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Abstract

This paper proposes a mean field variational Bayes algorithm for efficient posterior
and predictive inference in time-varying parameter models. Our approach involves:
i) computationally trivial Kalman filter updates of regression coefficients, ii) a
dynamic variable selection prior that removes irrelevant variables in each time
period, and iii) a fast approximate state-space estimator of the regression volatility
parameter. In an exercise involving simulated data we evaluate the new algorithm
numerically and establish its computational advantages. Using macroeconomic
data for the US we find that regression models that combine time-varying
parameters with the information in many predictors have the potential to improve
forecasts over a number of alternatives.
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1 Introduction

Regression models that incorporate stochastic variation in parameters have been used

by economists at least since the works of Sarris (1973) and Cooley and Prescott (1976).

Granger (2008) argued that time-varying parameter models might become the norm

in econometric inference since (as he illustrated via White’s theorem) generic time-

varying parameter (TVP) models can approximate any form of nonlinearity. Much

empirical work shows the benefits of TVP models for forecasting. For instance, Stock

and Watson (2007) show that their flexible TVP model with no predictors can forecast

inflation more accurately than traditional constant parameter regressions based on the

Phillips curve augmented with exogenous predictors. Extending such evidence, recent

studies have developed novel Bayesian estimation algorithms that are able to combine

time-varying parameter regressions with information in exogenous predictors. Relevant

papers include Belmonte et al. (2014), Chan et al. (2012), Dangl and Halling (2012),

Groen et al. (2013), Kalli and Griffin (2014), Koop and Korobilis (2012), Kowal et al.

(2017), Nakajima and West (2013), Ročková and McAlinn (2018), and Uribe and Lopes

(2017).

Such algorithms demonstrate various inventive ways of allowing for many predictor

variables in a TVP regression setting. In practice, however, empirical application of all

these algorithms is restricted to a handful of predictors and short (quarterly instead

of monthly) data, because of their high complexity associated with their reliance on

Markov Chain Monte Carlo (MCMC) or other computationally intensive estimation

methods.1 In light of evidence that information in many predictors can be beneficial

in constant parameter regressions (Stock and Watson, 2002), the inability of existing

1The only exception is the recent work by Ročková and McAlinn (2018) that, alongside an MCMC
algorithm, also proposes an expectation-maximization (EM) algorithm that searches for the mode of
the posterior.
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estimation algorithms to be used in high-dimensional TVP settings is a fundamental

shortcoming. Therefore, an open question of interest in applied econometric research

is whether models that combine large information sets with time-varying parameters

could also be beneficial. This question doesn’t just hold for the case of many exogenous

predictors, but it is also important when the high dimensionality comes from using

monthly or even daily data sets: Regressions with higher frequency data will be more

likely to exhibit time-varying parameter behavior.2

In this paper, we fill this gap in the literature by developing an iterative algorithm

that can handle regressions with many time series observations and/or many predictors in

the presence of time-varying parameters. We use variational Bayes (VB) methods which

allow us to approximate the true high-dimensional posterior distribution in a simple and

straightforward manner. The main idea behind VB methods is to approximate the high-

dimensional and intractable posterior distribution using a simpler, tractable distribution.

VB methods ensure that the approximation is good by minimizing the Kullback-Leibler

distance between the true posterior and the proposed approximation. Following a large

literature in physics and engineering where the mean field approximation was first

developed, our proposed approximation to the posterior is decomposed into a series

of simpler, independent densities that make inference scalable in high dimensions. We

tackle computation by means of the an optimization algorithm that has as output the

first two moments of the posterior density and resembles the expectation-maximization

(EM) algorithm, instead of relying on computationally intensive MCMC methods. The

result is an algorithm that combines Kalman filter updates for time-varying coefficients

and volatilities with trivial posterior updates of all other model parameters and, hence,

we call it the Variational Bayes Kalman Filter (VBKF).

2See Bauwens et al. (2015) for a comparison of the number of estimated breaks in monthly vs
quarterly macroeconomic time series using a variety of structural breaks and time-varying parameter
models.
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The use of the VBKF surmounts the computational problem associated with TVP

regressions with many predictors. However, on its own it does not surmount over-

parameterization concerns. Accordingly, we derive a dynamic version of the stochastic

search variable selection (SSVS) prior of George and McCulloch (1993) and incorporate

it into the VBKF. This prior allows us to implement dynamic variable selection by

stochastically searching for probable predictors at each point in time. While this time-

varying variable selection problem is typically of tremendous complexity3, we are able

to integrate it to our efficient VBKF setting. Therefore, the proposed dynamic SSVS

prior extends existing dynamic model selection and shrinkage algorithms (e.g. Kalli

and Griffin, 2014; Koop and Korobilis, 2012) to high-dimensional regression problems.

Finally, we add to the VBKF algorithm for the time-varying regression coefficients, an

approximate VBKF estimator for stochastic volatility (SV) models. This latter filter is

as fast as the exponentially weighted moving average (EWMA) filter used in Koop and

Korobilis (2012), but it is less ad-hoc and can also provide a full characterization of the

posterior distribution of the volatility process instead of a point volatility estimate.

The purpose of these computationally efficient approximations, as well as the

dynamic shrinkage and variable selection prior, is prediction. While approximation-free

parameter estimation is equally important, there are several reasons we don’t focus on

this aspect of statistical inference using the proposed algorithm. First, even though

asymptotic properties of general variational Bayes estimators have been derived in

various regression settings (Wang and Blei, forthcoming), establishing consistency of our

time-varying parameter estimators under a dynamic hierarchical prior is a non-trivial

task. Second, for the kind of high-dimensional inference problems we are interested

in, estimation error might be large. For example, our empirical exercise uses up to

3A traditional static variable selection problem with p predictors involves a model space of K = 2p

possible models containing combinations of these predictors. The dynamic variable selection has to
solve the static problem in all T observations associated with a given time series data set.
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118 predictors, all featuring parameters that drift at each time period. In this case,

the parameter space is so vast that regardless of whether using exact or approximate

estimators the sampling error for TVP problems is high.4 As a result, having a

flexible and subjective shrinkage prior in our proposed algorithm is desirable as it leads

to posterior mean estimates that might be biased, but provide a huge reduction in

estimation variance (with benefits in terms of mean squared error compared to unbiased

estimators that might have extremely large variance). This observation is confirmed

by the fact that all the recent contributions in this field (see citations above) focus

exclusively on forecasting, and not causal analysis using flexible TVP models.

We show, via a Monte Carlo exercise and an empirical application, that our proposed

algorithm works well in high-dimensional sparse time-varying parameter settings. In the

Monte Carlo exercise we compare the numerical accuracy of our algorithm against an

established algorithm in the literature, namely the Dynamic Model Averaging (DMA)

algorithm with forgetting factors and EWMA stochastic volatility used in Raftery et al.

(2010) and Koop and Korobilis (2012). We note that, of the Bayesian algorithms in

this literature, DMA is the main one which does not involve the use of MCMC methods

and, thus, suffers less from the computational burdens associated with MCMC. Thus,

we treat DMA as the most important competitor to our proposed VBKF methods. We

show that dynamic variable selection VBKF estimates of time-varying parameters and

stochastic volatilities are on average more accurate than those obtained by DMA. Most

importantly, algorithmic complexity is very low compared to DMA when the number of

observations and/or number of predictors increases. Our empirical work follows much of

4In addition, when using Markov chain Monte Carlo methods the bias due to initialization of the
chain and the finite number of Monte Carlo samples collected (“transient bias”) can be quite large in
high-dimensional settings. This is because the larger the dimension of the data, the longer the Monte
Carlo samples that are needed for inference. Doubling the number of samples collected can only reduce
the Monte Carlo standard error by a factor of

√
2. Therefore, in high dimensions approximate inference

algorithms may be preferred relative to MCMC-based posterior algorithms; see the excellent discussion
of these issues in Angelino et al. (2016).
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the relevant literature such as Stock and Watson (2007), Chan et al. (2012) and Kalli and

Griffin (2014). That is, we forecast US GDP and price inflation. Using TVP regressions

with up to 118 predictors, we compare our algorithm with a wide range of competing

state-of-the-art algorithms for estimating TVP regressions including DMA and many

which involve use of MCMC methods. We do find evidence in favor of combining time-

varying parameters with many predictors, although the dynamic shrinkage/selection

prior shrinks heavily the full model towards a TVP regression with few important

predictors.

The remainder of the paper proceeds as follows. Section 2 briefly describes the basic

principles of VB inference for approximating intractable posteriors. Section 3 introduces

the our econometric specification and outlines the proposed VBKF algorithm. Section 4

contains our Monte Carlo study where we document the benefits of using this algorithm

against an important competitor: DMA. Section 5 contains our forecasting exercise

involving US macroeconomic data which compares our methods to a range of TVP

alternatives. Section 6 concludes.

2 Bayesian Inference Using Variational Bayes

Methods

Before we describe our specific model and how VB can be used with it, we provide a

generic discussion of variational Bayes methods in approximating intractable posterior

distributions. Variational Bayes methods have grown in popularity as a way of

approximating posterior densities which are difficult to analyze using MCMC methods;

see Blei, Kucukelbir and McAuliffe (2017), Ormerod and Wand (2010) and Wand

(2017) for recent surveys relating to machine learning and statistics and Hajargasht
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and Wozniak (2018) for a recent econometric application. Consider data y, latent

variables s and parameters θ. Our interest lies in time-varying parameter models which

are state space models. Hence, s represents the unobserved time-varying regression

coefficients and error variances and θ all other parameters such as the error variances in

the state equations. The joint posterior of interest is p (s, θ|y) with associated marginal

likelihood p (y) and joint density p (y, s, θ). When the joint posterior is computationally

intractable, we can define an approximating density q (s, θ) that belongs to a family

of simpler distributions. The main idea behind variational Bayes inference is to make

this approximating density q (s, θ) as close as possible to p (s, θ|y), where distance is

measured using the Kullback-Leibler divergence:

KL =

∫
q (s, θ) log

{
q (s, θ)

p (s, θ|y)

}
dsdθ. (1)

Note that KL ≥ 0, and equals zero iff q (s, θ) = p (s, θ|y).

Insight for why KL is a desirable distance metric arises from a simple re-arrangement

involving the log of the marginal likelihood (see also Ormerod and Wand, 2010, page

142) where it can be shown that

log p (y) = log

∫
p (y, s, θ) dsdθ = log

∫
q(s, θ)

p (y, s, θ)

q(s, θ)
dsdθ (2)

=

∫
q (s, θ) log

{
p (y, s, θ)

q (s, θ)

}
dsdθ +KL, (3)

which finally gives

p (y) ≥ exp

[∫
q (s, θ) log

{
p (y, s, θ)

q (s, θ)

}
dθ

]
≡ F(q(s, θ))

where we emphasize that F is a functional on the distribution q(s, θ). Maximizing
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F(q(s, θ)) over q (s, θ) thus amounts to finding an approximation which has an estimated

marginal likelihood as close as possible to the correct p (y). This procedure is also

equivalent to minimizing the KL distance between the approximating and the true

posterior.

The lower bound F(q(s, θ)) can be maximized iteratively by using calculus of

variations. If we use a mean field factorization of the form q (s, θ) = q (θ) q (s) then

it can be shown that the optimal choices for q (s) and q (θ) are

q (s) ∝ exp

[∫
q(θ) log p (s|y, θ) dθ

]
, (4)

q (θ) ∝ exp

[∫
q(s) log p (θ|y, s) ds

]
. (5)

VB algorithms iterate over these two densities until convergence is reached. Due to the

similarities with the EM algorithm of Dempster, Laird and Rubin (1977), this iterative

procedure in its general form is referred to as the Variational Bayesian EM (VB-EM)

algorithm; see Beal and Ghahramani (2003). It is also worth noting the relationship with

Gibbs sampling. Like Gibbs sampling, (4) and (5) involve the full conditional posterior

distributions. But unlike Gibbs sampling, the VB-EM algorithm does not repeatedly

simulate from them and thus, typically, is computationally much faster.

Our implementation of VB methods for time varying parameter regressions with

a shrinkage prior leads leads to simple forms for (4) and (5). The scheme we use

relies on three assumptions. First, the complete-data likelihood for y, θ and s comes

from the exponential family. Second, all priors need to be conditionally conjugate

to the likelihood. Third, it assumes a factorization q (s, θ) = q (s) q (θ). The first

two assumptions are not at all restrictive. Most macroeconometric models assume

Normal errors, and conjugate Bayesian analysis is desirable in most settings. The third

assumption is harmless if θ and s have low posterior correlation and can thus be safely
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factorized into independent components. As we show in detail in the next section, this

assumption can indeed be fully exploited in the TVP regression setting. For example,

for parameters such as state equation error variances, we expect the correlation with the

states to be typically weak.

3 VB Inference in High-Dimensional TVP

Regressions

In this paper, we work with the univariate5 TVP regression model with stochastic

volatility of the form

yt = xtβt + σtεt (6)

βt = βt−1 + ηt (7)

log
(
σ2
t

)
= log

(
σ2
t−1
)

+ ζt (8)

where yt is the time t value of the dependent variable, t = 1, .., T , xt is a 1 × p vector

of predictors and lagged dependent variables, εt ∼ N (0, 1), ηt ∼ N (0, Qt) with Qt a

p × p diagonal matrix, and ζt ∼ N (0, rt). In likelihood-based analysis of this model it

is standard to assume that εt, ηt and ζt are independent of one another and we adopt

this assumption. The assumption of diagonality of the state covariance matrix Qt is

not a standard assumption in the literature, although it has been used in some cases;

see for example Belmonte et al. (2014). As argued in the introduction, our interest lies

in prediction and not parameter estimation. The diagonality assumption allows for a

more parsimonious econometric specification, less cumbersome derivations of posterior

5Our estimation methodology can also be adapted to the multivariate case, e.g. the TVP Vector
Autoregressive model, with minor adjustments.
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distributions, and faster computation – with these three characteristics being particularly

important in Big Data forecasting applications. For future reference, note that we use

a notational convention where j, t subscripts denote the jth element of a time varying

state or parameter and 1 : t subscripts denoting all the states/parameters/data up to

time t.

Variational Bayes methods can be used with state space models such as the TVP

model given in (6), (7) and (8). When there are large numbers of predictors it is

important to add prior shrinkage to avoid over-parameterization problems. In this paper,

we follow ideas in Wang et al (2016) and add to the state space model in (6) and (7) an

additional hierarchical prior which shrinks the states towards zero. While these authors

use Student-t shrinkage via a Normal-inverse Gamma mixture prior, we instead use a

dynamic version of the variable selection mixture prior of George and McCulloch (1993).

This dynamic prior takes the form

βj,t|γj,t ∼ (1− γj,t)N
(
0, v2j,0

)
+ γj,tN

(
0, v2j,1

)
, (9)

γj,t ∼ Bernoulli
(
πj,0
)
, j = 1, ..., p, (10)

where v2j,0, v
2
j,1 are fixed prior variances with v2j,0 → 0 and v2j,1 → ∞, and πj,0 is a

fixed prior hyperparameter. Under this specification the prior hyperparameter γj,t is a

Bernoulli variable which decides which mixture component applies as a prior distribution

for the coefficient βj,t. If γj,t = 1 the prior of βj,t is diffuse (Normal with a very large

variance) and estimation of this parameter using the data is unrestricted. If γj,t = 1 the

prior of βj,t is approximately a point mass at zero6 and the posterior of this coefficient

6Notice that v2j,0 is set to be small, but not exactly zero. In Bayesian analysis there exist specifications

where v2j,0 = 0, and then the SSVS prior is simply called a spike and slab prior, where the spike is exactly
a point mass at zero. However, as George and McCullogh (1997) argue, posterior inference in the spike
and slab case is more cumbersome as it requires several computationally expensive evaluations involving
the likelihood function.
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will also be restricted to be very close to zero, and the effect of the j-th predictor is

removed from the regression at time t. It becomes apparent that under this variable

selection prior setting, πj,0 is the prior probability of inclusion of predictor j in the

TVP regression. We also adopt conditionally conjugate priors for the state variance

parameters:

q−1j,t ∼ Gamma (c0, d0) , j = 1, ..., p, (11)

r−1t ∼ Gamma
(
f
0
, g

0

)
, (12)

where c0, d0, f 0
, g are fixed prior hyperparameters. The model is completed by defining

the initial condition of the two state variables, namely

β0 ∼ N
(
β
0
, P 0

)
, (13)

log σ2
0 ∼ N

(
log σ2

0, R0

)
. (14)

Up to this point the definitions of likelihood and priors are mainly standard and

similar specifications are commonly used with TVP regressions. The novel feature in

our specification is the dynamic variable selection prior of equations (9) and (10), so

the question arises as to how to incorporate this prior into our methods of posterior

computation. First we note that, while equation (7) is the second layer of a hierarchical

regression, for the Bayesian it can be viewed as a hierarchical prior for the regression

coefficients βt of the form βt|βt−1, Qt ∼ N (βt−1, Qt). Second, we follow Wang et al.

(2016) and write the dynamic SSVS prior as a prior for latent data (pseudo-observations)

zj,t = 0 which is of the form

zj,t ∼ N (βj,t, vj,t) , (15)

where we define vj,t = (1− γj,t)2 v2j,0 + γ2j,tv
2
j,1 and Vt is the p × p diagonal matrix
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comprising the elements vj,t. We show in the Technical Appendix that by combining

these two priors for βt, we obtain the following state equation:

βt = F̃tβt−1 + η̃t, (16)

where η̃t ∼ N
(

0, Q̃t

)
, with parameter matrices Q̃t =

(
Q−1t + V −1t

)−1
and F̃t = Q̃tQ

−1
t .

The vector of states is s = (β1:T , log σ2
1:T ) and the vector of other parameters is

θ = (q1:T , γ1:T , r1:T ). Consequently, the posterior distribution for the joint vector of

states and parameters is of the form

p (s, θ|y1:T , z1:T ) ∝
T∏
t=1

p (βt|βt−1, Qt) p
(
log σ2

t | log σ2
t−1, rt

)
p
(
yt|βt, log σ2

t

)
(17)

p (zt|βt, Vt) p (γt) p (Qt) p (rt) . (18)

While this joint posterior is analytically intractable, the conditional posteriors are

tractable and thus MCMC methods can be used. But, when the number of predcitors is

large, this would be computationally burdensome. In order to deal with these challenges,

in this paper we apply the following mean field VB approximation

q (s, θ) ≡ q (β1:T ) q
(
log σ2

1:T

) T∏
t=1

(
q (rt)×

p∏
j=1

q (vj,t) q (γj,t) q (qj,t)

)
. (19)

Notice that we want to decompose the parameters qt, vt, γt into components that are

independent over t and over j, in order to facilitate computation. However, we don’t

want to factorize β1:T and log σ2
1:T over time, because this means that posterior estimates

would be independent at each time period, which is surely not a realistic assumption

for TVP regression models that specifically assume that time-varying parameters evolve

dynamically as random walks.
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Using this mean field approximation we can derive a VBKF that is simple and

resembles the popular EM algorithm for maximum likelihood estimation of state-space

models that was proposed by Shumway and Stoffer (1982) but includes the SSVS

shrinkage prior which is crucial in avoiding over-parameterization concerns. As discussed

in the preceding section, the optimal choices for the components that make up q (s, θ)

are the conditional posterior distributions. These are given in the Technical Appendix.

Further details, derivations and theoretical justifications of such VB algorithms are given

in Beal (2003).

In the previous section we highlighted the fact that in order to derive the algorithm,

two necessary conditions are that the likelihood belongs to the exponential family and

that the priors that are conditionally conjugate. With one exception, all of the posterior

conditionals of the TVP regression with shrinkage prior meet these conditions. The

one exception is for the volatility process. This arises from the fact that the stochastic

volatility model is not a linear Normal state space model. Hence, we need to use an

alternative approximation for q (log σ2
1:T ).

Note that the state space model with states log σ2
t can be transformed so as to be

a linear state space model with measurement error that is distributed as log−χ2 with

one degree of freedom. To show this, consider equations (6) and (8) and, assuming βt

known, bring the term xtβt on the left hand side, take squares and then logarithms.

This produces the following state-space model

ỹt = log σ2
t + wt, (20)

log σ2
t = log σ2

t−1 + ζt, (21)

where ỹt = log
(
(yt − xtβt)2

)
and wt = log ε2t .

7

7It is common to add a very small offset constant to the transformed dependent variable to avoid
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Kim, Shephard and Chib (1998) apply a mixture of Normals approximation to this

log−χ2 distributed error wt. Our VBKF approximation cannot handle the mixture

of Normals, so instead we approximate the log−χ2 distribution with a single Normal

distribution with mean and variance matching those of the log−χ2. As we show in

the Technical Appendix, by doing such an approximation we lose information in the

left tail of the log−χ2 which corresponds to large negative values of the log-volatility

parameter log σ2
t . In our empirical work, we standardize our data prior to analysis to

have unconditional sample variance equal to one so large negative values are unlikely

to arise. Additionally, we argue that we are not immediately interested in forecasts of

volatility, rather we want forecasts of yt and these are likely to be only slightly affected

by using an approximation which becomes poor only in the tails of the distribution.

Finally, having an approximate stochastic volatility estimator should still work much

better than the case of having a constant volatility, since it is established that stochastic

volatility is extremely important for macro forecasting (see, among many others, Clark

and Ravazzolo, 2015). The next two sections establish that this is the case and

our volatility estimator works very well – much better than the approximate EWMA

volatility estimator used in Koop and Korobilis (2012).

Algorithm 1 below outlines our VBKF algorithm. All the detailed algorithmic steps

are provided in the Technical Appendix, and here we only demonstrate the general form

of the new algorithm. We have found that that this algorithm will normally iterate only

a few times. This takes much less computational resources compared to obtaining tens

of thousands of MCMC draws. Convergence is typically achieved by assessing whether

the values of the parameters have changed substantially from one iteration to the next.

Hence, we define the stopping rule ‖s(r)t −s
(r−1)
t ‖ → 0, where st = (βt, log σ2

t ), the symbol

‖ • ‖ denotes the Euclidean norm, r denotes the replication number and t|t subscripts

numerical instabilities.
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denote Kalman filter estimates of time t quantities given data through period t.

Algorithm 1 Variational Bayes Kalman Filter (VBKF) pseudo-algorithm in a TVP
regression with stochastic volatility

Initialize β
0
, log σ0, P 0, R0, c0, d0, f 0

, g
0
, vj,0, vj,1, πj,0

for t = 1 to T do
r=1;

while ‖β(r)
t|t − β

(r−1)
t|t ‖ → 0 and ‖

(
log σ2

t|t

)(r)
−
(

log σ2
t|t

)(r−1)
‖ → 0 do

1. Perform Kalman filter updating of βt|t based on the state-space model
consisting of equations (6) and (16)

2. Update γj,t and qj,t ∀ j ∈ 1, p from their analytical conditional posteriors
(see details in Technical Appendix)

3. Based on step 2, construct matrices Qt and Vt (see equation (15)), and

subsequently F̃t and Q̃t (see equation (16)), to be used in the next iteration
4. Perform Kalman filter updating of log σ2

t|t based on the state-space model

consisting of equations (20) and (21)
5. Update rt from its analytical conditional posterior (see details in Technical

Appendix)
r = r + 1

end while

Upon convergence, set βt = β
(r)
t and log σ2

t =
(

log σ2
t|t

)(r)
, and do forecasting

using standard formulas for dynamic regression models
end for

4 Simulation study

In this section we evaluate the performance of the new estimator using artificial data.

Although we view the algorithm as primarily a forecasting algorithm, it is also important

to investigate its estimation properties in an environment where we know the true data

generating process (DGP). Thus, we wish to to establish that the VBKF is able to track

time-varying parameters satisfactorily and establish that the dynamic variable selection

prior is able to perform shrinkage and selection with high accuracy (at least in cases

where we know that the DGP is that of a sparse TVP regression model). We also wish

to investigate the computational gains that can be achieved by using our algorithm
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compared to the dynamic model averaging (DMA) approach of Koop and Korobilis

(2012) which is based on a computationally efficient dynamic shrinkage algorithm that

does not use MCMC methods.

We do not consider MCMC methods as benchmarks when assessing the numerical

precision of VBKF, even though we have several MCMC-based algorithms in the next

section when doing a full-fledged forecast comparison using real data. We do know

that MCMC methods will converge to the exact posterior whereas VB methods are

approximate. On top of that, MCMC estimates of time-varying parameters are less

noisy because they are smoothed estimates, while VBKF estimates are filtered. Having

smoothed estimates is important for reliable parameter estimation in-sample, but when

forecasting smoothing does not play a role. Therefore, there is no practical need to

establish numerical precision of MCMC relative to VBKF in-sample, however, it is

extremely important to establish their relative performance when forecasting out-of-

sample (something we do in the next section). Variational Bayes methods are scalable

to very large dimensions where MCMC methods are not and, thus, they can be used for

forecasting even when the number of predictors in a TVP regression becomes very large.

Accordingly, the main aim of this section is to establish that VBKF methods, although

approximate, yield reasonable results and that they are comparable to established

approximate algorithms such as DMA.

As a consequence, our Monte Carlo study involves generating data from sparse time-

varying parameter DGPs and comparing VBKF against DMA. This latter algorithm is

dynamically averaging over many state space models, where the states in each model

are estimated using exponential discounting. In particular, the time-varying regression

coefficients are estimated using a so-called forgetting factor Kalman filter (FFKF) and

the time varying error variance is estimated using an exponentially weighted moving

average (EWMA) filter. Given the recursive nature of these filters, time t estimates
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are readily available given past information. The exponential weighting scheme implies

that recent observations take more weight than older observations, that is, it is a rolling

estimation scheme with an adaptively changing window of observations that allows faster

or slower changes in parameters over different periods. This algorithm being fast allows

to enumerate all possible models using p predictors, estimate them all efficiently using a

single pass of the Kalman filter algorithm, and then average using some measure of fit.

For p predictors DMA requires estimation of all 2p models, which can be cumbersome

for p >> 20, even after accounting for the fact that all these models can be estimated

easily in parallel using modern multi-core processors. Therefore, DMA can be thought

of as “deterministic variable selection” because all 2p models need to be enumerated and

estimated. Our use of the SSVS prior in the VBKF algorithm allows for a more efficient

“stochastic variable selection” by visiting probabilistically only the best (according to

marginal likelihoods) specifications among all possible models.

For the DMA procedure we set the forgetting and decay factors as in Koop and

Korobilis (2012), and the reader is referred to that paper for more information about

the effect of such choices and their justification. The forgetting factor is set to 0.96 and

the decay factor, which controls the amount of time-variation in the error variance, is set

to 0.94. These choices allow for substantial time variation in both regression coefficients

and variances, and they are calibrated so as to comply with the amount of time variation

we allow in the DGP (which is described next). DMA also involves a model averaging

forgetting factor which controls how fast model switching occurs and we set this to

0.99.8 Additional details and references about the method are provided in the Technical

Appendix.

8These factors could be estimated from the data by specifying a grid of values for each and optimizing
over them. However, this substantially adds to the computational burden.
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We use DGPs of the following form:

yt = β1tx1t + β2tx2t + ...+ βptxpt + σtεt (22)

βit = di × θit (23)

di =

 0 with probability π

1 with probability 1− π
(24)

θt = c+ γ (θt−1 − c) + δηt (25)

log
(
σ2
t

)
= µ+ φ

(
log
(
σ2
t−1
)
− µ

)
+ ξζt (26)

θ0 ∼ θ, log
(
σ2
t

)
= σ, (27)

where βt = (β1t, β2t, ..., βpt) is a vector of p regression coefficients at time t, di for

i = 1, .., p is a Bernoulli random variable that determines whether the coefficients, βit,

are zero or not, and θt = (θ1t, θ2t, ..., θpt). The errors in all equations, εt, ηt, ζt, are

standard Normal and independent of one another and over time. All variables with an

underscore are fixed so as to define the DGP. We set π = 0.5, γ = 0.99, φ = 0.98,

δ = T−3/4, ξ = T−1/2, θ ∼ U (−2, 2), σ = 0.2, c = θ, µ = σ. The chosen value of π

implies that, on average, only half of the predictors are included in the TVP regression.

Note that all methods estimate time-varying coefficients and variances which evolve as

random walks, but the parameters in equations (25) and (26) of the DGP are generated

from mean-reverting AR processes. We set γ and φ to values slightly smaller than one

in order to make sure we don’t generate explosive values for yt. Finally, we generate

predictor variables from xt ∼ N (0, S), where S is a p× p matrix of correlations with i, j

element generated as Sij = ρ|i−j|.

We generate models with different number of predictors p, number of observations T ,

and correlation coefficient for the predictors ρ. In particular, we generate models with

p = 4, 8, 12 predictors, T = 100, 200 observations and ρ = 0, 0.9 correlation intensity
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for the predictor variables. This gives a total of 12 possible DGPs to compare. Note

that the VBKF methodology works with many predictors, but DMA cannot handle very

large number of predictors which is why p = 12 is the maximum number of predictors

we consider in this section. From each DGP, we generate 500 data sets.

For the VBKF we use the following default priors:

βj,t|γj,t ∼ (1− γj,t)N
(
0, 0.00012

)
+ γj,tN

(
0, 22

)
, (28)

γj,t ∼ Bernoulli (0.5) , (29)

q−1j,t ∼ Gamma (1000, 1) , (30)

r−1t ∼ Gamma (100, 1) , (31)

β0 ∼ N (0, 2× I) , (32)

log σ2
0 ∼ N (0, 0.1) . (33)

Before discussing numerical results based on all 500 of the data sets generated from

each DGP, we present parameter estimates using a single, randomly generated data

set for T = 200, p = 8 and ρ = 0.9. Figure 1 plots the true values of the eight

time-varying parameters and the respective VBKF and DMA estimates using this data

set. This data set has randomly chosen four of the regression coefficients to be non-

zero and time-varying. For these, we can see that parameter tracking in real time

for coefficients β1t, β4t, β5t, β6t is quite accurate using both methods. This accuracy is

particularly noteworthy since both VBKF and FFKF are filtering methods and thus the

estimates are not smoothed. VBKF and DMA estimates of coefficient β6t lie slightly

below the true value, but some bias is to be expected as both these methods can be

thought of as time-varying, Bayesian versions of classical penalized estimators which

are known to be biased. As long as interest lies in forecasting, such biases are welcome
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in high dimensions because they are typically accompanied by much lower variances

of estimates and a reduction in mean square error. For the remaining four coefficients

that were set to zero in the DGP, both methods accurately indicate that their values

are zero. The partial exceptions are for β2t and β8t, where for an initial period the

VBKF estimate is slightly different than zero, before eventually being shrunk to zero.

Similarly, Figure 2 plots the time-varying volatilities from VBKF and DMA against the

true values. It can be seen that both estimates track satisfactorily the true values in real

time. Thus, overall we are finding both approaches to estimate time varying coefficients

and volatilities quite well.
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Figure 1: True values of generated coefficients in the sparse time-varying parameter
regression DGP with T = 200, p = 8, and ρ = 0.9, plotted against the VBKF and
FFKF estimates. The VBKF uses a dynamic variable selection prior, while the FFKF is
combined with a dynamic model averaging (DMA) procedure that enumerates all possible
model combinations using the p = 8 predictors. The first 50 observations are not plotted
in order to remove the effect of initial conditions on both filtering methods.
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Figure 2: True generated volatility in the sparse DGP with T = 200, p = 8, plotted
against estimates from VB and EWMA filters. The first 50 observations are not plotted
in order to remove the effect of initial conditions on both filtering methods.

Results averaged over 500 artificially generated data sets for each of our DGPs are

presented in Table 1. Entries in this table are mean squared deviations (MSD) averaged

over the 500 data sets and T time periods. Results relating to the p-dimensional vector

of regression coefficients βt further average over p. To be precise, if we write the true

artificially generated coefficients as (βtruet , σtruet ) and the estimates from VBKF and DMA

as
(
βjt , σ

j
t

)
, for j = V BKF,DMA, we calculate MSD as

MSDj
β =

1

500

500∑
r=1

T∑
t=1

p∑
i=1

(
β
true,(r)
it − βj,(r)it

)2
, (34)

MSDj
σ =

1

500

500∑
r=1

T∑
t=1

(
σ
true,(r)
t − σj,(r)t

)2
(35)

where r = 1, ..., 500 denotes the number of Monte Carlo iterations. The table also

presents CPU times measured in seconds per Monte Carlo draw.

Regarding MSD results for the time-varying coefficients, in most cases VBKF with

the dynamic shrinkage prior has lower estimation error than DMA. Note here that,
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using the algorithm of Koop and Korobilis (2012), we could have presented results for

dynamic model selection (DMS) where a single best model is selected at each point in

time. For brevity, we do not present such results since we found DMS to be substantially

inferior in this Monte Carlo study. Similarly, we do not present results from a simple

benchmark such as rolling OLS. Rolling OLS produced MSDs which are several times

higher than VBKF and DMA. The poor performance of rolling OLS is due to the fact

that the true time-varying parameter vector is sparse, in which case procedures such

as (unrestricted) rolling OLS are condemned to be over-parameterized and not track

coefficients well. Regarding volatility estimates, the picture is similar. Our approximate

VBKF filter performs better in most cases than the EWMA filter used in the DMA

algorithm of Koop and Korobilis (2012). Overall, we are finding the VBKF to work well

in an absolute sense, but also relative to DMA.

In terms of computation times, DMA is faster when using four variables. This is

because with DMA one needs to estimate 24 models but in each only one run of the

Kalman filter is required. By constrast, VBKF involves running the Kalman filter until

a convergence criterion is met. In practice in this Monte Carlo study, this amounts to

running the equivalent of five to 10 Kalman filter iterations. However, as the number of

predictors increases, DMA clearly reveals its computational disadvantage. The number

of models DMA estimates is 2p and, thus, computation increases commensurately.

Computation time for VKBF, in contrast, increases at an approximately linear rate.

Thus, VKBF is a computationally feasible algorithm, even with hundreds or more

predictors, whereas the computational burden of DMA becomes enormous even when

p = 20. Clearly, VBKF is a scalable algorithm whereas DMA is not.
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Table 1: Mean squared deviations and average CPU time per Monte Carlo iteration
p = 4 predictors p = 8 predictors p = 12 predictors

T = 100 T = 200 T = 100 T = 200 T = 100 T = 200
ρ = 0 ρ = 0.9 ρ = 0 ρ = 0.9 ρ = 0 ρ = 0.9 ρ = 0 ρ = 0.9 ρ = 0 ρ = 0.9 ρ = 0 ρ = 0.9

MSD (predictor coefficients)

VBKF 0.0519 0.1002 0.0233 0.0701 0.0850 0.1636 0.0398 0.0957 0.1480 0.2230 0.0529 0.0849
DMA 0.0531 0.1256 0.0244 0.0527 0.0896 0.1583 0.0486 0.0905 0.1222 0.2504 0.0584 0.1005

MSD (stochastic volatility)

VBKF 0.0991 0.1526 0.0467 0.0560 0.1280 0.3809 0.1724 0.2959 0.5122 1.3126 0.4942 0.1651
DMA 0.1152 0.1604 0.0435 0.0405 0.9036 1.6338 0.3090 0.6047 1.6993 7.1928 1.2160 3.2218

CPU time (sec)

VBKF 0.20 0.34 0.51 0.36 0.59 0.71 1.12 1.29 0.83 0.79 1.07 1.80
DMA 0.04 0.04 0.08 0.08 1.99 1.98 4.01 4.06 81.83 86.84 159.11 164.41

Notes: CPU times are based on MATLAB 2017b 64-bit on a Windows 7 machine with Core i7-8700K processor running in stock clock speed. All

calculations rely on MATLAB’s built-in capabilities as well as the statistics toolbox, but without utilizing the parallel computing toolbox. Both

VBKF and DMA can be trivially parallelized but in completely different ways, meaning that parallel processing times can differ substantially

from the times we report in this table.

5 Macroeconomic Forecasting with Many

Predictors

5.1 Data and forecasting models

In this section we investigate the performance of the new VBKF algorithm in an

application that involves forecasting two important macroeconomic variables, GDP

growth and inflation, using many predictors. Our data set includes these two variables

and 116 other quarterly US time series variables for the period 1959Q1 - 2015Q4. A

detailed description of our data set and the transformations done to each variable are

provided in the Data Appendix.

Our largest TVP regressions thus involve a dependent variable (inflation or GDP

growth) along with 117 exogenous predictors (the 116 other variables plus either inflation

or GDP growth) along with an intercept and two lags of the dependent variable.

Thus, they contain 120 right-hand side variables. We also select two subsets of the

exogenous predictors involving five and 16 potentially important predictors which have
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been commonly used for macroeconomic forecasting in other studies.9 These smaller

data sets, as noted below, are used with some of the comparative methods which are too

computationally burdensome to use with the full data set. The predictors and dependent

variables are standardized, and then forecasts are transformed back to the original scale.

We use the direct method of forecasting. Forecasts are evaluated over the last 50% of

the sample, for horizons h = 1, 2, 3, 4 quarters ahead.

We forecast with four different variants of the VBKF which involve different numbers

of predictors as well as a range of popular competitors which involve either time variation

in parameters or structural breaks in regression or AR models. We include a variety of

specifications for parameter change and a variety of data configurations:

� VBKF1: TVP regression with only the intercept and the two lags of the dependent

variable. These parameters are always included in each specification, so they have

an unrestricted Normal prior. That is, their unrestricted prior is a special case of

the the dynamic SSVS prior where γj,t = 1 for all t and for all j corresponding to

intercept and lags of the endogenous variable.

� VBKF2: Extends VBKF1 by adding the set of five important predictors.

� VBKF3: Extends VBKF1 by adding the set of 16 important predictors.

� VBKF4: Extends VBKF1 by adding all available 117 predictors.

� KP-AR: Structural break AR(2) model based on Koop and Potter (2007).

� GK-AR: Structural break AR(2) model based on Giordani and Kohn (2008).

9The 16 variables have mnemonics ’EXUSUK’ ’OILPRICEx’ ’HOUST’ ’S&P 500’ ’T10YFFM’
’CUMFNS’ ’HWI’ ’AWHMAN’ ’AWOTMAN’ ’AMDMNOx’ ’AMDMUOx’ ’TB3MS’ ’AAAFFM’
’BAAFFM’ ’PPICMM’ ’CES3000000008’. The five-variable data set uses the first five of these 16
variables. See the Data Appendix for exact definitions.
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� TVP-AR: TVP-AR(2) model with stochastic volatility similar to Pettenuzzo and

Timmerman (2017).

� UCSV: The unobserved components stochastic volatility model of Stock and

Watson (2007) is a special case of a TVP regression with no predictors - it is

a local level state-space model featuring stochastic volatility in the state equation.

� TVD: The time-varying dimension (TVD) model of Chan et al. (2012) using five

predictors. This is the first of three alternative TVD specifications proposed by

the authors. To ease the computational burden (and following Chan et al.) we

do dynamic model selection over a model space containing models with a single

predictor or all five predictors (but not 2, 3 or 4 predictors).

� TVS: The time-varying shrinkage (TVS) algorithm of Kalli and Griffin (2014)

using five predictors.

� TVP-BMA: Groen et al (2013) develop methods for doing Bayesian model

averaging with TVP regressions. We use their algorithm with 16 predictors.

� TVP-LASSO: Belmonte et al. (2014) show how to incorporate the Bayesian

lasso prior in TVP regressions, in order to shrink coefficients either towards zero

or towards a constant parameter specification. We use this approach with 16

predictors.

� DMA: The DMA algorithm as implemented in Koop and Korobilis (2012) with

16 predictors.

� SSVS: The constant parameter regression version of the SSVS prior was first

developed in George and McCulloch (1993). We use this algorithm with the full

set of 117 predictors.

25



We stress that, with the exception of VBKF and the static SSVS algorithm, the

computational demands of the other approaches become overwhelming with the full data

set, which is why the other approaches are limited to 16 or fewer exogenous predictors.

In addition, we have one constant coefficient regression with shrinkage of a similar sort

to that used in our VBKF so as to investigate the importance of time-variation in

parameters. All models, except for UCSV, include at least an intercept and two lags

of the dependent variable. Prior shrinkage is only done on the exogenous predictors

and not on the intercept or AR lags. The prior for VBKF methods is the one specified

in the Monte Carlo study. The following is a list which summarizes and offers a brief

description of all the forecasting methods. Appendix C provides details (including prior

hyperparameter choices) of all the competing methods.

5.2 Estimation Results

Before presenting the results of the forecasting comparison, we demonstrate some

evidence on what VBKF is estimating in the TVP regression model involving all 117

predictors. We focus on the h = 1 case.

Figures 3 and 4 plot the time-varying posterior inclusion probabilities for the most

important predictors of GDP growth and inflation. The first point to note about both

of these figures is that our dynamic shrinkage prior is indeed shrinking a large number

of coefficients to zero. Out of 117 possible predictors, only a small number (21 for GDP

growth and 18 for inflation) have high posterior inclusion probabilities for appreciable

periods of time. In both cases, approximately 100 predictors are being shrunk to zero

in all periods. A second point to stress is that there is a great deal of time variation in

these inclusion probabilities. If a predictor were always important, then the posterior

inclusion probability would be near one for the entire sample. No variable exhibits this
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characteristic.

For both inflation and GDP growth, there is a tendency (with several exceptions)

for posterior inclusion probabilities to be highest in the late 1970 through the 1980s and

be lowest at the beginning and end of the sample. Interesting exceptions to this occur

for the inflation forecasts where two variables (wage inflation in manufacturing and the

growth in real personal income) become important predictors only around the time of

the financial crisis.

These estimation results establish that our VKBF methods with hierarchical

shrinkage can effectively ensure parsimony in a time-varying manner in a TVP regression.
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Figure 3: Posterior inclusion probabilities for the most important predictors of GDP
growth (h = 1). Only predictors which have probability higher than 0.5 for at least 10
quarters are plotted.
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Figure 4: Posterior inclusion probabilities for the most important predictors of inflation
(h = 1). Only predictors which have probability higher than 0.5 for at least 10 quarters
are plotted.

Figure 5 presents the volatility estimates from the VBKF4 model compared to those

produced by DMA. Note that for DMA we use the smaller data set of 16 predictors.

Although broadly similar, there are differences between the VKBF and DMA volatility

estimates with the former being more stable and less erratic than the latter. Note

that for GDP growth DMA is producing very high and erratic volatities both at the

beginning of the sample and around the time of the financial crisis. These features are

greatly muted by VBKF. For inflation, VBKF and DMA volatility estimates are mostly

similar, but at the time of the financial crisis DMA is producing a large, “noisy” spike

in volatility which is absent for VBKF.
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Figure 5: Stochastic volatility estimates for GDP growth (left panel) and inflation (right
panel). The blue solid line is for VKBF, the red dashed line is for DMA.

5.3 Forecasting results

In this subsection we report the results of our forecast comparison using Mean Squared

Forecast Errors (MSFEs) and averages of log predictive likelihoods (APLs) as measures

of point and density forecast performance, respectively. Both are benchmarked against

the AR(2). For MSFEs we present ratios of the MSFE of a given model relative to that

of the AR(2), such that values lower than one signify better performance of the model

relative to the benchmark. For APLs we subtract off the AR(2) APL and, thus, positive

numbers indicate a forecasting method is beating the benchmark.10

We, thus, have 2 forecast metrics, 4 forecast horizons and 2 variables which makes

16 comparisons possible. Different forecasting approaches do well in some cases and less

well in others. But a general story we are finding is that VBKF often forecasts best,

10To aid in interpretation, note that sums of log predictive likelihoods, which can be interpreted in
a similar fashion as marginal likelihoods or information criteria, can be obtained by multiplying APLs
by the number of observations in the forecast evaluation period. The latter is 112− h.
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particularly when we use APLs as our measure of forecast performance. And it never

forecasts poorly in the sense that is always easily beats the AR(2) benchmark. Other

approaches do not have these properties. We provide evidence on these points in the

remainder of this subsection.

Probably the best overall approach, other than VBKF, is the simple UCSV model.

When using MSFE as a forecast metric, UCSV beats VBKF for GDP growth forecasting

and for one quarter ahead inflation forecasting. But this ranking is overturned

when using APLs where VBKF approaches beat UCSV. Furthermore, there is a case

(h = 2 inflation forecasts) where UCSV forecasts very poorly, losing out to the AR(2)

benchmark. VBKF methods never are beaten by the AR(2). The TVP-AR(2) model

exhibits similar patterns, but with a slightly worse forecast performance overall.

DMA is found to be a robust method, never losing out to the AR(2) benchmark. But

(with only a couple of exceptions involving MSFE performance of long run forecasts)

VBKF forecasts better.

Of the remaining, MCMC-based, methods (regardless of whether they are structural

break or TVP models), none of them provides a consistently better forecast performance

than VBKF. Indeed TVP-BMA and TVP-LASSO tend to forecast quite poorly, often

being beaten by the AR(2) benchmark and never being selected as the best forecasting

method for either variable for any forecast horizon. TVD and TVS tend to forecast

better and sometimes beat VBKF (e.g. TVS forecasts very well at short horizons).

Another issue worth discussing is whether including a large number of predictors

can improve forecast performance. Here the evidence is more mixed. The relatively

good performance of methods with no predictors such as UCSV and TVP-AR(2) lends

some support to the idea that simple parsimonious methods are adequate (although

we do stress that these methods are typically beaten by VBKF with large numbers of

predictors). Of course, even if a small number of predictors is enough to forecast US
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inflation and GDP growth, that does not undermine the contribution of the present

paper. Developing econometric methods which will work even with a huge number of

predictors is useful, even if forecast improvements in one particular empirical application

are not large. But if we compare VBKF1, VBKF2, VBKF3 and VBKF4 (which differ

only in the number of exogenous predictors included), we do (with some exceptions)

tend to see clear improvements in forecast performance as more predictors are included.

Particularly at longer forecast horizons, these improvements are appreciable. See, for

instance, the large improvements in APLs and MSFEs for h = 3 and h = 4 for both

variables obtained by VBKF4 relative to VBKF1. With some exceptions, a similar

pattern is found with shorter forecast horizons as well.

The discussion of the previous paragraph raises the issue as to whether VBKF is

forecasting well simply because it can handle more variables. If this were true, this

would only strengthen our argument that developing econometric methods capable of

handling more variables is useful. But even when we compare approaches with the same

number of predictors (e.g. comparing VBKF3 to TVP-LASSO which both involve 16

predictors), we find VBKF to be forecasting as well or better than other approaches. Of

the methods which use 5 predictors, TVS forecasts very well and (with some exceptions)

forecasts GDP growth better than VBKF2 (which also has 5 predictors). However, for

inflation VBKF2 tends to forecast slightly better than TVS. These two methods will

only differ in the way prior shrinkage is done and in the way computation is done.

Hence, it is reassuring to see the approximate VBKF method is forecasting as well as a

state-of-the-art dynamic shrinkage prior in a case where such a comparison is possible.

Of course, we only estimate TVS with the 5 variable data set since TVS will be much

too computationally burdensome with larger data sets.

Finally, forecasts produced using the SSVS prior in the constant coefficient model

are often very good. But there are exceptions where forecasts are very poor, failing to
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beat the AR(2) benchmark. See, for instance, the very poor MSFEs produced for long

run inflation forecasts.

Overall, we are finding VBKF methods with an SSVS-based dynamic shrinkage prior

to forecast well. They are comparable with the best alternatives where such a comparison

is possible. But the key benefit of VBKF is that it can handle much larger number of

predictors than other approaches.

Table 2: MSFEs relative to AR(2) benchmark
GDP CPI

h = 1 h = 2 h = 3 h = 4 h = 1 h = 2 h = 3 h = 4

Structural Breaks & TVP models - no predictors, MCMC-based
KP-AR(2) 0.868 0.764 1.351 1.247 0.920 0.783 0.702 0.589
GK-AR(2) 1.081 1.087 1.075 1.069 0.945 0.934 0.920 0.936
TVP-AR(2) 0.872 0.916 1.029 0.995 1.034 1.052 0.805 0.835
UCSV 0.813 0.823 0.769 0.744 0.854 1.108 0.947 0.776

TVP models with predictors, MCMC-based
TVD (2 lags, 5 predictors) 0.899 0.836 0.824 0.813 0.932 1.160 1.318 1.228
TVS (2 lags, 5 predictors) 0.957 0.863 0.792 0.757 0.943 0.833 0.827 0.757
TVP-BMA (2 lags, 16 predictors) 1.472 1.601 1.753 1.569 1.790 1.247 1.412 0.859
TVP-LASSO (2 lags, 16 predictors) 1.137 1.603 1.076 0.831 0.952 1.099 1.121 1.270

TVP models, not based on MCMC
DMA (2 lags, 5 predictors) 0.902 0.740 0.703 0.685 0.961 0.806 0.729 0.668
VBKF1 (2 lags) 0.930 0.903 0.872 0.864 0.964 0.941 0.961 0.971
VBKF2 (2 lags, 5 predictors) 0.934 0.902 0.875 0.869 0.950 0.935 0.954 0.979
VBKF3 (2 lags, 16 predictors) 0.930 0.906 0.869 0.868 0.950 0.816 0.747 0.708
VBKF4 (2 lags, 118 predictors) 0.924 0.875 0.866 0.754 0.927 0.792 0.725 0.691

Constant parameter models with predictors, MCMC-based
SSVS (2 lags, 118 predictors) 0.848 0.929 0.919 0.924 0.877 1.128 1.202 1.215
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Table 3: APLs relative to AR(2) benchmark
GDP CPI

h = 1 h = 2 h = 3 h = 4 h = 1 h = 2 h = 3 h = 4

Structural Breaks & TVP models - no predictors, MCMC-based
KP-AR(2) 0.003 -0.179 -0.004 0.076 0.127 0.058 0.235 0.655
GK-AR(2) 0.043 0.018 -0.003 0.014 0.073 0.054 0.181 0.022
TVP-AR(2) 0.082 0.215 -0.001 -0.048 0.273 0.167 0.128 0.037
UCSV 0.121 0.413 0.001 -0.110 0.474 0.279 0.075 0.517

TVP models with predictors, MCMC-based
TVD (2 lags, 5 predictors) 0.161 0.610 0.276 0.172 0.674 0.392 0.223 0.067
TVS (2 lags, 5 predictors) 0.200 0.807 0.456 0.234 0.874 0.504 0.308 0.082
TVP-BMA (2 lags, 16 predictors) -0.157 -0.202 -0.151 -0.235 0.207 0.018 0.159 0.093
TVP-LASSO (2 lags, 16 predictors) -0.069 -0.558 0.234 0.446 0.189 0.661 0.076 0.823

TVP models, not based on MCMC
DMA (2 lags, 5 predictors) 0.015 0.137 0.206 0.286 0.051 0.445 0.222 0.916
VBKF1 (2 lags) 0.126 0.371 0.496 0.537 0.386 0.912 0.360 0.637
VBKF2 (2 lags, 5 predictors) 0.108 0.379 0.538 0.344 0.387 0.797 0.359 0.737
VBKF3 (2 lags, 16 predictors) 0.092 0.337 0.476 0.647 0.273 0.706 0.633 0.706
VBKF4 (2 lags, 118 predictors) 0.391 0.947 0.598 0.639 0.236 0.599 0.724 0.763

Constant parameter models with predictors, MCMC-based
SSVS (2 lags, 118 predictors) -0.156 0.166 0.282 0.738 0.033 0.039 0.145 0.033

6 Conclusions: Feasible and Reasonable

In this paper, we have developed a method for doing Variational Bayesian inference

in TVP regressions with stochastic volatility with a large number of predictors. Our

findings may be summarized as: VKBF is feasible and reasonable. That is, it is

computationally feasible even with over 100 predictors and can be scaled up to huge

dimensions in a way other approaches cannot. And the empirical results (both in terms

of estimation and forecasting) are reasonable. That is, VKBF forecasting results are

typically among the best regardless of variable choice, forecast horizon and forecast

metric despite the fact that VBKF is only approximating the posterior and predictive

densities. In some cases, they are beaten by other approaches, but those other

approaches cannot handle the large number of predictors that are increasingly being
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used in empirical macroeconomics and other fields. Furthermore, our approach (unlike

all the others) never goes too far wrong. Thus, we have shown that VBKF is doing as well

or better than existing approaches in models of dimension where such a comparison is

possible and is computationally feasible in models of dimension where such a comparison

is impossible.
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A Data Appendix

All data are obtained from St Louis Federal Reserve Bank economic database (FRED -

https://fred.stlouisfed.org/). Series which are originally observed at monthly or higher

frequencies are converted into quarterly values by taking averages over the quarter.

Table A1 below gives the FRED mnemonics of each variable along with its description.

The column Tcode denotes the transformations applied in order to convert variables to

stationarity.

In particular, if wi,t is the original untransformed series in levels, when the series

is used as a predictor in our models it is transformed according to the codes: 1 - no

transformation (levels), xi,t = wi,t; 2 - first difference, xi,t = wi,t − wi,t−1 ; 3- second

difference, xi,t = ∆wi,t − ∆wi,t−1 4 - logarithm, xi,t = logwi,t; 5 - first difference of

logarithm, xi,t = logwi,t− logwi,t−1; 6 - second difference of logarithm, xi,t = ∆ logwi,t−

∆ logwi,t−1.

When the series is used as the variable to be predicted (i.e. as the dependent

variable in the regression) the transformation codes are: 1 - no transformation (levels),

yi,t+h = wi,t+h; 2 - first difference, yi,t+h = wi,t+h − wi,t ; 3- second difference,

yi,t+h = 1
h
∆hwi,t+h − ∆wi,t 4 - logarithm, yi,t+h = logwi,t+h; 5 - first difference of

logarithm, yi,t+h = logwi,t+h − logwi,t; 6 - second difference of logarithm, yi,t+h =

1
h
∆h logwi,t+h −∆ logwi,t. In these transformations, ∆hwt+h = wt+h − wt.

Table A1: Quarterly US macro data set

No Mnemonic Tcode Description

1 RPI 5 Real Personal Income

2 W875RX1 5 RPI ex. Transfers
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Table A1 (continued)

3 DPCERA3M086SBEA 5 Real PCE

4 CMRMTSPLx 5 Real M&T Sales

5 RETAILx 5 Retail and Food Services Sales

6 INDPRO 5 IP Index

7 IPFPNSS 5 IP: Final Products and Supplies

8 IPFINAL 5 IP: Final Products

9 IPCONGD 5 IP: Consumer Goods

10 IPDCONGD 5 IP: Durable Consumer Goods

11 IPNCONGD 5 IP: Nondurable Consumer Goods

12 IPBUSEQ 5 IP: Business Equipment

13 IPMAT 5 IP: Materials

14 IPDMAT 5 IP: Durable Materials

15 IPNMAT 5 IP: Nondurable Materials

16 IPMANSICS 5 IP: Manufacturing

17 IPB51222S 5 IP: Residential Utilities

18 IPFUELS 5 IP: Fuels

19 CUMFNS 2 Capacity Utilization: Manufacturing

20 HWI 2 Help-Wanted Index for US

21 HWIURATIO 2 Help Wanted to Unemployed ratio

22 CLF16OV 5 Civilian Labor Force

23 CE16OV 5 Civilian Employment

24 UNRATE 2 Civilian Unemployment Rate

25 UEMPMEAN 2 Average Duration of Unemployment

26 UEMPLT5 5 Civilians Unemployed ≤ 5 Weeks

27 UEMP5TO14 5 Civilians Unemployed 5-14 Weeks
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Table A1 (continued)

28 UEMP15OV 5 Civilians Unemployed > 15 Weeks

29 UEMP15T26 5 Civilians Unemployed 15-26 Weeks

30 UEMP27OV 5 Civilians Unemployed > 27 Weeks

31 CLAIMSx 5 Initial Claims

32 PAYEMS 5 All Employees: Total nonfarm

33 USGOOD 5 All Employees: Goods-Producing

34 CES1021000001 5 All Employees: Mining and Logging

35 USCONS 5 All Employees: Construction

36 MANEMP 5 All Employees: Manufacturing

37 DMANEMP 5 All Employees: Durable goods

38 NDMANEMP 5 All Employees: Nondurable goods

39 SRVPRD 5 All Employees: Service Industries

40 USTPU 5 All Employees: TT&U

41 USWTRADE 5 All Employees: Wholesale Trade

42 USTRADE 5 All Employees: Retail Trade

43 USFIRE 5 All Employees: Financial Activities

44 USGOVT 5 All Employees: Government

45 CES0600000007 5 Hours: Goods-Producing

46 AWOTMAN 2 Overtime Hours: Manufacturing

47 AWHMAN 5 Hours: Manufacturing

48 HOUST 5 Starts: Total

49 HOUSTNE 5 Starts: Northeast

50 HOUSTMW 5 Starts: Midwest

51 HOUSTS 5 Starts: South

52 HOUSTW 5 Starts: West
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Table A1 (continued)

53 AMDMNOx 5 Orders: Durable Goods

54 AMDMUOx 5 Unfilled Orders: Durable Goods

55 BUSINVx 5 Total Business Inventories

56 ISRATIOx 2 Inventories to Sales Ratio

57 M2REAL 5 Real M2 Money Stock

58 S&P 500 5 S&P 500

59 S&P: indust 5 S&P Industrial

60 S&P div yield 2 S&P Divident yield

61 S&P PE ratio 5 S&P Price/Earnings ratio

62 FEDFUNDS 2 Effective Federal Funds Rate

63 CP3M 2 3-Month AA Comm. Paper Rate

64 TB3MS 2 3-Month T-bill

65 TB6MS 2 6-Month T-bill

66 GS1 2 1-Year T-bond

67 GS5 2 5-Year T-bond

68 GS10 2 10-Year T-bond

69 AAA 2 Aaa Corporate Bond Yield

70 BAA 2 Baa Corporate Bond Yield

71 COMPAPFF 1 CP - FFR spread

72 TB3SMFFM 1 3 Mo. - FFR spread

73 TB6SMFFM 1 6 Mo. - FFR spread

74 T1YFFM 1 1 yr. - FFR spread

75 T5YFFM 1 5 yr. - FFR spread

76 T10YFFM 1 10 yr. - FFR spread

77 AAAFFM 1 Aaa - FFR spread
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Table A1 (continued)

78 BAAFFM 1 Baa - FFR spread

79 EXSZUS 5 Switzerland / U.S. FX Rate

80 EXJPUS 5 Japan / U.S. FX Rate

81 EXUSUK 5 U.S. / U.K. FX Rate

82 EXCAUS 5 Canada / U.S. FX Rate

83 WPSFD49107 5 PPI: Final demand less energy

84 WPSFD49501 5 PPI: Personal cons

85 WPSID61 5 PPI: Processed goods

86 WPSID62 5 PPI: Unprocessed goods

87 OILPRICEx 5 Crude Oil Prices: WTI

88 PPICMM 5 PPI: Commodities

89 CPIAUCSL 5 CPI: All Items

90 CPIAPPSL 5 CPI: Apparel

91 CPITRNSL 5 CPI: Transportation

92 CPIMEDSL 5 CPI: Medical Care

93 CUSR0000SAC 5 CPI: Commodities

94 CUUR0000SAD 5 CPI: Durables

95 CUSR0000SAS 5 CPI: Services

96 CPIULFSL 5 CPI: All Items Less Food

97 CUUR0000SA0L2 5 CPI: All items less shelter

98 CUSR0000SA0L5 5 CPI: All items less medical care

99 PCEPI 5 PCE: Chain-type Price Index

100 DDURRG3M086SBEA 5 PCE: Durable goods

101 DNDGRG3M086SBEA 5 PCE: Nondurable goods

102 DSERRG3M086SBEA 5 PCE: Services
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Table A1 (continued)

103 CES0600000008 5 Ave. Hourly Earnings: Goods

104 CES2000000008 5 Ave. Hourly Earnings: Construction

105 CES3000000008 5 Ave. Hourly Earnings: Manufacturing

106 MZMSL 5 MZM Money Stock

107 DTCOLNVHFNM 5 Consumer Motor Vehicle Loans

108 DTCTHFNM 5 Total Consumer Loans and Leases

109 INVEST 5 Securities in Bank Credit

110 GDP 5 Real Gross Domestic Product

111 PCDG 5 PCE: Durable Goods

112 PCESV 5 PCE: Services

113 PCND 5 PCE: Nondurable Goods

114 FPI 5 Fixed Private Investment

115 PRFI 5 Private Residential Fixed Investment

116 GCEC1 5 Government Cons Expenditures & Gross Inv

117 GDPDEFL 6 GDP deflator

118 PCEDEFL 5 PCE deflator
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B Technical Appendix

In this appendix, we provide derivations and details of our VBKF algorithm for TVP

regression with hierarchical prior shrinkage. We begin with the homoskedastic case.

Subsequently we derive an approximate variational Bayes algorithm for estimation of

stochastic volatility.

B.1 Variational Bayes inference in the homoskedastic TVP

regression with variable selection prior

In this subsection, we use a regression model with time-varying coefficients and constant

error variance of the form

yt+h = xtβt + εt+h, (B.1)

βt = βt−1 + ηt, (B.2)

where βt is a p × 1 vector of time-varying parameters, εt+h ∼ N (0, σ2) with σ2

underlined to denote that in this subsection is considered a fixed/known parameter

and ηt ∼ N (0, Qt) with Qt a p × p the state equation error covariance matrix. Notice

that the state equation (B.2) implies a conditional prior on βt of the form

βt|βt−1, Qt ∼ N (βt−1, Qt) , (B.3)

subject to the initial condition β0 ∼ N
(
β
0
, P 0

)
. We assume that Qt is a diagonal

matrix with elements qj,t, j = 1, ..., p, where

q−1j,t ∼ Gamma (c0, d0) . (B.4)
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We also impose an SSVS prior on βj,t of the form

βj,t|γj,t ∼ (1− γj,t)N
(
0, v2j,0

)
+ γj,tN

(
0, v2j,1

)
, (B.5)

γj,t ∼ Bernoulli (π0) , j = 1, ..., p. (B.6)

This is a dynamic version of the SSVS prior of George and McCulloch (1993). With

this prior v2j,0 is chosen to be small and v2j,1 is chosen to be large. If γj,t = 0, then

βj,t has a small prior small variance v2j,0 and the coefficient is shrunk to be near zero.

Otherwise the coefficient evolves according to a random walk. We highlight the fact

that, unlike other approaches to time varying shrinkage such as Chan et al. (2012), our

dynamic SSVS prior is independent over time allowing for a high degree of flexibility.

Discussion of what constitutes a ”small” and ”large” prior variance is given in George

and McCulloch (1993). Our prior hyperparameter choices are given in Section 4.

In order to derive the posterior, we use a similar strategy to Wang et al. (2016) and

write the SSVS prior in terms of pseudo-observations. To be precise, the SSVS prior,

p (βj,t|γj,t), can be written as p (zj,t|βj,t, vj,t) ≡ N (βj,t, vj,t) for the pseudo-observations

zj,t = 0, ∀j, t, where we define vj,t = (1− γj,t)2 v2j,0 + γj,tv
2
j,1. The resulting posterior is

of the form

p (β1:T , Q1:T , V1:T |y1:T , z1:T ) ∝
T∏
t=1

p (βt|βt−1, Qt) p
(
yt|βt, σ2

)
p (zt|βt, Vt) p (γt) p (Qt) ,

(B.7)

where we define Vt = (v1,t, ...., vp,t).

The objective of variational Bayes inference is to approximate the intractable joint

posterior p (β1:T , Q1:T , V1:T |y1:T , z1:T ) with a tractable distribution q (β1:T , Q1:T , V1:T ).
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Applying the mean field approximation we obtain the factorization

q (β1:T , Q1:T , V1:T ) = q (β1:T )
T∏
t=1

p∏
j=1

q (vj,t) q (qj,t) . (B.8)

The optimal form for q (β1:T ) is a Normal linear state space model with measurement

and state equations

q (yt|βt) ∝ N
(
xtβt, σ

2
)

(B.9)

q (βt|βt−1) ∝ N
(
F̃tβt−1, Q̃

−1
t

)
, (B.10)

where Q̃t =
(
Q−1t + V −1t

)−1
and F̃t = Q̃tQ

−1
t .11 Thus, conditional on values of the other

parameters in the model, q (β1:T ) can be evaluated using the transformed state space

model above and standard Kalman filter recursions.

The form for q (vj,t) can be obtained using standard SSVS prior derivations

vj,t =

 v20, if γj,t = 0,

v21, if γj,t = 1,
(B.15)

q (γj,t) ∝ Bernoulli (πj,t) , (B.16)

where πj,t =
N(βj,t|0,v2j,1)π0

N(βj,t|0,v2j,1)π0+N(βj,t|0,v2j,0)(1−π0)
and N (x; a, b) denotes a Normal p.d.f.

evaluated at the point x. Thus, conditional on other model parameters, the form for

11This uses the form of the state equation given in (16) which can be derived as follows:

q (βt|βt−1) ∝ exp {E (log p (βt|βt−1, Qt)) + E (log p (zt|βt, Vt))} (B.11)

∝ exp

{
−1

2
(βt − βt−1)

′
Q−1t (βt − βt−1)− 1

2
β′tV

−1
t βt

}
(B.12)

∝ exp

{
−1

2
β′tQ

−1
t βt + β′tQ

−1
t βt−1 −

1

2
β′tV

−1
t βt

}
(B.13)

∝ exp

{
−1

2

(
βt − F̃tβt−1

)′
Q̃−1t

(
βt − F̃tβt−1

)}
. (B.14)
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q (vj,t) allows for easy updating.

Finally, conditional on the other parameters in the model, the optimal form for q (qj,t)

is of the form

q (qj,t) ∝ Gamma (cj,t, dj,t) (B.17)

where cj,t = c0 + 1/2 and dj,t = d0 + Dj,j/2 and Dj,j the j-th diagonal element of

D = Pt|t + βt|tβ
′
t|t +

(
Pt−1|t−1 + βt−1|t−1β

′
t−1|t−1

)(
Ip − 2F̃t

)′
, where βt|t and Pt|t are time

t filtered estimates of the posterior mean and variance of βt.

The VB algorithm using these formulas is presented in Algorithm 2.
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Algorithm 2 Variational Bayes Kalman Filter (VBKF) with variable selection prior
and known (fixed) variance

1: Initialize β
0
, P 0, a0, b0, c0, d0

2: for t = 1 to T do
3: r = 1
4: while ‖β(r)

t|t − β
(r−1)
t|t ‖ → 0 do

5: Update state-space matrices:

6: Q̃
(r)
t =

[(
Q

(r−1)
t

)−1
+
(
V

(r−1)
t

)−1]−1
7: F̃

(r)
t = Q̃

(r)
t

(
Q

(r−1)
t

)−1
8:

9: Posterior of βt:

10: β
(r)
t|t−1 = F̃

(r)
t βt−1 Predicted mean

11: P
(r)
t|t−1 = F̃

(r)
t Pt−1F̃

(r)′

t + Q̃
(r)
t Predicted variance

12: K
(r)
t = P

(r)
t|t−1x

′
t

(
xtP

(r)
t|t−1x

′
t + σ2

)−1
Kalman gain

13: β
(r)
t|t = β

(r)
t|t−1 +K

(r)
t

(
yt − xtβ(r)

t|t−1

)
Posterior mean of βt

14: P
(r)
t|t =

(
Ip −K(r)

t xt

)
P

(r)
t|t−1 Posterior variance of βt

15:

16: Posteriors of qt and τt:

17: D(r) = P
(r)
t|t + β

(r)
t|t β

(r)′

t|t +
(
P

(r)
t−1 + β

(r)
t−1β

(r)′

t−1

)(
Ip − 2F̃

(r)
t

)′
18: for j = 1 to p do

19: π
(r)
j,t =

N
(
β
(r)
j,t|t|0,v

2
j,1

)
π0

N
(
β
(r)
j,t|t|0,v

2
j,1

)
π0+N

(
β
(r)
j,t|t|0,v

2
j,0

)
(1−π0)

20: v
(r)
j,t =

(
1− π(r)

j,t

)2
v2j,0 + π

(r)
j,t v

2
j,1 Posterior mean of vj,t

21: c
(r)
j,t = c0 + 1/2,

22: d
(r)
j,t = d0 +D

(r)
jj /2

23: q
(r)
j,t = d

(r−1)
j,t /c

(r−1)
j,t Posterior mean of qj,t

24: end for
25: Set V

(r)
t = diag

(
v
(r)
t

)
and Q

(r)
t = diag

(
q
(r)
t

)
26: r = r + 1
27: end while
28: Set βt = β

(r)
t|t , Pt = P

(r)
t|t , Qt = diag

(
q
(r)
t

)
and Vt = diag

(
τ
(r)
t

)
29: end for
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B.2 Incorporating stochastic volatility

We now extend the preceding algorithm to incorporate stochastic volatility and the TVP

regression model accordingly becomes:

yt+h = xtβt + σtεt+h, (B.18)

βt = βt−1 + ηt, (B.19)

log σ2
t = log σ2

t + ζt, (B.20)

where εt ∼ N (0, 1), ζt ∼ N (0, rt). We use a prior for rt of the form

r−1t ∼ Gamma
(
f
0
, g

0

)
, (B.21)

and an initial condition log σ2
0 ∼ N (log σ2

0, R0).

The mean field approximation used in our VB algorithm has the following form:

q
(
β1:T , Q1:T , V1:T , log σ2

1:T , r1:T
)

= q (β1:T ) q
(
log σ2

1:T

)
q (r1:T )

T∏
t=1

p∏
j=1

q (vj,t) q (qj,t) .

(B.22)

The preceding sub-section describes the forms for q (β1:T ), q (qj,t) and q (vj,t). The

presence of stochastic volatility leads to a nonlinear state space model which complicates

things. Tran, Nott and Kohn (2017) derive a VB algorithm for models such as this which

involve intractable likelihoods. However, their methods are more demanding than the

Kalman filter methods used in our paper since they require stochastic optimization and

the evaluation of the stochastic volatility likelihood using a particle filter. We use a much

simpler (albeit approximate) approach based on the transformed stochastic volatility

model given in (20) and (21). This state-space model has measurement variance log (ε2t )

which is a log-χ2 density with one degree of freedom. We approximate this density using
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a N (−1.2704, 4.937) distribution whose moments match the mean and variance of the

log-χ2 distribution.

The accuracy of this approximation is displayed in Figure 6. It can be seen to be good

for relatively high values of log-volatilities (approximately −10 to 3, which correspond

to values of the variance parameter between 4.5e − 5 and 20). The approximation is

poor in the far left tail of the distribution. This region corresponds to very small values

of σ2
t . As noted in Section 3, we can help avoid this region of the parameter space by

standardizing our variables to have sample variance of one. Our Monte Carlo experiment

in Section 4 suggests that the approximation is a good one for our purposes.

-15 -10 -5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3 log- 2

N(-1.2704,4.937)

Figure 6: This figure demonstrates the informational loss by approximating the error
variance of a linearized stochastic volatility model (which is log-χ2 with one degree of
freedom), by a N (−1.2704, 4.937) distribution.

Given this approximation, the state space model for the log-volatilities is linear and

Normal and the methods of the preceding subsection can be used. Finally, the form for

q (r1:T ) is standard, involving textbook manipulations involving the Gamma distribution.
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Algorithm 3 summarizes the steps needed to implement mean field variational Bayes

inference in the stochastic volatility model.

Algorithm 3 Variational Bayes Kalman Filter (VBKF) for updating log-volatilities

1: Initialize log σ2
0, R0, f0, g0

2: for t = 1 to T do
3: r = 1

4: while

∥∥∥∥log
(
σ2
t|t

)(r)
− log

(
σt|t
)(r−1)∥∥∥∥→ 0 do

5: 1. Obtain β
(r)
t|t as in Algorithm 2 above (but whenever σ2 shows up in this Algorithm, replace

it with exp
(

log
(
σ2
t

)(r))
defined below)

6: 2. Construct ỹt = log

((
yt − xtβ(r)

t|t

)2
+ 10−10

)
− 1.2704

7:
8: Posterior of log σ2

t :

9: log
(
σ2
t|t−1

)(r)
= log σ2

t−1 Predicted mean

10: R
(r)
t|t−1 = Rt−1 + r

(r)
t Predicted variance

11: K
(r)
t = R

(r)
t|t−1

(
R

(r)
t|t−1 + 4.937

)−1
Kalman gain

12: log
(
σ2
t|t

)(r)
= log

(
σ2
t|t−1

)(r)
+K

(r)
t

(
ỹt − log

(
σ2
t|t−1

)(r))
Post. mean of log σ2

t

13: R
(r)
t|t =

(
1−K(r)

t

)
R

(r)
t|t−1 Posterior variance of log σ2

t

14:
15: Posterior of rt:

16: C(r) = Rt|t + log
(
σ2
t|t

)(r)
× log

(
σ2
t|t

)(r)
−
(
Rt−1 + log σ2

t−1 × log σ2
t−1
)

17: f
(r)
t = f

0
+ 1/2

18: g
(r)
t = g

0
+ C(r)/2

19: r
(r)
t = g

(r−1)
t /f

(r−1)
t Posterior mean of rj,t

20:
21: r = r + 1
22: end while

23: Set log σ2
t = log

(
σ2
t|t

)(r)
and Rt = R

(r)
t|t .

24: end for

Algorithm 1, given in Section 3, combines Algorithms 2 and 3.
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C Competing Forecasting Models

C.1 A Constant Coefficient Model

C.1.1 Stochastic search variable selection

This approach uses a SSVS shrinkage prior in a homoskedastic constant coefficient

regression and the notation is as in Section 3 except that t sub-scripts have been

removed from all regression coefficients and the variance parameter. The full hierarchical

representation of the SSVS prior is

p (βi|γi) ∼ (1− γi)N
(
0, τ 20

)
+ γiN

(
0, τ 21

)
, (C.1a)

p (γi|π) ∼ Bernoulli(πi), (C.1b)

where we set π = 0.5, τ0 = 0.001 and τ1 = 4, and the regression variance parameter has

a diffuse prior. Posterior computation can be done using MCMC methods as described

in George and McCulloch (1993).

C.2 Competing specifications: Time-varying parameter

algorithms

The h-step ahead direct forecasting regression with time-varying coefficients and

stochastic volatility is of the form

yt+h = xtβt + εt+h, (C.2)

βt = βt−1 + ηt, (C.3)
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where βt is a p× 1 vector of time-varying parameters, εt+h ∼ N (0, σ2
t ) with σ2

t a time-

varying measurement variance, and ηt ∼ N (0, Q) with Q a p×p state covariance matrix.

C.2.1 KP-AR, Koop and Potter (2007)

The specification of Koop and Potter (2007) is a structural break model. It can be

written as a state space model and be viewed as a special case of the time-varying

parameter regression. The KP-AR model is of the form

yt+h = xtβst + εt+h, (C.4)

βst = βst−1 + ηst , (C.5)

where xt includes only an intercept and lags, st ∈ {1, 2, ..., K} is a Markov switching

process with K states. We follow much of the Bayesian structural breaks literature and

assume that the transition probabilities matrix is block diagonal, such that we can move

from one regime to the next and never come back (which is the distinguishing feature

of structural breaks compared to standard regime-switching specifications). We follow

Bauwens et al (2015) and specify a maximum number of Kmax = 10 and allow the Gibbs

sampler to determine how many structural breaks are relevant (up to the maximum of

Kmax). Priors and initial conditions are the same as those used in Bauwens et al. (2015),

and the reader is referred to that paper and its online Appendix (Section B) for details

of posterior computation.
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C.2.2 GK-AR, Giordani and Kohn (2008)

The Giordani and Kohn (2008) model is also a structural breaks model which can be

written in state space form. It is a dynamic mixture model of the form

yt+h = xtβt + εt+h, (C.6)

βt = βt−1 +Ktηt, (C.7)

where xt includes only an intercept and lags, Kt ∈ {0, 1}. Details of prior

hyperparameter choice and the MCMC algorithm used for posterior computation are

exactly as described in Section 2.5 of Bauwens et al. (2015).

C.2.3 UCSV, Stock and Watson (2007)

The Stock and Watson (2007) unobserved components stochastic volatility (UCSV)

model only allows for a time-varying intercept:

yt+h = τt + εt+h, (C.8)

τt = τt−1 + ηt, (C.9)

where not only the measurement error εt+h features stochastic volatility, but also the

variance of state error ηt. This model has been specifically proposed for forecasting

inflation, but it is a parsimonious and flexible nonlinear specification that may be able

to fit other series as well. Posterior computation is done using standard MCMC methods

and prior hyperparameters are identical to the ones described in Section 2.6 of Bauwens

et al. (2015).
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C.2.4 TVP-AR, Pettenuzzo and Timmermann (2017)

This is a TVP regression model of (C.2) and (C.3) involving only an intercept and lags

of the dependent variable. Stochastic volatility is added to the measurement equation,

but (unlike UC-SV) the state equation is homoskedastic. Pettenuzzo and Timmermann

(2017) is a recent, representative study that uses this model and finds that it beats a large

number of alternative models when forecasting inflation. All priors we use for estimation

of this model also follow the default values described in Section 2.5 of Bauwens et al.

(2015), and the reader is referred to that paper for more details. Posterior computation

can be done using MCMC methods for state space models.

C.2.5 TVP-BMA, Groen, Paap and Ravazzolo (2013)

TVP-BMA is a simplified version of a model developed in Groen, Paap and Ravazzolo

(2013).12 It generalizes a variable selection method for the constant coefficient regression

developed by Kuo and Mallick (1998) to the TVP case as follows:

yt+h =

p∑
j=1

xjtsjβj,t + εt+h, (C.10)

βt = βt−1 + ηt, (C.11)

where sj is an indicator variable such that when sj = 0 the jth predictor is removed

from the regression in all periods, while when sj = 1 the predictor is included.

Details of posterior computation are given in Groen, Paap and Ravazzolo (2013). Prior

hyperparameter choices are identical to the TVP-AR model, with the addition of a prior

for sj. In particular, we assume that sj has a Bernoulli prior with prior probability of

inclusion of each variable equal to 0.5.

12In particular, their model also features a dynamic mixture as in Giordani and Kohn (2008), but
since we also estimate the GK specification separately, we don’t add the dynamic mixture part in the
Groen, Paap and Ravazzolo (2013) specification.
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C.2.6 TVP-LASSO, Belmonte, Koop and Korobilis (2014)

Belmonte, Koop and Korobilis (2014), following Frühwirth-Schnatter and Wagner (2010)

use the following non-centered parameterization of the time-varying parameter regression

model

yt+h = xtα + xtΩα̃t + εt+h, (C.12)

α̃t = α̃t−1 + η̃t, (C.13)

where Ω is a diagonal matrix of parameters, and now the state equation has disturbance

η̃t ∼ N (0, Ip) and initial condition α̃0 = 0. Written like this, the model consists of a

standard constant parameter part (with coefficients α) plus the additional time variation

introduced by α = Ω × α̃t. It can be seen that, compared to the TVP regression

specification used in original specification in eqs it holds that β = α+ αt = α+ Ω× α̃t,

and that Q = Ω2 where Q in this case is diagonal.

By doing this transformation, Belmonte, Koop and Korobilis (2014) choose to use the

Bayesian lasso prior on the parameters α and ω = diag(Ω). Given the ability of the lasso

to shrink coefficients towards zero, and the fact that α and ω are a-priori independent,

the specification above allows predictor j to: i) enter the regression with no restrictions,

ii) enter the regression with constant coefficients only, iii) enter the regression with

time-varying coefficients only, and iv) not enter the regression at all.

The MCMC algorithm for estimating this model is described in Belmonte, Koop

and Korobilis (2014). We use the full model described by these authors (i.e. not any

its restricted versions) and we use the default prior hyperparameters described in the

empirical section of this paper.
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C.2.7 TVD, Chan et al. (2012)

The time-varying dimension (TVD) model of Chan et al. (2012) takes the following

form

yt+h =

p∑
j=1

xj,tsj,tβj,t + εt+h, (C.14)

βt = βt−1 + ηt, (C.15)

where sj,t is an indicator variable which follows a Markov process such that when sj,t = 0

the jth predictor is removed from the regression model in period t only, and when sj,t = 1

it is included in the regression. This is a very flexible specification that generalizes

the TVP-BMA specification to allow for a predictor to exit the regression only for

certain periods. This specification is the first of three alternative time-varying dimension

specifications presented in Chan et al. (2012). All other settings follow these authors –

see the online Appendix associated with Chan et al. (2012). This pertains to default

prior choices (see end of Section 1.1 of that Appendix), as well as other choices the

authors make. For example, for computational reasons the authors only consider models

with no predictors, one predictor, or all predictors, rather than consider all possible 2p

models with different number of predictors.

C.2.8 TVS, Kalli and Griffin (2014)

The time varying sparsity (TVS) model of Kalli and Griffin is of the form

yt+h =

p∑
j=1

xj,tβj,t + εt+h, (C.16)

βj,t = (1− αj)ρj,tβj,t−1 + αjηj,t, (C.17)
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where ρj,t =
√

ψj,t

ψj,t−1
and var (ηj,t) = ψj,t. In this specification, αj ∈ [0, 1] is a

parameter controlling the temporal correlation, and ψj,t is an autoregressive gamma

process. Thus, the implied prior for βj,t is of normal-gamma autoregressive process form,

which generalizes the traditional Normal-Gamma priors in linear regression, see Griffin

and Brown (2010). Such priors have very good shrinkage properties and the coefficient

of each predictor can be shrunk flexibly only in some periods, while be unrestricted in

others. Note that these authors specify a Gamma autoregressive process for the error

variance, instead of the stochastic volatility process that all previous methods use. We

follow Kalli and Griffin (2014) and as these authors do in their Section 5 for forecasting

inflation we choose s? = 0.1 and b? = 0.1. All other choices and initial conditions are

exactly those used also by the authors.

C.2.9 DMA, Koop and Korobilis (2012)

Koop and Korobilis (2012) follow DMA methods introduced in Raftery et al. (2010).

DMA involves a model space consisting of many time-varying parameter regressions:

yt+h = x
(k)
t β

(k)
t + εt+h, (C.18)

β
(k)
t = β

(k)
t−1 + ηt, (C.19)

where (k) indexes the model that applies. DMA involves K = 2p models each of

which uses a sub-set of the p potential explanatory variables. It involves estimating

and forecasting with each of these models and then averaging over the results in a

dynamic fashion. Therefore, in the equations above, k = 1, ..., K indexes each of the

various TVP regressions that have different number of predictors. Note that since each

of the K models has different predictors and different coefficients β
(k)
t , the associated

variances will also be different, that is, var (εt+h) = (σ2
t )

(k)
and var (ηt) = Q(k).
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In order to be able to enumerate and estimate all possible model combinations, one

has to be able to estimate each model very quickly. This motivates the use of the FFKF

and EWMA. FFKF is an approximate method that has been popular in engineering;

see for example Kulhavý and Kraus (1996) and references therein. Once all models are

estimated one can obtain measures of fit for each model at each point in time.13 DMA

generalizes static Bayesian model averaging by allowing different predictors to enter/exit

the TVP regression model at each point in time.

Estimation of the model of Koop and Korobilis (2012) relies on crucial selection

of forgetting/decay factors (α, λ, κ). These determine how quickly models, regression

coefficients, and volatilities, respectively, evolve over time. We set these to the following

default values α = 0.96, λ = 0.98, κ = 0.94. We also initialize the β
(k)
t for all models to

β
(k)
0 ∼ N

(
0(k), 4I(k)

)
, where the vector of zeros 0(k) and the identity matrix I(k) comply

with the number of elements in β
(k)
t . Finally, the initial value of the volatility parameter

is σ0 = 0.1 in for all K models.

13The Kalman filter allows for the evaluation of the data likelihood as well as the predictive likelihood
at each point in time, so one can use various measures to construct model probabilities. We, following
most of the DMA literature, use discounted predictive likelihoods to do model averaging at each point
in time, but it is worth noting that other metrics such as information criteria (e.g. BIC) or measures
of point forecast performance (e.g. MSFE) could be used.
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