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ABSTRACT Feature selection is of particular importance in the field of drug discovery. Many methods have
been put forward for feature selection during recent decades. Among them, evolutionary computation has
gained increasing attention owing to its superior global search ability. However, there still lacks a simple and
efficient software for drug developers to take advantage of evolutionary computation for feature selection.
To remedy this issue, in this paper, a user-friendly and standalone software, named ECoFFeS, is developed.
ECoFFeS is expected to lower the entry barrier for drug developers to deal with feature selection problems at
hand by using evolutionary algorithms. To the best of our knowledge, it is the first software integrating a set
of evolutionary algorithms (including two modified evolutionary algorithms proposed by the authors) with
various evaluation combinations for feature selection. Specifically, ECoFFeS considers both single-objective
and multi-objective evolutionary algorithms, and both regression- and classification-based models to meet
different requirements. Five data sets in drug discovery are collected in ECoFFeS. In addition, to reduce
the total analysis time, the parallel execution technique is incorporated into ECoFFeS. The source code of
ECoFFeS can be available from https://github.com/JiaweiHuang/ECoFFeS/.

INDEX TERMS Evolutionary computation, feature selection, drug discovery, single-objective optimization,

multi-objective optimization, parallel execution.

I. INTRODUCTION

Drug discovery denotes the process by which new candidate
medications are discovered in the fields of bioinformatics
and bioengineering. Despite significant advances have been
achieved in technology and understanding of biological sys-
tems, drug discovery is still an “expensive, difficult, and
inefficient process” with a low success rate [1]. According
to the reports in [2] and [3], the average cost of develop-
ing a new medicine to market can reach about $1.8 billion
in 2010 and about $2.6 billion in 2014, respectively. Those
gigantic investments usually come from pharmaceutical
industry cooperations as well as national governments, since
it is believed that the new discovered drugs may lead to great
commercial success or public health success. Nowadays, one

of the challenging tasks in drug discovery is drug screening,
the aim of which is to obtain the desired compounds from
a library of compounds [4]. Obviously, data mining tech-
niques are required to achieve this goal. Compared with other
data mining techniques, feature selection merely selects a
feature subset and does not alter the original representation
of features [5]. Thus, the selected feature subset preserves
the semantics of features while offering the advantage of
interpretability.

For a general feature selection process, its main compo-
nents are presented in Fig. 1 [6], [7]. First of all, the orig-
inal feature set is presented in the initialization process.
Subsequently, a search procedure, named subset discovery,
is implemented to generate a candidate feature subset from
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FIGURE 1. General feature selection process [6], [7].

the original feature set. After the feature subset is generated,
the procedure called subset evaluation is implemented to
assess the goodness of this feature subset, and to compare
it with the previous best feature subset. If this feature sub-
set is better, then it will replace the previous best feature
subset. Both the subset discovery and the subset evaluation
are implemented repeatedly until a stopping criterion is met.
Finally, the output feature subset will be tested through a
validation procedure. It is clear that the subset discovery and
the subset evaluation are two essential components in feature
selection. For interested readers, more details can be obtained
from [6], [7], [8], and [9].

Indeed, recent decades have witnessed significant progress
in the development of feature selection for drug discovery,
such as sequence analysis [10], microarray analysis [11],
mass spectra (MS) analysis [12], single nucleotide polymor-
phism (SNP) analysis [13], and quantitative structure-activity
relationship (QSAR) analysis [14]. However, feature selec-
tion remains a challenging task due to the fact that it is an NP-
hard problem, in which the total number of possible feature
subsets is (2 — 1), where N is the number of features. To deal
with this issue, many methods have been proposed, such
as complete search, greedy search, and heuristic search [7].
Nevertheless, most of them suffer from stagnation in a local
optimum or high computational cost. Therefore, the demand
of an efficient global search method is particularly urgent for
better solving feature selection problems.

Evolutionary computation, which is a family of population-
based heuristic search methods inspired by nature, seems
to be a good choice because of its powerful global search
ability [15]. It has some attractive advantages such as ease
to use, efficiency, and robustness [16]. Moreover, it does
not make any assumptions about the search space, such as
linear/nonlinear, and differentiable/nondifferentiable. In par-
ticular, its population-based mechanism can generate mul-
tiple solutions in a single run [17], [18]. This property is
beneficial to solve multi-objective feature selection problems,
in which a set of non-dominated solutions with the tradeoff
between the number of features and the performance metric
is desired. Currently, evolutionary computation has attracted
a high level of interest from the feature selection research
community [7], and has been successfully applied to feature
selection in diverse fields, such as image analysis [19], face
recognition [20], gene analysis [21], human action recog-
nition [22], disease diagnose [23], network security [24],
and drug discovery [9].
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Although evolutionary computation has demonstrated its
efficiency and versatility, there still lacks a user-friendly
and efficient software to take advantage of evolution-
ary computation for feature selection in drug discov-
ery. To alleviate this issue, in this paper, a easy-to-use
and standalone software, named ECoFFeS, is developed.
The purposes of ECoFFeS are twofold: 1) lowering the
entry barrier for drug developers, and 2) further boost-
ing evolutionary computation for feature selection in drug
discovery.

The main contributions and novelties of this paper are
summarized as follows:

o As far as we know, ECoFFeS is the first software using
evolutionary computation for feature selection in drug
discovery. In addition, it provides a user-friendly graph-
ical user interface, and does not require researchers
to have any knowledge of programming. As a result,
ECoFFeS is expected to encourage researchers in the
field of drug discovery to use evolutionary computation
techniques to address feature selection problems at hand.
It is also expected that ECoFFeS can attract more atten-
tion from researchers in the evolutionary computation
community to further develop effective and efficient
approaches to handle new challenges in feature selection
of drug discovery.

« Both single-objective evolutionary algorithms (SOEAs)
and multi-objective evolutionary algorithms (MOEAs),
and both regression- and classification-based models are
synthesized in ECoFFeS. Therefore, ECoFFeS has the
capability to address different kinds of feature selection
problems that drug developers meet in real-life applica-
tions. It is worth noting that a novel SOEA (i.e., BFDE)
and a novel MOEA (i.e., MOEA/D-BFDE) are proposed
in this paper and they are incorporated into ECoFFeS to
solve single-objective and multi-objective optimization
problems, respectively. The experimental results have
validated their effectiveness.

o Five datasets in drug discovery are collected in
ECoFFeS, i.e., Artemisinin [25], benzodiazepine recep-
tors (BZR) [26], Selwood [27], hERG [28], and
logD7 4 [29] datasets.

o Parallel execution is supported in ECoFFeS, which
can significantly reduce the total analysis time. This
property will attract more drug developers to use this
software and to advance the development of evo-
lutionary computation for feature selection in drug
discovery.

o ECoFFeS is free for drug developers. Besides, for
researchers who are interested in the further devel-
opment of ECoFFeS, the Matlab source code is also
offered.

The rest of this paper is organized as follows. Section II
introduces the graphical user interface of ECoFFeS.
Section III describes the internal structure of ECoFFeS. The
collected datasets are presented in Section IV. The experi-
mental studies are given in Section V. The applications of
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FIGURE 2. Main interface of ECoFFeS.

ECoFFeS are provided in Section VI. Finally, Section VII
concludes this paper.

Il. GRAPHICAL USER INTERFACE (GUI)

The graphical user interface (GUI) of ECoFFeS contains
one main interface and a series of secondary interfaces. For
coping with a feature selection problem, drug developers can
choose an EA (i.e., a SOEA or a MOEA) and a model (i.e.,
a regression- or classification-based model) in the main inter-
face, and then enter the corresponding secondary interface.

A. MAIN INTERFACE
Fig. 2 shows the main interface of ECoFFeS. It contains three
parts:

o ‘Subset Discovery’: ‘SOEAs’ or ‘MOEASs’ is used to
solve single-objective or multi-objective optimization
problems, respectively.

o ‘Subset Evaluation’: ‘Regression Model & Met-
ric’ or ‘Classification Model & Metric’ is designed for
regression or classification, respectively.

o ‘Start’: To launch the secondary interface.

Through combining ‘Subset Discovery’ with ‘Subset
Evaluation’, four secondary interfaces can be produced,
i.e., ‘SOEAs_Regression’, ‘MOEAs_Regression’, ‘SOEAs_
Classification’, and ‘MOEAs_Classification’. These four
secondary interfaces are utilized to deal with different kinds
of feature selection problems.
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B. SECONDARY INTERFACE
For each secondary interface, it contains six panels:

o ‘Data’: To show the data that has been imported.

o ‘Results’: To present the results at the end of a run.

o ‘Figure’: To plot the charts at the end of a run.

« ‘State’: To exhibit the current operating status.

o ‘Settings’: To set the parameters. For instance, ‘Import
Data’ is used to load dataset, which can be imported as
XLS or XLSX files; ‘Parallelization’ offers an option
to use the parallel execution technique or not; ‘Save
Figure’ is used to save figures, which can be exported
as JPG, PNG, or FIG files; ‘SOEA’ or ‘MOEA’ is
used to select a SOEA or a MOEA, respectively; and
‘SOEA_parameter’ or ‘MOEA_parameter’ is used to
set parameters in a SOEA or a MOEA, respectively.
In ‘Model’, a model can be selected and its corre-
sponding parameters can be set in ‘Model_parameter’.
Similarly, in ‘Metric’, a metric can be selected and its
corresponding parameters can be set in ‘Met-
ric_parameter’. Besides, ‘Popsize’ is used to set the
population size, ‘Iteration’ is applied to set the maxi-
mum generation number of an algorithm, and ‘Runs’
is employed to set the total number of runs of an
algorithm.

¢ ‘Command’: To implement the command control. ‘Play’
is to start the run, ‘Stop’ is to stop the run, and ‘menu’

VOLUME 6, 2018
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FIGURE 3. An example of the secondary interface of ECoFFeS.
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FIGURE 4. Internal structure of ECoFFeS.

is to come back to the main interface.

An example is presented in Fig. 3, which is the
‘SOEAs_Classification’ secondary interface. This secondary
interface is used to solve single-objective classification prob-
lems. To achieve this, firstly, we need to load dataset and
set paraments. In this case, ‘hERG_training_set.xlsx’ is the
import data which comes from the hERG dataset, the paral-
lel execution technique is chosen for calculation, DE is the
selected SOEA, PLS-DA is the selected model, MCC is the
selected metric, the population size is set to 200, the maxi-
mum generation number is set to 200, and the total number
of runs is set to 10. Subsequently, ‘Play’ is clicked to launch
the calculation. After the calculation completes, ‘Save’ is
pressed and then ‘Figurel’, ‘Figure2’, and ‘Results’ in the
drop-down menu are used to save the results. Herein, ‘Iter-
ation Figure.jpg’, ‘Frequency Figure.jpg’, and ‘Results.xlsx’
are saved in ‘Figurel’, ‘Figure2’, and ‘Results’, respectively.
Note that the two figures are presented in ‘Figure’ panel and
‘Results.xlsx’ is output in ‘Result’ panel.
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Subset Discovery: Subset Evaluation

MOEAs ClassificationModel Metric
MOEAD  + o (1-ACC).N
4+ (1-AUC),N
PLS-DA
NSGA-II SVM (1-MCC). N

From the above introduction, we can conclude that
ECoFFeS offers a user-friendly GUI for drug developers.

IIl. INTERNAL STRUCTURE OF ECOFFES

The internal structure of ECoFFeS is presented in Fig. 4,
which consists of four main parts corresponding to the
four secondary interfaces in GUI. For each part, it con-
tains two key components: ‘Subset Discovery’ and ‘Subset
Evaluation’.

A. SUBSET DISCOVERY: EVOLUTIONARY COMPUTATION
Subset discovery denotes a search procedure generating can-
didate feature subsets. The categories of evolutionary com-
putation approaches for feature subset discovery in ECoFFeS
are presented in Fig. 5. There are four famous SOEAs (i.e,
ant colony optimization (ACO) [30], differential evolution
(DE) [31], genetic algorithm (GA) [32], and particle swarm
optimization (PSO) [33]) and two well-known MOEAs (i.e.,
MOEA/D [34] and NSGA-II [35]).

20953



IEEE Access

Z.-Z. Liu et al.: ECoFFeS: Software Using Evolutionary Computation for Feature Selection in Drug Discovery

Subset Discovery

|

Evolutionary
Algorithms

Single-Objective Evolutionary
Algorithms (SOEAs) Algorithms (MOEAs)

“\ "‘ Ny O s /

FIGURE 5. Evolutionary computation approaches for feature subset
discovery.

Multi-Objective Evolutionary

1) SINGLE-OBJECTIVE EVOLUTIONARY ALGORITHMS
(SOEAS)

The feature subset discovery can be regarded as a single-
objective discrete optimization problem, the purpose of which
is to select the optimal feature subset according to a specific
evaluation metric. The four SOEAs used in ECoFFeS are
introduced below:

e ACO is biologically inspired from the behavior of
colonies of real ants, in particular, how they forage
for food. Since the idea of ACO was proposed, it has
been successfully applied to solve discrete optimization
problems.

o DE is one of the most popular EA paradigms. Note,
however, that feature selection belongs to discrete opti-
mization problems and DE cannot address this kind of
optimization problems directly. To this end, a DE variant
called binary differential evolution (BDE) is proposed
in [36]. In ECoFFeS, by taking the feedback information
into consideration, an enhanced version of BDE named
BFDE is proposed. The details of BFDE are presented
in Appendix.

« GA is a population-based heuristic method inspired by
the process of natural evolution. In GA, each solution is
represented as a chromosome which is associated with a
fitness value. Each solution will undergo evolution and
the ones with better fitness values will survive. It is well-
accepted that GA is an effective optimizer for solving
discrete optimization problems.

« PSO is an optimization technique designed for contin-
uous optimization problems, which is motivated by the
behavior of organisms such as fish schooling and bird
flocking. To cope with discrete optimization problems,
Kennedy and Eberhart adapted the standard PSO to
binary spaces and proposed binary PSO (BPSO) [37].
This version of PSO is employed in ECoFFeS.

2) MULTI-OBJECTIVE EVOLUTIONARY

ALGORITHMS (MOEAS)

Under some conditions, it would be desirable if the dis-
covered feature subset is with not only the best value of
evaluation metric but also the minimum number of features.
However, these two objectives are always conflicting with
each other. From this point of view, feature selection should
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be treated as a multi-objective optimization problem rather
than a single-objective optimization problem. Note, however,
that solving a multi-objective optimization problem is not an
easy task since its goal is to obtain a set of trade-off solutions
between the evaluation metric and the number of features.
Fortunately, EAs are particularly suitable for tackling multi-
objective optimization problems due to their population-
based property [7]. In fact, many MOEAs have been proposed
during the last two decades [38]. Two representatives among
them, namely, MOEA/D [34] and NSGA-II [35], are used in
ECoFFeS and introduced below.

« MOEA/D is a famous decomposition-based MOEA,
which decomposes a multi-objective optimization prob-
lem into a number of scalar optimization subproblems
and then optimizes them simultaneously. In MOEA/D,
each subproblem is optimized by exploiting the infor-
mation from its several neighboring subproblems [38].
By integrating MOEA/D with BFDE, a new variant of
MOEA/D named MOEA/D-BFDE is implemented in
ECoFFeS to cope with multi-objective feature selection
problems.

o« NSGA-II is a well-known Pareto dominance-based
MOEA, which contains two key parts: nondominated
sorting procedure and crowding distance calculation.
Firstly, the nondominated sorting procedure is imple-
mented to divide the population into different layers and
to decide the last layer [35]. Afterward, the crowding
distance calculation is conducted in the last layer to
select the better individuals with the larger crowding
distances. In ECoFFES, NSGA-II is intergraded with
GA [32] to tackle multi-objective feature selection prob-
lems.

B. SUBSET EVALUATION: MODELS

Subset evaluation seeks to assess the candidate feature sub-
sets generated by subset discovery. It plays an important
role in drug discovery since evaluation function has the
capability to guide the search toward the optimal feature
subset. In ECoFFeS, an evaluation function consists of
two main parts: models and metrics. Models are developed
using one or more statistical modeling tools, which can be
broadly categorized into regression- and classification-based
models. Fig. 6 shows the overview of models in subset
evaluation.

1) REGRESSION-BASED MODELS

Regression-based models are used when the response
variable is quantitative. ECoFFeS integrates three classi-
cal regression models, namely, multiple linear regression
(MLR) [39], partial least squares (PLS) [40], and support
vector regression (SVR) [41]. Each of them has its own
advantages. For instance, MLR is one of the most popular
models due to its simplicity in operation, reproducibility,
and ability to allow easy interpretation of the features used.
In terms of PLS, it is a better choice when handling a large
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number of inter-correlated and noisy features with a limited
number of data points. With respect to SVR, by using kernel
functions, it has the capability to avoid the difficulties of using
linear functions in the high-dimensional feature space.

2) CLASSIFICATION-BASED MODELS

Classification-based models are used when the response vari-
able is a label (i.e., positive-negative). Four widely used
classification-based models are incorporated into ECoFFeS,
i.e., k-nearest neighbor (KNN) [42], logistic regression
(LR) [43], partial least squares discriminant analysis
(PLS-DA) [44], and support vector machines (SVMs) [45].
KNN is a type of instance-based learning algorithm, which
is very simple but works well in practice. LR is a statistical
classification model that measures the relationship between
a categorical-dependent variable and other independent vari-
ables by using probability scores. PLS-DA is a linear clas-
sification method combining the properties of partial least
squares regression with the discrimination power of a clas-
sification technique. In terms of SVMs, it is a nonlinear
classification model using a kernel function to map the input
data into a higher-dimensional space, where the instances are
linearly separable.

C. SUBSET EVALUATION: METRICS

Metrics are used to evaluate the quality of models. Based
on the categories of models, metrics can be divided into
two classes: 1) metrics for regression-based models, and
2) metrics for classification-based models. Fig. 7 shows the
overview of metrics in subset evaluation.
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1) METRICS FOR REGRESSION-BASED MODELS

There are two regression-based metrics employed in
ECoFFeS: adjusted R? (Rg) [46] and cross-validated Q2 [47].
R? denotes the determination coefficient, which is used to
judge the fitting ability of a model. Further, RZ is an enhanced
version of R?> which considers the number of features
additionally. As for cross-validated Q2, it is a well-
known metric which employs the cross-validation technique.
In cross-validated Q?, the samples are classed into two
subsets: calibration (i.e., training) and validation (i.e., test)
subsets. The aim of the former is to construct a model, while
the aim of the latter is to verify the predicting performance of
the constructed model.

2) METRICS FOR CLASSIFICATION-BASED MODELS

In ECoFFeS, there are three well-known metrics to assess
the performance of classification-based models, namely,
accuracy (ACC) [48], Matthews correlation coefficient
(MCC) [49], and area under curve-receiver operating char-
acteristics (AUC-ROC) [50]. ACC denotes the prediction
accuracy, which is commonly used to evaluate the classifier
model performance and classification capability. For MCC,
itusually measures the quality in binary classifications, which
can be efficient even if the classes are imbalance. With respect
to AUC-ROC, it can be regarded as a simple average of the
ranks of the positive samples.

Remark: For single-objective feature selection problems,
the above metrics such as Rﬁ, QZ, ACC, MCC, and AUC-ROC
can be directly used to assess regression- or classification-
based models. A larger value is expected for these metrics.
However, for multi-objective feature selection problems,’
one objective is assessed by 1 plus one of the corresponding
metric (i.e., | — R2, 1 — Q% 1—ACC, 1-MCC, or 1—-AUC-
ROC), and the other objective is evaluated by the number of
the selected features.

D. DISCUSSION
From the above introduction, we can make the following
comments about the internal structure of ECoFFeS:

« For subset discovery, it can be regarded as a single-
objective or multi-objective optimization problem.
When it is treated as a single-objective optimization
problem, SOEAs aim at obtaining a satisfactory fea-
ture subset and providing the rankings of the important
features simultaneously. On the other hand, when it
is formulated as a multi-objective optimization prob-
lem, MOEAs can be adopted to maintain a set of
non-dominated feature subsets with a tradeoff between
the number of features and the corresponding metric.
Afterward, the decision maker can select one feature
subset matching at most his/her preference. Note that
a novel version of DE (BFDE) and a novel version
of MOEA/D (MOEA/D-BFDE) are incorporated into
ECoFFeS.

Indeed, there are two objectives in ECoFFeS.
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TABLE 1. Experimental results of PLS and BFDE-PLS on the three datasets.

Datasets Methods Mean Q2 + Standard deviation Mean RMSECV + Standard deviation Mean N =+ Standard deviation
PLS 0.6003 0.9912 89
Artemisinin
BFDE-PLS 0.7594 + 0.0072 0.7690 + 0.0115 23.6000 £ 2.9196
BZR PLS 0.4007 0.8501 75
BFDE-PLS 0.5863 + 0.0087 0.7063 + 0.0074 21.5000 + 2.3599
PLS 0.2407 0.6461 53
Selwood
BFDE-PLS 0.9206 + 0.0067 0.2087 + 0.0087 12.0000 + 1.4384

« For subset evaluation, 36 evaluation combinations are
provided for drug developers in ECoFFeS. Among them,
12 are used for regression, which are the combinations
of regression-based models and metrics, and 24 are
used for classification, which are the combinations of
classification-based models and metrics.

« Since both subset discovery and subset evaluation are
carefully considered, ECoFFeS is a generic tool to tackle
different types of feature selection problems in drug
discovery.

IV. DATASETS
Five datesets in drug discovery are collected in this
paper, which are Artemisinin [25], benzodiazepine receptors
(BZR) [26], Selwood [27], hERG [28], and logD7.4 [29]
datasets. For these datasets, an important issue is to explore
the relationship between compounds and corresponding
biological activities or chemical properties. Quantitative
structure-activity/property relationship (QSAR/QSPR) [51]
is developed for this purpose. In QSAR/QSPR studies,
the chemical structure of a compound is represented by sev-
eral descriptors, such as molecular constitutional, topologi-
cal, shape, autocorrelation, and charge descriptors. However,
the number of descriptors is usually relatively larger than the
number of compounds. Moreover, there exist some redun-
dant, noisy, and irrelevant descriptors, which may lead to
either over fitting or a low correlation between structures and
activities [52], [53]. Consequently, the process of descriptor
selection is necessary and meaningful, which is obviously a
feature selection problem.

In this paper, the first three datasets are used for experimen-
tal testing, and the last two datasets are used for applications.

V. EXPERIMENTAL STUDIES

A. NECESSITY OF DESCRIPTOR SELECTION

To verify the necessity of descriptor selection, we compared
the method with and without the descriptor selection. Herein,
we took the PLS model as an example. For the method
without descriptor selection, all the descriptors were directly
used for the model development and this method is named as
PLS. In terms of the method with descriptor selection, BFDE
was used for subset discovery and the resultant method is
named as BFDE-PLS. Then, we tested these two methods on
three datasets: the Artemisinin, BZR, and Selwood datasets.
Note that in BFDE, the population size was set to 150, the
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maximum generation number was set to 300, and 100 inde-
pendent runs were conducted to produce the experimental
results.

In order to compare the performance of the involved meth-
ods, three performance metrics were chosen: Q2, the root
mean square error from five-fold cross-validation (denoted
as RMSECV) [54], and the number of the selected descriptors
(denoted as N). For 02, a larger value is desirable; while for
RMSECYV and N, the smaller the better.

The comparison results are presented in Table 1 and the
better results are highlighted in boldface. Clearly, BFDE-
PLS performs better than PLS since it obtains a larger Q,
a smaller RMSECV, and a smaller N on each of these three
datasets. Therefore, BFDE-PLS achieves a better validation
metric and a smaller validation error while using a less
number of features. Thus, we can conclude that descriptor
selection is definitely necessary in drug discovery.

B. EFFECTIVENESS OF BFDE

BDE has been verified as a powerful algorithm for discrete
optimization problems [36], and BFDE can be regarded as
a variant of BDE. Naturally, we compared BFDE with BDE
to verify the effectiveness of BFDE. For a fair comparison,
the parameter settings and the models used for these two
algorithms were kept the same. Specifically, the population
size was set to 150, the maximum generation number was
set to 300, 100 independent runs were performed, and the
PLS model was utilized. Three performance metrics (i.e., Q2,
RMSECYV, and N) were selected for performance comparison.
Table 2 shows the comparison results between them and the
better results are highlighted in boldface.

It is clear that BFDE significantly outperforms BDE on the
Artemisinin, BZR, and Selwood datasets in terms of the three
performance metrics. To be specific, BFDE-PLS obtains a
better validation metric (i.e., a larger 02), a smaller validation
error (i.e., a smaller RMSECYV), and a less number of features
(i.e., a smaller N). As a result, we can conclude that the
feedback strategy in BFDE is effective and the proposed
BFDE is more powerful than BDE.

C. NECESSITY OF MOEA/D-BFDE

MOEA/D-BFDE is a novel version of MOEA/D, which com-
bines MOEA/D with BFDE to solve multi-objective discrete
optimization problems. To test its performance, we compared
it with NSGA-II. To make a fair comparison, for these two
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TABLE 2. Experimental results of BDE-PLS and BFDE-PLS on the three datasets.

Datasets Methods Mean Q2 + Standard deviation Mean RMSECV + Standard deviation Mean N =+ Standard deviation
BDE-PLS 0.7481 £ 0.0117 0.7867 £ 0.01845 38.5000 + 3.4114
Artemisinin
BFDE-PLS 0.7594 £+ 0.0072 0.7690 £ 0.0115 23.6000 £ 2.9196
BZR BDE-PLS 0.5735 £ 0.0133 0.7171 £ 0.0111 32.0667 + 3.8321
BFDE-PLS 0.5863 + 0.0087 0.7063 + 0.0074 21.5000 + 2.3599
Selwood BDE-PLS 0.8976 £ 0.0113 0.2369 £ 0.0129 18.4667 £ 3.5305
elwoo
BFDE-PLS 0.9206 + 0.0067 0.2087 + 0.0087 12.0000 + 1.4384

algorithms, the population size was set to 150, the maximum
generation number was set to 400, and the MLR model was
utilized. In order to analyze the performance of these two
algorithms, three performance metrics were chosen: Max Q2,
Min RMSECV, and Max N. For each algorithm, 10 inde-
pendent runs were conducted. The comparison results are
summarized in Fig. 8.

From Fig. 8, we can observe that MOEA/D-BFDE-MLR
provides better Max Q% and Min RMSECV on the BZR
and Selwood datasets, while offers worse Max Q2 and Min
RMSECV on the Artemisinin dataset, which suggests that
MOEA/D-BFDE-MLR is better than NSGA-II-MLR on the
BZR and Selwood datasets, while worse than NSGA-II-MLR
on the Artemisinin dataset, respectively. Therefore, it can
be concluded that both MOEA/D-BFDE and NSGA-II have
their own advantages and should be considered in ECoFFeS.

D. EFFICIENCY OF PARALLEL EXECUTION

ECoFFeS supports parallel execution, which is a useful strat-
egy to make use of the processing ability of multi-core com-
puters. To verify the efficiency of parallel execution, we took
ACO-PLS as an example and run it with and without the
parallel execution technique. Then, we recorded the runtime
in these two different cases. The experimental results are
presented in Table 3, in which YES or NO means the parallel
execution technique was used or not, respectively. It is evident
that the runtime with parallelization is much less than that
without parallelization. As a result, we can conclude that the
parallel execution in ECoFFeS is quite efficient which can
significantly reduce the runtime.

VI. APPLICATIONS

In this section, we will introduce two applications of
ECoFFeS, namely hERG blockers predicting and logD7 4
predicting, by making use of the hERG and logD7 4 datasets,
respectively.

A. PREDICTING HERG BLOCKERS

1) BACKGROUND

In the process of cardiac depolarization and repolarization,
a voltage-gated potassium channel encoded by the human
ether-a-go-go related gene (hERG or Kv11.1) plays a major
role in the regulation of the exchange of cardiac action
potential and resting potential [55]. The hERG blockade
may cause long QT syndrome (LQTS), arrhythmia, and
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Artemisinin Dataset

MOEA/D-BFDE-MLR NSGA-II-MLR
Max 0* Min RMSECV Max N Max 0* Min RMSECV Max N
0.7652 0.7597 31 0.7703 0.7514 28

(1 - Q-square)

 Metric:

(2)
BZR Dataset
MOEA/D-BFDE-MLR NSGA-II-MLR
Max 0* Min RMSECV Max N Max 0* Min RMSECV Max N
0.5824 0.7097 28 0.5636 0.7255 21

0 s 20 = E o w
Number of Features: N Number

(b)
Selwood Dataset
MOEA/D-BFDE-MLR NSGA-II-MLR
Max 0* Min RMSECV Max N Max 0* Min RMSECV Max N
0.9434 0.1764 16 0.9383 0.1841 16
B 3"
: N
o \. £
£ _— 2 — o
I
Number of Features: N
(©

FIGURE 8. Experimental results of MOEA/D-BFDE and NSGA-II on the
Artemisinin, BZR, and Selwood datasets. (a) Artemisinin. (b) BZR.
(c) Selwood.

Torsade de Pointes(TdP), which can result in palpitations,
fainting, or even sudden death [56]. Therefore, the assessment
of hERGe-related cardiotoxicity has become an essential step
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1 I apol ast_fraglike ast_fraglike ast_violatic ast_violatica_acc a_acid a_aro a_base a_don a_donacc a_hyd a_ICM a_nBr I

2 1 1 72616 [1] 0 2 3 3 0 21 0 2 5 27 1482206 0

3 2 1 7506696 0 0 1 2 1 0 18 2 0 1 30 1415846 0

4 3 1 5858138 0 0 2 3 1 0 6 0 0 1 20 1332076 0

5 4 1 201572 0 0 2 4 0 4 18 3 0 0 66 1324578 0

6 5 1 7759338 0 0 2 3 1 0 18 1 1 2 28 1474502 0

7 6 1 6018403 0 0 2 3 3 0 12 0 1 4 21 1567719 0

FIGURE 9. Details of the hERG dataset.

umber of Molecules & || 24048235 Name of Descriptors .
A B (- D L L G H 1 L | K 1 v N 0 P -

1 logD7.4 I apol ast_fraglike ast_fraglike ast_violatica_acc a_acid a_aro a_base a_don a_donacc a_hyd a_CM a_nBr a_nCl I

2 1 -096 4818527 1] 0 2 4 [i] 6 0 3 7 16 1.724334 0 0

3 2 -092 4997345 0 0 1 3 0 9 0 1 4 15 1670549 0 0

4 3 -0.9 2801431 1 1 0 3 0 0 0 2 5 8 1570058 0 0

5 4 -0.83 5655886 0 0 2 4 0 12 0 3 7 20 16644 0 0

6 5 -0.82 3463468 1 0 0 3 0 0 0 2 5 9 159973 0 0

7 6 -0.79 5517445 0 0 2 5 0 6 0 3 8 18 1.705057 0 0

FIGURE 10. Details of the logD; , dataset.

TABLE 3. Parallel performance analysis of ECoFFeS.

Datasets Parallelization Popsize Maximum generation Runtime (s)

NO 150 200 488

Artemisinin
YES 150 200 181
NO 150 200 452

BZR
YES 150 200 170
NO 150 200 331

Selwood
YES 150 200 116

in drug discovery [57]. It should be noted that hERG assays
and QT animal studies are time-consuming and expensive.
Thus, it becomes urgent to develop a reliable and robust silico
model to predict potential hERG liability.

2) ECOFFES OPERATION

Herein, predicting hERG blockers is considered as a single-
objective classification problem. ECoFFeS can be used con-
veniently to solve this problem. The steps are presented as
follows:

o Start SOEAs_Classification: At first, double-click
ECoFFeS to start the main interface. Subsequently,
select ‘SOEAs’ in ‘Subset Discovery’ and ‘Classifica-
tion Model & Metric’ in ‘Subset Evaluation’. Finally,
press ‘Start’ to enter the secondary interface (i.e.,
SOEAs_Classification).

o Set parameters and play: For import data, ‘hERG_
training_set.xlsx’ was loaded which comes from the
hERG dataset. In Fig. 9, it can be observed that the first
column of the hERG dataset is the number of molecules,
the second column is the label of molecules, and the
remaining columns are descriptor values of molecules.
For other parameters and settings, DE was the selected
SOEA, PLS-DA was the selected model, and MCC was
the utilized metric. Besides, the population size was
set to 200, the maximum generation number was set to
200, and 10 independent runs were conducted. After the
above settings, press ‘Play’ to start the calculation.

20958

TABLE 4. Statistical results of the important descriptors for predicting
hERG blockers.

Code Class Description
BCUT_SLOGP_0 2D LogP BCUT (0/3)
opr_brigid 2D Oprea Rigid Bond Count
PEOE_VSA-2 2D Total negative 2 vdw surface area
b_max1len 2D Maximum single-bond chain length
FCharge 2D Sum of formal charges
vsa_pol 2D VDW polar surface area (A**2)
PEOE_VSA-6 2D Total negative 6 vdw surface area

o Save figures and results: After the calculation, press
‘Save’, then ‘Figurel’, ‘Figure2’, and ‘Results’ in the
drop-down menu were used to save ‘Iteration Fig-
ure.jpg’, ‘Frequency Figure.jpg’, and ‘Results.xlsx’,
respectively. The interface of ECoFFeS in this case is
presented in Fig. 3.

3) RESULTS AND DISCUSSION

According to the right-hand side picture in ‘figure’ panel
of Fig. 3, we can acquire the importance of the molecular
descriptors, which is summarized in Table 4. In Table 4,
BCUT_SLOGP_0, opr_brigid, and PEOE_VSA-2 in the
PLS-DA classifiers have the highest frequency (8/10). As for
b_max1len, FCharge, PEOE_VSA-6, and vsa_pol, they are
also very important since they are indicated by relatively high
frequencies (> 5/10). In terms of these important molecular
descriptors, they can be used for further QSAR model devel-
opment.

B. PREDICTING LOGD; 4

1) BACKGROUND

According to [29], it is very important to evaluate the
lipophilicity of candidate compounds in drug discovery. Usu-
ally, a compound’s lipophilicity can be quantitatively char-
acterized by the partition coefficient (its logarithm form is
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FIGURE 11. Obtained Results in ECoFFeS for Predicting logD; 4.

denoted as logP) or the distribution coefficient (its logarithm
form is denoted as logD) [58]. Due to taking the ionization
into account, the distribution coefficient, which is usually
known as pH-dependent distribution coefficient, seems to be
a more reliable measurement for the lipophilicity at physi-
ological pH [59]. It should be noted that the measurement
of logD value is usually costly and time-consuming, which
requires substantial quantities of the compound being synthe-
sized [60]. Consequently, it is necessary to establish a reliable
prediction model to accurately determine logD7 4 (pH~ 7.4
in human body) values, especially for new or even virtual
compounds.

2) ECOFFES OPERATION
Herein, we regard logD7 4 predicting as a multi-objective

regression problem. ECoFFeS is used to address this problem
via the following steps:

o Start MOEAs_Regression: Firstly, double-click ECoFFeS
to start the main interface. Thereafter, choose ‘MOEASs’
in ‘Subset Discovery’ and ‘Regression Model & Metric’
in ‘Subset Evaluation’. Finally, press ‘Start’ to start the
secondary interface (i.e., MOEAs_Regression).

o Set parameters and play: The import data was loaded
from the logD7 4 dataset which is ‘LogDtrain_pretreat.
xIsx’. For this dataset, as shown in Fig. 10, its first
column is the number of molecules, its second column is
the logD7 4 of molecules, and its remaining columns are
descriptor values of molecules. For other parameters and
settings, MOEA/D was chosen as the selected MOEA,
PLS model was the selected model, and 1 — Q? and
N were two selected metrics. Moreover, the population
size was set to 150, the maximum generation number
was set to 200, and 10 independent runs were con-
ducted. After the above setting, press ‘Play’ to start the
calculation.
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TABLE 5. Statistical results of the important descriptors for predicting
logD7 4

Code Class Description
apol 2D Sum of atomic polarizabilities
a_donacc 2D Number of H-bond donor + acceptor atoms
a_hyd 2D Number of hydrophobic atoms
balaban] 2D Balaban averaged distance sum connectivity
logP(o/w) 2D Log octanol/water partition coefficient
logS 2D Log Solubility in Water
nmol 2D Number of molecules
PEOE_VSA+0 2D Total positive 0 vdw surface area
PEOE_VSA+3 2D Total positive 3 vdw surface area
PEOE_VSA-2 2D Total negative 2 vdw surface area
PEOE_VSA-5 2D Total negative 5 vdw surface area

PEOE_VSA_FPOS | 2D
PEOE_VSA_POS 2D

Fractional positive vdw surface area

Total positive vdw surface area

SlogP_VSA1 2D Bin 1 SlogP (-0.40,-0.20]
SlogP_VSA2 2D Bin 2 SlogP (-0.20,0.00]
SlogP_VSA3 2D Bin 3 SlogP (0.00,0.10]
SMR_VSALI 2D Bin 1 SMR (0.110,0.260]
SMR_VSA6 2D Bin 6 SMR (0.485,0.560]
TPSA 2D Topological Polar Surface Area (A**2)
VDistEq 2D Vertex distance equality index

o Save figures and results: After the calculation, press
‘Save’, then in ‘Figurel’, ‘Figure2’, and ‘Results’ of
the drop-down menu, ‘Iteration Figure.jpg’, ‘Pareto
Figure.jpg’, and ‘Results.xIsx’ were saved, respectively.
The interface of ECoFFeS is presented in Fig. 11.

3) RESULTS AND DISCUSSION

In ‘Figure’ panel of Fig. 11, the left chart presents the
non-dominated descriptor subsets derived from MOEA/D
in 10 independent runs, and the right chart presents the
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FIGURE 12. BFDE.

resulting non-dominated descriptor subsets from the left
chart. According to the obtained Pareto optimal solutions
(i.e., a set of descriptor subsets), a decision-maker can choose
a preferred solution (i.e., a preferred descriptor subset) based
on his/her own requirements. In this paper, we select the sub-
set with 20 descriptors and these 20 descriptors are presented
in Table 5. It is convenient for a drug developer to apply these
descriptors for further model development.

VIl. CONCLUSION
In this paper, a standalone software called ECoFFeS was
developed to cope with feature selection problems in drug
discovery. ECoFFeS can not only provide a user-friendly and
easy-to-use GUI, but also offer an effective synergy of EAs
and evaluation combinations to meet different requirements.
Specifically, ECoFFeS have the ability to solve feature selec-
tion problems with different objectives (i.e., single-objective
and multi-objective optimization problems), and with dif-
ferent kinds of response variables (i.e., classification and
regression). From experimental studies, it was validated that
feature selection is an indispensable part in drug discovery.
The effectiveness of the proposed BFDE and necessity of
MOEA/D-BFDE were verified through comparison experi-
ments. Besides, we empirically demonstrated that the parallel
execution in ECoFFeS can be efficiently used to reduce the
runtime. Finally, we applied ECoFFeS to two of the real-life
applications in drug discovery, i.e., predicting hERG blockers
and predicting logD7 4. In the future, we plan to incorporate
more search techniques into ECoFFeS and employ ECoFFeS
to solve more feature selection problems in drug discovery.
For researchers who are interested in the further develop-
ment of ECoFFeS, they can download the Matlab source code
from: https://github.com/Jiaweihuang/ECoFFeS/tree/master
/Others/Further_Development

APPENDIX
The process of BFDE is presented in Fig. 12, where

o P = {71,6, 72@, cee ?N’G} denotes the ordinary
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lYes

—
Return Xbbesl.G aril

population in the current generation, whose individuals
consist of float-point numbers.
— — — )

e Pbg = {xb1 G, xb2G, ..., xby g} refers to the binary-
digits population in the current generation, whose indi-
viduals consist of binary numbers.

« N denotes the population size.

o G denotes the generation number.

As shown in Fig. 12, BFDE contains three important com-
ponents: binary transformation, normal DE, and feedback
strategy.

First of all, the binary transformation is used to transform
an individual in PG (i.e., ?i,G = (x,-,l,G, Xi2,Gs s xl-,n,G))
into a binary-digits individual in Pbg (e., xb;jg =
(xbi 1,6, Xbi2.G, - - ., xbi n,G)). Actually, this process is imple-
mented via Eq. (1) and Eq. (2).

xbij.c = {

Sije) = 1/(1 + e :0),

1, if rand; < S(x;j,c)

, j=1,2,...,n (1
0, otherwise J M

j=1,2,...,n 2)

where rand; is a uniformly distributed random number in the
interval (0,1) for each j and S(-) refers to the sigmoid function.
A brief description of the transformation process is presented
in Fig. 13.

The normal DE contains three basic operators: mutation,
crossover, and selection. For mutation, the ‘“DE/current-to-
best/1” operator is applied to create a mutant vector v i.G for
?i,G:

Vic=Xi6+F x (X best.6 — Xi.6)
+F X (X 1.6 = X ne) )

where ?bm,c denotes the best individual in Pg, r; and r are
two mutually different integers chosen from [1, N] and also
different from i, and F is the scaling factor.
Subsequently, the crossover operator is conducted on X i.G
— . .
and ViG to obtain a trial vector
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FIGURE 13. A brief description of the transformation process.

- )
UG = Ui1,6>Ui2,Gr---»UinG):

Vij,G> if mndj <CRor J = Jrand

“

Ujj G =

XjjG, otherwise

where j,qnq is a random integer in [1, n], rand; is a uniformly
distributed random number between 0 and 1 for each j, and
CR denotes the crossover control parameter. The condition
“j = Jrana~ makes e ;. different from 71',0 by at least one
dimension.

Finally, the selection operator is used to select the better
one between —u),-,(; and X ;.G to enter the next population
PG+ 1. For a minimization problem, it can be described as:

— . — —
Tigu = G if f(ub; ) < f(xbi )
1,G+1 — .
Ed i.G» otherwise

&)
-

where ub; ¢ is the binary-digits individual corresponding to
u i.G» xbi g 1s the binary-digits individual corresponding to
?iyg, and f(-) is the fitness function.

The feedback strategy is designed to incorporate the infor-
mation of the binary-digits population Pbs into the ordi-
nary population Pg4 1. It can be described as follows:

— — =
XiG+1 = X i1 — (1 — xbpest,G+1) (6)

where x_>bbe st.G+1 1S the bestindividual in Pbg1. In principle,
for the jth feature in X i.G+1, if it has been selected in the
xbbm G+1» X i.j,G+1 will kept the same; otherwise, the value
of X j,G+1 will be decreased, thus reducing its probability
to be chosen. By making use of the feedback information
provided by Pbg. 1, the convergence performance of DE can
be enhanced.
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