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Abstract

This thesis is based on the concept of Directional Changes (DC). To put simply,

a Directional Change is a price change that confirmed by a pre-determined

threshold (denoted θ) along with an extremum price (EXT). When the price

changes from an EXT by θ, then there is a Directional Change. If the EXT is a

local minimum, this is an upward Directional Change; likewise if the extremum

is a local maximum, then this is a downward Directional Change. The price

where the Directional Change is confirmed is also referred as the Directional

Change confirmation point (DCC). Following A Directional Change event, there

is an Overshoot (OS) event, which is the price change between the DCC and the

EXT that starts the next DC. Unlike the DCs, the OSs are not pre-determined.

The lengths (the price change) of the Overshoots vary.

Based on the concept of Directional Changes, the Average Overshoot Length

Scaling Law (the AOL Scaling Law) made its début in the paper written by

Glattfelder et al. (2010a). The AOL Scaling Law states that on average, the

mean absolute length of the Overshoots is approximately equal to the chosen

threshold θ. Yet, this AOL Scaling Law is only reported in the foreign exchange

markets and it is not tested with the stock markets’ data.

Hence, first of all, this thesis examined the Average Overshoot Length Scaling

Law in the stock markets. Tested with five stock markets’ indices, we found that

there is a scaling-law relationship between the threshold – θ and the average

Overshoot lengths. What is more, the linear regressions used to justify the

scaling-law relationship also confirmed that, on average, the Overshoot length is

about the same size as the threshold with the tested stock markets’ data. Beyond

this, given the AOL scaling law 〈|∆xOS |〉 =
(

θ
Cx,OS

)Ex,OS

, where 〈|∆xOS |〉 is



the mean absolute price changes of Overshoots; θ is the threshold; and Cx,OS is a

constant to be determined. The characteristic exponent Ex,OS among different

markets did not show noticeable difference.

Secondly, as the AOL Scaling Laws are also tested and found with the stock

markets’ data. And it is understood that approximately the average Overshoot

length is going to equal to the threshold θ. Two trading strategies built based

on the AOL Scaling Law were introduced as proof of concept. The first trad-

ing strategy – TS1 takes a long position when there is an upward Directional

Change confirmed. And it closes the position when the price rises another θ%,

or when the prices drops by α%, where α is an argument pre-determined to

control the timing when the strategy is going to close the position when los-

ing money. Unlike TS1, the other trading strategy – TS2 uses the median of

Overshoot lengths. Therefore, TS2 opens a long position when there is an up-

ward Directional Change confirmation. The long position is closed when the

price goes up by β% which is the median of Overshoot lengths. Else, the long

position is closed when the price drops by α%.

In summary, with tested arguments and data. Both TS1 and TS2 were able

to generate positive returns in most scenarios. And it was also known that

by adjusting the arguments, the trading strategies’ performance are able to be

tuned. As the arguments chosen to run the performance tests are not optimised,

the strategies may potentially do better.

Thirdly, we observed the behaviour of sub Directional Changes before the price

reaches an EXT. A sub Directional Change event is defined by a smaller thresh-

old which is proportional to θ, denoted as θ
d , where d is a constant and it is

greater than 1.

We used the time interval of each Directional Change to form a time window,
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in which sub Directional Changes were observed. For instance, the ith time

window is defined by tEXTi and tDCCi , where tEXTi is the physical time of ith

EXT, similarly tDCCi is the physical time of ith DCC. And this time window

was moved so it ends at tEXTi+1 . Dividing this time window in two, we counted

the numbers of sub Directional Changes in both halves of the time window. As

a result, we found that the numbers of sub Directional Changes did not appear

to have a noticeable difference in both halves of the time windows. However,

both the mean and median of the sub Directional Change numbers show that

the later half has more counts than the former half.
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Chapter 1

Introduction

1.1 Background

This thesis is heavily based on the concept of Directional Changes (DC), there-

fore, Directional Changes is going to be introduced first. A Directional Change

throughout this thesis is an event when the price changes, starting from an ex-

tremum (EXT), by a certain percentage in a different direction other than its

previous trend. A Directional Change could be an upward or a downward Direc-

tional Change event. For instance, if its extremum is a maximum, then the pre-

vious trend is considered an upward trend, when the price changes (decreases in

this case) by a certain percentage, then there is a downward Directional Change,

and vice versa if the extremum is a minimum. And this certain percentage is

an observer-determined parameter called the threshold or denoted as θ, which

is used to determine the number of Directional Changes in a series.

As a Directional Change is a certain percentage of price change from an ex-

tremum determined by θ. When a Directional Change is confirmed, then the
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price point where it is confirmed is a Directional Change confirmation point

(DCC). between this DCC, and next extremum, there is an connecting event

called an Overshoot event. To be more precise, an Overshoot is the price change

between a DCC and an EXT that starts next Directional Change.

Scaling laws are reported widely in the foreign exchange markets, of which we

believe could be utilised as a tool to build trading strategies in stock markets if it

could be also confirmed with stock data. Scaling laws are also widely considered

as one of the tools to understand complex systems. In this thesis, we examine a

scaling law which is formally called the Average Overshoot Length Scaling Law

(AOL Scaling Law). The term Overshoot is part the concept of the Directional

Changes, which is introduced above.

Trading strategies are widely used among the financial markets. The Direc-

tional Changes are believed to provide new insights towards the financial mar-

kets. Therefore, we would like to apply the insights that provided by the Di-

rectional Changes to the trading strategies in order to explore what could be

achieved.

The Average Overshoot Scaling Law suggests that on average the price changes

in an Overshoot should be approximately equal to the threshold, with which the

Overshoots are generated. Therefore, with this property, it would be interesting

to see if trading strategies could be built based on the AOL Scaling Law, and

potentially making profits.

And the AOL Scaling Law is originally discovered in the FX markets, however

it is not really tested in the stock markets in the existing literature, therefore,

it is also of interest to see whether the AOL Scaling Law exhibits the same

properties as in the FX markets.

Some research suggests that Directional Changes could potentially makes useful
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indicators of the markets, therefore, we would also attempt to make indicators

with Directional Changes.

1.2 Motivation

As mentioned previously, this thesis is motivated by the potential of Directional

Changes. First of all, we would like to take a closer look at the AOL Scaling

Law, to find out if it is the same in the stock markets as in the FX markets.

Furthermore, as no trading strategies built on Directional Changes has been

existing in the literature, we aim to attempt making trading strategies using

the property discovered by Glattfelder et al. (2010a) and test it with stock

markets’ data and see whether it could generate positive returns. Lastly, it

would be very nice if any indicators could be built that has potential predicting

power to the EXTs.

1.3 Objectives

There objectives are as following:

First, test the AOL Scaling Law with stock markets data to see if it shares the

same properties as in the FX markets. Second, make trading strategies using

Directional Changes, and test them using stock markets’ date to see if they

produce profits. Third, examine how the sub Directional Changes behave as

the price getting closer to EXTs.
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1.4 Scope

First of all, applying the methods used by Müller et al. (1990), the AOL Scaling

Laws are tested with the stock markets’ data. However, the outcomes could be

1) the explaining exponents do not significantly differ from 0, which means the

scaling law does not hold in the stock markets. 2) the explaining exponents have

the explaining power and are exactly the same as in the FX markets. 3) the

explaining exponents have the explaining power and are not exactly the same

as in the FX markets.

Second, we would like to build trading strategies that are able to make profits,

as a piece of proof of concept that the trading strategies built on Directional

Changes are profitable. However, as the knowledge of this potential is not

widely explored, potentially the trading strategies may not generate positive

returns.

Third, the indicators are built from scratch, thus, they could potentially have

no predicting power. Or the indicators together have predicting power, but it is

hard to specify which one of them have the predicting power and the empirical

model is going to be extremely complicated.

1.5 Overview

Apart from this introductory chapter this thesis has the following chapters. The

second chapter is a literature review. From the way financial markets are studied

to the concept of Directional Changes, scaling laws and trading strategies. The

3rd chapter is going to examine the AOL Scaling Law in the stock markets

and see if the exponents vary among different stock markets. The 4th chapter

is going to be the one introducing the trading strategies. The 5th chapter is
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going to examine the behaviour of sub Directional Changes. If there is any

pattern appears, then this could contribute to the trading strategies built on

DCs.
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Chapter 2

Literature Review

2.1 Approaches to study finance in a nutshell

In general, finance is the activity of managing money. Overtime, people invent

all kinds of ways to manage their money. It perhaps all originated from human

trading activities, for convenience, human invent money as media of exchange

instead of goods exchange (Jones 1976). People grow wheat worried about their

selling, people process wheat worried about their buying, then there comes

derivatives. From examples above, finance develops and evolves.

Yet, despite the success on concluding the relations between financial variables

(empirical studies), it seems none of them succeeded in giving a full picture

of how financial systems work or why financial systems behave the way they

behave.

Talking about laws, it is natural to think of physics, which determines be-

haviours in the universe and tries to grab the laws of nature. However, it strag-

gles to describe financial systems analytically (Glattfelder et al. 2010b).
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Galileo made a statement that laws of nature are written in the language of

mathematics properly three hundred years ago. Mathematics is what behind

physics, when a physicist find a connection between two quantities that re-

sembles a well-known mathematical connection, he jumps to the conclusion

discussed in mathematics (Wigner 1960). If there is not a connection in mathe-

matics, a physicist may invent one using the same language – mathematics (for

example, the innovation of calculus). It seems like it is mathematics that makes

physics work so well.

The question now becomes how mathematics works in finance. A prevailing

method is econometrics. Although it is useful to deny that variables are not

related, it straggles to truly prove they are related (although instrumental vari-

ables, or IVs, are introduced to determine causal relations, it raises other ques-

tions like how to pick IVs). Other approaches like differential equations (such

as Fokker-Planck differential equation, Langevin differential equation and Gar-

diner (n.d.)), are truly as incredible as the creating of econometrics. However, it

seems under certain circumstances, solving these equations are less efficient than

running a dynamic simulation on computers (Glattfelder et al. 2010b).

With recent developments in computer science, another possibility appears. To-

gether with the characteristics of a chaotic system – endogeneity, nonlinearity

and unpredictability, a financial system may be recognised as a highly complex

system (Guillaume 1995). Since the complexity, it is hard to be analytically de-

scribed, but not hard to be simulated on a computer (Glattfelder et al. 2010b).

What is more, with a computer dynamic simulation, a complex system can be

studied in a totally different way.
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2.1.1 Market behaviour

As Hussein (2013) mentioned is her thesis, there are three main streams examin-

ing market behaviour. They are Behavioural Approach, Empirical Microstruc-

ture Study and Agent Based Modelling.

Behavioural Approach

Traders’ psychology is studied by this approach. And eventually how traders’

over- and under-reaction are related to new information release and price move-

ments are examined by this approach (Hussein 2013). Cited by Hussein (2013),

Frankel (1990a,b), Ito (1990), MacDonald & Marsh (n.d.), Menkhoff et al.

(2009), Oberlechner (2001) study traders’ heterogeneous expectations, Baber

& Odean (2000), Glaser & Weber (2007), Oberlechner & Osler (2008) examine

overconfidence, loss aversion and deposition effect are studied by O Connell &

Teo (2009) and Shefrin & Statman (1985) respectively, Aguirre & Saidi (1999),

Bjønnes & Rime (2005), Laopodis (2005) study feedback trading. Above are

examples of human irrationality and empirical evidence.

Empirical Microstructure Study

Using empirical modelling, the effect of cumulated order flow (Berger et al.

2006, Evans & Lyons 2002b, 2007), news arrival (Almeida et al. 1998, Andersen

et al. 2003, Chang & Taylor 2003, Evans & Lyons 2002a, 2004), fundamentals

(Evans & Lyons 2002b, 2004), feedback trading (Engel & Kenneth 2004, Evans &

Lyons 2002b, Froot & Ramadorai 2005) and institutional interventions (Neely

2005, Payne & Vitale 2003) are analysed on a micro structure level Hussein

(2013).
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Agent-Based Modelling

Thanks to the recent development in computer science, aiming to make infer-

ences to the market behaviour and casualties of the emergence of the market

anomalies, agent-based modelling (ABM) has been adopted in explaining the

market behaviour. Mimicking the real market, using artificial intelligence, the

market is represented as a group of heterogenous agents who are able to adapt to

their environments by learning from the information they obtain. These agents

interact and interconnect to each other, and as a whole, they make the market

(LeBaron 2001, Samanidou et al. n.d.).

2.1.2 Financial systems as complex systems

As mentioned previously, financial systems are highly complex systems. The ba-

sic financial rules are simple, and are examinable (Tsang et al. 2012). However,

knowing these rules of how investors interact with each other does not explain

the emergence of financial markets.

Scaling Laws

Understanding financial markets as complex systems, methods used in examin-

ing complexity could be adopted. One of those methods is to use agent-based

modelling. Alternatively, this thesis focuses on discovering scaling laws which

are used to find regularities in nature. Scaling laws are discovered in many areas

(for example West et al. (1997), Barabasi & Albert (1999), Newman (2005)).

The greatness of scaling laws is that they establish invariance of scale and play an

important role in describing complex systems (Glattfelder et al. 2010a).

There is a scaling law reported by Guillaume et al. (1997) and other 12 scaling
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laws by Glattfelder et al. (2010a). These scaling laws are crucially based on an

algorithm called Directional Changes. This event-based algorithm offers a new

view of financial markets.

Intrinsic Time

Earth revolves the sun and earth rotates itself. By observations, civilisations

discover periodicities and invent different calendars to guide their agriculture,

religions, daily lives and etc. (Richards 1998).

A interesting fact is that there is not an universal calendar that tells you ev-

ery event. Although every event can be mapped into an ‘universal’ calendar,

some are calculated by different events. For example, the calculation of Easter

(Richards 1998).

Conventionally, physical time is used when analysing financial data. Could there

be another event1 that reveals periodicities?

Using intrinsic time to summarise markets is an alternative to using physical

time in studying financial time series (Mandelbrot & Taylor 1967) (cited Aloud

et al. (2012)). Intrinsic time is defined by events, here in this thesis we focus on

the events called Directional Changes.

Direcional Changes

Tsang (2011) formally defined Directional Changes (See the following section

for a more detailed definition). Briefly, a Directional Change is an event, at

which the current momentum (or direction) of price changes 2. Obviously, there

are two types of Directional Change events, “Upturn Event” and “Downturn

1When physical time is used, the event is the earth revolution: around its axis and around
the Suns

2In terms of price, there are only two directions; which are up and down.
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Event” Tsang (2011). However, not every change in directions is called a Di-

rectional Change event. Instead, only when the price changes a certain rate in

the opposite direction is called a Directional Change event. This certain rate is

pre-determined, called a threshold.

A Directional Change Event is usually followed by an Overshoot event. When

the change of price reaches the threshold, then a Directional Change event

is confirmed. However, usually, the price would not start another Directional

Change event immediately but continuously goes in the same trend until another

Directional Change event is confirmed.

2.2 Directional Changes, definitions

In this section, we summarise the key definitions of Directional Changes since

this thesis is heavily based on the concept of ‘Directional Changes’, following is

the definitions formally presented by Tsang (2011).

A Directional Change Event can be a Downturn Event or an Upturn

Event.

A Downward Run is a period between a Downturn Event and the next Upturn

Event. An Upward Run is a period between an Upturn Event and the next

Downturn Event.

In a Downward Run, a Last Low is constantly updated to the minimum of (a)

the current price and (b) the Last Low. In an Upward Run, a Last High is

constantly updated to the maximum of (a) the current price and (b) the Last

High. Last Low and last High are called Extremum (EXT).

In a Downward Run, given a Threshold (a percentage), an Upturn Event

is an event when the price is higher than the Last Low by the Threshold. An

11



Upturn Event terminates a Downward Run, and starts an Upward Run.

In an Upward Run, given a Threshold (a percentage), a Downturn Direc-

tional Change Event is an event when the price is lower than the Last High

by the Threshold. A Downturn Event terminates an Upward Run, and starts a

Downward Run.

The point when the price reaches the Threshold is called the point of Direc-

tional Change (DC).

The above definitions are mutually recursive. Operationally, we could set both

the Last High and Last Low to the price at the beginning of the sequence, where

neither downward run nor upward run is defined.

A Downturn Event is followed by a Downward Overshoot Event, which

is ended by the next Upturn Event, which is itself followed by an Upward

Overshoot Event, which is ended by the next Downturn Event. So time is

defined by sequences of event cycles of four events, as shown below:

... → Downturn Event →

Downward Overshoot Event →

Upturn Event →

Upward Overshoot Event →

Downturn Event → ...

2.3 Summarising data with fixed time intervals

Financial data is in high quality, as it is recorded at every trading. However,

as a result, the quantity of the data tends to be large. Therefore, although

information of every trading is recorded, it is not practically accessible until

recent years with the developments of computer science. For example, in foreign
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exchange markets, not until the beginning of the 1990s, intra-daily data have

been broadly studied, while daily data is very much used in the 80s. The later

represents only a very small subset of information available intra-daily, and the

size of the former is 100 to 1000 times larger than daily data (Guillaume et al.

1997).

Even though, the daily data still does not use every piece of data recorded. As

a result, only tick-by-tick data contains every piece of underlying information,

which we call raw data in the rest of this thesis. And a fact is that except tick-

by-tick data, all other data used in our daily research is somehow summarised

from tick-by-tick data. Therefore, in this sense, except using tick-by-tick data,

the ways of summarising become crucial. A good summary should reflect the

information of raw data as much as possible.

A common way to summarise raw data is to first choose a time interval, and

then sample raw data at fixed time points with a chosen interval; for example,

hourly, daily or monthly. We call data summarised this way an “interval-based

summary”. Naturally, an interval-based summary becomes a time series. In

such a summary, the time interval is the arbitrarily chosen parameter, and the

amplitude of the change of price is variable (Guillaume et al. 1997). And based

on the summary, analyses can be performed, and our established knowledge is

very much built on it. For example, one might describe the trend or volatility

in the last n days (Hamilton 1994)3

A possible explanation of why interval-based summarising becomes the prevail-

ing way would be this: Before tick-by-tick data became available, the daily or

hourly even second-by-second quotations were the most accurate data available.

Knowing them is seen as knowing all information available. Later, as a conven-

tion, when trading became more frequent, data are still summarised in such

3A time series is a collection of observations indexed by the date of each observation, pp.25
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ways.

Although raw data is not necessary to be summarised; in finance, each trade

is recorded, this includes the price, volume and the time that a trade occurs.

As a result, the amount of data collected is potentially large. To prevent com-

binatorial explosion (Krippendorff 2010), these recorded data, or raw data, are

usually not directly used, but are normally sampled into summaries. So that a

comparatively smaller number of data are used for analyses.

Guillaume et al. (1997) introduced an alternative way to summarise raw data.

In this approach, one summarises raw data by “Directional Change events”. In

this algorithm, compare to interval-based summarising, the change of price is

fixed and time is the varying parameter. Briefly, a Directional Change is an

event during which price momentum changes the direction – from upward to

downward or vice versa. In this chapter, we recapitulated the formal definition

of DC, and evaluate its appropriateness in capturing market dynamics.

2.4 Alternative ways of summarising raw data

Raw data can be summarised in many ways. However, in this section, we focus

on a traditional way – the interval-based summary and an alternative event

based way – what we called the Directional Change event-based summary or

DC-based summaries in short.

2.4.1 Interval-based summary of transactions

As mentioned above, financial data (See figure 1, graph a for raw data) is often

summarised using fixed time intervals. In other words, it is sampled with regular

observation frequencies (intervals are as shown in figure 1 graph d). Samples

14



collected this way are called interval-based summaries (see figure 1, graph b

and c), i.e. time series. For example, using 400-business-day’s daily4 (figure 1

graph a) closing price data (from 06/07/2011 to 01/02/2013) of HSBC as raw

data. With a monthly sampling, we can have an interval-based summary of 22

observations (21 intervals, shown in figure 1 graph d).

2.4.2 Using Directional Change events to summarise trans-

actions

Instead of summarising transactions with a chosen time interval, we can sum-

marise them by events. A DC-based summary is a summary of raw data sampled

at each Directional Change event. Although, there are many ways of defining

events; in this sub-section, we focus on using one specific type of events defined

by Guillaume et al. (1997), namely Directional Changes (or DC for short).

After understanding what a Directional Change event is, a DC-based summary

is possible to be explained. A DC-based summary of raw data is a summary

resulted by sampling raw data at each Directional Change event with a certain

threshold.

A DC-based summary is depicted in figure 2, graph a shows the raw data, which

is the same as in figure 1. Graph b and c show the DC-based summary of the raw

data, and graph d gives the intervals defined by Directional Changes. It is also

shown in graph d (vertical lines) that the interval widths are not fixed.

In figure 2, from graph a to d, it shows how Directional Changes summarise raw

data (graph a) into a DC-based summary (graph c to d). And in graph d, blue

vertical lines represent sample points. For comparison, in figure 3, graph a and

4Although a daily data is already an interval-based summary, for simplicity, we use daily
data as raw data to illustrate the concept.
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Figure 1. Summarising Raw Data
Interval-based summary of HSBC stock daily price (400 business days from

06/07/2011 to 01/02/2013). Blue curves is the interval-based summary of the
original price curve (the black curve, chart a). For simplicity, we use daily

closing prices as raw data, and contrast them with monthly (20 days)
interval-based summary
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Figure 2. DC-based summary of HSBC stock daily price (400 business days
from 06/07/2011 to 01/02/2013, red curve), under threshold of 0.075 (20

observations). Like figure 1, for simplicity, we use daily closing prices as raw
data
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b show the Interval-based summary and DC-based summary respectively. And

in graph c, the dramatic difference between them is shown. A more detailed

analysis is shown in next section.

2.5 The value of DC-based summaries

2.5.1 DC-based summaries focus on periods that matter

more

As an alternative of summarising raw data, DC-based summarising deals data

in a different way. Whenever a change of price reaches the threshold, Direc-

tional Changes capture it. In contrast, interval-based summary records only

at pre-determined (such as hourly, daily or second-by-second etc.) time points.

Therefore, using Directional Changes means more data in periods with violently

changing prices, fewer data in calm periods. For example, price P1 starts to in-

crease at t1. Then at t2, P2 becomes p + ∆p, and it starts to decrease. After,

when at t3, price P3 becomes p again (becomes the same as at t1, i.e. p1 = p3).

Assume that t1 and t3 are sampling time points of an interval-based summary;

the observation result would be no-change. But if the determined threshold T is

smaller than p (this means that one actually cares changes that are bigger than

T), then this move of price is definitely captured by Directional Changes.

For example, in figure 4, there are six extreme points marked as significant

move — A, B, C, D, E and F. It appears that only A’ is partly captured by the

Interval-based summary (not exactly captures the peak point, but a sub-peak).

As interval-based summaries sample at fixed points, it has a certain chance to

capture peaks like A. In other words, no matter how big the change is, Interval-

based summaries have a certain chance to miss it. As shown in figure 4, points B,
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Figure 3. Comparison between interval-based and DC-based summaries (HSBC
stock daily price from 24/12/2003 to 16/02/2009, under threshold 0.22)
In this figure, red curves are DC-based summaries and blue curves are

interval-based summaries. As can be seen in the figure, extreme are missed by
the Interval-based Summary but captured by the DC-based Summary.
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Figure 4. Comparison between interval-based and DC-based summaries
(HSBC stock daily price from 24/12/2003 to 16/02/2009, under threshold

0.22)

C, D, E and F are completely missed by the Interval-based summary, in which,

a dramatic move (from D to E, and E to F) is inappropriately sampled to a

much gentle decreasing trend (D’ to F’). In a contrast, the DC-based summary

captures all those significant moves except A’.

2.5.2 DC-based summaries offer longer coastlines

Directional Changes offer a longer price coastline than interval-based summaries.

With consideration of profitability, Directional Changes capture all events that

reach the threshold; of which is determined to find out changes in price that

concerning one’s interests. Aloud et al (2012) show that price-curve coast-

lines measured by intrinsic time are longer than those measured by physical
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Table 2.1: Vertical Coastline Calculation
Threshold 1% 2% 3% 5%

Observations 2403 1602 961 601
Interval based coastline 255.53 207.64 154.62 124.42
DC-based coastline 322.67 277.89 243.54 193.70

time. A longer coastline indicates higher potential of profitability. This is

because longer coastline measures a bigger accumulative change (i.e. bigger∑n
i=1|

pi+1−pi
pi
|).

A possible way of comparing coastlines summarised by intervals and DC (Di-

rectional Changes) is to calculate the cumulative changes. This is because both

summaries are samples of original data, that is, the horizontal length of both

summaries should be the same (see figure 1, 2)5. Therefore, the only matter

of the length of the coastline is vertical movements, i.e. the cumulative change

of the price. In order to make comparison possible, we first define a threshold

so that observation number (i.e. Directional Changes events) of a threshold is

calculated. After, the interval of interval-based summary is defined by using raw

data length divided by the observation number (DC event number). To compare

the coastlines of both summaries, we test vertical coastline under thresholds of

1%, 2%, 3% and 5% on the stock daily price of HSBC. And the results show

that the vertical DC-based summary coastlines are longer than interval-based

ones (See table 2.1).

5Usually, DC-based coastlines are, horizontally, shorter than interval based ones. This is
because that at the end of raw data, the remainder data do not confirm another Directional
Change event (see figure 2). But this is not a problem as: First, when calculating the coast-
line, the interval based summary coastline is counted up to where the DC-based one ends.
Second, even without adjustment, according to later experiments DC-based ones are longer
than interval-based ones. If considering this issue, DC-based ones should be even longer than
interval-based ones.
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2.5.3 DC-based summaries skip data holes

A basic fact of tick-by-tick data (raw data) is that the price is irregularly spaced

in physical time, or the transactions take place irregularly in terms of physical

time (τj). However, most statistical analyses rely upon the use of regularly

spaced data (ti). (Guillaume et al. 1997)

Consequently, interval-based summaries are often used, and the price at ti can

be defined as:

p(ti,∆t)

where ti is a sequence of the regular spaced time data, and ∆t is the time interval

(∆t = 1day, ∆t = 1hour, ∆t = 1second, etc.)

However, when summarising raw data, there is a possibility that the sample

point (ti) is laid between ticks (τj−1 < ti < τj). In other word, there are data

holes in interval-based summaries ({p(ti)|τj−1 < ti < τj} does not exist).

To fill the data holes (to obtain {p(ti)|τj−1 < ti < τj}), linear interpolation can

be adopted (Müller et al. 1990). In this case an estimate p∗ of {p(ti)|τj−1 <

ti < τj} can be calculated as

p∗(ti) = wp(τj−1) + (1− w)p(τj)

Where

w =
τj − ti
τj − τj−1

An alternative method is using p(τj−1) as p∗ (Wasserfallen & Zimmermann

1985).

However, if raw data is summarised by Directional Change events, the above

issue no longer needs to be considered. Because Directional Change events
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always take place at τj . By replacing ti by τj , traditional statistical analyses

can still be employed without data holes.

2.5.4 DC-based summaries offer a potential new risk mea-

sure

The Directional Change frequency over period S can be defined (Guillaume

et al. 1997):

d(S) ≡ d(∆t, n, rc) ≡
1

S
N({k|mk 6= mk−1, 1 < k ≤ n})

where

S = n∆t

and N({k})is the counting function, n∆t is the sampling period in which the

counting is performed. mk indicates the event type – upturn event or downturn

event – of current trend. rc is a constant threshold. d(S) calculates the frequency

of Directional Change events in the period.

DC-based summaries can be used as a new risk measure in two senses. First,

like volatility, measuring DC frequency gives an idea that how volatile the price

is in a certain period. Second, unlike volatility, the threshold is chosen by

the traders, it gives the knowledge that the price is likely to move beyond the

threshold. (Guillaume et al. 1997)
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2.6 Research using DC-based summaries

2.6.1 Regularities based on Directional Changes have been

discovered

Since Guillaume et al. (1997) introduced Directional Changes, as regularities in

a complex system, scaling laws are discovered in foreign exchange markets by

Guillaume et al. (1997). A scaling law or power law is a simple polynomial func-

tion relationship: f(x) ∝ x−a. In the study of Directional Changes, Guillaume

et al. (1997) presented the Directional-Change count scaling law:

N(∆xdc) =

(
∆xdc
C

)E

Where, N(∆xdc) is the number of Directional Changes measured for the thresh-

old ∆xdc. What is more, Glattfelder et al. (2010b) introduced a scaling law

relates the length of the average overshoot segment to the Directional Change

threshold:

〈|∆xos|〉 =

(
∆xdc
C

)E
And it turns out that the average length of Overshoot ∆xos is about the same

size as the threshold: 〈|∆xos|〉 ≈ ∆xdc (Glattfelder et al. 2010b). In addition,

another 12 empirical scaling laws are found in high-frequency foreign exchange

data (Glattfelder et al. 2010a).

These scaling laws can be seen as the law of the nature (Glattfelder et al.

2010b), or regularities of science, or patterns in financial data. Because they are

regularities, they happen under certain conditions. Therefore, trading strategies

can be made upon these laws.

For example, according to the scaling laws and what Directional Changes reveal,
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after a confirmation of a Directional Change event (a t% Directional Change), a

t% overshoot will be expected (on average). A natural decision would be taking

a long position when the price is expected to rise, and taking a short position

when the price is expected to fall. Therefore, what the strategy suggests would

be buying with all wealth at an upturn event confirmation point, as at which

the lowest price is available to an investor when price is expected to rise. And

selling (or short selling if possible) all assets at a down turn event confirmation

point, as at which the price would be the highest to an investor when the price

is expected to decline.

However, it is obvious that the strategy will not work when encountering zero

Overshoot6 or when an Overshoot is smaller than expected. The scaling laws

only apply on average, as a result, the strategy may face a possibility of losing

money. A possible solution will be selling a proportion of total assets, say

(ai%, where ai decreases exponentially), whenever a small rise, say ∆t% (∆t%

is smaller than t%), happens after purchasing. The position will not be closed

till next Directional Change event. And vice versa in short selling. Doing this,

when meeting zero Overshoots and Overshoots that are smaller than expected,

this rule will act as cut-loss strategy.

The trading strategies presented here are rather simple and more work needs

to be done to make it more sophisticated. These studies show that DC-based

summaries hold the ability of revealing regularities of underlying financial data.

Based on the scaling laws trading rules are possible to be made; however, it is

only tested in foreign exchange markets.

6When there is not an Overshoot period between two Directional Change events.
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2.6.2 Useful market indicators have been proposed

A pioneer work for measuring the impact of major events to the markets is intro-

duced by Zumbach et al. (2000) and applied in foreign exchange markets, it is so

called the scale of market shocks. It quantifies market movements on a tick-by-

tick basis. Later on, Maillet & Michel (2003) applied the scale of market shocks

to the stock market, and it is designed to detect and to compare the severity of

various crises. Inspirited by Zumbach et al. (2000), another unpublished work

by Subbotin (2008) is also mentioned in the study of Bisig et al. (2009). This

later study proposed a probabilistic indicator for volatilities, of which seems

usable for detecting crises and regime shifts rather than quantifying impact of

individual events.

Although, there is no right or wrong when choosing metric of measuring market

evolution (Bisig et al. 2009), and it sounds like a natural choice to use volatility;

Bisig et al. (2009) claimed that using volatility fails to maximise the criteria

of simplicity and the ability of incorporating all details of the price evolution,

as aggregating activities into a volatility measurement mingles different price

scales. For example, Bouchaud et al. (2008) showed the dynamics of the market

slowly ‘digesting’ the changes in supply and demand7 involving market order

book dynamic and market maker profits, of which is certainly interesting. How-

ever, because of using volatility as the measurement of market dynamics, it is

still not clear that what impact an event brings to the market, as the volatility

is a measure calculated from all past prices of which from various scales.

Therefore, to quantify the trajectory of market price evolution, Bisig et al. (2009)

proposed a frame work so called the scale of market quakes (SMQ), in which

the physical time no longer exists, instead, time ticks at every confirmation of

7Mainly, how transactions impact the market
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price Directional Changes. By calculating the average Overshoot and comparing

the Overshoot-at-event, a quake at a certain magnitude/scale can be calculated.

Testing at major news announcement and analysing the evolution of those scales,

Bisig et al. (2009) claim that the SMQ response to news announcements or a

mismatch of demand and supply. And the SMQ is believed to be the first step

to build a global information system (Bisig et al. 2009).

2.7 Potential of Directional Changes

2.7.1 DC-based summaries reflect properties of original

raw data

Although financial raw data are in high quality, it seems that there is not an

efficient way to deal with the raw data but summarise them into either interval-

based or event-based summaries. When summarising data, it loses some infor-

mation of the original data for sure. Therefore, it is important that the summary

reflects the original data’s properties/features.

When raw data are summarised as interval-based summaries, without consid-

ering the properties/features, data are sampled at certain time points with fix-

interval lengths. This mechanism makes the summary actually regardless to the

properties/features of original data. Although, one may claim that with smaller

intervals, it has bigger probability to capture market significant movements;

still there is no guarantee (see figure 4). What is more, with smaller intervals it

faces the problem of handling large size of data, which is one of the reasons that

we summarise raw data. In other aspects, when dealing with smaller-interval

data such as high frequency data, we may focus more on micro movements.

But, the data are still time series with fixed interval lengths. This means that
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even with small intervals, interval-based summaries still have the chance to miss

significant movements at a much more micro scale (as in figure 4).

However, with DC-based summaries, once the threshold is decided, the summary

captures these movements reaching or exceeding the threshold. Unlike Interval-

based summaries, all DC based summaries’ samplings are at extreme points,

(as shown in figure 3 and figure 4). As a result, when markets have significant

movements, they are represented as a big Overshoots. And the size of the

Overshoot actually reflects how significant a movement is. DC-based summaries

also work when facing high frequency data, and all need to be done is, depending

on the frequency, to use a smaller threshold.

2.7.2 A longer coastline potentially offers more profits

As mentioned in section 4.2, comparing to interval-based summaries, DC-based

summaries have longer coastlines. Because Directional Changes are always con-

firmed on extreme points (see figure 2). And interval-based summaries can

sample at potentially anywhere on the original price curve (see figure 1). Hor-

izontally, both DC-based and interval-based summaries pass the same path;

vertically, because DC-based summaries are always at extreme while interval-

based summaries are not, DC-based summaries are considered more volatile

than interval-based summaries (see figure 4). i.e. DC-based summaries’ curves

are longer than interval-based summaries’.

Considering the measurement of return pt−pt−1

pt−1
, in a market allowing short sell-

ing with proper trading strategies (as mentioned in section 4.2), higher volatility

means potentially higher profitability. Compare with interval-based summaries,

DC-based summaries are the ones giving longer coastlines. Yet, the problem

becomes how to find a proper trading rule.
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2.7.3 DC-based summaries prevent distorting raw data

Although there are methods to fill data holes, doing it makes the data distorted.

Because, when a data hole is filed, artificial data has been added. One may

claim that a big enough observation number could eliminate the artificial data’s

effects. However, there is no guarantee that the number of artificial data is not

proportional to the observation number. While using DC-based summaries does

not need to worry about this issue at all. By skipping data holes, DC-based

summaries make sure that all data used to run statistical analyses exist.

2.7.4 A potential new risk measure

Volatility gives investors an idea that the amplitude of change of price. Accord-

ing to an unrealistic assumption that the change or price is subject to normal

distribution, predictions of future volatilities can be made. However, a high

volatility does not only mean that an investor is like to have a higher chance to

loose, it also indicates that there is a chance to gain more.

While interval-based summaries fix time intervals and change of price’s ampli-

tude is changing; DC-based summaries choose a constant threshold while time

is varying. This means that the change of price is fixed and it gives the idea

of how likely the price is to move a certain rate in a certain direction. This is

helpful to traders to decide whether to open or close a position.

Although volatility tells us the general environment of the market, we are actu-

ally more interested in the timing of our trades. (Dacorogna et al. 1993)
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2.7.5 DC-based summaries reveal regularities

Actually, there are works on regularities in DC-based summaries. As mentioned

in section 5.1, although trading strategies are not necessary to be built on regu-

larities. But if there are regularities found, then trading strategies can be made

upon.

According to Guillaume et al. (1997), scaling laws, as regularities in complex

systems, are found in foreign exchange markets. And empirical studies are

done in foreign exchange markets showing positive results (Guillaume et al.

1997, Glattfelder et al. 2010a,b). Based on the scaling laws found in DC-based

summaries (see section 5.1), trading strategies are possible to be made.

2.7.6 DC-based summaries as a building brick of global

economical/financial information system

The scale of market quakes (SMQ) is introduced by Bisig et al. (2009). This sys-

tem is built on DC-based summaries and it is for detecting the market dynamics.

This system detects the quake scales of market by comparing the Overshoot-

at-event to the average Overshoot to give a description of market status. In-

spirited by the work, a further development can perhaps be using the Overshoot

distribution to make a value-at-risk-like risk measurement. Because this new

measurement is based on DC-based summary, it may not have the drawback

that volatility has (price activities at different scale are mingled). However,

further works need to be done.
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2.8 Trading

Technical analysis is one of the most important methods that traders use, aiming

to predict the trend of the financial market. Technical analysis, which involves

making investment decisions using past prices or other past statistics. Much of

technical analysis involves pattern recognition using specific frequency (intra-

day, daily, weekly) charts that display opening, high, low, and closing prices, as

well as trading volume in some form. (Kavajecz, 2004)

Technical analysis has been doubted by some of the traders, because the tech-

nical analysis aim to grasp the trading opportunities when the price patterns

appear again. However, it is too late to take an action when observing the sim-

ilar price patterns. Besides, the basic elements of technical analysis widely used

in everyday work do not behave the same way as they were described in text-

books and publications. Difficulties arise when technical analysis is used in daily

short-term trading because of minor market fluctuations that, in essence, are

just the market noise. This noise can be compared with radio interference hin-

dering clear reception. Unfortunately, the amplitude of this interference is too

high to be ignored in short-term trading, and it disturbs the market harmony.

(Toshchakov, 2006)

Technical analysis is very popular with the investment and financial markets, all

major brokerage firms publish technical commentary on the market and many

of the advisory services are based on technical analysis. Nowadays, the many

excellent traders and fund managers make profits according to technical analysis.

In its simplest form, technical analysis uses information about historical price

movements, summarised in the form of price charts, to forecast future price

trends. This approach to forecasting originated with the work of Charles Dow

in the late 1800s, and is now widely used by investment professionals as input for
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trading decisions. (Neely, Weller, & Dittmar, 1997). Technical analysis theory

tends to become an industry in the financial market, covering the stocks, bonds,

futures, and options.

2.9 Scaling laws

Research on the origins of power-law relations, and efforts to observe and vali-

date them in the real world, is an active topic of research in many fields of sci-

ence, including physics, computer science, linguistics, geophysics, neuroscience,

sociology, economics and more.

Scaling phenomena can be widely found in many systems from geophysical to

biological (Mantegna & Stanley 1995). Some large-scale dynamical properties

of these systems depend on the dynamical evolution of a large number of non-

linearly coupled subsystems.

West et al. (1997) conducted a study of Allometric scaling relations. It provides a

complete analysis of scaling relations for mammalian circulatory systems.

Piccinato et al. (1997) compared the behaviour of piratical trading prices and

bid/ask quote prices both with intra-day and intra-week data.

In a 2005 study Matteo et al. (2005), they showed that the scaling properties are

associated with characteristics of the markets. By examining 89 various markets

and instruments, they found that the scaling behaviours are quite universal

across financial markets. In addition, they found that emerging markets’ scaling

behaviours are more likely to be affected by the central bank decisions.

Stanley et al. (1996) argue that when a large number of microscopic elements

interact without a characteristic scale, scaling laws may be found independent

on the microscopic details.
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Bouchaud et al. (2008) discussed different models in order to find the origin of

scaling laws in financial time series. Complex, collective phenomenon often gen-

erates universal scaling laws. They are independent of the microscopic details.

Scaling laws emerge from collective action which do not exhibit in individual be-

haviour. Examples are phase transitions and fluid turbulence. Although much

less efforts have been devoted to understand the scaling laws on a microscopic

level, the scaling laws are also found in financial data. For pedagogical interest

they illustrate how and when scaling laws can arise.

Economy or financial systems can be seen as a many-body or a complex system.

Such as exchange markets which display scaling properties. In 1997, Galluccio

et al. studied the scaling behaviour in currency exchange rates with satisfy-

ing results. And found it qualitatively differs from a random walk. They also

claim that the Foreign exchange markets are qualitatively different from stock

exchange markets. A system with a large amount of interaction and intercon-

nection could exhibit a high level of complexity due to the high amount of

correlations between individuals resulting a collective behaviour.

In the study of scaling behaviours, there is the early work done by Mandelbrot

(1963). Later Mantegna & Stanley (1995) studied the scaling behaviours on a

stock index.

Mandelbrot (1983) gave the fractal point of view, that is analysing objects on

different scale levels.

Glattfelder et al. (2008) had discovered 17 new empirical scaling laws in FX

data across 13 currency exchange rates, which give an accurate estimation of

the length of the surprisingly long price-curve coastline. The new laws introduce

more stylised facts. The scaling law provides the invariance of scale and insights

of complex systems.
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Glattfelder et al. (2010a) discovered 12 independent new empirical scaling laws

in foreign exchange markets based on an event-based approach so called Di-

rectional Changes. The scaling laws estimate the length of the price curve

accurately. The scaling-law relations could also identify key empirical patterns.

They believe the universal laws could potentially enhance the understanding of

markets.

Although the reason that scaling laws exit is not clear (Bouchaud 2001, Barndorff-

Nielsen & Prause 2001, Farmer. & Lillo 2004, Lux 2006, Joulin et al. 2008).

The scaling invariance that proved by the scaling laws are essential in describing

complex system. The scaling laws could apply to such as risk management and

volatility modelling.

The financial markets such as foreign exchange markets could be seen as complex

networks made of interacting agents such as corporations institutional, retail

traders and brokers (Glattfelder et al. 2010a).

The scaling laws based on Directional Changes could be traced back to Müller

et al. (1990). It is mentioned that the tested four FX series follow a scaling law

measured by the absolute mean price changes of logarithmic prices.

At fixed time intervals, the mean absolute price change is a function of the fixed

time interval selected. The line fitting is also mentioned in the paper. It is

appropriate to be employed to this study.

|∆x| = c∆t1/E

Later in the paper conducted by Glattfelder et. al. (2010a), the new scaling

law was discovered and clearly stated in Glattfelder et. al. (2010b):
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〈
|∆x|OS

〉
≈
(

∆xdc
C

)E
(2.1)

However, it is not clear in the paper how the scaling was tested. Therefore,

we are employing the methods used in Müller et. al. (1990), which is the line

fitting approach introduced by Mosteller and Tukey (1977).

2.10 Summary

This chapter introduced the concept of Directional Changes, and also concepts

that built on Directional Changes. First, two ways of summarising raw data

were introduced: interval-based summaries and DC-based summaries. As a

well known method, interval-based summaries are not redundantly explained.

Focusing on DC-based Directional Change events were also introduced, as the

summaries based on Directional Change events, its uses are stated; mainly in-

cluded: DC-based summaries focus on periods matters more, they offer longer

price coast lines, skip data holes and potentially can be a new risk measure

telling investors the timing of closing or opening a position.

In addition, researches based on DC-based summaries are introduced – the

discovery of scaling laws and the scale of market quakes (SMQ). Scaling laws

can be seen as regularities in the market, with which, trading strategies can be

built. SMQ is a market indicator, it shows the effects that major events bring

to the market.

If the Directional Changes would bring potential trading methods, then of course

it would be necessary to test whether these methods or strategies could make

profits. Therefore, sections above introduced few concepts of trading strate-

gies.
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Following this, the scaling laws are found in multiple disciplines. They are

considered to provide insights of complex systems. Since financial systems are

also seen as complex systems, we would be also interested to see whether cer-

tain scaling laws holds in certain markets. One of the pioneer work would be

Müller’s scaling law, based on which the Average Overshoot Length was also

introduced.
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Chapter 3

The Average Overshoot

Length Scaling Law in the

Stock Market

3.1 Introduction

Inspired by Müller’s scaling law (Müller et al. 1990), along with other scaling

laws, Glattfelder et al. (2010a) discovered one specific scaling law1 in the foreign

exchange market – the Average Overshoot Length Scaling Law (the AOL Scaling

Law).

The AOL Scaling Law is built on the concept of Directional Change. A Direc-

tional Change is an event defined by a pre-determined price change – threshold

(denoted as θ), when the certain amount of price change (θ) from a extremum

1This is the so-called Average Overshoot Length Scaling Law, it will be referred as the
AOL scaling law in the following context
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is found, then there is a Directional Change. Following a Directional Change,

there is an Overshoot, which covers the period from the end of a Directional

Change to the next start of a Directional Change. And together, a Directional

Change and an Overshoot make a Total Movement (TM).

Glattfelder et al. (2010a) stated that, with the concept of Directional Changes,

in a Total Movement (TM), the mean absolute price change in Overshoots

would approximately equal to the threshold used to define the Directional

Changes.

However, the AOL Scaling Law is reported in the foreign exchange markets.

And there is no existing literature reporting the same AOL Scaling Law in

stock markets. Therefore, this chapter is going to examine the AOL Scaling

Law in the stock market. This chapter splits the examining of the AOL Scaling

Law into 3 parts.

First of all, if the scaling law is to hold, there must be a scaling-law relation-

ship between the average Overshoot length, or AOL (denoted 〈|∆xOS |〉) and

the Directional Change threshold (denoted θ). That is, Cx,OS and Ex,OS in

the assumed scaling-law relationship 〈|∆xOS |〉 =
(

θ
Cx,OS

)Ex,OS

can not be 0.

Therefore, this chapter is going to estimate the parameters Cx,OS and Ex,OS

using linear regression applied by (Müller et al. 1990).

Second, as the AOL Scaling Law suggests, the average Overshoot length should

be approximately equal to the threshold that defined the Directional Changes

and the Overshoots. Yet this is reported in the foreign exchange markets. There-

fore, this chapter is also going to look at this property by comparing the esti-

mated average Overshoot lengths and the threshold in the stock markets.

Third, as Müller et al. (1990) suggests, the exponent Ex,OS could also be referred

as the characteristic exponent, and potentially different markets may have sig-
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nificant different characteristic exponents. By comparing the exponents Ex,OS

from 5 different markets: FTSE 100, Hang Seng, Nasdaq 100, Nikkei 225, S &

P, conclusions could be drawn on this matter.

In order to examine the above three questions, five sets of data representing 5

stock markets are tested with a linear regression between ln〈|∆xOS |〉 and lnθ.

As a result, Ex,OS and Cx,OS are obtained, and further comparison, observations

could be conducted.

The remainder of this chapter is organised as following. The second section

is one introducing the methodology about the Müller’s scaling law, the AOL

Scaling Law, and the way this chapter is going to set-up the experiments as

well as the data that is used. The third section is going to present the results

obtained from the experiments. And these results are interpreted in section

four. Lastly is a conclusion section.

3.2 Methodology and experiment set-up

3.2.1 Müller’s scaling law

Scaling laws are widely reported in many disciplines, they are seen as important

tools in studying complex systems. As financial systems are also considered as

complex systems, the study of scaling laws in the financial systems are conducted

by researchers as well. Among which, Müller et al’s study (1990) was one of the

pioneers.

A study of foreign exchange markets (Müller et al. 1990), based on 15 years’

foreign exchange prices, shows that the mean absolute changes of logarithmic

prices and the time interval in which the price changes are measured follow a

particular scaling law. This scaling law suggests that the price changes (mean
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absolute changes) have a power-law relationship with the time interval (in which

the price changes are measured). In other words, the relationship between the

price change and the time interval is reported in their paper. Müller et al. (1990)

further stated that this relationship is a scaling-law relationship (or power-law),

and it was originally denoted in the paper (Müller et al. 1990) as:

〈|∆x|〉 = c∆t1/E

where the average operator 〈〉 indicates the mean value over the entire sample

period (in which the mean absolute changes of logarithmic prices are measured).

And |∆x| is the absolute changes of logarithmic prices. Correspondingly, ∆t is

the time interval in which the price changes are measured. In this case, ∆t is a

pre-determined parameter as series sampled in regular time periods have only

one fixed time interval, and ∆t is determined when the time interval is decided.

c and E are to be determined by a regression, which are going to describe the

scaling-law relations between 〈|∆x|〉 and ∆t.

If we have a series of ∆xi generated by a random process with stable distribu-

tions, refer the series as raw data. To determine this relationship, one needs to

first sample raw data with a time interval (∆t). With the time interval decided,

〈|∆x|〉 could be calculated. With a regression, c and E are also able to be calcu-

lated and are going to be constants. If the relationship does hold (Müller et al.

1990), E could be referred as the characteristic exponent.

3.2.2 The Average Overshoot Length Scaling Law

Inspired by Müller’s Scaling Law, an extended study had been conducted by

Glattfelder et al. (2010a), in which, there are 17 scaling laws discovered. Amidst
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these scaling laws, the Average Overshoot Length Scaling Law (the AOL Scaling

Law) also made its début (Glattfelder et al. 2010b).

The AOL Scaling Law is built on the concept of Directional Change. In a

time series, a time interval, like a day or an hour in a daily series or an hourly

series respectively, is a pre-demerited number to define the whole series. Corre-

spondingly, instead of a time interval, the Directional Change threshold2 – θ (a

percentage price change) is the pre-determined number to define the whole DC

series. A DC starts at a extremum and ends at where the price is θ% from the

extremum. Therefore, with a θ, each DC is defined by and covers an Extreme

point (EXT) and a Directional Change Confirmation point (DCC). The DCC

is where the price is θ% from the extremum, and a DCC is also the starting

point of an Overshoot. An Overshoot is the price change from the DCC to the

start of the next DC, which is going to be an extremum (but not necessarily

the next extremum is the start of the next DC or next EXT). Hence, once DCs

are found, OSs are found naturally as OSs cover the gaps between two DCs. A

Total Movement (TM) is consisted of a Directional Change (DC) and its corre-

sponding Overshoot (OS) that shares the same DCC. And the price change of

a DC is going to equal to θ by definition.

Furthermore, the thresholds of the Directional Changes also define a new intrin-

sic time series. Unlike the fixed time interval series, the series of time are not

evenly distributed in physical time. In other words, the lengths of time periods

are different, the series of the intrinsic time is a series of different time lengths.

However, this is not the focus of this thesis.

Recall that Müller’s scaling law introduced a scaling law between the mean ab-

solute price change and the time interval. Similar to the Müller’s scaling law, the

AOL Scaling Law also suggests a scaling-law relationship between two variables,

2could be often referred as ’the threshold’ in this thesis
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which are the price change and the Directional Change threshold.

Therefore, the AOL Scaling Law uses the threshold – θ instead of a time interval

to obtain the scaling-law relationship. Naturally, the AOL Scaling Law describes

not the relationship between the price change and the time interval but the

relationship between the price change and the threshold – θ.

Scaling laws found by Glattfelder et al. (2010a) are formally presented in their

paper as:

〈|∆x∗|〉 =

(
θ

Cx,∗

)Ex,∗

where 〈〉 is the average operator. The superscript and subscript * stands for

{TM, DC, OS}. TM, DC and OS denote Total Movement, Directional Change

and Overshoot respectively. ∆x = (xi−xi−1)/xi−1 and xi = x(ti) is the price at

time ti (Glattfelder et al. 2010a). ∆x∗ is the price change in a period *, 〈|∆x∗|〉

is the mean absolute price change covering all time periods *s. θ denotes the

Directional Change threshold. And parameters Cx,∗, Ex,∗ are constants to be

determined; the subscripts (x, ∗) indicate that the parameters are related to the

price x and period ∗.

* denotes the period the price change takes place. For instance ∆xTM is the

price change in a TM (Total Movement); similarly ∆xDC and ∆xOS are the

price changes in a DC and a OS respectively. When * in ∆x∗ is substituted

by TM , DC, or OS, Cx,∗, Ex,∗ need to change accordingly to Cx,TM , Ex,TM ,

Cx,DC , Ex,DC or Cx,OS , Ex,OS

Substituting * with DC, we can obtain one of the scaling laws – 〈|∆xDC |〉 = θ,

which holds by definition, as it suggests the price change in a Directional Change

would equal to the threshold, since the threshold is the percentage change that
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determines the price changes in the DCs.

Since the main focus is going to be examining the AOL Scaling Law, the AOL

Scaling Law is presented as:

〈|∆xOS |〉 =

(
θ

Cx,OS

)Ex,OS

With the tested foreign exchange data in the paper (Glattfelder et al. 2010a),

the AOL Scaling Law suggests, on average, a Directional Change is followed

by an Overshoot with the same magnitude. That is the average length of the

Overshoots is about the same size as the threshold (θ). To be more specific, that

is, 〈|∆xOS |〉 ≈ θ. And according to Glattfelder et al. (2010a), Cx,OS ≈ 1.06 and

Ex,OS ≈ 1.04. It, on average, makes the total movement double the size of the

Directional Change it is associated with. Therefore this could also be denoted

as: 〈|∆xTM |〉 ≈ 2θ.

As mentioned above, Scaling laws are considered to provide insights to the

underlying complex system. The AOL Scaling Laws are considered to provide

insights about the mechanism of the financial markets. As stated above the

AOL Scaling Law was discovered and tested within the foreign exchange market.

And it is of interest to find out if the AOL Scaling Law also holds in the stock

markets. and if the average length of the Overshoots are approximately equal

to the threshold θ. Also, Müller et al. (1990) mentioned that potentially the

characteristic exponent E could be used as an indicator to tell the difference

between different markets.
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3.2.3 Testing the AOL Scaling Law in the stock markets

To find out if the AOL Scaling Law holds in the stock market is to examine

whether 〈|∆xOS |〉 =
(

θ
Cx,OS

)Ex,OS

holds with stock markets’ data. And to see

if the average Overshoot length is also about the same size of θ is to look at the

parameter Ex,OS and Cx,OS . And by comparing Ex,OS , it would be known if it

differs as markets varies.

First of all, for the scaling law to hold, variables 〈|∆xOS |〉 (the average Over-

shoot length) and θ (the Directional Change threshold) need to have a scaling-

law relationship. That is, as the paper (Glattfelder et al. 2010a) suggests, Ex,OS

and Cx,OS should not be 0 for the them to have the relationship. Therefore,

to find out if the AOL Scaling Law holds in the stock markets is to find out

whether the parameter Ex,OS and Cx,OS (the characteristic exponent accord-

ing to Müller et al. (1990)) is significantly different from 0 with stock markets’

data.

Secondly, to know whether the average Overshoot length is also about the same

size of θ, it is necessary to know whether the characteristic exponent and param-

eter Cx,OS . That is, it is needed to know if 〈|∆xOS |〉 ≈ θ with stock markets’

data.

Thirdly, the comparison of characteristic exponents for different markets also

requires obtaining Ex,OS for each markets.

Therefore, to examine the AOL Scaling Law in the stock markets, it is essentially

to examine the characteristic exponent Ex,OS and Cx,OS in the scaling law with

the stock markets’ data. As the methods used to justify the scaling laws are

not obviously mentioned in Glattfelder et al. (2010a). Therefore, in order to

examine the AOL Scaling Law, this chapter is going to employ the method used

by Müller et al. (1990), which is the line fitting method introduced by Mosteller
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& Tukey (1977).

To test the AOL Scaling Law with the linear regression method employed by

Müller et al. (1990), the Scaling Law needs to be re-arranged into a linear model

ln
〈
|∆xOS |

〉
= −Ex,OS ·lnCx,OS+Ex,OS ·lnθ. In the linear model, Ex,OS should

not be zero. Otherwise there is no relationship between the threshold and the

average overshoot length. Therefore, the null hypotheses for the test could be

that Ex,OS = 0 and lnCx,OS = 0. And alternative hypotheses are Ex,OS 6= 0

and lnCx,OS 6= 0.

The relations between 〈|∆xOS |〉 and θ could be double checked with a direct

linear regression between these two variables. In this linear model, different

parameters should be tested. For example, in linear model 〈|∆xOS |〉 = a +

ex,OS · θ, if for 〈|∆xOS |〉 and θ to have a relationship, ex,OS should not be 0.

Therefore, similar null hypotheses are ex,OS = 0 and a = 0 and alternative

hypotheses could be ex,OS 6= 0 and a 6= 0.

If the AOL Scaling Law does hold in the stock markets, it is possible to further

look at the characteristic exponent Ex,OS , to see if it is the same in the stock

market as in the foreign exchange market. That is if 〈|∆xOS |〉 is approximately

equal to θ. If this is the case, then the AOL Scaling Law would be the same as

in the foreign exchange markets. If 〈|∆xOS |〉 is not approximately equal to θ,

then the AOL Scaling Law seems to not be the same as in the foreign exchange

markets. That is, the average overshoot length is not going to be approximately

equal to θ.

And if the characteristic exponent Ex,OS is significantly different among the

stock markets. Then this could potentially be used to distinguish the mar-

kets.

To sum up, by testing the regression model, we would know whether the char-
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acteristic exponent Ex,OS and parameter Cx,OS in the AOL Scaling Law would

be significantly different from 0. And if the parameters are statistically signifi-

cantly different from 0 tested by the stock markets’ data, it could also be said

the AOL Scaling Law holds is the tested stock markets. If the AOL Scaling

Law tells us that 〈|∆xOS |〉 ≈ θ, then the AOL Scaling Law is the same as in

the foreign exchange market. And if Ex,OS is approximately the same in all the

tested markets, then the characteristic exponent can not be used to tell different

markets. As a result, we would be able to answer 1) whether the AOL Scaling

Law holds in the stock markets; 2) what is the explaining exponent of the AOL

Scaling Law in the stock markets; 3) if the characteristic exponent Ex,OS is the

same among the markets.

3.2.4 Experiment set-up

In order to apply the line fitting method used by Müller et al. (1990) in testing

the hypothesis listed in the previous section. The equation of the two variables

is going to be re-arranged. The AOL Scaling Law is:

〈
|∆xOS |

〉
=

(
θ

Cx,OS

)Ex,OS

And according to Glattfelder et al. (2010a), to establish scaling-law relations

from two variables Y and X that have a linear relationship:

Y = A+BX

the scaling-law relationship could be constructed:
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y =
( x
C

)E
where y = eY , x = eX , E = B and C = e−A/B

Therefore, if we take the log for both sides for the AOL Scaling Law:

ln
〈
|∆xOS |

〉
= ln

[(
θ

Cx,OS

)Ex,OS
]

now the linear model could be obtained:

ln
〈
|∆xOS |

〉
= −Ex,OS · lnCx,OS + Ex,OS · lnθ

let c = −Ex,OS · lnCx,OS

it becomes the model going to be tested:

ln
〈
|∆xOS |

〉
= c+ Ex,OS · lnθ (3.1)

With the linear model, two sets of series of ∆xOS and θ are needed. In this

chapter the tested series are going to be a series of 100 thresholds (from 0.005

to 0.1) and 100 corresponding average Overshoot lengths.

Hence, with stock markets’ data, the experiments are going to be testing the

linear model listed above as 3.1 with the:

• Null hypothesis: Ex,OS is equal to 0;

• Alternative hypothesis: Ex,OS is not equal to 0;

• Null hypothesis: c is equal to 0;
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• Alternative hypothesis: c is not equal to 0.

That is, if Ex,OS = 0, there is no power-law relationship between
〈
|∆xOS |

〉
and

θ. However, c = 0 does not necessarily mean there is a power-law relationship

between
〈
|∆xOS |

〉
and θ.

When the regression is conducted, by observing the parameter Ex,OS , it would

be answered that whether the AOL Scaling Law stands in the stock markets

and whether it is the same as in the foreign exchange markets.

A linear model between 〈|∆xOS |〉 and θ could also be tested to confirm the

relations between the average overshoot lengths and the threshold:

〈|∆xOS |〉 = a+ ex,OS · θ (3.2)

where a and ex,OS are parameters to be determined. 〈|∆xOS |〉 is the average

price change in the Overshoots. θ is the Directional Change Threshold.

Similar hypotheses are:

• Null hypothesis: ex,OS is equal to 0;

• Alternative hypothesis: ex,OS is not equal to 0;

• Null hypothesis: a is equal to 0;

• Alternative hypothesis: a is not equal to 0.

3.2.5 Data

As the aim is to justify whether the scaling law stands in the stock markets. It

is a necessity to use the stock markets’ data. In this chapter, 5 sets of stock

indices are going to be used testing the AOL Scaling Law. They are the FTSE
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100, Hang Seng, Nasdaq 100, Nikkei 225 and S&P 500. These data are daily

closing indices (treated as prices) starting from 02/01/09 to 01/11/13.

What is more, 100 thresholds, from 0.005 to 0.1 are selected to test the law. 100

average Overshoot lengths corresponding to the thresholds are also calculated.

The increment is calculated as : (0.1−0.005)/99 for there are 99 intervals.

To sum up, there are 5 indices with 100 thresholds from 0.005 to 0.1 are tested

with their corresponding Average Overshoot Lengths.

3.3 Results

With the data and the models, experiments are conducted, the results are pre-

sented in this section. As the independent variable, with five markets’ data

are selected, 100 θs, and their corresponding average overshoot lengths for each

market’s data set are the dependant variable. Ex,OS and c from testing model

3.1 for each market are obtained and listed in Table 3.1.

Table 3.1: Linear Regression between ln
〈
|∆xOS |

〉
and lnθ from model 3.1

at 95 % Confidence Level
Index Ex,OS ∆Ex,OS P-value c ∆c P-value Adj. R2

FTSE 100 0.885 0.0379 1.92206E-68 -0.410 0.1226 1.80883E-09 0.9559
Hang Seng 0.889 0.0416 7.79264E-65 -0.284 0.1346 6.06335E-05 0.9477
Nasdaq 100 0.882 0.0408 2.5902E-65 -0.299 0.1320 1.86139E-05 0.9489
Nikkei 225 0.893 0.0252 1.05972E-91 -0.228 0.0816 2.42416E-07 0.9803
S & P 500 0.998 0.0661 4.19429E-51 0.050 0.2139 0.644568241 0.9004
Average 0.909 -0.234

As can be seen in the Table 3.1, the first column lists the indices tested with

the model (3.1). And from the second column, they are Ex,OS , ∆Ex,OS , the

P-value of Ex,OS , c (where c = −Ex,OS · lnCx,OS), ∆c, the P-value of c, and the

adjusted R2 for the line fittings. And the P-values of Ex,OS is the probability

that estimated Ex,OS does not lie with in Ex,OS ±∆Ex,OS , the same goes for
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c.

Therefore, by the coefficients obtained from the above table (Table 3.1), Cx,OS

is calculated from c and listed in Table 3.2.

Table 3.2: Cx,OS calculated from c

Index Cx,OS
FTSE 100 1.589
Hang Seng 1.377
Nasdaq 100 1.404
Nikkei 225 1.291
S & P 500 1.000
Average 1.332

With the AOL Scaling Law:

〈
|∆xOS |

〉
=

(
θ

Cx,OS

)Ex,OS

scaling relations between 〈|∆xOS |〉 and θ for the each market are as follow-

ing:

FTSE 100:

From the linear regression using the tested FTSE 100 data, the probability

that Ex,OS does not lie within 0.885 ± 0.0379 is 1.92206E-68. Similarly, the

probability that c lies beyond −0.410 ± 0.1226 is 1.80883E-09. Therefore, the

hypotheses that Ex,OS = 0 and c = 0 are going to be rejected in this case. And

Cx,OS could be obtained: Cx,OS = 1.589. And the adjusted R2 for the line

fitting is 0.9559. So the AOL Scaling Law in the FTSE 100 is:

〈
|∆xOS |

〉
=

(
θ

1.589

)0.885

Hang Seng:
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From the linear regression using the tested Hang Seng data, the probability

that Ex,OS does not lie within 0.889 ± 0.0416 is 7.79264E-65. Similarly, the

probability that c lies beyond −0.284 ± 0.1346 is 6.06335E-05. Therefore, the

hypotheses that Ex,OS = 0 and c = 0 are going to be rejected in this case. And

Cx,OS could be obtained: Cx,OS = 1.377. And the adjusted R2 for the line

fitting is 0.9477. So the AOL Scaling Law in the Hang Seng is:

〈
|∆xOS |

〉
=

(
θ

1.377

)0.889

Nasdaq 100:

From the linear regression using the tested Nasdaq 100 data, the probability

that Ex,OS does not lie within 0.882 ± 0.0408 is 2.5902E-65. Similarly, the

probability that c lies beyond −0.299 ± 0.1320 is 1.86139E-05. Therefore, the

hypotheses that Ex,OS = 0 and c = 0 are going to be rejected in this case. And

Cx,OS could be obtained: Cx,OS = 1.404. And the adjusted R2 for the line

fitting is 0.9489. So the AOL Scaling Law in the Nasdaq 100 is:

〈
|∆xOS |

〉
=

(
θ

1.404

)0.882

Nikkei 225:

From the linear regression using the tested Nikkei 225 data, the probability

that Ex,OS does not lie within 0.893 ± 0.0252 is 1.05972E-91. Similarly, the

probability that c lies beyond −0.228 ± 0.0816 is 1.80883E-09. Therefore, the

hypotheses that Ex,OS = 0 and c = 0 are going to be rejected in this case. And

Cx,OS could be obtained: Cx,OS = 1.291. And the adjusted R2 for the line

fitting is 0.9559. So the AOL Scaling Law in the Nikkei 225 is:
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〈
|∆xOS |

〉
=

(
θ

1.291

)0.893

S & P:

From the linear regression using the tested S & P data, the probability that

Ex,OS does not lie within 0.998±0.0661 is 4.19429E-51. Similarly, the probabil-

ity that c lies beyond 0.050± 0.2139 is 0.644568241. Therefore, the hypothesis

that Ex,OS = 0 is going to be rejected in this case. However, the hypothesis

c = 0 is not going to be rejected. Therefore Cx,OS could be obtained: Cx,OS = 1.

And the adjusted R2 for the line fitting is 0.9004. So the AOL Scaling Law in

the S & P is:

〈
|∆xOS |

〉
=

(
θ

1

)0.998

On average, there is:

〈
|∆xOS |

〉
=

(
θ

1.332

)0.909

The relations between
〈
|∆xOS |

〉
and θ could also be tested in a linear model

between
〈
|∆xOS |

〉
and θ (model 3.2), notice this is not the linear relations

between ln
〈
|∆xOS |

〉
and lnθ (model 3.1).

Table 3.3: Linear Regression between
〈
|∆xOS |

〉
and θ from model 3.2

at 95 % Confidence Level
Index ex,OS P-value a P-value Adj. R2

FTSE 100 1.000 6.17149E-58 -0.003 0.074515105 0.9277
Hang Seng 1.152 6.40451E-64 -0.005 -0.008117526 0.9454
Nasdaq 100 1.116 3.5377E-56 0.002 0.140211143 0.9215
Nikkei 225 1.096 6.95119E-80 0.000 0.785616773 0.9742
S & P 500 1.474 2.9809E-40 -0.018 1.7604E-05 0.8343
Average 1.168 -0.006
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As can be seen in the Table 3.3, the first column lists the indices tested with

the model (3.2). And from the second column, they are ex,OS , the P-value of

ex,OS , the a, the P-value of a, and the adjusted R2 for the line fittings.

According to the P-values shown in Table 3.3, ex,OS = 0 is rejected for all data

sets. However, it does not seem the case for a. a = 0 could be rejected for

Nasdaq 100 and Nikkei 225. And for FTSE 100, Hang Seng and S & P, a = 0

is not rejected.

Therefore, there relations between
〈
|∆xOS |

〉
and θ could also be presented

as:

FTSE 100:

〈
|∆xOS |

〉
= θ

Hang Seng:

〈
|∆xOS |

〉
= −0.005 + 1.152θ

Nasdaq 100:

〈
|∆xOS |

〉
= 1.116θ

Nikkei 225:

〈
|∆xOS |

〉
= 1.096θ

S & P:
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〈
|∆xOS |

〉
= −0.018 + 1.474θ

3.4 Interpretation

This section is going to interpret the results presented in the previous section.

And this section is mainly consisted with three sub-sections. The first one is

going to be an interpretation of the whether the AOL Scaling Law holds in the

stock markets. The second sub-section is going to discuss the relations between

the average Overshoot length and the threshold. And the third sub-section is

going to look at the difference of Ex,OS among the markets tested.

3.4.1 The AOL Scaling Law

First of all, from the AOL Scaling Law, we know that for the AOL Scaling Law

to hold in the stock market, Ex,OS and Cx,OS can not be 0. That is, in model

(3.1), Ex,OS should not equal to 0. c is ok to be 0, as c = −Ex,OS · lnCx,OS ,

and c = 0 means that in the AOL Scaling Law Cx,OS = 1, and that means the

AOL Scaling Law holds.

From Table 3.1, we know that the all P-values for the Ex,OS indicate that Ex,OS

is not equal to 0 at 95% confidence level, as the P-values are far lower from 5%,

which means that Ex,OS lies outside Ex,OS ±∆Ex,OS is lower than 5%.

P-values for c are mostly far lower than 5% which means that the probability

to reject that c = 0 are high enough, except the P-value for S & P is roughly

0.645. This means that c for S & P is not significantly different from 0.

With c values, we can directly calculate Cx,OS from c in Table 3.1 for each data

set except Cx,OS for S & P which is calculated as 1 as c for S & P is count as 0.
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They are all listed in Table 3.2. As can be seen in the table, it is clear that all

data sets have ranged mostly from 1.291 to 1.589, except S & P has a 1.

The above relations are concluded from the linear regressions of ln
〈
|∆xOS |

〉
and lnθ. And it seems like that the AOL Scaling Law does hold in these five

tested stock markets, as all Ex,OS shown in Table 3.1 are significantly different

from 0. This means that the exponent Ex,OS does have explaining power over

〈|∆x|OS〉 and there is a scaling-law relationship between 〈|∆x|OS〉 and θ.

3.4.2 The relations between the Average Overshoot Length

and the threshold

As we know that in the foreign exchange markets, the average Overshoot length

is about the same size of its Directional Change threshold. A number of thresh-

olds and their corresponding estimated AOL are listed in the Table 3.4.

Table 3.4: Estimated AOLs obtained from model 3.1
θ 0.005 ... 0.024 ... 0.043 ... 0.063 ... 0.082 ... 0.1

FTSE 100

AOL

0.006 ... 0.025 ... 0.041 ... 0.057 ... 0.072 ... 0.087
Hang Seng 0.008 ... 0.028 ... 0.044 ... 0.059 ... 0.073 ... 0.085
Nasdaq 100 0.011 ... 0.032 ... 0.047 ... 0.061 ... 0.74 ... 0.085
Nikkei 225 0.014 ... 0.036 ... 0.052 ... 0.066 ... 0.77 ... 0.088
S & P 500 0.014 ... 0.037 ... 0.053 ... 0.066 ... 0.78 ... 0.088
Average 0.010 ... 0.031 ... 0.048 ... 0.062 ... 0.075 ... 0.087

From this table (3.4), at a glance, we cant see that the estimated AOLs are not

very different from their thresholds. To examine this further, we can measure

the AOL over θ ratio. That is 〈|∆x
OS |〉
θ .

Table 3.5 shows the average estimated AOL over θ ratios for each data set. This

is the mean value of 〈|∆x
OS |〉
θ , where θ = 0.005, ..., 0.1 for each market. That

is, for each data set, every threshold has a corresponding estimated AOL3 from

3Notice that AOL is 〈|∆xOS |〉
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Table 3.5: Average Estimated AOL over θ (derived from model 3.1)
FTSE 100 0.958
Hang Seng 1.076
Nasdaq 100 1.074
Nikkei 225 1.106
S & P 500 1.007

the model 3.1. And their average is what listed in the table.

And from the table, we can see that the average estimated AOL over θ is ranged

from 0.958 to 1.106, which means that the estimated AOL is roughly 0.958 to

1.106 times bigger than θ. And this could also be double checked by a linear

regression using model 3.2.

Table 3.6: Estimated AOLs obtained from model 3.2
θ 0.005 ... 0.024 ... 0.043 ... 0.063 ... 0.082 ... 0.1

FTSE 100

AOL

0.005 ... 0.024 ... 0.043 ... 0.063 ... 0.082 ... 0.100
Hang Seng 0.001 ... 0.023 ... 0.045 ... 0.067 ... 0.089 ... 0.110
Nasdaq 100 0.006 ... 0.027 ... 0.048 ... 0.070 ... 0.091 ... 0.112
Nikkei 225 0.005 ... 0.027 ... 0.048 ... 0.069 ... 0.090 ... 0.110
S & P 500 -0.010 ... 0.018 ... 0.046 ... 0.075 ... 0.103 ... 0.130
Average 0.001 ... 0.024 ... 0.046 ... 0.067 ... 0.091 ... 0.112

In Table 3.6, the estimated AOLs are derived from testing model 3.2. Results

are similar to what in Table 3.4. And Table 3.7 shows the average estimated

AOL to θ ratios for each data set derived from model 3.2.

Table 3.7: Average Estimated AOL over θ (derived from model 3.2)
FTSE 100 0.100
Hang Seng 0.996
Nasdaq 100 1.112
Nikkei 225 1.096
S & P 500 0.903

And similar results are obtained as the average estimated AOL over θ is between

0.903 and 1.112.

As mentioned above, the characteristic exponent alone cannot really tell the size
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of AOL. Therefore, combining the characteristic exponent Ex,OS and the other

parameter Cx,OS , we know that within the tested thresholds, the AOL is about

the same size as its corresponding threshold by testing model 3.1. And this

1:1 relationship between
〈
|∆xOS |

〉
and θ is also confirmed by the test results of

model 3.2. This means, on average, the Overshoot goes about the same size of

the threshold, this makes a TM (Total Movement) twice the size of the threshold

θ.

3.4.3 Characteristic exponents among different stock mar-

kets

From Table 3.1, we know that the estimated Ex,OS lie within 0.885 and 0.998.

However, if we exclude Ex,OS for S & P, which is 0.998. We have Ex,OS lie

within 0.885 and 0.893. Therefore, not a big difference could be observed. The

reason that Ex,OS for S & P is excluded is because that c for S & P is not

significantly different from 0. Therefore, it does not seem like the characteristic

exponents could be used to distinguish different markets.

3.5 Conclusion

This chapter has introduced the scaling law discovered by Müller et al. (1990),

which states that the absolute price change of logarithmic prices follow a scaling

law to the time on which they are measured. Inspired by Müller, Glattfelder

et al. (2010a) introduced the Average Overshoot Length (AOL) Scaling Law,

which is similar idea based on the concept of Directional Changes. Instead

of the time interval, this AOL Scaling Law are relations between a two price

changes. One is the threshold, the other one is the average price changes during
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the Overshoots.

Like Müller’s scaling law, the AOL Scaling Law is also reported in the foreign

exchange markets, and there is no existing literature testing the AOL Scaling

Law in the stock markets. Therefore, this chapter has examined the AOL Scaling

Law in the stock markets with 5 indices.

This chapter explicitly presented the way to test the AOL Scaling Law in the

stock markets using the methods employed by Müller et al. (1990). We used

5 data sets representing five stock markets to test two hypotheses. They are

FTSE 100, Hang Seng, Nasdaq 100, Nikkei 225 and S&P daily closing prices

from 02/01/09 to 01/11/13. As a result, the following can be concluded.

First of all, from the test results of model 3.1 shown in Table 3.1 and calculated

Cx,OS shown in Table 3.2, the AOL Scaling Law does hold in the stock markets

with the tested threshold. As Ex,OS for all 5 indices are significantly different

from 0 at 95% confidence level. Although c for S & P is not significantly from

0, c = 0 translates into Cx,OS = 1 for S & P.

Second, now that we know the characteristic exponent alone can not really tell

the size of the AOL. Substituting parameters Ex,OS and Cx,OS with coefficients

listed in Table 3.1 and 3.2, we can obtain the estimated AOLs. Subsequently,

estimated AOL to θ ratio could be calculated, and they are listed in Table

3.5, which indicates the average Overshoot length is about the same size of its

corresponding threshold θ, that is 〈|∆xOS |〉 = 1.04 · θ on average. And this is

also confirmed by a linear regression between 〈|∆xOS |〉 and θ (model 3.2), which

gives us 〈|∆xOS |〉 = 1.02 · θ.

Third, the characteristic exponents Ex,OS is lying between 0.885 and 0.893,

except that Ex,OS for S & P is 0.998. And c for S & P is 0, which leads to

Cx,OS = 1 for S & P. Therefore, no significant difference can be observed among
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them, as a result, it does not seem like the characteristic exponents could be

used to distinguish different markets.
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Chapter 4

Trading Strategy Built on

Directional Changes

4.1 Introduction

This chapter is going to introduce two trading strategies – Trading Strategy

1 (TS1) & Trading Strategy 2 (TS2), which are built based on Directional

Changes. TS1 is consisted with three rules. It opens a long position at an

upward Directional Change confirmation point (DCC), and hold the position

till the price either goes up by another θ% or goes down by α%. In the former

scenario, the strategy makes money. And in the later scenario the strategy loses

money. Similar to TS1, TS2 also opens a position at an upward DCC, and hold

the position till either the price goes up by β% or goes down by α%, where β

is the median of Overshoot lengths. And among the tested data sets, medians

are smaller than θ.

60



And the results using different defining arguments of TS1 and TS2 are going to

be shown to see if they generate positive outcome (making money). The reason

of using different arguments is to see if their performance could be changed by

adjusting the arguments.

By looking into the distribution of Overshoot values. We also try to use medians

instead of AOL. And medians, in the tested data, are less than thresholds.

In both trading strategies, Rule 3 is the one makes money, and Rule 2 is the one

controls losses, this chapter also introduces the Rule 3/Rule 2 ratio. And it is

clear that higher Rule 3/Rule 2 ratios could lead to higher returns of the trading

strategies as the returns of TS1 or TS2 could be summation of all the money

made by Rule 3 minus all the money lost by Rule 2 if the price is continuous.

But when it is not continuous, the price where the positions close are likely to

be bigger (Rule 3) or less (Rule 2) than what we expect. Therefore, this could

be a good measure of performance of the trading strategies, and by improving

the ratio, the performance is also improved.

The correlations of the returns of the trading strategies and the Rule 3/Rule

2 ratios are calculated. And correlations between the returns of the trading

strategies and the overall price changes of each index are also obtained.

The remainder of the chapter is as following: the second section introduces

the concept of Overshoot values (OSV), the Trading Strategy 1 & 2. The

third section explains the thoughts behind the experiments and the how the

experiments is going to be set-up. The fourth section lists the results obtained

from the experiments. While the fifth section interprets the results. Lastly,

there is a conclusion section.
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4.2 Methodology

4.2.1 OSV & OSV EXT

This chapter is going to use the concept of Overshoot Values (OSV). An Over-

shoot value is a price change within the Overshoot divided by the threshold θ.

It could be used to measure Overshoot lengths without considering the effect of

θ, so that Overshoot lengths can be compared across different thresholds. OSV

is defined as:

OSV ci =
P ci − PDCCi

PDCCi · θ

where PDCCi is the price where the ith Directional Change is confirmed (ith

DCC). P ci is the current price in ith Overshoot at time c, c could be any physical

time between t(PDCCi ) and t(PEXT+1
i ). And θ is the threshold used to looking

for Directional Changes. OSV ci is the Overshoot value at physical time c within

ith Overshoot. The OSV varies dynamically as the price changes within an

Overshoot.

OSV reaches its maximum or minimum when the price reaches the next ex-

tremum point – EXT, where OSV EXT is calculated. Therefore, ith OSV EXTi

is shown as:

OSV EXTi =
PEXT+1
i − PDCCi

PDCCi · θ

where PDCCi is the price where the ith Directional Change is confirmed (ith

DCC). PEXT+1
i is the price at i + 1 EXT. And θ is the threshold used to

looking for Directional Changes. OSV EXTi is the Overshoot value at physical
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time ith EXT.

Notice that there could be multiple OSV in an Overshoot, and if the price series

is continuous, there would be infinite OSVs in an Overshoot. However, there is

always only one OSV EXT in an Overshoot.

4.2.2 Trading Strategy 1

As mentioned in the previous chapter, Scaling Laws may provide insights of the

underlying markets. In particular the AOL Scaling Law may provide informa-

tion for Directional Changes based trading algorithms. And Trading Strategy

1 (TS1) would be one of the attempts.

Trading Strategy 1 (TS1) is built on DC, backed by the idea that on average

the Overshoots are approximately equal to the threshold θ that defines the

Directional Changes and Overshoots. TS1 is considered as a piece of proof of

concept (that DC based trading algorithms could generate positive profits), for

the sake of simplicity, we make the strategy take only long positions in this

chapter.

The strategy TS1 is consisted of three trading rules, one opening rule and two

closing rules. The opening rule would be: opening a long position at an upward

Directional Change Confirmation point (a DCC). When there is a position, no

longer open another one. Then hold the position until one of the following (two

closing rules) happens. First closing rule is: the price goes down by α; second

closing rule is: the price goes up by another θ.

Trading Strategy 1 could be presented as:

TS1 ≡ (θ, α)
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where θ is the threshold used to find the Directional Changes and Overshoots,

α is a pre-set number to control the loss. In TS1, we make α < θ. Both α and

θ are bigger than 0.

As shown above TS1 is defined by two arguments, θ and α. To better illustrate

the rules, denote the current price as P t, the ith extreme price as PEXTi , and

the price at the ith DCC as PDCCi .

Therefore, the above three rules could be listed below:

Rule 1. When
P t−PEXT

i

PEXT
i

≥ θ, open a long position;

Rule 2. When
P t−PDCC

i

PDCC
i

≤ −α, close the position;

Rule 3. When
P t−PDCC

i

PDCC
i

≥ θ, close the position.

The first rule is the entry rule for TS1, that is opening a long position when

there is an upward Directional Change confirmation. In other words, when the

current price P t is θ% higher than the price at an EXT (PEXTi ), take a long

position.

The second rule is a closing rule. If the situation expected in rule 3 does not

happen before the next Directional Change, then it’s the time to stop losing.

As the price never goes up by another θ, the strategy would hold the position

till the price to go down by α. This is when the price P t is α% lower than

PDCCi

According to the AOL scaling law, on average the price is expected to increase

after an upward DCC by at least another θ. The third rule assumes the exact

situation that the price would go up by another θ. That is when P t is θ%

higher than PDCCi . Therefore, this rule would take the advantage and close

the position if the price goes up another θ or more, as the price may not be

continuous. This is a rule trying to make profits.
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These three rules make sure that a position would be opened when there is a

upward Directional Change confirmed. And this position would be closed either

when the price goes up by another θ or more, or decrease by α. For example, if

θ is set to 0.05 and α is set to 0.025. The strategy would open a long position

when there is a upward 5% Directional Change confirmed. This position would

be held until one of the follows happen: 1) the price goes down by 2.5% or more;

2) the price goes up by another 5% or more1. In this case the price either goes

up by another 5% or it hits the 2.5% downward marker, as a result, either Rule

2 or 3 is going to be triggered before the next upward Directional Change takes

place.

4.2.3 Trading Strategy 2

The major difference between Trading Strategy 1 (TS1) and Trading Strategy

2 (TS2) is that TS1 always expect the mean value of the Overshoots – AOL.

TS2 is going to use the median of Overshoot lengths.

The rules could be shown as:

TS2 ≡ (θ, α, β)

where θ is the threshold used to find the Directional Changes and Overshoots, α

and β are pre-set numbers to cut losses or to make profits respectively. In TS2,

we make α < θ, β is the median of the OSV EXT with the chosen threshold –

θ. α, β and θ are bigger than 0.

As shown above, TS2 is defined by three arguments: θ, α and β. θ is the

threshold used to find Directional Changes. α is a parameter used to stop losses.

1Prices may not be continuous, the position would be closed at the closest price that makes
the price change greater or equal to 5%
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θ and α are just like their counterparts in TS1. β, however is the argument to

make profits.

TS2 is built similar to TS1, it is also consisted with 3 trading rules. They are

1) the opening rule: opening a long position at an upward Directional Change

Confirmation point (DCC); 2) first closing rule is: the price goes down by α;

3) second closing rule is: the price goes up by another β. When there is a long

position, TS1, TS2 no longer take another long position. Then hold the position

until one of the closing rules triggered.

Rule 1. When
P t−PEXT

i

PEXT
i

≥ θ, open a long position;

Rule 2. When
P t−PDCC

i

PDCC
i

≤ −α, close the position;

Rule 3. When
P t−PDCC

i

PDCC
i

≥ β, close the position.

These rules allow the strategy to open a long position when an upward Direc-

tional Change event is confirmed, it expects the median of Overshoots length –

β, with a certain tolerance (α) of down-going of the price.

By design, Trading Strategy 2 opens a long position at an upward Directional

Change confirmation point. And if the price goes down and reaches the cut-

losing point where the price P t is β% lower than PDCCi , Rule 2 will be triggered,

the long position is closed. Or it does not close the position till the price P t is

β% higher than the price at the DCC (PDCCi ), similarly.

4.3 Experiment set-up

4.3.1 Data

In this chapter, 5 sets of stock indices used in the previous chapter to test the

AOL Scaling Law are going to be employed to test the trading strategies. They
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are the FTSE 100, Hang Seng, Nasdaq 100, Nikkei 225 and S&P 500. These data

are daily closing indices (treated as prices) starting from 02/01/09 to 01/11/13.

Thresholds used to calculate medians of OSV EXT are 0.05 and 0.1.

To test the Trading Strategies, there are 4 sets and 5 sets of arguments used for

TS1 and TS2 separately:

Table 4.1: Tested Arguments of TS1
θ 0.05 0.1
α 0.02 0.025 0.02 0.05

Table 4.2: Tested Arguments of TS2
θ 0.05 0.1
α 0.02 0.025 0.02 0.05 0.05
β 0.0361 0.0361 0.0903 0.06 0.0903

4.3.2 Evaluating the Trading Strategies

First of all, there medians of OSVEXT with threshold 0.05 and 0.1 are calculated

before testing TS2, so that β could be decided accordingly. Average daily return

of each of the data sets tested are all roughly around 1% (0.01). Therefore, we

choose the arbitrary threshold 0.05 and 0.1 so that there are a reasonable number

of transactions take place.

The evaluation on the trading strategy would essentially be calculating the rate

of returns, as the main goal of this chapter is to judge if the trading strategies are

able to make positive profits. To evaluate the trading rules, the most important

measure is the rate of return. The rate of return is the ratio of profits or losses

on an investment relative to the amount of money invested. It is all known that

the rate of return is widely used in the financial analysis. It is one of the simple

but most direct ways to measure the effectiveness.
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Testing a trading strategy is to see whether it works, that is, produces a profit

(Pardo 2008). The most and foremost goal of testing a trading strategy is to

make sure it has a profit potential. Therefore, the trading strategy TS1 and TS2

are tested using the arguments listed in Table 4.1 and 4.2 respectively.

In addition, we also calculate the ratio of Rule 3 to Rule 2 ratio. This ratio

divides the times that Rule 3 is triggered by the times that Rule 2 is triggered.

As the Rule 3 in both TS1 and TS2 is the rule that makes profits and the rule

2 is the one to cut losses. According to the definition of both trading strategies

there is always either a Rule 2 or a Rule 3 following Rule 1. This means that a

long position is always closed by either a money-making Rule 3 or a stop-losing

Rule 2. By calculating the Rule 3 to Rule 2 ratio, we hope that there are insights

obtained from it to evaluate the trading strategies.

Lastly, in order to find out if the performance of the trading strategies is affected

by the overall price change for the indices, the correlations between the returns

obtained from the trading strategies and the overall price changes of the markets

and the the correlations between the returns obtained from the trading strategies

and the Rule 3 to Rule 2 ratios are calculated respectively. And a comparison

between these two correlations is going to be made.

4.4 Experiment results

4.4.1 Medians of OSV at EXTs

Table 4.3 lists the medians of OSV EXT , and their equivalent medians of Over-

shoot lengths in a percentage form.

The first row divides the table into two. The left half are the medians of

OSV EXT and the right half are the medians of Overshoot Lengths shown as
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Table 4.3: Medians of OSV EXT and Medians of Overshoot Lengths
Median of OSV EXT Median of OSEXT

θ = 0.05 θ = 0.1 θ = 0.05 θ = 0.1
FTSE 100 0.687 0.6193 3.44% 6.19%
Hang Seng 0.8055 0.7899 4.03% 7.90%
Nasdaq 100 0.9048 0.5977 4.52% 5.98%
Nikkei 225 0.8017 1.0305 4.01% 10.31%
S & P 500 0.4149 1.476 2.07% 14.76%
Average 0.72278 0.90268 3.61% 9.03%

OSEXT in the table. The first column are the data sets going to be tested.

The second the column are the medians of the OSV EXT with threshold 0.05

for each data set, and the average across all data sets in listed at the bottom.

The third column is similar to the second except the threshold is 0.1. What is

in the fourth column are the medians of Overshoot lengths with threshold 0.05

shown in percentage. Fifth column is similar to the fourth except the threshold

is 0.1.

4.4.2 Trading Strategy 1

Table 4.4 shows the rate of returns of Trading Strategy 1 with the arguments

listed in Table 4.1.

Table 4.4: Rate of Returns of TS1
Rate of Return

θ = 0.05 θ = 0.1
α = 0.02 α = 0.025 α = 0.02 α = 0.05

FTSE 100 6.91% 2.49% -14.93% 22.26%
Hang Seng 25.60% 15.11% 21.14% 24.54%
Nasdaq 100 52.36% 62.60% 3.94% 5.95%
Nikkei 225 -2.27% -9.39% 14.80% 6.94%
S & P 500 3.62% 16.42% 4.58% -0.22%
Average 17.24% 17.45% 5.91% 11.89%

The first column are the data sets tested with TS1. Apart from the first column,
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the left half is tested with threshold θ = 0.05, the right half is tested with θ = 0.1.

For example, the number 6.91% in second column is rate of return of TS1 using

threshold θ = 0.05 and α = 0.02.

4.4.3 Trading Strategy 2

Similar to the previous TS1, Table 4.5 shows the rate of returns of Trading

Strategy 2 with the arguments listed in Table 4.2.

Table 4.5: Rate of Returns of TS2
Rate of Return

θ = 0.05 θ = 0.1
α = 0.02 α = 0.025 α = 0.02 α = 0.05 α = 0.05
β = 0.0361 β = 0.0361 β = 0.0903 β = 0.06 β = 0.0903

FTSE 100 1.66% -4.30% -14.93% 7.84% 18.88%
Hang Seng 23.58% 14.51% 20.08% 17.97% 23.45%
Nasdaq 100 44.94% 54.13% 3.47% -2.90% 4.79%
Nikkei 225 0.90% -5.68% 13.45% 17.52% 22.47%
S & P 500 1.33% 11.07% 3.33% -1.41% -1.41%
Average 14.48% 13.95% 5.08% 7.81% 13.64%

Also similar to the previous Trading Strategy, Table 4.5 shows the test results

using TS2 with threshold 0.05 and 0.1, and α = 0.02, α = 0.025. However,

the difference is that there is one more argument β, they are listed in row 4,

right below values of α. For example, the number 1.66% in the 5th row second

column is the result of TS2 using threshold 0.05, α = 0.02 and β = 0.0361 with

data FTSE 100.

4.4.4 Rule 3 to Rule 2 ratio & overall return of the data

sets

Table 3.7 shows the overall returns for each data set tested.
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Table 4.6: Overall Returns of Each Tested Data Set
FTSE 100 47.63%
Hang Seng 54.56%
Nasdaq 100 167.45%
Nikkei 225 57.04%
S & P 500 89.06%
Average 83.15%

Table 4.7 and 4.8 are tables showing how many times Rule 2 and Rule 3 are

triggered in TS1 with threshold 0.05 and threshold 0.1 respectively. In each

table α is set to either 0.02 or half of the threshold.

Table 4.7: Rules Triggered and Rule 3 to Rule 2 Ratios for TS1
with Threshold = 0.05

θ = 0.05
α = 0.02 α = 0.025

Rule2 Rule3 Rule3/2 Rule2 Rule3 Rule3/2
FTSE 100 13 8 0.615385 12 9 0.75
Hang Seng 14 12 0.857143 14 12 0.857143
Nasdaq 100 8 12 1.5 7 13 1.857143
Nikkei 225 17 9 0.529412 17 9 0.529412
S & P 500 13 8 0.615385 10 10 1
Average 13 9.8 0.823465 12 10.6 0.998739

Table 4.8: Rules Triggered and Rule 3 to Rule 2 Ratios for TS1
with Threshold = 0.1

θ = 0.1
α = 0.02 α = 0.05

Rule2 Rule3 Rule3/2 Rule2 Rule3 Rule3/2
FTSE 100 6 0 0 2 3 1.5
Hang Seng 4 3 0.75 3 4 1.333333
Nasdaq 100 5 2 0.4 4 3 0.75
Nikkei 225 5 3 0.6 4 3 0.75
S & P 500 2 1 0.5 2 1 0.5
Average 4.4 1.8 0.45 3 2.8 0.966667

Similar to the previous two tables, Table 4.9 and 4.10 are the TS2 equivalents.

And the tested threshold are 0.05 and 0.1 as well. However, what different is that

the TS expects the median instead of the mean of Overshoot lengths. And in
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Table 4.10, there is an additional β tested which is the a number approximately

equal to the median of Overshoot lengths for FTSE 100.

Table 4.9: Rules Triggered and Rule 3 to Rule 2 Ratios for TS2
with Threshold = 0.05

θ = 0.05
α = 0.02 α = 0.025
β = 0.0361 β = 0.0361

Rule2 Rule3 Rule3/2 Rule2 Rule3 Rule3/2
FTSE 100 12 9 0.75 11 10 0.90909091
Hang Seng 13 14 1.076923077 13 14 1.07692308
Nasdaq 100 6 14 2.333333333 5 15 3
Nikkei 225 16 11 0.6875 16 11 0.6875
S & P 500 12 9 0.75 9 11 1.22222222
Average 11.8 11.4 1.119551282 10.8 12.2 1.37914724

Table 4.10: Rules Triggered and Rule 3 to Rule 2 Ratios for TS2
with Threshold = 0.1

θ = 0.1
α = 0.02 α = 0.05 α = 0.05
β = 0.0903 β = 0.06 β = 0.0903

Rule2 Rule3 Rule3/2 Rule2 Rule3 Rule3/2 Rule2 Rule3 Rule3/2
FTSE 100 6 0 0 2 3 1.5 2 3 1.5
Hang Seng 4 3 0.75 3 5 1.666667 3 4 1.333333
Nasdaq 100 5 2 0.4 4 3 0.75 4 3 0.75
Nikkei 225 5 3 0.6 4 3 0.75 3 4 1.333333
S & P 500 2 1 0.5 2 1 0.5 2 1 0.5
Average 4.4 1.8 0.45 3 3 1.033333 2.8 3 1.083333

Lastly, there are the tables of correlations between the returns obtained from

the trading strategies (TS1 and TS2) and the overall returns listed in Table

4.6, and the correlations between the returns of the strategies and the Rule 3

to Rule 2 ratio. They are Table 4.11 and 4.12. And in the tables, Corr. R

stands for the correlations between the overall price change of the markets and

the returns generated from the trading strategies. Similarly, Corr. 3/2 means

the correlations between the Rule 3 to Rule 2 ratios and the returns generated

from the trading strategies.
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Table 4.11: Correlation of TS1
θ = 0.05 θ = 0.1

α = 0.02 α = 0.025 α = 0.02 α = 0.05
Corr. R 0.795141758 0.937225276 -0.098249747 -0.57295

Corr. 3/2 0.983718169 0.994143918 0.970436128 0.93395

Table 4.12: Correlation of TS2
θ = 0.05 θ = 0.1

α = 0.02 α = 0.025 α = 0.02 α = 0.05 α = 0.05
β = 0.0361 β = 0.0361 β = 0.0903 β = 0.06 β = 0.0903

Corr. R 0.778781 0.937533 -0.09468 -0.78433 -0.68685
Corr. 3/2 0.956535 0.976599 0.96525 0.81838 0.916764

4.5 Interpretation

The previous sub-section has listed two trading strategies based on the AOL

Scaling Law introduced in the previous Chapter – TS1 and TS2. As proof of

concept, TS1 and TS2 take only long position. This way, the comparison of

the returns made by the trading strategies and the overall price change of the

markets could be conducted.

For example, if the long-position-only strategies’ return are highly correlated to

the overall price change, then maybe the strategies are not really working but

simply takes profit as the markets’ prices go up. Otherwise, we may think the

strategies are working. And when it took short positions, even the returns and

the overall price changes are not highly correlated, it is harder to tell whether

it is the rising market contributing to the trading strategies’ profitability or

they truly works, as potentially a working trading strategy makes profits either

way.

There is a difference between the trading strategies. TS1 expects the Overshoot

to approximately equal to the threshold – θ. Instead of expecting the mean of

Overshoot lengths, TS2 takes medians of OSV EXT as its profit making point.
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In other words, TS2 closes a position when the price rises to a point where

the OSV is at its median while TS1 would take the same action at the average

Overshoot length.

The main goal of this chapter is to prove that the trading strategies based on the

AOL Scaling Law discovered by Glattfelder et al. (2010a) are able to generate

positive profits. Therefore, the rate of return was used to evaluate the success

of the trading strategies.

As could be seen in Table 4.4, in most scenarios, TS1 could make a profit except

using θ = 0.05 and α = 0.02 with Nikkei 225, θ = 0.05 and α = 0.025 with Nikkei

225, θ = 0.1 and α = 0.02 with FTSE 100, θ = 0.1 and α = 0.05 with S & P.

In these cases, TS1 loses 2.27%, 9.39%, 14.93% and 0.22%. While Nasdaq 100

makes biggest profits as 52.36% and 62.60%, with α = 0.02 and α = 0.025. And

there are 16 out 20 (80%) θ and α combinations make profits.

As for TS2, as shown in Table 4.5, there are six cases that it loses money, hence

the other 19 out 25 (76%) make profits. Among them, FTSE 100 and Nikkei

225 with θ = 0.05, α = 0.025, β = 0.0361; with θ = 0.05, α = 0.025, β = 0.0361;

FTSE 100 with θ = 0.1, α = 0.02, β = 0.0903; Nasdaq 100 and S & P with

θ = 0.1, α = 0.05, β = 0.06; S & P with θ = 0.1, α = 0.05, β = 0.0903 loses

money. The rest all make profits. And similar to TS1, Nasdaq 100 at θ = 5%

makes most profits.

If we take the Rule 3 to Rule 2 ratios into consideration (as shown in Table

4.7 and 4.8), it is not hard to find out that, in general, the higher the ratio,

the higher the returns, and vise versa. For example, Nikkei at θ = 0.05 with

α = 0.02 has 13 Rule 2 triggered while there are 9 Rule 3 triggered. As the

Rule 3 is the profit-making rule, and Rule 2 is the stop-losing rule.

For both trading strategies, α uses two not very different numbers at θ = 0.05.
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They are 0.02 and 0.025, but with this small change, there are different results

in Rule 3/Rule 2 ratio. And consequently there are different results in the

returns. In fact, only S & P tested using TS1 gives the same Rule 3/Rule 2

ratio regardless to the small amount of change of α. The same applies to Nikkei

225 using TS2. This potentially means that by adjusting α, the return of the

trading strategies could be improved.

Another noticeable point is that using θ = 0.1 gives far fewer transactions

than using a θ = 0.05. This indicates that if the strategies were to be used

practically, θ needs to be chosen within a certain range with the overall trading

time considered, so that there are enough transactions to take place. Otherwise,

a trading strategy might be profitable over a long term, but may lose money

simply due to small number of trades it could make in a short time period.

Using the median – β is going to make less profits than using the mean value

of Overshoots only with two exceptions in the listed results (Table 4.4 and

4.5). And as shown in Table 4.2, the medians are less than θ. In the results

above (Table 4.7 to 4.10), the number of trades (Rule 2 + Rule 3) are actually

very similar. However, the Rule 3 in TS2 closes the position earlier than the

Rule 3 in TS1. And this might be the reason that the TS2 is making less

money than TS1 when have other arguments the same. Therefore, if we want

to improve the trading strategies performance by adjusting the Rule 3’s closing

point, maybe using medians instead of mean of Overshoot lengths is not the

best solution.

On one hand, as can be seen in Table 4.11 and 4.12, the correlations of the

returns of the trading strategies to the overall price change are not uniformly

positive. This could mean that the trading strategies are not able to catch the

rising price of the underlying asset and make a profit with certain argument

sets. However if we look closer, the correlations are between 0.78 and 0.94 with
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θ = 0.05. And with θ = 0.1, the results are either close to 0 or close to negative

0.5. However, this might due to the fact that with θ = 0.1 there are only few

transactions (maximum is 8) take place.

On the other hand, the returns of TS1 and TS2 are highly correlated with the

Rule3/Rule2 ratio. If the number of triggered Rule 3 is smaller than the number

of triggered Rule 2, it is expected to have a smaller return than those opposite.

And if the price is continuous, the returns would simply be: aR3 · θ− bR2 ·α for

TS1 and aR3 · β − bR2 · α for TS2, where aR3 is the count of how many times

Rule 3 is triggered, and similarly bR2 is the count of how many times Rule 2 is

triggered. R3 and R2 stands for Rule 3 and Rule 2 respectively. α, β and θ are

the arguments define the trading strategies.

As a result, it is clear that the trading strategies are able to make profits with

certain conditions. And by adjusting the input of the arguments, the perfor-

mance of the trading strategies could be modified. And if we want to achieve

higher performance, we should always improve the Rule 3/Rule 2 ratio by ad-

justing the arguments, choosing fitter markets or by some other yet-to-be-found

ways.

4.6 Conclusion

This chapter has introduced the two trading strategies – TS1 & TS2, which are

built based on Directional Changes. TS1 is consisted with three rules. It opens

a long position at an upward DCC, and hold the position till the price either

goes up by another θ% or goes down by α%. In the former scenario, the strategy

makes money. And in the later scenario the strategy loses money. Similar to

TS1, TS2 also opens a position at an upward DCC, and hold the position till

either the price goes up by β% or goes down by α%, where β is the median of
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Overshoot lengths. And among the tested data sets, medians are smaller than

θ.

And the results show that in most cases TS1 and TS2 are able to generate

positive outcome (making money). And their performance could be changed by

adjusting the arguments we used to define both strategies.

The thoughts behind using medians instead of AOL is expecting more posi-

tive closing Rules to be triggered. However using the median, in general, does

not seems to provide not only money-making closes of the positions but also

stop-losing ones. That is, using the median does not give more transactions.

Therefore, with a smaller money-making closing point, the trading strategies

tend to make less money.

As Rule 3 is the one makes money, and Rule 2 is the one controls losses, this

chapter also introduces the Rule 3/Rule 2 ratio. And it is clear that the higher

Rule 3/Rule 2 ratios could lead to higher returns of the trading strategies.

Therefore, this could be a good measure of performance of the trading strategies,

and by improving the ratio, the performance is also improved.

The correlations of the returns of the trading strategies and the Rule 3/Rule 2

ratios are calculated. And it does seem like they are highly correlated as the

returns could simply be a summation of all the money made by Rule 3 minus

all the money lost by Rule 2. Correlations between the returns of the trading

strategies and the overall price changes of each index are also obtained. And it

seems like the with 0.05 threshold, the trading strategies are correlated with the

overall change of the price, while they are not correlated when the threshold is

0.1.
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Chapter 5

Directional Changes

Indicators

5.1 Introduction

This chapter is going to use sub Directional Changes to examine how the num-

bers of sub DCs change as the price gets closer to EXTs. As EXTs are the

turning points of a trend. If the numbers of sub DCs follow a certain pat-

tern, then we can find a way to know if the price is getting to an EXT. And

potentially this could contribute to the trading strategies built on Directional

Changes.

The remainder of this chapter is: second, the methodology section introduces

the methods and terms used to obtain and test the sub DCs. Third section

is where the results are presented. Fourth section is the interpretation of the

results. And finally is the conclusion.
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5.2 Methodology

5.2.1 Sub Directional Changes

In this chapter we would like to examine the properties of Directional Changes,

particularly when the price moves towards an EXT. Like DCCs are the ends of

Directional Changes, EXTs are the ends of Overshoots and Total Movements.

When the price reaches a DCC, the price is expect to go further along with its

trend. Unlike the DCCs, trends after EXTs are expected to change by definition.

If somehow the price would exhibit some property before it reaches an EXT, it

would potentially contribute to any trading strategies that are built on Direction

Changes.

The way we approach this is to observe the behaviour of DCCs on a smaller

scale.

In order to make description in a clearer manner, with a time series at a certain

Directional Change threshold θ, we define:

• tEXTi is the time at which there is the ith extremum (EXT), where

i=(1,2,...,n)1;

• tDCCi is the time at which ith Directional Change is confirmed (DCC),

where i=(1,2,...,n);

• ∆tDCi = tEXTi − tDCCi , is the time difference between the ith DCC and

the EXT;

• τ1
i = tEXTi+1 −∆tDCi , is the time point which is ∆tDCi before tEXTi+1 ;

• τ2
i = tEXTi+1 −

∆tDC
i

2 , is the time point which is half of ∆tDCi before tEXTi+1 ;

1Assume there are n Directional Changes, and EXTn+1 is not known
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• With θ
d (d ∈ N and d > 1), we can have Directional Changes on a smaller

scale, or we call them sub Directional Changes;

• define η1
i the number of sub Directional Changes in (τ1

i , τ
2
i ];

• similarly η2
i denotes the number of sub Directional Changes in (τ2

i , t
EXT
i+1 ];

• for the sake of consistency, also denote tEXTi+1 as τ3
i , therefore, η2

i is the

number of small directional changes in (τ2
i , τ

3
i ].

First of all, with any time series, we find the Directional Changes with threshold

θ. Time intervals between ith EXT (tEXTi ) and ith DCC (tDCCi ) are calculated.

These time intervals are not equal to each other, for the time it takes to confirm

a Directional Change varies. As a result, the a series of time intervals could

be obtained. As price change between ith EXT (EXTi) and ith DCC (DCCi)

is the ith Directional Change event, therefore we use DC as the superscript to

denote that this is the time interval of ith DC. So the time intervals could be

denoted as: ∆tDCi .

Consequently, we can count from tEXTi+1 backwards by ith time interval (∆tDCi )

we can get a time point – τ1
i . Similarly count backwards by half of the ith

interval (
∆tDC

i

2 )we can get a second time point – τ2
i . And if we denote tEXTi+1 as

τ3
i we can obtain two time periods – (τ1

i , τ
2
i ] and (τ2

i , τ
3
i ]. These two time periods

are two connected periods leads to the EXTt+1, and the two time periods equal

to each other.

Lastly, we would get sub Directional Changes, and count the numbers of them

in both (τ1
i , τ

2
i ] and (τ2

i , τ
3
i ]. Once the two numbers of sub Directional Changes

in each of them are obtained we could run a linear regression to see whether the

number of sub Directional Changes (η2
i ) in (τ2

i , τ
3
i ] is depended on the number

of sub Directional Changes (η1
i ) in (τ1

i , τ
2
i ]. And the empirical model could

be:
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η2 = β0 + β1η
1

where parameters β0 and β1 are to be determined by a linear regression.

5.2.2 Data

Although this thesis was aiming to examine the potential of Directional Changes

in the stock markets. The stock markets data at hand was only daily prices.

The nature of experiments in this chapter decides it needs a large number of sub

Directional Changes in each Directional Change event. Therefore, it is better

to have high frequency data over a long period of time.

As a result, the data sets tested are four high frequency minute-by-minute for-

eign exchange data, dated from 1st January 2009 to 9th October 2014. The for-

eign exchange pairs are AUD/USD, GBP/USD, USD/CHF and USD/JPY.

The observations are made under threshold (θ): 0.02. And the sub Directional

Changes are looked for with θ
20 . These numbers are chosen so that there are

both statistically enough Directional Changes and sub Directional Changes in

each Directional Change.

Table 5.1 lists the basic information about the tested data sets, such as the

number of prices, the number of DCs and the number of sub DCs.

Table 5.1: Data Size and Number of DCs and Sub DCs
θ=0.02, d=20

Price DC subDC
AUD/USD 1048575 136 27598
GBP/USD 1048575 80 20572
USD/CHF 1048575 65 18631
USD/JPY 1048575 69 17683
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5.3 Results

5.3.1 Linear relations between η1
i and η2

i

As it is not very practical to list such large numbers of sub Directional Changes

(η1
i and η2

i ) in time periods (τ1
i , τ

2
i ] and (τ2

i , τ
3
i ] for each data set. This section

is going to list the estimated linear relations between η1
i and η2

i for each data

set.

AUD/USD:

η2 = 26.70
(2.3E−08)

+ 0.42
(0.0002)

η1

where the P-values are listed in the brackets. The adjusted R2 = 0.095.

GBP/USD:

η2 = 27.39
(2.6E−07)

+ 0.60
(8.05E−08)

η1

where the P-values are listed in the brackets. The adjusted R2 = 0.304.

USD/CHF:

η2 = 34.63
(7.6E−08)

+ 0.40
(0.0003)

η1

where the P-values are listed in the brackets. The adjusted R2 = 0.181.

USD/JPY:

η2 = 20.09
(9.5E−05)

+ 0.53
(1.89E−07)

η1
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where the P-values are listed in the brackets. The adjusted R2 = 0.329.

5.3.2 The mean and median of η1
i and η2

i

Beyond the linear regression, the mean and median of η1
i and η2

i for each data

set are listed below:

Table 5.2: Mean and Median of η1
i and η2

i at θ = 0.02
η1
i η2

i

AUD/USD
Mean 29.2963 38.91852
Median 21 27

GBP/USD
Mean 35.39241 48.46835
Median 30 36

USD/CHF
Mean 38.625 50.23438
Median 30.5 43

USD/JPY
Mean 37.51471 39.79412
Median 29 29

5.4 Interpretation

From the linear relations of η1
i and η2

i listed in 5.3.1, We know that although the

P-values suggest β0 and β1 are not likely to be 0, the adjusted R2 tells us the

estimated line is a very poor estimation to the underlying relations between η1
i

and η2
i . Therefore, it is very unlikely that there is a linear relationship between

η1
i and η2

i .

This means that as the price getting closer to an EXT, the numbers of sub

Directional Changes measured in periods (τ1
i , τ

2
i ] and (τ2

i , τ
3
i ] are not seem to

follow a noticeable pattern.

However, if we look at Table 5.2, it is noticeable that the mean of η2
i are greater

than η1
i , and they are all roughly 30% to 37% greater than the mean of η1

i
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except for USD/JPY which mean of η2
i is 6% greater than the mean of η1

i .

Similar properties also apply to the median. But it is not clear if this is a

general phenomena across different thresholds, as this is only obtained with

θ = 0.02.

The reason that ∆tDCi is chosen to obtain (τ1
i , τ

2
i ] and (τ2

i , τ
3
i ] is even if there are

0 Overshoots (OSV=0), the calculations of η1
i and η2

i are still able to process.

As the calculation count backwards from tEXTi+1 , if there is a 0 Overshoot, τ1
i

would be tEXTi and τ3
i would be tDCCi , τ2

i is always the middle point between

them.

This chapter examined how the sub Directional Changes behave as the price gets

closer to the EXTs. Although we find that η1
i and η2

i do not follow a noticeable

pattern, this provides a new insight on examining the potential of Directional

Change – the use of sub Directional Changes. And if we define (τ1
i , τ

2
i ] and

(τ2
i , τ

3
i ] differently, there might be patterns to be found. for example excluding

the zero Overshoots and measure the sub Directional Changes in the earlier half

and later half in Overshoots.

5.5 Conclusion

This chapter has conducted an experiment on testing the relations between

two sub Directional Changes sets η1
i and η2

i in periods (τ1
i , τ

2
i ] and (τ2

i , τ
3
i ]

respectively. The results of the experiments tell us that η1
i and η2

i do not

seemingly follow a pattern, and there is no linear relation among them.

However, the mean and median of η2
i are greater than those of η1

i with tested

data sets with θ = 0.02, d = 20. A more universal experiment might be neces-

sary to tell if this is a general property of η1
i and η2

i .
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Chapter 6

Conclusion

6.1 Summary

Directional Changes are considered as a way of summarising information from

complex systems. For financial markets are also seen as complex systems, this

thesis aims to explore the potential of Directional Changes mainly in three ways.

They are the AOL Scaling Laws the Trading strategies, and the sub Directional

Changes.

First of all, the Average Overshoot Scaling Law has been tested in the stock

markets, which was not existed in current literature. With the results obtained

in Chapter 3, we now understand that AOL Scaling Law does hold in the stock

markets as well, which means that the average Overshoot length has a scaling-

law relationship with the threshold θ. And we also find out that the average

Overshoot length is approximately the same as θ, the same property was re-

ported in the foreign exchange markets. And this approximation is confirmed

by a linear regression as well. Thirdly, we also found out that the characteristic
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exponent Ex,OS could not be used to distinguish different markets, as the rela-

tions of AOL and θ are defined by both Ex,OS and Cx,OS in the AOL Scaling

Law.

Second, in Chapter 4, there were 2 trading strategies based on the AOL Scaling

Law introduced. They are TS1 and TS2, both contain 3 trading rules. TS1 is

defined by argument θ and α, where θ is the Directional Change threshold and

α is an argument used to control losses. TS2 is built similarly and defined by θ,

α and β, where β is the median of Overshoot lengths rather the mean.

In the chapter both TS1 and TS2 are able to generate positive outcomes (are able

to make money) in most cases, and by changing the inputs of the arguments, the

performance is able to be adjusted. Later in the chapter, the correlations of the

returns generated by the strategies and the overall price change are calculated.

And it suggests that only with certain combinations of arguments the returns

are somehow correlated to the overall price change. Similarly, the correlations

of the returns generated by the strategies and the Rule 3/Rule 2 ratios are also

calculated. And they are highly correlated. As a results if these strategies are

to perform well, the right combination of argument inputs is necessary.

Thirdly, we conducted a set of experiments on sub Directional Changes with

high frequency foreign exchange markets’ data. Although this was meant to be

done with stock markets’ data, there was no stock data at hand suffices the task.

For we statistically need enough both Directional Changes and sub Directional

Changes. As a result, we find out that when the price get closer to an EXT,

the number of sub Directional Changes measured as η1
i and η2

i do not seem to

follow a noticeable pattern.
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6.2 Contributions

First of all, this thesis has explained how an Average Overshoot Scaling Law is

going to be tested explicitly. And this method could be expanded to test other

scaling laws.

Second, we have tested the AOL Scaling Law in the stock markets, so that now

we know the AOL Scaling Law stands not only in foreign exchange markets but

also could be found in the stock markets.

Third, we have also found out the the average Overshoot lengths are approx-

imately equal to the Directional Change threshold θ across five indices with

multiple thresholds. And this was double checked by a linear regression be-

tween θ and AOL.

Fourth, the lengths of Overshoots are defined with both Ex,OS and Cx,OS .

Ex,OS does not exhibit big difference among different markets.

Fifth, this thesis proposes two trading strategies built on Directional Changes

as proof of concept – TS1 and TS2. Both of them are able to make profits in

most tested scenarios. And we now understand that with different inputs to the

arguments that define the trading strategies, the performance of them is able

to be adjusted. And this could be a optimisation problem.

Sixth, we found out that when the price is getting to an EXT, the sub Directional

Changes measured as η1
i and η2

i do not seem to present a certain pattern.

Seventh, although it is not tested comprehensively, with the tested θ = 0.02 and

d = 2, we know that the median and mean of η2
i are greater than η1

i ’s.
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6.3 Limitations

Although The Average Overshoot Length Scaling Law is tested with multiple

thresholds across five different markets on the global. The tests have not been

tested with individual stocks’ data.

The trading strategies TS1 and TS2 are proof of concept. They do make money

in most tested scenarios, but obviously, they could be made more sophisticated.

For starters, they could be taking short positions.

Limited by the data availability, the tests of sub Directional Changes were not

able to be tested in the stock markets. Even with the foreign exchange markets’

data. Only limited thresholds and d values are able to generate sufficient number

of Directional Changes as well as sub Directional Changes.

6.4 Future Work

First of all, the AOL Scaling Laws could be tested with individual stock’s data

to see whether this AOL Scaling Law stands for each individual stock. And

if it stands, we can further examine if the AOL is approximately equal to the

threshold for each individual stock. What is more, although the characteristic

exponent Ex,OS does not seem to be able to tell the difference between different

markets. This might not be the case for individual stocks.

There is a lot to explore for trading strategies built on the AOL Scaling Law,

using median instead of mean was only one of the attempts. And both TS1 and

TS2 are trend following trading strategies. It is still not clear what would it be

if we take long positions at an estimated downward EXT, and close the position

at an upward DCC.

88



Last but no least, this thesis only tried one way on exploring the potential of

sub Directional Changes, and only one way of calculating the numbers of sub

Directional Changes. There are far more ways to define the time periods right

before EXTs left to be explored.
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