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Abstract

Molecular communication (MC) is a new and promising interdisciplinary bio-

inspired communication paradigm, which uses molecules as information car-

riers. Differing from traditional communication, MC is proposed as a feasible

solution for nano-scale communication with the help of biological scenarios

to overcome the communication limitations. Meanwhile, it is inspired by

intracellular and intercellular communication, which involves exchange of in-

formation through the transmission, propagation, and reception of molecules.

Blood capillaries, extensively distributed in the human body and mutually

connected with tissues, are potentially applied to MC, which is the major

motivation of this thesis.

The focus of this PhD thesis is on the channel modelling of blood capillar-

ies or blood vessels. The objectives of the research are to provide solutions to

the modelling of blood capillary-based MC from a communication engineer-

ing and information theory perspective. The relationship of the biological

scenario in blood capillaries to a communication system is studied. After

demonstrating the mapping from biological phenomenon to emission, prop-

agation and reception processes, system models are established. There are

three models of blood capillaries behind different biological scenarios.

Firstly, the thesis establishes a basic model of vesicle release, vesicle d-

iffusion through blood capillary and ligand reception processes within the

endocrine phenomenon. Moreover, differing from previous research in macro-

scopic Fick’s diffusion, this work involves microscopic Langevin diffusion to
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describe the propagation process with a frequency domain method being

proposed to calculate the information-theoretical performance channel ca-

pacity. Secondly, a much more realistic blood capillary model with blood

flow drift which matches a laminar flow regime is presented, where a gener-

alised Langevin equation is used to model the drift force exerted by blood

flow. Finally, the thesis establishes a single input and multiple output MC

model with hierarchical levels of Y-shaped bifurcation of blood capillaries,

then BER, SNR, and channel capacity performance are analysed.
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Chapter 1

Introduction

The rising popularity of molecular communication (MC) has been accompa-

nied by the development of nanotechnology. The concept of nanotechnology

can be traced back to the Nobel laureate physicist Richard Feynman in his

famous lecture entitled, there is plenty of room at the bottom, in 1959 [11].

In this speech, Feynman indicated that the extreme minimisation of devices

could be achieved. Nanotechnology enables this at scales ranging from 1 to

100 nanometers. Since Feynman proposed the concept of nanotechnology,

these kinds of activities have slowly increased, and its development has re-

markably accelerated since the 2000s. Enormous improvements in this field

have enabled the realisation of powerful as well as tiny functional devices,

namely, nano-machines.

Nano-machines are considered as the functional components required to

perform computing, sensing and data memory tasks in nano-scales [3]. Nano-

networks interconnect the distributed nano-machines to execute collaborative

and comprehensive tasks. Traditional communication technology uses elec-

tromagnetic waves to transmit information which cannot be directly applied

to nano-machines [3]. According to [3], traditional communication at nano-

scales is restricted by the size and power consumption of the transceiver.

However, in the area of biology, it has been recognised that microor-
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ganisms, including cells and bacteria, gain information from the external

environment. Gathered chemical information is sent to their neighbouring

cells or bacteria. Cell signalling [12] is well studied in biology, involving cell-

s sending messages to one another and controlling each other’s behaviour.

Quorum sensing [6] is another example, in which bacteria send molecular

messages to one another in order to estimate the local population of their

species. A large number of cells and bacteria can be regarded as biological

nano-machines existing in the natural world. Furthermore, enormous num-

bers of cells interconnect to form an efficient and steady nano-network inside

the human body. With advantages of size, power efficiency and adaptabil-

ity to the biological environment, bio-inspired MC is the most promising

approach for nano-networks [3].

The biological research aspect of molecular signalling has a history of

many decades; however, research on aspects of information and communica-

tion have introduced the concept of MC only in recent years. With more re-

searchers working on theoretical and implementation research of MC recently,

the formation of the IEEE P1906.1 (IEEE COM/Nanoscale and Molecular

Communications) Working Group was announced on the 18th of May 2011.

It is the first IEEE standard to be proposed in the area of nano-networks and

MC, and included developing common terminology, recommended practices

and standardised performance metrics.

1.1 Basic Concept of Molecular Communica-

tion

MC is defined as the use of molecules as information carriers between trans-

mitters and receivers. An abstract communication architecture is present-

ed in [3, 6, 13], to generalise MC processes. Figure 1.1 shows an archi-

tectural design for MC. It consists of basic functional components: infor-

mation molecules that represent the information carrier to be transmitted,
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transmitter bio-nanomachines that release the information molecules, bio-

nanomachines which receive the detected information molecules, and the

channel that information molecules propagate through from transmitters to

receivers.

Figure 1.1: Illustration of molecular communication [1].

Figure 1.1 describes the communication processes in the MC system: en-

coding, sending, propagation, receiving and decoding. These communication

processes are similar to traditional communication but with distinctly differ-

ent characteristics.

Encoding is the process in which a sender or transmitter generates the

information molecules, selecting the appropriate molecules and encoding the

information onto it. Information may be encoded in various forms, such

as molecules with three-dimensional structure [2], and information sequence

of nucleotide molecules (DNA/RNA). Information could also be encoded

in different concentrations of information molecules (numbers of informa-

tion molecules per unit); for example, [14] illustrates an M-ary modula-
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tion scheme, in which the information is encoded into the concentration of

molecules emitted.

Sending is the process involving a sender bio-nanomachine releasing infor-

mation molecules into the propagation environment. In the communication

process between cells, a sender will release the molecules by opening a gap

junction channel in the cell membrane [5].

Propagation is the phase which involves information molecules being

transmitted from sender to receiver in various environments. The environ-

ment is vital to the channel of the MC system, while the channel for the MC

includes the sender, receiver as well as the environment between sender and

receiver. Information molecules may diffuse passively through the environ-

ment or propagate actively by binding to a motor molecule. Normally, the

channel is divided into passive diffusion and active diffusion. The passive one

involves free diffusion, diffusion with drift and reaction diffusion; while the

active one is associated with molecular and bacteria, motor-based diffusion.

Receiving is the process in which the receiver detects and captures in-

formation molecules. A ligand-based reception mechanism, using a so-called

ligand-receptor, exists in abundance within biological cells. Ligands bind to

receptor sites on the cell’s surface, detecting and capturing molecules’ infor-

mation in the environment. Figure 1.2 illustrates a ligand receptor on the cell

membrane. Another option for capturing molecules without using receptors

is the opening of chemically gated-channels (gap-junction channel) on the

surface that allows molecular information exchange into the receiver [6, 5].
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Figure 1.2: Illustration of Ligand receptor [2].

Decoding is the process involving the receiver decoding the received molecules’

information into the original information with a chemical reaction. Chemical

reactions for decoding may include the production of new molecules to perfor-

m a simple task [2, 15]. Recent research shows that receivers can also decode

molecular information into digital signals or even binary text messages [16].

1.1.1 Cellular and Biological Nano-machines

Nano-machines with computing, sensing, data storage and communication

ability are the basic component for MC and nano-communication. In [3],

it proposed the architecture for an ideal nano-machine with the following

architecture of functional components:

1. Control unit executes the instructions to control other components,

aiming to perform the intended tasks.

2. Storage unit stores the data and information.

3. Communication unit consists of senders and receivers at nano-level.

4. Reproduction unit is used to produce each component of the nano-

machine and then assemble them for recombination.
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5. Power unit provides energy to all components in the nano-machine.

6. Sensors and actuators act as an interface between the environment and

nano-machine.

Figure 1.3: Architecture for nano-machine [3].

Currently such a complex man-made nano-machine could not be built us-

ing today’s nanotechnology. However, existing biological systems are found

in nature. Nature has evolved in various forms of biological nano-machines

in small-scale and highly complex devices composed of chemically reacting

biological molecules. Cells with similar architecture are regarded as an opti-

mal approach to the nano-machines or more complex MC systems [3]. Figure

1.4 shows the generic architecture of a eukaryotic cell and the relationship

with a nano-machine.
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Figure 1.4: Cell as biological nano-machine.

The nucleus, which can be regarded as a control and storage unit, contains

most of the cell’s genetic material, organised as multiple long linear DNA

molecules in a complex helix with a large variety of proteins. The function

of the nucleus is to maintain genes and to control the activities of the cell

by regulating gene expression. The nucleus is, therefore, the control centre

of the cell. DNA functions as storage of genetic information and RNA is

involved in decoding the genetic information to synthesise proteins [4].

The gap junction and receptors on the cell membrane act as senders

and receivers, so these comprise the communication unit. Vesicles are small

containers of molecules enclosed by a typically spherical lipid membrane [4].

In the cell, vesicles often function as the interface and container of molecules.
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Vesicles encapsulate molecules, then with the help of motor proteins, vesicles

and molecules are propagated from one place to another. More importantly,

molecules transported in the vesicles can prevent noise interference from the

environment [17].

The ribosome serves to convert the instructions found in messenger RNA

(mRNA), which itself is produced from instructions in DNA into the chains

of amino-acids that make up the relevant proteins [1]. The ribosome is re-

sponsible for the synthesis of proteins that play a role in the reproduction

unit.

In the cell, power is generated by the chemical reaction of adenosine

triphosphate (ATP). ATP hydrolysis detaches the phosphate from an ATP

molecule to produce adenosine diphosphate (ADP), and at the same time

releases a large amount of energy. ADP absorbs the energy from the external

environment of the cell and is then synthesised to ATP- the recycling of ATP

to ADP forms a power cycle [17].

1.1.2 Characteristics of Molecular Communication

In comparison with traditional communication technologies, the features or

characteristics of MC are shown in Table 1.1:
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Table 1.1: The difference between MC and traditional communication.

1.2 Application of Molecular Communication

MC has the potential to advance applications in biological engineering, medi-

cal and healthcare, industrial, environment, information and communication

areas. Figure 1.5 shows its application in different areas.
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Figure 1.5: The application of molecular communication [4].

1.2.1 Biological engineering

MC will benefit the area of biological engineering to analyse biological ma-

terials, engineering of the biological system and interface biological systems

[4]. Specific examples of relevant sub-areas are tissue engineering and brain-

machine interfaces [4].

The purpose of tissue engineering is to restore the lost tissues of patient’s

bodies from biological cells [1]. MC may provide a mechanism to produce a

spatial pattern of molecules and affect the growth or differentiation of cells

in the specific tissue.

A brain-machine interface provides a direct channel between the human

brain and electrical devices to restore lost functions [18]. Signals generated
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from external devices may stimulate a specific part of the brain to treat a

specific type of brain disease. Instead of using electrical stimulation, MC may

provide a molecular means of interacting with the brain for brain-machine

interfaces [4].

1.2.2 Medical and healthcare

MC may also apply to medical and healthcare system; for example, targeted

drug delivery and molecular imaging.

Molecular imaging uses green fluorescent protein (GFP) as a reporter of

gene expression to monitor cellular function and processes. MC may further

improve coordination mechanisms for a group of bio-nanomachines carrying

GFP to gather and aggregate the transmitted information to external devices.

In targeted drug delivery, in order to reach the targeted site (diseased

cells or tumours) in a human body, the propagation process is performed

by encapsulating drug molecules in drug delivery carriers. Delivering the

carriers to the targeted site and releasing the drug molecules from carriers is

targeted and controlled. MC may provide alternative techniques to improve

the accuracy of reaching the target with the efficiency of the intended therapy

[4]. Drug nano-particles can penetrate inside the body to deliver the therapy;

it can, therefore, bypass all physiological barriers that inside the human body

to protect it from foreign elements [19, 20].

1.3 Motivations and Research Objectives

The focus of this PhD thesis is on the channel modelling of blood capillary-

based MC, where the molecules’ information is exchanged for their ubiquitous

distribution network in the human body. Blood capillaries are important

channels for long-range communication [21], while they significantly differ

from basic diffusion channels; the latter act as the fundamental type of MC

among different types, and have been well investigated in recent years. Many
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different types of MC have been studied so far, which involved either pas-

sive transport of molecules (diffusion-based architectures [22, 23, 24, 25]) or

active transport: molecular motors [26] and bacteria motors [27]. However,

blood capillary modelling, as a fundamental and promising area for future

applications in MC, has not had sufficient research compared with basic d-

iffusion channels. Furthermore, in the drug delivery system, drug particles

propagate through blood vessels and capillaries with blood flow due to the

pumping action of the heart [19, 20]. The modelling of blood capillaries is vi-

tal to drug delivery application in MC. The choice of this thesis in modelling

a much more comprehensive blood capillary-based channel is motivated by

this analysis, detailed in the literature of Chapter 2.

1.3.1 Methodology

As a consequence of the differences between the MC paradigm and tradition-

al electromagnetic communication paradigms, the traditional communication

engineering models and techniques are not directly applicable to this study

and the design of blood capillary-based MC systems. While in the traditional

communication systems antennas transmit and receive electromagnetic radi-

ation; in biological cells, bio-signalling information is transmitted through

the chemical synthesis of information molecules and received by chemical re-

ceptors through chemical reactions. Biological signalling systems inspire the

blood capillary MC model in Chapter 4; for example, the system between the

platelets (mobile transmitters) and endothelial cells (fixed receivers), based

on the release of specific proteins (information molecules) known as CD40L.

To establish a more realistic modelling of blood capillary to MC, the following

research methodologies are being used.

The first step is to understand the biological communication mechanism,

then to outline the mapping from biological scenarios of blood capillaries or

blood vessels to an MC paradigm. First of all, the information molecules

should be identified, as well as the mechanism to carry the information from

12



transmitters to receivers; their respective functions are clarified with respect

to the coding, releasing, propagation, receiving and decoding processes as

basic components in a communication system.

The second step is to demonstrate the propagation process through the

blood capillary, which is vital to the model. Information molecules propa-

gate through the blood vessels or capillaries according to the superposition of

two most significant physical phenomena: namely, blood flow and diffusion.

Blood flow is the transport of molecules suspended in a fluid due to the bulk

motion of this fluid. Diffusion in a macro perspective is the spontaneous

spread of molecules suspended in a fluid from a region with a higher con-

centration to another region with a lower concentration. While in a micro

perspective, diffusion is the motion as a result of stochastic collisions from

smaller particles. This thesis will use microscopic Langevin equation rather

than macroscopic Fick’s law for the diffusion process.

The third step is to implement the information theory and acceptable

communication techniques to a blood capillary MC model. With the assis-

tance of simulation models, we can analyse the performance and characteri-

sation of blood capillary system; these have the potential to be an important

step towards the understanding, diagnosis and treatment of cardiovascular

diseases as well as MC application for drug delivery. In particular, Mat-

lab is used to simulate the mathematical model we established and test the

proposed hypothesis.

As a consequence, there is a need to build a complete understanding

of the blood capillary-based MC system from the ground up. The research

objectives addressed in this PhD thesis and the proposed solutions have been

identified to target this need specifically, and they are summarised as follows.

1.3.2 Research Objectives

The first research objective is to develop a simple diffusion modelling of vesi-

cles, as information interfaces, containing information molecules within them
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and propagated through blood capillary. This model provides a mathemati-

cal frequency-domain characterisation of biological communication processes

involved in the vesicle generating, releasing, propagating and receiving in

order to exchange information between a transmitter and a receiver. To

achieve this goal as the initial research of this thesis, we follow the most

basic implementation of pure diffusion-based MC, which ignores the effect

of blood flow. This model identifies the three biological processes of vesicle

emission, diffusion and reception; In the emission process, the transmitter

benefits from the classical three pools model and in the reception process,

the chemical ligand receptors model is investigated. The previous diffusion

model described in a macro perspective with Fick’s Law illustrates the dif-

fusion process in the relationship with molecular concentration. This model

is intended to implement the Langevin equation as the diffusion motion in

the micro perspective because it is limited by the small numbers of emit-

ted vesicles that could be counted and the larger size of vesicles compared

with molecules. Moreover, it is provided through an analytical expression

of the Power Spectral Density (PSD) probability distribution of transmitted

vesicles and the analytical closed-form expression that relates to the capaci-

ty performance of a diffusion-based MC blood capillary system, such as the

diffusion coefficient, the temperature and the frequency of the transmitted

signal.

As different from the first objective in a diffusion-based model, the sec-

ond research objective is to develop a single input and single output (SISO)

diffusion with blood flow drift system, which emphasises on the relationship

between blood flow and the drift velocity. Moreover, since the information

regarding time, such as delay and time duration between two symbols, is

not directly presented in the frequency domain, this model is analysed in

the time domain. This system implements a biological scenario within the

blood vessels consisting of emission CD40 molecules from the platelets, and

molecules propagating in the flow of blood vessels and received by the CD40L
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in the endocrine cell. The second model is based on the assumption of the

blood vessel being at a significant distance from the heart so that it is pos-

sible to model the laminar motion in the bloodstream without turbulence.

A generalised Langevin equation is a statistical mechanics approach based

on the decomposition of the molecule diffusion with blood flow drift into t-

wo main processes; namely, the diffusion and the laminar blood flow drift.

The solution of its corresponding Fokker-Planck equation is presented with

proper boundary conditions. The ligand-based receptor is considered in the

receiving process. Upper bound to the capacity is derived to evaluate the

information-theoretical performance of the SISO diffusion with a blood flow

drift system.

The third research objective is the extension of a SISO model in the sec-

ond objective to a single input and multiple outputs (SIMO) blood capillary

system with hierarchy and levels of Y-shaped bifurcations. Proper distri-

bution of blood flow within organs is essential for the matching of oxygen

and nutrient supply to the tissue demand. This model is a further study on

the foundation of the normal blood vessels model in the second objective.

This model is divided into symmetric and non-symmetric models by the an-

gles of the bifurcation. Given an information signal sent by a transmitter to

receivers in a SIMO blood capillaries MC system, the interference may be

due to distortions of the previous signals. The analysis of the interference

is fundamental to the design of interference mitigation techniques and for

increasing the performance of communication systems. The Inter Symbol

Interference (ISI) and the additive noise at the receivers are jointly analysed

for the SIMO blood capillaries system under the assumptions of having an

additive Gaussian noise. The signals at each sub-channel are combined by

two spatial diversity combining techniques Maximum-Ratio combining (MR-

C) and Equal-Gain combiner (EGC). Channel capacity performance of both

symmetric and non-symmetric models are analysed within the implementa-

tion of the diversity combining techniques of EGC and MRC.
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1.4 Thesis Outline

The remainder of this PhD thesis is organised as follows. A preliminary

analysis of different types of MC options from the literature is described in

Chapter 2, which also includes a survey of previous literature pertinent to

the study of blood vessel or blood capillary- based MC. In Chapter 3, as my

first research objective, results are obtained through mapping the biological

scenario of vesicles diffused through blood vessels. Moreover, modelling of

a diffusion blood capillary-based MC system is presented detailing the con-

tributions of derivation for closed-form expression of channel capacity in the

frequency domain. In Chapter 4, as my second research objective, a SISO

diffusion with a flow drift model on a blood capillary system in the time

domain is established. Firstly, methods from statistical mechanics and blood

flow theory are used; then an information-theoretical approach is implement-

ed. After that, the analytical expression of the channel capacity is derived

and simulated. Chapter 5 presents my third research objective, with a SIMO

blood capillary system with hierarchy and levels of Y-shaped bifurcations

being established, where implementation-specific results regarding the time

duration, ISI, noise effect, and information capacity are fully discussed. Fi-

nally, the conclusion with possible future directions for this research field is

provided in Chapter 6.

16



Chapter 2

Literature Review

This chapter contains a review of the literature pertinent to the research on

different types of MC and particular options regarding blood capillary. This

review is organised as follows. In Section 2.1, different MC options from the

literature are detailed on the basis of the types of short- and long-range MC.

In Section 2.2, mathematical fundamentals of diffusion dynamics theory from

the literature are detailed for the discussion of previous research on MC. In

Section 2.3, the results from the literature focused on blood capillary-based

MC are presented and analysed to motivate the research proposed in this

thesis.

2.1 Biological Systems Applicable for Molec-

ular Communications

In this section, we will discuss the biological systems in nature, which inspired

MC. We will then discuss the great variety types of MC, particularly as it

relates to the work of this thesis.

The first survey on general microscale MC was presented by Hiyama and

Moritani in [28]. A more recent general survey was presented by Nakano et

17



al. in [2], which indicates the opportunities and challenges of MC research.

In [29], a survey of MC based on microtubule and physical contact was pre-

sented, and [30] provided a guidepost for some of the experimental problems

within MC. Additionally, a survey of MC from a layered communication

network perspective was presented in [31] in 2015. Finally, a comprehen-

sive survey on various aspects of MC focusing on recent advancements was

presented in [32] in 2016, which also introduced the engineering of an exper-

imental demonstration of MC by Farsad et al. [16]. In [16], a tabletop MC

platform has been developed for transmitting short text messages across a

room.

MC in different biological systems is widely found in nature, and thus

should be tackled with respect to determining some of its rules. Based on

the communication distance, in [3] MC systems are categorised into two

types: short-range (nm −mm) and long-range (mm −m). In [27] medium

range is added and MC channels are classified into three types: short-range

(nm−µm), medium range (µm−mm) and long-range (mm−m). However,

short- and medium-range communication exist in the same biological system,

and it is difficult to classify them precisely. In this survey, similar to [3], it is

divided into two types: short-range (nm−mm) and long-range (mm−m).

On the basis of the transmission mechanism, MC in the biological system

can also be divided into passive and active transport-based systems [6]. In

this survey, these two categories will be discussed individually.
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Figure 2.1: Basic channel models for molecular communication

2.1.1 Short-range Molecular Communication Mecha-

nism

Various mechanisms of MC are found within and between cells or other bio-

logical systems. In the flowing survey, mechanisms in short-range communi-

cation are categorised based on how molecules are propagated; former type

passive transport-based MC, and another type active transport-based MC.

2.1.1.1 Passive Transport-Based Molecular Communication in Short

Range

In the passive transport-based model, molecules information diffuses in Brow-

nian motion Molecules randomly diffuse in all available directions, which
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makes its behaviour highly dynamic and unpredictable. Diffusion is the ba-

sic method for the passive transport-based mechanism. Passive transmission

requires a large number of information molecules to reach a distant destina-

tion by random Brownian motion; thus, passive transmission is not suitable

for the crowded or high-viscosity environment and long-range MC.

Three mechanisms for passive transported-based in short-range MC are

described in the following: 1. free diffusion-based MC, 2. gap junction

diffusion-based MC and 3. Reaction-diffusion based MC.

2.1.1.1.1 Free diffusion-based MC

Free diffusion-based MC is the most common model for the MC in the cell

or between cells. In this mode, cells release information molecules into the

extracellular environment, and neighbouring cells capture the information

molecules with protein receptors, resulting in the activation of a chemical

reaction (e.g., increased metabolism or transcription of cellular proteins).

An example of free diffusion-based MC is quorum sensing, a communi-

cation mechanism used by bacterial cells. In quorum sensing, bacterial cells

release an auto inducer, acyl homoserine lactone (AHL), into the environ-

ment, then detect the concentration of AHL in the environment, to estimate

the number of bacteria nearby. When the AHL concentration is sufficient-

ly high, the bacteria interpret this as being indicative of the presence of a

large number of bacteria in the environment, and thus, the bacteria start

transcribing DNA to perform group functions [33].

2.1.1.1.2 Gap junction diffusion-based MC

In this model, diffusion of signal molecules can be guided through cell-

to-cell communication channels called gap junction channels [34]. These are

physical channels formed between two adjacent cells, connecting the cytoplas-

m of the two cells. Gap junction channels normally allow the small molecular
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weight molecules (< 1000Da) to transmit through cells, enabling coordinat-

ed actions among adjacent cells [5]. These small molecules including, IP3,

cyclic adenosine monophosphate (cAMP) and cytosolic Ca2+ are the most

important information molecules in the biological system [35]. Figure 2.2

illustrates the design for gap junction communication system between cells

[5].

Intercellular Ca2+ wave propagation, which plays an important role in

the biological system, has many models for its diffusion of cytosolic Ca2+

signal between the cells. In the first model, Ca2+ itself diffuse through gap

junction and causes Ca2+ release from other cells. In the second model, cells

produce IP3, regarded as Ca2+ mobilizing molecules by chemical reaction

then the IP3 diffuses through gap junction channel, Ca2+ store, and triggers

Ca2+ release from the Ca2+stores to other cells. In the third model, stim-

ulated cells produce ATP that diffuses through gap junction channels to the

extracellular environment. These released ATP reacts with the receptors at

each cell membrane, and each cell produces Ca2+ mobilising molecules, IP3,

and triggering Ca2+ release from Ca2+ stores. As ATP diffuses into the ex-

tracellular environment, intercellular Ca2+ waves propagate. The second and

third models combine the gap junction diffuse model and reaction-diffusion

model. The Intercellular Ca2+ wave could represent the information of cell

death and growth [36]. More complex information may be propagated by

temporal and spatial modulation of cytosolic Ca2+, such as Ca2+ spikes [5].
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Figure 2.2: Gap junction communication between cells [5].

2.1.1.1.3 Reaction-diffusion-based MC

Diffusion of information molecules can involve biochemical reactions to

achieve a different mode of communication that allows propagation of impuls-

es. As a result of the rapid increase and decrease of information molecules in

their concentrations, the information molecules propagating in the environ-

ment appear as an impulse. For instance, some glial cells produce impulses

of calcium ions (Ca2+) for intercellular communication.

The endoplasmic reticulum (ER) in a cell gathers and stores calcium ions.

It releases the stored calcium ions from the ER and the calcium diffuses to

adjacent cells through cell-to-cell junction channels [1]. The diffused calcium,

in turn, stimulates the adjacent cells, causing a chain reaction of calcium

stimulation. Shortly after being stimulated, a cell pumps calcium within the

cell back into the ER and suppresses further stimulation, thus creating a short

impulse of calcium through the cell. Because the communication propagates

in a short impulse of calcium concentration, cells can communicate with each

other at a higher frequency [1].

22



2.1.1.2 Active Transport-Based Molecular Communication in Short

Range

Active transport provides a communication mechanism to transport infor-

mation molecules to specific locations directionally. Active transport can

propagate signal molecules over longer distances as compared with diffusion-

based passive transport. Large interface molecules or vesicles diffuse poorly

in passive transport because of their size; on the other hand, active transport

consumes chemical energy and generates sufficient force to transport large

signal molecules directionally. Active transport provides a communication

mechanism with a high degree of reliability even when the number of signal

molecules to transport is small. Because the propagation of signal molecules

is directional, the probability of signal molecules reaching the destination is

higher than when using passive transport, and thus active transport requires

fewer signal molecules to perform communication.

However, active transport often requires communication infrastructure

to produce and maintain the transport, guide and interface molecules, e.g.,

molecular motors, microtubule filaments, and vesicles. Active transport of

molecules also requires a regular supply of energy to overcome the chemical

interactions between signal molecules and molecules in the environment. In

the following, we describe two examples of active transport-based MC from

biological systems, including, 1. Molecular motor-based MC and 2. Bacterial

motor-based MC.

2.1.1.2.1 Molecular motor-based MC

This is found within a cell where molecular motors are used to transport

information molecules. A molecular motor is a protein or a protein complex

that converts chemical energy (e.g., ATP hydrolysis) into mechanical work at

the molecular scale. Inside a cell, senders produce interface molecules, such

as vesicles, to contain the information molecules and then bond to transport
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motor. Molecular motors transport information molecules or vesicles that

contain information molecules [37]. Molecular motors consume chemical en-

ergy to transport signal molecules or the vesicles along the pre-established

guide molecules at the speed of 400mm/d. Figure2.3 illustrates an example

for the mode of molecular motor-based.

Figure 2.3: Illustration of motor-based molecular communication [6].

Existing research on engineering active transport, however, focuses on

only a few types of molecular motors, such as kinesin [5]. Two examples

of active transport using molecular motors introduced here are molecular

motors walking on filaments and filaments propagating on a patterned surface

coated with molecular motors.

In the first example, engineered active transport uses molecular motors

and guide molecules e.g., microtubule filaments that self-organise into a net-

work and molecular motors that actively transport information molecules

along the guide molecules [26]. This first example uses components and pro-

cesses similar to the active transport mechanisms in biological systems. In

biological systems, a network of guide molecules e.g., actin or microtubule fil-

aments, is created within a cell in a self-organizing manner through dynamic

instability of guide molecules, and molecular motors transport information

molecules to specific locations within the cell by walking along a network of

guide molecules. Engineering of the self-organization of the filaments can pro-

duce simple patterns of filaments [37]. Through designing self-organization
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processes of creating filament patterns and by selectively transporting on

the designed filament pattern, molecular motors may be guided to desired

locations.

In the second example of engineered active transport using molecular mo-

tors, the arrangement of microtubules and motors is inverted. A surface of the

glass is coated with the molecular motor e.g., kinesin, and the motors, push

the filaments along the surface. In this arrangement, transport molecules

(i.e., the filament) load information molecules at a sender nano-machine and

unload the information molecules onto a receiver [38]. The direction of fila-

ment movement is guided by adding walls (e.g., deposited proteins) onto the

glass surface through lithographic techniques.

Various patterns may be generated that gather filaments toward a re-

ceiver nano-machine. For instance, an arrow-shaped wall pattern acts as a

directional rectifier to ensure that filaments propagate in a single direction

by rectifying filaments that are propagating opposite to the arrowhead direc-

tion [39]. The transmitter encodes information using information molecules

and injects them into interface molecules. The transmitter then emits the

interface molecules to molecular motors through a budding mechanism. The

interface molecules are then attached to and loaded on molecular motors.

The interface molecules are propagated by molecular motors that move a-

long rail molecules. During propagation, molecular motors may switch guide

molecules to reach destination receivers. When molecular motors approach

the receiver, interface molecules containing information molecules are fused

into the receiver. This allows receivers to receive information molecules and

invoke reactions in response to information molecules.

2.1.1.2.2 Bacterial motor-based MC

In another type of engineered active transport, a transport molecule itself

is a nano-machine using molecular motors to move toward a receiver nano-
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machine along chemical gradients in the environment. This example uses

components and processes similar to self-propulsion of single-cell organisms

through an aqueous solution. In biological systems, a bacterium uses cilia

or flagella, molecular motors that generate propeller-like forces to move the

bacterium along chemical gradients toward favourable conditions and away

from unfavourable conditions, e.g., harmful chemicals. With the engineered

transport nano-machine with molecular motors, the receiver may generate

guide molecules to indicate where the receiver is; this process is similar to a

gradient of a food source or pheromone in the environment in the bacteri-

um, which then influences the direction in which the transport nano-machine

moves through the environment. The transport nano-machine does not re-

quire pre-established filament networks since guide molecules emitted by a

receiver diffuse to form the chemical gradient around the receiver.

A good example of this is the pseudopodia of a cell, which can form com-

plex shapes that links the entrance and exit of a maze [40]. The pseudopodia

form the structure by growing towards a chemical gradient of food originat-

ing from both the entrance and the exit of the maze. Active transport using

pseudopodia is robust since the pseudopodia adapt to match to the shape of

the maze.

An example communication sequence based on this type of MC is illus-

trated in the Figure 2.4. In this type of MC, the sender and receiver contain

information molecules therein (e.g., DNA or RNA molecules within cells),

and the transport molecule is used to transport information molecules be-

tween them. The sender transports information molecules to the transport

nano-machine via bacterial conjugation, while the receiver of communication

emits guide molecules in the environment to attract the transport molecule.

The transport molecule propels closer to the receiver, indicating the prop-

agation process. Once the transport molecule and receivers are physically

touching, the information molecule is transported to the receiver which shows

some response.
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Figure 2.4: Illustration of bacterial motor-based molecular communication

[6].

2.1.2 Long-Range Molecular Communication Mecha-

nism

2.1.2.1 Neuron-Based Molecular Communication Mode

Neurons, electrically excitable nerve cells capable of generating, process-

ing and transmitting information through chemical and electrical signalling

mechanisms, are considered as transmitters and receivers of the nervous nano-

network [7]. They receive signals from other neuronal cells, which changes

the membrane electrical polarisation. The electrical potential is spread along

the cell body and combined at the base of the axon, causing the generation of

spikes or impulse signals, namely, action potentials. Spikes signals are then

transmitted through the axon and arrive at its branches, where the neuron

makes an interface with other neurons cell through synapses, and the con-

ductive links between postsynaptic and presynaptic cells, where cell-to-cell

signals occur, are produced [41]. Action potentials are used to carry informa-

tion from one neuron to the other. Hence, we call the communication among

neurons neuro-spike communication [42].

Performance of neuro-spike communication depends on the physical fea-

tures of neurons, which affect the action potential transmission character-

istics through such neurons. Although areas of the axon covered with a
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myelin sheath cannot regenerate action potentials, they can rapidly conduc-

t an electrical field to the next node by regenerating and transmitting the

action potential along the axon to further nodes [43]. In [43], it indicates

that another way to increase conduction velocity is to increase the diameter

of an axon, through which axons with myelin sheaths can transmit action

potentials extremely quickly.

There are two major types of synapses, electrical and chemical [44]. The

former is a mechanical and electrically conductive link that is formed in a

narrow gap between two neurons, such as the presynaptic and postsynaptic

neurons. Despite causing amplitude loss in the signal transmitted, it conducts

nerve impulses more rapidly compared to the chemical synapse. Mostly, the

electrical impulses can be transmitted in either direction [44]. Different from

electrical synapses, chemical synapses are specialised links through which sig-

nals are transmitted from neurons to other neurons. Chemical synapses allow

neurons to form communication paths within the central nervous network,

enabling the nervous nano-network to communicate with and control other

networks within the body, and they are crucial to the biological computations

that underlie perception and thought [7].

An arriving spike yields an influx of calcium ions through the voltage-

dependent calcium ion channels. Ca2+ then bind to the proteins found

within the membranes of the synaptic vesicles. The vesicles then release

their contents, neurotransmitters, into the synaptic cleft [45]. The release

of a neurotransmitter is triggered by the arrival of a nerve impulse, called

an action potential, and then an unusually rapid process of cellular secretion

occurs. Therefore, we consider the neuro-spike communication channel as

a series of electrical and molecular channels and model it accordingly. The

neuro-spike communication between the single presynaptic neuron and the s-

ingle postsynaptic neuron includes the axonal, synaptic and spike generation

phases [46]. Synaptic transmission is composed of vesicle release, diffusion,

and generation and trial-to-trial variability of excitatory postsynaptic poten-
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tial (EPSP). Also, there are two major sources of noise in neuro spike com-

munication, axonal and synaptic. Hence, the overall model of SISO neuro

spike communication channel for action potential generation and propagation

phases between two neurons is illustrated in Figure 2.5.

Figure 2.5: Illustration of neuron-based communication system [7]

As shown in Figure 2.5, the neuron-based MC model consists of different

kinds of basic MC model: wired axon transmission for long-range in two

neuron cells, the generation and receiving of spikes, the gap junction diffusion

by vesicles between two neuronal cell, and the generation and transmission

of the synapse.

In previous research [47, 46, 33, 48, 49, 50], neuro-spike communications

are introduced to MC. Then, the channel capacity, inter-symbol interference

and error probability performance are analytically investigated. In [47], it

presents an analytical framework that incorporates the effect of mobility in-

to the performance of electrochemical communication among nanomachines,

which illustrates the scenario of neurospike transmission between nanoma-

chines. In [46], the neuro-spike communication characteristics through de-

veloping a realistic physical channel model between two terminals are inves-

tigated. The neuro-spike communication channel is analysed based on the
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probability of error in spike detection at the output, and the channel delay is

characterised. In [33], synaptic Gaussian interference channel is investigat-

ed. Furthermore, the achievable rate region for the channel is characterised

regarding power or firing rate. In [49], it provides the channel capacity of the

neuro-spike communication system, which consists of axon propagation, vesi-

cle release and neurotransmitter diffusion, while [48] focuses on the general

multi-terminal channel model for neuro-spike communication, the multiple

synaptic inputs single output (MISO) channel model and analysis of the

inter-symbol interference and delays performance between the presynaptic

input and output neurons. Eventually, [50] derives the error probability of

the neuro-spike communication system. Moreover, it derives a closed-form

description for the decision threshold to design an optimal spike detection

receiver.

2.1.2.2 Blood Capillary-Based Hormonal Communication

The endocrine system provides communication mechanism among cells, sens-

es the molecule concentration changes in tissues and secretes hormones for

the regulation of body [7]. Moreover, the secreted hormone targets a specific

tissue and instructs the tissue to produce a particular substance [51].

Hormones can be divided into two groups, lipid-soluble and lipid-insoluble;

according to the ability to diffuse through the cell membrane of the target cell.

Lipid-soluble hormones, are propagated through the blood vessels (see Figure

2.6) and can diffuse through the membrane and directly deliver the message.

On the other hand, lipid-insoluble hormones cannot penetrate through the

cell membrane by themselves and need extra messengers to translate the

message to the cytoplasm of the target cell. Due to this reason, we consider

lipid-soluble hormones in our blood capillary or blood vessel channel model.

Lipid-soluble hormones can diffuse through the cell membrane and target the

receptors in the cytoplasm.

The propagation of the hormones is due to diffusion with drift, the com-
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bination movement of the blood flow that extends drift on the hormone

diffusion. The reception process of the channel is selective due to the incom-

patible chemical structure of hormones to any other receptor type except for

the receptors of target cells.

As shown in Figure 2.6, the overall hormonal molecular communication

channel is constructed by considering endocrine glands as the transmitter,

with the target cells acting as the receiver. The blood capillary is the com-

munication channel between the transmitter and the receiver. In [7], it il-

lustrates hormonal propagation through the blood vessel as the functional

components within the human endocrine system, while detailed modelling

was not presented.

Compared with the rich and detailed literature of neuron-spikes MC in the

previous section, the literature of blood capillary-based molecular communi-

cation, discussed in Chapter2.3, is not well-studied. This provides a major

motivation to investigate the biological mechanism of blood capillaries then

establishes the appropriate model for this applicable and potential long-range

MC. The rest of the literature regarding blood vessels or capillaries will be

discussed individually in the last section of this chapter.
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Figure 2.6: Long-range molecular communication applicable in blood cap-

illary [7].

2.2 Mathematical Model for Molecular Com-

munication

2.2.1 Diffusion and Brownian Motion

Diffusion, free molecules in a fluid propagating via Brownian motion, is the

basic model for MC. Furthermore, the Brownian motion is a well-studied

phenomenon, with a rich mathematical body of literature.

The free-diffusion model assumes that the transmitter and receiver are

connected by a fluid medium, and are located a certain distance apart (com-

pared with the range of the molecule). According to [52, 53], it matches the

following assumptions:

1. The transmitter, located at the origin, is a fixed point source of

molecules; moreover, it is the only source.

2. Molecules are immutable, and their motions are independent and i-
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dentically distributed.

3. Once a molecule is released from the sender, the molecule does not

interact with the sender in any way.

4. The medium is infinite in every direction.

5. The receiver is a surface surrounding a connected region of points.

The diffusion process or Brownian motion follows different mathematical

models; the macroscopic approach with Fick’s law, microscopic ones with the

Einstein-Smoluchowski random walk equation and the Langevin equation [54,

55]. These degrees of freedom typically are macroscopic variables changing

only slowly in comparison to the microscopic variables of the system. The

microscopic variables are responsible for the stochastic nature of the Langevin

equation [56].

In 1855, Fick published Fick’s law to describe the diffusion process. Fick’s

first law of diffusion relates the diffusive flux to the molecular concentration

[57]:

J = −D∇U(x, t) (2.1)

Where J is the diffusion flux in mol/cm2s, D is the diffusion coefficient

in cm2/s, U is the molecular concentration in mol/cm3, and x and t are

distance and time variables. It postulates that the flux goes from regions

of high to low concentrations, with a magnitude that is proportional to the

concentration gradient (spatial derivative). Fick’s law describes the evolution

of a dilute tracer substance in a medium. The left-hand side is the flux of

this substance while the right-hand side is a multiple of the gradient of the

density of this tracer substance [54].

Fick’s second law of diffusion predicts how molecular concentration changes

with time:
∂U(x, t)

∂t
= D∇2U (x, t) + r (x, t) (2.2)

Here U(x, t) is the concentration of molecules at point x from the source

and time t. ∇2U (x, t) is the spatial second derivatives of U(x, t), D is the
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diffusion coefficient of the medium, r(x, t) is the molecule production rate at

the source.

A typical example of the instantaneous emission concerns the emission

of pheromones. In this kind of emission, the totality of a fixed amount of

molecules is released into the medium in a minimal time, abruptly increas-

ing the molecular concentration around the emitting nano-machine. Then,

due to molecular diffusion, these molecules will travel through the medium

dispersing them randomly.

The sudden release of a fixed amount of particles (instantaneous emission)

is the most suitable modelling when molecular diversity is used to increase

the molecules that can be emitted by a single nano-machine. In this case,

we are not interested in variation in molecular concentration but in the type

of emitted molecules. Thus, there is no need to continuously fill the medium

with molecules, and the puff emission is the most suitable scenario.

Without any molecular interference, instantaneous emission of molecules

is expressed by the impulse response of Fick’s second law Eq.2.2. A method

that delays the usage of the initial distribution is solving the equation using

Green’s functions. The idea behind this method is to solve the following

equation [54]:

(
∂

∂t
−D∆)G(x, t) = δd(x)δ(t) (2.3)

The Green’s function that solves the above differential equation is given by

[54]:

G(x, t) =
e−

x2

4Dt

(4πDt)d/2
(2.4)

Most of the previous literature apply this Green’s function of Fick’s diffu-

sion. In [22, 24, 23, 58, 59, 60, 61, 46], they describe the diffusion process in

the macroscopic aspect of Fick’s law. That is to say, Fick’s law does not fo-

cus on the movement of the single molecule, but on the variety of molecules

concentration. In the MC system, Fick’s law is suitable to describe the

macroscopic aspect of diffusion process when the concentration of molecules
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is regarded as information, such as the concentration of Ca2+, and IP3.

While the literature[62, 63, 64] adopt another mathematical model for the

diffusion process in a microscopic perspective, the Wiener process, focuses

on the random walk or Brownian motion of molecules movement.

The Wiener process is an appropriate simple model for Brownian motion

[53]. This process is defined in terms of Gaussian distribution, a continu-

ous time random process with independent Gaussian-distributed increments,

with location x having a probability density function (PDF) fX(x) given by:

fX(x) =
1√

2πσ2
exp(−(x−mx)

2

2σ2
) (2.5)

Let B(t) represent the position of a Brownian motion at time t ≥ 0, where

B(0) represents the initial position. Then B(t) is a one-dimensional wiener

process if two criteria are satisfied:

1. For any times t1 and t2 (where t2 > t1 ≥ 0), some constant σ2,

B(t2)−B(t1) ∼ N(0, σ2(t2 − t1)) (2.6)

2. For two intervals [t1, t2] and [t3, t4], the increments B(t4)−B(t3) and

B(t2) − B(t1) are statistically independent if the intervals do not overlap.

Intuitively, the Wiener process is a continuous-time random process with

independent Gaussian-distributed increments. Then B(k), the position at

time k, is a Gaussian random variable with distribution.

B(k) ∼ N(0, kσ2) (2.7)

Let the initial starts off at B(0) = 0, the increment between successive views

of the process is

B(k)−B(k − 1) ∼ N(0, xσ2) (2.8)
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In Brownian motion, the variance parameter σ2 is given by,

σ2 = αD (2.9)

Where D is the free diffusion coefficient of molecules propagating in the

given medium, and where α = 2, 4, 6 if the system is 1−, 2−, 3− dimensional,

respectively, the value of D is given by,

D =
kBT

6πηRH

(2.10)

Where kB = 1.38× 10−23J/k Boltzmann constant, T is absolutely tempera-

ture, η is the dynamic viscosity of the fluid, and RH is the hydraulic radius

of the molecule. According to [65], the values of D in the range 1 ∼ 10um2/s

were considered realistic for signalling molecules.

In [4], it considers the Wiener process with drift for long-range MC in

a capillary. A sender released a signal molecule into the bloodstream; the

propagation process would be biased in the direction of the blood flow. In a

wiener process with drift, v is the drift velocity; the increment distribution

is replaced with:

B(t2)−B(t1) ∼ N
(
v(t2 − t1), σ2 (t2 − t1)

)
(2.11)

2.2.2 Model for Molecular Motors

A major disadvantage of drift-free Brownian motion is the potentially long

and highly uncertain delay in the propagation of individual molecules. More-

over, adding drift is not always an available solution. In active-based molec-

ular transmission, molecular or bacterial motors are applied to transport

molecules actively. A simulation scheme for active transport was given in

[66], which replaces the wiener process step equation with

xi = xi− 1 + ∆r cos θi (2.12)
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yi = yi− 1 + ∆r cos θi (2.13)

where, given the microtubules average velocity Vavg and diffusion coefficient

D, ∆t is a Gaussian random variable with mean and variance

E [∆r] = vavg∆t (2.14)

Var [∆r] = 4D∆t (2.15)

θi = θi− 1 + ∆θ (2.16)

given persistence length Lp,is ∆θ also Gaussian random variable with mean

and variance

E [∆θ] = 0 (2.17)

Var [∆θ] = vavg
∆t

Lp
(2.18)

2.3 Literature for Blood Capillary

In this section, literature relevant to channel modelling of blood capillaries

or blood vessels is classified into two types. The first type of prospective

literature indicates that blood capillaries can be applied to MC. Although

this literature does not present a practical mathematical model, it opens a

gate to investigate the blood capillary system in the communication aspect.

In [21], the blood capillary system was proposed to long-range MC appli-

cation for the first time. Meanwhile, it indicates the most suitable communi-

cation particles to be used the in blood capillaries system are the hormones.

Hormonal communication channels through blood vessels, discussed in previ-

ous section 2.1.2.2, are classified as long-range MC, and our research follows

this proposal.

After that in [7], it proposed a hormonal MC channel through the blood-

stream within the human body, considering endocrine glands as the trans-

mitter and the target cells as the receiver. The second model in Chapter 4
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is also inspired by this phenomenon in the endocrine system.

The second type of literature considers the exact channel model of the

blood capillary system. The most fundamental research of blood vessels is

[67], and it analysed blood vessels as a Casson fluid and derived an explic-

it expression for the effective longitudinal diffusion. As a consequence, it

indicates that both the rheology of blood and the permeability of the ves-

sels may constitute a physiological barrier to the intravascular delivery of

nano-particles.

Casson fluids models [68, 69, 70], the term for non-Newtonian fluids,

are not considered in this thesis. In Casson fluids, the viscosity does not

have a constant value, but depends on the shear rate. In [68], it present-

ed a mathematical model for the peristaltic flow of rheologically complex

physiological fluids, which is modelled by a non-Newtonian Casson fluid in

a two-dimensional channel. Meanwhile, it is found that a Newtonian fluid

is an important subclass of non-Newtonian fluids that may adequately rep-

resent some physiological phenomena. The blood capillary fluid, far from

the heart, can be modelled by Newtonian fluids adequately. In [69], it is an

improvement in the studies of the mathematical modelling of blood flow in

narrow arteries with mild stenosis, while in [70], the artery is modelled as a

circular tube. All these mathematical models in Casson fluids [68, 69, 70],

are adequate to model the artery vessel, but are suitable for the smallest

capillaries.

In the literature [71], it established a simple Synchronization and Thresh-

old Detection (STD) module to describe nano-particle transmission in blood

vessels. This STD module has two functions: 1. synchronizing the receiv-

er with a new train of pulses, and 2. decoding the information through a

decision threshold mechanism [71]. Moreover, this blood vessel MC system

is inspired by a signalling phenomenon between the platelets and endothe-

lial cells, based on the release of specific proteins known as CD40Ls, which

can bind to the relevant receptors (CD40) available on the surface of the

38



receivers. Based on [71], Felicetti also published the following literature

[72, 73, 74]. In [72], it presented a software platform, named BiNS2, able

to simulate diffusion-based MC inside blood vessels. In [74], it presented

a model which includes both a propagation model of blood vessel channel

and the integration of the Markov chain in the receiver. In [73], it proposed

tumour detection via tumour CD47 protein bio-markers on the cell surface,

which is different from the method of CD40 propagation in previous research.

However, tumours with bio-markers, regarded as the largest particles, have

sizes similar to white blood cells, which are not suitable to be applied by

advection-diffusion equation.

Both of the literature[72, 73, 74] apply the advection diffusion equation for

the diffusion process in blood vessels, with the assumption of constant flow

velocity. Moreover, the advection diffusion equation describes concentration

variation with the relationship of flow velocity and diffusion coefficient, so

that the information of the location and transmission distance is not provid-

ed. Differing from [72, 71, 73, 74], this thesis focuses on both the diffusion

and blood flow in microscopic Langevin-based diffusion.

According to [32], other forms of mass diffusion assist the propagation of

particles at macroscales. These include:

Advection-diffusion: Advection refers to transport with the bulk fluid

flow [75]. For example, information particles released inside a duct with air

flows, are moved by bulk air flows.

Convection-diffusion: In thermodynamics convection is the fluid flows

generated because of differences in temperature [76]. For example, in a room,

cold air, which is dense, moves downward while warm air moves upward. It

must be noted that convection is also used to specify the combined advection-

diffusion process in fluid mechanics.

As a consequence, advection-diffusion and convection-diffusion are not

adequate for modelling the propagation process in blood vessels or capillar-

ies.The propagation of particles in the communication environment of the
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blood capillary is considered in terms of both blood flow and diffusion with

the details as follows:

1. Particle diffusion, which is well-studied in the theory of Brownian

motion [77, 53]; previous literature [58, 22], and in MC applied with respect

to Fick’s law. Furthermore, [78, 79, 74, 73]applied the advection diffusion

equation to describe the diffusion process.

2. The blood flow model in blood capillary is divided into laminar and

turbulent flows, which depends on the Reynolds number. The following liter-

ature [80, 81] discussed the difference between two blood flow models, laminar

flow and turbulent flow.

3. Positive drift due to the pressure of the bloodstream, which depends

on the position of the particle with respect to the axis of the blood flow. In

the literature [82, 83, 84] of the mathematical modelling aspect, they intro-

duce the generalised Langevin equation to model the diffusion with the drift

process, the solution of which is the corresponding Fokker-plank equation.

In the literature [58, 85, 22, 86], basic diffusion channels are studied, and

they all consider the simple diffusion channel match Brownian motions. Sim-

ilarly, they describe Brownian motion in Fick’s law. The paper [85] presents

mathematical models of the fixed transmitter, channel and the fixed receiv-

er. The authors evaluate the end-to-end gain and propagation delay as a

function of some environmental parameters. Information is transferred by

modulating the concentration of the particles emitted by the transmitter. In

the same scenario, [58] models the noise sources affecting the diffusion-based

MC, using a ligand-bind receptor at the receiver. All these works assume

a transmission medium in which propagation is due to diffusion only, which

does not apply to our scenario.

While there are a number of theoretical models applying all kinds of

passively diffusion in MC, the literature of diffusion with drift model in MC

is less. In [62], it shows that the additive inverse Gaussian noise channel

is an appropriate model for MC in fluid media with drift. Differing from
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the method used in[62], the Langevin equation is used to describe diffusion

with drift in this thesis. Langevin equation is stochastic partial differential

equations, and the stochastic term matches the Gaussian distribution.

The MC reception of nano-particles is also profoundly affected by the

blood flow that interferes with the chemical interactions between ligands and

receptors [87]. Also, the stochastic effects in the ligand-receptor binding

kinetics and interference are modelled through the MC framework [88, 89].

However, in this literature [88, 89], the binding and unbinding process is

only considered in the ligand-receptor model. The endocytosis process of

vesicles is also significant in the vesicles reception by the ligand-receptor [8].

Different models of ligand-receptor are used in this thesis on the basis of

reception mechanisms.

In particular, the study in [90] shows that the influence of the red blood

cells within the blood capillary is dominant. The influence of red blood cells

is complex and is not considered in this thesis.

Modelling of blood capillaries is a fundamental component when designing

drug delivery systems. In the literature [19], it presents a drug delivery

system in MC, where the transmitted message is the drug injection process,

the channel is the cardiovascular system, and the received message is the drug

reception process. Within this MC framework for drug delivery systems [19],

analytical expressions of the noise and channel capacity are derived in [20].

2.4 Chapter Summary

This chapter provides a review of the literature for blood capillary-based

MC with three subsections. The first section discuss great variety of biolog-

ical systems applied in MC on the basis of communication range. More-

over, MC in short-range are categorised and discussed based on passive

transport-based, and another type active transport-based. Three passive

diffusion mechanisms in biological system is applied to MC, which including
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free diffusion, Gap-junction based and reaction diffusion based, while ac-

tive transport-based MC is divided to Molecular motor-based and Bacterial

motor-based. Two long-range MC, neuron-Based and blood capillary-based

hormonal communication, are discussed individually. Mathematical model in

previous literature is discussed in section 2.2. The last section in this chap-

ter discussed literature relevant to channel modelling of blood capillaries or

blood vessels from initial proposal and latest research.
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Chapter 3

Channel Modelling of

Diffusion-based blood capillary

in Frequency Domain

3.1 Biological System

Blood capillaries are considered as one of the long-range MC systems in

our body [7]. Capillaries are the smallest blood vessels that make up the

microcirculation. According to [91], the diameter of blood capillary ranges

from a 5µm to 10µm, while the diameter of the general vessel is about 30µm.

The length of a capillary could be compared to a neuron axon, from cm to

m. Capillaries with the length of 67cm could be designed as testing units. In

addition, several capillaries could be joined together to reach further nodes.

The capillary channel in MC consists of encoding or emission processes, and

propagation, reception or decoding processes. According to [7], the hormones

or cytokines are suitable information molecules in the capillary channel.

The capillary wall performs an important function by allowing nutrients

and waste substances to pass across it. Molecules larger than 3nm, such as

hormones and other large proteins, transport through transcellular carried
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inside by vesicles, a process which requires them to go through the cells that

form the wall. Molecules smaller than 3nm such as ions or gases cross the

capillary wall through space between cells in a process known as paracellular

transport [92].

The endocrine systems secrete specific hormones into the circulatory sys-

tem and are carried towards distant target organs. Typically, cytokines are

propagated by diffusion within the blood fenestrated capillaries. In paracrine

function, hormones diffuse through the interstitial spaces to nearby target tis-

sues. Additionally, hormones can bind to the specific receptor. Thus it plays

a role as a selective filter[93, 27].

The biological scenario is in the endocrine systems, which consists of

vesicle emission, transmission and reception by target cells. The endocrine

cells release vesicles, which contain the hormones, from the release-ready

pool (RRP) at the secretion site via exocytosis. Vesicles are emitted into the

blood fluid medium by passing across the capillary wall. The information

molecules represented by hormones are kept inside vesicles and flow through

the blood capillary and reaches the reception. Vesicles can enter the target

cells via receptor-mediated endocytosis first by binding to the cell-surface

receptors, then internalising into the cell.

An example of this process is the endocrine cell of the adrenal medulla

(the innermost part of the adrenal gland), which releases adrenaline into the

blood [94]. The adrenal medullary hormones are kept in vesicles. Sympathet-

ic nerve fiber impulses stimulate the release of adrenal medullary hormones.

Hormonal effects can last up to ten times longer than those of neurotrans-

mitters [94].

Figure 3.1 illustrates the basic mapping of the blood capillary communi-

cation system.
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Figure 3.1: basic mapping of blood capillary-based channel model

According to [21], the encoding of the hormones in the blood capillary

system is analogous to the pheromones emission. Instantaneous emission of

pheromones is usual in nature when alarm situations occur. In this kind of

emission, the totality of a fixed amount of pheromones is released into the

medium in a minimal time, abruptly increasing the molecular concentration

around the transmitter.

Two primary methods encode the information molecules transported in

the fluid medium. Firstly, the molecular signal can be embedded to the

particle concentration, modulating its amplitude or frequency according to

the information to be transmitted. According to [6], 30, 000 molecules should

be released to recover a signal peak consisting of five components correctly.

Secondly, the utilisation of different particles could present short messages,

assigning each particle type to each possible packet that can be transmitted.
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This technique would be more efficient in a system with limited information

to be transmitted.

Hormones have different types. They can be divided into two groups ac-

cording to their ability to diffuse through the cell membrane of the receiver

or receptor. Lipid-soluble hormones, steroids, can diffuse through the mem-

brane and directly deliver the message. On the other hand, lipid-insoluble

hormones cannot penetrate through the cell membrane by themselves and

need extra messengers to translate the message to the cytoplasm of the target

cell. Due to its outweighing number [3], we consider lipid-soluble hormones

in the blood capillary channel model. Lipid-soluble hormones can diffuse

through the cell membrane and target the receptors in the cytoplasm. Lipid-

soluble hormones can easily gain access into vesicles by the endocytosis in

the membrane.

The instantaneous emission of a fixed amount of molecules (hormones)

is the most suitable coding mechanism for blood capillary. What we are

interested in is the number of hormones released per unit time rather than

variations in the types of emitted hormones.

In this chapter, we adopt On-Off keying (OOK), a simple coding mecha-

nism, as the encoding mechanism. Namely, if there is an amount of hormones

being released, it represents 1; in the converse situation, it represents 0.
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Figure 3.2: Logical flowchart to model vesicle transmission in blood capillary.

Figure 3.2 shows the flowchart of logical thinking to the model of vesicle

transmission system in a blood capillary. Three basic processes -: vesicle

release, vesicle propagation and vesicle reception will be investigated in the

following section.

3.1.1 Vesicle Release Process

In this blood capillary model, vesicles are the transmission information con-

tainers or information interface. In the release model, the portability to

release vesicle is closely related to the process. In a blood capillary, vesicles

are docked at the membrane waiting to release their content upon the ar-

rival of a trigger signal. Others are stored in the membrane pool, just above

the docked vesicles, being more distant to the cell membrane. Vesicles in

the blood capillary can be grouped into three sub-pools according to their
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relative motilities: the release-ready pool (RRP), the recycling pool and the

reserve pool [95, 96, 97].

The reserve pool makes up(approximately 80% to 90%) of the total pool,

with the recycling pool being significantly smaller(approximately 10% to

15%).The release ready pool (RRP) consists of a few vesicles(approximately

≈ 1%) that are docked and primed for release [95]. Three kinetic compo-

nents of release process (indicating release of three vesicle pools) coexist in

the synaptic terminal on depolarization of goldfish bipolar cells. The vesicles

in the release-ready pool are available to release, while vesicles in the reserve

pool and recycling pool are unavailable to release. The number of vesicles in

the release-ready pool maintains balance of the vesicles in the reserve pool

refills into the release-ready pool by an endocytosis process [98, 95]. The

reserve pool refills the available pool with a constant time τD [95]. Figure

3.3 shows the classic three-pool model.

Figure 3.3: Three pools model of vesicle release

The number of vesicles in RRP, the recycling pool and the reserve pool,

are doted as N , NA − NR, and NR, respectively. NA is the total vesicle

size of the unavailable pool including the recycling pool and reserve pool.
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The recycling pool is close to the cell membrane and tends to be cycled at

moderate stimulation so that the rate of vesicle release is the same as the rate

of vesicle formation. Once the RRP and the recycling pool are exhausted,

the reserve pool is mobilised [97].

The vesicle release probability is the same as the release probability of the

available pool, RRP, namely p(N). Releasing a single vesicle upon arrival the

signal is described by a Poisson process with firing rate λ(t) [99]. According

to [99], it indicates that the fusion rate at which the vesicles are expelled

through exocytosis. The fusion rate for a single vesicle is shown below:

αvk =

∫ ∆tk

0

λ(t)dt (3.1)

The integration is evaluated over the duration of kth time window. In

Eq.3.1, subscript k denotes the window index, and the integration is from

the beginning of the release process then taken as the time origin until the

end of kth time window of the stimulus denoted as ∆tk. We assume that

the time window duration is the same ∆t1 = ∆t2 = · · · = ∆tk. In the

calculation of αvk, we divide ∆tk into windows of equal durations. According

to [100], ∆tk is a linear function. We can easily find that αvk is constant, set

γp = αvk =
∫ ∆tk

0
λ(t)dt The single vesicle release probability is:

pvk = 1− exp (−γp) (3.2)

Therefore the false probability of a single vesicle is1−pvk = 1−exp (−γp).
Nk is the number of vesicles in RRP at the kth time window. The probability

of none vesicles released at kth time window is exp(−γp)Nk = exp(−γpNk).

Therefore, the vesicle release probability at the kth time window means at

least one vesicle is released, given by:

pr(Nk) = 1− exp(−γpNk) (3.3)
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The vesicle release probability is determined by γp and Nk. Similarly, in

the next window k + 1th, the release probability shows as below :

pr(Nk+1) = 1− exp(−γpNk+1) (3.4)

Importantly, the vesicles in the reserve pool will refill into the RRP within

a constant time τD [97]. According to [95], the refill time of the vesicle pools

is constant with τD = 14ms in blood capillary at the temperature 300K, so

that the number of the vesicles in the next window Nk+1, can be expressed

as below:

Nk+1 = Nk −Wk +N rf
k+1 = Nk − pr (Nk)Nk +NRP

rf
k+1 (3.5)

In Eq.3.5, Wk is the average number of vesicles released on kth time window

and N rf
k+1 is the number of vesicles in the release ready pool refilled by the

reserve pool during the time between two consecutive windows.

P rf
k+1 = 1− exp(−∆tk

τD
) (3.6)

The average probability of all the windows is set to the vesicle release prob-

ability:

Prelease = Pvk =
1

Nk

Nk∑
j=1

pvjk (3.7)

3.1.2 Vesicle Propagation Process

In general, the diffusion channel model is fundamental to MC. In blood cap-

illary system, vesicles, act as transmission containers, capture and store the

hormones. In this research, the information carriers are hormones. The

numbers of hormones can be grouped and contained in vesicles. Small par-

ticles and vesicles follow different operational procedures, and thus need to

be represented mathematically differently. As mentioned in the survey, the
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ligand-receptor model extensively exists in the biological cell. Ligands bind

to the receptor sites on the cell’s surface, detect and capture the receiving

vesicles in the environment of the reception area. Vesicles with the hormones

are internalised into endocrine cells via endocytosis. Figure 3.4 illustrates

the diffusion channel that vesicles are propagated through the blood capil-

lary and received by the ligand-receptor.

Figure 3.4: The illustration of diffusion model with vesicles

The diffusion is generally to be described by Fick’s law, as shown by the

Fick’s First law J = −D∇U(x, t) (Eq.2.1). It postulates that the flux goes

from regions of high low concentration, with a magnitude that is proportion-

al to the concentration gradient (spatial derivative). Fick’s second law of

diffusion predicts how molecular concentration changes with time (Eq.2.2).

Here U(x, t) is the concentration of molecules at point x concerning the

source location and time t. ∇2U(x, t)is the sum of the n-dimension spatial

second derivatives of U(x, t), D is the diffusion coefficient of the medium,

r(x, t) is the molecule production rate at the transmitters.

When a large number of molecules are contained in vesicles, the concen-

tration of vesicles becomes much less than that of particles. Furthermore,

as the size of vesicles is larger than that of a particle the effect of collision

cannot be ignored. However, Fick’s law only focuses on the concentration
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variation of information practices, which reflects the macroscopic aspect of

the diffusion process, while ignoring some microscopic perspectives of the d-

iffusion process such as object movement and collision. As such, a new model

that is able to describe both molecules concentration and movement of col-

lision from small particles shall be investigated. In this thesis, we propose

to utilise the Langevin equation to describe this complex diffusion process in

blood capillary. The Langevin equation is shown below:

m
d2x

dt2
= −γ dx

dt
+ f (t) (3.8)

In Langevin equation here,x is the position of the particle and m denotes

the particle’s mass. The force acting on the particle is written as a sum of

a viscous force proportional to the particle’s velocity v(t) = dx
dt

, and a noise

term f(t) representing drift with the effect of the particles collisions with the

molecules of the fluid. The force f(t) has a Gaussian probability distribution

with correlation function, as below:

〈fi(t1)fj(t2)〉 = 2γkBTδi,jδ(t1 − t2) (3.9)

Where kB is Boltzmanns constant and T is the temperature, and the Dirac

delta function δ(t) form of the correlations in time means that the force at a

time t is assumed to be completely uncorrelated with it at any other time.

The force f(t) determines the drift velocity, according to [101, 56], and

the noise term of Eq.3.9 has Gaussian distribution. Thus, it means the drift

force variation with time matches the Gaussian distribution.

3.1.2.1 Transfer Function in Frequency Domain

To understand the strength of a signal distributed in the frequency domain,

we have to go back to the spectral density of the transmitted signal. As it is

not readily available in the literature, it is necessary to deduct the spectral

density regarding vesicle velocity, or the transfer function of Langevin-based
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diffusion process.

In the derivation, the Fourier transfer of the Langevin equation regarding

velocity is the first step.

Firstly, we transfer the Langevin equation to a first order equation, and

v(t) = dx
dt

represents the velocity of vesicles, so we rewrite Eq.3.8 as below:

m
dv(t)

dt
+ γv(t) = f(t) (3.10)

By applying the Fourier transform to Eq.3.10, we have an expression as

below:

(jω) ·mv · (jω) + γv (jω) = F (jω)

v(jω) =
F (jω)

jω ·m+ γ
(3.11)

The relationship of the convolution of G(t) and f(t) in the fourier transfer is

shown below:

v (t) = Gv (t) ∗ f (t)
fourier⇒ v (jω) = Gv(jω) · F (jω)

Gv (jω) =
1

jω ·m+ γ
(3.12)

vT (f), the spectral density of velocity at time T , Gv(f), can be calculated

by the Wiener-Khinchin theorem as below:

φ (ω) =

∣∣∣∣ 1√
2π

∞
∫
−∞

f(t)e−iωtdt

∣∣∣∣ =
F (ω)F ∗ (ω)

2π
(3.13)

while Gvv(f) and Kvv(t) are a Fourier transform pair, Gvv (f)⇔ Kvv (t).

F1(jω) · F ∗2 (jω) = F (R12(τ)) (3.14)
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vT (f) =
FT (f)

2πjm+ γ
=
FT (f) · (−2πjm+ γ)

(2πjm)2 + γ2
(3.15)

v∗T (f) =
F ∗T (f)

2πjm+ γ
=
F ∗T (f) · (2πjm+ γ)

(2πjm)2 + γ2
(3.16)

Gvv(f) = vTf · v∗Tf =
FT (f) · F ∗T (f)

(2πfm)2 + γ2
=

2kBTγ

(2πfm)2 + γ2
(3.17)

So we rewrite as the Gvv(ω), spectrum density of the random variable re-

garding the velocity, has the relationship to the Langevin diffusion equation:

Gvv(ω) =
2kBTγ

(ωm)2 + γ2
(3.18)

The vesicle transmission in the blood capillary follows Langevin equation

Eq.3.10, and Eq.3.18 is regarded as the transfer function of transmission

process.

From Eq.3.18 we can also deduce Gxx(ω), the spectrum density of the ran-

dom variable regarding the displacement x, which is proportional to |x(ω)|2,

and it is given by,

Gxx(ω) =
2kBTγ

m2

1

(ω)4 + γ2ω2
(3.19)

Thus, we find the relationship between the spectral density regarding velocity

Gvv(ω) and spectral density regarding displacement Gxx(ω) from Eq.3.18 and

Eq.3.19,

Gvv(ω) = ω2Gxx(ω) (3.20)

3.1.2.2 Vesicle Velocity and Displacement

The dissipation coefficient γ is given by Stokes Law:

γ = 6πηa (3.21)
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Where a is the radius of the vesicle, m is practical mass of the vesicle practi-

cal, which according to [98] approximately 10−14 ∼ 10−15kg, and a is approx-

imately 10nm ∼ 60nm. Also, according to [102], η, the viscosity of blood

capillary, varies with temperature.

The random force f(t) is a stochastic variable giving the effect of back-

ground noise due to the fluid on the Brownian particle. Due to this, the

velocity of the Brownian particle is predicted to decay to zero at long times.

Since we have extracted the average force −γv(t) in the Langevin equa-

tion Eq.3.10 the average of the fluctuating force must by definition be zero.

g = 2kBTγ is a measure of the strength of the fluctuation force. In the

conventional view of the fluctuation force, it is supposed to come from oc-

casional impacts of the Brownian particle with molecules of the surrounding

medium. The force during an impact is supposed to vary extremely rapidly

over the time of any observation. The effect of the fluctuating force can be

summarized by giving its first and second moments. We denote τB as below:

τB =
m

γ
(3.22)

We can obtain an explicit formal solution of Langevin equation Eq. 3.10 in

time domain regarding velocity given by [103, 82],

v(t) = e−t/τBv(0) +
1

m

∫ t

0

e−(t−s)F (s)ds (3.23)

and the autocorrelation function of velocity is given by,

Cvv(t) =
kBT

m
e
− t
τB (3.24)

From Eq.3.23 we can also get an expression for the displacement of the par-

ticle.

x(t) = x0 + v0τB(1− e−t/τB) +
τB
m

∫ t

0

(1− e−(t−s)/τB)ds (3.25)
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for the random force autocorrelation function regarding the displacement,

we get, for any t:

Cxx(t) =
〈
[x(t)− x(0)]2

〉
= 2Dt (3.26)

3.1.3 Vesicle Reception Process

Vesicles can enter the cells via receptor-mediated endocytosis by first binding

to the cell-surface receptors. Specific binding of the vesicle to the cell surface

occurs when ligand-receptor interactions form between the vesicle and the

cell surface. However, these interactions are not permanent and ligands can

unbind from their receptors. This binding and unbinding keep a dynamic

balance. Upon associating to a free binding site, vesicles can be internalised

into the cell via endocytosis [104, 8].

Figure 3.5: Illustration of the kinetic model for vesicle reception [8].
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Kinetic vesicle reception model in this chapter is illustrated in Figure 3.5.

Assuming that vesicle association to the cell surface is independent of other

ongoing processes, the event can be described as below:

N +Rs

ka⇀↽
kd
Ns (3.27)

While the internalization process can be described as below:

Ns
kint−−→ Nint (3.28)

where N is the number of free vesicle reaching the reception area, Rs is

the number of free binding sites, Ns is the number of vesicles bound to the

cell surface, ka(M
−1 · s−1) is the association rate constant for a free vesicle

binding to a free binding site, kd(s
−1) is the dissociation rate constant for a

vesicle dissociating from its binding site and kint(s
−1) is the rate constant for

a binding vesicle to be internalised. The balance on the number of bound

vesicles yields the following expression, given by [8]:

dNs

dt
= kaNRs − (kd + kint)Ns (3.29)

By solving the linear differential equation, we get the following equation,

where K is an arbitrary constant:

Ns = Ke−(kd+kint)t +
kaNRs

kd + kint

(3.30)

Regardless of the physical nature of the binding site, this mathematical

model assumes that the number of binding sites remains constant over time,

as the cell is constantly regenerating and internalizing its membrane. Here

it assumes that the constant K is equal to 0. Then the number of vesicles
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bound to the receiver cell surface denoted by Ns, which can be given as:

Ns =
kaRs

kd + kint

N (3.31)

Eq.3.29 expresses the ligand-based reception process as a function of time

t. By applying the Fourier transfer to Eq.3.29, the expression as a function

of frequency ω is as follows:

jωNs(ω) = kaN(ω) ∗Rs(ω)− (kd + kint)Ns(ω) (3.32)

where ∗ is the convolution operator. As explained above, we assume a con-

stant number of free binding sites Rs on the surface to the receiver cell. As

a consequence, the expression of the transfer function of the ligand-receptor

process hR(f) is as follows:

hR(f) =
ka

2πf + kd + kint

(3.33)

where ka, kd and kint are the ligand-receptor binding and release and inter-

nalise rates, respectively. The steady state approximations of the Ligand-

Receptor Binding process to the constant values of reception probability, re-

sult from computing the transfer functions hR(f) for a value of the frequency

f = 0, expressed as:

Preceive =
ka

kd + kint

(3.34)

Which correspond to the solution of Eq.3.29, when we set the first derivative
dRs(t)
d(t)

= 0 in the number of free binding sites Rs to 0.

3.2 Channel Capacity in Frequency Domain

The capacity of a communication system in bits per second is defined as the

maximum rate of transmission between transmitter and receiver. The general
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expression Eq.3.35 from Shannon [105] defines that channel capacity is equal

to the maximum mutual information I(X;Y ) between Input signal X and

Output signal Y with respect to the probability density function fX(x) of all

values of the transmitted signal.

C = max{
fX(x)

I (X;Y ) (3.35)

The transmission process which is a cascade of three independent process-

es, vesicle release, vesicle propagation, described in the Langevin equation

(see Figure 3.3), and vesicle reception. These processes follow the order input

signal to output signal X → Y . This is justified by the properties that are

conditionally independent given, which is expressed as follows:

I(X;Y ) = H (X)−H (X|Y ) = H (Y )− (Y |X) (3.36)

The closed-form expression for the mutual information I(X;Y ) in bits per

second of the blood capillary system is computed by applying the Eq.3.36 .

where H(X) is the marginal entropy per second of the transmitted signal

and H(X|Y ) is the conditional entropy per second of the input signal X

given by output signal Y , which is the consequence of the palpation process

from the transmitter to receiver.

The entropy H(X) per second of the transmitted signal is computed as

the entropy measured in bits per symbol, multiplied by twice the bandwidth

W , which corresponds here to the rate of the symbol transmission in symbols

per second.

The transmitted signal, denoted by X, is here defined as the number of

vesicles released into blood capillary as a function of the time t:

X = NX(t), t > 0 (3.37)

Given the communication system considered to release vesicles, the aver-
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age power necessary for signal transmission corresponds to the energy neces-

sary to emit the average number of vesicles E(NX) per time sample, divided

by the duration of a time sample. In thermodynamics, this energy is defined

as enthalpy.

According to[106], the enthalpy H is the energy necessary to emit Nx

vesicles in the physical system and to heat these particles up to a temperature

T when the system has the pressure P and the volume V , with the following

expression:

H = PV +
3

2
KbTNX (3.38)

In [61, 22], they defines the average thermodynamic power PH the en-

thalpy variation ∆H in a time sample divided by the time sample duration

1/2W .

PH =
∆H

1/2W
=

3

2
KbTE(NX)2W (3.39)

We follow this definition in [61, 22], a constraint on the average ther-

modynamic power PH spent by the transmitter corresponds to a constraint

in the average number of emitted vesicles E(NX) according to the following

expression:

E(NX) =
P̄HNx

3WkBT
(3.40)

which is the continuous released numbers of vesicles which contains hormones

information inside represents the input signal. The average number of vesicles

at each time window is in the expression of NX = prelease · N . Probability

mass function is donated by P (NX).

The entropy H(X) of input signal X is defined by the entropy of power of

emitted vesicles H(XN)in bits per sample multiplied by twice the bandwidth

in samples per second.

H (X) = 2WH(XN) (3.41)

The entropy of the number of emitted vesicles H(XN) per time sample

with relationship of the average number, or expected value, is given by [107]
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:

H(XN) = 1 + log2(E(NX)) (3.42)

As proven in [105], we can express the conditional entropy H(X|Y ) of

the transmitted signal given received signal as the entropy of the ensemble

per degree of freedom in bits per sample multiplied by twice the bandwidth

in samples per second. The entropy of the ensemble per degree of freedom

corresponds to the entropy of a sample of the time-continuous signal.

H (X|Y ) = − 1

W

w∫
−w

log2|Preceive ·Gvv (f)|2df (3.43)

As we proved before, Gvv(f) Eq.3.17 is the spectral density of Input

signal propagation applying Langevin equationwhich is regarded as transfer

function Fourier transform of propagation process. Preceive Eq.3.34 is the

steady state approximations of the ligand binding reception probability.

We deduct the close-form solution of H(X|Y ), by applying Eq.3.43 and

Eq.3.17, as follows:

H(X|Y ) = −2γkT

ln 2
[ln((2πfm)2 + γ2) +

γ

πm
tan−1(

2πfm

γ
)− 2γ] (3.44)

Channel capacity is calculated by applying Eq.3.42 and Eq.3.44 into E-

q.3.35, shown as follows:

C = max
f
{2W (1 + log2(

P̄H · prelease ·N
3WkBT

)

− {−2γkT

ln 2
[ln((2πfm)2 + γ2) +

γ

πm
tan−1(

2πfm

γ
)− 2γ]} (3.45)
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3.3 Simulation Results and Parameters Set-

ting

In this section, we present the numerical analysis on the capacity of vesicle

transmission in blood capillary channel in Frequency domain. This analysis

aims to determine the molecular channel characteristics involving vesicle re-

leasing, propagating, receiving processes. PSD of transmission signals show

channel characteristics in frequency domain. We also aim to observe the

changes in these characteristics according to the MC physical and biological

parameters in blood capillary such as Temperature T , the viscosity η , and

the numbers of vesicles in RRP N . We perform the numerical analysis using

Matlab.

3.3.1 Parameters Setting

The following table shows the parameters used in the simulation:

parameters value unit

a 2.0× 10−9 m

T 310 K

τD 14× 10−3 s

m 6.4× 10−15 kg

kB 1.38× 10−23 J/K

η 3 ∼ 4× 10−3 Pa.s(kg ·m−1s−1)

ka 0.25

kd 0.20

kint 0.20

PH 1 pW = 1× 10−12W

Table 3.1: Parameters in diffusion-based blood capillary model for simulation

Viscosity varies with different temperatures, as shown in the Table 3.2:
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η viscosity of blood plasma (Pa.s) Temperature (K)

5.2× 10−3 295

4.6× 10−3 305

4.0× 10−3 310

3.0× 10−3 315

Table 3.2: Viscosity varies with different temperatures

3.3.2 Analysis of Simulation Results

Figure 3.6: The release probability with different number of vesicles in RRP

In Figure 3.6, we can easily observe that the more vesicles in RRP, the release

probability becomes larger. However, the maximum number of vesicles in

63



RPP is 5 [97]. The maximum average release probability is 0.5903 for that

condition; there are 5 vesicles available in RRP. More important, at about 25

Kth windows, all the release probabilities are convergent to constant values.

It means at that time; the refill process is finished. The number of vesicles

in RRP keeps balance.

Figure 3.7: Spectral density regarding velocity Gvv(f) varies with frequency

in different viscosity coefficients η .

Figure 3.7 shows the spectral density varies with frequency in different

viscosity coefficients. The spectral density of transmitted signal X, Gvv(f),

is regarded as the transfer function of the diffusion process. The stochastic

force to the vesicles is completely determined by the dissipation coefficient γ

and the temperature T , again a manifestation of the common origin of dissi-
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pative and stochastic forces in smaller molecules collisions. The dissipation

coefficient Eq.3.38 is proportional to the viscosity of blood capillary fluid. At

the same temperature, as the viscosity increases, the spectral density distri-

bution tends to concentrate at the y axis of f = 0 and reaches a higher peak

value.

Figure 3.8: Spectral density regarding velocity Gvv(f) varies with frequency

in different temperatures T .

Figure 3.8 shows the spectral density varying with frequency at different

temperatures. As we know from table 3.2, the viscosity of blood plasma

decreases as the temperature increases from 295K to 315K. In other words,

in a higher temperature environment, particles collisions are more intense

than in the lower temperature environment. At higher temperatures, spectral
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density declines more quickly, as the frequency increases.

Figure 3.9: The illustration of the relationship between autocorrelation

function regarding velocity and time.

Figure 3.9 illustrates the autocorrelation function regarding velocity varies

with time, setting the initial velocity v(0) = 0. We are interested here in the

dynamics of the velocity fluctuations of a particle in Langevin-based diffusion.

During a long time, velocity fluctuations gradually decline and tend to zero,

while the temperature T determines the rate of decline. As a consequence,

in a lower temperature, the velocity declines more rapidly.
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Figure 3.10: The conditional entropy H(X|Y ) varies with the frequency in

different temperatures.

Figure 3.10 shows the conditional entropy H(X|Y ) varying with the fre-

quency in different temperatures. As the frequency increases, the bandwidth

of this communication system increases, and conditional entropy H(X|Y )

increase as well. Furthermore, the conditional entropy H(X|Y ) at a higher

temperature, such as T = 310K, is lower than that at T = 305K. However,

conditional entropy H(X|Y ) increases slightly more rapidly at a lower tem-

perature, and two curves (T = 305K and T = 310K) intersect at the point

with a frequency of 80HZ.
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Figure 3.11: Channel capacity varies with bandwidth for different numbers

of vesicles in RRP.

Figure 3.11 shows that channel capacity of blood capillary system depen-

dent on the bandwidth W ranging from 10Hz to 50Hz, and the number of

vesicles N in RRP, setting the average thermodynamic power PH = 1pW

and the temperature T = 310K. We can observe that the channel capacity

has a positive correlation with the number of vesicles N in RRP, furthermore,

the curves gradually become flat as bandwidth increases. According to E-

q.3.3 the vesicle release probability is proportional to the number of vesicles

in RRP, while the average release probability determines the input entropy

E(X). According to [95],the refill time of the vesicle pools is constant with

τD = 14ms in the temperature of 310K. It means at that time; the refill

process is finished, and the number of vesicles in RRP keeps balance. We
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must note that the up-bound limit value of bandwidth in blood capillary is

determined by the transmission time. Compared with traditional commu-

nication, the frequency of molecular communication is extremely low. The

main reason is the transmission time is extremely long by way of diffusion.

Figure 3.12: Channel capacity varies with bandwidth (Hz) in different tem-

peratures.

Figure 3.12 shows that channel capacity dependent on the bandwidth W

ranging from 30Hz to 50Hz, bandwidth and the temperature T , setting the

average thermodynamic power PH = 1pW and number of vesicles is N = 5

in RRP. Different curves refer to different system temperature T values, from

295K to 310K. From Eq.3.41, we know that entropy of input H(X) is pro-

portional to the bandwidth W . As the bandwidth increase, entropy of input

69



increases and the channel capacity increases as well. Furthermore, channel

capacity value is different for each temperature T value and it decreases as

the temperature increases. However, the difference between different temper-

ature T is tiny compared the varies of bandwidth, meanwhile, the difference

of channel capacity C between two different temperature T increases as the

bandwidth increases. Because Input entropy H(X) of the channel capaci-

ty C in Eq.3.45 is greatly determined the bandwidth W . As the frequency

of this communication system increases, the transmission time between the

transmitter and the receiver decreases, so that we can not reach a higher

bandwidth in blood capillary-based MC via diffusion.

3.4 Chapter Summary

This objective of this chapter is to provide a closed-form of channel capacity

in blood capillary-based channel. Firstly, differing from the previous litera-

ture, this paper uses Langevin equation in a microscopic aspect instead of

Fick’s law in a macroscopic perspective to describe the diffusion of vesicles

in blood capillary channel. Secondly, the closed form of channel capacity ob-

tained here involves three processes; vesicle release, vesicle diffusion in blood

capillary, and vesicle reception by ligand-receptors. Thirdly, we analyse the

spectrum density regarding the velocity of vesicle in the frequency domain;

then we analyse the velocity fluctuations regarding time and displacemen-

t correlation with time in the time domain. Finally, the numerical results

show the relationship between channel capacity, temperature and bandwidth.

From the simulation results, we can observe that pure diffusion is not suit-

able for a blood capillary model and figures in the frequency domain cannot

show the transmission time, which is important to blood capillary-based MC

thus Chapter 4 presents a diffusion with blood flow drift blood vessel model

in the time domain.
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Chapter 4

Channel Modelling of Blood

Vessels with Blood Flow Drift

in Time Domain

4.1 Biological Scenario for Blood Vessels

The biological scenario within the blood vessels consists of emission of infor-

mation molecules from platelets, molecules propagation in the flow of blood

vessels and receiving by endocrine cells. Soluble CD40 ligand (sCD40L) is

contained in platelet granules, and thus its presence in the bloodstream is

a marker of platelet activation [108]. Platelets are small anucleate cell frag-

ments that circulate in blood playing a crucial role in managing vascular

integrity and regulating hemostasis [109]. By interacting with CD40, which

is found on endothelial and smooth muscle cells, sCD40L may trigger the

release of inflammatory mediators [108]. The communication process from

platelets and the endocrine cell plays a fundamental role during initial stages

of atherogenesis [72, 73]. For this reason, the principal interest in this chapter

is to establish a communication system through the blood vessel, which con-

tributes to the understanding of the signalling process between the platelets
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and the endothelium.

The components of the communication system within the blood vessels

are platelets, endocrine cells and transmission information represented by cy-

tokines. The transmitters, which are platelets, secrete and release cytokines,

which are small cell signalling protein molecules, while the receivers, which

are endocrine cells, are distributed in the blood vessels. These cytokines are

propagated to the endocrine cells along the bloodstream with blood flow.

There are many types of cytokines, and each type has a matching kind of

receptor on the cell surface. In [108, 73],the soluble CD40 ligand (sCD40L)

is regarded as carriers with matching cytokines CD40 on the surface of en-

docrine cells. In this chapter, we still follow this specific biological phe-

nomenon. Each endothelial cell has a number of CD40 receptors, and this

number changes over time [73]. Decoding process in endothelial cells, which

is known to express vascular cell adhesion molecules-1 (VCAM-1) produce

the response to cytokines stimuli. The VCAM-1 is a member of the im-

munoglobulin superfamily and is a protein that functions as a cell adhesion

molecule; that is, it facilitates binding of the cell with other cells or with

other cellular material. For this reason, the number of VCAM-1 expressed

on the surface of the cell is an important indicator, since it has a fundamental

role in the development of atherothrombotic diseases.

Figure 4.1 illustrates the signal process from platelet to endocrine cell and

mapping to relevant communication processes. This chapter lays more em-

phasis on the propagation process in blood vessels rather than the emission

and decoding process. A generalised Langevin equation with colour-noise ter-

m models the emotion of constant blood flow drift and simultaneous diffusion.

Moreover, the performance of delay and channel capacity in the simulation

of this model will help to deeply understand this signalling process.
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Figure 4.1: Signalling process and its relevant mapping of communication

processes

4.2 Diffusion with Blood Flow Drift Model in

Blood Vessels

In our analysis in the literature review, we assume that blood vessel is at

a significant distance from the heart. In this assumption, we can model

the bloodstream without turbulence. Consequently, the macroscopic flow

properties, such as velocity and pressure in any site, can be assumed to be
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constant over time and the resulting blood motion is laminar. In laminar flow

(low Reynolds number), viscous forces are dominant, and the fluid motion is

smooth and constant. In turbulent flow (high Reynolds number), the inertial

forces dominate and tend to produce flow fluctuations. Reynolds number Re

in a tubular structure is defined as [21]:

Re =
ρvr

η
(4.1)

Where ρ is the density of the fluid (kgm−3), v is the velocity of the fluid

(m/s), r is the radius of the vessels and η is the dynamic viscosity of the

fluid (Pa · s), or (kg/(ms)).

As a result of this assumption, the longitudinal shape of the vessel can

be viewed as a set of concentric cylinders. The space between concentric

cylinders is a lamina, and a laminar flow consists of fluid particles moving in

longitudinal straight lines of each lamina [110].

The velocity profile of such laminar flow was shown to have a parabolic

shape, modelled by the well-known Hagen-Poiseuille equation, derived from

the Navier-Stokes equations [110, 111]:

vp(r) =
1

4η

∆p

L
(R2 − r2) (4.2)

where r is the distance from the longitudinal axis of the vessel, vp(r) is the

velocity profile with its position, R is the radius of the vessel, η is the fluid

viscosity and ∆p is the pressure differential along a vessel section of length

L. Table 4.1 presents some known parameters for a blood vessel, used in our

simulation.

We can use Eq.4.2 to compute the rate at which volume flows through

the vessel. The technical term for volume flow rate is the volume flux per

unit time through any cross section. It is given by the integral as below
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V (a) =

a∫
0

2πrvp(r)dr (4.3)

V (a) =
−πpx

2η

∫ a

0

r(a2 − r2)dr =
−π∆pa4

8ηL
(4.4)

Figure 4.2: Illustration of blood flow in blood vessels

Figure 4.2 illustrates laminar flow in narrow blood vessel model. In lami-

nar flow, the motion of the particles of the fluid is very orderly with particles

close to a solid surface moving in straight lines parallel to that surface [110].

In consideration of large vessels, observations reveal that the velocity

profile should be adopted by introducing a zero radial velocity gradient, as

included in the Casson profile, non-Newtonian fluid [68, 112], while in straight

narrow- blood behaves as a Newtonian fluid, especially in blood capillaries.

This model generalises the motion model of particles in a fluid environment

of the narrow and small blood vessels or blood capillaries.

The comparative sizes between the propagating molecule Sm and abso-

lute the molecules of the fluid Sfluid affect the diffusion coefficient D [113].

Albert Einstein obtained the relationship between the macroscopic diffusion

coefficient D and atomic properties of matter [53].For a given particle and

fluid environment, D is given by

D =
kBT

6πηRa

, ifSm � Sfluid
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D =
kBT

4πηRa

, ifSm ≈ Sfluid (4.5)

Where kB is the Boltzmann’s constant, T is the temperature, η is the

dynamic viscosity of the fluid, and Ra is the hydraulic radius (also known

as Stokes radius) of the information molecules. In the fluid of blood vessel,

information molecules are Cd40 proteins, the size of which(about 2nm) is

much larger than the molecules of the blood fluid (about 0.4nm) [73]. In this

model of blood vessel the diffusion coefficient is determined as D = kBT
6πηR

.

The drag force of flow Fd is modelled by the Stokes law and can be applied

to particles having a small Reynolds number, which matches the condition

of laminar flow in a continuous viscous fluid;

Fd = 6πηavp (4.6)

Where η is the dynamic viscosity of the fluid and vp is the relative velocity

of the particle concerning the flow, given by Eq.4.2.

If we ignore the blood flow, that means the drag force of blood flow

Fd = 0. This is exactly the same model as that used in Chapter 3 and

particles are undergoing Brownian motion or free diffusion. We rewrite the

basic one-dimensional Langevin equation Eq.3.8 for Brownian motion below:

m
d2x

dt2
+ γ

dx

dt
= f(t) (4.7)

In the Langevin equation here, x is the position of the particle, m denotes

the mass of the particle ,and the friction or dissipation coefficient γ is given

by Stokes Law γ = 6πηa. The diffusion force acting on the particle is writ-

ten as a sum of a viscous force proportional to the particle’s velocity. The

force of diffusion f(t) has a Gaussian probability distribution with correlation

function as shown below:

〈fi (t1) fj (t2)〉 = 2γkBTδi,j(t1 − t2) = 12πηakBTδi,j(t1 − t2) (4.8)
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〈f (t)〉 = 0 (4.9)

where kB is Boltzmann’s constant and T is the temperature, δ function means

the correlations of the force that over a period of time t.

The force f(t) determines the diffusion process, the noise term is white

Gaussian noise. The average 〈f (t)〉 is an average with respect to the distri-

bution of realisations of stochastic variable f (t).

A generalised Langevin equation is used to deal with drift and diffusion.

The generalised Langevin equation in one stochastic variable ξ has the form

[82]:
∂ξ(t)

∂t
= h[ξ(t), t] + g[ξ(t), t]F (t) (4.10)

Stochastic force consists of drag force of blood flow drift and diffusion. The

drag force of blood flow is expressed in Eq.4.6 and stochastic variable force

in blood vessels model is rewritten as shown below:

∂fd(t)

∂t
= Fd(t) + f(t) = γvp+ 2γkBTδij(t1 − t2) (4.11)

A generalised Langevin equation for the blood vessel model is rewritten as

shown below:

m
d2x

dt2
+ γ

dx

dt
= γvp+ 2γkBTδij(t1 − t2) (4.12)

4.3 Stochastic Dynamical Theory of Coloured

Noise

The stochastic dynamics leading to the Maxwell-Boltzmann distribution could

be clearly explained by the variable Langevin equations [114]. Due to Brow-

nian motion, a particle moves in a potential field, under the influence of a

frictional force and in a white noise term [82]. The correlation strength of

the noise, usually referred to as the diffusion coefficient, is a constant, as-

sociated with a friction coefficient γ by the fluctuation-dissipation theorem.
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In this thesis, it is shown that this straightforward and elegant landscape

would reappear when we are accounting for the microscopic dynamic origins

to give rise to types of power-law distributions. We introduce the additive

noise with inhomogeneous correlation strength to the Langevin equation. An

energy-dependent relationship of diffusion to friction is determined by solv-

ing its corresponding stationary Fokker-Planck equation. Hence we derive

a generalised fluctuation-dissipation theorem, one condition under which we

could understand the microscopic dynamic origins giving rise to a type of

power-law distributions.

The most general Langevin equation in stochastic variable ξ has the form

as in Eq.4.10.

ξ̇(t) = h[ξ(t), t] + g[ξ(t), t]F (t) (4.10)

Comparing Eq.4.10 and Eq.4.11, we can find that g[ξ(t), t] = 1. If g[ξ(t), t]

is constant, and Eq.4.10 is called a Langevin equation with an additive noise

term, while if g[ξ(t), t] depends on ξ, Eq.4.10 is called a Langevin equation

with a multiplicative noise term. We rewrite the langevin equation in the

integral form:

ξ(t+ ∆t)− y =

t+∆t∫
t

{h[ξ(t′), t′] + g[ξ(t′), t′]F (t′)}dt′ (4.13)

Now, expanding h and g as a Taylor series at the site ξ = y and noting that

the increment during the interval (t, t′) is ξ(t′)− y, we obtain:

h[ξ(t′), t′] = h(y, t′) + [ξ(t′)− y]
∂

∂y
h(y, t′) + · · · (4.14)

g[ξ(t′), t′] = g(y, t′) + [ξ(t′)− y]
∂

∂y
g(y, t′) + · · · (4.15)

According to [82], it proves that the Taylor series of h[ξ(t′), t′] and g[ξ(t′), t′]

are truncated at n = 2. In this thesis, we follow this deduction, thus the
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expression of h[ξ(t′), t′] and g[ξ(t′), t′] can be determined.

The relevant Fokker-Planck equation for the one-dimensional Langevin

equation Eq.4.12 is shown as below:

∂W

∂t
= −∂[D(1)W ]

∂x
+
∂2[D(2)W ]

∂x2
(4.16)

D(1) is called the drift coefficient and D(2) the diffusion coefficient, which

are calculated from the Langevin equation.

Referring to [82], D(1) is the drift coefficient and D(2) the diffusion coef-

ficient, which are obtained by the following expression,

D(1)(x, t) = lim
∆t→0

ξ(t+ ∆t)− y
∆t

= h+Dg
∂g

∂x
= vγ (4.17)

similar for the diffusion coefficient D(2) , we have

[ξ(t+ ∆t)− y]2 = 2D

t+∆t∫
t

t+∆t∫
t

g(ξ, t′)g(ξ, t′′)δ(t′ − t′′)dt′dt′′ (4.18)

D(2)(x, t) = lim
∆t→0

[ξ(t+ ∆t)− y]2
/

(2∆t) = Dg2(x, t) = D (4.19)

where h(ξ, t) is the deterministic drift. Physically, the additive noise (g(ξ, t)

constant) may represent the heat bath acting on the particle of the system,

and the multiplicative noise term, for variable g(ξ, t), may represent a fluc-

tuating barrier.

For g =
√
D and h(ξ, t) = 0, Eq.4.12 describes the Wiener process and the

corresponding probability distribution is described by a Gaussian function.

In the case of g(, t), some specific functions have been employed to study, for

instance, in turbulent flows g(x, t) ∼ |x|atb [115]. In our blood vessels model

we consider a laminar flow model with constant g(x, t).

So we rewrite the corresponding Fokker-Planck equation for its additive
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noise term Langevin equation Eq.4.13 as below:

∂W (x, t)

∂t
= −vpγ ∂W (x, t)

∂x
+D

∂2W (x, t)

∂x2
(4.20)

The solution of the corresponding Fokker-Planck equation is given by [82],

and we have a PDF solution on the concentration of particles:

W (x, t) =
C√

4πDt
e−

(x−vpt)2
4Dt (4.21)

This solution is based on these assumptions and boundary conditions for this

communication system:

1) Initial Impulse, W (x, 0) = W0 = C, C is the contraction of released

molecules at the transmitter at t = 0, and a pulse of concentration W0 is

emitted at the transmitter which is located at x distance away from the

receiver;

2) Infinite Source : this condition states that an infinite source of molecules

provide a continuous and finite flux of molecules, such that W (0, t) = W0 =

C;

3) No remission in the reception areas, the reception probability is based

on ligand-recaptor model and non-received particles is not remitted to the

channel;

4) Long-Term Capture and its boundary conditions, W (x,∞) = pW (x, t):

if a molecule is captured, it cannot be remitted. Therefore, over a long time

(t+∞), the receiver captures molecules with a probability p of ligand-receptor

to an equilibrium state;

5) Diffusion only in x axis along with flow. So, we do not consider two-

dimensional;
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4.4 Channel Performance of Blood Vessel Sys-

tem

4.4.1 Reception Process

The reception process at the receiver side involves the capturing of molecules

in the blood vessels by several ligand-based receptors sCD40L. However, this

sCD40L ligand-receptor model is quite different from the one described in

Chapter 3.1.3. Since no vesicles are considered in this model, molecules CD40

are received directly by sCD40L. Moreover, a vesicle internalisation process

via endocytosis does not exist. We have simplified the model with respect

to the ligand-receptor, thus, only binding and release rate are considered.

When the sender emits one kind of molecule instantaneously, the receiver

must receive the molecule with binding the molecule to the ligand on their

surface. Generally, there are sufficient chemical receptors on the surface

used to receive information coming from the diffusion process. The capture

and release of molecules is modelled according to the chemical theory of the

ligand-receptor binding process [116, 58]. The binding reaction occurs with

a probability k1 when the receptor was not previously bound to a molecule.

The release reaction occurs with a probability constant k2 when there is

a complex formed by a molecule and the chemical receptor. Finally, the

receiver decodes the message from the molecule concentration rate.

We consider a communication between only one transmitter and one re-

ceiver. When the platelets emit molecules into the blood stream and prop-

agation to the receiver, the probability of molecules concentration at one

site is expressed by Eq.4.22. When we consider the channel memory, the

Inter Symbol Interference (ISI) could exist, i.e. the overlap in molecule con-

centration between the signal transmitted in the current time slot and the

remaining signals transmitted in previous time slots. The probability that a

molecule transmitted in slot i ∈ 1, 2, · · · , n arrives in slot m can be expressed
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as [63]:

qv =

∫ (v+1)T

vT

W (L, t)

∫ ∞
t

mn(u)dudt (4.22)

here,v = n− i. T is the length of a time slot. γ is the pdf of the molecule life

expectancy (or the stability of the molecule in the environment) and is given

as an exponential distribution function: mn (u) = γe−γu with the mean of

1/γ.

Assume that the distance between the transmitter and receiver is r, then

the receiver binding rate is k1 and release rate is k−1, using the ligand-

receptors binding model given in [116, 58], which can be given below:

B =
k1NA

k−1

(4.23)

Where k1 and k−1 are the constant binding and release rate, respectively.

k−1 is a constant which is affected by physical properties of the receptors

on receiver and it does not change as long as the physical properties of the

receptors on receiver do not change. Concentration of bond molecules of the

receptors is denoted by B. A is the concentration of the molecules sent by

the transmitter and N is the concentration of the ligand-based receptors on

the receiver’s surface.

We assume that k1 is a constant which is only affected by the several

environmental factors such as molecular diffusion coefficients, temperature,

and distance between transmitter and receiver. In the literature, there are

several realistic models for k1 that are experimentally tested for certain bio-

chemicals. The expression of k1 is given by [85]:

k1 =
4πDr0β

1− (1− β) r0
r∞

(4.24)

where r0 is the radius of the receiver and r∞ is the radius of the whole

spherical shaped environment. β is the ratio of the radius of one molecule to

the distance between transmitter and receiver, i.e. β = r0/r. The coefficient
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Figure 4.3: OOK mechanism illustration

of the A i.e. k1N
k−1

could be treated as the probability of successfully reception

of the receiver. Thus, considering the condition with ligand-based receptors,

the probability that a molecule transmitted in slot i and arrives in slot n can

be modified as:

Qv =
k1N

k−1

qv =
k1N

k−1

∫ (v+1)T

vT

gd(t)

∫ ∞
t

mn(u)dudt (4.25)

4.4.2 Channel Capacity of System

In this model, we assume that the transmitter adopts On-Off Keying OOK

to transmit 1 or 0 signal. The basic binary communication model is shown in

Figure 4.3. When the transmitter send 0 or 1, respectively, the probability

of the receiver detecting correctly are P and Q. the signal of 1 or 0 is

transmitted in different time slots. Here, we assume the transmitter and

receiver are perfect synchronised in terms of time. We thus describe the

probabilities of successful bit transmission as follows:

P [Yn = 0|Xn = 0] = Pn (4.26)

P [Yn = 1|Xn = 1] = Qn (4.27)

Respectively, the false probability is 1−P and 1−Q. For n = 1, Q1 = q0

and P1 = 1, i.e., it means communicating a 0 is always successful. For n > 2,
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considering a recurrence relation for Qn and Pn, we have:

Qn = 1− (1− q0)
n−1∏
i=1

(1− pqi) (4.28)

Pn =
n−1∏
i=1

(1− pqi) (4.29)

The information capacity of a communication system is expressed by the

general formula from Shannon [105]. For a single-access channel, the general

formula defines the information capacity as the maximum difference between

the entropy H(Y ) of the signal x in input to the channel and the equivocation

H (Y |X):

C = max{I(X;Y )} = max{H(Y )−H (Y |X)} (4.30)

For a discrete binary system, the single-access channel capacity equals the

maximum mutual information, and can be obtained from slot 1 to n which

is then expressed as:

Cs =
1

T

n∑
i=1

max I(Xi;Yi)

n
bps (4.31)

when n approaches ∞. Eq.4.31 represents the channel capacity. The critical

problem is to find the I(X;Y ). For a discrete system, Shannon has given

out the entropy in the case of two possibilities with probabilities ξ and 1− ξ,
namely

H = −ξ log ξ − (1− ξ) log(1− ξ) (4.32)

Following Eq.4.30 and Eq.4.32, the mutual information in time slot n is

represented as:

I(Xn;Yn) = H(Yn)−H(Yn|Xn)
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= χ((1− p)Pn + p(1−Qn))

− {pχ(Qn) + (1− p)χ(Pn)} (4.33)

Where p = P [Xn = 1] and χ(ξ) = −ξ log ξ−(1−ξ) log(1−ξ) are assumed.

The proof of Eq.4.17 is shown in [58].

For n = 1, there should be that Q1 = q0 and P1 = 1, substituting to

Eq.4.17, we have:

I(X1;Y1) = χ((1− p)P1 + p(1−Q1))

−{pχ(Q1) + (1− p)χ(P1)

= χ(1− pq0)− pχ(q0)

= log2

(1− p)p(1−q0)

ppq0(1−pq0)1−pq0
(4.34)

In the same way, for n > 2, substituting Eq.4.28 and Eq.4.29 to Eq.4.33, we

have

I(Xn;Yn) =

χ((1− p)
n−1∏
i=1

(1− pqi) + p(1− (1− (1− q0)
n−1∏
i=1

(1− pqi))))

− {pχ(1− (1− q0)
n−1∏
i=1

(1− pqi)) + (1− p)χ(
n−1∏
i=1

(1− pqi)) (4.35)

Substituting Eq.4.25 to Eq.4.35, from dI(Xn;Yn)
dp

|p=pmax = 0, we can determine

the value of pmax. The overall channel capacity of a single-access channel is

finally derived as

Cs = max
p

1

T

n∑
i=1

I(Xi;Yi)

n
bps (4.36)

By applying Eq.4.36, we can finally achieve the overall single-access channel

capacity.
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4.5 Simulation Results

In this section, we present the numerical analysis on the capacity of blood

vessels with blood drift channel. This analysis aims to determine the molec-

ular channel characteristics in the environment with both components. We

also aim to observe the changes in these characteristics according to the M-

C physical and biological parameters such as pressure differential ∆p, blood

flow velocity v, the priori probability p, diffusion coefficient D and the Length

of blood vessels L. We perform the numerical analysis using Matlab.

4.5.1 Parameter Setting

Table 4.1: Symbol meaning and parameters of blood vessels with flow drift

model

Parameters Symbol value

Diffusion coefficient D 10−5 − 3× 10−5m2/s

Pressure differential [34] ∆p 60− 120mmHg,mmHg = 133.3N ·m−2

Viscosity η 5.3× 10−3kg/(ms)

Boltzmann constant kB 1.38× 10−23J ·K−1

Best sample time tmax

Length of vessel L 0.1− 0.2m

Radius of blood vessel R 5× 10−5

Temperature T 310K

Constant binding rate [116] k1 0.01

Constant release rate [116] k−1 0.008

Flow veolcity v 0.001− 0.007m · s−1

Channel capacity C
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4.5.2 Analysis of Simulation Results

Figure 4.4: Velocity of blood flow in various pressure differential

Figure 4.4 illustrates the relationship of velocity of flow between the position

in vessels and the blood pressure differential 4p. According to [34], the pres-

sure differential of blood is divided into two types: Systolic and Diastolic.

Systolic pressure measures the amount of pressure that blood exerts on arter-

ies and vessels while the heart is beating. Systolic pressure relates to the max-

imum pressure exerted on the arteries (90 ∼ 140mmHg for adults, average

100mmHg for children from 6 to 9 years, mmHg = 133kg ·m−1 · s−2). Dias-

tolic pressure is the pressure that is exerted on the walls of the arteries around

the body in between heartbeats when the heart is fully relaxed. Diastolic

pressure represents the minimum pressure in the arteries (60 ∼ 90mmHg for

adults, average 65mmHg for children from 6 to 9 years). In this simulation,

we use the systolic pressure. As the pressure differential along the same dis-

tance of blood vessels increases, the velocity of blood flow increases as well
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proportionally.

In the same condition of blood pressure differential, the velocity is higher

when it is closer to the central axis of blood vessels; while at the central axis,

the velocity has the maximum value. However, the velocity is extremely slow

at the site which is close to the blood vessel’s wall. Thus the molecules at

that site will adhere to the endothelial cells.

Figure 4.5: Concentration of particles in reception area

Figure 4.5 presents that the concentration of particles in the reception

area varies with flow velocity v and diffusion coefficient D. With higher flow

velocity, particles are propagated to the reception area in a shorter period of

time. For smaller flow velocity v, with the same diffusion coefficient D, the

peak becomes broader, and the curve is shifted to longer time apparently. For

small diffusion coefficient D, with the same flow velocity v, the peak becomes
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narrower and higher, and the curve is shifted to shorter time slightly.

The expected transmission delay is 50s, T = 2tmax and tmax = 25s, when

flow velocity is 0.007m/s and the diffusion coefficient D is set to 0.1cm2/s.

While in the same diffusion coefficient, the expected transmission delay is

about T = 2tmax = 130s with the decreased flow velocity 0.003m/s. In the

same condition of flow velocity, the particle concentration in the reception

area is higher, in an inverted relationship, when the diffusion coefficient of the

blood vessels environment declines. Considering the two components: blood

flow and diffusion motion; With the higher flow velocity, it has a significantly

shorter transmission delay, however, the impact on diffusion motion in an

inverted relationship.

We have to indicate that the transmission symbol is the Non-symmetric

curve. As different from additive white Gaussian noise (AWGN) channel in

traditional telecommunication, where the transmission symbol matches the

symmetric Gaussian distribution, this Probability density function (PDF) of

transmission symbol can be classified to generalised inverse Gaussian(GIG)

distribution [117]. Time for the maximum concentration, tmax, is obtained

by solving the following operation for t:

∂W (L, t)

∂t
=
∂( C√

4πDt
e−

(L−vpt)2
4Dt )

∂t
= 0 (4.37)

As it shown in Figure 4.5, setting the expected transmission delay, re-

garded as time duration for one symbol, T = 2tmax, will cause inter-symbol-

interference (ISI). The impact of ISI will be discussed in detail in Chapter

5.
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Figure 4.6: Channel capacity C varies with priori probability p for different

blood flow velocity v, setting L = 0.2m, diffusion coefficient D = 3e− 5.

Figure 4.6 illustrates that the channel capacity varies with different blood

flow velocity over a time period of 100s. The channel capacity increases as

the velocity increases. In the conditions that velocity largely reduced to

0.001m/s, the channel capacity almost decreases to 0, as almost no particles

are transmitted to the reception area and can be captured over a time period

of 100s. In traditional communication, Shannon’s theory [105] indicates that

the channel capacity is the maximum with prior probability P = 0.5, while in

the diffusion with flow channel model, capacity reaches the maximum when

prior probability p = 0.4. In [58], it got the similar result and pointed that C

does not always keep the maximum when prior probability p = 0.5, the part
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of curve is lower than that of p = 0.4. The reason is that as the PDF curve,

shown in Figure 4.6, is non-symmetric. Thus, channel capacity reaches the

maximum when prior probability p < 0.5.

Figure 4.7: Channel capacity C varies with priori probability p for different

diffusion coefficients D, setting flow velocity v = 0.003m/s, L = 0.2m.

Figure 4.7 shows the channel capacity varies with different diffusion coef-

ficient values D in a time period of 100s. The channel capacity increases as

the diffusion coefficient D declines. Moreover, compared with the dominat-

ing flow velocity in the propagation process, diffusion coefficient has minor

impact than that of flow velocity. Similarly to Figure 4.6, where capacity

reaches the maximum when prior probability p = 0.4.
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Figure 4.8: Channel capacity C varies with priori probability p for differ-

ent length of blood vessels L, setting flow velocity v = 0.003m/s,diffusion

coefficient D = 3e− 5.

In Figure 4.8, it shows that the channel capacity varies with the length of

blood vessels in a time period of 100s. The channel capacity declines as the

transmission length along blood vessel L increases, when other conditions

are the same. In the same emitting model, it is clear that C decreases as L

increases, i.e. closer to the transmitter, larger the capacity is. As L represents

the distance between transmitter and receiver, the increase of L means that

the distance increases between the transmitter and receiver resulting in the

capacity decreasing. It predicts that, for good channel capacity performance,

the length of blood vessels should not be longer than 0.3m.

92



4.6 Chapter Summary

This chapter involves consideration of two major components of the mod-

el: blood flow and the particles diffusion with blood flow drift. Based on

these issues, we investigated the capacity of single input and single output

(SISO) blood vessels MC channel. The ultimate objective of this chapter is

to study the performance of channel capacity in these scenarios. Numerical

results revealed that the capacity of this channel is related to some physical

parameters of the blood vessels, the length of blood vessels L, the diffusion

coefficient D and pressure differential along the vessels 4p. With this model

of blood vessels, we can have a deeper insight towards mechanisms of blood

vessels. This chapter provides a prediction for a significant application for

future research of targeted delivery in blood vessels. we will develop my fu-

ture research to blood capillaries, the smallest vessels, with multiple levels of

bifurcation in Chapter 5. In the scenario of multiple receptors in branches

of blood capillaries, we will establish a system of single input and multiple

outputs(SIMO) channel for blood capillaries .
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Chapter 5

SIMO System for Bifurcation

of blood capillaries

5.1 Introduction and Motivation

Blood capillaries or blood vessels can be applied to long-range MC [21].

Moreover, blood capillaries, extensively distributed in the human body and

mutually connected with tissues, are potentially applied to MC-based nano-

networks. Nowhere is this truer than with applications of blood capillary-

based MC to modern medicine, ranging from more reliable diagnostic tech-

niques to improved drug delivery systems [118]. It is the intention of our

work to investigate the application of this specific biological phenomenon

to information communication. This chapter follows my previous research,

modelling the transmission process in the blood vessels as the laminar blood

flow and diffusion, then focus mainly on the Y-shaped bifurcation of blood

capillary branches system, which forms multiple outputs in the communica-

tion scenario. The communication scenario in this chapter is SIMO, with the

single input and multiple outputs. Firstly, we need to find out how blood

capillaries system applies to SIMO communication, based on which its bi-

ological scenarios mapping to the communication procedure is investigated.
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Secondly, based on the research in Chapter 4, the modelling of blood vessel-

s considers both laminar flow and diffusion. Thirdly, multiple outputs are

formed with multiple receivers in hierarchy Y-shaped branches of the blood

capillary system. Finally, we can analyse the channel capacity of a SIMO

blood capillary system by employing information theory.

From a biological point of view, the blood capillary system forms part

of the vascular system. The vascular system is the collection of all arteries,

veins, and capillaries that permit the flow of blood from the heart, around the

body, and back to the heart again. Blood capillaries are the narrow vessels

between arteries and veins which form a network that distributes oxygen-

rich blood to all cells in the body, contributing to the blood vascular system.

Blood flows from the heart through arteries, which branch and narrow into

arterioles, and then branch further into capillaries. The capillaries then join

and widen to become venules, which in turn widen and converge to become

veins, which then return blood back to the heart through the great veins

[9]. Blood flows through the circulatory system as a result of being pumped

out by the heart. Blood flows out of the heart through the arteries with

saturated oxygen.

The arteries break down into smaller and smaller branches to bring oxygen

and other nutrients to the cells of the body’s tissues and organs. As blood

moves through the capillaries, the oxygen and other nutrients move out into

the cells, and waste matter from the cells moves into the capillaries. As the

blood leaves the capillaries, it moves through the veins, which become larger

and larger to carry the blood back to the heart. A combination of fluid flow

and diffusion brings every cell in a healthy body within reach of the nutrients

and gases it needs. The combined length of all this plumbing is rather large:

Indeed, in 1967 the mathematical biologist Robert Rosen [119] claimed that

the total length of the vascular system in large mammals is of the order of

50,000 miles. Therefore, based on this proposal, the communication range of

the blood capillary system is classified as long-range communication.
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The basic purpose of this model is to describe the capillaries branches

of a SIMO system in terms of understanding the biological nature of blood

capillaries. To accomplish this, in the first step, we established modelling of

transmission with diffusion along the blood flow in blood capillaries or normal

vessels. This part of modelling works was e well-established in Chapter 3

and Chapter 4, which were published [120, 121]. We adopt diffusion with

the blood flow model to do extension work. In the second step, we establish

modelling Y-shaped capillaries bifurcation. In 1997, Kurz and Haymo [122]

discussed the Wilhelm Roux’s thesis of relationships among the angles and

radius of bifurcating blood vessels, showing how they arise from some simple

principles of optimality. Our objectives here are to rederive and further

research Roux’s results, to establish a mathematical model for blood capillary

bifurcation. We present a sequence of increasingly faithful models of blood-

vessel branching. Our modelling is also based on some other study on blood

vessels bifurcation [123, 124, 125], referring to numerical results by Jafari

[126], and in somewhat more details of modelling by [127].

In [123], it proposes a novel method to detect and classify the vascular

bifurcation, branch and crossover points, and landmarks, based on vessel geo-

metrical features. In [124], it presents a machine learning method for vascular

structure segmentation with fully automatic detection of bifurcation points.

This method is based on a machine learning technique called, AdaBoost,

and it has over a 97% success rate for detecting bifurcation points. However,

these two papers did not consider the features of velocity and blood rate.

In [125], it presents a scale-space model from a computational perspective

for the bifurcation evolution with increasing scale, which was combined with

eigenvalue analysis to create a bifurcation-Ness filter. It is not appropriate

to assume that vessel profile is diffusion and matches Gaussian distribution.

In [126], it investigates the non-Newtonian fluid flow in a bifurcation model

with a non-planar daughter branch by using a finite element method to solve

the three-dimensional Navier-Stokes equations. Finally, [127] investigates red
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blood cells (RBCs) flowing in a Y-shaped bifurcating micro-fluidic channel.

We will also discuss some assumptions including an initial focus on the

nature of blood fluid flow. Newton modelled these kinds of fluids in an

assumption that consist of thin layers that slide past one another, developing

a resistance to the flow. An important factor of the ratio of drag linearly

proportional to the velocity gradient perpendicular to the direction of flow

is called viscosity, and these forces can be mathematically approximated to

first order by a viscous stress tensor. A fluid with the property that the

viscosity is independent of the forces applied to it, is called a Newtonian

fluid. Naturally enough, if the viscosity does depend on the applied force,

then the fluid is called non-Newtonian.

In the Casson fluid model, blood is regarded as a non-Newtonian fluid

consisting of shear rate and shear stress. According to the literature [128, 80],

during a normal flow in straight narrow blood behaves as a Newtonian fluid,

especially in blood capillaries. So in this thesis, we model blood flow as a

Newtonian fluid. In these narrow capillaries, it is not reasonable to think

of layers of fluid sliding past each other, so our models do not apply. Fur-

thermore, the pressure differential along the capillary system is assumed as

constant. We also assume time-independence and a constant shape for the

blood vessels. Furthermore, the Reynolds number in the scenario of blood

capillaries is low and regarded as following a laminar flow model. In lami-

nar flow (low Reynolds number), viscous forces are dominant, and the fluid

motion is smooth and constant. In turbulent flow (high Reynolds number),

the inertial forces dominate and tend to produce flow instabilities. In addi-

tion, the bifurcation of capillaries is all Y-shaped and hierarchical capillaries

branches form a capillary network with input from a greater capillary and

multiple outputs in smaller capillaries branches. Having acknowledged these

assumptions and realities, we can present our SIMO communication model

for a capillary system.
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Figure 5.1: Idealised microcirculatory circuit with capillaries [9]

5.2 Biologic Scenario for Branches of Blood

Capillaries

Blood flows from the heart through arteries, which branch into narrow arte-

rioles, and then bifurcate into capillaries where nutrients and waste are ex-

changed. In the return process, the capillaries join to become wider venules,

which in turn widen and converge to become veins, which then return blood

to the heart through the great veins.

Capillaries do not function on their own, but instead in a capillary bed,

an interweaving network of capillaries supplying organs and tissues. The

more metabolically active a cell or environment is, the more capillaries are

required to supply nutrients and carry away waste products.

Figure 5.1 from the book [9] illustrates the function of blood capillaries in

the microcirculatory system between arterioles and venules. The general ar-
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chitecture of the circulation is frequently explained with schematic drawings

depicting precapillary sphincters and metarterioles in addition to arterioles,

capillaries and venules.

There are three main types of blood capillary [10], shown in Figure 5.2:

Figure 5.2: Major types of capillaries [10]

Continuous capillaries provides a continuous blood wall with an unin-

terrupted lining, and they only allow smaller molecules, such as water and

ions to pass through their intercellular clefts [129]. However lipid-soluble

molecules can passively diffuse through the endothelial cell membranes along

concentration gradients. With numerous transport vesicles in endothelial

cells, molecules can enter into blood capillaries via endocytosis.

Fenestrated capillaries have pores covered by diamonds of radially ori-

ented fibers in endothelial cells (60 − 80nm in diameter) and allow small

molecules and limited amounts of protein to diffuse [130]. These types of

blood vessels have continuous basal laminae and are primarily located in the

endocrine glands, intestines, pancreas, and the glomeruli of the kidney [130].

Sinusoidal capillaries, also known as discontinuous capillaries, are a spe-

cial type of open-pore capillary, that have larger openings (30 − 40µm in

diameter) in the endothelium [130]. These types of blood vessels aided by a

discontinuous basal lamina, allow red and white blood cells (7.5µm− 25µm

diameter) and various proteins to pass. These capillaries lack pinocytotic
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vesicles and therefore utilise the cell gap junctions to permit diffusion across

the endothelial cell membrane.

Sinusoidal capillary is used in this model, so that hormones or cytokines

can diffuse across the blood wall and into capillary. Vessels in the vascular

system are classified as arterioles, capillaries and venules. Those vessels with

a diameter in the dilated state of less than 8um are classified as capillaries

[9]. Capillary networks form the connections between the arterial and venous

systems. The complexity of each capillary network varies in response to the

metabolic needs of the tissues served. Tissues with lower needs, such as the

intestinal tract, have two or three capillary branches from each metarterioles

[9]. In [127], it predicts that two branches is the majority in most capillaries

and modelled the bifurcation as being Y-shaped. In this assumption, levels

of Y-shaped branches of capillaries form a SIMO capillary network in this

model.

The biologic scenario within the blood capillaries consists of emission of

carriers from platelets, carriers propagation in the flow of blood vessels, and

receiving by endocrine cells. Soluble CD40 ligand (sCD40L) is contained in

platelet granules and thus its presence in the blood is a marker of platelet

activation. By interacting with CD40, which is found on endothelial and

smooth muscle cells, sCD40L may trigger the release of inflammatory media-

tors [108]. The communication process from platelets and the endocrine cell

plays a fundamental role during initial stages of atherogenesis [131].

The components of the communication system within the blood vessel-

s are platelets, endocrine cells and transmission information represented by

cytokineses. The transmitters, which are platelets, secrete and release cytoki-

neses, which are small cell-signalling protein molecules, while the receivers,

are endocrine cells in the blood stream. These cytokineses are propagated to

the endocrine cells across the bloodstream with blood flow. There are many

types of cytokineses, with matching types of receptors on the cell surface.

In [108, 73], the soluble CD40 ligand is regarded as a carrier with matching
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recanters CD40 on the surface of the endocrine cell. In this chapter, we still

follow this concept. Each cell has a number of CD40 receptors, and this

number changes over time [73]. A decoding process functions in endothelial

cells, which are known to express vascular cell adhesion molecules.

Nano-particles propagation in blood capillaries though the branches is

modelled in the following subsections: Diffusion with blood flow for capillary

channels, and bifurcations for blood capillary.

Earlier it was mentioned that endothelial cells have CD40 receptors that

are a match for the cytokine sCD40L on the surface of the endocrine cell.

The CD40 receptor is of the transmembrane type, meaning that it provides a

pathway between the exterior and interior of a cell. Nano-particles, which are

emitted by platelets, are propagated through branches of the capillaries sys-

tem and received by multiple receptors which lies on the surface of endothelial

cells in each branch of the blood capillaries. These emission, transmission

and reception processes form a SIMO MC. Figure 5.3 illustrates the mapping

from biological scenario to SIMO MC process.

Figure 5.3: Mapping for Y-shaped bifurcation blood capillaries SIMO model
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5.3 SIMO Model for Blood Capillaries

5.3.1 Diffusion with Blood Flow Drift in Blood Capil-

lary

In Chapter 4, we have fully discussed that a generalised Langevin equation

with additive noise term Eq.4.14 models particles propagating through the

blood vessels with drift, and the corresponding Fokker-Planck equation is

shown in Eq.4.20:

∂W (x, t)

∂t
= −vγ ∂W (x, t)

∂x
+D

∂2W (x, t)

∂x2
(4.20)

With appropriate assumptions and boundary conditions, the solution of

its corresponding Fokker-Planck equation is shown below, and we have a

PDF of concentration of particles:

W (x, t) =
C√

4πDt
e−

(x−vt)2
4Dt (4.21)

We have some assumptions and boundary conditions for the for this com-

munication system:

1) Initial Impulse, W (x, 0) = W0 = C, C is the contraction of released

molecules at the transmitter at t = 0, with a pulse of concentration W0

being emitted at the transmitter which is located at x distance away from

the receiver;

2) reception areas and their boundary conditions, if the transmitter is

in the capture areas, are located at x � R from the receiver, and anything

emitted will be captured immediately. At any time t > 0, the concentration

outside the zone is W = 0. so in most case this is the distance between

transmitter and receiver x� R.

3) No remission occurs in the reception areas, and the reception proba-

bility is based on the ligand-receptor model and non-received particles are

not remitted to the channel.
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4) Long-term capture and its boundary conditions, W (x,∞) = pW (x, t):

if a molecule is captured, it cannot be remitted. Therefore, over a long time

(t+∞), the receiver captures molecules with a probability p of ligand-receptor

to an equilibrium state.

There are a number of alternative conditions used in previous models in

literature, which are not suitable in for this blood capillary model:

1) Infinite Source [132]: this condition states that an infinite source

of molecules provide a continuous and finite flux of molecules, such that

W (r, t) = W0.

2) Infinite Environment [133, 134]: this condition states that the propa-

gation environment is infinite. It is valid for an boundaryless communication

system, but is not realistic for enclosed structural environments in blood

vessel.

3) Fast Sensor Response [78]: that is to say the molecules at sensors

are immediately converted to electrical charge and there is zero aggregated

chemical interference from previous emissions. It is not realistic in blood

capillary systems, information cytokineses have a response time.

Therefore, the cumulative captured number of molecules can be defined

as the cumulative distribution function (CDF) of the concentration inside of

the reception area to any given time t. The resulting number of molecules

captured is a monotonically increasing function:

θ(x, t) =

∫ L

L−R
W (x, t) =

∫ L

L−R

C√
4πDt

e−
(x−vt)2

4Dt (5.1)

The partial derivative of the cumulative function with respect to time yields

the likelihood of capture between any particular time t and t+δt for a δt→ 0:

g(x, v, t) =
dθ(x, t)

dt
= C

ξ√
4πDt3

e−
(ξ−vt)2

4Dt (5.2)

Eq.5.2 gives the probability density function of the absorption time of a

particle released in a fluid medium with diffusion constant D, at a distance
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ξ from the transmitter, when the blood vessel has a constant drift velocity

v. Eq.5.2 is the inverse Gaussian (IG) distribution [135], where

u =
ξ

v
(5.3)

and

Var =
ξD

v3
(5.4)

u and V ar represent the mean and the variance of Inverse Gaussian distri-

bution. Note that Eq.5.2 is valid only for positive drift velocities, thus the

receiver is downstream with the blood flow from the transmitter.

5.3.2 Bifurcations for Blood Capillaries

The liquid motion equations for the circulatory system are very complicated.

In order to obtain an analytical solution the following simplification has been

assumed. The blood flow obeys a Newtonian fluid model consists of nano-

particles and blood plasma. In this model, we did not consider the non-

Newtonian fluid model with the influence of red blood cells (RBCs). However,

the yield shear stress refers to bulk blood flow and does not apply to RBCs

flowing in narrow capillaries [91]. The assumption of constant blood viscosity

and homogeneity in the whole vessels’ tree is necessary to estimate blood flow

through this trees. According to the literature [119] during a normal flow

in straight arteries blood behaves as a near Newtonian fluid. In real blood

vessels, the vessel walls are elastic and can change their diameters.

In this way, resistance of the blood capillary system is regulated. This

process is known as autoregulation, and corrects nutrition of all cells in hu-

man body. Assumption of the vessel wall as a rigid pipe with constant diam-

eter for given vessel segment is necessary to application of hydrodynamical

equations and analytical calculation of modelled trees. Blood flow estimation

assumes laminar flow for the entire fractal vessel tree.

In large arteries, systolic aberrations of laminar flow is a result of wave
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propagation. Turbulent flow is also observed in pathological vessels. In

small arteries, which are the subject to described research, an assumption of

laminar flow is correct. Hydrodynamic equations for small arteries give the

correct results in biological circulatory system [128].

In this model, we consider the optimal angle at both symmetric and non-

symmetric bifurcation in blood vessels. By minimizing a cost function, we are

able to determine the optimal radius of a blood vessel, given its length and

the flow of blood through it. We then use this optimal radius to determine

our minimum cost as a function of radius and length.

The lengths of the blood vessels, however, depend on where the bifurca-

tion occurs. By finding the location of the optimal bifurcation which keeps

the cost function minimised, we are able to write expressions for the bi-

furcation angles as a function of blood vessel radius. Furthermore, using

conservation of mass, we are able to eliminate the need for knowing the ra-

dius of all three vessels. With this, we can determine the angle of bifurcation

of a blood vessel without knowing its radius; instead, we just need to know

the radius of the other two blood vessels.

Once the expressions are derived, we can then use them to study special

cases. The exemplary special case examined here occurs when the radius of

two secondary blood vessels are equal. In this case, the two blood vessels

have the same bifurcation angle of 37.5◦.

Throughout the human body, arteries from the heart bifurcate many

times in order to become capillaries. We shall first consider a bifurcation

for symmetric branches. The bifurcation occurs at the point ′O′. To the left

of ′O′, some flow Q0 of blood is entering the vessel ′AO′ through ′A′. To

the right of ′O′, Q0 is divided between the two vessels ′OB′ and ′OD′, each

now with flow Q1 and Q2, respectively. The goal now is to find a cost func-

tion which can be minimized in order to determine the bifurcation pattern

of the blood vessels. Then, by varying the location of ′O′, we will be able to

determine the angle of bifurcation as a function of the radius of the blood
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vessels.

The cost function proposed by Murray [136]and Rosen [119] is the sum

of the rate at which work is done on the blood vessel bifurcation. The rate

of energy is used up by the blood vessels by metabolism. The rate at which

work is done on the blood is equal to E = Q∆p [119], where Q is flow and ∆p

is the change in pressure along the vessel. The rate at which energy is used

by metabolism is equal to Kπa2L where K is a proportionality constant.

The cost function for blood vessels is then:

C(L) = Q∆p+Kπa2L (5.5)

Using Poiseuille’s Law Eq.4.16, we can rewrite ∆p and obtain

C(L) =
8µL

πa4
Q2 +Kπa2L (5.6)

To find the optimal radius a for a given length L and flow, the cost function

is minimized with respect to a

∂

∂a
(C(L)) = −32µL

π
Q2a−5 + 2KπLa = 0 (5.7)

and is solved for the optimal a:

a = (
16µ

π2K
)−

1
6Q

1
3 (5.8)

At the optimal radius, the minimum cost function is equal to:

c(L)min =
3π

2
KLa2 (5.9)

5.3.2.1 Model A: Symmetric Branches
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Figure 5.4: Schematic diagram of symmetric bifurcation

Model of a bifurcation Introduction to the problem Model of a bifurcation:

Simplifying Assumptions for symmetric model:

1. The bifurcation is symmetric, so the flows in the two daughter vessels

are identical (Q1 = Q2). The vessels are rigid, that is the walls do not

deform.

2. The blood is incompressible, that is the density ρ of the blood (mass

per unit volume) is constant, with no viscous forces. Steady, that is, it does

not change with time, which means the transmission is a stationary process.

3. The velocities of blood flow v0, v1 and v2 at the inlets and outlets

are constant (rather than functions of the position), and axial, that is the

direction of the velocity is along the tube and perpendicular to the surfaces.

These assumptions simplify the problem enormously, but they are only

valid in some cases. Even so, there are cases in which the following analysis

yields an answer close to reality.
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According to [136], by the principle of the conservation of mass, the flow

of blood in the vessel AO must be equal to the sum of the flow of blood

through vessels BO and DO; namely,

Q0 = Q1 +Q2 (5.10)

If we solve our equation for optimal radius for flow, obtaining

Q = a3(
16µ

π2K
)−

1
2 (5.11)

and substitute this into our conservation equation, we obtain Murray’s law.

a3
0 = a3

1 + a3
2 (5.12)

In this symmetric bifurcation model, we consider the case in which the daugh-

ter blood vessels have the same radius with some angle. In this case, a1 = a2,

and our expressions for θ and φ reduce to

cos θ =
a2

0

2a2
1

(5.13)

cosφ =
a2

0

2a2
2

=
a2

0

2a2
1

(5.14)

which are clearly equal. This means that, when the radii of the daughter

blood vessels are equal, their bifurcation angles are also equal. Furthermore,

we can determine exactly what the bifurcation angle is in this case. When

the a1 = a2, Murray’s law becomes

a3
0 = 2a3

1 (5.15)

which can be rearranged as,
a0

a1

= 2
1
3 (5.16)
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Substituting this into reduced expression for cos, θ results in

cos θ =
1

2
(2

1
3 )2 (5.17)

When we solve for θ , we find that the bifurcation angle is θ = 37.5◦.

Apply the Eq.4.2, we can calculate the velocity at the daughter capillaries.

v1(r) =
1

4η

∆p1

L
(a1

2 − r2) (5.18)

v1(t) is the average cross sectional velocity in the main blood vessels, defined

as

v1(t) =
2

r1
2

∫ r1

0

rv1(r, t)dr (5.19)

5.3.2.2 Model B: Non-Symmetric Branches

In this model, we consider the optimal angle at which non-symmetric

bifurcation in blood vessels occurs-. By minimizing a cost function, we are

able to determine the optimal radius of a blood vessel, given its length and

the flow of blood through it. We then use this optimal radius to determine

our minimum cost as a function of radius and length.

1. The branches do not have the same radius, then the larger branch

makes a smaller angle with the original direction than does the smaller

branch.

2. Branches that are so narrow that they do not significantly diminish

the flow in the main stem branch off at large angles (typically between 70◦

and 90◦).

The lengths of the blood vessels, however, depend on where the bifurca-

tion occurs. By finding the location of the optimal bifurcation which keeps

the cost function minimised, we are able to write expressions for the bi-

furcation angles as a function of blood vessel radius. Furthermore, using
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conservation of mass, we are able to eliminate the need for knowing the ra-

dius of all three vessels. With this, we can determine the angle of bifurcation

of a blood vessel without knowing its radius; instead, we just need to know

the radius of the other two blood vessels.

Figure 5.5: Schematic diagram of non-symmetric bifurcation

Suppose that the bifurcation point is moved to location O′ in the direction

of the AO blood vessel, as shown above. Then, the changes in the lengths of

the vessels are δL0 = δ, δL1 = −δ cos θ, δL2 = −δ cosφ, and the change in

the cost function is

δP =
3πK

2
δ(a2

0 − a2
1 cos θ − a2

2 cosφ) (5.20)

In order for the cost function to remain unchanged, the following relationship

must be true:

a2
0 = a2

1 cos θ + a2
2 cosφ (5.21)

Now suppose that the bifurcation point is moved along the direction of

OB, as shown above. In this case, the changes in the lengths of the blood
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vessels are δL0 = −δ cos θ, δL1 = δ, δL2 = δ cos(θ+φ) The change in the cost

function is

δP =
3πK

2
δ(−a2

0 cos θ + a2
1 + a2

2 cos(θ + φ)) (5.22)

In order for the cost function to remain unchanged, the following relationship

must be true:

− a2
0 cos θ + a2

1 + a2
2 cos(θ + φ) = 0 (5.23)

Finally, suppose the bifurcation point is moved along the direction of OD,

as shown above. In this case, the changes in the lengths of the blood vessels

are δL0 = −δ cosφ, δL1 = δ cos(θ + φ), δL2 = δ,

The change in the cost function is:

δP =
3πK

2
δ(−a2

0 cosφ+ a2
1 cos(θ + φ) + a2

2) (5.24)

In order for the cost function to remain unchanged, the following relationship

must be true:

a2
0 cosφ+ a2

1 cos(θ + φ) + a2
2 = 0 (5.25)

We now have three equations and three unknowns. The optimal condi-

tions Eq.5.21, Eq.5.23, and Eq.5.25 that resulted from each of the shifts can

be solved for cos θ , cosφ , and cos(θ + φ). The result is

cos θ =
a4

0 + a4
1 − a4

2

2a2
0a

2
1

(5.26)

cosφ =
a4

0 − a4
1 + a4

2

2a2
0a

2
2

(5.27)

cos(θ + φ) =
a4

0 − a4
1 − a4

2

2a2
1a

2
2

(5.28)

If we know the radius of each of the three vessels, we can now determine the

angle of the bifurcation.
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5.4 Channel Performance for SIMO Model

5.4.1 Channel Capacity in SISO Model

The reception process at receiver side involves capture or release of molecules

from/into the blood vessels by several ligand-based receptors sCD40L. When

the sender emits one kind of molecule instantaneously, the receiver must re-

ceive the molecule with binding the molecule to the ligand on their surface.

The capture and release of molecules is modelled according to the chemical

theory of the ligand-receptor binding process in [137, 93]. We consider a

communication between only one transmitter and one receiver. When the

platelets emits molecules into the blood stream which propagate to the re-

ceiver, the concentration of molecules in random point of space follows the

generalised Langevin equation. Assume that the distance between the trans-

fer and receiver is r, then the receiver binding rate is k1 and release rate is

k−1, using the ligand-receptors binding model given in [137], then the con-

centration of by bond molecules of the receiver denoted by PR can be given

as:

PR =
k1NA

k−1

(5.29)

Where k1 and k−1 are the constant binding and release rates, respectively. In

this chapter, we follow model for k1 in the literature [137], which is a realistic

model for k1 that is experimentally tested for certain biochemical.

k1 =
4πDr0β

1− (1− β) r0
r∞

(5.30)

Where r0 is the radius of receiver and r∞ is the radius of the whole spheri-

cal shaped environment. β is the ratio of the radius of one molecule to the

distance between transmitter and receiver, i.e. β = r0/r. A is the concentra-

tion of the molecules sent by the transmitter. N is the concentration of the

ligand-based receptors on the receiver’s surface. Thus, considering the condi-

tion with ligand-based receptors, the probability that a molecule transmitted
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in slot i arrives in slot n can be modified as:

Z =
k1N

k−1

qv ·X + I =
k1N

k−1

∫ (i+1)T

iT

gd(t)dt ·X + I (5.31)

Figure 5.6: An illustration of Inter-symbol Interference and optimal detec-

tion threshold.

Differing from traditional communications, the non-received molecules

from previously transmitted symbols becomes a dominating source of error,

thus the ISI of a channel is a major consideration. The ISI is comprised

of aggregated molecules from previous symbols, which has been received in

error. According to illustration in Figure 5.6, ISI is major components for

the error. After a time duration T , a flux of molecules will be released as

a new symbol. Time duration T is calculated by two sample times between

the previous symbol and the current symbol, and the highest probability of

concentration is at a sample time tmax. The cross point of previous and cur-
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rent symbols is the decision threshold value ϕ of the concentration of arrived

molecules at the reception area. In this chapter, we lay our emphasis on the

effect of ISI. At first, we should consider the maximum error probability of

ISI in this system. The upper bound on symbol error probability is given by

[62].

Pe <
T−1∑
i=1

pi(1− FN(ti+1 − ti)) (5.32)

FN is the CDF of g(x, v, t) given by [135]:

FN(ti+1 − ti) =

∫ ti+1

ti

C
ξ√

4πDt3
e−

(ξ−vt)2
4Dt dt (5.33)

The value of the received concentration of molecules given in Eq.5.33 rep-

resents the outputs in the main capillary. We consider two forms of errors

in the system, one from the previously mentioned ISI and the other from

additive Gaussian noise N at the receiver. In order to obtain the optimal

detection threshold, we have following expression:

uZ0 = E[Z |X = 0] = uI + uN (5.34)

uZ1 = E[Z |X = 1] = uI + uN + Zmax (5.35)

σ2
Z = σ2

I + σ2
N (5.36)

σ2
I =

µI
VR

= V ar[Z |X = 0] = V ar[Z |X = 1] (5.37)

The distribution of ISI is given by the PDF of the capture concentration

with uI and σI . The distribution of the AWGN follows a normal distribution

N(uN , σ
2
N).The optimal decision threshold can be obtained by minimizing

the probability of error. The probability of error, denoted by pe, is expressed

as,

pe = p(1−Q(
ϕ− uZ1

σI
)) + (1− p)(Q(

ϕ− uZo
σI

)) (5.38)
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By solving ∂Pe
∂ϕ

= 0 (under the condition that ϕ ≥ 0 which is a realistic one),

the optimal threshold is derived as follows,

ϕ =

√
uZ0uZ1 [1 +

1

VR(uZ1 − uZ0)
ln(

(1− p)2uZ1

p2uZ0

)] (5.39)

The minimum error probability is discussed in digital communication [138]

with the decision threshold ϕ in a criterion of a standard symmetric detection

framework. As previously mentioned, the transmission system is an OOK

modulation scheme with pi probability of transmitting a 1. Note that the

probability of error given a 1 is transmitted is equal to the probability of error

given a 0 is transmitted. Therefore, with prior probability p = 0.5, the system

is a binary symmetric channel. Replace with the prior probability value

p = 0.5 to the Eq.5.39, we obtain the following optimal decision threshold

for symmetric channel. Correspondingly, we get the lower bound of the

symbol error probability pe as below.

Z
> 1

< 0

σ2
Z

uZ1 − uZ0

ln(
1− p
p

) +
1

2
(uZ1 + uZ0) = ϕ (5.40)

1

2
(uZ1 + uZ0) = ϕ (5.41)

Pe = Q(
uZ1 − uZ0

2
√
σI2 + σN 2

) (5.42)

We evaluate the bit error rate of the blood capillary channel with respect

the power of a signal and power noise ratio including ISI, with SNR defined

as [133]:

γ =
Pz

PN + PI
=

∫ T
0
|hz(t)|

2
dt

σ2
N + σ2

I

=

(
k1NC
k−1

)2∫ T
0
|g(Zn(t))|

2
dt

σ2
N + σ2

I

(5.43)

where PZ is the signal power at the receiver, the term PN is noise power, and
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PI is power of ISI.

5.4.2 Diversity Combining for SIMO

We next consider the case where the information sink has access to N phys-

ically separated reception nodes, while there is only one transmission node,

SIMO configuration. An illustration is provided in Figure 5.7. We assume

that each reception node is separated from one another by a large enough

distance such that transmission and reception probability at each receptors

in each capillary is statistically independent.

Given a modulated number of emitted molecules at the transmitter, ac-

cording to Eq.5.2, g(L1, v1, t) is the concentration of molecules at the first

order bifurcation node A at the location of the main blood capillary.

g(L1, v1, t) = C
L1√

4πDt3
e−

(L1−v1t)2
4Dt (5.44)

The arrival probability of a molecule at the second-level bifurcation node

is computed through the convolution integral with the g(L1, v1, t) and the

propagation process at the first-order daughter blood capillaries.

g(yn(t))= g(L1, v1, t)∗g(L2, v2, t) (5.45)

Similarly, Zn is the molecules concentration at the reception location of the

end of second-level daughter blood capillaries,

g(Zn(t)) =g(L1, v1, t) ∗ g(L2, v2, t) ∗ g(L3, v3, t) (5.46)

Zn =
k1NC

k−1

∫ (v+1)T

iT

g(Zn)dt+ In +Nn (5.47)

hn =
k1N

k−1

∫ (v+1)T

vT

g(Zn)dt (5.48)
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Figure 5.7: Molecular propagation model for second-order Y-shaped bifurca-
tion blood capillaries SIMO network.
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For non-symmetric branches, Maximum-ratio combining (MRC) is the

spatial diversity combining technique to be applied to improve the detec-

tion performance. In each channel, Zn in Eq.5.47 represents the received

molecules concentration. N is the molecules concentration in the transmit-

ter which represents the input X. hn is the transmission function from Input

X to Outputs Zn, while in the symmetric branches, the channel state in-

formation of all channels are the same. Equal-Gain combiner(EGC) is the

technique considered in this special case. Note that the magnitudes of the

weighting factors |a1|, |a2|, · · · , |aN | are the same and do not depend on the

SNR values of all channels [139].

ZEGC =
N∑
n

anZn =
N∑
n

e−jφnZn (5.49)

an = e−jφn, for n = 1, 2, · · · , N .

Hence, the resulting SNR at the output with the EGC technique can be

given by,

γZEGC =

(∑N
n=1 |hn|

)
Nσz2

2

(5.50)

while in the non-symmetric branches,let ZN denote the molecular concentra-

tion received by deferent receptors N in the Nth channel. By applying the

principle of MRC, we have these assumption [140]:

1. The signals from each channel are added together.

2. The gain of each channel is made proportional to signal level and

inversely proportional to the mean square noise level in that channel.

3. Different proportionality constants are used for each channel.

In the non-symmetric model combined outputs following the principle of

MRC at N receivers can be written as:

ẐMRC =
h0 ∗ Z0 + h1 ∗ Z1 + · · ·+ hn ∗ Zn
|h0|2 + |h1|2 + · · ·+ |hn|2

(5.51)
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According to [139],the SNR of SIMO system is the sum of the SNR at each

channels, shown as below. In fact, one can show that the MRC scheme

achieves the maximum SNR among all linear combining techniques.

γZMRC = γn

N∑
n=1

|hn|2 (5.52)

According to [141, 139], the relationship between channel capacity and SNR

of a SIMO system will be:

C = Bplog2(1 + γn

N∑
n=1

|hn|2) (5.53)

where the bandwidth of SIMO system is B = 1
Ts

.

5.5 Simulation Results

In this section, we present the simulation results of both symmetric and

non-symmetric blood capillary bifurcation SIMO system. In Table 5.1, it

presents the symbol meaning and parameters for following simulation results

of the error probability , SNR and channel capacity performance in the SIMO

channel.
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Table 5.1: Symbol meaning and Parameters of SIMO blood capillary system

Parameters Symbol value

Transmitted molecules number Q 106 − 107

Diffusion coefficient D 10−5 − 3× 10−5m2/s

Boltzmann constant kB 1.38× 10−23J ·K−1

Viscosity η 2× 10−3kg/(ms)

Pressure differential along vessel ∆p 8× 102N/m2

Best sample time tmax

Symbol time duration T

Constant binding rate k1

Constant release rate k−1

ISI mean uI

ISI variance σI σI = uI

Channel capacity C

Additive Gaussian noise mean uN 2× 105

Additive Gaussian noise variance σN σN = 0.5uN

Symbol error bit pe

Signal-to-Noise rate γ dB

Decision threshold ϕ

Receive probability PR

Bandwidth B Hz

Parameters for symmetric and non-symmetric blood capillary bifurcation

SIMO system is shown in Table 5.2, which will decide the physical shape and

flow velocity of blood capillaries.
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Table 5.2: Parameters setting for Symmetric and Non-Symmetric SIMO sys-

tem

Parameters Symbol value

Symmetric SIMO system

Radius of main capillary a0 4× 10−5m

Length of main capillary L0 4× 10−2m

Bifurcation angle θ θ = 37.5◦

Radius of First-level capillary a1
a0
a1

= 2
1
3

Length of First-level capillary L1 2× 10−2m

Radius of Second-level capillary a2
a1
a2

= 2
1
3

Length of Second-level capillary L2 2× 10−2m

Non-Symmetric SIMO system

Radius of First-level capillary Y1 a11 a11 = a0/2

Radius of First-level capillary Y2 a12 a12 = a0/4

Radius of Second-level capillary Z1 a21 a21 = a11/2

Radius of Second-level capillary Z2 a22 a22 = a11/4

Radius of Second-level capillary Z3 a23 a23 = a12/2

Radius of Second-level capillary Z4 a24 a24 = a12/4
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5.5.1 Symmetric Model

Figure 5.8: Velocity of blood flow in each level of blood capillaries(m/s)

In Figure 5.8, we plot the flow velocities of each level blood capillary branches

in the symmetric model. Three curves, corresponding to the velocity of three

levels of capillaries, are plotted at the site of a distance from the longitudinal

axis. According to Eq.4.2, the velocity is the highest at the site of the central

axis. The highest velocity in the main capillary is 4 × 10−3m/s, which is

double the value of the highest velocity in first-level capillary, whilst in the

second-level capillary, the value reduces to 1.3× 10−3m/s. The flow velocity,

has an effective impact on the propagation process, and is determined by the

bifurcation angle, length and radius of secondary blood capillaries.
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Figure 5.9: Arrival probability for each-level capillaries

In Figure 5.9, we plot the curves of g(L1, v1, t), g(yn(t)), g(Zn(t)), which

correspond to the molecules’ arrival probability at the end of main capillary,

first-level capillary branches and second-level capillary branches in symmetric

model. We observe that the curves become flat as bifurcation level increases,

thus the round trip time of one symbol increases but the maximum arrival

probabilities become lower. The mathematical meanings of these curves are

taken from the transfer function between transmitter and receivers along the

blood capillaries through bifurcations while arrival probabilities reach the

maximum at the time tmax.

123



Figure 5.10: Upper bound of error probability for second-level capillary, com-

paring maximum symbol error probability with the time duration T .

In Figure 5.10, we plot the upper bound of error probability as a function

of the time duration between two symbols. We observe that the maximum

error probability meliorates with the reduced Inter-symbol Interference(ISI),

when time duration increases.
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Figure 5.11: Minimum BER plot for second-level capillary in symmetric mod-

el, comparing BER with time duration T between two symbols in different

receive probabilities.

In Figure 5.11, we plot the minimum error probability against the time

duration for different receiving probability at the receivers, setting transmit-

ted molecules with a number of Q = 5× 106. The coding mechanism is the

OOK binary system, so the symbol error bit is equal to bit error rate (BER).

The results show how the BER in the second-level capillary is very sensitive

to different receiving probabilities B = k1NA
k−1

, whereby increasing it from 0.5

s to 1 s can meliorate the BER by several orders of magnitude.
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Figure 5.12: Minimum BER plot for second-level capillary in symmetric

model, comparing BER with the number of transmitted molecules in different

diffusion coefficient values. (time duration T = 4× tmax)

In Figure 5.12, we demonstrate the effect of the number of transmitted

molecules on the minimum BER comparing with the diffusion coefficient D,

setting time duration T = 4 × tmax. The plot shows that increasing the

number of transmitted molecules Q can improve the performance, slowly

approaching the limit of BER performance. Furthermore, in the condition

with a certain value of flow velocity, a minor diffusion coefficient will improve

the BER performance in an effective manner.
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Figure 5.13: SNR plot for second-level capillary in symmetric model, com-

paring SNR with number of transmitted molecules in different diffusion co-

efficient values. (time duration T = 4× tmax)

In Figure 5.13, we plot SNR performance against the number of transmit-

ted molecules Q for different diffusion coefficients D, setting time duration

T = 4 × tmax. The results show that the number of transmitted molecules

Q increase from 106 to 107, which can increase SNR 15dB, when the diffu-

sion coefficient D = 3 × 10−5. Additionally, with the constant number of

transmitted molecules being 4×106, decreasing the diffusion coefficient from

D = 3× 10−5 to D = 10−5, the SNR performance gains by 12dB .
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Figure 5.14: BER plot for second-level capillary in symmetric model, com-

paring BER with SNR in different diffusion coefficients. (time duration

T = 8× tmax)

Figure 5.14 shows the relationship between BER and SNR for different

diffusion coefficient D in symmetric model, setting time duration T = 8 ×
tmax and the number of transmitted molecules Q = 106. We can observe

that in each second-level capillary, changes in the diffusion coefficient have a

minor impact on the SNR to BER performance under the same velocity drift

conditions. In the condition of diffusion coefficient D = 10−5, at BER =

10−2 the SNR performance gain of the SIMO channel with MRC combined

techniques compared with the the SISO channel increase by 6dB (from 3dB

to 9dB).
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Figure 5.15: Channel capacity plot for second-level capillary in symmetric

model, comparing channel capacity C with number of transmitted molecules

in different diffusion coefficients. (time duration T = 4× tmax)

Figure 5.15 demonstrate the channel capacity against the number of

transmitted molecules Q for different diffusion coefficient D, setting time

duration T = 4 × tmax. Similar to Figure 5.13, channel capacity perfor-

mance has a positive correlation to SNR for fixed bit rate.
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Figure 5.16: Channel capacity plot for second-level capillary in symmetric

model, comparing channel capacity C with the time duration T between two

symbols in different receiving probabilities.

Figure 5.16 shows the channel capacity varies with time duration T be-

tween two symbols in different receiving probabilities. We can observe that a

higher receiving probability, channel capacity results in a better performance,

whereby increasing it from 0.5s to 1s can meliorate the channel capacity from

0.025 to 0.05, setting time duration T = 3 × tmax. Moreover, as the time

duration T increases, channel capacity increases rapidly and reaches the max-

imum, when the time duration T = 3× tmax, then decreases gradually. On

one hand, SNR increases as the as the time duration T increases, howev-

er, on the other hand, the bandwidth, as the reciprocal of time, decreases.
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To obtain optimal channel capacity, we can set the as the time duration

T = 3× tmax.

5.5.2 Non-symmetric Model

Figure 5.17: Velocity of blood flow in non-symmetric model

In Figure 5.17, we plot the flow velocities of second-level blood capillary

branches in the non-symmetric model. According to the illustration in Fig-

ure5.7, Z1 and Z2 are the daughter capillary branches of first-level capillary

Y1, while Z3 and Z4 are the daughter capillary branches of first-level cap-

illary Y2. Because the angles of Y-shaped bifurcation are not symmetric,

velocities of four second-level capillaries Z1, Z2, Z3 and Z4 are in the order

of v41 > v42 = v43 > v44.

131



Figure 5.18: Arrival Probability for non-symmetric Capillaries

In Figure 5.18, we plot the arrival PDF for first-level capillaries Y1 and

Y2, also the second-level capillaries Z1, Z2, Z3 and Z4 in the non-symmetric

model. We can observe that the arrival probability decreases and delay for

the round-trip time clearly increases, when compare the curves of second-level

capillary with the ones of the first-level capillary.

Furthermore, the time to reach the peak value of arrival probability tmax

are the same in the same level of capillaries. It is a fundamental discovery

that the bifurcation angles and radius will change the velocity of flow, but

the time to reach highest arrival probability is the same at the same level.

Arrival probability in next level is the convolution of PDF in previous level

and PDF in prorogation along this level of capillaries. Compared with the
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curves at the same level Z1,Z2,Z3 and Z4, arrival probability density functions

g(Zn(t)) = g(L1, v1, t)∗g(L2, v2, t) ∗ g(L3, v3, t) within the same diffusion

coefficient D and lower flow velocities from Z1 to Z4, we observe that tmax

keep the same, while the peak of the curves from Z1 to Z4 gradually become

broader but are not shifted with time. With this observation, we can estimate

the best time duration between two symbols and the bandwidth in return

only by the number of bifurcation times, without the flow velocity.

Figure 5.19: Minimum BER plot for second-level capillaries in non-symmetric

model, comparing BER of each sub-channel with time duration T between

two symbols in different receiving probabilities.

In Figure 5.19, we demonstrate the effect of T time duration in the con-

dition of different receive probabilities on BER performance. Similar to sym-
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metrical model in Figure 5.11, higher receive probability deserves better BER

performance. In the same condition of receive probability, we observe that Z1

with the highest flow velocity has much better BER performance than other

sub-channel Z2, Z3, Z4, and reached pe = 10−5 when we set time duration to

T = 8× tmax.

Figure 5.20: Minimum BER plot for second-level capillaries in non-symmetric

model, comparing BER with number of transmitted molecules. (time dura-

tion T = 6× tmax)

In Figure 5.20, we plot the BER performance against the number of

transmitted molecules Q for non-symmetric model, and set the time dura-

tion T = 6 × tmax . Similar to the symmetric model in Figure 5.12, BER

performance meliorates as more molecules are transmitted. Second-level cap-
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illary Z1 with the highest flow velocity has the best BER performance reach,

while Z3 BER is close to Z4 BER.

Figure 5.21: Minimum BER plot for second-level capillaries in non-symmetric

model, comparing BER of each sub-channel with SNR. (time duration T =

8× tmax)

In Figure 5.21, we plot BER against SNR for non-symmetric model, com-

pared with different diffusion coefficients D. We observe that a minor diffu-

sion coefficient results in a better BER performance. Furthermore, for the

same diffusion coefficient, Z1 and Z2 have close SNR to BER performance

while Z3 and Z4 have a close SNR to BER relationship. For the Z4 sub-

channel with D = 10−3, SNR gain from 3dB to 10dB will improve BER from

10−1 to 10−5.
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Figure 5.22: SNR plot for second-level capillaries in non-symmetric model,

comparing SNR of each sub-channel with number of transmitted molecules

Q. (time duration T = 6× tmax)

In Figure 5.22, we plot SNR against the number of transmitted molecules

Q in a non-symmetric model. Z1 has best SNR performance compared with

all the second-level capillaries. SNR increasingly becomes flat as the number

Q increases from 106 to 107, and the average SNR gain is 12dB.
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Figure 5.23: Channel capacity plot for second-level capillaries in non-

symmetric model, Comparing channel capacity C with time duration T be-

tween two symbols.

In Figure 5.23, we plot channel capacity C against the time duration

T for Z1, Z2, Z3, Z4 and combined these channels with MRC combination

techniques. Although BER and SNR performance are improved as time du-

ration T increases, bandwidth of the SIMO system B = 1
Ts

reduces, channel

capacity will reach a peak value for T = 4× tmax.
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5.6 Chapter Summary

This chapter establishes a single input and multiple outputs (SIMO) blood

capillary system with hierarchy and levels of Y-shaped bifurcations. This

model provides a further research on the foundation of the blood vessels

model with blood flow drift. Moreover, the bifurcation methods are divided

into symmetric and non-symmetric models by the angles of the bifurcation.

Possible simplification and assumption for this SIMO model have been dis-

cussed. The analysis of the interference is fundamental to the design of

interference mitigation techniques and increases the performance of com-

munication systems. The Inter Symbol Interference (ISI) and the additive

noise at the receivers are jointly analysed for SIMO blood capillaries system

under the assumptions of having additive Gaussian noise. The signals at

each sub-channel are combined by two spatial diversity combination tech-

niques Maximum-ratio combining (MRC) and Equal-gain combiner (EGC).

Numerical results of channel capacity performance in both symmetric and

non-symmetric models are analysed within the implementation of diversity

combining techniques EGC and MRC. Additionally, BER and SNR perfor-

mance are analysed regarding different conditions of the time duration be-

tween two symbols, the number of molecules that transmitter released and

diffusion coefficient. As the bifurcation level increases; the velocity of blood

flow decreases, however, it takes the same period to reach the maximum

arrival probability for each sub-channel in the same level. Increasing the

transmitted molecules number and decreasing the diffusion coefficient will

improve the BER and SNR performance.

Due to the need for supplying the tissue demand, it is essential to dis-

tribute blood flow within organs properly. The influence of red blood cells is

fundamental in the non-Newton model, which is more realistic and under fu-

ture consideration for inclusion. Moreover, future work will establish a more

reliable capillary microcirculation system distributed in the body under the

influence of oxygen concentration.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

The rising popularity of molecular communication (MC) has been accompa-

nied by the development of intelligent bio-inspired nanotechnology-enabled

devices, namely nano-machines. MC realises the exchange of molecular infor-

mation through the coding, emission, propagation, reception and decoding

processes, and it is proposed as a feasible solution for nano-networks. The

idea behind MC is motivated by biological communication, such as intracel-

lular and intercellular communication. Thanks to the feasibility of MC in

biological environments, MC has the potential to be the enabling technol-

ogy for a wide range of applications, mostly in the medical and biological

engineering, but also in the industrial and environmental monitoring fields.

Especially, Blood capillary-based MC, as a long-range communication in the

human body, is also a potential for biomedical applications, such as the drug

delivery, angiography and angiogenesis.

The focus of this PhD thesis is on the channel modelling of blood capillary-

based MC, where the molecules’ information is exchanged for their ubiqui-

tous distribution network in the human body. This choice is motivated by

an analysis of the literature, which identifies the blood capillary modelling,
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as a fundamental and promising long-range application in MC, has not had

sufficient research compared with other basic MC systems, which includ-

ing diffusion and neuron-based MC. Moreover, channel modelling of blood

capillary-based MC builds a complete understanding of the blood capillaries

or vessels from the ground up, which is vital to drug delivery application in

MC.

The objectives of the research presented in this thesis are to model the

blood capillary-based MC paradigm from communication engineering and in-

formation theory and to provide analysis to the modelling and performance

of this type of MC. First, a diffusion-based blood capillary model in the fre-

quency domain is realised to investigate the processes, involving vesicle re-

leasing, propagating, and receiving. Second, a SISO diffusion with blood flow

drift model in the time domain is established, which involves the endocrine

phenomenon within the blood vessels consisting of CD40 molecules emission

from the platelets, propagating in the flow of blood vessels and received by

the CD40L. Third, a SIMO blood capillary system with hierarchy and levels

of Y-shaped bifurcations is provided, with the analysis of ISI interference

as well as the BER, SNR and channel capacity performances. The main

contributions included in each chapter of this PhD thesis are summarised as

follows.

The main contributions in Chapter 3 are devoted to the diffusion-based

blood capillary MC in the frequency domain, and are summarised as follows:

• This thesis provides an interpretation of endocrine phenomenon to

blood capillary diffusion-based MC in terms of three processes: namely,

vesicle release, propagation, and reception.

• Differing from previous literature in macroscopic, this thesis studies the

vesicle diffusion process by microscopic Langevin equation, for which

it is possible to derive the input-output transfer function in frequency

domain.
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• This thesis provides the derivation of the Green’s function for Langevin

equation and analysis Langevin diffusion with the Spectral Density of

velocity dissipation as well as the displacement characteristics regarding

velocity.

• This thesis provides a closed-form expression of channel capacity of the

overall system then analyses the performance concerning biological and

physical parameters, such as temperature and viscosity.

Through the simulation results from this diffusion-based blood capillary

model, we observe that viscosity of blood fluid is sensitive to the perfor-

mance. Increasing the number of vesicles in RRP, the entropy of input is

increased thus channel capacity is increased. Moreover, Pure diffusion model

ignores the drift is not suitable to model the blood vessels or capillaries. So

in Chapter 4, this thesis provides an improved method used a generalised

Langevin equation with colour noise term to model the diffusion with flow

drift.

The main contributions in Chapter 4 are focused a SISO model for dif-

fusion with blood flow drift system in the time domain, and are summarised

as follows:

• This thesis provides a decomposition of the molecule diffusion with

blood flow drift into two main processes; namely, the diffusion and the

laminar blood flow drift; and a generalised Langevin equation with a

colour noise term is used in the statistical mechanic’s approach.

• This thesis presents a derivation of the relationship between the Langevin

equation and its corresponding Fokker-Planck equation and the expres-

sion of the drift coefficient and the diffusion coefficient from statistical

mechanics theory.

• With appropriate assumptions and boundary conditions, this thesis

provides the solution of Fokker-Planck equation for the transmission
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process. Then it presents a closed-form expression of channel capacity

of the diffusion with drift blood vessel MC system in time domain.

• With the numerical results, this thesis provides an analysis of channel

capacity regarding the physical parameters in the blood vessels, such

as flow velocity, the length of blood vessels, the diffusion coefficient and

pressure differential along the vessels.

Through the simulation results, we learn how the performance of a dif-

fusion with flow drift blood vessel MC system depend on the flow velocity,

the length and radius of blood vessels, the diffusion coefficient and pressure

differential along the vessels. In particular, we observe that capacity reaches

the maximum when prior probability p = 0.4, which is different from the

channel capacity reaches the maximum with prior probability P = 0.5 in

Shannon’s theory.

The main contributions Chapter 5 are focused on a SIMO blood capil-

lary system with hierarchy and levels of Y-shaped bifurcations, which also

involves a joint analysis of the Inter-symbol interference and noises affec-

tion to threshold detection, BER and SNR performance. As a consequence,

with diversity combination techniques, this thesis provides an analysis of the

channel capacity for the overall SIMO system.

• This thesis provides two bifurcation methods: symmetric and non-

symmetric models by the angles of the bifurcation. We must note that

possible simplifications and assumptions for this SIMO model have been

discussed.

• Joint analysis the Inter-Symbol Interference (ISI) and noises affection is

presented to determine threshold detection for a SIMO blood capillary

system.

• This thesis provides a derivation the probability density function for

the transfer function of channels from Input-output through the first

142



order and second order bifurcations.

• This thesis provides BER, SNR, and channel capacity performance

analysis with the implementation of diversity combining techniques

EGC and MRC.

Through the numerical results, we can learn that channel capacity perfor-

mance in both symmetric and non-symmetric models are analysed within the

implementation of diversity combining techniques EGC and MRC. Addition-

ally, BER and SNR performance are analysed regarding different conditions

of the time duration between two symbols, the number of molecules that

transmitter released and diffusion coefficient. We also observe that as the

bifurcation level increases; the velocity of blood flow decreases, however, it

takes the same period to reach the maximum arrival probability for each

sub-channel in the same level. This fundamental discovery could be used

to determine the bifurcation levels of capillary network and estimate the

sites and location of bifurcations, which may have a profound implication for

applications of medicine, angiography and angiogenesis.

6.2 Future Work

In the future, we plan to extend my research on molecular communication in

following directions:

In the Modelling aspect:

1. Since the models of this thesis are based on the Newtonian model,

non-Newtonian models, such as Casson model should be considered. More-

over, the influence of red blood cells and white blood cells should be jointly

considered. Thus the comprehensive non-Newtonian model is more realistic,

which involving the concentration of oxygen, red blood cells and white blood

cells.
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2. Expand this SIMO model with junction processes to model the blood

leaves the capillaries and moves through the veins, which become larger and

larger to carry the blood back to the heart. Thus the overall microcirculatory

circuit can be modelled in an integrated network.

In application-specific aspect:

3. We will investigate the discovery in Chapter 5 and then implement the

application in the area of image processing to self-detect the bifurcations in

the capillary system.

4. We will carry on the research of intrabody molecular communication

networks to the whole cardiovascular systems, for the realisation of molecular

communication networks for drug-delivery systems.

5. According to the new research in last month [142], they provide a

method for generating electricity from blood flow using a tiny fibre spun

from carbon nanotubes. The idea is that the fibre could be implanted in a

blood vessel to harvest the energy from flowing blood. We will investigate

the study of other molecular communication architectures, such as carbon

nano-tube (CNT)-based MC. Then we can establish a combined system with

blood capillary-based MC and CNT-based MC for future applications.
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