain VFA would suggest that 247 
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bacteria have switched to other fermentation pathways (Table 2). These results are 248 

consistent with previous research that showed that increasing biogas production is 249 

correlated with distinct changes in lipid fingerprinting, which could be used to monitor AD 250 

performance (Schwarzenauer & Illmer, 2012). 251 

3.3. DNA based molecular analysis (454-pyrosequencing) 252 

Over 75 % of the archaeal diversity was dominated by Euryarchaeota, especially the genus 253 

Methanosarcina and to a lesser extent (only 1%) to the genus Methanobrevibacter. Further 254 

to this, 20 % of the OTUs identified were related to unidentified Archaea and a small 255 

number (< 2 %) of members belonging to Thermoprotei, a class of the Crenarchaeota. Only 256 

three OTUs accounted for 54 % of all sequences, and no other OTUs had greater than 3 % of 257 

sequences. The closest matches to these OTU are all from the genus Methanosarcina which 258 

is the most metabolically diverse methanogenic genus and has also been shown to be the 259 

most stress resilient (Karakashev et al.  2005; Vavilin et al. 2008). It is therefore unsurprising 260 

that this group should dominate in all conditions analysed.  261 

A total of 19,363 bacterial sequences were clustered into 2137 OTUs. The rank abundance 262 

curve revealed that 17 % of the total OTUs were comprised of > 5 sequences (Figure S1). 263 

This indicates that there was a core group of approximately 15 % of OTUs present across the 264 

whole data set (figure 3). The OTUs were assigned to Bacteroidetes (21 %) Firmicutes (16 %) 265 

Synergistetes (6.8 %) Proteobacteria (5.6 %) and unknown (45 %) (figure 4). Predominance 266 

of these bacterial phyla and a high number of unidentified OTUs is consistent with results 267 

reported in other studies using NGS techniques, the high number of unknown OTUs 268 

indicates that a large amount of the diversity in AD is poorly described in reference 269 
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databases (Schlüter et al. 2008; Kröber et al. 2009; Lee et al. 2012; Werner et al. 2012; 270 

Rivière et al. 2009).   271 

3.3.1 Alpha diversity. Bacterial OTU richness was 134 ± 83 across all samples, however 272 

there was no significant difference in OTU richness between the digester performance 273 

groups (ANOVA, F5,31 = 0.95, P = 0.5).  Shannon-weaver index (H’) did slightly increase from 274 

2.6 ± 0.3 to 2.8 ± 0.1 between group 1 (0-20 % methane) and 6 (> 70 % methane) however, 275 

this was not significant (ANOVA, F5,31 = 0.99, P = 0.43). In contrast there were significant 276 

increases for “D” Simpsons index (ANOVA, F5,31 = 2.3, P = 0.006) and “J” Pielou's evenness 277 

(ANOVA, F5,31 = 1.7, P = 0.02) with increased biogas methane content across the digester 278 

groups. This is clearly shown in Figure 5 and it indicates that the better performing digesters 279 

(in terms of biogas production and methane content) had more even communities. A 280 

number of studies have reported that improved digester performance was related with 281 

higher community evenness (Wittebolle et al. 2009; Merlino et al. 2012; Werner et al. 282 

2012). Community evenness is particularly important in a system such as AD, as it signposts 283 

equitable distribution between the various AD functional groups; this enables the 284 

community to fully exploit all metabolic pathways, as well as the co-metabolic pathways, 285 

which are known to play an important in AD performance (Hashsham et al., 2000). Further 286 

to this, communities with uneven distributions of diversity tend to be dominated by groups 287 

of microorganisms specialised to the current conditions, when exposed to external changes 288 

(e.g. pH) they are unable to adapt to rapidly and require long recovery times.   289 

3.3.2 Beta Diversity. Links between the bacterial community structure and physiochemical 290 

parameters were further demonstrated by PERMANOVA. The results showed a significant 291 

shift in the bacterial community structure between the pre-defined digester groups (table 2) 292 
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(PERMANOVA, F5,31 = 2.7, P = 0.001 and, R = 0.31), specifically there was a significant 293 

correlation between the community structure and methane content and biogas production 294 

(GAMs P = 0.017 r2 = 0.21, and P = 0.01, r2 =0.25 for methane content and biogas production 295 

respectively). In contrast there was no significant effect of individual reactor (PERMANOVA, 296 

F5,31 = 2.7, P = 0.3, and r2 = 0.31). Further understanding of the key taxonomic groups and 297 

OTUs involved is required to develop this into a predictive framework for optimising AD.  298 

3.4.  Relationships between methane content and bacterial community 299 

Overall Bacteroidales dominated in all digesters and all conditions making up approximately 300 

20 % of the community (Figure 4). The phyla Bacteroidetes and Proteobacteria, which 301 

comprised at the order level mainly of Bacteroidales and the Betaproteobacteria order 302 

Burkholderiales remained at fairly constant levels in all conditions, ranging from 17-25 % 303 

and 5-7.6 % respectively. For optimising AD performance, it is important to understand if 304 

there are core groups of bacteria that are important for good performance (high biogas 305 

production, methane content, and stable production) and also to identify those that are 306 

associated with the worst performance. To do this the six groupings defined earlier in 307 

section 3.1, table 2 were further consolidated into three groups defined as low, medium, 308 

and high biogas methane content (0-30, 31-60, and 61-85 %). A Kruskal–Wallis one-way 309 

analysis of variance was then carried out to identify OTUs correlated with these 310 

performance groups (Figure 6).  311 

3.4.1. Dominant OTUs at low methane content. A number of Firmicutes OTUs (12), 312 

including OTUs related to the families Ruminococcaceae, Lachnospiraceae, Clostridiaceae, 313 

Lactobacillaceae, Acidaminococcaceae, and Veillonellaceae were significantly associated 314 
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with digesters with biogas methane content < 30 %. Firmicutes, and in particular Clostridia 315 

are an important fermentative group in AD; and indeed as a key AD group they are common 316 

to AD systems (Nelson et al.  2011). Most of the increase in Fermicutes was down to two 317 

families, Ruminococcaceae and Veillonellaceae, which made up approximately 7 % the 318 

community each in the bioreactors with the lowest biogas methane content and production 319 

(group 1). Digesters with low methane concentration also had high concentration of VFA 320 

(Table 2). Other studies have also shown Ruminococcaceae to be associated with poor AD 321 

performance (Tian, Cabrol, Ruiz-Filippi, & Pullammanappallil, 2014; Vanwonterghem et al., 322 

2015). Tentative exploration of the metabolic capabilities of the Firmicutes OTUs (by looking 323 

at the closest matches to the OTU sequence in BLASTn) revealed that the ones identified in 324 

this study are probably acidogens, with the capability to produce longer chain fatty acids 325 

such as butyric, propionic, lactic, and valeric acid. For example, Butyricicoccus can convert 326 

acetic acid into butyric acid, directly competing with methanogens. The other major phyla in 327 

the low group were Bacteroidetes, mainly represented by the Porphyromonadaceae and 328 

Prevotellaceae families (Figure 6). The exact role of Prevotellaceae in AD is unknown but the 329 

closest matches to the representative sequences for the OTUs were both isolated from 330 

rumen and related to acidogenic bacteria (Ramšak et al., 2000; Whitford, Forster, Beard, 331 

Gong, & Teather, 1998). Matching these OTUs using BLASTn (Altschul, Gish, Miller, Myers, & 332 

Lipman, 1990) also suggested that they could be acidogens, again capable of producing a 333 

wide range of VFA. In summary, there was a significant association between fermentative 334 

long chain fatty acid producing bacteria and digesters with low biogas methane content; as 335 

described previously the production of long chain fatty acids in AD reduces pH and 336 
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undermines the syntrophic relationships between bacteria and archaea the support 337 

methane production (Ferguson et al., 2016).  338 

3.4.2. Dominant OTUs at high methane content. The OTUs correlated with the high-339 

methane content group diverged at the family level from those in the low-methane one. 340 

The phylum Synergistetes showed a marked increase from 1 % to 18 % as biogas methane 341 

content and production increased (Figure 4). The phylum Synergistetes can produce a range 342 

of organic acids that can be processed by other bacteria, or produce substrates such as 343 

acetic acid and hydrogen that are directly used by methanogens; indeed it has been shown 344 

that the range of substrates they use and produce is enhanced by co-culture with 345 

methanogens (Baena et al., 2000). Syntrophic relationships between bacteria and 346 

methanogens are required for stable AD (McMahon et al. 2004; Hattori. 2008; Stams and 347 

Plugge 2009). For example, the closest match to the Aminobacterium OTU found in this 348 

study was Aminobacterium colombiense, which has been detected in biogas reactors in 349 

other studies and can produce acetic acid from amino acids and hydrogen; significantly 350 

these functions are enhanced in via syntrophic associations with methanogens (Chertkov et 351 

al., 2010). Also, Proteiniphilum OTUs were identified that were matched to a strain isolated 352 

from a USAB reactor which can enhance rates of propionic acid conversation into methane 353 

(via acetic acid) when added to a syntrophic propionate-degrading co-culture 354 

(Syntrophobacter sulfatireducens and Methanobacterium formicicum) (Chen & Dong, 2005). 355 

4. Discussion 356 

4.1. How can microbial community structure and dynamics information be used to 357 

monitor and optimise AD? 358 
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The microbial communities in AD are often treated as a black box and there is a general 359 

perception amongst AD operators that optimisation will not be achieved through an 360 

improved understanding of the microbial ecology. In this study, consistent shifts in the 361 

structure of the microbial communities were observed with increase in biogas methane 362 

content, regardless of the feedstock used. Such information can help to develop new 363 

strategies for monitoring and optimising AD process, and further assist AD operators to 364 

predict unstable digester performance.  365 

4.1.1. Predicting performance.  Results presented here show that there are general and 366 

consistent relationships between performance and microbial community structure. 367 

However, further research is needed as other authors have shown that microbial 368 

communities in different digesters diverge over time; even when those digesters are under 369 

stress, which you might expect to cause communities to converge due to selection pressure 370 

(Goux et al. 2015; Werner et al. 2012). As counterpoint to this other studies (including ours) 371 

have found that deterministic processes dominate over stochastic in AD microbial 372 

communities, supporting microbial monitoring as a viable tool for AD (Vanwonterghem et 373 

al. 2014; Vanwonterghem et al. 2015).  It is probable that the answer falls somewhere in 374 

between. For example, despite finding that communities in AD were unique to individual 375 

digesters, Werner et al. (2012) was still able to show links between community structure 376 

and function that were common to all digesters; and Goux et al, (2015) was able to find 377 

predictive shifts in the archaeal component of the microbial community.  It may therefore 378 

be possible to monitor AD performance based on these OTUs without needing a full shotgun 379 

sequencing analysis. This could conceivably be done with portable qPCR machines or even 380 

loop mediated DNA amplification (LAMP) which can identify specific bacteria, without the 381 
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need for DNA extraction, in under an hour (Notomi et al., 2000). Indeed LAMP has been 382 

used to identify Ebola in remote locations in Guinea, we therefore think that its use for an 383 

AD plant is not beyond the realms of possibility (Kurosaki et al., 2016). We were also able to 384 

show consistent links between digester function and microbial community structure, but the 385 

stochastic element to the assembly of AD microbial communities needs to be taken into 386 

account. There will be inconsistencies between digesters, and decisions will need to be 387 

made considering a wide range of microbial and physiochemical parameters, including past 388 

knowledge of the specific digester. We therefore suggest a combined molecular approach 389 

using lipid fingerprinting and DNA based technologies could be employed to provide process 390 

monitoring in AD by application of existing technology. However take-up of these 391 

technologies for monitoring AD has been slow, a great deal of development and 392 

collaboration between industry and research is required for this becomes a realistic 393 

prospect.    394 

4.1.2. Bioaugmentation and AD optimisation. The core groups of bacteria specific to 395 

particular levels of performance revealed a number of unique OTUs in digesters with high 396 

biogas methane content (Figure 4 and 6). This information can further contribute to AD 397 

optimisation via bioaugmentation. Although it has been demonstrated in principle (Enright 398 

et al. 2009; Guo et al. nd; Schauer-Gimenez et al. 2010; Tale et al. 2011; Westerholm et al. 399 

2012), bioaugmentation is logistically challenging; the bacteria need to be isolated and 400 

cultivated in sufficient quantity and finally there is no guarantee that the community will 401 

take hold in the digester. As an alternative it has previously been shown that changes in 402 

digester performance can be used to optimise the community to improve recovery from 403 

process imbalance (Goux et al. 2015; McMahon et al. 2004; McMahon et al. 2007; Stroot et 404 
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al. 2001; Ferguson et al. 2016). Ultimately a vast quantity of knowledge needs to be 405 

collected on the relationship between community structure, function, and process control in 406 

AD so that operators can take full advantage of the possibility of process manipulation as a 407 

means of control for AD.  408 

 5. Conclusions 409 

The results clearly demonstrate a relationship between the community structure and the 410 

performance of AD. There were consistent increases in Clostridia, specifically 411 

Ruminococcaceae and Veillonellaceae, in digesters with low biogas methane content; and 412 

an increase in the numbers of Synergistetes in those with high methane content. A 413 

statistically significant correlation between community evenness and AD performance was 414 

also demonstrated, highlighting that a more equitable distribution of diversity in AD is 415 

related to higher methane production, possibly due to improved balance between the 416 

functional groups present.    417 

It was also demonstrated that lipid fingerprinting, due to its ability to detect changes in 418 

biomass, is a valuable companion to sequence based analysis, or even on its own as a 419 

monitoring tool. Pyrosequencing analyses of multiple digester conditions in this study also 420 

revealed that a large proportion of sequences could not be assigned to taxonomic 421 

affiliations even at the phylum/class levels. This highlights that further work is required to 422 

fully understand the identity and function of the microbial diversity present in AD.   423 
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Table 1. Summary of feed and seed stock composition. Triplicate average error bars show standard deviation. 657 

Characteristic Unit Seed Primary Sludge Co-digestion 

Co-digestion substrate    Glycerol waste + PS FOGs waste + PS 

Co-digestant concentration g l
-1

   30 50 1.5 

pH 
 

7.73 ± 0.005 7.09 ± 0 7.40 ± 0.04 7.43 ± 0.03 7.53 ± 0.1 

TS
*
 % 4.59 ± 0.46 1.46 ± 0.56 2.34 ± 0.43 2.53 ± 1.65 2.33 ± 1.36 

VS
**

 % of TS 63.17 ± 0.04 65.93 ± 0.13 88.38 ± 2.31 91.66 ± 3.42 97/82 ± 1 

sCOD
***

 g l
-1 

237 ± 0.65 43.0 ± 1.45 84.46 ± 0.97 115.65 ± 0.62 141.43 ± 3 

Alkalinity g l
-1

 CaCO3 5.5 ± 0.5 2.5 ± 0.7 2.3 ± 0.1 2.4 ± 0.6 2.1 ± 1.2 

*TS = total solids, **VS = volatile solids, ***sCOD soluble chemical oxygen demand 658 

 659 

 660 

 661 

 662 

 663 

 664 

 665 

 666 
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Table 2. Summary of the key physico-chemical parameters of the digesters.  667 

Digester 

group 

No. of 

samples 
CH4 pH Alkalinity

 

Volatile fatty acids 

V/A ratio* 
Total Acetic Propionic 

Butyric 
Lactic 

Iso- n- 

  %  gCaCO3 l
-1

 g l
-1

 g l
-1

 g l
-1

 g l
-1

 g l
-1

 g l
-1

  

1 7 0 – 20 5.8 1 8 ± 2 2 ± 1 4± 1 1.1 ± 2 0.8 ± 2 1.3 ± 2 8 ± 3 

2 7 21- 30 5.9 1.1 6.3 ± 1 2.6 ± 1 1.9 ± 1 0.9 ± 1 0.7 ± 0.6 0.7 ± 1 5.6 ± 1 

3 3 31- 45 6.5 1.3 6.4 ± 3 2.7 ± 1 1.8 ± 1 1.0 ± 1 0.7 ± 0.4 1.6 ± 1 5.4 ± 0 

4 5 46 – 60 6.9 2.2 2.6 ± 2 0.9 ± 1 0.7 ± 1 0.3 ± 1 0.2 ± 0.3 0.1 ± 1 0.9 ± 0 

5 9 61- 70 7.2 2.4 1.8 ± 1 0.6 ± 1 0.7 ± 1 0.2 ± 1 0.3 ± 0.3 0.5 ± 0 1.1 ± 0 

6 5 > 70 7.3 3.0 2.2 ± 2 0.3 ± 0 0.7 ± 0.9 0.0 ± 0 0.04 ± 0 0.0 ± 0 0.4 ± 0 

  *Ratio of total VFA/total alkalinity  668 
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Table 3. Summary of PLFA and PLEL (mol %) in digesters with varying biogas methane 669 

content. Taxonomic affiliations given in supplementary table 1. superscript numbers are 670 

standard deviation. 671 

Lipid Digester group (% methane) 

 
0 – 20 21 - 30 31 - 45 46 - 60 61 - 70 > 70 

11:00 1.7 ± 0.3 1.5 ± 1.4 1.5 ± 1.4 0.8 ± 0.2 0.6 ± 0.4 0.4 ± 0.3 

12:00 0 ± 0 0 ± 0.2 0 ± 0.2 0 ± 0 0 ± 0.1 0.1 ± 0 

13:00 0.1 ± 0 0.2 ± 0 0.2 ± 0 1 ± 0 0.1 ± 0 0.1 ± 0.1 

14:00 3.6 ± 0 3.6 ± 0.2 3.6 ± 0.2 4.2 ± 0 2.8 ± 0.1 2.7 ± 0.1 

15:00 1.6 ± 0 1.6 ± 0 1.6 ± 0 1.6 ± 0 1.4 ± 0 1.5 ± 0 

16:00 16.8 ± 0 16.3 ± 0 16.3 ± 0 16.7 ± 0 15.8 ± 0 16.8 ± 0.4 

17:00 0.6 ± 0.4 0.5 ± 2.3 0.5 ± 2.3 0.6 ± 0.8 0.5 ± 0.7 0.4 ± 0.9 

18:00 7.6 ± 0.2 7.7 ± 4 7.7 ± 4 8.8 ± 1.2 10.3 ± 2.5 10.7 ± 3.2 

20:00 0.4 ± 0.3 0.4 ± 2.9 0.4 ± 2.9 0.3 ± 1.7 0.4 ± 2.6 0.3 ± 2.9 

iso-15:0 9.3 ± 0.1 8.7 ± 0.9 8.7 ± 0.9 9.5 ± 0.2 8.5 ± 0.4 8.4 ± 0.5 

a-15:0 8.5 ± 0 7.9 ± 0.7 7.9 ± 0.7 9.8 ± 0.4 8.7 ± 0.6 8.5 ± 0.6 

iso-16:0 1.8 ± 0 2.2 ± 2.4 2.2 ± 2.4 1.2 ± 0.4 1 ± 0.5 1.4 ± 1.1 

iso-17:1 1 ± 0.4 0.9 ± 0.7 0.9 ± 0.7 1 ± 2.9 1.2 ± 4.5 0.9 ± 4 

cyc-17:0 0.2 ± 0 0.2 ± 4.3 0.2 ± 4.3 0 ± 3.1 0.4 ± 5.1 0.4 ± 3.3 

cyc-19:0 0.4 ± 0 0.4 ± 0.5 0.4 ± 0.5 0.4 ± 0.2 0.3 ± 1 0.3 ± 0.3 

16:1 w7cis 14.2 ± 0 12 ± 0 12 ± 0 16.3 ± 0 14.5 ± 0.3 14.1 ± 0.3 

18:2 w6cis 15.3 ± 0 14.7 ± 0.3 14.7 ± 0.3 12.5 ± 0.1 12.9 ± 0.2 13.1 ± 0.2 

18:1 w9cis 5.4 ± 0 5.5 ± 0.4 5.5 ± 0.4 4.1 ± 0 2.4 ± 0.5 2.2 ± 0.6 

18:1w9trans 6.9 ± 4.3 9.8 ± 0.6 9.8 ± 0.6 10.8 ± 0.3 12.8 ± 1.7 12.9 ± 1.3 

18:2w6,9 4 ± 0.2 3.8 ± 3.2 3.8 ± 3.2 0 ± 1.9 4.1 ± 2.9 3.5 ± 4.2 

2OH-10:0 0 ± 1.7 0.1 ± 3.2 0.1 ± 3.2 0 ± 3.2 0 ± 3.4 0 ± 3.4 

2OH-12:0 0 ± 0.6 0 ± 1.8 0 ± 1.8 0 ± 1.9 0.1 ± 2 0.1 ± 2.9 

3OH-12:0 0 ± 0 0 ± 0.2 0 ± 0.2 0 ± 0.1 0 ± 0.1 0.2 ± 0.1 

i20:1 33.5 ± 10.1 21.8 ± 17.3 21.8 ± 17.3 21.2 ± 11.9 34.5 ± 13.2 26.8 ± 12.1 

i20:0 40.3 ± 20.6 60.2 ± 25.4 60.2 ± 25.4 34.3 ± 27.2 48.7 ± 15.6 47.6 ± 22.5 

i40:0 26.1 ± 15.6 18.1 ± 16.5 18.1 ± 16.5 44.5 ± 29.9 16.8 ± 10 25.5 ± 20.3 
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 672 

 673 

Figure 1 Methane evolution over the four experimental settings. Reactors were fed at OLR 674 

1.4 kg VS m-3 d-1 during stable periods with primary sludge (PS). OLR was increased to 2.9 kg 675 

VS m-3 d-1 for a whole HRT with different co-digestant at different times: (a) one OLR 676 

increase with glycerol; (b) two OLR increase with glycerol; (c) one OLR increase with FOG; (d) 677 

two OLR increase first with glycerol and then with FOG. 678 

679 

(a) (b) 

(c) (d) 
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 680 

 681 

Figure 2 Scatter plot of bacterial biomass (left panel) and archaeal biomass (right) against 682 

methane content in all conditions tested. White circles: one OLR change (Gly); black circles: 683 

two OLR change (Gly-Gly); white diamonds: one OLR change (FOG); black diamonds: two 684 

OLR change (Gly-FOG). The solid line represents the linear regressions both are significant at 685 

P < 0.01 and with R2 of 0.6 for archaea and 0.2 for bacteria.    686 

687 

(a) (b) 
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 689 

 690 

 691 

 692 

 693 

 694 

 695 

 696 

 697 

Figure 3. Venn Diagram showing number of unique and shared OTUs in digesters with 0-30 698 

%, 31-60 % and 61-85 % methane content.   699 
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 706 

Figure 4. Relative proportions of the dominant orders based on the number of sequences 707 

assigned to that taxonomic group.  708 

 709 

 710 

 711 

 712 

 713 
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 714 

Figure 5. Scatter plot of Simpsons diversity index (a) and Pielou's evenness index (b) against 715 

% methane. (Blue lines represent linear regression between data points and shaded area are 716 

95 % confidence intervals of the predicted model). 717 
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P value

low

 0-30%

Medium

 31-60%

high

 61-85% Phylum Class Order Family Genus

0.026 Synergistetes Synergistia Synergistales Synergistaceae Aminobacterium

0.034

0.019

0.032 Bacteroidales incertae sedis Phocaeicola

0.013

0.037

0.018

0.037

0.004

0.041 Cytophagia Cytophagales Flammeovirgaceae Aureibacter

0.037 Clostridiaceae Anaerovirgula

0.037 Anaerovorax

0.003 Fervidicola

0.001 Sedimentibacter

0.037 Tepidimicrobium

0.001 Gracilibacteraceae Lutispora

0.046 Acetanaerobacterium

0.024 Saccharofermentans

0.019 Syntrophomonadaceae Pelospora

0.046 Betaproteobacteria Burkholderiales Comamonadaceae Malikia

0.043 Deltaproteobacteria Myxococcales Sorangiineae Polyangiaceae

0.033 Gammaproteobacteria Chromatiales Halothiobacillaceae Thiofaba

0.037 Thermotogae Thermotogae Thermotogales Thermotogales incertae sedis Oceanotoga

0.028 Actinobacteria Coriobacteridae Coriobacteriales Coriobacterineae Olsenella

0.034 Butyricimonas

0.035 Paludibacter

0.028

0.035

0.017 Hallella

0.007

0.007

0.010

0.028

0.010

0.028 Bacilli Lactobacillales Lactobacillaceae Lactobacillus

0.028

0.018

0.015 Oxobacter

0.013 Proteiniclasticum

0.049

0.008

0.008

0.028

0.037

0.004

0.028

0.010

0.010

0.028

0.028 Faecalibacterium

0.010

0.010

0.016

0.028

0.007 Acidaminococcaceae Phascolarctobacterium

0.037 Veillonellaceae Selenomonas

0.016 Burkholderiales Comamonadaceae Acidovorax

0.034 Rhodocyclales Rhodocyclaceae Azospira

0.028

0.028

Armatimonadetes Armatimonadetes gp2 Formerly phylum OP10

Bacteroidetes
Bacteroidia Bacteroidales

Porphyromonadaceae

Petrimonas

Proteiniphilum

Oscillibacter

Firmicutes Clostridia Clostridiales

Clostridiales Incertae SedisXIII

Clostridiales IncertaesedisXI

Ruminococcaceae

Anaerotruncus

Butyricicoccus

Proteobacteria

Bacteroidetes Bacteroidia Bacteroidales

Porphyromonadaceae

Parabacteroides

Prevotellaceae

Prevotella

Xylanibacter

Pseudomonadaceae Pseudomonas

Firmicutes
Clostridia Clostridiales

Clostridiaceae

Geosporobacter

Lachnospiraceae Sporobacterium

Negativicutes Selenomonadales

Proteobacteria

Betaproteobacteria

Gammaproteobacteria Pseudomonadales

Ruminococcaceae

 718 

Figure 6. Relative number of sequences assigned to dominant OTUs that varied significantly 719 

according to methane content of the digester groups. (Darker grey indicates relative increase in 720 

numbers within that OTU).  721 


