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Abstract

In this paper, we propose a model for forecasting Value-at-Risk (VaR) using a Bayesian

Markov-switching GJR-GARCH(1,1) model with skewed Student’s-t innovation, copula

functions and extreme value theory. A Bayesian Markov-switching GJR-GARCH(1,1) model

that identifies non-constant volatility over time and allows the GARCH parameters to vary

over time following a Markov process, is combined with copula functions and EVT to formu-

late the Bayesian Markov-switching GJR-GARCH(1,1) copula-EVT VaR model, which is

then used to forecast the level of risk on financial asset returns. We further propose a new

method for threshold selection in EVT analysis, which we term the hybrid method. Empirical

and back-testing results show that the proposed VaR models capture VaR reasonably well

in periods of calm and in periods of crisis.

Introduction

In recent decades, Value-at-Risk (VaR) has become a key tool for measuring market risk; it

provides risk managers with a quantitative measure of the downside risk of a firm or invest-

ment portfolio during a given time frame. VaR attempts to summarise the total risk in a port-

folio of asset or exposures to risk factors in a single number over a target horizon.

There are several methods to estimate VaR; the most commonly used by financial institu-

tions are the variance-covariance, historical simulation and Monte Carlo simulation methods

(see [1–3] and the references therein). Historical simulation relies on actual data and is based

on the assumption that history will repeat itself; the VaR is estimated by running hypothetical

portfolios from historical data [4]. The variance-covariance and Monte Carlo simulation meth-

ods assume that asset returns are independent and identically distributed, a major weakness in

these VaR models.

Traditional VaR models assume asset returns in financial markets to be normally distrib-

uted; thus, changes in asset prices are independent of each other and exhibit constant vola-

tility over time. This is not the case in real life i.e., financial asset returns are leptokurtic and
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heavy tailed with non-constant volatility [5, 6]. The normality assumption leads to inaccu-

rate estimates in the tails of the distribution and hence of the probability of extreme events,

which leads to underestimation of the likelihood of extreme tail losses. This is because the

normal distribution has light tails, and VaR attempts to capture the behaviour of the portfo-

lio return in the left tail. A model based on the normal distribution underestimates the fre-

quency of outliers and hence the true VaR [2]. Additionally, the normality assumption

implies volatility is constant over time, and recent price changes, which are based on cur-

rent market information, will be assigned weights in equal proportion to older ones. If the

dependence characteristics of the extreme realisations differ from all others in the sample,

the consequences might be dire [7].

Non-normality for univariate models is associated with the dependence (i.e., correlation)

structure between the asset returns. For multivariate models, non-normality is associated with

the joint probability of the univariate models’ marginal probabilities, i.e., the joint probability

of large market movements, known as tail dependence. Because of the complexity of multivari-

ate distributions, the VaR estimation of a portfolio of assets can be quite difficult. To avoid the

normality assumption, extreme value theory (EVT) is often used to model the tail behaviour of

asset returns. However, EVT also assumes extreme events to be independent and identically

distributed, which might not hold in periods of severe crisis [8]. [9] suggests applying EVT to

the noise variables of the return series, which are normally distributed, to obtain the qth quan-

tile used to estimate conditional, robust VaR estimates. By doing so, the problem of volatility

clustering and other related effects, such as excess kurtosis, is accounted for. This approach

was further investigated by [4]; they combined a GARCH(1,1) model as the underlying volatil-

ity model with EVT to estimate the VaR of the Tunisian stock market index and showed that

the GARCH-EVT-based VaR approach appears to be more effective and realistic than tradi-

tional VaR estimation methods.

A study by [10] have shown that volatility predictions following econometric models that

ignore regime changes and time varying parameters have several drawbacks. For example,

they may fail to capture the dynamics of fluctuations in the time series data. Ignoring regime

changes and time varying parameters in high-volatility periods causes significant upwards bias

in estimating the GARCH parameters, which impairs volatility forecasts [11]. The Markov-

switching GARCH model, first developed by [12] and later improved by [11, 13], helps address

the issues since it allows the parameters of GARCH models to vary over time according to a

latent discrete Markov process, which leads to volatility forecasts that can rapidly adapt to vari-

ations [14].

The problem of dependence can also be improved with the help of copula theory, which

enables the construction of flexible multivariate distributions with different margins and

dependence structures. This allows the joint distribution of the portfolio to be free from

assumptions of normality and linear correlation. [15, 16] have demonstrated that VaR esti-

mates obtained by combining GARCH models, EVT and copula functions are more accurate

than those obtained using traditional VaR estimation methods or methods that combined cop-

ulas with conventionally employed empirical distributions.

In this paper, we combine the Bayesian Markov-switching GJR-GARCH(1,1) model with

skewed Student’s-t distribution, copula functions and the peaks over threshold (POT) method

of EVT to estimate VaR in selected banks in the United Kingdom (UK) using actively traded

stocks on the London Stock Exchange.
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Methodology

Markov-switching GJR-GARCH model

Let rt represent a time series, then a general Markov-switching GARCH specification can be

represented as

rtjðDt ¼ k;Ot� 1Þ � Dð0; hk;t;YkÞ; ð1Þ

rt ¼ �t h
1
2

Dt ;t

� �
; ð2Þ

where Δt is a Markov chain (a stochastic variable) defined on the parameter space S = {1, . . .,

K} that symbolises the model, D(0, hk, t, Θk) is a continuous distribution with zero mean and

conditional variance hk,t, �t is the distribution of the noise variables, which assumes a skewed

Student’s-t distribution, Ot−1 is the information set observed up to time t − 1, and Θk is a vector

of the shape parameters.

We define a K × K transition probability matrix P, with distinctive elements

pij ¼ P½Dt ¼ jjDt� 1 ¼ i�; 8i; j 2 f1; . . . ;Kg; 0 < pij < 1; SK
j¼1

pij ¼ 1; ð3Þ

where pij is the probability of transition from state Δt−1 = i to state Δt = j. k represents each

regime in the Markov chain. The conditional variance, hk,t, for k = 1, . . .K are assumed to fol-

low K-separate GARCH-type processes which evolve in parallel [11, 14]. The Markov switch-

ing GARCH models use a stochastic process to define the unknown states [17].

The reliability of a good VaR model depends on the type of volatility model which it incor-

porates. As discussed above, most financial asset returns are not independently and identically

distributed; they exhibit fat tails, leverage effects, and volatility is not constant over time. Vola-

tility reacts differently with large negative returns as compared to positive returns reflecting

leverage effects [2]. GARCH models often fail to capture these movements. A good volatility

estimator must be able to capture the true behaviour of risk factor returns, it should be easy to

implement for a wide range of risk factors, and finally, it should be possible to extent the

approach to portfolios with a number of different risk factors [3]. It is well known that tradi-

tional GARCH models cannot capture the asymmetric response of volatility. Several other

extensions of GARCH models have since been developed as possible solutions to these draw-

backs. The most common of these are the exponential generalised ARCH (EGARCH) model

[18], the threshold GARCH (TGARCH) model [19], and the GJR-GARCH model [20]. The

only significant, albeit minor, difference between TGARCH and GJR-GARCH models is that

TGARCH uses standard deviation instead of variance in its specifications [21]. We employ the

Markov-switching GARCH model of [11] to capture the differences in the variance dynamics

of high and low volatility periods [14], and use the GJR-GARCH(1,1) model to capture the

asymmetry response in the conditional volatility process, hence the Markov-switching

GJR-GARCH(1,1) model (MS-GJR-GARCH(1,1)).

The conditional variance of a MS-GJR-GARCH model is defined as

hk;t ¼ a0;k þ ða1;k þ a2;kIfrt� 1<0gÞr2
t� 1
þ bkhk;t� 1; k ¼ 1; . . .K; ð4Þ

where If�g is an indicator function introduced to capture the leverage effect such that

It� 1 ¼

(
1; if rt� 1 < 0;

0; if rt� 1 � 0:
ð5Þ
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α2,k controls the degree of asymmetry in the conditional volatility to the past shock in regime k
[14]. Thus, α2,k> 0 indicates the presence of leverage effect which implies previous negative

returns have higher influence on the volatility. The constraints α0,k> 0, α1,k + α2,k� 0 and βk
� 0 ensures a positive variance while covariance stationary is achieved by ensuring that

a1;k þ a2;kE½�2
k;tIf�k;t<0g� þ bk < 1; ð6Þ

where If:g ¼ 1 if the condition holds and 0 otherwise. Note that E½�2
k;tIf�k;t<0g� ¼

1

2
when �k is

symmetrically distributed.

For the conditional distribution of rt in each regime of the Markov chain, we employ a skew

and fat tail error probability distribution; the skewed Student’s-t distribution. We use the

skewed Student’s-t distribution because it is able to account for the excess kurtosis in the con-

ditional distribution that is common with financial time series processes [22]. Moreover,

recent studies by [23, 24] have shown that skewed Student’s-t errors distribution is a good

choice, when compared to a range of existing alternatives. The probability density function

(PDF) of a Student’s-t distribution is defined as

fsð�; nÞ ¼
G nþ1

2

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðn � 2ÞpG n

2

� �q 1þ
�2

n � 2

� �� nþ1
2

; � 2 R; ð7Þ

where the constraint on the degrees of freedom parameter ν> 2 is imposed to guarantee that

the second order moment exist, and Γ(�) is the Gamma function. Skewness is introduced by an

additional parameter γk> 0 as defined in [25]; that is

pð�kjv; gkÞ ¼
2

gk þ
1

gk

fs
�k
gk

� �

I½0;1Þð�kÞ þ fsðgk�kÞIð� 1;0Þð�kÞ
� �

: ð8Þ

When γk 6¼ 1, the posterior distribution, p(�k|v, γk) loses symmetry (see [14, 25, 26] for

more details on skewed Student’s-t probability distribution).

We use Bayesian statistics to estimate the posterior distribution of the variance equation

because the Bayesian estimation method provides reliable results even for finite samples.

Moreover, it is usually straightforward when using the Bayesian estimation method, to obtain

the posterior distribution of any non-linear function of the model parameter. By comparison,

when using the classical maximum likelihood method, it is not easy to perform inferences on

non-linear functions of the model parameters, while the convergence rate is slow and presents

limitations when the residuals are heavy tailed. The constraints on the GARCH parameters to

guarantee a positive variance can be incorporated via priors whereas the classical maximum

likelihood method may impede some optimisation procedures [27, 28].

We define a vector of the risk factor returns as r = (r1, . . ., rT)0, θk = (α0,k, α1,k, α2,k, βk, P)0,

and a vector of the model parameters as Λ = (θ1, Θ1, . . ., θK, ΘK); ΘK = (νK, γK). Then, from

Bayes theorem and prior distribution of the model parameters p(Λ), we have

pij ¼ Pr ½Dt ¼ jjDt� 1 ¼ i� ¼
f ðrtjDt ¼ j;Ot� 1; LÞPr ðDt ¼ jjOt� 1Þ

Sk
i¼1

f ðrtjDt ¼ i;Ot� 1; LÞPr ðD ¼ ijOt� 1Þ
; ð9Þ

where f(rt|Δt = j, Ot−1; Λ) is the conditional probability density of rt at time t restrictive on Ot−1

and regime j. Therefore we have

f ðrtjL;Ot� 1Þ ¼
Xk

i¼1

Xk

j¼1

Pr ½Dt ¼ jjDt� 1 ¼ i�fDðrtjDt ¼ j;Ot� 1; LÞ ð10Þ

Refining value-at-risk estimates

PLOS ONE | https://doi.org/10.1371/journal.pone.0198753 June 22, 2018 4 / 33

https://doi.org/10.1371/journal.pone.0198753


and a likelihood function

LðLjrÞ ¼
YT

t¼1

f ðrtjL;Ot� 1Þ: ð11Þ

The Metropolis Hasting (MH) algorithm of Markov Chain Monte Carlo (MCMC) is then

employed to estimate the parameter values of the posterior distribution. As discussed in [22],

because of the recursive nature of the variance equation, the prior density p(Λ) and posterior

density p(r|Λ) do not belong to the same distributional family and, consequently, cannot be

expressed in close form. The MH algorithm allows draws to be generated from any density

and whose normalising constant is unknown.

In the MH algorithm, Λ is a random variable with Markov chains generated as (Λ[0]), . . .,

(Λ[j]), . . . in a parameter space. As the number of realised chains reaches infinity, p(r|Λ) tends

to a normalised probability distribution with a random variable (Λ[j]) [29]. The chain con-

verges to its stationary distribution and the optimal mean values of the posterior distribution

parameters are realised. [22] summarises the MH algorithm as follows: (i) Initialise the itera-

tion counter to j = 1 and set the initial value Λ[0]. (ii) Move the chain to a new value Λ? gener-

ated from a proposal density q(�|Λ[j−1]). (iii) Evaluate the acceptance probability of the move

from Λ[j−1] to Λ[?] given by

min
pðL?
jrÞ

pðL½j� 1�
jrÞ

qðL½j� 1�
jL

?
Þ

qðL?
jL
½j� 1�
Þ
; 1

( )

:

If the move is accepted, set Λ[j] = Λ?; if not, set Λ[j] = Λ[j−1] (i.e., the chain does not move). If

chosen from a symmetric proposal density, i.e., q(Λ[j]|Λ?) = q(Λ?|Λ[j]), then the acceptance

probability reduces to

min
pðL?
jrÞ

pðL½j�jrÞ
; 1

( )

:

(iv) Finally, change the counter from j to j + 1 and go back to step (ii) until convergence is

reached. More details on MH algorithms can be found in [30–33].

Copula theory

Copula theory enables the construction of a flexible multivariate distribution with varying

margins and dependence structures; it is free from assumptions of normality or linear correla-

tion. In addition, copulas can easily capture the tail dependence of asset returns, i.e., the joint

probability of large market movements.

Copula theory was first developed by [34] to describe the dependence structure between

random variables. It was later introduced to the finance literature by [35, 36]. Consequently,

[37] introduced the application of copula theory to financial asset returns, and [38] expanded

the framework of copula theory with respect to the time-varying nature of financial depen-

dence schemes. Copula theory has also been used in risk management to measure the VaR of

portfolios, including both unconditional [39–41] and conditional distributions [42–44].

In multivariate settings, we use the following version of Sklar’s theorem as given by [41] for

the purpose of VaR estimation:

Sklar’s theorem: Consider an n-dimensional joint distributional function F(x), with uni-

form margins F1(x1), . . ., Fn(xn); x = (x1, . . ., xn), with −1� xi�1, then there exists a copula
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C: [0, 1]n! [0, 1] such that

Fðx1; . . . ; xnÞ ¼ CðF1ðx1Þ; � � � ; FnðxnÞÞ; ð12Þ

determined under absolute continuous margins as

Cðu1; . . . ; unÞ ¼ FðF � 1
1
ðu1Þ; � � � ; F � 1

n ðunÞÞ; ð13Þ

otherwise, C is uniquely determined on the range R(F1) × . . . × R(Fn). Equally, if C is a copula

and F1, . . ., Fn are univariate distribution functions, then Eq (12) is a joint distribution func-

tion with margins F1, . . ., Fn [45].

The copula C(u1, . . ., un) has density c(u1, . . ., un) associated to it and defined as

cðu1; . . . ; unÞ ¼
@nCðu1; . . . ; unÞ

@u1; . . . ; @un
ð14Þ

and is related to the density function F for continuous random variables denoted as f, by the

canonical copula representation [16]

f ðx1; . . . ; xnÞ ¼ cðF1ðx1Þ; . . . ; FnðxnÞÞ
Yn

i¼1

fiðxiÞ; ð15Þ

where fi are the marginal densities that can be different from each other [41, 43, 45, 46].

[16, 47] discuss two commonly used families of copulas in financial applications: the ellipti-

cal and the Archimedean copulas.

Elliptical copulas are derived from the elliptical distribution by applying Sklar’s theorem.

The most common are the Gaussian and the Student’s-t copulas, which are symmetric. Their

dependence structure is determined by a standardised correlation or dispersion matrix

because of the invariant property of copulas. Consider a symmetric positive definite matrix ρ
with diag(ρ) = (1, 1, . . ., 1)T; we can represent the multivariate Gaussian copula (MGC) as

CGa
r
¼ FrðF

� 1ðu1Þ; . . . ;F� 1ðunÞÞ; ð16Þ

where Fρ is the standardised multivariate normal distribution and F� 1

r
is the inverse standard

univariate normal distribution function of u with correlation matrix ρ. If the margins are nor-

mal, then the Gaussian copula will generate the standard Gaussian joint distribution function

with density function

cGa
r
ðu1; u2; . . . ; unÞ ¼

1

jrj
1

2

exp �
1

2
B
0

ðr� 1 � IÞB
� �

; ð17Þ

where B ¼ ðF� 1ðu1Þ; . . . ;F� 1ðunÞÞ
0

and I is the identity matrix.

On the other hand, the multivariate Student’s-t copula (MTC) has the form

Tr;vðu1; . . . ; unÞ ¼ tr;vðt� 1
v ðu1Þ; . . . ; t� 1

v ðunÞÞ ð18Þ

with density function

cr;vðu1; . . . ; unÞ ¼ jrj
�

1

2
G vþn

2

� �

G v
2

� �
G v

2

� �

G vþ1

2

� �

 !n
1þ 1

v B
0

r� 1B
� �� vþn

2

Qn
j¼1

1þ
B2
j
v

� �� vþ1
2

; ð19Þ

where tρ,v is the standardised Student’s-t distribution with correlation matrix ρ and v degrees

of freedom.
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Archimedean copulas are useful in risk management analysis because they capture asym-

metric tail dependencies between financial asset returns. The most common are the Gumbel

[48], Clayton [49] and Frank [50] copulas [51]. These copulas are built via a generator as

Cðu1; . . . ; unÞ ¼ φ� 1ðφðu1Þ þ . . .þ φðunÞÞ ð20Þ

with density function

cðu1; . . . ; unÞ ¼ φ� 1ðφðu1Þ þ . . .þ φðunÞÞ
Yn

i¼1

φ0 ðuiÞ; ð21Þ

where φ is the copula generator and φ−1 is completely monotonic on [0,1]. That is, φ must be

infinitely differentiable with derivatives of ascending order and alternative sign such that

φ−1(0) = 1 and limx! +1 φ(x) = 0 [47]. Thus, φ0(u)<0 (i.e., φ is strictly decreasing) and φ0 0(u)

> 0 (i.e., φ is strictly convex).

The Gumbel copula captures upper tail dependence, is limited to positive dependence, and

has generator function φ(u) = (−ln(u))α and generator inverse φ� 1ðxÞ ¼ exp � x1
a

� �
. This will

generate a Gumbel n-copula represented by

Cðu1; . . . ; unÞ ¼ exp �
Xn

i¼1

ð� lnuiÞ
a

" #
1

a

8
>><

>>:

9
>>=

>>;

a > 1: ð22Þ

The generator function for the Clayton copula is given by φ(u) = u−α − 1 and generator

inverse φ� 1ðxÞ ¼ ðx þ 1Þ
� 1

a, which yields a Clayton n-copula represented by

Cðu1; . . . ; unÞ ¼
Xn

i¼1

u� a

i � nþ 1

" #�
1

a
a > 0:

ð23Þ

Frank copula has generator function φðuÞ ¼ ln exp ð� auÞ� 1

exp ð� aÞ� 1

� �
and generator inverse

φ� 1ðxÞ ¼ � 1

a
ln ð1þ exðe� a � 1ÞÞ, which will result in a Frank n-copula represented by

Cðu1; . . . ; unÞ ¼ �
1

a
ln 1þ

Qn
i¼1
ðe� aui � 1Þ

ðe� a � 1Þ
n� 1

( )

a > 0: ð24Þ

We follow [52] and employ Gaussian, Student’s-t, Gumbel, Frank and Clayton copulas in this

study.

Modelling dependence

The traditional way to measure the relationship between markets and risk factors is to look at

their linear correlations, which depend both on the marginal and joint distributions of the risk

factors. If there is a non-linear relationship (i.e., in the case of non-normality) the results

might be misleading [47]. In this situation, non-parametric invariant measures that are not

dependent on marginal probability distributions such as Kendall’s τ or Spearman’s ρ are more

appropriate. Copulas measure a form of dependence between pairs of risk factors (i.e., asset

returns) known as concordance using these invariant measures.

Two observations (xi, yi) and (xj, yj) from a vector (X, Y) of continuous random variables

are concordant if (xi − xj)(yi − yj)> 0 and discordant if (xi − xj)(yi − yj)< 0. Large values of X
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are paired with large values of Y and small values of X are paired with small values of Y as the

proportion of concordant pairs in the sample increases. On the other hand, the proportion of

concordant pairs decreases as large values of X are paired with small values of Y and small val-

ues of X are paired with large values of Y [53].

Consider n paired continuous observations (xi, yi) ranked from smallest to largest, with the

smallest ranked 1, the second smallest ranked 2, and so on. Then, Kendall’s τ is defined as the

sum of the number of concordant pairs minus the sum of the number of discordant pairs

divided by the total number of pairs, i.e., the probability of concordance minus the probability

of discordance:

tX;Y ¼ Pr ½ðxi � xjÞðyi � yjÞ > 0� � Pr ½ðxi � xjÞðyi � yjÞ < 0� ¼
C � D
C þ D

; ð25Þ

where C is the number of concordant pairs below a particular rank that are larger in value than

that particular rank, and D is the number of discordant pairs below a particular rank that are

smaller in value than that particular rank.

Spearman’s ρ, on the other hand, is defined as the probability of concordance minus the

probability of discordance of the pair of vectors (x1, y1) and (x2, y3) with the same margins.

That is,

rX;Y ¼ 3ðPr ½ðx1 � x2Þðy1 � y3Þ > 0� � Pr ½ðx1 � x2Þðy1 � y3Þ� < 0Þ:

The joint distribution function of (x1, y1) is H(x, y), while the joint distribution function of (x2,

y3) is F(x)G(y) because x2 and y3 are independent [54]. Alternatively,

rX;Y ¼ 1 �
6
Pn

i¼1
d2

i

nðn2 � 1Þ
;

where d is the difference between the ranked samples.

A study by [54] has shown that Kendall’s τ and Spearman’s ρ depend on the vectors (x1, y1),

(x2, y2) and (x1, y1), (x2, y3), respectively, through theirs copulas C, and that the following rela-

tionship holds:

tX;Y ¼ 4

Z 1

0

Z 1

0

Cðu; vÞdCðu; vÞ � 1

and

rX;Y ¼ 12

Z 1

0

Z 1

0

Cðu; vÞdudv � 3:

Extreme value theory

EVT is a statistical approach for estimating extreme events with low frequency but high sever-

ity. This technique is widely used in financial risk management since empirical evidence from

various studies [5, 6] show that in the majority of cases, financial asset return distributions are

heavy-tailed, especially in times of financial instability.

There are two fundamental approaches for modeling extreme events with low frequency

but high severity: the block maxima method and the POT method. The POT method is a com-

monly used method to model extreme events in financial time series data. On the other hand,

the block maxima method is not commonly used for statistical inference on financial time

series data for a few reasons: (i) The method does not make sufficient use of data as it uses only

the sub-period maxima, (ii) the choice of sub-period length is not clearly defined, and (iii) the
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method is unconditional and does not take into account the effects of other explanatory vari-

ables [55]. In this paper we use the POT method based on the generalised Pareto distribution

(GPD). The POT method focuses on modeling the exceedances of the losses above a certain

threshold ϑ and the time of occurrence. The threshold is selected such that there are enough

data points to carry out a meaningful statistical analysis. Techniques for selecting the proper

threshold are discussed below.

Let fxig
T
i¼1

represent the loss variables of an asset return, then as T!1, fxig
T
i¼1

is assumed

to be independent and identically distributed, and (x − μ)/σ follows a generalised extreme

value (GEV) distribution:

Fx;m;sðxÞ ¼

(
exp ½� ð1þ xxÞ� 1=x

� for x 6¼ 0;

exp ½� e� x� for x ¼ 0;

ð26Þ

where ξ is the shape parameter and 1/ξ is the tail index of the GEV distribution. x< −1/ξ if ξ<
0 and x> −1/ξ if ξ> 0. Also, let the conditional distribution of the excesses over the threshold,

i.e., xi − ϑ = y|xi> ϑ, then

Pr ðx � W � yjx > WÞ ¼
Pr ðW � x � y þ WÞ

Pr ðx > WÞ
¼

Pr ðx � y þ WÞ � Pr ðx � WÞ

1 � Pr ðx � WÞ
ð27Þ

¼
Fðy þ WÞ � FðWÞ

1 � FðWÞ
¼ FWðyÞ: ð28Þ

Again, as T!1, (y + ϑ − μ)/σ follows a GEV distribution; see Eq (26). Therefore,

Pr ðx � W � yjx > WÞ ¼
Fðy þ WÞ � FðWÞ

1 � FðWÞ

¼
exp � 1þ

xðyþW� mÞ

s

� �� 1=x
h i

� exp � 1þ
xðW� mÞ

s

� �� 1=x
h i

1 � exp � 1þ
xðW� mÞ

s

� �� 1=x
h i

� 1 � 1þ
xy

sþ xðW � mÞ

� �� 1=x

;

ð29Þ

where y> 0 and σ + ξ(ϑ − μ) > 0. Let ψ(ϑ) = σ + ξ(ϑ − μ), then as ϑ!1, Eq (29) is approxi-

mated by the GPD

Gx;cðWÞðyÞ ¼

(
1 � 1þ

xy
cðWÞ

h i� 1=x

for x 6¼ 0;

1 � exp ½� y=cðWÞ� for x ¼ 0;

ð30Þ

with shape parameter ξ and scale parameter ψ(ϑ), where ψ(ϑ)> 0, y 2 [0, x − ϑ] when ξ� 0,

and y 2 0; �
cðWÞ

x

h i
when ξ< 0. If ξ = 0, then Eq (30) becomes an exponential distribution with

parameter 1/σ ([55]). Let y = x − ϑ, then Eq (28) can be written as

Fðy þ WÞ � FðWÞ
1 � FðWÞ

¼
FðxÞ � FðWÞ

1 � FðWÞ
� Gx;cðWÞðx � WÞ ð31Þ

¼)FðxÞ ¼ FðWÞ þ ½1 � FðWÞ�Gx;cðWÞðx � WÞ: ð32Þ
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The tail estimator for the underlying distribution F(x|ξ, ψ(ϑ)) is constructed using an empir-

ical estimate of F(ϑ), i.e., F̂ðWÞ ¼ ðT � NWÞ=T as

F̂ðxjx;cðWÞÞ �
T � NW

T
1þ

x̂ðx � WÞ

ĉðWÞ

" #� 1=x̂

; ð33Þ

where Nϑ is the number of observations above the threshold. We obtain the qth quantile

F � 1
q ¼ VaRq, by inverting Eq (33), for any given small upper tail probability p for VaR estima-

tion as

VaRq ¼ W �
ĉðWÞ

x̂
1 �

T
NW

ð1 � qÞ
� �� x̂

( )

; ð34Þ

where q = 1 − p [4, 55, 56].

After deciding on the choice of ϑ, and assuming that the number of points above ϑ are inde-

pendent and identically distributed, the parameters ψ(ϑ) and ξ can be estimated by means of

maximum likelihood estimation with likelihood function

Lðxi; . . . ; xNW
jx; s; mÞ ¼

YNW

i¼1

f ðxiÞ for xi > W: ð35Þ

The choice of a threshold ϑ is an important step in the POT method because Eq (34) is

dependent on ϑ and the number of points (i.e., exceedances) above ϑ since the parameters are

estimated based on the exceedances. Thus, it is very important to find the proper threshold

value. There is no clear-cut or wholly satisfactory method to determine a proper threshold that

has been determined to date. [57] developed a semi-parametric estimator for the tails of the

distribution that estimated the threshold of the bootstrap approximation of the mean square

error (MSE) of the tail index and by minimising MSE through the choice of the threshold. [58]

further used a two-step subsample bootstrap method to determine the threshold that mini-

mised the asymptotic MSE. [59, 60] propose graphical tools to identify the proper threshold

known as the Hill plot and the mean excess plot, respectively. In this paper, we use the mean

excess plot and propose its extension, which wee call a hybrid method as will be discussed later.

A mean excess function of x over a certain threshold ϑ is defined as

eðWÞ ¼ Eðx � Wjx > WÞ ¼
sþ xW

1 � x
: ð36Þ

A property of the GPD states that if the excess distribution of x given a threshold ϑ0 be a GPD

with shape parameter ξ and scale parameter ψ(ϑ0), then for any random threshold ϑ> ϑ0, the

excess distribution over the threshold ϑ has a GPD with shape parameter ξ and scale parameter

ψ(ϑ) = ψ(ϑ0) + ξ(ϑ − ϑ0), where 0< ξ< 1 [55]. Then

eðWÞ ¼ Eðx � Wjx > WÞ ¼
cðW0Þ þ xðW � W0Þ

1 � x
; ð37Þ

which is a linear function of ϑ − ϑ0 with slope ξ/(1 − ξ) for ϑ> ϑ0. From the ordered sample

{xi}, we calculate and plot the mean excess function, i.e., Eq (37) against each chosen ϑi for ϑi>
ϑ0. The threshold ϑ is then identified as the lowest point on the mean excess plot above which

the graph appears to be approximately linear. However, the choice of ϑ from the mean excess

plot is subjective [8, 55] and might differ from one bank to another using the same data

because of different risk tolerances. Different ϑ values will give different estimates of the shape
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and scale parameter. A very high threshold will result in too few data points in the left tail for

any meaningful statistical analysis. In contrast, a very low threshold will result in a number of

data points above the threshold lying close to the body of the sample data. This will result in a

poor approximation because the GPD is a limiting distribution as ϑ!1; data beyond the

threshold will deviate from the GPD since the GPD is not a good approximation for the body

of the sample data [8, 56]. We propose a hybrid method for selecting a proper threshold value

that will significantly diminish the possibility of different ϑ values with the same data.

Data

The data employed in this analysis consist of 2870 daily observations of stock prices actively

traded on the London Stock Exchange. The stocks belong to the banking sector and of the top

five banks in the UK, i.e., HSBC Holdings, Lloyds Banking Group, Barclays Plc., Royal Bank of

Scotland Group, and Standard Chartered Plc. We refer to these banks as Bank 1, Bank 2, Bank

3, Bank 4, and Bank 5, respectively. The motivation for selection of these banks is to test the

reliability of the proposed VaR models for the top UK banks in periods of distress. Therefore,

our data covers the period from 31 December 2004 to 31 December 2015, covering the 2008

global financial crisis and the 2011 European financial crisis. All data are from DataStream.

In some literature the stability in financial systems is measured using a portfolio consisting

of several banks (i.e., by considering the dependence among the banks), while other studies

focus on individual banks. This paper considers both measures. Therefore, by using the stock

prices for each bank, we calculate the log-return series and apply risk factor mappings to con-

struct a simulated portfolio of returns for all banks as follows: Consider a portfolio consisting

of N risk factors represented in vector form as SN = (s1t, . . ., sNt), the log-returns rt, are calcu-

lated as

rt ¼ log
S1;tþt

S1;t

 !

; . . . ; log
SN;tþt

SN;t

 !" #

¼ ðr1t; . . . ; rNtÞ: ð38Þ

Let Inv be the total amount invested in the portfolio, xi be the fraction of the total invest-

ment invested in stock i, ri,t is the return of stock i at time t, then the weight applied to ri,t is the

fraction of the portfolio invested in stock i calculated as wi ¼
xi
Inv. Since the stocks are all from

banks of almost the same strength (i.e., the top five banks in the UK), we may assume equal

weights. Therefore, the expected return on the portfolio at time t is given by

�Rp;t ¼ EðRp;tÞ ¼
XN

i¼1

wiEðri;tÞ;
XN

i¼1

wi ¼ 1; ð39Þ

which is a weighted average of the return on the individual stocks in the portfolio.

Fig 1 shows time plots of the log-return series and the portfolio; this shows evidence of vola-

tility clustering in the return series. From the figure, we can also see the effects of the 2008

global financial crisis and the 2011 European financial crisis.

Table 1 presents summary statistics of the data. We see from the table that the log-return

series for each bank and the portfolio are far from being normally distributed as indicated by

their high excess kurtosis and skewness. Furthermore, Jarque-Bera normality tests, Ljung-

Box tests on the squared residuals a2
i;t ; where ai,t = ri,t − μi (μi being the unconditional mean),

and a Lagrange multiplier tests for autoregressive conditional heteroscedasticity (ARCH LM

test) on the residuals ai,t, as described in [55, 61, 62], are significant at 5% level.
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Results

Modelling the marginal distributions of volatility equations

As noted, the log-return series are leptokurtic and skewed. Thus, to capture the tail distribu-

tion and the dynamics of fluctuations in the time series data, we consider a single-state, k = 1

and two-state, k = {1, 2} Markov Switching GARCH specifications. The underlying volatility

model is a GJR-GARCH(1,1) model with skewed Student’s-t distribution. Since we use just

one variance specification (i.e., GJR-GARCH), the two-state Markov Switching GARCH is

generated by setting the number of regimes in the conditional distribution to 2. For the single-

state, the length of the variance specification is equal to the length of the conditional distribu-

tion, which is 1 (see [14]). Also note that the single-state Markov Switching GJR-GARCH(1,1)

Fig 1. Time plots of the log-return series. Plots show the presence of volatility clustering in the log-return data.

https://doi.org/10.1371/journal.pone.0198753.g001

Table 1. Summary statistics of daily log-returns and portfolio return series.

Bank 1 Bank 2 Bank 3 Bank 4 Bank 5 Portfolio

Mean -0.0001 -0.0004 -0.0003 -0.0010 -0.0001 -0.0004

Variance 0.0003 0.0011 0.0010 0.0015 0.0006 0.0006

Std. deviation 0.0171 0.0328 0.0321 0.0388 0.0244 0.0239

Skewness -0.3367 -1.0549 1.4387 -8.4013 0.3161 -0.7549

Excess kurtosis 16.9080 37.2754 40.2179 235.5263 13.0850 28.6129

https://doi.org/10.1371/journal.pone.0198753.t001
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model corresponds to GJR-GARCH(1,1) model without regime change. Therefore, we simply

refer to the single-state and two-state Markov Switching GJR-GARCH(1,1) models as

GJR-GARCH(1,1) and MS-GJR-GARCH(1,1) models, respectively (see [14]). GARCH param-

eters are estimated using Bayesian statistics as follows: (i) We assign a prior distribution with

initial hyperparameters and generate MCMC simulations of 40000 draws; (ii) if convergence is

attained, we discard the first 20000 draws and select only the 10th draw from each chain such

that auto-correlation between draws is reduced to almost zero. We merge the two chains

together to obtain a sample data set of 2000 observations. (iii) If convergence is not attained,

repeat (i) using parameter estimates from the previous draw as the hyperparameters to

increase the chance of convergence. The mean value of each parameter with respect to its

respective posterior distribution is the optimal parameter estimate of the Bayesian

GJR-GARCH(1,1) and Bayesian MS-GJR-GARCH(1,1) models with skewed Student’s-t distri-

butions. Estimation results are presented in Tables 2 and 3 with standard errors in parenthesis.

For MS-GJR-GARCH(1,1) model, the degrees of freedom parameter, ν is fixed across the

regimes.

Table 2. Parameter estimates following Bayesian GJR-GARCH(1,1) model with skewed Student’s-t distribution.

α0 α1 α2 β1 ν γ

Bank 1 7.0531e-06(0.0000) 0.0508(0.0010) 0.1001(0.0000) 0.8488(0.0002) 5.8153 (0.0114) 1.0067(0.005)

Bank 2 1.4764e-6(0.0000) 0.0509(0.0000) 0.1001(0.0000) 0.8570(0.0001) 6.4085 (0.0133) 1.0014 (0.0005)

Bank 3 7.0777e-06(0.0000) 0.0511(0.0000) 0.1001(0.0000) 0.8716(0.0001) 6.1691 (0.0118) 1.0009 (0.0005)

Bank 4 9.4281e-06(0.0000) 0.0511(0.0000) 0.1002(0.0000) 0.8688(0.0001) 5.9166 (0.0111) 1.0160 (0.0005)

Bank 5 2.0683e-05(0.0000) 0.0508(0.0000) 0.1002(0.0000) 0.8321(0.0002) 6.3657 (0.0138) 1.0266 (0.0005)

Portfolio 5.4112e-06(0.0000) 0.0510(0.0000) 0.1002(0.0000) 0.8670(0.0001) 9.4379 (0.0298) 0.9936 (0.0005)

Note: Standard errors in parentheses.

https://doi.org/10.1371/journal.pone.0198753.t002

Table 3. Parameter estimates for two-state MS-GJR-GARCH(1,1) model with skewed Student’s-t distribution.

k = 1

α0_1 α1_1 α2_1 β1_1 ν γ_1

Bank 1 2.9335e-07(0.0000) 0.0270 (0.0010) 0.0121 (0.0004) 0.9612 (0.0005) 6.2679 (0.0159) 1.0380 (0.0009)

Bank 2 1.9132e-06(0.0000) 0.0302 (0.0004) 0.0811 (0.0014) 0.9208 (0.0011) 7.9120 (0.0270) 1.0115 (0.0010)

Bank 3 2.7159e-07(0.0000) 0.0109 (0.0002) 0.0253 (0.0003) 0.9729 (0.0002) 5.6388 (0.0142) 0.9516 (0.0007)

Bank 4 1.0034e-07(0.0000) 0.0367 (0.0002) 0.0030 (0.0001) 0.9595 (0.0002) 7.4127 (0.0220) 1.0146 (0.0009)

Bank 5 3.8283e-06(0.0000) 0.0338 (0.0008) 0.0932 (0.0032) 0.9083 (0.0027) 7.2792 (0.0186) 1.0462 (0.0011)

Portfolio 1.5441e-05(0.0000) 0.0341 (0.0004) 0.1694 (0.0040) 0.8665 (0.0025) 14.1506 (0.0621) 0.9954 (0.0013)

k = 2

α0_2 α1_2 α2_2 β1_2 ν γ_2

Bank 1 1.0589e-05(0.0000) 0.0412 (0.0005) 0.1568 (0.0011) 0.8566 (0.0007) 6.2679 (0.0159) 0.9496 (0.0012)

Bank 2 1.8650e-05(0.0000) 0.0056 (0.0002) 0.2322 (0.0027) 0.8586 (0.0015) 7.9120 (0.0270) 0.9782 (0.0018)

Bank 3 1.5749e-05(0.0000) 0.0558 (0.0004) 0.0776 (0.0014) 0.9045 (0.0006) 5.6388 (0.0142) 1.1826 (0.0026)

Bank 4 6.8672e-05(0.0000) 0.0683 (0.0013) 0.8202 (0.0043) 0.4771 (0.0022) 7.4127 (0.0220) 1.0138 (0.0023)

Bank 5 1.8827e-05(0.0000) 0.1016 (0.0011) 0.3991 (0.0040) 0.6778 (0.0028) 7.2792 (0.0186) 1.0085 (0.0015)

Portfolio 2.2462e-06(0.0000) 0.0334 (0.0004) 0.2052 (0.0040) 0.8543 (0.0023) 14.1506 (0.0298) 0.9936 (0.0005)

Note: Standard errors in parentheses. Degrees of freedom parameter, ν is fixed across the regimes.

https://doi.org/10.1371/journal.pone.0198753.t003
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Applying Eq (2), we then obtain a matrix S, which consists of the filtered marginal stan-

dardised residuals, f�i;tg
T
t¼1

, of the overall process for the MS-GJR-GARCH(1,1) model and

GJR-GARCH(1,1) model. That is

Si;t ¼ ðri;tÞ h�
1
2

Di;t ;i;t

� �
; i ¼ 1; . . . ;N; t ¼ 1; . . . ;T: ð40Þ

The ARCH LM test and Ljung-Box test on the standardised residuals and standardised

squared residuals, respectively, for lags 5 and 10 are presented in Table 4. For the

GJR-GARCH(1,1) model, there still exist some serial correlation in the standardised residuals

of bank 4. For MS-GJR-GARCH(1,1) model, there is no evidence of an ARCH effect or serial

correlations in the standardised residuals.

Modelling dependence with copulas

We model the dependence structure among the stock returns using copula functions. Copula

parameters are estimated by the canonical maximum likelihood (CML) method [41]. This

entails the use of pseudo-observations of the standardised residuals to estimate the marginals.

We then estimate the copula parameters by inversion of Kendall’s τ, which is one of the most

commonly used invariant measures and has been proven to provide more efficient ways of

estimating correlations [63, 64]. The copula that fits the data best is selected by maximum like-

lihood estimation (MLE) method by maximising the likelihood function

Ĉ2 ¼ ArgMaxC2

XT

t¼1

ln cðF̂ 1ðX1tÞ; . . . ; F̂ nðXntÞ; C2Þ; ð41Þ

where Ĉ2 are estimates of the copula parameters. The estimated copula parameters are

reported in Table 5, along with their Akaike information criterion (AIC) values. For both

models, Frank and Student’s-t copulas are selected from each copula family based on the high-

est MLE values. From Table 5, the same copula types have been selected based on the AIC val-

ues (the copula with the smallest AIC value is preferred). Note that Gaussian copula gives a

higher MLE value compared to the Archimedean copulas but also higher AIC value. Table 6

Table 4. ARCH LM test on the standardised residuals and Ljung-Box test on the standardised squared residuals for k = 1. The null hypothesis of no ARCH effect or

serial correlation is rejected at 5% significant level for Bank 4.

k = 1 ARCH LM test Ljung-Box test

Bank 1 Bank 2 Bank 3 Bank 4 Bank 5 Bank 1 Bank 2 Bank 3 Bank 4 Bank 5

LM(5) 2.21 2.35 2.96 17.78 4.01 Q(5) 2.24 2.35 2.95 17.65 4.11

p-value 0.820 0.800 0.706 0.003 0.548 p-value 0.815 0.799 0.707 0.003 0.534

LM(10) 10.26 4.13 7.04 18.62 6.79 Q(10) 9.92 4.14 7.17 18.57 6.89

p-value 0.820 0.942 0.722 0.045 0.745 p-value 0.447 0.941 0.710 0.046 0.736

k = {1, 2} ARCH LM test Ljung-Box test

Bank 1 Bank 2 Bank 3 Bank 4 Bank 5 Bank 1 Bank 2 Bank 3 Bank 4 Bank 5

LM(5) 2.164 2.29 8.74 5.31 3.06 Q(5) 2.13 2.22 8.60 5.30 10.56

p-value 0.826 0.807 0.120 0.379 0.690 p-value 0.831 0.818 0.126 0.380 0.061

LM(10) 6.01 3.75 13.39 5.83 5.30 Q(10) 5.98 3.70 13.27 5.88 12.71

p-value 0.815 0.958 0.203 0.829 0.870 p-value 0.817 0.960 0.209 0.826 0.240

Note: For k = 1, we have a GJR-GARCH(1,1) model, and for k = {1, 2}, we have a MS-GJR-GARCH(1,1) model.

https://doi.org/10.1371/journal.pone.0198753.t004
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shows the Kendall’s τ for Gaussian and Student’s-t copula parameter estimates. Thus, the

Gaussian copula is not a good fit for the data. The analysis continues based on the selected cop-

ulas. Next, we specify the desired marginal distributions, which we set to Student’s-t distribu-

tion, and using the estimated copula parameters, we generate 10000 simulations to obtain a

new matrix of marginal standardised residuals

Ŝ ¼ fzi;jg; j ¼ 1; . . . ;T; i ¼ 1; . . . ;N; ð42Þ

which is free from assumptions of normality and linear correlations. To confirm this, we

employ a multivariate ARCH test based on the Ljung-Box test statistics

QkðmÞ ¼ T2
Xm

i¼1

1

T � i
b0iðρ̂

� 1

0

 ρ̂� 1

0
Þbi � w2

k2ðmÞ; ð43Þ

and its modification Qr
kðmÞ, known as a robust test, on the log returns at 5% significance level,

where m is the number of lags of cross-correlation matrices used in the tests, k is the dimen-

sion of ri,t, T is the sample size, bi ¼ vecðr̂ 0iÞ with ρ̂j being the lag-j cross-correlation matrix of

Table 5. Copula parameter estimates are based on inversion of Kendall’s τ following CML estimation method.

GJR-GARCH(1,1) Archimedean copulas Elliptical copulas

Gumbel Clayton Frank Gaussian Student’s-t
Kendall’s τ 1.782 (0.023) 1.563 (0.046) 4.697 (0.042) ρG = ρτ(ρSE) ρt = ρτ(ρSE)

MLE 3226 2745 3250 3846 4108

AIC -14.158 -13.835 -14.173 3.491 3.359

MS-GJR-GARCH(1,1)

Gumbel Clayton Frank Gaussian Student’s-t
Kendall’s τ 1.773 (0.023) 1.546 (0.046) 4.657 (0.041) ρG = ρτ(ρSE) ρt = ρτ(ρSE)

MLE 3163 2705 3206 3773 4013

AIC -14.119 -13.806 -14.146 3.529 3.405

Note: Standard errors in parentheses. The best copula for modeling dependence among the risk factors is that with the highest MLE value or smallest AIC value (in

bold).

https://doi.org/10.1371/journal.pone.0198753.t005

Table 6. Kendall’s τ; ρτ(ρSE) for Gaussian and Student’s-t copula parameter estimates.

Bank 1 Bank 2 Bank 3 Bank 4 Bank 5

GJR-GARCH(1,1) Bank 1 1

Bank 2 0.6230 (0.013) 1

Bank 3 0.5521 (0.015) 0.7054 (0.011) 1

Bank 4 0.5741 (0.014) 0.7262 (0.011) 0.7176 (0.011) 1

Bank 5 0.6383 (0.013) 0.6027 (0.014) 0.5437 (0.015) 0.5460 (0.015) 1

MS-GJR-GARCH(1,1) Bank 1 1

Bank 2 0.6257 (0.013) 1

Bank 3 0.5544 (0.015) 0.7074 (0.011) 1

Bank 4 0.5779 (0.015) 0.7282 (0.011) 0.7225 (0.011) 1

Bank 5 0.6437 (0.012) 0.6075 (0.014) 0.5439 (0.015) 0.5483 (0.015) 1

Note: Standard errors in parentheses.

https://doi.org/10.1371/journal.pone.0198753.t006
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r2
i;t . The modification Qr

kðmÞ involves discarding those observations from the return series

whose corresponding standardised residuals exceed 95th quantile in order to reduce the effect

of heavy tails. The motivation for Qr
kðmÞ test is that Qk(m) may fare poorly in finite samples

when the residuals of the time series, ri,t, have heavy tails [45]. The tests show no evidence of

conditional heteroscedasticity lags m = 10; Table 7.

We follow the approach by [9] and apply the POT method of EVT to each of the marginal

distributions of {zi,t} (i.e., Eq (42)) to obtain the qth quantile, VaR(Z)q of the noise variables for

VaR estimation. Let {χi,τ} be the negative variables of the marginal distributions of {zi,t} such

that {χi,τ}� {zi,t}. Then, from the ordered sample of {χi,τ}, we calculate and plot the mean

excess function to help identify the threshold. As an example, Figs 2 and 3 are mean excess

function plots for Bank 1 following the Bayesian GJR-GARCH(1,1) Student’s-t and Frank cop-

ula models. The plots suggest us to select threshold values of about 1.3 and 1.4 for Figs 2 and 3,

respectively, which are the lowest points on the graphs above which the graph appears to be

Table 7. Multivariate ARCH test on {zi,j} shows no evidence of conditional heteroscedasticity.

GJR-GARCH(1,1) MS-GJR-GARCH(1,1)

Frank copula Qk(10) = 11.413 Qr
kð10Þ = 267.925 Qk(10) = 5.288 Qr

kð10Þ = 245.072

p-value = 0.326 p-value = 0.208 p-value = 0.871 p-value = 0.576

t-copula Qk(10) = 5.507 Qr
kð10Þ = 235.133 Qk(10) = 2.554 Qr

kð10Þ = 249.171

p-value = 0.855 p-value = 0.742 p-value = 0.990 p-value = 0.503

https://doi.org/10.1371/journal.pone.0198753.t007

Fig 2. Mean excess function plot for Bank 1 following analysis with Bayesian GJR-GARCH(1,1) Student’s-t copula model.

https://doi.org/10.1371/journal.pone.0198753.g002
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approximately linear. However, if we select these points as the threshold values, we will have

1402 exceedances for Fig 2 and 1039 exceedances for Fig 3, which are too many compared to

the size of the data (i.e., T = 10000). The number of exceedances thus lie towards the body of

the data, which will inevitably result in a poor approximation of the GPD parameters and

hence lead to inaccuracies in the VaR estimate. In addition, the threshold selection method is

very subjective and will be different from one analyst to the other based on their preferences.

We propose an extension to the mean excess plot for threshold selection; the hybrid
method. That is, from the mean excess plot, we identify the lowest point, making the graph

appears approximately linear, a point ϑ0. We then insert a tangent line from ϑ0 through the

rest of the points ϑi, where ϑi> ϑ0; see Fig 4. Since the tangent to a linear curve is the tangent

itself and the mean excess function is a linear function of the threshold, we take an average of

the set of points that touches the tangent line as the threshold value, a point ϑ�. This point ϑ�

will lead to a better approximation of VaR estimates than ϑ0 because the inference is restricted

to the left tail. Apart from better approximation of VaR estimates, this method significantly

reduces the probability of having different VaR estimates for the same data and also the proba-

bility of selecting a very low or very high threshold value. Let ϑi = ϑ1, . . ., ϑℏ be a set of points

that touches the tangent line, then we obtain the value of ϑ� as

W
�
¼

1

ℏ
Xℏ

i¼1

Wi; Wi � W0; ð44Þ

where ℏ is the number of points in the set.

Fig 3. Mean excess function plot for Bank 1 following analysis with Bayesian GJR-GARCH(1,1) Frank copula model.

https://doi.org/10.1371/journal.pone.0198753.g003
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It can be seen in Fig 4 that the points touching the tangent line, i.e., ϑ0, are too compact and

might lead us to miss some important points. A better way for selecting these points is by fit-

ting a regression line

ŷ ¼ b0 þ b1x; ð45Þ

which is based on the least square method to the points fWig
ℏ
i¼1

, where ŷ is the estimate of the

dependent variable, and x is the independent variable with intercept b0 and slope b1. In the

presence of heteroscedasticity and outliers, it may be advantageous to consider fitting a robust

regression line. Robust regression methods are not influenced by outliers, and are also very

useful when there are problems with heteroscedasticity in the data set. This method is demon-

strated for Bank 1 in Figs 5 and 6, which illustrates a comparison between simple linear and

robust regression methods. It can be seen that the regression lines for standard regression

models are affected by outliers in the left tails of the mean excess plots, hence a robust regres-

sion model is more reliable.

Following the above analysis, we obtained a threshold value of 2.2448 and 333 exceedances

for Fig 5, and 2.6476 and 176 exceedances for Fig 6. The analysis are restricted to the tails and

the data is sufficient to allow for reasonable statistical inferences with EVT. Tables 8 and 9

presents the POT parameter estimates and the forecast VaR estimates. The portfolio VaR esti-

mates, VaRp
qðZÞ, based on the individual bank’s VaR estimates and confidence level are also

reported. VaRp
qðZÞ is computed using the risk formula

VaRp
qðZÞ ¼

XN

i¼1

w2

i VaR
2

q;iðZÞ þ 2wiwj

XN

i<j

rijVaRq;iðZÞVaRq;jðZÞ

 !
1

2;
XN

i¼1

wi ¼ 1; ð46Þ

Fig 4. Mean excess function plot demonstrating the hybrid method for threshold selection.

https://doi.org/10.1371/journal.pone.0198753.g004
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where ρi,j is the Pearson cross-correlation coefficient between the returns of the ith and jth
stocks. As noted, the overall risk measures are quite stable for both models and different

thresholds indicating that the model has effectively captured the dynamics of fluctuations in

the left tails of the return distributions. This claim may be validated through back-testing the

model. We can also see the effect of diversification on the risk of the individual banks on the

portfolio VaR. Employing Eq (46), the one step ahead VaR is then calculated as

VaRp
q;t ¼ VaRp

qðZÞĥ
1
2

Dt ;tþ1: ð47Þ

Note that ĥ
1
2

Dt ;tþ1 is the one-step-ahead conditional volatility forecast of the overall conditional

variance for the portfolio at time t + 1 for state k, Δt is a Markov chain as defined in Eqs (1)

and (2), but for �Rp is by Eq (39). That is, �Rp;tjðDt ¼ k;Ot� 1Þ and the parameters are sampled

from the posterior distribution using MH algorithm.

Figs 7–10 show time plots of profit and loss (P&L) of the portfolio return series and fore-

casts portfolio VaR estimates at 99% and 95% confidence levels. A visual observation of the

plots suggests that the VaR models perform quite well in capturing the dynamics in the portfo-

lio return series.

Fig 5. Mean excess function plot following analysis with Bayesian GJR-GARCH(1,1) Student’s-t copula model for the number of exceedances above ϑ0. A

reliable threshold is calculated by taking an average of the set of points that touches the robust regression line. The standard regression line is affected by outliers

in the left tail.

https://doi.org/10.1371/journal.pone.0198753.g005
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Table 8. POT parameter estimates, VaRq(Z) and VaRp
qðZÞ following Bayesian GJR-GARCH(1,1) Frank and Student’s-t copula-EVT models.

Parameters VaRq(Z)

ξ ψ(ϑ�) ϑ� Nϑ� μ σ 99% 95%

Student’s-t copula: Bank 1 0.1660 0.7143 2.2448 333 0.3881 0.4061 3.1958 1.9640

Bank 2 0.2239 0.6479 2.4624 218 0.7974 0.2750 3.0141 1.9716

Bank 3 0.1838 0.6353 2.2321 356 0.6481 0.3441 3.1407 2.0229

Bank 4 0.1273 0.7301 2.4687 271 0.3567 0.4612 3.2448 2.0385

Bank 5 0.1465 0.7135 2.3293 287 0.3538 0.4242 3.1428 1.9489

VaRp
qðZÞ 2.5862 1.6282

Frank copula: Bank 1 0.1019 0.7239 2.6476 176 0.2503 0.4796 3.0688 1.9305

Bank 2 0.0497 0.7489 2.4331 235 -0.1297 0.6216 3.0867 1.8781

Bank 3 0.0390 0.7892 2.6040 223 -0.1855 0.6804 3.2469 1.9767

Bank 4 0.2073 0.6862 2.5407 217 0.7266 0.3102 3.1174 2.0147

Bank 5 0.1062 0.6892 3.1337 105 0.6440 0.4249 3.1674 2.1425

VaRp
qðZÞ 2.5410 1.6459

Note: Estimations for a time horizon of 1 day at q = (99%, 95%) confidence level. The risk measures are quite stable for different thresholds and copula functions

indicating that the VaR models have successfully capture the dynamics of fluctuations in the left tails.

https://doi.org/10.1371/journal.pone.0198753.t008

Fig 6. Mean excess function plot following analysis with Bayesian GJR-GARCH(1,1) Frank copula model for the number of exceedances above ϑ0.

https://doi.org/10.1371/journal.pone.0198753.g006
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Table 9. POT parameter estimates, VaRq(Z) and VaRp
qðZÞ following Bayesian MS-GJR-GARCH(1,1) Frank and Student’s-t copula-EVT models.

Parameters VaRq(Z)

ξ ψ(ϑ�) ϑ� Nϑ� μ σ 99% 95%

Student’s-t copula: Bank 1 0.0194 0.8795 1.8425 565 -0.4893 0.8343 3.1862 1.9389

Bank 2 0.0239 0.8003 1.9903 409 -0.3040 0.7455 2.9471 1.8512

Bank 3 0.0462 0.7642 2.0585 453 -0.1450 0.6624 3.2542 1.9832

Bank 4 0.0686 0.6675 2.3155 260 0.7943 0.5632 3.0091 1.8140

Bank 5 0.0038 0.6891 1.9164 493 -0.1460 0.6814 3.0191 1.9067

VaRp
qðZÞ 2.5127 1.5471

Frank copula: Bank 1 0.0868 0.8295 2.5454 201 -0.2030 0.5910 3.1457 1.9804

Bank 2 0.0970 0.7780 1.9443 440 -0.7856 0.5132 2.9769 1.8480

Bank 3 0.0819 0.7132 2.1074 358 0.0287 0.5430 3.0662 1.8724

Bank 4 0.0806 0.6030 2.5029 200 0.4796 0.4399 2.9327 1.9703

Bank 5 0.0924 0.6688 2.3509 230 0.2210 0.4719 2.9300 1.8498

VaRp
qðZÞ 2.4535 1.5513

Note: Estimations for a time horizon of 1 day at q = (99%, 95%) confidence level. The risk measures are quite stable for different thresholds and copula functions

indicating that the VaR models have successfully capture the dynamics of fluctuations in the left tails.

https://doi.org/10.1371/journal.pone.0198753.t009

Fig 7. Forecasts daily VaR estimates and daily profit and loss (P&L) plots for an investment in a portfolio consisting of all banks following Bayesian

GJR-GARCH(1,1) Student’s-t copula EVT VaR model.

https://doi.org/10.1371/journal.pone.0198753.g007
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Fig 8. Forecasts daily VaR estimates and daily profit and loss (P&L) plots for an investment in a portfolio consisting of all banks following Bayesian

GJR-GARCH(1,1) Frank copula EVT VaR model.

https://doi.org/10.1371/journal.pone.0198753.g008

Fig 9. Forecasts daily VaR estimates and daily profit and loss (P&L) plots for an investment in a portfolio consisting of all banks following Bayesian

MS-GJR-GARCH(1,1) Student’s-t copula EVT VaR model.

https://doi.org/10.1371/journal.pone.0198753.g009
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Model checking

The reliability of the VaR model is often tested by performing back-testing. This involves com-

paring the estimated VaRs for a given time horizon and observation period to the subsequent

returns and recording the number of days in which the loss on the portfolio exceeds VaR. The

number of days T1 in which the loss on the portfolio exceeds VaR is recorded as the number of

exceptions or failures. Too many exceptions imply that the VaR model underestimates the

level of risk, and too few exceptions imply the model overestimates risk. For the VaR model to

be accepted as a reliable risk measure, the number of exceptions produced for any given obser-

vation period should satisfy the unconditional coverage (UC) and independent (IND) proper-

ties. We define an indicator function on the exceptions at time t as

Itð1 � qÞ ¼ IfLt>VaRp
q;tg
¼

(
1; if Lt > VaRp

q;t

0; otherwise;
ð48Þ

where the indicator function equal to 1 when the loss on the portfolio Lt exceed VaRp
q;t , and 0 if

otherwise; note that q is the choice of confidence level. For the UC property,

Pr ½Itð1 � qÞ ¼ 1� � 1 � q;8t ; i.e., the number of exceptions should be reasonably close to

Tw(1 − q)%, depending on the choice of q, and should follow a binomial distribution. Tw is the

size of the window over which back-testing is conducted. For the IND property, the exceptions

produced on day t − 1 should be independent of exceptions produced on day t and evenly

spread over time.

Fig 10. Forecasts daily VaR estimates and daily profit and loss (P&L) plots for an investment in a portfolio consisting of all banks following Bayesian

MS-GJR-GARCH(1,1) Frank copula EVT VaR model.

https://doi.org/10.1371/journal.pone.0198753.g010
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In this study, we use several back-testing methods to test the accuracy of the proposed VaR

models. The most common are the Kupiec’s proportion of failures (POF) test for the UC [65],

Christoffersen’s test for the UC and IND [66], Engle and Manganelli’s Dynamic Quantile

(DQ) test [67], and Santos and Alves’ new class of independence test [68]. We also consider

the Basel traffic light test proposed by the Basel Committee on Banking and Supervision

(BCBS) [69].

Kupiec defined an approximate 95% confidence region whereby the number of exceptions

produced by the VaR model must lie within this interval for it to be considered a reliable risk

measurement model. The test is based on the likelihood ratio

LRUC ¼ � 2 ln
qT0ð1 � qÞT1

1 �
T1

Tw

� �T0 T1

Tw

� �T1
� w2

1
; ð49Þ

where T0 = Tw − T1. Under the UC, the null hypothesis for LRPOF is H0 : E½Itð1 � qÞ� ¼ T1

Tw
¼

1 � q against Ha : E½Itð1 � qÞ� ¼ T1

Tw
6¼ ð1 � qÞ. The VaR model is rejected if

LRPOF > w2
1
¼ 3:841.

A study by [66] extended Kupiec’s POF test to test the independence of conditional cover-

age. Under the null hypothesis that the number of exceptions produced are independent and

evenly spread over time, π01 = π11 = π with likelihood ratio

LRIND ¼ � 2 ln
ð1 � pÞ

ðT00þT10ÞpðT01þT11Þ

ð1 � p01Þ
T00p

T01

01 ð1 � p11Þ
T10p

T11
11

� w2

1
; ð50Þ

where Tij, with i, j = 0(noviolation), 1(violation), is the number of observed events with the jth

event following ith, and π01, π01 and π are estimates of the probabilities of Ti,j [70]. The model

is rejected for the independent property if LRIND > w2
1
¼ 3:841. Christoffersen conditional cov-

erage test is a joint test of Kupiec’s POF test and the IND that test both properties of UC and

IND instantaneously. The conditional coverage test has a likelihood ratio

LRCC ¼ LRPOF þ LRIND � w2
2
: ð51Þ

The hypothesis is Pr ½Itð1 � qÞ ¼ 1jOt� 1� ¼ 1 � q;8t against

Pr ½Itð1 � qÞ ¼ 1jOt� 1� 6¼ 1 � q;8t , where Ot−1 is the information available on day t − 1. The

model is rejected for the conditional coverage property if LRCC > w2
2
¼ 5:99.

The DQ test utilises the criterion that the number of exceptions produced on day t should

be independent of the information available at day t − 1. The function is defined as

Hitt ¼ IðLt < � VaR
p
q;tÞ � ð1 � qÞ ¼

( q; if Lt < VaRp
q;t

� ð1 � qÞ; otherwise:
ð52Þ

The Hitt function assumes the value q when the loss on the portfolio at time t is less than

VaRp
q;t , and −(1 − q) otherwise. As explained in [67], clearly E[Hitt] = 0, E[Hitt|Ot−1] = 0 and

Hitt must be uncorrelated with its own lagged values. The test statistics is given by

DQ ¼
ðHit 0tXt½X

0

tXt�
� 1X 0tHittÞ

ð1 � qÞq
; ð53Þ

where Xt is a vector containing all values of Hitt, VaR
p
q;t and its lags. Under the null hypothesis

E[Hitt] = 0 and E[Hitt|Ot−1] = 0, Hitt and Xt are orthogonal and Hitt must be uncorrelated with

its own lagged values [67, 71]. The DQ test is easy to perform, and does not depend on the
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estimation procedure; all that is needed is a series of VaRs and the corresponding values of the

portfolio returns [67]. In this study, we follow [67, 72, 73] to use a constant, four lagged values

of Hitt.
In Santos and Alves’ new class of independence test [68], we first define the duration

between two consecutive exceptions as Di = ti − ti−1, where ti denotes the time of exception

number i; and t0 = 0 implies that D1 is the time until the first exception. We denote a sequence

of N durations by fDig
N
i¼1

, where the order statistics are D1:N� . . .� DN:N. The test statistics is

defined as

TN;½N=2� ¼ log 2
DN:N � 1

D½N=2�:N
� logN: ð54Þ

See [68] for more details on this test.

Finally, BCBS developed a set of requirements that the VaR model must satisfy for it to be

considered a reliable risk measure and proposed the Basel traffic light test. That is, (i) VaR

must be calculated with 99% confidence, (ii) back-testing must be done using a minimum of a

one year observation period and must be tested over at least 250 days, (iii) regulators should be

95% confident that they are not erroneously rejecting a valid VaR model, and (iv) Basel speci-

fies a one-tailed test —it is only interested in the underestimation of risk [74]. [2] summarises

the acceptance region for the Basel traffic light approach to back-testing VaR models.

We use out-of-sample data of m = T − n observations for back-testing; thus we have

n = 1869 sample of the return observations for VaR estimation procedure containing the 2008

global financial crisis period, and m = 1000 of return observations for back-testing. VaR is

then estimated following a rolling window approach. The out-of-sample data is further divided

into blocks of 250, 500, and 1000 trading days to observe how the models behave for both lon-

ger and shorter observation periods. The division of out-of-sample data is also employed to

meet the BCBS requirements. Table 10 presents the expected and observed number of excep-

tions produced following each model for a portfolio consisting of all five banks. At 99% confi-

dence level and 250 trading days, the MS-GJR-GARCH(1,1) copula EVT VaR model

registered 3 exceptions for a single-state and 0 exceptions for a two-state MS-GJR-GARCH

(1,1) model. Thus, following Basel rules for back-testing, the VaR models passed the reliability

test and are placed in the green zone. Back-testing results based on LRUC, LRIND, LRCC, DQ,

Table 10. Expected versus observed number of exceptions following Bayesian MS-GJR-GARCH(1,1) and GJR-GARCH(1,1) copula-EVT VaR model.

250 500 1000

1% 5% 1% 5% 1% 5%

Expected exceptions 2.5 12.5 5 25 10 50

GJR-GARCH(1,1) Observed exceptions for t-copula 3 11 4 26 8 57

Coverage rate 0.012 0.044 0.008 0.052 0.008 0.057

Observed exceptions for Frank copula 3 11 5 24 9 55

Coverage rate 0.012 0.044 0.010 0.048 0.009 0.055

MS-GJR-GARCH(1,1) Observed exceptions for t-copula 0 6 0 15 0 33

Coverage rate 0.000 0.024 0.000 0.030 0.000 0.033

Observed exceptions for Frank copula 0 6 0 14 0 32

Coverage rate 0.000 0.024 0.000 0.028 0.000 0.032

Note: Out-of-sample data is divided into blocks of 250, 500, and 1000 observation periods, time horizon of 1 day. The coverage rate
T1

Tw
� 1 � q.

https://doi.org/10.1371/journal.pone.0198753.t010

Refining value-at-risk estimates

PLOS ONE | https://doi.org/10.1371/journal.pone.0198753 June 22, 2018 25 / 33

https://doi.org/10.1371/journal.pone.0198753.t010
https://doi.org/10.1371/journal.pone.0198753


and TN,[N/2] tests are presented in Tables 11 and 12. For the DQ test, we use a lagged value of 4.

In Tables 13 and 14 we present, as a benchmark for our VaR models, back-testing results for

VaR models constructed using GJR-GARCH(1,1) and standard GARCH(1,1) (sGARCH(1,1))

volatility models with skewed Student’s-t errors but without copula functions and EVT. It can

be seen from the number of exceptions recorded that the MS-GJR-GARCH(1,1) copula-EVT

VaR model and the benchmark VaR models do not underestimate risk but rather too conser-

vative at 99% and 95% confidence levels and thus preferred by most financial institutions.

Table 11. Back-testing results following Bayesian GJR-GARCH(1,1) Student’s-t and Frank copula-EVT VaR models.

Student’s-t copula Back-test type

Prob Window Exceptions LRUC LRIND LRCC DQ TN,[N/2]

1%: 250 3 0.095 (0.758) 0.170 (0.680) 0.265 (0.876) 0.213 (0.999) -0.072 (0.966)

500 4 0.217 (0.641) 0.140 (0.708) 0.357 (0.837) 0.415 (0.998) -0.616 (0.994)

1000 8 0.434 (0.510) 0.268 (0.605) 0.702 (0.704) 1.057 (0.983) 1.386 (0.385)

5%: 250 11 0.197 (0.657) 2.475 (0.116) 2.672 (0.263) 2.057 (0.914) 2.108 (0.348)

500 26 0.042 (0.838) 1.997 (0.158) 2.039 (0.361) 2.962 (0.814) -0.254 (0.742)

1000 57 0.989 (0.320) 3.145 (0.076) 4.134 (0.127) 7.494 (0.278) -1.039 (0.939)

Frank copula Back-test type

Prob Window Exceptions LRUC LRIND LRCC DQ TN,[N/2]

1%: 250 3 0.095 (0.758) 0.168 (0.682) 0.263 (0.877) 0.213 (0.999) -0.072 (0.967)

500 5 0.000 (1.000) 0.219 (0.640) 0.219 (0.896) 0.415 (0.998) -0.839 (0.999)

1000 9 0.105 (0.746) 0.340 (0.560) 0.445 (0.801) 1.066 (0.983) 0.537 (0.676)

5%: 250 11 0.197 (0.657) 1.887 (0.170) 2.084 (0.353) 2.057 (0.914) 2.426 (0.244)

500 24 0.043 (0.836) 1.343 (0.247) 1.386 (0.500) 2.305 (0.890) -0.174 (0.723)

1000 55 0.510 (0.475) 2.531 (0.112) 3.041 (0.219) 6.335 (0.387) -1.004 (0.934)

Note: p-values in parenthesis. Four lags were used for the DQ test.

https://doi.org/10.1371/journal.pone.0198753.t011

Table 12. Back-testing results following Bayesian MS-GJR-GARCH(1,1) Student’s-t and Frank copula-EVT VaR models.

Student’s-t copula Back-test type

Prob Window Exceptions LRUC LRIND LRCC DQ TN,[N/2]

1%: 250 0 NaN - - 0.213 (0.999) -

500 0 NaN - - 0.415 (0.998) -

1000 0 NaN - - 1.057 (0.983) -

5%: 250 6 4.369 (0.037) 0.641 (0.423) 5.010 (0.082) 1.527 (0.958) 3.069 (0.379)

500 15 4.884 (0.027) 0.001 (0.975) 4.885 (0.087) 2.226 (0.898) 1.154 (0.474)

1000 33 6.878 (0.009) 0.032 (0.858) 6.910 (0.032) 0.697 (0.995) -0.793 (0.908)

Frank copula Back-test type

Prob Window Exceptions LRUC LRIND LRCC DQ TN,[N/2]

1%: 250 0 NaN - - 0.213 (0.999) -

500 0 NaN - - 0.415 (0.998) -

1000 0 NaN - - 1.057 (0.983) -

5%: 250 6 4.369 (0.037) 0.699 (0.403) 5.068 (0.079) 30.724 (0.000) 2.070 (0.307)

500 14 6.018 (0.014) 0.032 (0.858) 6.050 (0.049) 13.819 (0.032) 1.223 (0.382)

1000 32 7.777 (0.005) 0.007 (0.933) 7.784 (0.020) 7.321 (0.292) -1.386 (0.979)

Note: p-values in parenthesis, NaN = Not a Number. Four lags were used for the DQ test.

https://doi.org/10.1371/journal.pone.0198753.t012
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Most financial institutions will prefer VaR models with zero or very few exceptions as they

routinely produce plots of P&L that show no violation of their 99% confidence VaR models

over long periods stating that this supports their risk models. “The amount of economic capital

banks currently hold is in excess of their regulatory capital. As a result, banks may prefer to

report higher VaR numbers to avoid the possibility regulatory intrusion” [2]. Kupiec’s UC test

(LRUC) will reject VaR models that produce 0 exceptions. The GJR-GARCH(1,1) copula-EVT

VaR model captures VaR quite well in periods of calm and in periods of crisis for short and

long observation periods. It does not overestimate or underestimate the level of risk on the

portfolio and is does considered reliable as a measure of risk. Performance evaluation for rejec-

tion or acceptance of the VaR models based on 5% significance level are presented in Table 15.

Clearly, the MS-GJR-GARCH(1,1) and GJR-GARCH(1,1) copula-EVT VaR models incorpo-

rating the hybrid method for threshold selection perform better than the standard GARCH

(1,1) and GJR-GARCH(1,1) VaR models.

Table 14. Back-testing results following sGARCH(1,1) and GJR-GARCH(1,1) models with skewed student’s-t errors.

sGARCH Back-test type

Prob Window Exceptions LRUC LRIND LRCC DQ TN,[N/2]

1%: 250 0 NaN - - 37.933 (0.000) -

500 0 NaN - - 18.530 (0.005) -

1000 0 NaN - - 11.132 (0.084) -

5%: 250 7 3.009 (0.083) 0.962 (0.327) 3.971 (0.137) 3.888 (0.692) 1.916 (0.448)

500 16 3.888 (0.049) 0.011 (0.916) 3.899 (0.142) 2.409 (0.879) -0.069 (0.708)

1000 32 7.777 (0.005) 0.007 (0.933) 7.784 (0.020) 5.486 (0.483) 0.416 (0.541)

GJR-GARCH(1,1) Back-test type

Prob Window Exceptions LRUC LRIND LRCC DQ TN,[N/2]

1%: 250 0 NaN - - 23.077 (0.001) -

500 0 NaN - - 48.651 (0.000) -

1000 0 NaN - - 95.686 (0.000) -

5%: 250 7 3.009 (0.083) 0.962 (0.327) 3.971 (0.137) 57.759 (0.000) 4.119 (0.228)

500 14 6.018 (0.014) 0.032 (0.858) 6.050 (0.049) 85.830 (0.000) -0.773 (0.908)

1000 26 14.597 (0.000) 0.263 (0.608) 14.860 (0.001) 169.533 (0.000) -0.975 (0.928)

Note: p-values in parenthesis, NaN = Not a Number. Four lags were used for the DQ test.

https://doi.org/10.1371/journal.pone.0198753.t014

Table 13. Expected versus observed number of exceptions following sGARCH(1,1) and GJR-GARCH(1,1) models with skewed student’s-t errors.

250 500 1000

1% 5% 1% 5% 1% 5%

Expected exceptions 2.5 12.5 5 25 10 50

Observed exceptions sGARCH(1,1) 0 7 0 16 0 32

Coverage rate 0.000 0.028 0.000 0.032 0.000 0.032

Observed exceptions GJR-GARCH(1,1) 0 7 0 14 0 26

Coverage rate 0.000 0.028 0.000 0.028 0.000 0.026

Note: Out-of-sample data is divided into blocks of 250, 500, and 1000 observation periods, time horizon of 1 day. The coverage rate
T1

Tw
� 1 � q.

https://doi.org/10.1371/journal.pone.0198753.t013
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Table 15. Performance Evaluation based on 5% significance level.

P = 1% Back-test type

VaR model Window LRUC LRIND LRCC DQ TN,[N/2]

GJR-GARCH(1,1) Student’s-t copula-EVT 250 A (0.758) A (0.680) A (0.876) A (0.999) A (0.966)

500 A (0.641) A (0.708) A (0.837) A (0.998) A (0.994)

1000 A (0.510) A (0.605) A (0.704) A (0.983) A (0.385)

GJR-GARCH(1,1) Frank copula-EVT 250 A (0.758) A (0.682) A (0.877) A (0.999) A (0.967)

500 A (1.000) A (0.640) A (0.896) A (0.998) A (0.999)

1000 A (0.320) A (0.076) A (0.127) A (0.278) A (0.939)

MS-GJR-GARCH (1,1) Student’s-t copula-EVT 250 R (NaN) R (-) R (-) A (0.999) R (-)

500 R (NaN) R (-) R (-) A (0.998) R (-)

1000 R (NaN) R (-) R (-) A (0.983) R (-)

MS-GJR-GARCH(1,1) Frank copula-EVT 250 R (NaN) R (-) R (-) A (0.999) R (-)

500 R (NaN) R (-) R (-) A (0.998) R (-)

1000 R (NaN) R (-) R (-) A (0.983) R (-)

sGARCH(1,1) 250 R (NaN) R (-) R (-) R (0.000) R (-)

500 R (NaN) R (-) R (-) R (0.005) R (-)

1000 R (NaN) R (-) R (-) A (0.084) R (-)

GJR-GARCH(1,1) 250 R (NaN) R (-) R (-) R (0.001) R (-)

500 R (NaN) R (-) R (-) R (0.000) R (-)

1000 R (NaN) R (-) R (-) R (0.000) R (-)

P = 5% Back-test type

VaR model Window LRUC LRIND LRCC DQ TN,[N/2]

GJR-GARCH(1,1) Student’s-t copula-EVT 250 A(0.657) A(0.116) A(0.263) A(0.914) A(0.348)

500 A (0.838) A (0.158) A (0.361) A (0.814) A (0.742)

1000 A (0.320) A (0.076) A (0.127) A (0.278) A (0.939)

GJR-GARCH(1,1) Frank copula-EVT 250 A (0.657) A (0.170) A (0.353) A (0.914) A (0.244)

500 A (0.836) A (0.247) A (0.500) A (0.890) A (0.723)

1000 A (0.475) A (0.112) A (0.219) A (0.387) A (0.934)

MS-GJR-GARCH(1,1) Student’s-t copula-EVT 250 R (0.037) A (0.423) A (0.082) A (0.958) A (0.379)

500 R (0.027) A (0.975) A (0.087) A (0.898) A (0.474)

1000 R (0.009) A (0.858) R (0.032) A (0.995) A (0.908)

MS-GJR-GARCH(1,1) Frank copula-EVT 250 R (0.037) A (0.403) A (0.079) R (0.000) A (0.307)

500 R (0.014) A (0.858) R (0.049) R (0.032) A (0.382)

1000 R (0.005) A (0.933) R (0.020) A (0.292) A (0.979)

sGARCH(1,1) 250 A (0.083) A (0.327) A (0.137) A (0.692) A (0.448)

500 R (0.049) A (0.916) A (0.142) A (0.879) A (0.708)

1000 R (0.005) A (0.933) R (0.020) A (0.483) A (0.541)

GJR-GARCH(1,1) 250 A (0.083) A (0.327) A (0.137) R (0.000) A (0.228)

500 R (0.014) A (0.858) R (0.049) R (0.000) A (0.908)

1000 R (0.000) A (0.608) R (0.001) R (0.000) A (0.928)

Note: A = Accept, R = Reject, p-values in parenthesis. NaN = Not a Number; as a result of zero exceptions.

https://doi.org/10.1371/journal.pone.0198753.t015
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Conclusion

In recent decades, VaR has become the most common risk measure used by financial institu-

tions to assess market risk of financial assets. Since VaR models often focus on the behavior of

asset returns in the left tail, it is important that the models are calibrated such that they do not

underestimate or overestimate the proportion of outliers, as this will have significant effects on

the allocation of economic capital for investments. Due to the extremistan [75] nature of finan-

cial asset returns and volatility, the real tail risk of a financial asset is not stable as time passes,

and the maximum loss is difficult to predict. Therefore, to implement a reliable VaR model,

the time horizon and type of volatility model used is very important. We constructed our VaR

models by combining a single-state and two-state Bayesian MS-GJR-GARCH(1,1) models

with skewed Student’s-t distributions for the underlying volatility model, copula functions to

model dependence, and EVT to model the left tail. The single-state Bayesian

MS-GJR-GARCH(1,1) is a GJR-GARCH(1,1) model without regime change, hence the names

Bayesian GJR-GARCH(1,1) copula-EVT VaR model for the single-state MS-GJR-GARCH

(1,1) and Bayesian MS-GJR-GARCH(1,1) copula-EVT VaR model for the two-state

MS-GJR-GARCH(1,1).

We use as a benchmark, VaR models constructed using GJR-GARCH(1,1) and sGARCH

(1,1) volatility models with skewed Student’s-t distributions, but without copula functions and

EVT to compare the performance of our VaR models. Back-testing results show that the

GJR-GARCH(1,1) copula-EVT VaR model is much reliable than the MS-GJR-GARCH(1,1)

copula EVT VaR model and the benchmark VaR models. Back-testing results further indicates

that the GJR-GARCH(1,1) copula EVT VaR model does not overestimate or underestimate

the level of risk on the portfolio whereas the two-state MS-GJR-GARCH(1,1) copula EVT VaR

model and the benchmark VaR models seems to overestimate the level of risk.

It is also important to draw attention to the fact that Eq (34) is a point estimate with an

error band that becomes larger as we move to more extreme quantiles. It is concerned only

with the number of exceedances above a certain threshold and is not affected by data outside

the tail of the distribution [8]. This can be problematic in some cases due to limited data points

in the tail, which can inhibit proper analysis.

Eq (34) also depends on the threshold and the number of points (i.e., exceedances) above

the threshold because the parameters are estimated based on the exceedances. Thus, it is logical

to say that the reliability of Eq (34) rests solely on the choice of thresholds, which is subjective.

The proposed hybrid method for the threshold addresses this issue and diminishes the possibil-

ity of selecting a less suitable threshold value. This method is reliable and can be implemented

with other conditional multivariate volatility models providing positive-definite volatility

matrices.
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