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Abstract

This thesis proposes new approaches to Value-at-Risk estimation using (1) Multivariate

GARCH Dynamic Conditional Correlation volatility model with skewed Student’s-t dis-

tributions, (2) Bayesian GARCH model with Student’s-t distribution, and (3) Bayesian

Markov-Switching GJR-GARCH model with skewed Student’s-t distributions, incorpo-

rating copula functions and extreme value theory. A new approach for selecting a proper

threshold in the Peaks Over Threshold method for extreme value theory analysis called

the hybrid method is also proposed. The proposed Value-at-Risk models are compared

to the traditional Value-at-Risk models commonly used by banks. Back-testing results

following Kupiec (1995) unconditional coverage test, Christoffersen (1998) independent

and conditional coverage test, Basel traffic light test, Santos and Alves (2012) new indepen-

dent test, Dowd (2002) bootstrap back-test, and Engle and Manganelli (2004) Dynamic

Quantile test show that Value-at-Risk models constructed following extreme value theory

produced reliable Value-at-Risk estimates. Furthermore, Value-at-Risk models incorpo-

rating the hybrid method for threshold selection produced more stable Value-at-Risk

estimates compared to the traditional Value-at-Risk models.
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Chapter 1

Introduction

What is risk? And where does it come from? Risk is the probability that a chosen action

or activity will lead to an undesirable outcome (Asbury, 2014). Risk can come as a result

of (Jorion, 2007):

• unpredicted natural disaster; the 2011 Tsunami in Japan, 2005 Hurricane Katrina in

New Orleans, USA,

• man-made; the September 11 2001 terrorists attack of the World Trade Center in

New York, USA,

• from the primary source of long term economic growth namely, technological in-

novations, which can render existing technology obsolete and create dislocations in

employment.

Financial institutions and firms are exposed daily to various categories of risks, which

can be classified under business risk and financial risk. Business risk is the probability

of a loss related with a given managerial decision. For example, decisions such as

investment decisions, product-development choices, marketing strategies, the choice of

the company′s organizational structure and the business environment in which they

1
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choose to operate (Miles, 2011; Jorion, 2007). Financial risk is the risk that possible loses

will occur due to various uncertain activities in the financial market (Wu, 2011). The

identification, assessment, and prioritisation of financial risk followed by a well defined

approach to minimise, monitor, and control the probability of such undesirable outcome

from happening is referred to as financial risk management (Jorion, 2007).

1.1 Financial risk management an overview

The growth of the risk management industry has a long history as far back as the early

1970s following the increased instability of financial markets. For example: the fixed

exchange rate system broke down in 1971, which led to flexible and volatile exchange rates.

The Russian default in August 1998 sparked a global financial crisis that culminated in the

near failure of a big hedge fund, Long Term Capital Asset Management. The September

11, 2001, terrorist attack, in the United States, destroyed the World Trade Center in New

York, disrupting the financial markets for six days. In addition to the unspeakable human

cost, the U.S. stock market lost $1.7 trillion in value (Jorion, 2007). These kind of events

are very difficult to predict and plan for, however extremely destructive when they occur

(Malz, 2011).

Financial risk management thus provides some limited protection against such sources

of risk. Strategies of financial risk management usually involves transferring the risk to

another party, avoiding the risk, reducing the negative effects or the probability of the risk

from happening or even accepting some or all of the potential or actual consequences of a

particular risk. Following the collapse of the Herstatt bank in Cologne in 1974, the central

bank governors of the industrialise nations (the G-10) established the Basel Committee

of Banking and Supervision (BCBS), which drafted rules and regulations for the banking

industry so as to avoid future major bank collapses. This lead to the creation of the Basel
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I accord in 1988, Basel II accord in 1996, and the Basel III accord in 2010.

In order to assess risk on financial assets, the variables of interest have to be clearly

defined; portfolios values, earnings, capital, or any cash flows (Jorion, 2007), and also

understand the various risk measures involved. An analysis of delta, gamma, and vega,

which describes various aspects of risk in a portfolio of derivatives, produces very large

number of different risk measures over the year. These risk measures gives valuable

information for the financial institutions traders concern. Unfortunately, they do not

provide a technique of measuring the total risk to which the financial institution is exposed

to (Penza and Bansal, 2001). Value-at-Risk (VaR), a statistical technique used to measure

and quantify the level of financial risk within a firm or investment portfolio over a specific

time frame, provides an attempt to summarise the risk in a portfolio of financial assets

to a single number. Investors do consider risk as the odds of losing money and VaR tries

to calculate, in the worst case scenario, how much an investor can lose with a certain

probability and within a certain time frame.

Despite all the technical tools put in place by financial institutions to calculate and

monitor financial risk, there have been so many controversies. Though the BCBS, on

the Basel II accord, recognised VaR models as the official risk management measure

for measuring market risk, some researchers have criticised VaR models for a series of

reasons. Most importantly is that VaR is calculated based on past events; because several

assets in the past were negatively correlated do not necessary mean that these assets

cannot be positively correlated in the future. Thus keeping the same portfolio of assets

based on past outcomes will yield great losses in case some of the assets in the portfolio

become positively correlated in the future. Furthermore, the calculations behind VaR

tend to assume that markets follow a normal probability distribution. This can contribute

to VaR having extremely “small values” while “big loses” are ruled out because extreme
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values are assumed to have very small chances of happening (Artzner et al., 1999).

1.2 Aim, Objectives, and Limitations

The aim of this research has emerged due to the fact that VaR, a very important risk

measure in financial risk management, has been in the past years fiercely criticised for

providing incorrect results of the level of risk in a portfolio of financial assets. Some

researchers (Carmassi and Micossi, 2012; Rossignolo et al., 2012) have associated the 2008

global financial crisis to the failure of Basel II accord which was designed to ensure that

banks have sufficient capital to provide a proper cushion capable to withstand sudden

losses in periods of financial distress. (Turner et al., 2009) claimed that most VaR models

were unable to capture fat-tailed risk. Thus, this research is a critical study of VaR models

following the 2008 global financial crisis and the 2011 European financial crisis aimed at

answering the following questions:

1. Can VaR be sufficiently improved to credibly communicate a banks risk?

2. Can Basel II be blamed for the 2008 crisis or poorly calibrated VaR models incapable

to capture fat-tail risk?

In order to answer these questions, we develop our study along the following lines:

1. Understanding the VaR methods.

2. Reviewing and evaluating VaR models.

3. Propose alternative VaR models.

This research will focus solely on VaR models and Generalized Autoregressive Conditional

Heteroscedasticity (GARCH(p,q)) volatility models as the underlying volatility and their
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implementations as risk measures in financial risk management and not a study of finan-

cial risk management as a whole. Many research works, for example, Sampid and Hasim

(2018), Chen et al. (2017), Ardia et al. (2016), Ghalanos (2015), Soltane et al. (2012), Aas

et al. (2009), Tsay et al. (2006), Haas et al. (2004), Bollerslev (1986), and many more, have

shown that a simple GARCH(1,1) model is capable of modeling the serial correlation in

the conditional mean and the conditional variance of a time series data. We therefore,

follow the footsteps of these many research works and restrict the GARCH(p,q) volatil-

ity models implemented in this research to GARCH(1,1). Higher order GARCH(p,q)

volatility models will be tested in subsequent future research works.

1.3 Research Design

This research work will be carried out using quantitative research methods of data gather-

ing and analysis. This will involve analysis of historical financial time series data, official

documents, journals, and books that discuses the perspectives of VaR.

This thesis is structured as follows:

• In Chapter 1, we give a brief introduction of the concept of financial risk management

overall. We will also explain the aim, objectives and limitations of this research, as

well as the research design.

• In Chapter 2, we introduce Value at Risk (VaR) including VaR definition, methods

for estimating VaR and methods for validating VaR models.

• In Chapter 3, we present a novel approach to construct and investigate the reliability

of a VaR model constructed using a multivariate GARCH dynamic conditional

correlation volatility model with skewed student’s-t distribution, copula functions

and extreme value theory. We estimate VaR for banks of some selected European
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countries, and thus offers a new contribution to the literature in this area of study.

• In Chapter 4, we present a novel approach to VaR estimation by combining a

Bayesian GARCH(1,1) model with student’s-t distribution, vine copula functions

and extreme value theory. We propose a new method; an objective approach for

selecting a proper threshold for extreme value theory analysis which we call the

hybrid method for threshold selection and estimate VaR for some selected banks in

the UK.

• In Chapter 5, we further test the hybrid method for threshold selection by applying

extreme value theory directly to the exposures to risk factors and estimate VaR for

some selected UK banks.

• In Chapter 6, we propose a model for forecasting Value-at-Risk (VaR) using Bayesian

Markov Switching GJR-GARCH(1,1) model with skewed Student’s-t distribution,

copula functions and extreme value theory. Thus taking into account regime

changes and time varying parameters.

• In Chapter 7, we present a summary of this thesis, conclusion and future work.



Chapter 2

Value at Risk

2.1 Introduction

Value at Risk (VaR) has, in the past decades, become very instrumental tool when it

comes to measuring market risk as it provides risk managers with a quantitative measure

of downside risk within a firm or investment of portfolio over a certain time frame.

VaR provides an attempt to summarise the total risk in a portfolio of asset to a single

number over a target horizon. The idea of VaR can be traced as far back as 1952. Harry

Markowitz and Roy Arthur in 1952 both came out with mathematical models for VaR

that produced very similar results (Holton, 2002). The idea was to create a mathematical

model of portfolio selection that would optimise the expected return at a given level of

risk. Markowitz explained that investors should be interested in risk as well as return.

He studied the tradeoff between risk and return in the mean-variance framework, which

is suitable when returns are normally distributed (Jorion, 2007). Roy’s work was based

on the “safety first” criteria for portfolio selection. It states that “the best portfolio is the

one that has the smallest probability of producing a return bellow some specified level”

(Elton et al., 2009). That is, minimise (Rp < RL), where Rp is the return on the portfolio

7
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and RL is the level below which the investor does not wish returns to fall. With normally

distributed returns, the optimum portfolio will be the one with RL having the highest or

maximum number of standard deviations away from the mean. The number of standard

deviations RL that lies below the mean is determine by subtracting the mean or expected

return of the portfolio, E(Rp), from RL and divide by the portfolios standard deviation,

σp. That is, minimize RL−E(Rp)
σp

. The origin of the name Value at Risk is “murky” because

there were similar other names being used in the 1990′s such as “Dollar at Risk” (DaR),

“Capital at Risk” (CaR), “Income at Risk” (IaR), “Earnings at Risk” (EaR), and “Value at

Risk” (VaR). “It seems that users liked the at Risk [name], but were uncomfortable labeling

exactly what was at risk” (Holton, 2002) .

European banks began adopting VaR in the early 1990s (Holton, 2002). International

bank regulators also influenced the development and use of VaR when the Basel Commit-

tee of Banking and Supervision (BCBS) chose VaR as the international standard method

for evaluating market risk of a portfolio of financial assets for regulatory purposes (Good-

hart, 2011). Till Guldimann during his time as the head of global research at JP Morgan

in the late 1980s can be viewed as the inventor of the name Value at Risk:

The risk management group had to decide whether fully hedged meant

investing in long-maturity bonds, thus generating stable earnings but fluctu-

ations in market values, or investing in cash, thus keeping the market value

constant. The bank decided that value risks were more important than earn-

ings risks, paving the way for [VaR]. At that time, there was much concern

about managing the risk of derivatives properly. The group of 30 (G-30),

which had a representative from J.P. Morgan, provided a venue for discussing

best risk management practices. The term found its way through the G-30

report published in July 1993. Apparently, this was the first widely publicised
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appearance of the term Value at Risk (Jorion, 2007).

The rest of the Chapter is structured as follows: In Section 2.2 we define VaR, Section 2.3

presents various traditional methods to estimate VaR, Section 2.4 discuses some setbacks

of VaR models. In Section 2.5, we present the expected tail loss i.e., loss beyond VaR

estimates. In Section 2.6, we introduce the supervisory framework; the BCBS, followed

by statistical approaches for validating VaR models in Section 2.7 and chapter summary

in Section 2.8.

2.2 VaR Definition

VaR is a statistical quantity used to measure and quantify the level of market risk of

financial assets within a firm or investment of portfolio over a specific time frame;

P(Lt > VaRq,t) ≤ 1 − q (2.1)

that is, VaR is the smallest lost in absolute value, such that at a certain confidence level q

and time t, the probability of experiencing a greater loss L is less than 1− q (Jorion, 2007).

Based on loss quantiles, VaR is defined as:

VaRq(X) = inf{x : Pr(X ≤ x|Ω) ≥ q}, (2.2a)

= inf{x : Pr(X ≤ VaR(q)|Ω) ≥ q}, (2.2b)

=⇒ VaRq(X) = F−1
X (q) (2.2c)

X =


−x for a long position

x for a short position,
(2.2d)
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where X is the value of a portfolio or exposure to risk factor at time t, FX is the distribution

function of the loss random variable X, and Ω is the information available at time t − 1.

Eqn. (2.2b) can also be written as

VaRq(X) = inf{x : Pr(X + VaR < 0) ≤ 1 − q}, (2.3)

which represents the smallest amount of money which when added to X keeps the

probability of a negative outcome at any given time ∆t below the level 1 − q (Cherubini

et al., 2011).

The calculations of VaR have three parts; time horizon (k), the lost amount L, and the

confidence level q. The time horizon (also known as the holding period) is usually between

one day and one month. However, investors who invest in longer term investments such

as pension funds will be much more interested in a longer time horizon of one year or

more (Malz, 2011). Longer kwill lead to increase in the level of VaR because volatility in

financial markets increases approximately in proportion to the square root of time (Best,

2000). Banks usually calculate daily VaRs to compare with their daily profit and lost

calculations; in case the VaR is not acceptable, the portfolio can be adjusted fairly quickly

(Hull, 2009).

The confidence level can be between 90% and 99.99% depending on the preferences of

the market participants using the VaR, the limitations of data and models used to calculate

the VaR. VaR measures use the one tailed confidence level; concerned only with possible

loses and not profit. Only the downward percentage of price changes not covered by the

multiple of standard deviations are being used (Best, 2000). Just like with the holding

period, VaR increases as the confidence level increases.
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2.3 VaR Methods

There are many methods to forecast VaR (see Holton (2014); Malz (2011); Jorion (2007)

and the references therein), which can be classified under:

• parametric methods; following analysis with econometric models, RiskMetrics,

extreme value theory, and Monte Carlo simulation,

• nonparametric methods; historical simulation.

2.3.1 Parametric Methods

Consider the information set Ωt−1 = {r1, r2, . . . , rt−1} and µt = E [rt|Ωt−1]; the expected

return of rt given some information at time t − 1. Assume rt is a stochastic process

{rt : t ∈ T} given by

rt = µt + at, at = ztσt (2.4a)

E[at] = 0, zt
iid
∼ N(0, 1;θ),

σ2
t = g(Ωt−1;ω). (2.4b)

where θ and ω are vectors of unknown parameters of the mean (Eqn.(2.4a)) and variance

(Eqn.(2.4b)) equations, and g(.) is a time varying, positive and measurable function of

information set Ωt−1 available at time t − 1 (Angelidis and Skiadopoulos, 2008). VaR is

then estimated as

VaRq,t = µ̂t+1 + F−1
q (X)σ̂t+1, (2.5)

where F−1
q (X) is the qth quantile of the distribution function of the loss random variable as

defined in Eqn.(2.2d), µ̂t+1 and σ̂t+1 are estimates of the conditional mean and conditional
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volatility at time t + 1 respectively, given parameters θ and ω. For economic models, the

mean and variance equations follows an autoregressive moving average (ARMA) process

and a generalized autoregressive conditional heteroscedasticity (GARCH) process respectively.

RiskMetrics developed by J.P Morgan in the early 1990s assumes that asset returns in

financial markets follows a conditional normal distribution i.e., rt[k]|Ωt−1 ≈ N(0,kσ2
t+1),

where σ2
t is the conditional variance of the return series rt proportional to the time horizon

k. Under this condition, the mean equation is an integrated GARCH(1,1) (IGARCH(1,1))

process given by

rt = at, at = ztσt (2.6a)

σ2
t = ασ2

t−1 + (1 − α)a2
t−1, 0.9 < α < 1. (2.6b)

VaR is then estimated as

VaRq,t = Φ−1
q (q)

√

kσ̂t+1, (2.7)

where Φ−1
q (q) denotes the qth quantile of the normal distribution and α is the parameter of

the IGARCH(1,1) process.

Just like the RiskMetrics, the Variance-Covariance (VC) method also assumes normal-

ity of financial asset returns but rejects conditionality of the variance equation. Instead,

the VC method uses the unconditional volatility σ of the return series as the underlying

volatility model and VaR is estimated as

VaRq,t = Φ−1
q (q)

√

kσ. (2.8)

Monte Carlo simulation can be use to understand the impact of risk of uncertainty of
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financial models. Running repeated trials of stochastic processes using random variables

of financial data reconstructs the entire distribution of a portfolio, which can be use to

forecast the level of risk on the portfolio. It also assumes normality of asset returns

based on the strong law of large numbers and Central Limit Theorem (CLT). That is;

let X be a real random variable whose mean µ = E[X1] exist, and let X1,X2, . . . be an

infinite sequence of iid replicas of X, the strong law of large numbers states: as n becomes

sufficiently large, the sample X̄ = 1
n (X1,X2, . . .Xn) obtained from a large number of trials

converges to the unknown population mean E[X1] almost surely. The CLT states: with

finite mean µ and finite variance σ2 > 0 defined as

Zn =
X1 + X2 + ... + Xn

σ
√

n
, n = 1, 2, ... (2.9)

then the distribution of the sample mean is approximately normally distributed as n be-

comes large, i.e., limn→∞ P {Zn ≤ X} = Φ(X), where Φ(X) is a standard normal distribution

function and X ∈ < (real numbers) (Kijima, 2016). VaR is then estimated as

VaRq,t = µ̂δt + Φ−1
q (q)

√

δtσ̂, (2.10)

for small changes in time δt.

Extreme value theory (EVT) is now widely used in financial risk management as it

has been proven that majority of financial asset return distributions have heavy tails (see

Berkowitz et al. (2011); Sheikh and Qiao (2010)). As VaR is concern with losses on the

extreme left tail, EVT becomes a useful tool for statistical inference on the left tail. It is

used to estimate extreme events with low frequency of happening but with high severity.
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The EVT VaR is estimated as

VaRq,t = µ̂t+1 + VaRq(Z)σ̂t+1, (2.11)

where VaRq(Z) = F−1
q is the qth quantile of the tail estimator defined as

VaRq(Z) = η −
ψ̂(η)

ξ̂

1 −
[

T
Nη

(1 − q)
]−ξ̂ , (2.12)

where η is the threshold, ψ̂(η) and ξ̂ are the scale and shape parameters from EVT analysis

respectively, T is the total number of observations, and Nη is the number of observations

above the threshold (Tsay, 2014; Soltane et al., 2012; Bhattacharyya and Ritolia, 2008).

2.3.2 Nonparametric Method

Historical Simulation (HS) is a nonparametric method that uses the actual historical data

for VaR estimation. It arranges historical data in order from worst to best case and tries to

reproduce previous history on the existing position without any assumptions about the

distribution of risk factors. The HS VaR is estimated as

VaRq,t = F−1
q (r), (2.13)

where F−1
q represents the qth quantile of the historical profit and loss distribution r =

{r1, . . . , rt}. This method captures the characteristics of the price change distribution of

the portfolio, as VaR is calculated from the actual distribution of portfolio value changes.

As a result, where a portfolio distribution has fat tails, it will turn to produce a slightly

higher VaR estimates than the VaR calculated from the variance-covariance method (Best,

2000).
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2.4 Draw Backs

VaR, though widely used by financial institutions as the major risk management measure,

does face some potential drawbacks depending on the method. VC and and Monte Carlo

simulation, for example, assume financial markets to be normally distributed, which im-

ply that changes in asset prices are independent of each other. However, the distribution

of asset returns do exhibit heavy tails with significant serial correlation. Because the

risk on a portfolio is much dependent on the correlation between risk factors, the nor-

mality assumption becomes problematic in case of high positive correlation (Best, 2000).

VC method does not capture the asymmetries in distributions of complex portfolios for

nonlinear instruments whose payoffs changes with time while assuming normal distri-

bution (Jorion, 2007). Volatility for example, depends on market movements and varies

depending on the behavior of the asset and financial markets changes. Using stationary

parameters to estimate VaR can be misleading because nonstationarities of the underlying

return processes are also a source of risk as it imply that the distribution of risk factors can

change over time (Tapiero, 2004). Monte Carlo simulations rely on stochastic processes.

Wong (2013) has shown that stochastic volatility gives rise to a distribution with heavy

tails. If normality is assumed, the VaR model will produce small values of VaR forecasts

while extreme values are ruled out. If normality is not assumed and depending on how

the VaR model is constructed (for example incorporating EVT), then there is high chance

that the VaR model will capture extreme events.

HS method is quite simple but becomes very computational when the portfolio con-

tains many assets with relatively longer lengths of historical data sets. However, for

reliable VaR estimates, HS requires longer lengths of historical data. Jorion (2007) points

out that a 99% daily VaR estimate for an observation period of 100 days only produces 1

observation in the tail on average, which necessarily leads to an unreliable VaR measure.
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Also, the Var estimate might not be reliable because the sample data may also contain

events such as the September 11, 2001 terrorist attack on the World Trade Center that may

not or never appear in the future. Such events will inevitably lead to an overestimation

of VaR.

Artzner et al. (1999) examined the credibility of VaR measures and suggested the

following properties that a risk measure should satisfy:

• Monotonicity: If the return of portfolio 1 (P1) is less than portfolio 2 (P2), then P1 has

greater risk (ρ(P1)) than P2; P1 ≤ P2 then ρ(P1) ≥ ρ(P2)

• Translation invariance: Adding cash (C) to a portfolio reduces the risk by the amount

of cash added; ρ(P1 + C) = ρ(P1) − C

• Homogeneity: Altering the size of a portfolio by a certain amount (γ) will simply

scale the risk of the portfolio by γ; ρ(γP1) = γρ(P1)

• subadditivity: Risk measure of two portfolios merged together cannot be greater than

the sum of the risk measures of the individual portfolios; ρ(P1 + P2) ≤ ρ(P1) + ρ(P2)

A risk measure that satisfies these four properties is said to be coherent. Quantile based

VaR measures does not satisfy the subadditivity property unless the distribution is normal.

For example, many short option positions with a low probability and hence low VaR

merged together will create portfolios with increased risk rather than reducing risk (higher

estimates of VaR) (Jorion, 2007).

VaR measures provides a rough estimate of potential future losses in normal market

conditions but fails to provide any clue of what happens beyond VaR. In the case of

buying and selling of investment instruments such as futures, commodities and foreign

exchanges, etc., some portfolios might have losses very close to VaR while others might

have losses several times greater than the calculated VaR (Jorion, 2007).
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VaR benefits from the CLT. i.e, the size of the portfolio does contribute to the accuracy

of VaR. This justifies the normality assumption of a portfolio spread across risk factors

when the size is sufficiently large. If the size of the risk factors is not large enough,

assuming normality will most probably lead to underestimation of risk (Jorion, 2007).

The most common drawback with EVT VaR is the lack of sufficient data on the left tail

to do meaningful statistical inference. As seen later, EVT VaR suffers from the choice of

threshold selection, which is very subjective. Based on their risk tolerance and preferences,

different analyst might select different thresholds on the same data which will result to

different VaR estimates. EVT also assumes extreme-events; events above the threshold,

to be iid which might not hold in periods of severe crisis (Wong, 2013).

2.5 Expected Shortfall

One big disadvantages of VaR models is that it gives an estimate of a potential future

loss and nothing about what happens beyond the estimated value. Expected Shortfall

(ES) also known as Expected Tail Loss (ETL), Tail VaR (TVaR), Average VaR (AVaR),

or Conditional VaR (CVaR) (Artzner et al., 1999) does provide an expectation of losses

beyond VaR estimates. Besides, it can be shown that ES does satisfy all the conditions

of the coherent property for risk measures. It can be seen as an extension of VaR to

address the drawbacks of VaR measures. Denote the loss random variable X, as defined

in Eqn.(2.2d), ES is defined as

E(X|X > VaR) =

∫
∞

VaR x f (x)dx

Pr(X > VaR)
(2.14)
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that is, the expected loss of X given that the loss exceeds VaR.

Pr(X > VaR) =

∫ +∞

VaR
f (x)dx. (2.15)

= 1 − F(VaR)

The relationship between VaR and ES can be seen if we assume X to be continuous and let

u = F(x) for VaR ≤ x ≤ ∞; =⇒ du = f (x)dx,F(VaR) = 1 − p,F(∞) = 1, x = F−1(u) = VaRu.

Therefore, Eqn. (2.14) becomes

ES1−p =

∫ 1
1−p VaRudu

p
(2.16)

which is a simple average of all the points in the left tail of the VaR quantile and reflects

the tail behavior of X better than VaR (Tsay, 2014; Wong, 2013). Thus, as VaR attempts

to summarise the total risk in a portfolio of financial asset returns to a single number

over a target horizon k, ES summarises the expectation of losses beyond VaR estimates.

Tsay (2014); Alexander (2009); Embrechts et al. (2005) have shown that for a normal

distribution, the ES is given by

ES1−p = µt + σt
φ(Φ−1(1 − p))

p
(2.17)

whereφ is the probability density function of a standard normal random variable, Φ−1(1−

p) is the (1 − p)th quantile of the inverse of the standard normal cumulative distribution

function for a small tail probability p. For a standardised Student’s-t distribution with

v > 2 degrees of freedom, the ES for the random variable X is given by

ES1−p = µt + σt

√
v

v − 2

(
tv(t−1

v (1 − p))
p

) (
(v − 2) + [t−1

v ]2

v − 1

)
(2.18)
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where tv is the probability density function of a standardised sudent’s-t distribution,

t−1
v (1 − p) is the inverse (1 − p)th quantile of tv.

2.6 Basel Committee of Banking and Supervision

Following the collapse of the Herstatt bank in Cologne in 1974, the G-10 central bank

governors established the Basel Committee of Banking and Supervision (BCBS), which

drafted rules and regulations for the banking industry so as to avoid future major bank

collapses. In 1988, BCBS adopted the first Basel accord (Basel I) by introducing minimum

capital requirements (MCR) of 8% of risk weighted assets (RWA) that must be held by

banks. Basel I mainly addressed the problem of credit risk by raising deposits on lending

to households and businesses (Carmassi and Micossi, 2012). The risk of collapse of

a Banking system with insufficient capital that can provide proper cushion capable to

withstand sudden losses in periods of distress was huge as a result of interest rate and

market risks being totally neglected and no capital requirements defined.

Following critics from regulators and banks, Basel II was adopted in the late 1990s

by amending Basel I to incorporate capital requirements for market risk. Designed to

encourage banks in sensible risk taking, Basel II allows banks to calculate MCR for

market risk based on their internal 99% VaR models using the Internal Model Approach

(IMA):

MCRt = max

 κ60

60∑
i=1

VaRt−i,VaRt−1

 (2.19a)

κ =



3 if T1 ≤ 4, green zone

3 + 0.2(T1 − 4) if 5 ≤ T1 ≤ 9, yellow zone

4 if T1 ≥ 10, red zone.

(2.19b)
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which is the maximum of the average of the last 60 days VaR or the most recent VaR. Basel

also introduced a back-testing procedure to validate the reliability of the banks’ internal

99% VaR model from which the supervisory multiplier κ is determined. Back-testing was

designed to compare the subsequent VaR estimates with the actual returns and recording

the number of days T1 in which the realised losses exceeded the 99% VaR for a 250

days observation period. Basel also requires a liquidation period of 60 days, which they

believe is sufficient enough for a financial institution in trouble to raise funds. Eqn.(2.19a)

is design such that VaRt−1 >
κ
60

∑60
i=1 VaRt−i will only occur in periods of extreme crisis

such as a crash. The internal VaR model must be validated by supervisors.

2.7 Model Evaluation Framework

How reliable is the VaR model? The reliability of the VaR model i.e., the model does

not overestimate or underestimate risk, is assessed by performing back-testing for some

desired observation periods and confidence level. This involves comparing the VaR

estimates for a given observation period to the subsequent returns. The number of days

T1 in which the loss on the portfolio exceeds VaR is recorded as the number of exceptions

or failures. Too many exceptions implies the VaR model underestimates the level of risk,

and too few exceptions implies the model overestimates risk. For the VaR model to be

accepted as a reliable risk measure, the number of exceptions produced for any given

observation period should satisfy the unconditional coverage (UC) and independent

(IND) property. Consider an indicator function on the exceptions

It(p) = I
{Lt>VaRq,t}

=


1, if Lt > VaRq,t

0, otherwise,
(2.20)
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that is, I registers a 1 on day t if the loss on the portfolio Lt on day t > VaRq,t and 0 if the

loss on day t ≤ VaRq,t. q is the choice of confidence level and p = 1 − q. For UC property,

Pr[It(1 − q) = 1] ≈ 1 − q,∀t; i.e., the number of exceptions should be reasonably close to

Tw(1 − q)%, depends on the choice of q, and should follow a binomial distribution

f (T1|Tw, p) =
(

Tw
T1

)
pT1qTw−T1 , (2.21)

with mean pTw and variance pqTw. Tw is the size of the window over which back-testing is

conducted. For IND property, the exceptions produced on day t−1 should be independent

of exceptions produced on day t and evenly spread over time.

Several back-testing methods have since been proposed to test the UC and IND prop-

erties of reliable VaR models. In this research, the following back-testing methods are

employed: (1) Kupiec (1995) “proportion of failures” (POF) test for UC, (2) Christoffersen

(1998) test for IND and conditional coverage (CC), (3) the “traffic light” test proposed by

the 1996 Basel Committee of Banking and Supervision (BCBS), (4) the new independence

test for the tendency of clustering violations by Santos and Alves (2012), (5) the bootstrap

back-test by Dowd (2002), and Engle and Manganelli (2004) Dynamic Quantile test.

2.7.1 Unconditional coverage (UC) test

Kupiec (1995) defined an approximate 95% confidence region whereby the number of

exceptions produced by the VaR model must lie within this region for it to be considered

a reliable risk measurement model. The test is based on the likelihood ratio

LRPOF = −2 ln
qT0pT1(

1 − T1
Tw

)T0
(

T1
Tw

)T1
≈ χ2

1, (2.22)

where q = 1 − p, T0 = Tw − T1, and the known VaR coverage p. Under the UC, the
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null hypothesis for LRPOF is H0 : E[It(p)] = T1
Tw

= p against Ha : E[It(p)] = T1
Tw
, p. The

VaR model is rejected if LRPOF > χ2
1 = 3.841. Note that Chi-Square distribution with k

degrees of freedom (χ2
k) is the sum of the squares of k independent samples from a normal

distribution with a zero mean and unit variance (Lancaster and Seneta, 1969). We could

also obtain a rejection region [x1, x2] by equating Eqn.(2.22) to χ2
1 and solving for T1. The

VaR model is rejected if T1 < [x1, x2] and accepted if T1 ∈ [x1, x2] (Holton, 2002).

2.7.2 Independent (IND) and conditional coverage (CC) test

Christoffersen (1998) extended Kupiec’s POF test to test the independence of conditional

coverage. Define Ti j the number of days that It = j|It−1 = i, and πi j = Pr(It = j|It−1 = i),

then we have:

It−1 = 0 It−1 = 1 sum

It = 0 T00 T10 T00 + T10

It = 1 T01 T11 T01 + T11

sum T00+T01 T10 + T11 T00 + T01 + T10 + T11

and probabilities

π01 =
T01

T00 + T01
, π11 =

T11

T10 + T11
π =

T01 + T11

T00 + T01 + T10 + T11
.

Under the null hypothesis that the number of exceptions produced are independent and

evenly spread over time, π01 = π11 = π with likelihood ratio

LRIND = −2 ln
(1 − π)(T00+T10)π(T01+T11)

(1 − π01)T00πT01
01 (1 − π11)T10πT11

11

≈ χ2
1. (2.23)

The model is rejected for the independent property if LRIND > χ2
1 = 3.841. Christoffersen

(1998) conditional coverage test is a joint test of Kupiec’s POF test and the IND test that

test both properties of unconditional coverage and independence instantaneously. The
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conditional coverage test has likelihood ratio

LRCC = LRPOF + LRIND ≈ χ
2
2. (2.24)

The hypothesis is Pr[It(1− q) = 1|Ωt−1] = 1− q,∀t against Pr[It(1− q) = 1|Ωt−1] , 1− q,∀t,

where Ωt−1 is the information available on day t − 1. The model is rejected for the

conditional coverage property if LRCC > χ2
2 = 5.99.

2.7.3 Basel “Traffic Light” Test

The BCBS came up with a set of requirements that the VaR model must satisfy for it

to be considered a reliable risk measure. That is, (1) VaR must be calculated with 99%

confidence, (2) back-testing must be done using a minimum of one year observation period

and must be tested over at least 250 days, (3) regulators should be 95% confident that

they are not erroneously rejecting a valid VaR model, and (4) Basel specifies a one-tailed

test —it is only interested in the underestimation of risk (Resti, 2008). For an unbiased

VaR model, we will expect a maximum of 2.5 violations over a period of 250 days at

p=1% confidence level. Depending on the number of exceptions produced, the financial

institution is placed in a green, yellow, or red zone. Eqn.(2.19b) and Table 2.1 summarises

the acceptance region for the Basel “traffic light” test for a 250 days observation period.

In the red zone, the VaR model underestimates risk and is out-rightly rejected.

Zone Number of Exceptions Cumulative Probability
Green ≤ 4 89.22%
Yellow 5 95.88%

6 98.63%
7 99.60%
8 99.89%
9 99.97%

Red ≥ 10 99.99%

Table 2.1: Acceptance region for Basel “traffic light” test for back-testing VaR models. CL = 99%, T = 250
(Jorion, 2007).
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2.7.4 The new independent test

The new independent test proposed by Santos and Alves (2012) is a test based on an exact

distribution that does not depend on an unknown parameter. The test is used for iden-

tifying models with a tendency to generate violations that are clustered together. Unlike

Kupiec (1995) POF test and Christoffersen (1998) CC test, the new independent test does

not depend on an asymptotic distribution. The test statistics for the new independence

test is defined as

TN,[N/2] = log 2
DN:N − 1
D[N/2]:N

− logN (2.25)

where D1:N ≤ . . . ≤ DN:N are the order statistics of durations D1, . . .DN. Di = ti − tt−1 is the

duration between two consecutive exceptions and i is the time until the first exception.

There is clustering of exceptions if the median of DN:N/D[N/2]:N is higher than the median

under the IDN hypothesis. (see Santos and Alves (2012); Araújo Santos (2010) for more

details about the new independent test).

2.7.5 Dynamic Quantile test

Engle and Manganelli (2004) utilise the criterion that the number of exceptions produced

on day t should be independent of the information available at day t − 1 and introduced

the out-of-sample dynamic quantile (DQ) test for model validation. Define the function

Hitt = I(Lt < −VaRp
q,t) − (1 − q) =


q, if Lt < VaRp

q,t

−(1 − q), otherwise,
(2.26)

where Hitt assumes the value q when the loss on the portfolio at time t is less than VaRp
q,t,

and −(1 − q) otherwise. Note that 1 − q is the probability associated with VaRp
q,t, and the
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negative sign on −VaRp
q,t is to have the VaR be a positive number. The test statistics is

given by

DQ =
(Hit

′

tXt[X
′

tXt]−1X
′

tHitt)
(1 − q)q

≈ χ2
q, (2.27)

where the vector Xt might include lags of Hitt, VaRp
q,t and its lags. Under the null

hypothesis E[Hitt] = 0 and E[Hitt|Ωt−1] = 0, Hitt and Xt are orthogonal and Hitt must be

uncorrelated with its own lagged values Gaglianone et al. (2011); Engle and Manganelli

(2004). The DQ test is easy to perform, and does not depend on the estimation procedure;

all that is needed is a series of VaRs and the corresponding values of the portfolio returns

Engle and Manganelli (2004).

2.7.6 Bootstrap Back-Test

The bootstrap back-test involves statistical bootstrapping using empirical observations to

construct a 100(1− p)% confidence interval wherein the VaR estimate must lie within this

confidence interval for the VaR model to be considered a reliable risk measure.

T data points are drawn randomly from the new daily risk factor returns with replace-

ment, and the desired qth quantile (VaR) for the T data points is calculated. The process is

repeated k times such that a sufficient distribution of VaRs is obtained. From the distribu-

tion of VaRs, the confidence interval and error band of the original VaR estimate are easily

calculated. The error band is calculated as the upper bound minus the lower bound. The

upper bound is the 100(1− p/2)% quantile and the lower bound is the 100(p/2)% quantile

of the distribution. VaR estimates that fall outside the confidence interval are considered

significantly different and thus the VaR model is rejected.
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2.8 Chapter summary

In this chapter, we have discussed a brief history of VaR, traditional methods commonly

used in constructing VaR models, and common methods for VaR models validation,

which will be used through out this research to check the reliability of the proposed VaR

models. In the next chapter, we present a novel approach to construct and investigate the

reliability of a VaR model by incorporating multivariate GARCH Dynamic Conditional

Correlation volatility models, copula functions and extreme value theory.



Chapter 3

Forecasting Value-at-Risk estimates

using multivariate GARCH(1,1)

Dynamic Conditional Correlation

models, copula functions and

Extreme Value Theory: Evidence

from EU banks

This chapter presents a novel approach for forecasting value-at-risk estimates by combin-

ing multivariate GARCH(1,1) Dynamic Conditional Correlation (M-GARCH(1,1) DCC)

models for modeling correlations, copula functions for modeling dependence, and ex-

treme value theory for modeling the tails of the return distributions.

27
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3.1 Introduction

Financial asset returns often demonstrate volatility clustering. Therefore, volatility plays

an important role in VaR estimation. Many volatility models have been proposed, for

example the generalized autoregressive conditional heteroskedasticity (GARCH) models

and its extensions have been used to capture the effects of volatility clustering and asym-

metry in VaR estimation. Many studies have applied a variety of univariate GARCH

models in VaR estimation; see So and Philip (2006), Berkowitz and OBrien (2002), and

McNeil and Frey (2000). In addition, Kuester et al. (2006) provides an extensive review

of VaR estimation methods with a focus on univariate GARCH models. The results of

all these studies suggest that GARCH models provide more accurate VaR estimates than

traditional methods. Because financial applications typically deal with a portfolio of as-

sets with several risk factors (as considered in this study), a multivariate GARCH(1,1)

(M-GARCH(1,1)) model would be very useful for VaR estimation. Univariate VaR mod-

els focus on an individual portfolio, whereas the multivariate approach explicitly model

the correlation structure of the covariance or volatility matrix of multiple asset returns

over time. Bauwens and Laurent (2012) provides a comprehensive review of univariate

volatility models and their applications.

Numerous M-GARCH models have since been developed, for example, Tsay (2013);

Fengler and Herwartz (2008); Engle and Kroner (1995); Bollerslev et al. (1994) and the ref-

erences therein. Bauwens et al. (2006) divides M-GARCH models into three categories: (1)

direct generalization of univariate GARCH models (e.g., exponentially-weighted moving

average (EWMA), vector error correction (VEC), BEKK, etc.), (2) linear combinations of

univariate GARCH models (e.g., generalized orthogonal GARCH (GO-GARCH), princi-

pal component GARCH (PGARCH), etc.), and (3) nonlinear combinations of univariate

GARCH models (e.g., dynamic conditional correlation (DCC) and constant conditional



3.2. The Dynamic Conditional Correlation (DCC) model 29

correlation (CCC) models). The article by Silvennoinen and Teräsvirta (2009) gives a con-

cise review of most common M-GARCH models; parametric and semi-parametric models

and their properties. See also Ghalanos (2015) for more details on M-GARCH models.

Most volatility models fail to satisfy the positive definite conditions of the covariance

matrix of asset returns. M-GARCH DCC volatility model by Engle (2002) is employed

in this study because of conditions (as seen later) that will guarantee the conditional

volatility matrix to be positive-definite almost surely.

The rest of the chapter is structured as follows: In Section 3.2, we present the Dynamic

Conditional Correlation (DCC) model, and Section 3.3 discuses the copula theory. In

Section 3.4, we present extreme value theory (EVT) analysis. In Section 3.5, we discuss

the data used to construct the VaR model. In Section 3.6, we present the results followed

by conclusion in Section 3.7.

3.2 The Dynamic Conditional Correlation (DCC) model

Financial asset returns have been shown to be leptokurtic and heavy tailed with non con-

stant volatility (Berkowitz et al., 2011; Sheikh and Qiao, 2010) and thus require conditional

volatility models that will reflect the most current information in the market. The DCC

model is motivated by the fact that it allows for the correlation matrix to be time varying,

and hence reflects the current market condition.

To proper understand the volatility matrix of the DCC model, it is important to

first understand the mean and variance equations of a univariate GARCH(1,1) model.

GARCH(1,1) model first proposed by (Bollerslev, 1986) allows conditional variance to be
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dependent upon previous lags. The GARCH(1,1) model has the form

ri,t = µi + ai,t, ai,t = σi,tηi,t (3.1a)

σ2
i,t = α0 + α1a2

i,t−1 + β1σ
2
i,t−1, (3.1b)

for i = 1, . . . ,N, t = 1, . . . ,T

where ri,t are the log return series of daily stock prices, µi are the conditional means of

the log returns, ai,t are the residuals of the mean equation (Eqn. (3.1a), ηi,t represent white

noise with zero mean and unit variance, σi,t are the conditional volatility series from the

variance equation (Eqn. (3.1b)), N represents the total number of stocks, T the sample

size, and α0, α1 and β1 are the GARCH(1,1) parameters.

Let xt (t = 1, 2, . . . ,T) be a stochastic vector of financial time series data with dimension

k × 1 and conditional mean µt given some market information Ω observed until at time

t − 1, then the mean equation for a general M-GARCH model is defined as

xt|Ωt−1 = µt + at, at = Σ1/2
t ηt, (3.2)

where ηt = (η1t, . . . , ηkt)
′

are iid random vectors such that E[ηt] = 0 and cov[ηt] = Ik;

an identity matrix of order K. Σ1/2
t is a k × k positive definite matrix of the conditional

volatility matrix Σt. The conditional correlation matrix ρt has the form

ρt = D−1
t ΣtD−1

t , (3.3)

where D = diag
{√
σ11,t, . . . ,

√
σkk,t

}
; is the diagonal matrix of the conditional volatilities

σii,t.

Engle (2002) proposed a DCC model where the conditional correlation matrix is de-
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pendent on two parameters θ1 and θ2. Let η1t = a1,t/
√
σ11,t, and ηit = (η1t, . . . , ηkt)

′

be

vectors of marginal standardised residuals, where
{
σii,t

}K
i=1 are conditional volatilities ob-

tained following GARCH(1,1) volatility model, then the DCC model by Engle (2002) is

defined as

Qt = (1 − θ1 − θ2)Q̄ + θ1Qt−1 + θ2ηt−1η
′

t−1, (3.4a)

ρt = ΛtQtΛt, (3.4b)

where ρt is the correlation matrix of the vectors of standardised residuals ηit, Q̄ is the

unconditional covariance matrix of ηit, θi ∈ <
+, 0 < θ1 +θ2 < 1 for i = 1, 2 and controlled

by Qt; a positive definite matrix. Λt = diag
{
q−1/2

11,t , . . . , q
−1/2
kk,t

}
, where qii,t are the (i, i)th

element of Qt (Ghalanos, 2015; Tsay, 2013). The constraints on θ1 and θ2 guarantees ρt to

be positive definite almost surely.

The DCC model of Engle (2002) however, will not capture the asymmetric response of

volatility commonly displayed by financial asset returns. Therefore, we also employ the

asymmetric DCC (aDCC) model proposed by Cappiello et al. (2006). They investigated

if the signs of profit and loss (P&L) distributions of financial asset at time t − 1 has any

influence on the current conditional variances, covariances, and correlations. They found

evidence of asymmetries in conditional covariance of both equity and bond returns,

evidence of asymmetry in conditional volatility of equities, evidence of asymmetry in the

conditional correlation of both bonds and equities. The aDCC model has the form

Qt = (Q̄ − A′Q̄A − B′Q̄B − G′N̄G) + A′ηt−1η
′

t−1A + B′Qt−1B + G′εt−1ε
′

t−1G, (3.5)

ρt = ΛtQtΛt,

where A, B, and G are diagonal parameter matrices; asymmetry is captured in G, Q̄ =
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E(ηtη′t), εt = I(ηt < 0) ◦ ηt, where ◦ represents the Hadamard product, and N̄ = E(ε′tεt) (see

Cappiello et al. (2006) and the references therein).

3.3 Copula theory

Copula theory was first developed by Sklar (1959) to describe the dependence structure

between random variables. It was later introduced to the finance literature by Frey et al.

(2001); Embrechts and McNeil (1999); and Li (2000). Consequently, Embrechts et al.

(2002) introduced the application of copula theory to financial asset returns, and Patton

(2004) expanded the framework of copula theory with respect to the time-varying nature

of financial dependence schemes. Copula theory has also been extensively used in risk

management to measure VaR of portfolios, including both unconditional (Cherubini et al.,

2004; Cherubini and Luciano, 2001; Embrechts et al., 2001) and conditional distributions

(Silva Filho et al., 2014; Huang et al., 2009; Fantazzini, 2008).

Copula functions enables the construction of a flexible multivariate distribution with

varying margins and dependence structures that are free from assumptions of normality

or linear correlation. In addition, copulas can easily capture the tail dependence of asset

returns, i.e., the joint probability of large market movements (Cherubini et al., 2004) or

joint distribution modeling. They are used as a modeling tool for modeling non-linear

correlations and not an assessment tool such as the Pearson’s or Spearman’s correlations,

or Kendall’s τ.

In multivariate settings, we use the following version of Sklar’s theorem as given by

Cherubini et al. (2004) for the purpose of VaR estimation.

Theorem 1 Sklar’s theorem: Consider an n-dimensional joint distributional function F(x),

with uniform margins F1(x1), . . . ,Fn(xn); x = (x1, . . . , xn), with −∞ ≤ xi ≤ ∞, then there exists
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a copula C : [0, 1]n
→ [0, 1] such that

F(x1, . . . , xn) = C(F1(x1), . . . ,Fn(xn)), (3.6)

determined under absolute continuous margins as

C(u1, . . . ,un) = F(F−1
1 (u1), . . . ,F−1

n (un)), (3.7)

otherwise, C is uniquely determined on the range R(F1) × R(F1) × . . . × R(Fn). Equally, if C is a

copula and F1, . . . ,Fn are univariate distribution functions, then C(F1(x1), . . . ,Fn(xn)) is a joint

distribution function with margins F1, . . . ,Fn (Tsay, 2013).

The copula C(u1, . . . ,un) has density c(u1, . . . ,un) associated to it and defined as

c(u1, . . . ,un) =
∂nC(u1, . . . ,un)
∂u1, . . . , ∂un

(3.8)

and is related to the density function F for continuous random variables denoted as f , by

the canonical copula representation

f (x1, . . . , xn) = c(F1(x1), . . . ,Fn(xn))
n∏

i=1

fi(xi), (3.9)

where fi are the marginal densities that can be different from each other (Ghalanos, 2015;

Bob, 2013; Tsay, 2013; Huang et al., 2009; Cherubini et al., 2004).

Bob (2013) and Cherubini et al. (2011) discuss two commonly used families of copulas

in financial applications: the elliptical and the Archimedean copulas.

The most common elliptical copulas used in financial applications are the Gaussian

and the Student’s t copulas, which are symmetric. Their dependence structure is deter-
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mined by the standardised correlation or dispersion matrix

ρt =


1 . . . ρ1,n

...
. . .

...

ρn,1 . . . 1


(3.10)

because of the invariant property of copulas. ρi, j is the dispersion parameter, which can

be set to either Kendall’s tau or Spearman’s rho, as discussed later.

Consider a symmetric positive definite matrixρt, (Eq.3.10) with diag(ρt) = (1, 1, . . . , 1)T;

where T is the sample size. We can represent the multivariate Gaussian copula (MGC) as

CGa
ρt = P(Φ(X1) ≤ u1, . . . ,Φ(Xn) ≤ un) = Φρt(Φ

−1(u1), . . . ,Φ−1(un)), (3.11)

where Φρt is the standardised multivariate normal distribution and Φ−1
ρt

is the inverse

standard univariate normal distribution function of u with correlation matrix ρt. If the

margins are normal, then the Gaussian copula will generate the standard Gaussian joint

distribution function with density function

cGa
ρt (u1,u2, . . . ,un) =

1

|ρt|
1
2

exp
(
−

1
2
ς
′

(ρ−1
t − I)ς

)
, (3.12)

where ς = (Φ−1(u1), . . . ,Φ−1(un))T, and I represents the identity matrix.

On the other hand, a multivariate Student’s t copula (MTC) has the form

Tρt,v(u1, . . . ,un) = tρt,v(t−1
v (u1), . . . , t−1

v (un)), (3.13)
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with density function

cρt,v(u1, . . . ,un) = |ρt|
−

1
2
Γ( v+n

2 )
Γ( v

2 )

 Γ( v
2 )

Γ( v+1
2 )

n (1 + 1
vς
′

ρ−1
t ς)−

v+n
2

∏n
j=1

(
1 +

ς2
j

v

)− v+1
2

, (3.14)

where tρt,v is the standardised Student’s t distribution with correlation matrix ρt and v

degrees of freedom.

Archimedean copulas are built via a generator as

C(u1, . . . ,un) = ϕ−1(ϕ(u1) + . . . + ϕ(un)) (3.15)

with density function

c(u1, . . . ,un) = ϕ−1(ϕ(u1) + . . . + ϕ(un))
n∏

i=1

ϕ
′

(ui), (3.16)

where ϕ is the copula generator and ϕ−1 is completely monotonic on [0,∞]. That is, ϕ

must be infinitely differentiable with derivatives of ascending order and alternative sign

such that ϕ−1(0) = 1 and limx→+∞ ϕ(x) = 0 (Cherubini et al., 2011). Thus, ϕ
′

(u) < 0 (i.e., ϕ

is strictly decreasing) and ϕ
′′

(u) > 0 (i.e., ϕ is strictly convex).

Archimedean copulas are very useful in risk management analysis because they cap-

ture an asymmetric tail dependence between financial asset returns. The most commonly

used Archimedean copulas in financial applications are the Gumbel (1960), Clayton (1978)

and Frank (1979) copulas (Yan et al., 2007).

The Gumbel copula captures upper tail dependence, is limited to positive dependence,

and has generator function ϕ(u) = (− ln(u))α and generator inverse ϕ−1(x) = exp(−x
1
α ).
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This will generate a Gumbel n-copula represented by

C(u1, . . . ,un) = exp

−
 n∑

i=1

(− ln ui)α


1
α

 α > 1. (3.17)

The generator function for the Clayton copula is given byϕ(u) = u−α−1 and generator

inverse ϕ−1(x) = (x + 1)−
1
α , which yields a Clayton n-copula represented by

C(u1, . . . ,un) =

 n∑
i=1

(u−αi − n + 1)


−

1
α

α > 0. (3.18)

The Frank copula has generator function ϕ(u) = ln
( exp(−αu)−1

exp(−α)−1

)
and generator inverse

ϕ−1(x) = −
1
α

ln
(
1 + ex(e−α − 1)

)
, (3.19)

which will result in a Frank n-copula represented by

C(u1, . . . ,un) = −
1
α

ln
{

1 +

∏n
i=1(e−αui − 1)

(e−α − 1)n−1

}
α > 0, (3.20)

(Cherubini et al., 2004). We follow Bob (2013); Breymann et al. (2003) and employ Gaus-

sian, t, Gumbel, Frank and Clayton copulas in this study.

3.3.1 Measuring Dependence

The traditional way to measure the relationship between markets and risk factors is to look

at their linear correlations, which depend both on the marginal and joint distributions of

the risk factors. In the case of non-normality, the results might be misleading (Cherubini

et al., 2011). Kendall’s τ or Spearman’s ρ; nonparametric invariant measures that are not

dependent on marginal probability distributions are more suitable to use.

Copulas measure a form of dependence between pairs of risk factors (i.e., asset returns)
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known as concordance using these invariant measures. Two observations (xi, yi) and

(x j, y j) from a vector (X,Y) of continuous random variables are concordant if (xi − x j)(yi −

y j) > 0 and discordant if (xi − x j)(yi − y j) < 0. Large values of X are paired with large

values of Y and small values of X are paired with small values of Y as the proportion of

concordant pairs in the sample increases. On the other hand, the proportion of concordant

pairs decreases as large values of X are paired with small values of Y and small values of

X are paired with large values of Y (Alexander, 2008).

Consider n paired continuous observations (xi, yi) ranked from smallest to largest,

with the smallest ranked 1, the second smallest ranked 2, and so on. Then, Kendall’s τ is

defined as the sum of the number of concordant pairs minus the sum of the number of

discordant pairs divided by the total number of pairs, i.e., the probability of concordance

minus the probability of discordance:

τX,Y = Pr[(xi − x j)(yi − y j) > 0] − Pr[(xi − x j)(yi − y j) < 0] =
C −D
C + D

, (3.21)

where C is the number of concordant pairs below a particular rank that are larger in value

than that particular rank, and D is the number of discordant pairs below a particular rank

that are smaller in value than that particular rank.

Spearman’s ρ, on the other hand, is defined as the probability of concordance minus

the probability of discordance of the pair of vectors (x1, y1) and (x2, y3) with the same

margins. That is,

ρX,Y = 3(Pr[(x1 − x2)(y1 − y3) > 0] − Pr[(x1 − x2)(y1 − y3)] < 0).

The joint distribution function of (x1, y1) is H(x, y), while the joint distribution function of
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(x2, y3) is F(x)G(y) because x2 and y3 are independent (Nelsen, 2007). Alternatively,

ρX,Y = 1 −
6
∑n

i=1 d2
i

n(n2 − 1)
,

where d is the difference between the ranked samples. Nelsen (2007) has shown that

Kendall’s τ and Spearman’s ρ depend on the vectors (x1, y1), (x2, y2) and (x1, y1), (x2, y3),

respectively, through theirs copulas C, and that the following relationship holds:

τX,Y = 4
∫ 1

0

∫ 1

0
C(u, v)dC(u, v) − 1

ρX,Y = 12
∫ 1

0

∫ 1

0
C(u, v)dudv − 3.

3.4 Extreme Value Theory

EVT is a statistical approach for estimating extreme events with low frequency but high

severity. This technique is widely used in financial risk management since empirical

evidence from various studies (see Sheikh and Qiao (2010); Berkowitz et al. (2011)) have

shown that in majority of cases, financial asset return distributions are heavy-tailed,

especially in times of financial instability.

There are two methods for modeling extreme events with low frequency but high

severity; the block maxima method and the Peaks Over Threshold (POT) method. For

financial time series data, the POT method is often used to model extreme events. The

block maxima method is not commonly used to do statistical inference with financial

time series data because (1) the method does not make sufficient use of data as it uses

only data from sub-period maxima, (2) the choice of sub-period length is not clearly
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defined, (3) the method is unconditional and does not take into account the effects of other

explanatory variables (Tsay, 2014). We used the POT method based on the generalized

Pareto distribution (GPD). The POT method focuses on modeling exceedances of losses

above a certain threshold ϑ and the time of occurrence. The threshold is selected such that

there are enough data points to do meaningful statistical analysis. Let {xi}
T
i=1 represent

the loss variables of an asset returns, then as T→∞, {xi}
T
i=1 is assumed to be independent

and identically distributed, and (x − µ)/σ follows a generalized extreme value (GEV)

distribution:

Fξ,µ,σ(x) =


exp[−(1 + ξx)−1/ξ] for ξ , 0,

exp[−e−x] for ξ = 0,
(3.22)

where ξ is the shape parameter and 1/ξ is the tail index of the GEV distribution. x < −1/ξ

if ξ < 0 and x > −1/ξ if ξ > 0. Also, let the probability of the conditional distribution of

the excesses over the threshold ϑ, i.e., xi − ϑ = y|xi > ϑ, be given by

Pr(x − ϑ ≤ y|x > ϑ) =
Pr(ϑ ≤ x ≤ y + ϑ)

Pr(x > ϑ)
=

Pr(x ≤ y + ϑ) − Pr(x ≤ ϑ)
1 − Pr(x ≤ ϑ)

(3.23a)

=
F(y + ϑ) − F(ϑ)

1 − F(ϑ)
= Fϑ(y). (3.23b)

Again, as T→∞, (y + ϑ − µ)/σ follows a GEV distribution (Eqn.3.22). Therefore,

Pr(x − ϑ ≤ y|x > ϑ) =
F(y + ϑ) − F(ϑ)

1 − F(ϑ)

=
exp

[
−(1 +

ξ(y+ϑ−µ)
σ )−1/ξ

]
− exp

[
−(1 +

ξ(ϑ−µ)
σ )−1/ξ

]
1 − exp

[
−(1 +

ξ(ϑ−µ)
σ )−1/ξ

]
≈ 1 −

(
1 +

ξy
σ + ξ(ϑ − µ)

)−1/ξ

(3.24)

where y > 0 and σ + ξ(ϑ − µ) > 0. If we let ψ(ϑ) = σ + ξ(ϑ − µ), and as ϑ→∞, Eqn.(3.24)
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is approximated by the generalized Pareto distribution (GPD)

Gξ,ψ(ϑ)(y) =


1 −

[
1 +

ξy
ψ(ϑ)

]−1/ξ
for ξ , 0,

1 − exp[ −y
ψ(ϑ) ] for ξ = 0,

(3.25)

with shape parameter ξ and scale parameter ψ(ϑ). ψ(ϑ) > 0, y ∈ [0, x−ϑ] when ξ ≥ 0, and

y ∈ [0,−ψ(ϑ)
ξ ] when ξ < 0. If ξ = 0, then Eqn.(3.25) becomes an exponential distribution

with parameter 1/σ (Tsay, 2014). We know from Eqn.(3.23a) that y = x − ϑ. Therefore,

F(y + ϑ) − F(ϑ)
1 − F(ϑ)

=
F(x) − F(ϑ)

1 − F(ϑ)
≈ Gξ,ψ(ϑ)(x − ϑ)

=⇒ F(x) = F(ϑ) + [1 − F(ϑ)] Gξ,ψ(ϑ)(x − ϑ). (3.26a)

We can now state the tail estimator for the underlying distribution F(x|ξ, ψ(ϑ)) using the

empirical estimate of F(ϑ). i.e., F̂(ϑ) = (T −Nϑ)/T as

F̂(x|ξ, ψ(ϑ)) ≈
T −Nϑ

T

[
1 +

ξ̂(x − ϑ)

ψ̂(ϑ)

]−1/ξ̂

, (3.27)

where Nϑ is the number of observations above the threshold (Tsay, 2014; Soltane et al.,

2012). The mean excess function plot proposed by Davison and Smith (1990) is used to

help identify the threshold value. A mean excess function of x over a certain threshold ϑ

is defined as

e(ϑ) = E(x − ϑ|x > ϑ) =
σ + ξϑ
1 − ξ

. (3.28)

A property of the GPD states that if the excess distribution of x given a threshold ϑ0 is a

GPD with shape parameter ξ and scale parameter ψ(ϑ0), then for any random threshold

ϑ > ϑ0, the excess distribution over the threshold ϑ has a GPD with shape parameter ξ
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and scale parameter ψ(ϑ) = ψ(ϑ0) + ξ(ϑ − ϑ0), where 0 < ξ < 1 (Tsay, 2014). Then

e(ϑ) = E(x − ϑ|x > ϑ) =
ψ(ϑ0) + ξ(ϑ − ϑ0)

1 − ξ
, (3.29)

which is a linear function of ϑ − ϑ0 with slope ξ/(1 − ξ) for ϑ > ϑ0. From the ordered

sample of losses, {xi}, we can calculate and plot the mean excess function (Eqn.(3.29))

against each chosen ϑi for ϑi > ϑ0. The threshold ϑ is then identified as the lowest point

on the mean excess plot above which the graph appears to be approximately linear.

Inverting Eqn.(3.27) gives the qth quantile F−1
q = VaRq, for any given small upper tail

probability p for VaR estimation as

VaRq = ϑ −
ψ̂(ϑ)

ξ̂

1 −
[ T
Nϑ

(1 − q)
]−ξ̂ , (3.30)

where q = 1−p (Tsay, 2014; Soltane et al., 2012; Bhattacharyya and Ritolia, 2008). Assuming

that Nϑ are independent and identically distributed, then the parameters ψ(ϑ) and ξ can

be estimated by means of maximum likelihood estimation with likelihood function

l(xi, . . . , xNϑ |ξ, σ, µ) =

Nϑ∏
i=1

f (xi) for xi > ϑ. (3.31)

3.5 Data

The data employed consist of daily closing prices of 26 stocks from five different European

countries —France, Greece, UK, Spain, and Sweden as seen in Table 3.1. Our aim is to

investigate the risk of collapse in the banking system with insufficient capital to provide

proper cushions capable to withstand sudden losses in periods of distress. Thus, the

stocks belong to the banking sectors and within the top ten banks for each country. The
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choice of countries is based on how much impact the 2008 and 2011 financial crisis had

on its banking system and the risk of collapse. For example, UK was in recession for 15

months from the second quarter of 2008 to the second quarter of 2009, Sweden was in

recession for 15 months from the first quarter of 2008 to the first quarter of 2009, France

was in recession for 15 months from the second quarter of 2008 to the second quarter of

2009 and 6 months from the fourth quarter of 2012 to the first quarter of 2013, Spain was

in recession for 21 months from the second quarter of 2008 to the fourth quarter of 2009

and 27 months from the second quarter of 2011 to the second quarter of 2013, and finally

the most affected country Greece was in recession for 63 months from the third quarter of

2008 to the second quarter of 2014 and 27 months from the first quarter of 2015 to the first

quarter of 2017 (DAmuri and Peri, 2014; Jenkins et al., 2012; Lin et al., 2012). Therefore,

we select our data starting from 31st of December 2004 to 31st of December 2015 to contain

the 2008 global financial crisis and 2011 European financial crisis periods. All data are

from DataStream and each stock consist of 2870 daily observations.

Country Stocks from various banks

France F.BNP F.SGE F.CRDA F.KNF F.CC F.CAI

Greece G.PIST G.PEIR G.EFG G.ETE G.ATT G.ELL

UK UK.HSBA UK.BARC UK.LLOY UK.RBS UK.STAN

Spain E.SCH E.BBVA E.BSAB E.BKT E.POP

Sweden W.NDA W.SVK W.SWED W.SEA

Table 3.1: Stocks from the banking sector belonging to the top ten banks of each country.

We used an out-of-sample data of m = T−n observations for back-testing. This means

that we have n = 1869 sample-in return observations for VaR estimation procedure

containing the 2008 crisis, and m = 1000 return observations for back-testing. VaR is

estimated for day t = n + 1 using data from day t = 1 to day t = n, VaR for day t = n + 2

is estimated using data from day t = 2 to day t = n + 1, and so on until the out-of-sample

data are all used up.
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The daily log return series of the stocks are calculated as

rt =

[
log

(
S1,t+τ

S1,t

)
, . . . , log

(
SN,t+τ

SN,t

)]
= (r1t, . . . , rNt) , (3.32)

where N represents the number of stocks in the sample. Figures 3.1, 3.2, 3.3, 3.4, and

3.5 show trends in the stock prices and time series plots of the daily log returns for the

different countries. The trends clearly show the effects of the 2008 global financial crisis

and the 2011 European financial crisis. The daily log return series plots show evidence

of volatility clustering. Basic statistics of the stock returns are reported in percentages

in Table 3.2. From the table, we see that the stock returns are far from being normally

distributed as indicated by their high excess kurtosis and skewness. We confirm this by

running a multivariate autoregressive conditional heteroscedasticity (ARCH) test based

on Ljung-Box test statistics Qk(m) and its modification known as robust Qr
k(m) test on the

log returns at 5% significance, where m is the number of lags of cross-correlation matrices

used in the tests. The modification involves discarding those observations from the return

series whose corresponding standardised residuals exceed 95th quantile in order to reduce

the effect of heavy tails. The motivation for Qr
k(m) test is because Qk(m) may fare poorly

in finite samples when the residuals of the time series, at = Σ1/2
t ηt, have heavy tails (Tsay,

2013). The test statistics is given by

Qk(m) = T2
m∑

i=1

1
T − i

b′i (ρ̂
−1
0 ⊗ ρ̂

−1
0 )bi ≈ χ

2
k2(m), (3.33)

which is asymptotically equivalent to the multivariate Lagrange multiplier (LM) test for

conditional heteroscedasticity by Engle (1982). k is the dimension of at, T is the sample

size, bi = vec(ρ̂′i ) with ρ̂ j being the lag - j cross-correlation matrix of a2
t . The test tests if

the current cross correlation matrix of a2
t does not depend on the lag cross correlation
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matrix of a2
t−1. Multivariate ARCH test, also shown on Table 3.2, indicates the presence of

conditional heteroscedasticity as p-values are all equals to zero.

(a)

(b)

Figure 3.1: Trends of UK stock prices (a) and time plots of log-return series (b) for the period of 31st of
December 2004 to the 31st December 2015.
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(a)

(b)

Figure 3.2: Trends of Greek stock prices (a) and time plots of log-return series (b) for the period of 31st of
December 2004 to the 31st December 2015.
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(a)

(b)

Figure 3.3: Trends of Swedish stock prices (a) and time plots of log-return series (b) for the period of 31st
of December 2004 to the 31st December 2015.
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(a)

(b)

Figure 3.4: Trends of French stock prices (a) and time plots of log-return series (b) for the period of 31st of
December 2004 to the 31st December 2015.
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(a)

(b)

Figure 3.5: Trends of Spanish stock prices (a) and time plots of log-return series (b) for the period of 31st
of December 2004 to the 31st December 2015.
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Country Stocks from various banks

France F.BNP F.SGE F.CRDA F.KNF F.CC F.CAI M-ARCH test
Mean 0.0006 -0.0151 -0.0215 -0.0019 0.0006 -0.0108 Qk(10) = 2209, p-value = 0
Variance 0.0647 0.0807 0.0764 0.0959 0.0197 0.0145 Qr

k(10) = 2606, p-value = 0
Stdev 2.5427 2.8399 2.7645 3.0969 1.4027 1.2029
Skewness 34.4305 6.9738 27.7890 60.0710 62.1017 7.6754
Excess Kurtosis 867.8928 680.0429 624.0289 1209.1365 821.6399 678.3979

Greece G.PIST G.PEIR G.EFG G.ETE G.ATT G.ELL
Mean -0.1603 -0.3371 -0.3377 -0.2872 -0.2045 -0.0642 Qk(10) = 3587, p-value = 0
Variance 0.2287 0.2876 0.3162 0.2487 0.2818 0.0448 Qr

k(10) = 3180, p-value = 0
Stdev 4.7826 5.3624 5.6234 4.9866 5.3087 2.1157
Skewness -12.5182 -105.8321 -61.0233 -103.6301 -59.4886 -7.5496
Excess Kurtosis 827.1241 1063.2666 865.8341 1044.0274 1317.2709 1519.9341

UK UK.HSBA UK.BARC UK.LLOY UK.RBS UK.STAN
Mean -0.0124 -0.0306 -0.0407 -0.0971 -0.0112 Qk(10) = 1321, p-value = 0
Variance 0.0293 0.1030 0.1077 0.1504 0.0594 Qr

k(10) = 2840, p-value = 0
Stdev 1.7122 3.2098 3.2823 3.8785 2.4376
Skewness -33.6697 143.8658 -105.4936 -840.1325 31.6077
Excess Kurtosis 1690.7965 4021.7880 3727.5413 23552.6326 1308.5010

Spain E.SCH E.BBVA E.BSAB E.BKT E.POP
Mean -0.0070 -0.0154 -0.0199 0.0117 -0.0702 Qk(10) = 808, p-value = 0
Variance 0.0463 0.0444 0.0359 0.0512 0.0529 Qr

k(10) = 1547, p-value = 0
Stdev 2.1519 2.1078 1.8940 2.2617 2.2991
Skewness 20.4736 32.7311 71.6545 49.2691 43.5654
Excess Kurtosis 828.4460 668.4718 623.2511 304.9592 494.7029

Sweden W.NDA W.SVK W.SWED W.SEA
Mean 0.0202 0.0234 0.0109 0.0104 Qk(10) = 5747, p-value = 0
Variance 0.0419 0.0347 0.0631 0.0643 Qr

k(10) = 1832, p-value = 0
Stdev 2.0471 1.8633 2.5116 2.5361
Skewness 52.6835 12.2476 -20.9301 5.3782
Excess Kurtosis 657.9097 690.7580 906.9637 1278.0779

Table 3.2: Summary statistics of daily log-returns series reported in percentages. High excess kurtosis and skewness suggest stock returns are not normally distributed.
A normal distribution has kurtosis of 3 and excess kurtosis of 0, is symmetric around the mean with 0 skewness. As shown on the table, the return distributions are highly
skewed; some highly positively skewed and others highly negatively skewed indicating that the distribution of the data sets has heavier tails than the normal distribution.
Multivariate ARCH (M-ARCH) tests at 5% significance level on the log-returns for each country’s stock returns at m = 10 are also reported. The test rejects the null
hypothesis of no conditional heteroscedasticity in the log return series.
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3.6 Results

3.6.1 Modelling the volatility matrix and copula parameters

We obtained the volatility matrix Σt, which consists of the marginal standardised residuals{
ηi,t

}
, for i = 1, . . . ,N, t = 1, . . . ,T by applying the M-GARCH(1,1) DCC model to the log

return series. For the conditional distributions of rt, we employ a skew and fat tail error

distribution; the skewed Student’s-t error distribution, to account for the heavy tails and

skewness. Recent studies by Chen et al. (2017, 2012) have shown that skewed Student’s-t

errors distribution is a worthy choice, when compared to a range of existing alternatives.

The skewed Student’s-t distribution has the form

E(|zt|) =
2γ2

γ + 1
γ

Γ( 1+ν
2 )2
√
ν − 2

√
π(ν − 1)Γ( ν2 )

(3.34)

where the constraint on the degrees of freedom parameter ν > 2 is imposed to guarantee

that the second order moment exist. Γ(.) is the Gamma function andγ > 0 is the asymmetry

parameter. For symmetric Student-t, γ = 1 (Peters, 2001).

The mean equation is modeled by an ARMA(1,1) model; see Appendix A.1 and Tables

A.T1 and A.T2 for the estimated GARCH(1,1) parameters with skewed-t distribution.

Table 3.3 shows parameter estimates of the fitted DCC and aDCC models respectively

for each country. Based on the log-likelihood ratios and AIC values, aDCC model is

preferred for France, Greece, UK and Sweden while for Spain DCC model is preferred.

The difference in the log-likelihood ratios for both models are quite small. For example,

the difference in the log-likelihood ratios for aDCC and DCC models for Greece is 0.06,

and exactly the same AIC values. This suggest that the signs of the P&L distributions of

the data used at time t − 1 has very little or no influence on the conditional variances,

covariances and correlations at time t, i.e., the current conditional variances, covariances
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and correlations.

Parameters France Greece UK Spain Sweden

DCC θ1 0.0144 (0.0037) 0.0296 (0.0038) 0.0213 (0.0043) 0.01733 (0.0030) 0.0180 (0.0032)

θ2 0.9645 (0.0142) 0.9225 (0.0125) 0.9442 (0.0148) 0.9742 (0.0055) 0.9584 (0.0090)

Log − Likelihood 50283.53 40506.21 41169.48 44019.77 35196.64

AIC -35.0110 -28.195 -28.6760 -30.6530 -24.5100

ν 4.5547 4.8815 4.6583 4.4662 4.0000

aDCC A 0.0121 (0.0032) 0.0296 (0.0032) 0.0124 (0.0034) 0.0159 (0.0030) 0.0143 (0.0029)

B 0.9649 (0.0139) 0.9225 (0.0294) 0.9496 (0.0134) 0.9747 (0.0054) 0.9562 (0.0108)

G 0.0058 (0.0030) 0.0000 (0.0194) 0.0194 (0.0053) 0.0032 (0.0025) 0.0095 (0.0050)

Log − Likelihood 50285.31 40506.27 41176.50 44019.10 35199.38

AIC -35.0120 -28.195 -28.6800 -30.6520 -24.5110

ν 4.6307 4.8814 4.8813 4.5391 4.0894

Table 3.3: Parameter estimates of fitted DCC and aDCC models; standard errors in parenthesis. Based
on the log-likelihood ratios and AIC values, aDCC model is preferred for France, Greece, UK and Sweden,
while for Spain normal DCC model is preferred. However, the difference in the log-likelihood ratios and AIC
values between the two models are quite minimal. See Tables A.T1 and A.T2 for the estimated GARCH(1,1)
parameters with skewed-t distribution.

We use canonical maximum likelihood (CML) method to estimate the copula param-

eters (Cherubini et al., 2004). That is, we use pseudo-observations of the standardised

residuals from the fitted M-GARCH(1,1) aDCC models for France, Greece, UK and Swe-

den, and M-GARCH(1,1) DCC model for Spain to estimate the marginals and then esti-

mated the copula parameters by “inversion of Kendall’s τ”. Kendall’s τ is one of the most

commonly used invariant measures and has been proven to provide more efficient way

of estimating correlations (Howell, 2012; Croux and Dehon, 2010).

The copula that fits the data best is selected by maximum likelihood estimation (MLE)

method by maximising the likelihood function

�̂2 = ArgMax�2

T∑
t=1

ln c(F̂1(x1t), . . . , F̂n(xnt);�2). (3.35)

and then compare their log-likelihood ratios, where �̂2 are estimates of the copula pa-
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rameters. The copula with the highest likelihood ratios is selected as the best fit. Table

3.4 presents the estimated copula parameters based on “inversion of Kendall’s tau” (stan-

dard errors in parenthesis), log-likelihood ratios and Akaike information criterion (AIC)

values. We see from the table the selected copulas in bold; i.e., for the Archimedean

copula family, Clayton copula is selected for France, UK and Spain, while Gumbel copula

is selected for Greece and Sweden as the best fit. For the elliptical copula family, only

the Student-t copula is selected as the best fit. The same copula types are selected based

on the smallest AIC value. Chollete et al. (2009) argues that by selecting the best model

based on MLE method or a related criterion such as the Akaike information criterion (AIC)

or Bayesian information criterion (BIC) (See Appendix A.2), the restriction does not matter

since copulas, which allow for negative dependence, will still be chosen if the data set

contains periods with negative dependence of the data. We select two models, one from

each copula family; Archimedean and elliptical copulas. Note that Gaussian copula gives

higher log-likelihood values for the different countries compared to the Archimedean

copulas but also higher AIC values. Thus, the Gaussian copula is not a good fit for the

data when compared to the Archimedean copulas and elliptical t-copula.
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Copula type
Gumbel Clayton Frank Gaussian student-t

France (aDCC model) Log-Likelihood 5.2150 192.3000 5.8360 1999.0000 2530.0000
Copula parameter Kendall’s τ 1.1456 (0.0050) 0.2074 (0.0090) 0.4160 (0.0000) ρτFRAN (ρSE) ρτFRAN (ρSE)

AIC -1.3031 -8.5181 -1.5281 14.7992 14.3281

Greece (aDCC model) Log-Likelihood 3400.0000 3155.0000 3180.0000 4186.0000 5387.000
Copula parameter Kendall’s τ 1.6176 (0.0020) 1.2353 (0.0040) 3.88613 (0.0290) ρτGREC (ρSE) ρτGREC (ρSE)

AIC -14.2631 -14.1135 -14.1293 13.3210 12.8165

UK (aDCC model) Log-Likelihood 443.3000 471.1000 376.6000 2992.000 3699.0000
Copula parameter Kendall’s τ 1.3622 (0.0120) 0.6290 (0.0230) 1.6419 (0.0050) ρτUK (ρSE) ρτUK (ρSE)

AIC -10.1930 -10.3101 -9.8624 4.2039 3.5684

Spain (DCC model) Log-Likelihood 314.1000 568.3000 333.9000 3684.0000 4178.0000
Copula parameter Kendall’s τ 1.5015 (0.0110) 0.8416 (0.0190) 1.8738 (0.0040) ρτSPN (ρSE) ρτSPN (ρSE)

AIC -9.4994 -10.6853 -9.6217 3.5765 3.3248

Sweden (aDCC model) Log-Likelihood 2905.0000 2173.000 2591.0000 3212.0000 4048.0000
Copula parameter Kendall’s τ 1.8646 (0.0300) 1.7291 (0.0590) 5.0580 (0.0560) ρτSWE (ρSE) ρτSWE (ρSE)

AIC -13.9484 -13.3677 -13.7196 -4.1493 -4.6120

Table 3.4: Log-likelihood ratios, copula parameters based on “inversion of Kendall’s tau” (standard errors
in parenthesis), and AIC values. The best copula for dependance modeling is selected based on the highest
log-likelihood ratio (in bold). If the selection criterion is based on AIC, the same copula types are selected
(in bold) as with the MLE method.
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ρτFRAN (ρSE) F.BNP F.SGE F.CRDA F.KNF F.CC F.CAI
F.BNP 1
F.SGE -0.3355 (0.0200) 1
F.CRDA -0.2994 (0.0210) 0.8185 (0.0080) 1
F.KNF -0.0658 (0.0230) 0.2543 (0.0210) 0.2632 (0.0210) 1
F.CC -0.1270 (0.0210) 0.0212 (0.0210) 0.0380 (0.0210) 0.0087 (0.0210) 1
F.CAI -0.3224 (0.0190) 0.0542 (0.0210) 0.0468 (0.0210) 0.0091 (0.0210) 0.1441 (0.0210) 1

ρτGREC (ρSE) G.PIST G.PEIR G.EFG G.ETE G.ATT G.ELL
G.PIST 1
G.PEIR 0.5830 (0.0150) 1
G.EFG 0.6593 (0.0140) 0.7009 (0.0130) 1
G.ETE 0.6024 (0.0150) 0.7101 (0.0130) 0.6912 (0.0130) 1
G.ATT 0.4920 (0.0180) 0.5280 (0.0170) 0.5852 (0.0160) 0.5278 (0.0170) 1
G.ELL 0.3212 (0.0200) 0.4899 (0.0180) 0.4250 (0.0190) 0.4601 (0.0180) 0.3661 (0.0190) 1

ρτUK (ρSE) UK.HSBA UK.BARC UK.LLOY UK.RBS UK.STAN
UK.HSBA 1
UK.BARC -0.1165 (0.0230) 1
UK.LLOY -0.0871 (0.0230) 0.7067 (0.0130) 1
UK.RBS -0.1067 (0.0230) 0.7051 (0.0130) 0.7117 (0.0130) 1
UK.STAN 0.5623 (0.0160) -0.1882 (0.0210) -0.1553 (0.0220) -0.1614 (0.0210) 1

ρτSPN (ρSE) E.SCH E.BBVA E.BSAB E.BKT E.POP
E.SCH 1
E.BBVA -0.4184 (0.0190) 1
E.BSAB -0.5534 (0.0150) 0.6021 (0.0140) 1
E.BKT -0.2890 (0.0200) 0.7008 (0.0120) 0.5152 (0.0170) 1
E.POP -0.4818 (0.0170) 0.7122 (0.0120) 0.7514 (0.0100) 0.6004 (0.0150) 1

ρτSWE (ρSE) S.NDA S.SVK S.SWED S.SEA
W.NDA 1
W.SVK 0.7213 (0.0120) 1
W.SWED 0.4509 (0.0180) 0.5984 (0.0160) 1
W.SEA 0.5972 (0.0150) 0.6974 (0.0120) 0.7877 (0.0100) 1

Table 3.5: Kendall’s τ; ρτ(ρSE) for Gaussian and student’s-t copulas, standard errors in parenthesis.
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The next step is to specify the desired marginal distributions, which we set to a

Student’s t distribution. The choice of Student’s t distributions for the margins is because

multivariate ARCH test on the standardised residuals,
{
ηi,t

}T
t=1, i.e., after fitting the DCC

models fail to reject the null hypothesis of no conditional heteroscedasticity; Table A.T3.

Finally, the estimated copula parameters are then used to generate a new matrix of 10000

simulations

Σ̂ =
{
ζi,t

}
, i = 1, . . . ,N, t = 1, . . . , 10000 (3.36)

with margins that are totally free from assumptions of normality or linear correlations. As

seen on Table A.T4, multivariate Arch test on
{
ζi,t

}
show no evidence of serial correlation

or conditional heteroscedasticity for m = 10. However, for the non-robust test at m = 5, the

null hypothesis of no conditional heteroscedasticity is rejected for UK at 5% significance

level after modeling dependence with t-copula. This is an indication that the residuals

have heavy tails.

We follow the approach by McNeil and Frey (2000) and apply POT method of EVT

to each of the marginal distributions of
{
ζi,t

}
i.e., Eqn.(3.36) to obtain the qth quantile;

VaRq(Z), of the noise variables for VaR estimation. Let
{
xi,ι

}
be the negative variables of

the marginal distributions of
{
ζi,t

}
such that

{
xi,ι

}
⊆

{
ζi,t

}
. Then from the ordered sample of{

xi,ι
}
, the mean excesses xi are plotted against each calculated threshold ϑi for i = 1, . . . , ι.

ϑi are calculated from the distribution of xi given a series of selected quantiles. As an

example, Figure 3.6 shows the mean excess plots for the various distributions of
{
xi,ι

}
for UK.HSBA. Subjective cut-off points from the mean excess plots as threshold values,

POT parameter estimates, VaRq(Z) and ESFq(Z) at q = (99%, 95%, 90%) are presented on

Tables 3.6 and 3.7 following the selected Clayton and Student’s-t copulas, respectively.
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From these tables, we can see that Sweden produced the highest VaRq(Z) followed by

Spain and Greece with Archimedean copulas. With t-copulas, Sweden still produced the

highest VaRq(Z) followed by Spain and UK. The results for Greece and Spain are expected

as these are the countries that were greatly affected by the 2008 and 2011 financial crisis.

It can also be noted that the number of exceedances above the threshold compared to the

size of the data (i.e., T=10,000), seems to lie towards the body of the distribution which

might result to poor approximation of GPD parameters and VaRq(Z).

Now that we have VaRq(Z) for the individual banks, we can now proceed to compute

the portfolio quantile VaRs; VaRp
q(Z), for investing in multiple positions by applying the

risk formula as follows: let Inv be the total amount of money invested in the portfolio,

xi be the fraction of the total investment invested in stock i, and wi the weights such that

wi = xi
Inv . Then we have

VaRp
q(Z) =

 N∑
i=1

w2
i VaR2

q,i(Z) + 2wiw j

N∑
i< j

ρi jVaRq,i(Z)VaRq, j(Z)


1/2

,
N∑

i=1

wi = 1, (3.37)

where ρi, j is the Pearsons cross-correlation coefficient between the returns of the ith and

jth stocks. Since the stocks are all from banks of almost the same strength and ratings (i.e.,

the top 10% from each country) , we assume equal weights and compute VaRp
q(Z) for an

investment in all the banks involved for each country at q = (99%, 95%, 90%). Results are

presented on Table 3.8. Using Eqn.(3.37), we can now define the portfolio VaR estimate

for a single period as

VaRp
q,t = µ̂t+1 + VaRp

q(Z)ĥ1/2
t+1 (3.38)

where ĥt+1 are estimates of conditional variances and µ̂t+1 is an estimate of the condi-

tional mean obtained by fitting a univariate ARMA(1,1)-GARCH(1,1) model with skewed
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Student’s-t distribution to the portfolio returns constructed from the original return se-

ries. Note that the portfolios consisting of each country’s stocks are constructed using the

simple returns of each of the stocks, and then converted to log returns for further analysis.

The reason for this is because log-returns can not be used for portfolios as they are not

additive across assets whereas simple returns are additive across assets. The portfolio

simple returns are converted to log-returns because we want to calculate the portfolio

VaR for different time horizons.

The data used are of daily stock returns, thus these are daily VaR estimates referred to

as robust because they incorporates volatility clustering and are free from any normality

assumptions. To obtain VaR estimates for any desired time horizon k in relation to a

1-day horizon (Eqn.(3.38)), we employ the α− root of time rule as discussed by Danielsson

and De Vries (2000) and Tsay (2014). Thus, the relationship between Eqn.(3.38) and k-day

horizon is defined as

VaRq,t(k) = k1/αVaRq,t, 1/α = ξ, (3.39)

where ξ is the shape parameter from the POT method of EVT and α is the tail index (Tsay,

2014).



3.6. Results 58

−10 −5 0 5

2
4

6
8

10

UK.HSBA: t−copula

Threshold

M
ea

n 
E

xc
es

s

−10 −5 0 5

2
4

6
8

UK.HSBA: Clayton copula

Threshold

M
ea

n 
E

xc
es

s

Figure 3.6: Mean excess plots of the noise variables for UK.HSBA, generated following aDCC Archimedean
and elliptical copula models.
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POT Parameter estimates VaRq(Z) ESFq(Z)
ξ̂ ψ̂(ϑ) ϑ Nϑ µ σ 99% 95% 90% 99% 95% 90%

UK UK.HSBA 0.0759 0.7905 1.4683 1037 -0.1775 0.6656 3.4914 2.0612 1.4971 4.5128 2.9653 2.3548
UK.BARC 0.1078 0.7383 1.4360 1020 -0.0582 0.5773 3.3842 1.9831 1.4506 4.4469 2.8766 2.2798
UK.LLOY 0.1371 0.7085 1.6673 789 0.1480 0.5002 3.3592 2.0008 1.5021 4.4492 2.8750 2.2970
UK.RBS 0.1380 0.7105 1.4803 1031 0.0946 0.5193 3.4360 2.0211 1.5021 4.5733 2.9319 2.3298
UK.STAN 0.1267 0.7208 1.5527 926 0.0721 0.5331 3.4060 2.0147 1.4975 4.5004 2.9071 2.3149

France F.BNP 0.0200 0.8611 1.4109 1151 -0.4110 0.8247 3.5671 2.1349 1.5322 4.4899 3.0284 2.4134
F.SGE 0.1349 0.7334 1.3694 1107 -0.0272 0.5449 3.4522 1.9847 1.4444 4.6249 2.9284 2.3039
F.CRDA 0.1214 0.7744 1.8975 622 0.0718 0.5528 3.4822 2.0688 1.5402 4.5825 2.9739 2.3722
F.KNF 0.1472 0.7530 1.6126 912 0.0926 0.5293 3.5794 2.0854 1.5433 4.8021 3.0501 2.4144
F.CC 0.0840 0.7387 1.3348 1232 -0.0835 0.6196 3.4000 2.0268 1.4903 4.4081 2.8968 2.3110
F.CAI 0.0876 0.7618 1.2518 1396 -0.1257 0.6412 3.5107 2.0702 1.5097 4.5623 2.9836 2.3693

Greece G.PIST 0.0473 0.8333 1.4323 1091 -0.3204 0.7504 3.5404 2.0946 1.5050 4.5197 3.0021 2.3832
G.PEIR 0.0886 0.8330 1.7678 701 -0.2044 0.6582 3.5382 2.0535 1.4765 4.6243 2.9952 2.3621
G.EFG 0.0871 0.8100 1.6472 845 -0.1536 0.6531 3.5470 2.0820 1.5117 4.6156 3.0109 2.3861
G.ETE 0.1335 0.7899 1.5378 952 -0.0565 0.5771 3.6146 2.0690 1.4991 4.8462 3.0625 2.4047
G.ATT 0.1078 0.7804 1.3010 1285 -0.1354 0.6255 3.5950 2.0765 1.4994 4.7470 3.0449 2.3981
G.ELL 0.1757 0.7142 1.4470 1075 0.1343 0.4808 3.5435 2.0299 1.4988 4.8533 3.0171 2.3728

Spain E.SCH 0.0722 0.8028 1.4322 1154 -0.1729 0.6869 3.5797 2.1243 1.5478 4.6121 3.0435 2.4220
E.BBVA 0.0954 0.7656 1.1929 1481 -0.1437 0.6380 3.5461 2.0688 1.4993 4.6407 3.0076 2.3780
E.BSAB 0.1050 0.8367 1.5798 918 -0.1872 0.6511 3.6686 2.1048 1.5086 4.8486 3.1013 2.4351
E.BKT 0.0708 0.8390 1.5170 1078 -0.2118 0.7166 3.6897 2.1795 1.5802 4.7581 3.1329 2.4880
E.POP 0.0673 0.7969 1.0753 1743 -0.2380 0.7085 3.5867 2.1134 1.5264 4.6223 3.0427 2.4134

Sweden W.NDA 0.0772 0.9266 1.3434 1245 -0.4397 0.7889 3.9231 2.2193 1.5482 5.1432 3.2967 2.5695
W.SVK 0.1698 0.8150 1.5766 986 0.0156 0.5500 3.8560 2.1632 1.5651 5.3039 3.2649 2.5445
W.SWED 0.1288 0.9130 1.6940 834 -0.2471 0.6631 3.9208 2.1768 1.5302 5.2979 3.2962 2.5539
W.SEA 0.2086 0.8212 1.5122 1037 0.0294 0.5118 3.9881 2.1592 1.5421 5.6785 3.3675 2.5877

Table 3.6: POT parameter estimates, VaRq(Z) and ESFq(Z) following Archimedean copulas.
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POT Parameter estimates VaRq(Z) ESFq(Z)
ξ̂ ψ̂(ϑ) ϑ Nϑ µ σ 99% 95% 90% 99% 95% 90%

UK UK.HSBA 0.0583 0.8074 1.4671 939 -0.3168 0.7034 3.3988 1.9854 1.4164 4.3759 2.8749 2.2707
UK.BARC 0.0977 0.7758 1.4013 1107 -0.1349 0.6257 3.5038 2.0425 1.4806 4.5912 2.9717 2.3489
UK.LLOY 0.1476 0.7617 1.6365 881 0.0816 0.5322 3.5911 2.0866 1.5409 4.8232 3.0581 2.4180
UK.RBS 0.1104 0.7406 1.3650 1249 -0.0116 0.5887 3.5215 2.0785 1.5317 4.6215 3.9994 2.3849
UK.STAN 0.1862 0.6975 1.6170 834 0.2301 0.4392 3.4312 1.9914 1.4926 4.7034 2.9342 2.3211

France F.BNP 0.1245 0.7172 1.4750 1040 0.0603 0.5411 3.4250 2.0249 1.5032 4.5214 2.9223 2.3264
F.SGE 0.1213 0.7409 1.4878 977 -0.0134 0.5587 3.4331 2.0048 1.4706 4.5449 2.9194 2.3114
F.CRDA 0.1359 0.7341 1.4497 1030 0.0143 0.5390 3.4642 2.0072 1.4715 4.6307 2.9445 2.3245
F.KNF 0.1521 0.7264 1.7381 794 0.2109 0.4942 3.5072 2.0862 1.5735 4.6812 3.0052 2.4006
F.CC 0.0537 0.7672 1.4585 1041 -0.1758 0.6794 3.3737 2.0323 1.4893 4.2930 2.8755 2.3018
F.CAI 0.1339 0.7289 2.0750 483 0.2594 0.4857 3.3529 2.0498 1.5695 4.3921 2.8875 2.3330

Greece G.PIST 0.0829 0.7225 1.3146 1255 -0.0630 0.6083 3.3483 2.0056 1.4803 4.3199 2.8559 2.2831
G.PEIR 0.0859 0.7394 1.4903 981 -0.0661 0.6057 3.3555 2.0033 1.4761 4.3396 2.8603 2.2836
G.EFG 0.0750 0.7485 1.3078 1248 -0.1343 0.6403 3.3879 2.0165 1.4750 4.3659 2.8823 2.2978
G.ETE 0.0906 0.7247 1.4108 1129 -0.0237 0.5948 3.3751 2.0233 1.4992 4.3676 2.8812 2.3048
G.ATT 0.0628 0.7170 1.3041 1282 -0.0776 0.6302 3.2878 2.0000 1.4836 4.1858 2.8112 2.2607
G.ELL 0.0997 0.7396 1.5908 856 -0.0215 0.5788 3.3614 1.9992 1.4767 4.3788 2.8659 2.2855

Spain E.SCH 0.0510 0.8139 1.1949 1443 -0.3053 0.7373 3.5223 2.0812 1.4961 4.5051 2.9866 2.3700
E.BBVA 0.1302 0.7535 1.3630 1223 -0.0221 0.5732 3.5933 2.0778 1.5167 4.7932 3.0509 2.4059
E.BSAB 0.1128 0.8109 1.1197 1646 -0.2040 0.6615 3.7909 2.1538 1.5354 5.0448 3.1994 2.5023
E.BKT 0.1045 0.7659 1.0766 1761 -0.1399 0.6388 3.6385 2.1073 1.5231 4.7929 3.0829 2.4306
E.POP 0.0991 0.8212 1.4562 1087 -0.1798 0.6592 3.6667 2.1191 1.5250 4.8212 3.1036 2.4441

Sweden W.NDA 0.0740 0.8400 1.2674 1357 -0.2923 0.7246 3.6836 2.1378 1.5267 4.7838 3.1144 2.4545
W.SVK 0.0808 0.8457 1.3835 1179 -0.2769 0.7116 3.6925 2.1346 1.5236 4.8155 3.1207 2.4560
W.SWED 0.1540 0.7927 1.3401 1266 -0.0632 0.5765 3.8025 2.1318 1.5305 5.1879 3.2131 2.5022
W.SEA 0.1251 0.7886 1.3597 1286 -0.0669 0.6101 3.7330 2.1505 1.5612 4.9739 3.1650 2.4915

Table 3.7: POT parameter estimates, VaRq(Z) and ESFq(Z) following elliptical Student’s-t copulas.
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Archimedean copulas Elliptical copulas
99% 95% 90% 99% 95% 90%

UK 2.7818 1.6422 1.2135 2.8449 1.6601 1.2160
France 2.5243 1.5946 1.0887 2.4758 1.4640 1.0865
Greece 2.9077 1.6881 1.2228 2.7372 1.6390 1.2094
Spain 3.1830 1.8657 1.3499 3.1852 1.8646 1.3818
Sweden 3.5063 1.9482 1.3822 3.3322 1.9118 1.3727

Table 3.8: Portfolio quantile VaR estimates; VaRp
q(Z), at q = (99%, 95%, 90%) for an investment in

multiple positions. i.e., an investment in all banks involved for each country while assuming equal weights.

3.6.2 Model validation

The reliability of the VaR model is assessed following the techniques discussed in Section

2.7 of Chapter 2. That is, we employ the unconditional coverage (UC) test, the independent

(IND) and conditional coverage (CC) test, Basel “traffic light” test, DQ test, and the new

independent test. The out of sample data is divided into blocks of 250, 500, and 1000

trading days to see how the model behaves for longer and shorter observation periods and

to also meet the Basel requirements for back-testing. The observed number of exceptions

produced for the different observation periods are presented on Table 3.9. Following the

Basel regulations of back-testing (the Basel “traffic light” test), the VaR model is accepted

or rejected if the number of exceptions produced at 99% confidence level fall within the

following category:

Observation period Green zone Yellow zone Red zone

250 ≤ 4 ≤ 9 ≥ 10

500 ≤ 8 ≤ 14 ≥ 15

1000 ≤ 13 ≤ 22 ≥ 23

Based on the number of exceptions produced at 99% confidence level and 250 obser-

vation period, the VaR model passed the “traffic light” test; see Table 3.10. The fewer the

number of exceptions the better the model according to the Basel rules. The model fall

in the green zone in all cases and is thus deemed reliable. Back-testing results for LRUC,
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LRIND, LRCC, DQ, and TN,[N/2] test are presented in Tables 3.11, 3.12 and 3.13. Kupiec’s

UC test rejects the VaR model that produces zero or very few exceptions further away

from the expected for being too conservative (see Tables 3.11).

The overall test results suggest that the VaR models captures VaR quite well at different

observation periods and confidence levels. The model is thus reliable and can be used as

a measure of risk in these countries.

Window 250 500 1000
Probability 1% 5% 10% 1% 5% 10% 1% 5% 10%

Expected exceptions 2.5 12.5 25 5 25 50 10 50 100

Observed exceptions E-Cop
UK 2 2 4 10 24 49 26 49 107
coverage rate 0.008 0.004 0.004 0.040 0.048 0.049 0.104 0.098 0.107

France 4 5 13 20 31 69 21 57 123
coverage rate 0.016 0.010 0.013 0.080 0.062 0.069 0.116 0.114 0.123

Greece 4 5 13 13 33 69 20 53 122
coverage rate 0.016 0.010 0.113 0.052 0.066 0.069 0.080 0.106 0.122

Spain 1 1 3 11 19 40 25 40 89
coverage rate 0.004 0.002 0.003 0.044 0.038 0.040 0.100 0.080 0.089

Sweden 0 1 2 7 18 38 18 34 76
coverage rate 0.000 0.002 0.002 0.028 0.036 0.038 0.072 0.068 0.076

Observed exceptions A-Cop
UK 2 2 5 11 25 52 27 50 108
coverage rate 0.008 0.004 0.005 0.044 0.050 0.052 0.108 0.010 0.108

France 3 4 12 14 23 51 29 57 123
coverage rate 0.012 0.008 0.112 0.056 0.046 0.051 0.116 0.114 0.123

Greece 2 3 10 13 32 66 20 52 119
coverage rate 0.008 0.006 0.010 0.052 0.064 0.066 0.080 0.104 0.119

Spain 1 1 3 11 19 40 25 40 91
coverage rate 0.004 0.002 0.003 0.044 0.038 0.040 0.010 0.080 0.091

Sweden 0 0 1 7 18 37 18 34 76
coverage rate 0.000 0.000 0.001 0.028 0.036 0.037 0.072 0.068 0.076

Table 3.9: Observed number of exceptions following M-GARCH(1,1) aDCC copula EVT VaR model for
UK, France, Greece, Sweden and M-GARCH(1,1) DCC copula EVT models for Spain. Out-of-sample data
after 2011 European financial crisis is divided into windows of 250, 500, and 1000 observation periods. At
250, 500, and 1000 observation periods and time horizons of 1 day, we expect to have at p = 1%: 3, 5,
and 10 exceptions, at p = 5%: 13, 25, and 50 exceptions, and at p = 10%: 25, 50, and 100 exceptions,
respectively. coverage rate = T1

Tw
, A-cop = Archimedean copula and E-cop = Elliptical copula.

.
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Window Zone Test Result
250 500 1000 250 500 1000 250 500 1000

Observed exceptions E-Cop
UK 2 10 26 Green Yellow Red A A R

France 4 20 21 Green Red Yellow A R A

Greece 4 13 13 Green Yellow Yellow A A A

Spain 1 11 25 Green Yellow Red A A R

Sweden 0 7 18 Green Green Yellow A A A

Observed exceptions A-Cop
UK 2 11 27 Green Yellow Red A A R

France 3 14 29 Green Yellow Red A R R

Greece 2 13 20 Green Yellow Yellow A A A

Spain 1 11 25 Green Yellow Red A A R

Sweden 0 7 18 Green Green Yellow A A A

Table 3.10: Basel “traffic light” test results. Following Basel rules of back-testing, the VaR model fall in
the green zone and is therefore deemed reliable. A = accept, R = reject.
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p = 1%
E-cop

Back-test type
Window Exceptions LRUC LRIND LRCC DQ TN,[N/2] Test results

UK 250 2 0.108 (0.742) 0.123 (0.726) 0.231 (0.891) 1.000 (0.986) 0.746 (0.649) (A A A A A)
500 2 2.353 (0.125) 0.035 (0.852) 2.388 (0.303) 1.826 (0.935) 0.746 (0.650) (A A A A A)

1000 5 3.094 (0.079) 0.066 (0.797) 3.160 (0.206) 3.930 (0.686) 5.619 (0.126) (A A A A A)

France 250 3 0.095 (0.758) 0.288 (0.592) 0.383 (0.826) 25.907 (0.000) 2.842 (0.264) (A A A R A)
500 4 0.217 (0.641) 0.226 (0.635) 0.443 (0.801) 14.719 (0.023) 2.619 (0.425) (A A A R A)

1000 12 0.380 (0.538) 0.809 (0.368) 1.189 (0.552) 8.876 (0.181) 0.109 (0.742) (A A A A A)

Greece 250 2 0.108 (0.742) 0.258 (0.611) 0.366 (0.833) 2.726 (0.842) -0.667 (0.999) (A A A A A)
500 3 0.943 (0.332) 0.200 (0.655) 1.143 (0.565) 6.566 (0.363) -0.608 (0.988) (A A A A A)

1000 10 0.000 (1.000) 0.691 (0.691) 0.691 (0.708) 6.372 (0.383) 0.406 (0.667) (A A A A A)

Spain 250 1 1.176 (0.278) 0.026 (0.872) 1.202 (0.548) 0.418 (0.999) NaN (A A A A -)
500 1 4.813 (0.028) 0.009 (0.924) 4.822 (0.090) 1.925 (0.926) NaN (R A A A -)

1000 3 6.826 (0.009) 0.037 (0.874) 6.863 (0.033) 4.933 (0.552) 9.530 (0.252) (R A R A A)

Sweden 250 0 NaN - - 2.157 (0.905) - (- - - A -)
500 0 NaN - - 3.494 (0.745) - (- - - A -)

1000 1 13.476 (0.000) 0.018 (0.893) 13.494 (0.000) 6.659 (0.354) 0.607 (0.670) (R A R A A)

p = 1%
A-cop

Window Exceptions LRUC LRIND LRCC DQ TN,[N/2] Test results

UK 250 2 0.108 (0.742) 0.074 (0.786) 0.182 (0.913) 79.862 (0.000) 0.746 (0.649) (A A A R A)
500 2 2.353 (0.125) 0.035 (0.852) 2.388 (0.303) 38.635 (0.000) 0.746 (0.652) (A A A R A)

1000 4 4.706 (0.030) 4.429 (0.035) 9.135 (0.010) 22.806 (0.001) 13.480 (0.070) (R R R R A)

France 250 4 0.769 (0.381) 0.161 (0.688) 0.930 (0.628) 25.907 (0.000) 33.559 (0.085) (R A A R A)
500 5 0.000 (1.000) 0.115 (0.734) 0.115 (0.944) 14.719 (0.023) 5.545 (0.129) (A A A R A)

1000 13 0.831 (0.362) 1.039 (0.308) 1.870 (0.393) 10.333 (0.111) 0.816 (0.480) (A A A A A)

Greece 250 4 0.769 (0.381) 0.063 (0.802) 0.832 (0.660) 2.856 (0.827) 0.770 (0.644) (A A A A A)
500 5 0.000 (1.000) 0.071 (0.790) 0.071 (0.965) 6.917 (0.329) 0.416 (0.876) (A A A A A)

1000 13 0.831 (0.362) 0.407 (0.525) 1.309 (0.520) 5.438 (0.489) 0.668 (0.527) (A A A A A)

Spain 250 1 1.176 (0.278) 0.016 (0.899) 1.192 (0.551) 0.418 (0.999) NaN (A A A A -)
500 1 4.813 (0.028) 0.009 (0.924) 4.822 (0.090) 1.925 (0.926) NaN (R A A A -)

1000 3 6.826 (0.009) 0.037 (0.847) 6.863 (0.032) 4.933 (0.552) 9.530 (0.251) (R A R A A)

Sweden 250 0 NaN - - 2.157 (0.905) - (- - - A -)
500 1 4.813 (0.028) - - 3.494 (0.745) - (R - - A -)

1000 2 9.627 (0.002) 0.005 (0.944) 9.632 (0.008) 8.297 (0.217) NaN (R A R A -)

Table 3.11: Back-testing results at 99% confidence level. A-cop = Archimedean copula and E-cop =
Elliptical copula.
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p = 5%
E-cop

Back-test type
Window Exceptions LRUC LRIND LRCC DQ TN,[N/2] Test results

UK 250 11 0.197 (0.657) 2.003 (0.157) 2.200 (0.332) 3.544 (0.738) 1.163 (0.414) (A A A A A)
500 25 0.000 (1.000) 1.343 (0.247) 1.343 (0.511) 1.978 (0.922) 0.865 (0.432) (A A A A A)

1000 52 0.083 (0.773) 2.670 (0.102) 2.753 (0.252) 5.123 (0.528) 0.152 (0.644) (A A A A A)

France 250 14 0.183 (0.669) 0.111 (0.739) 0.294 (0.863) 10.683 (0.099) -0.050 (0.692) (A A A A A)
500 23 0.173 (0.677) 0.161 (0.688) 0.334 (0.846) 10.022 (0.124) -0.939 (0.936) (A A A A A)

1000 51 0.021 (0.885) 0.064 (0.800) 0.085 (0.958) 8.308 (0.216) 0.445 (0.541) (A A A A A)

Greece 250 13 0.021 (0.885) 0.387 (0.534) 0.408 (0.815) 25.557 (0.000) 2.287 (0.299) (A A A R A)
500 32 1.903 (0.168) 0.023 (0.879) 1.926 (0.382) 33.888 (0.000) 1.356 (0.357) (A A A R A)

1000 66 4.918 (0.027) 0.848 (0.357) 5.766 (0.056) 24.848 (0.000) -0.999 (0.930) (R A A R A)

Spain 250 11 0.197 (0.657) 1.669 (0.196) 2.232 (0.328) 5.943 (0.430) 1.933 (0.287) (A A A A A)
500 19 1.647 (0.199) 0.071 (0.790) 2.348 (0.309) 4.772 (0.573) 1.346 (0.345) (A A A A A)

1000 40 2.253 (0.133) 0.624 (0.430) 2.877 (0.237) 6.267 (0.394) 1.077 (0.363) (A A A A A)

Sweden 250 7 3.009 (0.083) 0.981 (0.322) 3.990 (0.136) 5.655 (0.423) 1.025 (0.603) (A A A A A)
500 18 2.277 (0.131) 0.215 (0.643) 2.492 (0.288) 7.946 (0.242) 0.267 (0.602) (A A A A A)

1000 37 3.895 (0.048) 0.023 (0.879) 3.918 (0.141) 9.103 (0.168) -0.480 (0.801) (R A A A A)

p = 5%
A-cop

Window Exceptions LRUC LRIND LRCC DQ TN,[N/2] Test results

UK 250 10 0.563 (0.453) 0.011 (0.916) 0.574 (0.751) 3.712 (0.716) 0.367 (0.187) (A A A A A)
500 24 0.043 (0.836) 0.234 (0.629) 0.277 (0.871) 3.193 (0.784) 0.824 (0.500) (A A A A A)

1000 49 0.021 (0.885) 0.598 (0.439) 0.619 (0.734) 5.085 (0.533) 0.092 (0.623) (A A A A A)

France 250 20 4.040 (0.235) 1.103 (0.294) 5.143 (0.076) 7.987 (0.239) 2.213 (0.227) (R A A A A)
500 31 1.413 (0.044) 1.239 (0.266) 2.652 (0.266) 4.112 (0.661) -1.056 (0.961) (A A A A A)

1000 69 6.830 (0.009) 0.398 (0.528) 7.228 (0.027) 2.687 (0.847) -0.813 (0.901) (R A R A A)

Greece 250 13 0.021 (0.885) 0.387 (0.534) 0.408 (0.815) 17.497 (0.008) 2.287 (0.301) (A A A R A)
500 33 2.459 (0.117) 0.000 (1.000) 2.459 (0.292) 27.163 (0.000) -0.231 (0.734) (A A A R A)

1000 69 6.830 (0.009) 0.778 (0.378) 7.608 (0.022) 21.159 (0.001) -0.955 (0.910) (R A R R A)

Spain 250 11 0.197 (0.657) 2.037 (0.154) 2.234 (0.327) 5.943 (0.430) 3.048 (0.749) (A A A A A)
500 19 1.647 (0.199) 0.156 (0.693) 1.803 (0.406) 4.772 (0.573) 1.821 (0.323) (A A A A A)

1000 40 2.253 (0.133) 0.624 (0.430) 2.877 (0.237) 6.267 (0.394) 1.077 (0.363) (A A A A A)

Sweden 250 7 3.009 (0.083) 0.981 (0.322) 3.990 (0.136) 5.518 (0.479) 1.025 (0.606) (A A A A A)
500 18 2.277 (0.131) 0.215 (0.643) 2.492 (0.288) 8.272 (0.219) 0.267 (0.602) (A A A A A)

1000 38 3.294 (0.070) 0.002 (0.964) 3.296 (0.192) 9.521 (0.146) -0.453 (0.827) (A A A A A)

Table 3.12: Back-testing results at 95% confidence levels. A-cop = Archimedean copula and E-cop =
Elliptical copula.
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p = 10%
E-cop

Back-test type
Window Exceptions LRUC LRIND LRCC DQ TN,[N/2] Test results

UK 250 27 0.174 (0.677) 0.006 (0.938) 0.180 (0.914) 3.524 (0.741) 1.941 (0.227) (A A A A A)
500 50 0.000 (1.000) 0.271 (0.603) 0.271 (0.873) 5.478 (0.484) -0.599 (0.854) (A A A A A)

1000 108 0.695 (0.404) 1.505 (0.220) 2.185 (0.335) 6.278 (0.393) -0.283 (0.751) (A A A A A)

France 250 29 0.680 (0.410) 0.676 (0.411) 1.356 (0.508) 6.120 (0.410) 2.524 (0.188) (A A A A A)
500 57 1.047 (0.306) 0.795 (0.373) 1.842 (0.398) 12.804 (0.046) 1.849 (0.232) (A A A R A)

1000 123 5.518 (0.019) 0.433 (0.511) 5.951 (0.051) 16.605 (0.011) -0.884 (0.905) (R A A R A)

Greece 250 20 1.185 (0.276) 0.000 (1.000) 1.185 (0.553) 18.718 (0.004) -0.916 (0.923) (A A A R A)
500 52 0.088 (0.767) 0.005 (0.944) 1.278 (0.528) 24.227 (0.000) -1.371 (0.979) (A A A R A)

1000 119 3.805 (0.051) 0.007 (0.933) 3.812 (0.149) 21.071 (0.002) -1.338 (0.968) (A A A R A)

Spain 250 25 0.000 (1.000) 0.012 (0.913) 0.012 (0.994) 0.634 (0.996) -0.100 (0.750) (A A A A A)
500 40 2.369 (0.124) 0.632 (0.427) 3.001 (0.223) 3.574 (0.734) 2.030 (0.196) (A A A A A)

1000 91 0.925 (0.336) 0.855 (0.355) 1.780 (0.411) 6.208 (0.400) 1.230 (0.324) (A A A A A)

Sweden 250 18 2.389 (0.122) 0.549 (0.459) 2.938 (0.230) 4.746 (0.577) 0.575 (0.519) (A A A A A)
500 34 6.337 (0.012) 1.612 (0.204) 7.949 (0.019) 6.780 (0.342) -1.447 (0.983) (R A R A A)

1000 76 6.920 (0.009) 0.109 (0.741) 7.029 (0.030) 10.227 (0.006) -0.518 (0.805) (R A R R A)

p = 10%
A-cop

Window Exceptions LRUC LRIND LRCC DQ TN,[N/2] Test results

UK 250 26 0.044 (0.834) 0.106 (0.745) 0.150 (0.928) 3.524 (0.741) 1.903 (0.276) (A A A A A)
500 49 0.022 (0.882) 0.466 (0.495) 0.488 (0.783) 5.478 (0.484) -0.620 (0.836) (A A A A A)

1000 107 0.534 (0.465) 1.792 (0.181) 2.326 (0.313) 6.079 (0.414) -0.292 (0.737) (A A A A A)

France 250 29 0.680 (0.410) 0.676 (0.244) 1.356 (0.508) 6.120 (0.410) 2.524 (0.187) (A A A A A)
500 57 1.047 (0.306) 0.795 (0.175) 1.842 (0.398) 12.805 (0.046) 1.849 (0.231) (A A A R A)

1000 123 5.518 (0.018) 0.433 (0.015) 5.951 (0.051) 16.604 (0.011) -0.884 (0.905) (R A A R A)

Greece 250 20 1.185 (0.276) 0.000 (1.000) 1.185 (0.553) 17.262 (0.008) -0.916 (0.924) (A A A R A)
500 53 0.197 (0.657) 0.304 (0.581) 0.501 (0.778) 23.196 (0.001) -1.352 (0.970) (A A A R A)

1000 122 5.062 (0.024) 0.090 (0.764) 5.152 (0.076) 18.679 (0.000) -1.314 (0.969) (R A A R A)

Spain 250 25 0.000 (1.000) 0.012 (0.913) 0.012 (0.994) 0.634 (0.996) -0.100 (0.750) (A A A - A)
500 40 2.369 (0.124) 0.632 (0.427) 3.001 (0.223) 4.628 (0.592) 2.030 (0.197) (A A A A A)

1000 89 1.391 (0.238) 0.676 (0.411) 2.067 (0.356) 6.144 (0.407) 1.208 (0.329) (A A A A A)

Sweden 250 18 2.389 (0.122) 0.549 (0.459) 2.938 (0.230) 4.746 (0.577) 0.575 (0.517) (A A A A A)
500 34 6.337 (0.012) 1.612 (0.204) 7.949 (0.019) 6.780 (0.342) -1.445 (0.983) (R A R A A)

1000 76 6.920 (0.009) 0.109 (0.741) 7.029 (0.030) 12.271 (0.006) -0.518 (0.803) (R A R R A)

Table 3.13: Back-testing results at 90% confidence levels. A-cop = Archimedean copula and E-cop =
Elliptical copula.
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3.7 Conclusion

In this chapter, we presented a theoretical review of M-GARCH(1,1) DCC model incor-

porating copula functions and extreme value theory (EVT) analysis for forecasting VaR

estimates. Financial asset return distributions have been proven to be leptokurtic, ex-

hibits volatility clustering, leverage effects, and auto-correlations of squared returns. To

capture these features, we have used M-GARCH(1,1) DCC volatility models to model the

correlation structure amongst the asset returns which allows the correlation matrix to be

time varying and thus reflects the current market conditions.

Because VaR models often focus on the behavior of asset returns in the left tail, we used

copula functions to model the dependence structure between the asset returns and EVT

to model the left tail of the distribution of the noise variables to obtain the qth quantile for

VaR estimation. Results from back-testing suggest that the M-GARCH(1,1) DCC copula-

EVT model captures VaR quite well at shorter and longer observation periods. However,

following the traditional method to obtain a cut off point known as the threshold on the

left tail of the distribution for GPD parameter estimation, the number of points beyond the

threshold sometimes lie towards the center of the distribution. The threshold selection

process is also very subjective. GPD is not a good approximation for the the center

of a sample data and might result in poor approximation of parameter estimates and

hence incorrect VaR estimates. Based on this fact, though back-testing results deemed the

model to be reliable, the forecast VaR estimates might be inaccurate. In the next chapter,

we introduce a more objective method for threshold selection that avoids the body of the

distribution and restricts inferences only on the tails.



Chapter 4

Forecasting robust Value-at-Risk

estimates using Bayesian

GARCH(1,1) model, vine-copula

functions and Extreme Value Theory:

Evidence from UK banks

This chapter proposes an objective approach for threshold selection, which we term the

hybrid method that will restrict inferences to the tails of asset return distributions when

Extreme Value Theory (EVT) is employed in estimating VaR. Thus, our main goal is

to improve the threshold selection method used in the POT method. As already seen

in Chapter 3.7, ARCH LM test fail to reject the null hypothesis of no conditional het-

eroscedasticity in the standardised residuals;
{
ηi,t

}T
t=1, after the fitted DCC model. This is

a weakness of DCC models because it is not quite easy to ascertain that all correlations

68
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evolve in the same manner regardless of the assets involved, and diagnostic checks often

rejects fitted DCC models (Tsay, 2013). Therefore, we employ a Bayesian GARCH(1,1)

model with student’s-t distribution as the underlying volatility model. Many researchers,

for example Aas et al. (2009) and Ardia and Hoogerheide (2010) have shown that a simple

GARCH(1,1) model is able to capture the dynamics of changes in asset returns. The mo-

tivation of using Bayesian-GARCH(1,1) model is because Bayesian estimation methods

provides reliable results even for finite samples, and are usually straightforward to obtain

the posterior distributions of any non-linear function of the model parameters whereas

for the classical maximum likelihood method, it is not easy to perform inferences on

non-linear function of the model parameters, the convergence rate is slow, and presents

limitations when the residuals are heavy tailed. The constraints on the GARCH parame-

ters to guarantee a positive variance can be incorporated via priors whereas the classical

maximum likelihood method may impede some optimization procedures (Virbickaite

et al., 2015; Hall and Yao, 2003). The motivation of Student’s-t distribution is because

it is able to account for the excess kurtosis in the conditional distribution common with

financial time series processes (Ardia and Hoogerheide, 2010).

4.1 Introduction

Traditional VaR models such as the commonly used variance-covariance method and

Monte Carlo simulation often assume asset returns in financial markets to be normally

distributed. Numerous studies (see for example Berkowitz et al. (2011); Sheikh and Qiao

(2010)) have shown that financial asset returns are in fact leptokurtic and heavy tailed

with non-constant volatility. Normality assumptions in situations of non-normality will

without doubt lead to inaccurate estimates of the probability of extreme events and hence

wrong estimates of VaR. This is because a normal distribution has light tails, and VaR
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attempts to capture the behaviour of the portfolio return in the left tail. A model based on

normal distribution where data is not will underestimates the frequency of the outliers and

hence the true VaR (Jorion, 2007). Normality assumption also implies volatility is constant

over time, and recent price changes which are based on current market information will

be assigned weights in equal proportion to older ones. If the dependence characteristics

of the extreme realisations differ from all others in the sample, the consequences might

be dire (Poon et al., 2003). To avoid the normality assumption, most analysts now turn to

use EVT to model the tail behaviour of asset returns. However, as stated earlier, EVT also

assumes extreme events to be normally distributed which will probably not be the case

in stressed periods (Wong, 2013).

Thus, this work is motivated by the work of McNeil and Frey (2000) who suggested

applying EVT to the noise variable of the return series which are normally distributed to

obtain the qth quantile used to estimate conditional robust VaR estimates. By doing so,

the problem of volatility clustering and other related effects such as excess kurtosis are

accounted for. This approach was further investigated by Soltane et al. (2012) where they

combined GARCH(1,1) model as the underlying volatility model with EVT to estimate

VaR and showed that the GARCH-EVT-based VaR approach appears to be effective and

realistic than the traditional VaR methods. Bob (2013); Hsu et al. (2012) also combined

GARCH-EVT and copula functions (to model dependence) in estimating VaR. Their

findings showed better performance compared to traditional VaR estimation methods,

and also better estimates of VaR than copulas with conventional employed empirical

distributions.

We construct and investigate the reliability of our VaR model, in line with Basel II and

Basel III, and estimate VaR and minimum capital requirements (MCR) in some selected

banks in the United Kingdom (UK) using actively traded stocks in the London Stock



4.2. BCBS post 2008 Global Financial Crisis 71

Exchange.

The rest of the Chapter is structured as follows: Section 4.2 gives a brief discussion

of Basel Committee of Banking and Supervision (BCBS) post 2008 global financial crisis.

In Section 4.3, we present the Bayesian GARCH(1,1) model with Student’s-t distribution

and discuss the Bayesian approach to estimate the GARCH(1,1) parameters. In Section

4.4, we introduce vine copula functions. In Section 4.5 we discuss the data used. Section

4.6 presents the results; the hybrid method for threshold selection and back-testing results

followed by conclusion in Section 4.7.

4.2 BCBS post 2008 Global Financial Crisis

Some researchers, after the 2008 global financial crisis, have demonstrated that Basel II

failed to provide proper cushions against banks’ actual losses on their market risk. For

example, in the Global Financial Stability Report published by International Monetary

Fund (IMF) in April 2009, IMF stated that during the 2008-9 financial crisis, the risk

weighted capital ratios were unable to distinguish between banks that were in distress

or bailed out with tax payers money and banks that were able to cope on their own

(Carmassi and Micossi, 2012). The Financial Services Authority of the United Kingdom

stated that the assumption of normal distribution with short term observations can lead

to huge underestimation of probability of extreme loss events (Turner et al., 2009). Banks

that were bailed out or collapsed showed higher and improving solvency ratios in the

months preceding their collapse (Rossignolo et al., 2012; Carmassi and Micossi, 2012).

However, McAleer et al. (2011) points out that Basel II was operational in Europe only

from 2008 and the effects of the global financial crisis of 2008 cannot be associated to any

failings of Basel II because it was never implemented in the United States of America

(USA), which was the epicentre of the crisis.
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4.2.1 Basel III

In late 2010, the BCBS adopted a more practical framework, Basel III, with stricter mea-

sures to strengthen regulation, supervision, risk management, transparency and disclo-

sures in the banking sector. Under this framework, banks are still allowed to calculate

their MCR for market risk using the IMA as required in Basel II, but with an introduction

of a stressed VaR (sVaR) metric that automatically increases MCR for market risk. The

sVaR must be calculated from a data set of continuous 12-months period of substantial

financial stress (Rossignolo et al., 2012):

MCRt = max

 k
60

60∑
i=1

VaRt−i,VaRt−1

 + max

 k
60

60∑
i=1

sVaRt−i, sVaRt−1

 . (4.1)

Following evidence that capital ratios higher than up to 2.5% of risk weighted assets

would have been needed to correct internal model errors for market risk that resulted to

underestimation of losses (Carmassi and Micossi, 2012), Basel III introduced: (1) a “micro-

prudential 2.5% conservation buffer”; a cushion to protect MCR against falling below its

minimum during financial distress or a crash. This buffer will force the restriction of

dividend payouts once it fall below its minimum and reversed only when restored to its

original value, (2) a “macro-prudential countercyclical buffer” ranging from 0-2.5% and

applied by the national authorities depending on the banks’ credit-to-GDP ratio to protect

the banking system against potential losses insofar as these are related to an increase in

risks in the system as a result of excessive growth in lending.



4.3. Bayesian GARCH(1,1) model with Student’s-t distribution 73

4.3 Bayesian GARCH(1,1) model with Student’s-t distribution

The GARCH(1,1) model following Student’s-t distribution has the form

rt = µt + at, at = ηt

(v − 2
v

ωtht

)1/2
(4.2a)

ht = α0 + α1a2
t−1 + β1ht−1, (4.2b)

ηt
iid
∼ Φ(0, 1); ωt

iid
∼ IG

(v
2
,

v
2

)
; t = 1, . . . ,T

where rt, same as in Eqn.(3.1), are the log-returns and µt is simply the unconditional mean

of the log-returns. IG and Φ(0, 1) symbolises the inverted gamma and standard normal

distributions, respectively. The degrees of freedom parameter v > 2 guarantees finite

conditional variance (Ardia, 2008).

We use Bayesian statistics, following the procedures delineated in Ardia (2015); Ardia

and Hoogerheide (2010) to estimate the parameter values of the variance equation. Let

a = (a1, . . . , aT)′, ω = (ω1, . . . , ωT)′ and α = (α0, α1)′, a diagonal matrix is defined by

Σ = Σ(ψ,ω) = diag
{(
ωt

v − 2
v

ht(α, β1)
)T

t=1

}
, (4.3)

where ψ = (α, β1, v) for

ht(α, β1) = α0 + α1a2
t−1 + β1ht−1(α, β1). (4.4)

Because the data samples are independent and drawn from a normal distribution, the

likelihood function can be written as

L(ψ,ω|a) ∝ (detΣ)−1/2exp
[
−

1
2

a′Σ−1a
]
. (4.5)
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The prior distribution of ωt given v is given by

p(ω|v) =
(v
2

) Tv
2
[
Γ
(v
2

)]−T
 T∏

t=1

ωt


−

v
2−1

exp

−1
2

T∑
t=1

v
ωt

 (4.6)

where ωt
iid
∼ IG(·) (e.g. Geweke (1993)). For the degrees of freedom, the prior distribution

is a translated exponential distribution with parameters λ > 0 and δ ≥ 2 (see Deschamps

(2006)) represented as

p(v) = λ exp[−λ(v − δ)]1{v > δ}. (4.7)

Ardia and Hoogerheide (2010) and Deschamps (2006) point out two important consider-

ations for the prior density p(v): (i) It is useful to guarantee that v� 2 so the conditional

variance will be finite. (ii) The error term can be assumed to be normally distributed when

δ is chosen to be large. This is possible while still maintaining reasonably tight priors,

which can lead to better convergence of the sampler. Assuming independence among

the model parameters of the joint prior distribution (i.e. p(ψ,ω) = p(α)p(β)p(ω|v)p(v)), the

likelihood function of the model parameters is combined with the prior density to obtain

the posterior density as

p(ψ,ω|a) ∝ L(ψ,ω|a)p(ψ,ω). (4.8)

We employ the Metropolis Hastings (MH) algorithm of Markov Chain Monte Carlo

(MCMC) simulation to estimate parameter values from the posterior distribution of

the variance equation. Because of the recursive nature of the variance equation of

GARCH(1,1) model, the prior density and the posterior density does not belong to the

same distributional family. MH algorithm allows draws to be generated from any density,
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even if the normalising constant is unknown (Greenberg, 2012).

In the MH algorithm, (ψ,ω) is a random variable with Markov chains constructed

as (ψ[0], ω[0]), . . . , (ψ[ j], ω[ j]), . . . in the parameter space. As the number of realised chains

goes to infinity, p(ψ,ω|a) tends to a normalised probability distribution with a random

variable (ψ[ j], ω[ j]) (Ardia and Hoogerheide, 2010). The chain converges to its stationary

distribution and the optimal mean values of the posterior distribution parameters are

realised. More details on M-H algorithms can be found in Greenberg (2013); Ardia (2008);

Tierney (1994); Roberts and Smith (1994); Casella and George (1992) and the references

therein.

4.4 Vine copulas

For higher dimensions, standard multivariate copulas can become inflexible and do not

allow for different dependent structures between pairs of variables (Krämer and Schep-

smeier, 2011). Vine copulas are special cases of bivariate copulas and a more flexible tool

to model dependence for higher dimensional distribution, and will allow for different

dependance structures between pairs of variables.

For a bivariate case, we use the following version of Sklar’s theorem (Ghalanos, 2015;

Tsay, 2013; Krämer and Schepsmeier, 2011; Cherubini et al., 2004):

Definition 1 A 2−dimensional copula C(u, v) is a distribution function on I2 with standard

uniform margins.

Let F be a joint distribution function with margins F1 and F2, then there exist a copula C

such that

∀(x1, x2) ∈ I2; F(x1, x2) = C(F1(x1),F2(x2)). (4.9)
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If F1 and F2 are continuous, then C is unique; otherwise, C is uniquely determined on the

range: RanF1 × RanF2,

C(u, v) = F(F−1
1 (u),F−1

2 (v)) (4.10)

c(u, v) =
∂2C(u, v)
∂u∂v

(4.11)

f (x1, x2) = cuv(F1(x1),F2(x2)) f1(x1). f2(x1) (4.12)

Each copula has a density Eqn.(4.11), joint density Eqn.(4.12) and conditional densities

f (x1|x2) = cuv(F1(x1),F2(x2)) f1(x1) (4.13a)

f (x2|x1) = cuv(F1(x1),F2(x2)) f2(x2) (4.13b)

where cuv is the paired-copula density for F1(x1) and F2(x2). For a d−dimensional vector

v, we have

f (x1, . . . , xd) = c1...d(F1(x1), . . . ,Fd(xd)). f1(x1) . . . fd(xd) (4.14)

f (x|v) = cxv j|v− j(F(x|v− j),F(v j|v− j)). f (x|v− j), (4.15)

where Eqn.(4.14) is the joint density function, and Eqn.(4.15) is a general formula for the

pair-copula multiplied by their conditional marginal densities (Aas et al., 2009). Bedford

and Cooke (2001) presented a tree diagram for selecting the possible pair-copula construc-

tions referred to as the regular vine structure. This includes the canonical vines (C-vines),

where each tree has a unique node connected to all other nodes, and the drawable vines

(D-vines), where each tree is a path (Krämer and Schepsmeier, 2011). In particular, for a
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D-vine, the density f (x1, . . . , xd), is given by

f (x1, . . . , xd) =

d∏
k=1

f (xk)
d−1∏
j=1

d− j∏
i=1

ci,i+ j|i+1,...,i+ j−1

× (F(xi|xi+1, . . . , xi+ j−1),F(xi+ j|xi+1, . . . , xi+ j−1)), (4.16a)

and for a C-vine, the density is given by

f (x1, . . . , xd) =

d∏
k=1

f (xk)
d−1∏
j=1

d− j∏
i=1

c j, j+i|1,..., j−1

× (F(x j|x1, . . . , x j−1),F(x j+i|x1, . . . , x j−1)), (4.17a)

where index j identifies the trees, and i denoted the edges in each tree. (Aas et al., 2009).

4.5 Data

We employ the same data set as in Chapter 3 to test the reliability of the Bayesian-

GARCH(1,1) Vine-Copula EVT VaR model. For simplicity, we use data from UK only,

since our aim is to improve the threshold selection procedure for EVT analysis. That is,

2870 observations of daily stock prices actively traded on the London Stock Exchange.

The stocks belong to the banking sector and of the top five banks in UK: UK.HSBA from

HSBC bank, UK.LLOYDS from LLOYDS Banking Group, UK.BARC from Barclays bank,

UK.RBS from Royal Bank of Scotland, and UK.STAN from Standard Chartered PLC Bank.

The motivation for choosing these banks is because we want to test the reliability of the

VaR model in banks with relatively high ratings in periods of distress and also investigate

the risk of collapse in banks with insufficient capital to provide proper cushions during

crisis periods. If the top banks are not able to cope during financial distress, then the risk
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of collapse in the country’s banking system is large. Therefore, our data covers the period

from 31st of December 2004 to 31st of December 2015 to include the 2008 global financial

crisis and 2011 European financial crisis.

We use same out-of-sample data for back-testing and sample-in data for VaR estima-

tion as in Chapter 3. As already seen in Chapter 3 (summary statistics and multivariate

ARCH test; Table 3.2, time plots of the log return series; Figure 3.1), the stock returns are

leptokurtic, show evidence of volatility clustering and conditional heteroscedasticity.

4.6 Results

To capture the tail distribution and the dynamics of fluctuations in the time series data,

we fit a GARCH(1,1) model with a Student’s-t distribution to the time series data to

accommodate the heavy tails and estimate the GARCH parameters using Bayesian statis-

tics as follows: (i) We assign a prior distribution with initial hyperparameters following

GARCH specifications (i.e., α0 > 0, α1, β1 ≥ 0 and α1 + β1 < 1) and generate two Markov

Chain Monte Carlo (MCMC) simulations of 100, 000 draws each; (ii) if convergence is

attained, we discard the first 50, 000 draws and select only the 50th draw from each chain

such that auto-correlation between draws is reduced to almost zero. We then merge the

two chains together to obtain a sample data set of 2000 observations. (iii) If convergence

is not attained, repeat (i) using parameter estimates from the previous draw as the hy-

perparameters to increase the chance of convergence. The mean value of each parameter

with respect to its respective posterior distribution is the optimal parameter estimate of

the Bayesian-GARCH(1,1) model with Student’s-t distribution. We test for convergence

of the sampler with the help of diagnostic test by Gelman and Rubin (1992) (i.e., Figures

4.1, 4.2, 4.2, and 4.4 in the case of the portfolio return series, and Table 4.1 shows no evi-

dence against convergence), for example, the acceptance rate of the GARCH parameters
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are determined by the potential scale reduction factor (psrf) and should be < 1.2. The

trace plots; Figure 4.1, are smooth meaning the chain does not get stuck in certain areas

indicating good mixing. The Kth lag autocorrelation becomes smaller as the number of

iterations in the chain increases; see Figures 4.2 and 4.3, also indicating good mixing.

Figure 4.5 is the posterior density of α1 + β1, which controls the power of the clustering

in the variance process. A value closer to one implies that past shocks and variances

will have longer impact on future conditional variance (Ardia and Hoogerheide, 2010).

Estimation results are presented in Table 4.1 with standard errors in parenthesis.

Employing Eqn.(4.2), we obtain a matrix Σt, that consists of the marginal standardised

residuals
{
ηi,t

}T
t=1. That is

ηi,t = (ri,t − µi)
(v − 2

v
ωi,thi,t(α j, β1)

)−1/2
, j = 0, 1, i = 1, . . . ,N; t = 1, . . . ,T (4.18)

where the vectors
(
ri,t − µi

)′
are the residuals of the mean equation. Multivariate ARCH

test (Eqn.(3.33)) on the standardised residuals at 95% significance level show evidence of

conditional heteroscedasticity with Qk(10) = 287.2526; p-value = 0 and Qr
k(10) = 273.0017;

p-value = 0.1519 (robust test after discarding those observations whose standardised

residuals exceeds the 95th quantile).
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Parameter Diagnostic check
α0 α1 β1 ν a.rate (α) a.rate (β) psrf

UK.HSBA 2.078e-06(1.355e-08) 0.0934(3.105e-4) 0.9057(2.781e-4) 4.9740(1.097e-4) 92.72% 97.63% 1.01

UK.BARC 2.526e-06(1.733e-08) 0.0827(3.014e-04) 0.9171(2.663e-04) 5.200(1.138e-02) 89.59% 97.63% 1.00

UK.LLOY 6.375e-06(3.827e-08) 0.1022(3.532e-04) 0.8951(3.259e-04) 5.351(1.196e-02) 92.66% 97.71% 1.00

UK.RBS 3.446e-06(2.477e-08 ) 0.0876(4.046e-04) 0.9077(3.386e-04) 4.862(1.328e-02) 90.98% 97.64% 1.00

UK.STAN 1.106e-05( 7.034e-08) 0.1290(5.029e-04) 0.8558(5.383e-04) 5.392(1.253e-02) 94.20% 97.70% 1.00

Portfolio 2.379e-06(1.397e-08) 0.0976(2.988e-04) 0.9005(2.765e-04) 7.599(2.403e-02) 90.16% 97.70% 1.00

Table 4.1: Parameter estimates of Bayesian-GARCH(1,1) model with student-t distribution (Note: stan-
dard errors in parenthesis). a.rate = parameter acceptance rate, which is the proportion of the total number
of single values in the MCMC chain to the total number of values in the chain. A high acceptance rate tells
us that the chain does not get stuck in certain areas in the parameter space, thus producing good mixing

as seen in the example of Figure 4.1. psrf =

√
ˆVar(x)
W ; the potential scale reduction factor, and should be

< 1.2, where ˆVar(x) is a weighted average of the average of the m within-sequence variance, s2
j , each based

on n − 1 degrees of freedom, and the variance between the m sequence means, x̄ j, each based on n values
of x: ˆVar(x) = ( n−1

n )W + 1
n B; W = 1

m
∑m

j=1 s2
j , B = n

m−1

∑m
j=1(x̄ j − x̄..)2, s2

j = 1
n−1

∑n
j=1(xi j − x̄ j)2. If psrf

> 1.2, then the length of the chain should be increased to improve convergence to a stationary distribution
(see Gelman and Rubin (1992) for more details).
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Figure 4.1: Trace plots of 2000 iterations against the values of the draws of the parameters at each iteration
after merging the two chains. The plots shows no evidence against convergence. The chain does not get
stuck in certain areas, indicating good mixing. ν is the distribution of the degree of freedom parameter.
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Figure 4.2: Autocorrelation plots of 2000 samples for α0 and α1 after merging the two chains. That is,
we use the first 50, 000 draws from the full Markov chain as the burn in period for each chain and select
only every 50th draw to get rid of autocorrelation. As the number of iterations increases, the Kth lag
autocorrelation becomes smaller indicating good mixing.
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Figure 4.3: Autocorrelation plots of 2000 samples for β1 and ν after merging the two chains.
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Figure 4.4: Density plots of the posterior distributions of the model parameters based on 2000 draws.
Density plots are used to test the covariance stationarity condition. For GARCH(1,1) model, α1 + β1 < 1
(see Figure 4.5).
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Figure 4.5: Posterior density of α1 + β1; the degree of persistence controlling the power of the clustering in
the variance process. A value closer to one implies that past shocks and variances will have longer impact
on future conditional variance (Ardia and Hoogerheide, 2010)

4.6.1 Modeling dependence

We model the dependence structure among the stock returns using vine copula func-

tions. The C- and D-vine copula parameters are estimated by maximising the likelihood

function:

lC−vine(�|x) =

d−1∑
j=1

d− j∑
i=1

T∑
t=1

log[c j, j+i|1,..., j−1(F(x j,t|x1,t, . . . , x j−1,t),

F(x j+i,t|x1,t, . . . , x j−1,t)|� j, j+i|1,..., j−1)]; (4.19a)

lD−vine(�|x) =

d−1∑
j=1

d− j∑
i=1

T∑
t=1

log[ci,i+ j|i+1,...,i+ j(F(xi,t|xi+1,t, . . . , xi+ j−1,t),

F(xi+ j,t|xi+1,t, . . . , xi+ j−1,t)|�i,i+ j|i+1,...,i+ j−1)], (4.19b)

where xi ∈ [0, 1] are pseudo observations of the standardised residuals and, �i and

� j are the pair-copula parameters of the joint distribution function (Schepsmeier and

Brechmann, 2015; Aas et al., 2009).
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The conditional distribution functions in C-vine (i.e., Eqn.(4.19a)) and D-vine (i.e.,

Eqn. (4.19b)) copulas are obtained from the conditional distribution

h(x,v,�) = F(x|v) =
∂Cxv j|v− j(F(x|v− j),F(v j|v− j))

∂F(v j|v− j)
, (4.20)

where Cxv j|v− j is a bivariate copula distribution function, and v is a d-dimensional vector

Allen et al. (2017); Aas et al. (2009).

We select the best pair-copula for the decomposition of the n-variate copula densities

based on the paired copula with the smallest AIC value from a range of copula families

(Table 4.2). To select which of the vine copulas is the best to model the dependence among

the risk factors, we follow the procedure of Vuong (1989). That is, we use a likelihood-

ratio based test to compare non-nested models. We cannot select between the two vine

copulas based on their likelihoods because the two copulas are non-nested (Aas et al.,

2009). The test statistics is given by

υ =
1
N

∑N
i=1 mi√∑N

i=1(mi − m̄)2
(4.21)

mi = log
[
c1(xi|�̂1)
c2(xi|�̂2)

]
, xi ∈ [0, 1], i = 1, . . . ,N

where υ is the standardised sum of the log differences of the pointwise likelihoods mi

between two competing vine copulas c1 and c2 and the estimated parameters �̂1 and

�̂2. Vine model 1 is selected in favor of vine model 2 at a certain level of confidence α

if and only if υ > Φ−1
(
1 − α

2

)
, and vine model 2 is selected in favor of vine model 1 if

and only if υ < −Φ−1
(
1 − α

2

)
. If |υ| ≤ Φ−1

(
1 − α

2

)
then no decision among the models is

possible (Schepsmeier and Brechmann, 2015). Based on the likelihood ratio test, C-vine

copula is selected in favor of D-vine with υ = 2.4989 and Φ−1
(
1 − α

2

)
= 1.96 at α = 5%.
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From now on, all analysis are based on the selected C-vine copula. Estimated copula

parameters are used to simulate 10000 pairs of (ui,u j) observations of [0, 1] uniformly

distributed random variables with joint distribution function C(ui,u j) (see Cherubini

et al. (2004) for a detailed simulation technique). Figures 4.6 and 4.7 show density plots

for the selected n-variate bivariate copulas and Figures 4.8 and 4.9 show scatter plots of

c(ui,u j) copulas after 10000 simulations. The Student’s-t copula appears to have more

data points concentrated around the corners than the Frank copula. This is because of the

non-negative tail dependence of Student’s-t copulas (Tsay, 2013).

The simulated data is then transformed to the original scales of the noise variables

using the inverse quantile function F−1
i (ui), of the desired marginal distributions to obtain

a new matrix

Σ̂ =
{
ζi,t

}
, i = 1, . . . ,N, t = 1, . . . , 10000 (4.22)

free from any normality assumptions and linear correlations. Here, we compare between

Student’s-t and normal marginal distributions by keeping the copula fixed and chang-

ing the marginals. A multivariate ARCH test on
{
ζi,t

}
at 95% significance level show

no evidence of conditional heteroscedasticity (see Tables A.T5). Therefore, Bayesian-

GARCH(1,1) C-vine copula model is a better model in describing the conditional het-

eroscedasticity in the log return series and to model dependence as opposed to Bayesian-

GARCH(1,1) model without copula functions where there is evidence of ARCH effect in

the standardised residuals.
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Unconditional
and conditional Selected copula
pairs copulas family Parameter Log-likelihood paired AIC

C-vine Copula

Tree1 C1,2 student-t copula ρ = 0.5536, v = 5.98 545.2690 -1086.54
C1,3 student-t copula ρ = 0.6222, v = 6.27 716.3512 -1428.70
C1,4 student-t copula ρ = 0.5701, v = 5.80 573.0684 -1142.14
C1,5 student-t copula ρ = 0.6384, v = 6.63 758.9981 -1513.10

Tree2 C2,3|1 Frank copula λ = 4.0043 497.7722 -993.54
C2,4|1 student-t copula ρ = 0.5870, v = 7.94 602.6068 -1201.21
C2,5|1 Frank copula λ = 1.9893 140.8872 -279.77

Tree3 C3,4|1,2 student-t copula ρ = 0.3687, v = 8.77 222.7078 -441.42
C3,5|1,2 student-t copula ρ = 0.2124, v = 10.83 74.4631 -144.93

Tree3 C4,5|1,2,3 Frank copula λ = 0.5513 10.8833 -19.77

Log-likelihood 4143.0070

DVine Copula

Tree1 C1,2 student-t copula ρ = 0.5536, v = 5.98 545.2690 -1086.54
C2,3 student-t copula ρ = 0.6969, v = 6.19 688.4580 -1893.67
C3,4 student-t copula ρ = 0.7197, v = 4.91 464.5665 -2106.17
C4,5 student-t copula ρ = 0.5385, v = 6.11 726.9948 -972.03

Tree2 C1,3|2 student-t copula ρ = 0.3915, v = 8.26 440.2784 -493.94
C2,4|3 student-t copula ρ = 0.4342, v = 8.50 548.5746 -620.12
C3,5|4 student-t copula ρ = 0.3534, v = 9.67 115.0825 -396.34

Tree3 C1,4|2,3 student-t copula ρ = 0.1499, v = 12.11 184.4686 -76.18
C2,5|3,4 student-t copula ρ = 0.1434, v = 12.83 50.6013 -71.75

Tree4 C15|234 student-t copula ρ = 0.3787, v = 12.44 -189.6890 -447.73

Log-likelihood 3574.6050

Table 4.2: C-vine and D-vine copula parameter estimates. The copula types for the decomposition of
n-variate bivariate copulas for unconditional and conditional pairs are selected based on AIC values. That
is, the paired copula with the smallest AIC value. 1, 2, . . . , 5 represents the stocks.
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Figure 4.6: Density plots of n-variate bivariate unconditional pair-copula decomposition.
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Figure 4.7: Density plots of n-variate bivariate conditional pair-copula decomposition.
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Figure 4.8: Scatter plots of bivariate copulas for conditional pairs based on 10000 draws.
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Figure 4.9: Scatter plots of bivariate copulas for unconditional pairs based on 10000 draws.
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4.6.2 Threshold selection and robust VaR estimates

As in Chapter 3, we apply the POT method of EVT to the marginal distributions of
{
ζi,t

}
(Eqn.(4.22)) to obtain the qth quantile VaRq(Z) of the noise variable for VaR estimation.

The mean excess function plot for UK.RBS; Figure 4.10, following Bayesian GARCH(1,1)

model with t-distribution and C-vine copula functions with t-margins is used as an

example to demonstrate the threshold selection method. According to this plot, we

should select a subjective threshold value of about 1.2. That is, ϑ0 = 1.2 is the lowest

point on the graph above which the graph appears to be approximately linear. However,

if we select this point as the threshold value, we will have 1470 exceedances which are too

many compared to the size of the data (T = 10, 000); the number of exceedances will lie

towards the body of the data and will inevitably result in a poor approximation of GPD

parameters and hence the correct VaR estimate.

Figure 4.10: Mean excess function plot of the standardised residuals for UK.RBS following Bayesian
GARCH(1,1) model with t-distribution and C-vine copula functions with t-margins. A subjective ϑ0 = 1.2
is identified as the threshold value.

The choice of the threshold is an important step in the POT method because Eqn.(3.30)

is dependent on ϑ and the number of points (i.e., exceedances) above Nϑ since the pa-

rameters are estimated based on the exceedances. Thus, it is very important to find the
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proper threshold value. There is no clear-cut or wholly satisfactory method in deter-

mining a proper threshold value so far. Danielsson and De Vries (1998) developed a

semi-parametric estimator for the tails of the distribution and estimated the threshold

through a bootstrap of the Mean Square Error (MSE) of the tail index. Danielsson et al.

(2001) further used a two-step subsample bootstrap method to determine the threshold

that minimises the asymptotic MSE. Hill et al. (1975) and Davison and Smith (1990) pro-

posed graphical tools to help identify the proper threshold known as the Hill plot and

the mean excess plot respectively. We propose an extension to the mean excess plot for

an objective threshold selection known as the hybrid method.

From the mean excess plot; Figure 4.10, we identify the lowest point, making the graph

appears to be approximately linear, a point ϑ0, then insert a tangent line from ϑ0 through

the rest of the points ϑi where ϑi > ϑ0; see Figure 4.11. Since the tangent to a linear curve

is the tangent itself and the mean excess function is a linear function of the threshold, we

take an average of the set of points that lie on the tangent line as the threshold value.

We call this point ϑ∗. ϑ∗ will lead to a better approximation of VaR estimates than ϑ0

because the inference is restricted to the left tail. Apart from better approximation of

VaR estimates, this method significantly reduces the probability of having different VaR

estimates on the same data and also the probability of selecting a very low or very high

threshold value. Let ϑi = ϑ1, . . . , ϑ} be a set of points that lie on the straight line, then we

obtain the value of ϑ∗ as

ϑ∗ =
1
}

}∑
i=1

ϑi, ϑi ≥ ϑ0, (4.23)

where } is the number of points in the set. As can also be seen in Figure 4.11, the points

from the beginning of the fitted line, i.e., ϑ0 are too compact and might lead to missing
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some important points. A better way to obtain the value of ϑ∗ is by fitting a regression

line

ŷ = b0 + b1x (4.24)

based on the least square method to the points {ϑi}
}
i=1, where ŷ is the estimate of the

dependent variable, x the independent variable with intercept b0 and slope b1. In the

presence of heteroscedasticity and outliers, it may be advantageous to consider fitting a

robust regression line. Robust regression methods are not influenced by outliers, and are

also very useful when there are problems with heteroscedasticity in the data set. Figure

4.12 show a comparison of the simple linear and the robust regression methods. We

can see that the effect of the outliers are very minimal. The data also has no problem

with heteroscedasticity hence a simple linear regression method is reliable. Following

this method, we obtain a threshold value of ϑ∗ = 2.1146 and 465 exceedances which

are sufficient to allow reasonable statistical inference with EVT, and will give far better

results of POT parameter estimates and hence better forecast for quantile VaR estimates

compared to ϑ0 = 1.2 and 1470 exceedances. If we take a look at the threshold range plot

of e(ϑ); Figure 4.13, which is a plot of the reparameterised scale of the shape parameter,

ϑ∗ = 2.1146 appears to be a reasonable choice to use as the threshold value because

2.1146 seems to yield POT parameter estimates that will not change significantly within

uncertainty bounds.
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Figure 4.11: Mean excess function plot of standardised residuals following Bayesian GARCH(1,1) model
with t-distribution and C-vine copula with t-margins demonstrating the hybrid method of threshold
selection. The threshold is the average of the points that lie on the straight line.

Figure 4.12: Robust regression line and simple linear regression line fitted to the points {ϑi}
}
i=1 , ϑi ≥ ϑ0 of

the mean excess plot. The effect of the outliers on the simple regression line is minimal. A proper threshold
value is obtained by taking the average of the set of points that lie on the regression line.
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Figure 4.13: The threshold range plot show that ϑ∗ = 2.1146 is appropriate to use as threshold value as it
seems to yield POT parameter estimates that will not change much within uncertainty bounds.

We further perform a simulation study on {ϑi}
}
i=1 to check the reliability of the hybrid

method. This entails the use of empirical distributions of {ϑi}
}
i=1 for bootstrapping a

100(1 − α)% confidence interval for ϑ∗, where α is the level of significance. Simulation

studies lay a powerful framework for answering novel questions of the statistical accuracy

of a model. For example, the use of bootstrapping methods, which uses re-sampling

techniques to find empirical estimates of sampling distributions and confidence intervals

when the parameter sampling distribution is unknown or non normal (Hallgren, 2013).

We use bootstrapping to generate data sets that are in conformity to the mean and standard

deviation of {ϑi}
}
i=1, which is then used to construct a 100(1 − α)% confidence interval for

ϑ∗. The algorithm is a follows:

1. Obtain an empirical distribution of T = 10000 observation with approximately the

same mean and standard deviation as {ϑi}
}
i=1 from a normal distribution.

2. N = 1000 data points are drawn randomly from T with replacement, and then

calculate ϑ∗.

3. Repeated (2) 1000 times to obtain sufficient distribution of ϑ∗, which is then used to
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calculate a 100(1 − α)% confidence interval for ϑ∗.

Figure 4.14 presents a 95% confidence interval for ϑ∗; upper bound (Ub) = 2.123, lower

bound (Lb) = 2.0942, and standard error (SE) = 0.74%. This means that for 95% of the time

that the experiment is conducted, ϑ∗ will be within the confidence interval (2.123, 2.0942),

with an error band of approximately 0.0288 (see Appendix A.3 for bootstrapping of 95%

confidence interval).
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Figure 4.14: Empirical distribution of {ϑi}
}
i=1 used for bootstrapping a 95% confidence interval for ϑ∗.

Upper bound (Ub) = 2.123, lower bound (Lb) = 2.0942, and standard error (SE) = 0.74%.

Table 4.3 shows the POT parameter estimates and the qth quantile VaR estimates;

VaRq(Z), of the noise variables at q = (99%, 95%, 90%). Visual observation of the quan-

tiles suggest that Bayesian GARCH(1,1) vine copula-EVT model with t margins and v

degrees of freedom outperforms both the traditional GARCH(1,1) model with student’s-t

distribution and v degrees of freedom and Bayesian-GARCH(1,1) model with Student’s-t

distribution and v degrees of freedom without copula functions and EVT at 99% con-

fidence level (see Table 4.4 and 4.3). However, the validity of the model needs to be

checked by conducting back-testing on the portfolio VaR. An important point to note is

that the shape parameters of the POT method with normal margins are all less than zero.

Looking at the conditions for the GPD (Eqn(3.25)), ψ(ϑ) > 0, y ∈ [0, x−ϑ] when ξ ≥ 0, and
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y ∈ [0,−ψ(ϑ)
ξ ] when ξ < 0, the appropriate value for the shape parameter ξ for a financial

time series data must be greater than zero since the upper bound of financial losses cannot

be fixed (Soltane et al., 2012; Gilli et al., 2006; Bhattacharyya and Ritolia, 2008). Therefore,

the GARCH(1,1) C-vine copula-EVT model with normal margins is not a reliable model

in this case as the shape parameters are all less than zero. The shape parameter gives an

indication of the thickness of the tail of the distribution. ξ < 0 imply lighter tail.

Employing the risk formula (Eqn.(3.37)), we obtain the portfolio quantile VaRs as

VaRp
99%(Z) = 2.7891, VaRp

95%(Z) = 1.6363, and VaRp
90%(Z) = 1.1978. Figure 4.15, which

is a time plot of profit and loss (P&L) of the portfolio return series and portfolio VaR

estimates suggests that the VaR model performs quite well in capturing the dynamics in

the portfolio return series. Again, the model have to be validated through back-testing.
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Bayesian GARCH(1,1) C-vine copula EVT with t-margins
UK.HSBA UK.BARC UK.LLOY UK.RBS UK.STAN

Parameters ψ(ϑ∗) 0.9593 0.9077 0.7017 0.7941 0.7696
ξ 0.0400 0.0889 0.1765 0.1655 0.0736
ϑ∗ 2.5481 2.7751 2.0632 2.1146 1.9858

Nϑ∗ 270 200 501 465 495
µ -0.6778 -0.2242 0.4316 0.2040 -0.0890
σ 0.8301 0.6411 0.4137 0.4780 0.6166

VaRq(Z) 99% 3.5200 3.4240 3.3712 3.5043 3.2922
95% 1.9642 1.9764 2.0646 2.0573 1.9781
90% 1.3244 1.4139 1.6066 1.5435 1.4584

ESq(Z) 99% 4.5598 4.4836 4.5037 4.7314 4.2271
95% 2.9391 2.8947 2.9170 2.9975 2.8083
90% 2.2726 2.2774 2.3609 2.3818 2.2473

Bayesian GARCH(1,1) C-vine copula EVT with normal margins
UK.HSBA UK.BARC UK.LLOY UK.RBS UK.STAN

Parameters ψ(ϑ∗) 0.4265 0.4202 0.3749 0.3880 0.3274
ξ -0.1523 -0.1784 -0.0771 -0.1326 -0.0665
ϑ∗ 1.4231 1.5786 1.5762 1.6775 1.6628

Nϑ∗ 560 379 380 260 280
µ -0.1204 -0.2893 0.1820 -0.1437 0.3407
σ 0.6616 0.1705 0.4824 0.6294 0.4154

VaRq(Z) 99% 2.0694 2.0770 2.0517 2.0257 1.9886
95% 1.4710 1.4593 1.4722 1.4124 1.4692
90% 1.1645 1.1335 1.1996 1.1052 1.2278

ESq(Z) 99% 2.3542 2.3581 2.3657 2.3276 2.2753
95% 1.8349 1.8340 1.8277 1.7860 1.7883
90% 1.5688 1.5575 1.5746 1.5148 1.5619

Table 4.3: POT parameter estimates and qth quantile VaRs; VaRq(Z), and Expected Shortfalls; ESq(Z), of
the noise variables at q = (99%, 95%, 90%). For normal margins ξ < 0 and hence not appropriate to use
for VaR estimation in this case.
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GARCH(1,1) Byesian-GARCH(1,1)
99% 95% 90% v 99% 95% 90% v

UK.HSBA 3.3318 2.0045 1.4706 5.1214 3.3723 2.0174 1.4770 4.9740
UK.BARC 3.3428 2.0080 1.4724 5.0804 3.2746 1.9862 1.4615 5.3510
UK.LLOY 3.3089 1.9972 1.4670 5.2103 3.3115 1.9981 1.4674 5.2000
UK.RBS 3.4631 2.0458 1.4912 4.6806 3.4052 2.0278 1.4822 4.8620
UK.STAN 3.2882 1.9906 1.4637 5.2940 3.2650 1.9831 1.4599 5.3920

Table 4.4: Quantile VaR estimates for traditional GARCH(1,1) model with Student’s-t and Bayesian-
GARCH(1,1) model with Student’s-t distributions at q = (99%, 95%, 90%). Comparing theses results to
Table 4.3 suggests that Bayesian-GARCH(1,1) C-vine copula-EVT model outperforms at 99% confidence
level.
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Figure 4.15: Estimated daily VaRs and profit and loss (p&L) plot following Bayesian GARCH(1,1) with
Student’s-t distribution, C-vine copula functions and EVT.

4.6.3 Back-testing

For model validation, we employ the Kupiec (1995) unconditional coverage test, Christof-

fersen (1998) independent and conditional coverage test, Basel traffic light test, Santos and

Alves (2012) new independent test, and Engle and Manganelli (2004) DQ test. The out-

of-sample data, just as in the previous chapter, is divided into blocks of 250, 500, and 1000

trading days.

At 99% confidence level, i.e., p = 1%, we observe zero exceptions; Table 4.5. The

model does not underestimate risk but rather assumed to be too conservative. With zero
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exceptions, the model passed the “traffic light” test and is placed in the green zone (see

Table 2.1). Most financial institutions will prefer this model at 99% confidence level;

“. . . Financial institutions routinely produce plots of P&L that show no violation of their

99% confidence VaR over long periods, proclaiming that this supports their risk model

. . . The amount of economic capital banks currently hold is in excess of their regulatory

capital. As a result, banks may prefer to report higher VaR numbers to avoid the possibility

of regulatory intrusion” (Jorion, 2007).

Back-testing results are presented in Table 4.6. The VaR model perform better at lower

observation periods compared to longer observation periods at p = 95% and p = 90%

confidence levels. This is because at longer observation periods, the model will have

longer term memory and is not easily affected by sudden changes in the underlying

volatility. Volatility in financial markets fluctuates as time passes, and there exist volatility

clustering with most recent price changes providing more information with regards to the

current volatility compared to older price changes. Thus, shorter observation periods will

be more responsive to changes in volatility than longer observation periods. This results

confirm the findings of Best (2000) where he showed that VaR at 95% is more effective at

lower observation periods than longer observation periods.

The out of sample data was taken immediately after the 2011 financial crisis. We there-

fore use VaR estimates during this period to calculate MCR for market risk in accordance

with Basel II (Eqn.(2.19a)). To comply with Basel III rules, we consider back-testing for

the periods of January 2008 to December 2008 and January 2011 to December 2011. This

constitutes a continuous 12-months crisis period - the 2008 and 2011 global and European

financial crisis, respectively for an observation period of 262 trading days for 2008 and

260 trading days for 2011. VaR estimates during these periods are referred to as stress VaR

estimates (sVaR) because they are calculated in a period of significant financial distress.



4.6. Results 101

We used the sVaR estimates to calculate MCR for market risk in accordance with Basel

III rules (Eqn.(4.1)). Back-testing results during these periods; Tables 4.7 and 4.8, suggest

that the VaR measure is able to capture the dynamics of volatility in periods of severe

crisis.

We also consider back-testing to include the two crisis period. That is, incorporating

the 2008 crisis and transitioning into and including the 2011 crisis, consisting of 1000

trading days. We observe an increase in the number of exceptions produced as shown in

Table 4.9. The lower number of exceptions produced immediately after the 2011 financial

crisis as seen in Table 4.5, is an indication that the market was calm and in a recovery

state.

As seen in Table 4.11, the MCR for market risk in relation to Basel II is almost three

times the maximum loss per day and much higher in relation to Basel III. This result

suggests that with the correct VaR model, Basel III is not needed. Moreover, these results

also confirm the previous findings by McAleer et al. (2011) as stated earlier that the global

financial crisis cannot be associated to the failure of Basel II as it was implemented in

Europe only from 2008, and never in the USA. Banks that displayed higher solvency

ratios and higher credit-to-GDP ratios prior to their collapse or bailouts probably had

their internal risk models for market risk manipulated or as a result of poor VaR models

that were unable to capture fat-tail risk. However, this claim is not 100% certain as the

model needs to be tested in those countries whose banks were severely affected during

the crisis period.
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Expected number of exceptions Observed number of exceptions
p 250 500 1000 250 500 1000

1% 3 5 10 0 0 0

5% 13 25 50 7 14 28

10% 25 50 100 24 47 94

Table 4.5: Observed number of exceptions versus expected number of exceptions following Bayesian
GARCH(1,1) vine copula-EVT VaR model. Out-of-sample data after 2011 financial crisis is divided into
blocks of 250, 500 and 1000 trading days (observation periods); time horizon = 1 day.

p = 1%,
Back-test type

Window Exceptions LRPOF LRIND LRCC TN,[N/2] DQ Test results

250 0 NaN - - - 2.485 (0.870) (- - - - A)

500 0 NaN - - - 5.010 (0.543) (- - - - A)

1000 0 NaN - - - 10.061 (0.122) (- - - - A)

p = 5%,

Window Exceptions LRPOF LRIND LRCC TN,[N/2] DQ Test results

250 7 3.009 (0.083) 0.952 (0.329) 3.961 (0.138) 1.916 (0.448) 5.963 (0.427) (A A A A A)

500 14 6.018 (0.014) 1.791 (0.181) 7.809 (0.020) -0.560 (0.855) 8.404 (0.210) (R A R A A)

1000 28 12.036 (0.001) 0.302 (0.583) 12.338 (0.002) -0.744 (0.876) 1.445 (0.025) (R A R A R)

p = 10%,

Window Exceptions LRPOF LRIND LRCC TN,[N/2] DQ Test results

250 24 0.045 (0.832) 0.018 (0.893) 0.063 (0.969) 0.288 (0.587) 9.473 (0.149) (A A A A A)

500 47 0.204 (0.652) 0.374 (0.541) 0.579 (0.749) -0.558 (0.845) 15.994 (0.014) (A A A A R)

1000 94 0.403 (0.526) 4.837 (0.028) 5.240 (0.073) -1.251 (0.957) 16.735 (0.010) (A R A A R)

Table 4.6: Back-testing results immediately after 2011 financial crisis, p-values in parenthesis. The VaR
model performs better at shorter observation periods compared to longer observation periods. A = Accept,
R = Reject.
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p = 1% p = 5% p = 10%

2008 crisis: 262 trading days Expected number of exceptions 3 13 26

Observed number of exceptions 0 16 27

2011 crisis: 260 trading days Expected number of exceptions 3 13 26

Observed number of exceptions 0 10 31

Table 4.7: Observed number of exceptions versus expected number of exceptions following Bayesian
GARCH(1,1) vine copula-EVT VaR model during periods of financial distress; January 2008 to December
2008 and January 2011 to December 2011.

Back-test type

Window LRPOF LRIND LRCC TN,[N/2] DQ Test results

262 trading days (2008) p = 5% 0.657 (0.418) 0.356 (0.551) 1.013 (0.603) 2.946 (0.149) 0.061 (0.837) (AAAAA)

p = 10% 0.034 (0.854) 0.210 (0.647) 0.244 (0.885) 0.343 (0.622) 0.103 (0.623) (AAAAA)

260 trading days (2011) p = 5% 0.034 (0.854) 1.726 (0.189) 1.760 (0.415) -0.322 (0.807) 0.039 (0.267) (AAAAA)

p = 10% 1.242 (0.265) 0.102 (0.749) 1.344 (0.511) -0.661 (0.881) 0.122 (0.892) (AAAAA)

Table 4.8: Back-testing results based on 5% and 10% significance levels conducted separately for the 2008
and 2011 financial crisis periods. The VaR model shows reliability in periods of severe crisis. A = Accept,
R = Reject.

Expected number of exceptions Observed number of exceptions
p 250 500 1000 250 500 1000

1% 3 5 10 0 1 1

5% 13 25 50 16 27 48

10% 25 50 100 27 49 105

Table 4.9: Observed number of exceptions versus expected number of exceptions following Bayesian
GARCH(1,1) vine copula-EVT VaR model for the period of January 2008 to December 2011.
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p = 5%,
Back-test type

Window Exceptions LRPOF LRIND LRCC TN,[N/2] DQ Test results

250 16 0.951 (0.329) 0.379 (0.538) 1.330 (0.514) 2.946 (0.149) 3.478 (0.747) (A A A A A)

500 27 0.164 (0.686) 1.916 (0.166) 2.080 (0.353) 5.542 (0.034) 4.413 (0.621) (A A A R A)

1000 48 0.085 (0.771) 0.078 (0.780) 0.163 (0.922) 1.179 (0.334) 9.978 (0.126) (A A A A A)

p = 10%,

Window Exceptions LRPOF LRIND LRCC TN,[N/2] DQ Test results

250 27 0.174 (0.677) 0.245 (0.621) 0.419 (0.928) 0.343 (0.621) 13.597 (0.349) (A A A A A)

500 49 0.022 (0.882) 0.089 (0.765) 0.111 (0.946) -0.253 (0.762) 8.180 (0.225) (A A A A A)

1000 105 0.274 (0.601) 0.142 (0.706) 0.416 (0.812) -1.015 (0.930) 6.447 (0.375) (A A A A A)

Table 4.10: Back-testing results covering the period from January 2008 to December 2011; incorporating
the crisis period, based on 5% and 10%s significance levels with p-values in parenthesis. The VaR model is
reliable in periods of calm and severe crisis. A = Accept, R = Reject.

MCR
VaR estimation period VaR(99%) 1

60
∑60

i=1(VaR(99%) k
60

∑60
i=1(VaR(99%) Basel II Basel III

Feb.2012 to Dec.2015 (C.VaR) 3.89% 4.03% 12.10% 12.10% -

sVaR: Jan.2008 to Dec.2008 9.19% 15.69% 47.06% 47.06% 59.15%

sVaR: Jan.2011 to Dec.2011 5.67% 9.04% 27.11% 27.11% 39.20%

Table 4.11: Minimum Capital Requirements (MCR) for market risk in accordance with Basel II rules is
calculated from current VaR estimates (C.VaR; from February 2012 to December 2015); i.e., covering the out
of sample data. MCR for market risk in accordance with Basel III rules is calculated from C.VaR estimates
and continuous 12-month period of significant financial stress i.e., 2008 and 2011 crisis. Regulatory
multiplier k = 3 in all cases because at 99% confidence level we observe ≤ 4 exceptions (see Eqn.(2.19b))

4.7 Conclusion

In this chapter, we constructed a VaR model by combining a Bayesian GARCH(1,1) model

with Student’s-t distributions as the underlying volatility model, vine copula functions to

model dependence, and EVT to model the left tail, hence the name Bayesian GARCH(1,1)

vine copula-EVT model. Back-testing results show that the model is reliable in forecasting

risk on financial assets in periods when the market is relatively calm and in periods of

severe crisis. Comparing the quantile VaR estimates for each bank used for calculating the
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portfolio VaR estimates following EVT show that Bayesian GARCH(1,1) vine copula-EVT

model outperforms both the traditional GARCH(1,1) models with student’s-t distribution

and Bayesian GARCH(1,1) with student’s-t distribution without copula functions and

EVT at 99% confidence level.



Chapter 5

Applying copula functions and EVT

to the exposures to risk factor returns

to forecast VaR estimates

In this Chapter, we further test the hybrid method for threshold selection in forecasting

VaR by applying EVT directly to the exposures to risk factors. We further compare results

to the VaR models of Chapters 3 and 4, and traditional VaR methods: variance-covariance

and historical simulation methods commonly used by banks. Back-testing results show

that VaR models constructed using conditional volatility models, copula functions and

the peaks over threshold (POT) method of EVT incorporating the hybrid method for

threshold selection performs better than the other methods.

5.1 Introduction

We investigate the performance of the VaR model when the POT method of EVT is applied

directly to the risk factors incorporating the hybrid method to forecast VaR estimates.

106
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We combine Bayesian-GARCH(1,1) model with a Student’s-t distribution discussed in

Chapter 4, commonly used Archimedean and elliptical copula functions in financial risk

management and the POT method of EVT incorporating the hybrid method for threshold

selection discussed in Chapters 3 and 4 respectively, to forecast VaR estimates in top UK

banks.

The rest of the chapter is structured as follows: In Section 5.2 we discuss modeling the

marginal distributions and dependance. Results of the forecast VaR estimates and model

validation are presented in Section 5.3. Section 5.4 compares the various VaR methods

discussed in this thesis to the traditional VaR methods commonly used by financial

institutions, followed by the conclusion in Section 5.5.

5.2 Modelling the marginal distributions

We employ the same time series data as in Chapter 4 and modeled the marginal distribu-

tions by fitting a Bayesian GARCH(1,1) model with Student’s-t distribution since the log

return distributions are leptokurtic (see Table 3.2). QQ-plots; Figure 5.1, which are plots

of the theoretical quantiles of the marginal standardised residuals against the empirical

quantiles of a studentised residuals from a linear model suggest that the marginal stan-

dardised residuals from the Bayesian GARCH(1,1) model with Student’s-t distributions

are normally distributed. However, univariate ARCH LM test and Ljung-Box test sug-

gest there still exist some serial correlation in the standardised residuals for UK.RBS; see

Table 5.1. Multivariate ARCH test reported in Chapter 4 also rejected the presence of no

conditional heteroscedasticity in the standardised residuals.
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Figure 5.1: Theoretical quantile plots of the marginal standardised residuals against empirical quantiles
from a linear model suggesting that the standardised residuals are normally distributed.

ARCH LM Test
UK.HSBA UK.BARC UK.LLOY UK.RBS UK.STAN

LM(5) 3.68 3.34 6.29 21.59 5.57
p-value 0.5964 0.6479 0.2792 0.0006 0.3500

LM(10) 5.94 6.97 8.99 24.56 7.56
p-value 0.8204 0.7279 0.5328 0.0063 0.6713

Ljung-Box Test
UK.HSBA UK.BARC UK.LLOY UK.RBS UK.STAN

Q(5) 3.62 4.39 5.63 23.416 5.54
p-value 0.6059 0.4945 0.3442 0.0003 0.3540

Q(10) 5.94 7.64 8.50 26.76 7.56
p-value 0.8204 0.6637 0.5802 0.0028 0.6718

Table 5.1: Univariate ARCH LM test on the standardised residuals and Ljung-Box test on the standardised
squared residuals. The null hypothesis of no ARCH effect and no serial correlation is rejected at 5%
significance level for UK.RBS.

5.2.1 Modelling dependence

Dependence structure among the risk factors are modeled using copula functions. The

copula parameters are estimated by the CML method as explained in Chapter 3. Estimated

copula parameters and Kendall’s τ are reported in Table 5.2 alongside the AIC values.
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Frank and Student’s-t copulas are selected from each copula family based on the highest

maximum likelihood estimation values. From now on, all analysis are based on the

selected copulas. Next, we specify the desired marginal distributions, which we set to

Student’s-t distribution, and generate j = 1, . . . ,T simulations from the fitted copulas to

obtain a new matrix of marginal standardised residuals

Σ̂ =
{
ζi, j

}
, j = 1, . . . ,T, i = 1, . . . ,N (5.1)

which is free from any normality assumptions and linear correlations. Multivariate ARCH

test on
{
ζi, j

}
shows no evidence of conditional heteroscedasticity with Qk(10) = 7.8434:

p-value = 0.6441, Qr
k(10) = 229.4318: p-value = 0.8202 for Frank copula functions, and

Qk(10) = 5.1843: p-value = 0.8785, Qr
k(10) = 223.5385: p-value = 0.8845 for Student’s-

t copula functions. Therefore, Bayesian-GARCH(1,1) copula model is a better model

in describing the conditional heteroscedasticity in the log return series as opposed to

Bayesian-GARCH(1,1) model without copula functions where we have evidence of ARCH

effect in the standardised residuals.

Finally, we reintroduce the GARCH model of Eqn. (4.2) and convert the daily simu-

lated data with t-margins to daily risk factor returns as

ri,t = ζi,t

(v − 2
v

ωi,thi,t(αi, βi)
)1/2

+ µi, i = 1, . . . ,N; t = 1, . . . ,T. (5.2)

Note that
{
ζi,t

}T
t=1 of Eqn.(5.2) are the marginal standardised residuals after modeling

the dependence structure among the asset returns with copula functions, and (.)1/2 are

estimates of the conditional volatilities of the risk factors from the Bayesian-GARCH(1,1)

model with Student’s-t distribution. As an illustration, Figures 5.2(a) and 5.2(b) are

scatter plots of the simulated standardised residuals and the new return distribution,
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respectively, following Frank copula with t-marginals, and plotted together with the

original standardised residuals and the original return distribution between UK.HSBA

and UK.LLOY. As can be seen, the Frank copula produce results that captures the extreme

observations (See Figures A.F1, A.F2, A.F3, and A.F4).

Archimedean copula Elliptical copula
Gumbel Clayton Frank Gaussian Student’s-t

Kendall’s τ 1.778 (0.023) 1.556 (0.046) 4.681 (0.041) ρG = ρτ(ρSE) ρt = ρτ(ρSE)

MLE 3234 2759 3239 3839 4098

AIC -14.163 -13.845 -14.166 3.494 3.363

Table 5.2: Copula parameter estimates based on “inversion of Kendall’s τ” and MLEs following CML
estimation method. Standard errors in parentheses. The best copula for modeling dependence among the
risk factors is that with the highest MLE value or smallest AIC value (in bold). Frank copula is selected
from the Archimedean copula family and t-copula is selected from the elliptical copula family.

UK.HSBA UK.BARC UK.LLOY UK.RBS UK.STAN
UK.HSBA 1
UK.BARC 0.5539 (0.015) 1
UK.LLOY 0.6249 (0.013) 0.7076 (0.011) 1
UK.RBS 0.5751 (0.015) 0.7204 (0.011) 0.7268 (0.011) 1
UK.STAN 0.6425 (0.012) 0.5441 (0.015) 0.5465 (0.014) 0.6056 (0.015) 1

Table 5.3: Kendall’s τ; ρτ(ρSE) for Gaussian and Student’s-t copula parameter estimates (standard errors
in parenthesis).
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Figure 5.2: Scatter plots of simulated standardised residuals; Figure 5.2(a) and the new return distribution;
Figure 5.2(b), following Frank copula with t-marginals, plotted together with the original standardised
residuals and original return distribution between UK.HSBA and UK.RBS. As can be seen, the Frank
copula produces results that captures the extreme observations.
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5.3 Results

5.3.1 Forecasting VaR estimates

We now apply the risk factor mappings to Eqn.(5.2) and construct a portfolio that consti-

tutes all five banks as

R̄p,t = E
(
Rp,t

)
=

N∑
t=1

wiE
(
ri,t

)
,

N∑
i=1

wi = 1, (5.3)

where wi = xi
Inv , and xi is the fraction of the total investment; Inv, invested in stock i, and

wi the weights. We assume equal weights. Thus, the expected return on the portfolio,

E
(
Rp,t

)
, on day t is a weighted average of the returns on the individual stocks. Note that

the portfolio is constructed using the simple returns of Eqn.(5.2) and then converted back

to log-returns for further analysis. Depending on the desired confidence level, the qth

quantile VaR; VaRq(Z), of the portfolio is obtained by applying the POT method of EVT

and the hybrid method for threshold selection to the portfolio return distribution
{
R̄p

}T

t=1
.

VaRq(Z) is the VaR of the portfolio for day T to day T + 1 since we are dealing with daily

returns and applying EVT directly to the portfolio returns and not to the standardised

residuals. Figure 5.3 shows the mean excess plots drawn using the portfolio returns from

the Bayesian Frank and Student’s-t copula models for the lower tail losses, while Figures

5.4 and 5.5 demonstrates the hybrid method for the threshold selection. It can be seen

on Figures 5.4(b) and 5.5(b) that the regression lines for standard regression models are

affected by outliers in the left tails of the mean excess plots, hence a robust regression

model is more reliable. In Table 5.4, we present the POT parameter estimates, VaR and

ESF estimates for the Bayesian GARCH(1,1) Frank copula-EVT and Bayesian GARCH(1,1)

Student’s-t copula-EVT models. From the table we notice that the Bayesian GARCH(1,1)

Frank copula-EVT model produce a slightly higher portfolio VaR estimates and lower
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exceedances compared to the Bayesian GARCH(1,1) Student’s-t copula-EVT model. We

also compute the portfolio VaR estimates; VaRp
q(Z), based on the individual bank’s VaR

estimates and confidence level. i.e., using the risk formula; Eqn.(3.37). As noted, the

overall risk measures are quite stable for both models and different thresholds indicating

that the model has effectively captured the dynamics of fluctuations in the left tails of the

return distributions. This claim must be validated through back-testing the model. We

can also see the effect of diversification on the risk of the individual banks on the portfolio

VaR.
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Figure 5.3: Mean excess function plots drawn using the portfolio returns following a Bayesian GARCH(1,1)
Frank copula model; Figures 5.3(a), and a Bayesian GARCH(1,1) Student’s-t copula model; Figure 5.3(b),
for the lower tail loses.
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Figure 5.4: Mean excess function plots of the portfolio return following a Bayesian GARCH(1,1) Frank
copula-EVT model for the number of exceedances above ϑ0; Figures 5.4(a), and a demonstration of the
hybrid method for threshold selection; Figure 5.4(b). A reliable threshold is calculated by taking an average
of the set of points that lie on the robust regression line.
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Figure 5.5: Mean excess function plots of the portfolio return following Bayesian GARCH(1,1) Student’s-t
copula-EVT model for the number of exceedances above ϑ0; Figures 5.5(a), and a demonstration of the
hybrid method for threshold selection; Figure 5.5(b). A reliable threshold is calculated by taking an average
of the set of points that lie on the robust regression line.
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Bayesian GARCH(1,1) Frank copula-EVT model
UK.HSBA UK.BARC UK.LLOY UK.RBS UK.STAN Portfolio VaRp

q(Z)

Parameters ψ(ϑ∗) 0.2594 0.0531 0.0437 0.0582 0.0214 0.0180
ξ 0.0164 0.4861 0.2682 0.3859 0.4063 0.4080
ϑ∗ 0.0348 0.0969 0.0741 0.0904 0.0430 0.0303

Nϑ∗ 171 57 89 78 150 257
µ -0.0006 0.0032 -0.0247 -0.0230 0.0062 0.0026
σ 0.0072 0.0076 0.0172 0.0145 0.0064 0.0067

VaRq(Z) 99% 6.35% 13.36% 13.20% 16.15% 9.34% 9.42% 9.62%
95% 3.21% 5.44% 5.45% 5.88% 4.39% 4.22% 3.99%
90% 2.22% 3.53% 3.02% 3.08% 3.08% 2.83% 2.44%

ESq(Z) 99% 9.56% 27.17% 21.29% 30.10% 16.39% 16.88% 17.30%
95% 5.33% 11.75% 10.71% 13.38% 8.06% 8.08% 8.11%
90% 3.99% 8.04% 7.39% 8.82% 5.85% 5.75% 5.60%

Bayesian GARCH(1,1) Student’st copula-EVT model
UK.HSBA UK.BARC UK.LLOY UK.RBS UK.STAN Portfolio VaRp

q(Z)

Parameters ψ(ϑ∗) 0.0142 0.0364 0.0297 0.0437 0.0193 0.0209
ξ 0.1963 0.2893 0.2462 0.2883 0.1474 0.2482
ϑ∗ 0.0277 0.0640 0.0441 0.0774 0.0303 0.0324

Nϑ∗ 172 105 198 90 255 195
µ -0.0029 -0.0136 -0.0141 -0.0184 -0.0089 -0.0085
σ 0.0082 0.0140 0.0154 0.0161 0.0135 0.0107

VaRq(Z) 99% 5.82% 12.14% 11.76% 13.67% 7.99% 8.36% 8.47%
95% 3.04% 5.31% 5.41% 5.84% 4.18% 3.90% 3.90%
90% 2.08% 3.22% 3.36% 3.43% 2.80% 2.47% 2.44%

ESq(Z) 99% 8.33% 19.60% 18.10% 22.21% 11.10% 12.82% 13.14%
95% 4.86% 10.00% 9.67% 11.21% 6.64% 6.90% 6.99%
90% 3.68% 7.06% 6.96% 7.83% 5.02% 4.99% 5.02%

Table 5.4: VaR estimates following Bayesian GARCH(1,1) Frank copula-EVT and Bayesian GARCH(1,1)
Student’s-t copula-EVT models for a time horizon of 1 day at q = (99%, 95%, 90%) confidence levels. The
risk measures are quite stable for different thresholds and copula functions indicating that the VaR models
have successfully capture the dynamics of fluctuations in the left tails.

5.3.2 Reliability of the VaR model

In Chapters 3 and 4, we check the reliability of the VaR model by employing Kupiec (1995)

unconditional coverage test, Christoffersen (1998) independent and conditional coverage

test, Basel traffic light test, the new independent test by Santos and Alves (2012), and the

DQ test by Engle and Manganelli (2004). Since we apply EVT directly to the exposures to

risk factors, we will obtain for each quantile an estimate of VaR for a desired window of

the distribution of risk factors. Therefore, we need a different approach to back-testing.

The most commonly used methods are the Rosenblatt transformation by Rosenblatt (1952)

and the bootstrap back-test by Dowd (2002). We employ the bootstrap back-test discussed



5.3. Results 118

in Chapter 2 because this method will extract more information from the original sample

data compared to the Rosenblatt transformation method. Also, bootstrap can be used to

generate for a single parameter as many estimates as desired, thus generating a ‘sample of

sample estimates’, which can be used to estimate a confidence interval for that particular

parameter (Dowd, 2002).

Table 5.5 presents 95% confidence intervals for VaR estimates at q = (99%, 95%, 90%),

k = 2500 repetitions, and T = 1000 data points for the Bayesian GARCH(1,1) Frank

copula-EVT and Bayesian GARCH(1,1) Student’s-t copula-EVT VaR models. All VaR

estimates of the top five banks in the UK and a portfolio consisting of all these banks fall

within the confidence interval and therefore the proposed VaR models are suitable to be

used as a measure of risk. Notice from the table that the VaR estimates of the re-samples

are very close to the Bayesian-GARCH(1,1) copula-EVT VaR estimates, especially for the

portfolio. Thus, we are 95% confidence that the calculated VaR estimates will lie within

the proposed interval. If the VaR estimates fall outside of these intervals, the model

should be rejected.
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Bayesian GARCH(1,1) Frank copula EVT

Confidence level UK.HSBA UK.BARC UK.LLOY UK.RBS UK.STAN Portfolio

99% Cl [4.86%, 8.13%] [9.60%, 20.30%] [9.97%, 14.96%] [11.36%, 20.62%] [7.11%, 11.18%] [6.74%, 13.36%]
Error band 3.27% 10.70% 4.98% 9.27% 4.08% 6.62%
VaR of re-samples 6.13% 13.23% 12.53% 15.67% 9.08% 10.00%
BG Copula-EVT VaR 6.35% 13.36% 13.20% 16.15% 9.34% 9.42%

95% Cl [2.72%, 3.74%] [4.60%, 6.51%] [4.81%, 6.61%] [5.08%, 7.39%] [3.82%, 5.01%] [3.65%, 4.78%]
Error band 1.02% 1.91% 1.79% 2.31% 1.20% 1.13%
VaR of re-samples 3.18% 5.50% 5.62% 6.15% 4.36% 4.21%
BG Copula-EVT VaR 3.21% 5.44% 5.45% 5.88% 4.39% 4.22%

90% Cl [1.92%, 2.42%] [3.05%, 3.93%] [3.31%, 4.22%] [3.33%, 4.31%] [2.58%, 3.38%] [2.56%, 3.16%]
Error band 0.50% 0.89% 0.91% 0.98% 0.80% 0.60%
VaR of re-samples 2.17% 3.52% 3.77% 3.82% 2.95% 2.86%
BG Copula-EVT VaR 2.22% 3.53% 3.02% 3.08% 3.08% 2.83%

Bayesian GARCH(1,1) Student’s−t copula EVT

Confidence level UK.HSBA UK.BARC UK.LLOY UK.RBS UK.STAN Portfolio

99% Cl [4.81%, 6.94%] [8.91%, 15.37%] [8.79%, 15.32%] [10.12%, 18.36%] [6.46%, 9.35%] [6.31%, 11.51%]
Error band 2.14% 6.46% 6.52% 8.23% 2.89% 5.19%
VaR of re-samples 5.92% 12.40% 11.74% 13.88% 7.87% 18.40%
BG Copula-EVT VaR 5.82% 12.14% 11.76% 13.67% 7.99% 8.36%

95% Cl [2.65%, 3.41%] [4.29%, 6.26%] [4.54%, 6.29%] [5.23%, 7.11%] [3.55%, 4.71%] [3.32%, 4.56%]
Error band 0.75% 1.97% 1.74% 1.88% 1.16% 1.24%
VaR of re-samples 3.01% 5.25% 5.47% 6.09% 4.15% 3.93%
BG Copula-EVT VaR 3.04% 5.31% 5.41% 5.84% 4.18% 3.90%

90% Cl [1.78%, 2.31%] [2.70%, 3.75%] [2.98%, 3.88%] [3.20%, 4.32%] [2.43%, 3.17%] [2.18%, 2.91%]
Error band 0.53% 1.05% 0.90% 1.13% 0.74% 0.73%
VaR of re-samples 2.00% 3.12% 3.38% 3.65% 2.77% 2.53%
BG Copula-EVT VaR 2.08% 3.22% 3.36% 3.43% 2.80% 2.47%

Table 5.5: Bootstrap back-test based on 95% confidence interval (CI). The VaR model is not rejected at 99%, 95%, and 90% confidence level. BG = Bayesian GARCH(1,1).



5.4. Model comparison 120

5.4 Model comparison

In Figures 5.6 and 5.7, we plot the forecasts portfolio VaR estimates against several quan-

tiles and compare the results with commonly used variance-covariance and historical sim-

ulation VaR models. We see from the plots that VaR estimates from Bayesian GARCH(1,1)

Frank copula-EVT and Bayesian GARCH(1,1) Student’s-t copula-EVT models perform

better (i.e., grow faster) than traditional variance-covariance and historical simulation

VaR estimates at higher quantiles. This is because EVT captures the left tail data better

than the normal distribution. The poor performance of the variance-covariance method

is as a result of the heavy tailed distribution while assuming normality. VaR estimates

will be too conservative and inaccurate by assuming a normal distribution. Better perfor-

mance of VaR estimates from Bayesian GARCH(1,1) copulas with historical simulation

is due to the fact that copula functions enable the construction of malleable multivariate

distributions with different margins and dependence structures that are free from any nor-

mality assumptions and linear correlations. The shape of the distribution is determined

by the historical data and takes care of heavy tails and skewness. At lower quantiles, the

performance of the Bayesian GARCH(1,1) Frank copula-EVT and Student’s-t copula-EVT

models are almost identical but overlap each other slightly at higher quantiles; Figure 5.8.

Thus, an indication that we could either choose the Frank copula or the Student’s-t copula

to model dependence between the asset returns without compromising the accuracy of

VaR estimates.
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Figure 5.6: Comparison of VaR estimates for different quantiles.The Bayesian GARCH(1,1) Frank copula
EVT model and the Bayesian GARCH(1,1) Frank copula historical simulation model gives better VaR
estimates than the traditional parametric variance-covariance and historical simulation methods.
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Figure 5.7: Comparison of VaR estimates for different quantiles.The Bayesian GARCH(1,1) Student’s-t
copula EVT model and the Bayesian GARCH(1,1) Student’s-t copula with historical simulation model
gives better VaR estimates than the traditional parametric variance-covariance and historical simulation
methods.
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Figure 5.8: Comparison of Bayesian GARCH(1,1) Student’s-t copula EVT and Bayesian GARCH(1,1)
Frank copula EVT VaR estimation models for different quantiles. Both models produce stable VaR estimates.

In Tables 5.6, 5.7, 5.8, and 5.9, we compare the Bayesian GARCH(1,1) Frank copula-EVT

and Bayesian GARCH(1,1) Student’s-t copula-EVT models to the VaR models discussed

in Chapters 3 and 4 based on the back-testing results. At higher confidence levels, EVT

VaR models based on the hybrid method for threshold selection (EVT?) produced more

stable VaR estimates compared to the traditional EVT VaR models; Table 5.6. One reason

for this observation is because EVT? VaR models restricts inferences only on the tails of

the risk factors distributions. This restriction reduces the margin of errors for unreliable

VaR estimates. Whereas with the traditional EVT VaR models, inferences are not resticted

on the left tail and sometimes moves towards the center of the distribution.

The best performance was recorded by VaR models with EVT and the worst perfor-

mance was the HS and variance-covariance VAR models. VaR models following Bayesian

GARCH(1,1) Frank and Student’s-t copula functions also performed quite well at all levels

but not as good as the models with EVT.

Kupiec’s unconditional coverage test assumes the Bayesian GARCH(1,1) vine-copula
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EVT VaR model to be too conservative because of very few or zero exceptions thus, the

rejection at 95% confidence level for 500 and 1000 observation periods. This pattern can

be clearly seen at 99% confidence level with zero exceptions; see Tables 5.7 and 5.10.

Following the Basel rules, i.e., the Basel “traffic light” test, the Bayesian GARCH(1,1)

vine-copula EVT VaR model with zero or very few exceptions will fall in the green zone.

However, one should be extremely careful when very few or zero exceptions are observed.

For example, as with the variance-covariance method, the fewer number of exceptions

produced is most often as the result of the model ignoring extreme events because the

risk factors distributions are assumed to have lighter tails.

The results of Tables 5.7, 5.8, and 5.9 also suggest that when we incorporate extreme

value theory and employ the suggested hybrid method for extreme value analysis to

forecast VaR, the type of underlying conditional volatility model used does not really

matter. However, without EVT the type of volatility model does play a significant role in

forecasting VaR estimates.

We further test the models for the periods of 2008 and 2011 financial crisis and present

the results in Table 5.10. Based on the back-testing results of Table 4.8 in Chapter 4, i.e.,

during the 2008 and 2011 financial crisis periods, and the results in the previous three

tables (Tables 5.7, 5.8, and 5.9), the VaR models will pass the independence test except

for the historical simulation and variance covariance methods. Thus, the results in Table

5.10 are based only on the Kupiec’s unconditional coverage (UC) test. The two periods

constitute 262 and 260 observation periods for 2008 and 2011, respectively. Therefore, at

confidence levels of 99%, 95%, and 90%, the number of exceptions T1 must fall within the

intervals 1 ≤ T1 ≤ 6, 7 ≤ T1 ≤ 20, and 18 ≤ T1 ≤ 36, respectively for the 2008 crisis period

and 1 ≤ T1 ≤ 6, 7 ≤ T1 ≤ 20, and 17 ≤ T1 ≤ 36, respectively for the 2011 crisis period.

We see from Table 5.10 that only the copula-EVT based VaR models are able to capture
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the dynamics of fluctuations in the left tails of the portfolio return distributions in both

periods of severe financial distress. This findings thus show that EVT is very important

in order to forecasting reliable and stable VaR estimates. We consider Kupiec’s UC test

and Christoffersen’s CC test as the most powerful test. For example, Kupiec’s UC test

will reject a model that produces very few exceptions. Christoffersen’s CC test will also

reject a VaR model that produces very few exceptions, while at the same time testing for

independence of the exceptions. The other back-testing methods are mostly concerned

with testing the independence property.

EVT VaR model VaRp
99%(Z) VaRp

95%(Z) VaRp
90%(Z)

Bayesian GARCH(1,1) Vine copula-EVT? 2.7891 1.6363 1.1979

Bayesian GARCH(1,1) Frank copola-EVT ? 2.7565 1.6629 1.2542

Bayesian GARCH(1,1) Student’s-t copula-EVT? 2.7518 1.6495 1.2638

DCC-GARCH(1,1) Clayton copila-EVT 2.7818 1.6422 1.2135

DCC-GARCH(1,1) Student’s-t-copula-EVT 2.8449 1.6601 1.2160

Table 5.6: Comparison of portfolio quantile VaR estimates for UK stocks. EVT? implies VaRp
q(Z) was

estimated incorporating the hybrid method for threshold selection. EVT? produced stable VaRp
q(Z) estimates

at higher confidence level (i.e., at 99%) relative to the traditional EVT VaR models.
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p = 1%

Type of back-test

VaR model Window Exceptions LRPOF LRIND LRCC DQ TN,[N/2] Test results

DCC-G Clayton cop-EVT 250 2 0.108 (0.742) 0.074 (0.786) 0.182 (0.913) 79.862 (0.000) 0.746 (0.649) (A A A R A)
500 2 2.353 (0.125) 0.035 (0.852) 2.388 (0.303) 38.635 (0.000) 0.746 (0.652) (A A A R A)

1000 4 4.706 (0.030) 4.429 (0.035) 9.135 (0.010) 22.806 (0.001) 13.480 (0.070) (R R R R A)

DCC-G t-cop-EVT 250 2 0.108 (0.742) 0.123 (0.726) 0.231 (0.891) 1.000 (0.986) 0.746 (0.649) (A A A A A)
500 2 2.353 (0.125) 0.035 (0.852) 2.388 (0.303) 1.826 (0.935) 0.746 (0.650) (A A A A A)

1000 5 3.094 (0.079) 0.066 (0.797) 3.160 (0.206) 3.930 (0.686) 5.619 (0.126) (A A A A A)

BG Vine cop-EVT? 250 0 NaN - - 2.485 (0.870) - ( - - - A -)
500 0 NaN - - 5.010 (0.543) - ( - - - A -)

1000 0 NaN - - 10.061 (0.122) - ( - - - A -)

BG Student’s-t cop-EVT? 250 2 0.108 (0.742) 0.075 (0.784) 0.183 (0.913) 2.484 (0.871) 0.746 (0.650) (A A A A A)
500 2 2.353 (0.125) 0.035 (0.852) 2.570 (0.277) 5.010 (0.543) 0.746 (0.650) (A A A A A)

1000 5 3.094 (0.079) 4.425 (0.035) 7.519 (0.023) 10.061 (0.122) 13.480 (0.070) (A R R A A)

BG Frank cop-EVT ? 250 2 0.108 (0.742) 0.075 (0.784) 0.183 (0.913) 2.485 (0.870) 0.746 (0.651) (A A A A A)
500 2 2.353 (0.125) 0.035 (0.852) 2.570 (0.277) 5.010 (0.543) 0.746 (0.650) (A A A A A)

1000 5 3.094 (0.079) 4.421 (0.035) 7.515 (0.023) 10.061 (0.122) 13.480 (0.071) (A R R A A)

BG Student’s-t cop-HS 250 4 0.769 (0.381) 0.278 (0.598) 1.047 (0.592) 184.723 (0.000) 0.243 (0.716) (A A A R A)
500 8 1.538 (0.215) 0.540 (0.462) 2.078 (0.354) 163.430 (0.000) 0.635 (0.547) (A A A R A)

1000 17 4.091 (0.043) 0.344 (0.558) 4.435 (0.109) 143.716 (0.000) 8.604 (0.016) (R A A R R)

BG Frank cop-HS 250 8 7.734 (0.005) 0.394 (0.530) 8.128 (0.017) 78.531 (0.000) 0.924 (0.478) (R A R R A)
500 9 2.613 (0.106) 0.995 (0.319) 3.608 (0.165) 80.367 (0.000) 8.200 (0.056) (A A A R A)

1000 18 5.225 (0.022) 2.300 (0.129) 7.525 (0.023) 63.787 (0.000) 8.354 (0.010) (R A R R R)

HS 250 8 7.734 (0.005) 2.674 (0.102) 10.408 (0.005) 13.839 (0.032) 6.931 (0.049) (R A R R R)
500 12 7.111 (0.008) 2.263 (0.132) 9.404 (0.009) 9.675 (0.139) 0.414 (0.581) (R A R A A)

1000 20 7.827 (0.005) 3.921 (0.048) 11.748 (0.003) 40.497 (0.000) 5.952 (0.027) (R A R R R)

VC 250 1 1.177 (0.278) - - - (A - - - -)
500 1 4.813 (0.028) - - - (R - - - -)

1000 1 13.476 (0.000) - - - (R - - - -)

Table 5.7: Comparison of back-testing results for the various VaR models at 99% confidence level. BG = Bayesian-GARCH(1,1) model, cop = copula, HS = Historical
simulation, and VC = Variance-Covariance.
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p = 5%

Type of back-test

VaR model Window Exceptions LRPOF LRIND LRCC DQ TN,[N/2] Test results

DCC-G Clayton cop-EVT 250 10 0.563 (0.453) 0.011 (0.916) 0.574 (0.751) 3.712 (0.716) 0.367 (0.187) (A A A A A)
500 24 0.043 (0.836) 0.234 (0.629) 0.277 (0.871) 3.193 (0.784) 0.824 (0.500) (A A A A A)
1000 49 0.021 (0.885) 0.598 (0.439) 0.619 (0.734) 5.085 (0.533) 0.092 (0.623) (A A A A A)

DCC-G t-cop-EVT 250 11 0.197 (0.657) 2.003 (0.157) 2.200 (0.332) 3.544 (0.738) 1.163 (0.414) (A A A A A)
500 25 0.000 (1.000) 1.343 (0.247) 1.343 (0.511) 1.978 (0.922) 0.865 (0.432) (A A A A A)
1000 52 0.083 (0.773) 2.670 (0.102) 2.753 (0.252) 5.123 (0.528) 0.152 (0.644) (A A A A A)

BG Vine cop-EVT? 250 7 3.009 (0.083) 0.952 (0.329) 3.961 (0.138) 1.916 (0.448) 5.963 (0.427) (A A A A A)
500 14 6.018 (0.014) 1.791 (0.181) 7.809 (0.020) -0.560 (0.855) 8.404 (0.210) (R A R A A)
1000 28 12.036 (0.001) 0.302 (0.583) 12.338 (0.002) -0.744 (0.876) 1.445 (0.025) (R A R A R)

BG Student’s-t cop-EVT? 250 12 0.021 (0.885) 0.106 (0.745) 0.127 (0.722) 5.963 (0.427) 3.580 (0.124) (A A A A A)
500 26 0.042 (0.838) 0.388 (0.533) 0.430 (0.512) 5.876 (0.437) 0.785 (0.449) (A A A A A)
1000 52 0.083 (0.773) 1.730 (0.188) 1.813 (0.178) 10.849 (0.093) 0.092 (0.625) (A A A A A)

BG Frank cop-EVT? 250 11 0.197 (0.657) 0.017 (0.896) 0.214 (0.899) 5.963 (0.427) 3.667 (0.188) (A A A A A)
500 23 0.173 (0.677) 0.041 (0.840) 0.214 (0.899) 5.875 (0.437) 0.908 (0.487) (A A A A A)
1000 48 0.085 (0.771) 0.891 (0.345) 0.976 (0.614) 10.849 (0.093) 0.172 (0.602) (A A A A A)

BG Student’s-t cop-HS 250 18 2.256 (0.133) 0.762 (0.383) 3.018 (0.221) 41.452 (0.000) 1.962 (0.246) (A A A R A)
500 32 1.903 (0.168) 0.204 (0.652) 2.107 (0.349) 45.328 (0.000) -0.231 (0.733) (A A A R A)
1000 59 1.616 (0.204) 0.277 (0.599) 1.893 (0.388) 56.580 (0.000) 0.890 (0.426) (A A A R A)

BG Frank cop-HS 250 19 3.091 (0.079) 0.456 (0.499) 3.547 (0.170) 27.231 (0.000) 1.677 (0.347) (A A A R A)
500 32 1.903 (0.168) 0.004 (0.950) 1.907 (0.385) 31.772 (0.000) 0.725 (0.509) (A A A R A)
1000 54 0.329 (0.566) 0.093 (0.760) 0.422 (0.810) 38.944 (0.000) -0.424 (0.782) (A A A R A)

HS 250 26 11.865 (0.001) 2.674 (0.102) 14.539 (0.001) 3.454 (0.750) 6.931 (0.049) (R A R A R)
500 39 7.102 (0.008) 2.263 (0.132) 9.365 (0.009) 8.912 (0.179) 0.414 (0.581) (R A R A A)
1000 56 0.731 (0.393) 3.921 (0.048) 4.652 (0.098) 27.387 (0.000) 5.952 (0.027) (A R A R R)

VC 250 4 8.185 (0.004) 0.305 (0.581) 8.490 (0.014) - 0.000 (0.801) (R A R - A)
500 5 24.736 (0.000) 0.219 (0.640) 24.955 (0.000) - 2.389 (0.451) (R A R - A)
1000 6 64.564 (0.000) 0.150 (0.699) 64.714 (0.000) - 10.073 (0.031) (R A R - R)

Table 5.8: Comparison of back-testing results for the various VaR models at 95% confidence level.
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p = 10%

Type of back-test

VaR model Window Exceptions LRPOF LRIND LRCC DQ TN,[N/2] Test results

DCC-G Clayton cop-EVT 250 26 0.044 (0.834) 0.106 (0.745) 0.150 (0.928) 3.524 (0.741) 1.903 (0.276) (A A A A A)
500 49 0.022 (0.882) 0.466 (0.495) 0.488 (0.783) 5.478 (0.484) -0.620 (0.836) (A A A A A)
1000 107 0.534 (0.465) 1.792 (0.181) 2.326 (0.313) 6.079 (0.414) -0.292 (0.737) (A A A A A)

DCC-G t-cop-EVT 250 27 0.174 (0.677) 0.006 (0.938) 0.180 (0.914) 3.524 (0.741) 1.941 (0.227) (A A A A A)
500 50 0.000 (1.000) 0.271 (0.603) 0.271 (0.873) 5.478 (0.484) -0.599 (0.854) (A A A A A)
1000 108 0.695 (0.404) 1.505 (0.220) 2.185 (0.335) 6.278 (0.393) -0.283 (0.751) (A A A A A)

BG Vine cop-EVT? 250 24 0.045 (0.832) 0.018 (0.893) 0.063 (0.969) 0.288 (0.587) 9.473 (0.149) (A A A A A)
500 47 0.204 (0.652) 0.374 (0.541) 0.579 (0.749) -0.558 (0.845) 15.994 (0.014) (A A A A R)
1000 94 0.403 (0.526) 4.837 (0.028) 5.240 (0.073) -1.251 (0.957) 16.735 (0.010) (A R A A R)

BG Student’s-t cop-EVT? 250 25 0.000 (1.000) 0.021 (0.885) 0.021 (0.990) 9.473 (0.149) 1.980 (0.272) (A A A A A)
500 48 0.090 (0.764) 0.129 (0.719) 0.219 (0.896) 13.407 (0.037) -0.579 (0.824) (A A A R A)
1000 100 0.000 (1.000) 1.750 (0.186) 1.750 (0.417) 13.610 (0.034) -1.313 (0.965) (A A A R A)

BG Frank cop-EVT? 250 25 0.000 (1.000) 0.021 (0.885) 0.021 (0.990) 9.473 (0.149) 1.980 (0.271) (A A A A A)
500 48 0.090 (0.764) 0.129 (0.719) 0.219 (0.896) 13.407 (0.037) -0.579 (0.827) (A A A R A)
1000 101 0.011 (0.916) 1.309 (0.251) 1.320 (0.517) 12.984 (0.043) -1.323 (0.970) (A A A R A)

BG Student’s-t cop-HS 250 34 3.274 (0.070) 0.165 (0.685) 3.439 (0.179) 31.455 (0.000) 1.009 (0.433) (A A A R A)
500 66 5.223 (0.022) 1.555 (0.212) 6.779 (0.034) 33.545 (0.000) -0.186 (0.949) (R A R R A)
1000 119 3.805 (0.051) 0.473 (0.492) 4.277 (0.118) 29.898 (0.000) -0.620 (0.845) (A A A R A)

BG Frank cop-HS 250 33 2.612 (0.106) 0.820 (0.365) 3.432 (0.180) 21.665 (0.001) 1.356 (0.358) (A A A R A)
500 56 0.773 (0.379) 1.168 (0.280) 1.941 (0.379) 36.016 (0.000) 0.382 (0.569) (A A A R A)
1000 104 0.176 (0.675) 1.856 (0.173) 2.032 (0.362) 58.452 (0.000) 0.208 (0.579) (A A A R A)

HS 250 40 8.623 (0.003) 2.674 (0.102) 11.297 (0.004) 11.128 (0.084) 6.931 (0.049) (R A R A R)
500 68 6.548 (0.011) 2.263 (0.132) 8.811 (0.012) 9.564 (0.144) 0.414 (0.581) (R A R A A)
1000 107 0.534 (0.465) 3.921 (0.048) 4.455 (0.108) 11.829 (0.066) 5.952 (0.027) (R A R A A)

VC 250 13 7.627 (0.006) 0.157 (0.692) 7.784 (0.020) - 0.208 (0.719) (R A R - A)
500 16 34.045 (0.000) 0.709 (0.340) 34.754 (0.000) - 5.199 (0.048) (R A R - R)
1000 22 95.951 (0.000) 3.003 (0.083) 95.954 (0.000) - 13.445 (0.001) (R A R - R)

Table 5.9: Comparison of back-testing results for the various VaR models at 90% confidence level.
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2008 Financial Crisis 2011 Financial Crisis Test results
VaR model p = 1% p = 5% p = 10% p = 1% p = 5% p = 10% 2008 2011

DCC-G Clayton cop-EVT Exceptions 4 18 30 1 12 35 (A A A) (A A A)

DCC-G t-cop-EVT Exceptions 3 17 30 1 11 35 (A A A) (A A A)

BG Frank cop-EVT? Exceptions 4 18 29 3 14 33 (A A A) (A A A)

BG t-cop-EVT? Exceptions 4 18 28 3 15 33 (A A A) (A A A)

BG Vine cop-EVT? Exceptions 0 16 27 0 10 31 ( - A A) ( - A A)

BG Student’s-t cop-HS Exceptions 8 33 59 9 29 43 (R R R) (R R R)

BG Frank cop-HS Exceptions 8 37 59 8 23 43 (R R R) (R R R)

HS Exceptions 12 37 62 17 33 52 (R R R) (R R R)

VC Exceptions 22 33 47 7 19 26 (R R R) (R A A)

Table 5.10: Reliability of the VaR models in periods of financial distress based on Kupiec’s unconditional
coverage back-test. The VaR model is reliable if the number of exceptions fall within the intervals: 1 ≤ T1 ≤ 6
for 99% confidence level, 7 ≤ T1 ≤ 20 for 95% confidence level, 18 ≤ T1 ≤ 36 for 90% confidence level
for the 2008 crisis period and 1 ≤ T1 ≤ 6 for 99% confidence level, 7 ≤ T1 ≤ 20 for 95% confidence level,
17 ≤ T1 ≤ 36 for 90% confidence level for the 2011 crisis period.

5.5 Conclusion

In this chapter, we have constructed a VaR model for VaR estimation by applying EVT

directly to the exposures to risk factors and incorporating the proposed hybrid method for

threshold selection. We construct the VaR model by combining a Bayesian GARCH(1,1)

model with Student’s-t distributions as the underlying volatility model, copula functions

to model dependence among risk factors, and EVT to model the left tail. We compare

the different VaR models to the traditional historical simulation and variance-covariance

methods commonly used by banks. Back-testing results suggest that EVT based VaR mod-

els and EVT based VaR models incorporating the hybrid method for threshold selection

(EVT?) produced more reliable estimates of VaR. At higher confidence levels, EVT VaR

estimates based on the hybrid method for threshold selection are more stable compared

to the traditional EVT VaR models.



Chapter 6

Forecasting Value-at-Risk estimates

using Bayesian Markov-Switching

GJR-GARCH(1,1) copula-EVT model:

Evidence from UK banks

This chapter propose a model for forecasting Value-at-Risk (VaR) using a Bayesian Markov

Switching GJR-GARCH(1,1) model with skewed Student’s-t innovations, copula func-

tions and extreme value theory.

6.1 Introduction

The previous three chapters uses GARCH(1,1) models in which the parameters are not

time varying. A study by Bauwens et al. (2014) have shown that volatility predictions

following econometric models that ignore regime changes and time varying parameters

can result to several drawbacks. For example, they may fail to capture the dynamics of

129
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fluctuations in the time series data. Ignoring regime changes and time varying parameters

in high-volatility periods causes significant upwards bias in estimating the GARCH pa-

rameters, which impairs volatility forecasts Haas et al. (2004). Markov-switching GARCH

model, first developed by Gray (1996) and later improved by Haas et al. (2004); Klaassen

(2002), helps address the issues since it allows the parameters of GARCH models to vary

over time according to a latent discrete Markov process, which leads to volatility forecasts

that can rapidly adapt to variations Ardia et al. (2016).

We combine Bayesian Markov-switching GJR-GARCH(1,1) model that identifies non-

constant volatility over time and allows the GARCH parameters to vary over time follow-

ing a Markov process with copula functions and EVT. The hybrid method for threshold

selection is also employed to formulate the Bayesian Markov-switching GJR-GARCH(1,1)

copula-EVT VaR model which is then used to forecast the level of risk on financial asset

returns.

The rest of the chapter is structured as follows: Section 6.2 presents the Bayesian

Markov-switching GJR-GARCH methodology, Section 6.3 presents data and results. In

Section 6.4, we check the reliability of the VaR model followed by conclusion in Section

6.5.
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6.2 Methodology

6.2.1 Markov-switching GJR-GARCH model

Let rt represent a time series, then a general Markov-switching GARCH specification can

be represented as

rt|(∆t = k,Ωt−1) ∼ D(0, hk,t,Θk), (6.1a)

rt = εt(h
1/2
∆t,t

), (6.1b)

where ∆t is a Markov chain (a stochastic variable) defined on the parameter space S =

{1, . . . ,K} that symbolises the model, εt is the noise, which assumes a skewed Student’s-t

distribution, D(0, hk,t,Θk) is a continuous distribution with zero mean and conditional

variance hk,t, Ωt−1 is the information set observed up to time t − 1, and Θk is a vector of

the shape parameters. We define a K × K transition probability matrix P, with distinctive

elements

pi j = P[∆t = j|∆t−1 = i] ∀i, j ∈ {1, . . . ,K} , 0 < pi j < 1, ΣK
j=1pi j = 1, (6.2)

where pi j is the probability of transition from state ∆t−1 = i to state ∆t = j. The conditional

variance hk,t for k = 1, . . .K are assumed to follow GARCH type volatility models Ardia

et al. (2016); Haas et al. (2004). k represents each regime in the Markov chain.

Volatility reacts differently with large negative returns as compared to positive re-

turns reflecting leverage effects (Jorion, 2007); a condition commonly referred to as the

asymmetric response of volatility. It is well known that traditional GARCH models can-

not capture the asymmetric response of volatility. Several extensions of GARCH models

have since been developed as possible solutions to these drawbacks. The most common
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of these are the exponential generalized ARCH (EGARCH) model of Nelson (1991), the

threshold GARCH (TGARCH) model of Zakoian (1994), and the GJR-GARCH model of

Glosten et al. (1993). The only significant, albeit minor, difference between TGARCH and

GJR-GARCH models is that TGARCH uses standard deviation instead of variance in its

specifications (Ali et al., 2013). We employ the Markov-switching GARCH model of Haas

et al. (2004) to capture the differences in the variance dynamics of high and low volatility

periods (Ardia et al., 2016), and use the GJR-GARCH model to capture the asymmetry

response in the conditional volatility process, hence the Markov-switching GJR-GARCH

(MS-GJR-GARCH) model.

The conditional variance of a MS-GJR-GARCH model is defined as

hk,t = α0,k + (α1,k + α2,kI{rt−1<0})r2
t−1 + βkhk,t−1, k = 1, . . .K, (6.3)

where I{·} is an indicator function introduced to capture the leverage effect such that

It−1 =
{

1, if rt−1<0,
0, if rt−1≥0.

(6.4)

α2,k controls the degree of asymmetry in the conditional volatility to the past shock in

regime k (Ardia et al., 2016). Thus, α2,k > 0 indicates the presence of leverage effect which

implies previous negative returns have higher influence on the volatility. The constraints

α0,k > 0, α1,k + α2,k ≥ 0 and βk ≥ 0 ensures a positive variance while covariance stationary

is achieved by ensuring that

α1,k + α2,kE[ε2
k,tI{εk,t<0}] + βk < 1, (6.5)

where I{.} = 1 if the condition holds and 0 otherwise. Note that E[ε2
k,tI{εk,t<0}] = 1

2 when εk
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is symmetrically distributed.

For the conditional distribution of rt in each regime of the Markov chain, we employ

a skew and fat tail error probability distribution; the skewed Student’s-t distribution.

We use the skewed Student’s-t distribution because it is able to account for the excess

kurtosis in the conditional distribution that is common with financial time series processes

(Ardia, 2008). Moreover, recent studies by Chen et al. (2017, 2012) have shown that

skewed Student’s-t errors distribution is a good choice, when compared to a range of

existing alternatives. The probability density function (PDF) of a Student’s-t distribution

is defined as

fs(ε, ν) =
Γ( ν+1

2 )√
(ν − 2)πΓ( ν2 )

(
1 +

ε2

ν − 2

)− ν+1
2

, ε ∈ R, (6.6)

where the constraint on the degrees of freedom parameter ν > 2 is imposed to guarantee

that the second order moment exist, and Γ(·) is the Gamma function. Skewness is intro-

duced by an additional parameter γk > 0 as defined in Fernández and Steel (1998); that

is

p(εk|v, γk) =
2

γk + 1
γk

{
fs

(
εk

γk

)
I[0,∞)(εk) + fs(γkεk)I(−∞,0)(εk)

}
. (6.7)

When γk , 1, the posterior distribution, p(εk|v, γk), loses symmetry (see Trottier and

Ardia (2016); Ardia et al. (2016); Fernández and Steel (1998) for more details on skewed

Student’s-t probability distribution).

We define a vector of the risk factor returns as r = (r1, . . . , rT)′,θk = (α0,k, α1,k, α2,k, βk,P)′,

and a vector of the model parameters as Λ = (θ1,Θ1, . . . , θK,ΘK); ΘK = (νK, γK). Then,
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from Bayes theorem and prior distribution of the model parameters p(Λ), we have

pi j = P[∆t = j|∆t−1 = i] =
f (rt|∆t = j,Ωt−1; Λ) Pr(∆t = j|Ωt−1)

Σk
i=1 f (rt|∆t = i,Ωt−1; Λ) Pr(∆ = i|Ωt−1)

, (6.8)

where f (rt|∆t = j,Ωt−1; Λ) is the conditional probability density of rt at time t restrictive

on Ωt−1 and regime j. Therefore, we have

f (rt|Λ,Ωt−1) =

k∑
i=1

k∑
j=1

Pr[∆t = j|∆t−1 = i] fD(rt|∆t = j,Ωt−1; Λ) (6.9)

and a likelihood function

L(Λ|r) =

T∏
t=1

f (rt|Λ,Ωt−1). (6.10)

The Metropolis Hasting (MH) algorithm of Markov Chain Monte Carlo (MCMC) is then

employed to estimate the parameter values of the posterior distribution, where Λ is a

random variable with Markov chains generated as (Λ[0]), . . . , (Λ[ j]), . . . in a parameter

space. As (Λ[0]), . . . , (Λ[ j]) . . . → ∞, the posterior distribution; p(r|Λ), converges to its

stationary distribution from which the optimal mean parameters are calculated as an

average of the posterior distribution.

6.3 Data and Results

We employ same data as in Chapters 4 and 5, and same in-sample and out-of-sample data

for VaR forecasting and back-testing. To capture the tail distribution and the dynamics

of fluctuations in the time series data, we consider a single-state, k = 1 and two-state, k =

{1, 2}Markov Switching GARCH specifications. The underlying volatility model is a GJR-

GARCH(1,1) model with skewed Student’s-t distribution. Since we use just one variance
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specification (i.e., GJR-GARCH), the two-state Markov Switching GARCH is generated by

setting the number of regimes in the conditional distribution to 2. For the single-state, the

length of the variance specification is equal to the length of the conditional distribution,

which is 1 (see Ardia et al. (2016)). Also note that the single-state Markov Switching

GJR-GARCH(1,1) model corresponds to GJR-GARCH(1,1) model without regime change.

Therefore, we simply refer to the single-state and two-state Markov Switching GJR-

GARCH(1,1) models as GJR-GARCH(1,1) and MS-GJR-GARCH(1,1) models, respectively

(see Ardia et al. (2016)). GARCH parameters are estimated using Bayesian statistics as

discussed in Chapter 4. Here, we assign a prior distribution with initial hyperparameters

and generate for each state, two MCMC simulations of 20000 draws each. If convergence

is attained, discard the first 10000 draws and select only the 10th draw from each chain

such that auto-correlation between draws is reduced to almost zero. The two chains are

then merged together to obtain a sample of 2000 observations from which the mean values

of each parameter with respect to its posterior distribution is calculated as the optimal

parameter estimate of the Bayesian GJR-GARCH(1,1) and Bayesian MS-GJR-GARCH(1,1)

models with a skewed Student’s-t distributions. Estimation results are presented in Tables

6.1 and 6.2 with standard errors in parenthesis. For MS-GJR-GARCH(1,1) model, the

degrees of freedom parameter, ν, is fixed across the regimes.
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α0 α1 α2 β1 ν γ

UK.HSBA 7.0531e-06(0.0000) 0.0508(0.0010) 0.1001(0.0000) 0.8488(0.0002) 5.8153 (0.0114) 1.0067(0.005)

UK.BARC 1.4764e-6(0.0000) 0.0509(0.0000) 0.1001(0.0000) 0.8570(0.0001) 6.4085 (0.0133) 1.0014 (0.0005)

UK.LLOY 7.0777e-06(0.0000) 0.0511(0.0000) 0.1001(0.0000) 0.8716(0.0001) 6.1691 (0.0118) 1.0009 (0.0005)

UK.RBS 9.4281e-06(0.0000) 0.0511(0.0000) 0.1002(0.0000) 0.8688(0.0001) 5.9166 (0.0111) 1.0160 (0.0005)

UK.STAN 2.0683e-05(0.0000) 0.0508(0.0000) 0.1002(0.0000) 0.8321(0.0002) 6.3657 (0.0138) 1.0266 (0.0005)

Portfolio 5.4112e-06(0.0000) 0.0510(0.0000) 0.1002(0.0000) 0.8670(0.0001) 9.4379 (0.0298) 0.9936 (0.0005)

Table 6.1: Parameter estimates following Bayesian GJR-GARCH(1,1) model with skewed Student’s-t distribution. Standard errors in parentheses.
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Two-state (k=1,2) k = 1
α0 1 α1 1 α2 1 β1 1 ν γ 1

UK.HSBA 2.9335e-07(0.0000) 0.0270 (0.0010) 0.0121 (0.0004) 0.9612 (0.0005) 6.2679 (0.0159) 1.0380 (0.0009)

UK.BARC 1.9132e-06(0.0000) 0.0302 (0.0004) 0.0811 (0.0014) 0.9208 (0.0011) 7.9120 (0.0270) 1.0115 (0.0010)

UK.LLOY 2.7159e-07(0.0000) 0.0109 (0.0002) 0.0253 (0.0003) 0.9729 (0.0002) 5.6388 (0.0142) 0.9516 (0.0007)

UK.RBS 1.0034e-07(0.0000) 0.0367 (0.0002) 0.0030 (0.0001) 0.9595 (0.0002) 7.4127 (0.0220) 1.0146 (0.0009)

UK.STAN 3.8283e-06(0.0000) 0.0338 (0.0008) 0.0932 (0.0032) 0.9083 (0.0027) 7.2792 (0.0186) 1.0462 (0.0011)

Portfolio 1.5441e-05(0.0000) 0.0341 (0.0004) 0.1694 (0.0040) 0.8665 (0.0025) 14.1506 (0.0621) 0.9954 (0.0013)

k = 2
α0 2 α1 2 α2 2 β1 2 ν γ 1

UK.HSBA 1.0589e-05(0.0000) 0.0412 (0.0005) 0.1568 (0.0011) 0.8566 (0.0007) 6.2679 (0.0159) 0.9496 (0.0012)

UK.BARC 1.8650e-05(0.0000) 0.0056 (0.0002) 0.2322 (0.0027) 0.8586 (0.0015) 7.9120 (0.0270) 0.9782 (0.0018)

UK.LLOY 1.5749e-05(0.0000) 0.0558 (0.0004) 0.0776 (0.0014) 0.9045 (0.0006) 5.6388 (0.0142) 1.1826 (0.0026)

UK.RBS 6.8672e-05(0.0000) 0.0683 (0.0013) 0.8202 (0.0043) 0.4771 (0.0022) 7.4127 (0.0220) 1.0138 (0.0023)

UK.STAN 1.8827e-05(0.0000) 0.1016 (0.0011) 0.3991 (0.0040) 0.6778 (0.0028) 7.2792 (0.0186) 1.0085 (0.0015)

Portfolio 2.2462e-06(0.0000) 0.0334 (0.0004) 0.2052 (0.0040) 0.8543 (0.0023) 14.1506 (0.0298) 0.9936 (0.0005)

Table 6.2: Parameter estimates for two-state MS-GJR-GARCH(1,1) model with skewed Student’s-t distribution. Standard errors in parentheses. Degrees of freedom
parameter, ν is fixed across the regimes
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Applying Eqs (6.1a) and (6.1b), we then obtain a matrix Σ, which consists of the filtered

marginal standardised residuals,
{
εi,t

}T
t=1, of the overall process. That is

{
εi,t

}
= Σi,t = (ri,t)h

−1/2
∆i,t,i,t

, i = 1, . . . ,N; t = 1, . . . ,T. (6.11)

ARCH LM test and Ljung-Box test on the standardised residuals and standardised squared

residuals, respectively, for lags 5 and 10 are presented in Table 6.3. For GJR-GARCH(1,1)

model, there still exist some serial correlation in the standardized residuals of UK.RBS

stock. For MS-GJR-GARCH(1,1) model, there is no evidence of an ARCH effect or serial

correlations in the standardized residuals.
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ARCH LM test

UK.HSBA UK.BARC UK.LLOY UK.RBS UK.STAN
GJR-GARCH(1,1) model LM(5) 2.21 2.35 2.96 17.78 4.01

p-value 0.820 0.800 0.706 0.003 0.548

LM(10) 10.26 4.13 7.04 18.62 6.79
p-value 0.820 0.942 0.722 0.045 0.745

Ljung-Box test
UK.HSBA UK.BARC UK.LLOY UK.RBS UK.STAN

LM(5) 2.24 2.35 2.95 17.65 4.11
p-value 0.815 0.799 0.707 0.003 0.534

LM(10) 9.92 4.14 7.17 18.57 6.89
p-value 0.447 0.941 0.710 0.046 0.736

ARCH LM test
UK.HSBA UK.BARC UK.LLOY UK.RBS UK.STAN

MS-GJR-GARCH(1,1) model LM(5) 2.164 2.29 8.74 5.31 3.06
p-value 0.826 0.807 0.120 0.379 0.690

LM(10) 6.01 3.75 13.39 5.83 5.30
p-value 0.815 0.958 0.203 0.829 0.870

Ljung-Box test
UK.HSBA UK.BARC UK.LLOY UK.RBS UK.STAN

Q(5) 2.13 2.22 8.60 5.30 10.56
p-value 0.831 0.818 0.126 0.380 0.061

Q(10) 5.98 3.70 13.27 5.88 12.71
p-value 0.817 0.960 0.209 0.826 0.240

Table 6.3: ARCH LM test on the standardised residuals and Ljung-Box test on the standardised squared residuals.
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We now apply copula functions discussed in Chapter 3 to model dependence. Copula

parameters are estimated by the CML estimation method and inversion of Kendall’s τ.

Table 6.4 presents results of the estimated copula parameters, MLE and AIC values. Based

on the MLE value and AIC value, Frank and Student’s-t copulas are selected as the best

fit to model dependence. With the marginal distributions set to Student’s-t distributions,

the copula parameters are used to generate a new matrix of size 10000 ×N:

Σ̂ =
{
ζi, j

}
, j = 1, . . . , 10000, i = 1, . . . ,N, (6.12)

assumed to be free from assumptions of normality and linear correlations. Multivariate

ARCH test on Σ̂ at 5% significance level show no evidence of conditional heteroscedas-

ticity or serial correlation; see Table 6.6.

GJR-GARCH(1,1) Archimedean copulas Elliptical copulas
Gumbel Clayton Frank Gaussian Student’s-t

Kendall’s τ 1.782 (0.023) 1.563 (0.046) 4.697 (0.042) ρG = ρτ(ρSE) ρt = ρτ(ρSE)
MLE 3226 2745 3250 3846 4108
AIC -14.158 -13.835 -14.173 3.491 3.359

MS-GJR-GARCH(1,1)
Gumbel Clayton Frank Gaussian Student’s-t

Kendall’s τ 1.773 (0.023) 1.546 (0.046) 4.657 (0.041) ρG = ρτ(ρSE) ρt = ρτ(ρSE)
MLE 3163 2705 3206 3773 4013
AIC -14.119 -13.806 -14.146 3.529 3.405

Table 6.4: Copula parameter estimates are based on inversion of Kendall’s τ following CML estimation
method; standard errors in parentheses. The best copula for modeling dependence among the risk factors
is that with the highest MLE value or smallest AIC value (in bold). Frank copula is selected from the
Archimedean copula family and Student’s-t-copula is selected from the elliptical copula family.
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UK.HSBA UK.BARC UK.LLOY UK.RBS UK.STAN
GJR-GARCH(1,1)

UK.HSBA 1
UK.BARC 0.6230 (0.013) 1
UK.LLOY 0.5521 (0.015) 0.7054 (0.011) 1
UK.RBS 0.5741 (0.014) 0.7262 (0.011) 0.7176 (0.011) 1
UK.STAN 0.6383 (0.013) 0.6027 (0.014) 0.5437 (0.015) 0.5460 (0.015) 1

MS-GJR-GARCH(1,1)
UK.STAN 1
UK.BARC 0.6257 (0.013) 1
UK.LLOY 0.5544 (0.015) 0.7074 (0.011) 1
UK.RBS 0.5779 (0.015) 0.7282 (0.011) 0.7225 (0.011) 1
UK.STAN 0.6437 (0.012) 0.6075 (0.014) 0.5439 (0.015) 0.5483 (0.015) 1

Table 6.5: Kendall’s τ; ρτ(ρSE) for Gaussian and Student’s-t copula parameter estimates (standard errors
in parenthesis).

Copula type GJR-GARCH(1,1) MS-GJR-GARCH(1,1)
Frank Qk(10) = 11.413 Qr

k(10) = 267.925 Qk(10) = 5.288 Qr
k(10) = 245.072

p-value = 0.326 p-value = 0.208 p-value = 0.871 p-value = 0.576

Student’s-t Qk(10) = 5.507 Qr
k(10) = 235.133 Qk(10) = 2.554 Qr

k(10) = 249.171
p-value = 0.855 p-value = 0.742 p-value = 0.990 p-value = 0.503

Table 6.6: Multivariate ARCH test on
{
ζi, j

}
show no evidence of conditional heteroscedasticity.

We now apply the POT method of EVT and the proposed hybrid method for threshold

selection to obtain VaRq(Z) for the individual banks. Using VaRq(Z), we employ Eqn.(3.37)

to obtain VaRp
q(Z); the portfolio quantile VaR, used to forecast daily VaR estimates. Results

are presented in Tables 6.7 and 6.8. The one day ahead VaR is then calculated as

VaRp
q,t =VaRp

q(Z)ĥ1/2
∆t,t+1, (6.13)

where ĥ
1
2
∆t,t+1 is the one-step-ahead conditional volatility forecast of the overall conditional

variance for the portfolio at time t + 1 for state k, ∆t is a Markov chain as defined in 6.1a

and 6.1b but for the portfolio. That is, R̄p,t|(∆t = k,Ωt−1), and the parameters are sampled

from the posterior distribution using MH algorithm. Figs 6.1 and 6.2 show time plots of

profit and loss (P&L) of the portfolio return series and forecasts portfolio VaR estimates

at 99% and 95% confidence levels. A visual observation of the plots suggests that the



6.3. Data and Results 142

VaR models performs quite well in capturing the dynamics in the portfolio return series.

However, the model needs to be validated through back-testing.

Parameters VaRq,i(Z)
ξ ψ(ϑ∗) ϑ∗ Nϑ∗ µ σ 99% 95%

Student’s-t copula: UK.HSBA 0.1660 0.7143 2.2448 333 0.3881 0.4061 3.1958 1.9640
UK.BARC 0.2239 0.6479 2.4624 218 0.7974 0.2750 3.0141 1.9716
UK.LLOY 0.1838 0.6353 2.2321 356 0.6481 0.3441 3.1407 2.0229
UK.RBS 0.1273 0.7301 2.4687 271 0.3567 0.4612 3.2448 2.0385
UK.STAN 0.1465 0.7135 2.3293 287 0.3538 0.4242 3.1428 1.9489

VaRp
q(Z) 2.5862 1.6282

Frank copula: UK.HSBA 0.1019 0.7239 2.6476 176 0.2503 0.4796 3.0688 1.9305
UK.BARC 0.0497 0.7489 2.4331 235 -0.1297 0.6216 3.0867 1.8781
UK.LLOY 0.0390 0.7892 2.6040 223 -0.1855 0.6804 3.2469 1.9767
UK.RBS 0.2073 0.6862 2.5407 217 0.7266 0.3102 3.1174 2.0147
UK.STAN 0.1062 0.6892 3.1337 105 0.6440 0.4249 3.1674 2.1425

VaRp
q(Z) 2.5410 1.6459

Table 6.7: POT parameter estimates, VaRq,i(Z) and VaRp
q(Z) following Bayesian GJR-GARCH(1,1) Frank

and Student’s-t copula-EVT models.

Parameters VaRq,i(Z)
ξ ψ(ϑ∗) ϑ∗ Nϑ∗ µ σ 99% 95%

Student’s-t copula: UK.HSBA 0.0194 0.8795 1.8425 565 -0.4893 0.8343 3.1862 1.9389
UK.BARC 0.0239 0.8003 1.9903 409 -0.3040 0.7455 2.9471 1.8512
UK.LLOY 0.0462 0.7642 2.0585 453 -0.1450 0.6624 3.2542 1.9832
UK.RBS 0.0686 0.6675 2.3155 260 0.7943 0.5632 3.0091 1.8140
UK.STAN 0.0038 0.6891 1.9164 493 -0.1460 0.6814 3.0191 1.9067

VaRp
q(Z) 2.5127 1.5471

Frank copula: UK.HSBA 0.0868 0.8295 2.5454 201 -0.2030 0.5910 3.1457 1.9804
UK.BARC 0.0970 0.7780 1.9443 440 -0.7856 0.5132 2.9769 1.8480
UK.LLOY 0.0819 0.7132 2.1074 358 0.0287 0.5430 3.0662 1.8724
UK.RBS 0.0806 0.6030 2.5029 200 0.4796 0.4399 2.9327 1.9703
UK.STAN 0.0924 0.6688 2.3509 230 0.2210 0.4719 2.9300 1.8498

VaRp
q(Z) 2.4535 1.5513

Table 6.8: POT parameter estimates, VaRq(Z) and VaRp
q(Z) following Bayesian MS-GJR-GARCH(1,1)

Frank and Student’s-t copula-EVT models.
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Figure 6.1: Forecasts daily VaRs estimates and daily profit and loss (P&L) plots for an investment in a
portfolio consisting of all banks following Bayesian GJR-GARCH(1,1) copula EVT model.
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Figure 6.2: Forecasts daily VaRs estimates and daily profit and loss (P&L) plots for an investment in a
portfolio consisting of all banks following Bayesian MS-GJR-GARCH(1,1) copula EVT model.

6.4 Model validation

In this section, we present back-testing results for the VaR model validation for an out-

of-sample data of m = T − n observations. Table 6.9 presents the expected and observed

number of exceptions produced following each model for a portfolio consisting of all

five banks. At 99% confidence level and 250 days, the GJR-GARCH(1,1) copula EVT VaR

model registered 3 exceptions whereas the MS-GJR-GARCH(1,1) VaR model registered
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0 exceptions. Thus, following Basel rules for back-testing, the VaR models passed the

reliability test and are placed in the green zone. Back-testing results based on LRUC, LRIND,

LRCC, DQ, and TN,[N/2] tests are presented in Tables 6.10 and 6.11. For the DQ test, we use a

lagged value of 4. In Tables 6.12 and 6.13 we present, as a benchmark for our VaR models,

back-testing results of well known standard GJR-GARCH(1,1) (sGJR-GARCH(1,1)) and

standard GARCH(1,1) (sGARCH(1,1)) with skewed Student’s-t distributions VaR models.

It can be seen from the number of exceptions recorded that the MS-GJR-GARCH(1,1)

copula EVT VaR model and the benchmark VaR models does not underestimate risk

but rather too “conservative” at 99% and 95% confidence levels and thus preferred by

most financial institutions. GJR-GARCH(1,1) copula EVT VaR model captures VaR quite

well in periods of calm and in periods of crisis for short and long observation periods.

It does not overestimate or underestimate the level of risk on the portfolio and should

be considered reliable as a measure of risk. Performance evaluation for rejection or

acceptance of the VaR models, based on 5% significance level, are presented in Tables 6.14

and 6.15. Furthermore, comparing the results of Tables 6.12, 6.13, 6.14, and 6.15 to Tables

5.7, 5.8 and 5.10, it is evident that the robust EVT VaR models perform better than the

sGARCH(1,1), sGJR-GARCH(1,1), HS, and VC VaR models.
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250 500 1000
VaR model 1% 5% 1% 5% 1% 5%

Expected exceptions: 2.5 12.5 5 25 10 50

Bayesian GJR-GARCH(1,1) Student’s-t copula EVT Observed: 3 11 4 26 8 57
Coverage rate 0.012 0.044 0.008 0.052 0.008 0.057

Bayesian GJR-GARCH(1,1) Frank copula EVT Observed: 3 11 5 24 9 55
Coverage rate 0.012 0.044 0.010 0.048 0.009 0.055

Bayesian MS-GJR-GARCH(1,1) Student’s-t copula EVT Observed: 0 6 0 15 0 33
Coverage rate 0.000 0.024 0.000 0.030 0.000 0.033

Bayesian MS-GJR-GARCH(1,1) Frank copula EVT Observed: 0 6 0 14 0 32
Coverage rate 0.000 0.024 0.000 0.028 0.000 0.032

Table 6.9: Expected versus observed number of exceptions. Out-of-sample data is divided into blocks of 250, 500, and 1000 observation periods, time horizon of 1 day.
The coverage rate T1

Tw
≈ 1 − q.
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Student’s-t copula Back-test type
Prob Window Exceptions LRUC LRIND LRCC DQ TN,[N/2]

1%: 250 3 0.095 (0.758) 0.170 (0.680) 0.265 (0.876) 0.213 (0.999) -0.072 (0.966)
500 4 0.217 (0.641) 0.140 (0.708) 0.357 (0.837) 0.415 (0.998) -0.616 (0.994)

1000 8 0.434 (0.510) 0.268 (0.605) 0.702 (0.704) 1.057 (0.983) 1.386 (0.385)

5%: 250 11 0.197 (0.657) 2.475 (0.116) 2.672 (0.263) 2.057 (0.914) 2.108 (0.348)
500 26 0.042 (0.838) 1.997 (0.158) 2.039 (0.361) 2.962 (0.814) -0.254 (0.742)

1000 57 0.989 (0.320) 3.145 (0.076) 4.134 (0.127) 7.494 (0.278) -1.039 (0.939)

Frank copula Back-test type
Prob Window Exceptions LRUC LRIND LRCC DQ TN,[N/2]

1%: 250 3 0.095 (0.758) 0.168 (0.682) 0.263 (0.877) 0.213 (0.999) -0.072 (0.967)
500 5 0.000 (1.000) 0.219 (0.640) 0.219 (0.896) 0.415 (0.998) -0.839 (0.999)

1000 9 0.105 (0.746) 0.340 (0.560) 0.445 (0.801) 1.066 (0.983) 0.537 (0.676)

5%: 250 11 0.197 (0.657) 1.887 (0.170) 2.084 (0.353) 2.057 (0.914) 2.426 (0.244)
500 24 0.043 (0.836) 1.343 (0.247) 1.386 (0.500) 2.305 (0.890) -0.174 (0.723)

1000 55 0.510 (0.475) 2.531 (0.112) 3.041 (0.219) 6.335 (0.387) -1.004 (0.934)

Table 6.10: Back-testing results following Bayesian GJR-GARCH(1,1) Student’s-t and Frank copula-EVT VaR models. p-values in parenthesis. For DQ test, we use a
lagged value of 4.
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Student’s-t copula Back-test type
Prob Window Exceptions LRUC LRIND LRCC DQ TN,[N/2]

1%: 250 0 NaN - - 0.213 (0.999) -
500 0 NaN - - 0.415 (0.998) -

1000 0 NaN - - 1.057 (0.983) -

5%: 250 6 4.369 (0.037) 0.641 (0.423) 5.010 (0.082) 1.527 (0.958) 3.069 (0.379)
500 15 4.884 (0.027) 0.001 (0.975) 4.885 (0.087) 2.226 (0.898) 1.154 (0.474)

1000 33 6.878 (0.009) 0.032 (0.858) 6.910 (0.032) 0.697 (0.995) -0.793 (0.908)

Frank copula Back-test type
Prob Window Exceptions LRUC LRIND LRCC DQ TN,[N/2]

1%: 250 0 NaN - - 0.213 (0.999) -
500 0 NaN - - 0.415 (0.998) -

1000 0 NaN - - 1.057 (0.983) -

5%: 250 6 4.369 (0.037) 0.699 (0.403) 5.068 (0.079) 30.724 (0.000) 2.070 (0.307)
500 14 6.018 (0.014) 0.032 (0.858) 6.050 (0.049) 13.819 (0.032) 1.223 (0.382)

1000 32 7.777 (0.005) 0.007 (0.933) 7.784 (0.020) 7.321 (0.292) -1.386 (0.979)

Table 6.11: Back-testing results following Bayesian MS-GJR-GARCH(1,1) Student’s-t and Frank copula-EVT VaR models. p-values in parenthesis. For DQ test, we
use a lagged value of 4.
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250 500 1000
1% 5% 1% 5% 1% 5%

Expected exceptions 2.5 12.5 5 25 10 50

Observed exceptions sGARCH(1,1) 0 7 0 16 0 32
Coverage rate 0.000 0.028 0.000 0.032 0.000 0.032

Observed exceptions sGJR-GARCH(1,1) 0 7 0 14 0 26
Coverage rate 0.000 0.028 0.000 0.028 0.000 0.026

Table 6.12: Expected versus observed number of exceptions following sGARCH(1,1) and sGJR-
GARCH(1,1) models with skewed Student’s-t distributions. The coverage rate T1

Tw
≈ 1 − q
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sGARCH(1,1) Back-test type
Prob Window Exceptions LRUC LRIND LRCC DQ TN,[N/2]

1%: 250 0 NaN - - 37.933 (0.000) -
500 0 NaN - - 18.530 (0.005) -

1000 0 NaN - - 11.132 (0.084) -

5%: 250 7 3.009 (0.083) 0.962 (0.327) 3.971 (0.137) 3.888 (0.692) 1.916 (0.448)
500 16 3.888 (0.049) 0.011 (0.916) 3.899 (0.142) 2.409 (0.879) -0.069 (0.708)

1000 32 7.777 (0.005) 0.007 (0.933) 7.784 (0.020) 5.486 (0.483) 0.416 (0.541)

sGJR-GARCH(1,1) Back-test type
Prob Window Exceptions LRUC LRIND LRCC DQ TN,[N/2]

1%: 250 0 NaN - - 23.077 (0.001) -
500 0 NaN - - 48.651 (0.000) -

1000 0 NaN - - 95.686 (0.000) -

5%: 250 7 3.009 (0.083) 0.962 (0.327) 3.971 (0.137) 57.759 (0.000) 4.119 (0.228)
500 14 6.018 (0.014) 0.032 (0.858) 6.050 (0.049) 85.830 (0.000) -0.773 (0.908)

1000 26 14.597 (0.000) 0.263 (0.608) 14.860 (0.001) 169.533 (0.000) -0.975 (0.928)

Table 6.13: Back-testing results following sGARCH(1,1) and sGJR-GARCH(1,1) models with skewed Student’s-t distributions. p-values in parenthesis. For DQ test,
we use a lagged value of 4.



6.4.M
odelvalidation

151

P = 1% Back-test type
VaR model Window LRUC LRIND LRCC DQ TN,[N/2]

GJR-GARCH(1,1) Student’s-t copula-EVT 250 A (0.758) A (0.680) A (0.876) A (0.999) A (0.966)
500 A (0.641) A (0.708) A (0.837) A (0.998) A (0.994)

1000 A (0.510) A (0.605) A (0.704) A (0.983) A (0.385)

GJR-GARCH(1,1) Frank copula-EVT 250 A (0.758) A (0.682) A (0.877) A (0.999) A (0.967)
500 A (1.000) A (0.640) A (0.896) A (0.998) A (0.999)

1000 A (0.746) A (0.560) A (0.801) A (0.983) A (0.676)

MS-GJR-GARCH (1,1) Student’s-t copula-EVT 250 R (NaN) R (-) R (-) A (0.999) R (-)
500 R (NaN) R (-) R (-) A (0.998) R (-)

1000 R (NaN) R (-) R (-) A (0.983) R (-)

MS-GJR-GARCH(1,1) Frank copula-EVT 250 R (NaN) R (-) R (-) A (0.999) R (-)
500 R (NaN) R (-) R (-) A (0.998) R (-)

1000 R (NaN) R (-) R (-) A (0.983) R (-)

sGARCH(1,1) 250 R (NaN) R (-) R (-) R (0.000) R (-)
500 R (NaN) R (-) R (-) R (0.005) R (-)

1000 R (NaN) R (-) R (-) A (0.084) R (-)

sGJR-GARCH(1,1) 250 R (NaN) R (-) R (-) R (0.001) R (-)
500 R (NaN) R (-) R (-) R (0.000) R (-)

1000 R (NaN) R (-) R (-) R (0.000) R (-)

Table 6.14: Performance Evaluation of the VaR models at 1% significance level. The best performance is registered by GJR-GARCH(1,1) Student’s-t copula-EVT and
GJR-GARCH(1,1) Frank copula-EVT VaR models. A = Accept, R = Reject.
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P = 5% Back-test type
VaR model Window LRUC LRIND LRCC DQ TN,[N/2]

GJR-GARCH(1,1) Student’s-t copula-EVT 250 A(0.657) A (0.116) A (0.263) A (0.914) A (0.348)
500 A (0.838) A (0.158) A (0.361) A (0.814) A (0.742)
1000 A (0.320) A (0.076) A (0.127) A (0.278) A (0.939)

GJR-GARCH(1,1) Frank copula-EVT 250 A (0.657) A (0.170) A (0.353) A (0.914) A (0.244)
500 A (0.836) A (0.247) A (0.500) A (0.890) A (0.723)
1000 A (0.475) A (0.112) A (0.219) A (0.387) A (0.934)

MS-GJR-GARCH(1,1) Student’s-t copula-EVT 250 R (0.037) A (0.423) A (0.082) A (0.958) A (0.379)
500 R (0.027) A (0.975) A (0.087) A (0.898) A (0.474)
1000 R (0.009) A (0.858) R (0.032) A (0.995) A (0.908)

MS-GJR-GARCH(1,1) Frank copula-EVT 250 R (0.037) A (0.403) A (0.079) R (0.000) A (0.307)
500 R (0.014) A (0.858) R (0.049) R (0.032) A (0.382)
1000 R (0.005) A (0.933) R (0.020) A (0.292) A (0.979)

sGARCH(1,1) 250 A (0.083) A (0.327) A (0.137) A (0.692) A (0.448)
500 R (0.049) A (0.916) A (0.142) A (0.879) A (0.708)
1000 R (0.005) A (0.933) R (0.020) A (0.483) A (0.541)

sGJR-GARCH(1,1) 250 A (0.083) A (0.327) A (0.137) R (0.000) A (0.228)
500 R (0.014) A (0.858) R (0.049) R (0.000) A (0.908)
1000 R (0.000) A (0.608) R (0.001) R (0.000) A (0.928)

Table 6.15: Performance Evaluation of the VaR models at 5% significance level. GJR-GARCH(1,1) and MS-GJR-GARCH(1,1) copula EVT VaR models performs better
than sGARCH(1,1) and sGJR-GARCH(1,1) VaR models. A = Accept, R = Reject.
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6.5 Conclusion

In this chapter, we constructed VaR models by combining a single-state and a two-state

Bayesian MS-GJR-GARCH(1,1) models as the underlying volatility models with skewed

Student’s-t distributions, copula functions to model dependence, and EVT to model the

left tail. The single-state MS-GJR-GARCH(1,1) volatility model is a GJR-GARCH(1,1)

volatility model without regime change, hence the names: Bayesian GJR-GARCH(1,1)

copula-EVT VaR model for the single-state MS-GJR-GARCH(1,1) and Bayesian MS-GJR-

GARCH(1,1) copula-EVT VaR model for the two-state MS-GJR-GARCH(1,1). It can be

seen that the proposed hybrid method for threshold selection restricts inferences to the left

tail; Tables 6.7 and 6.8, and diminishes the possibility of selecting a less suitable threshold

value.

We use, as a benchmark, VaR models constructed using sGJR-GARCH(1,1) and

sGARCH(1,1) volatility models with skewed Student’s-t distributions, but without copula

functions and EVT to compare the performance of our VaR models. Back-testing results

show that the single-state Bayesian MS-GJR-GARCH(1,1) copula-EVT VaR model is more

reliable than the two-state Bayesian MS-GJR-GARCH(1,1) copula EVT VaR model and

the benchmark VaR models. The single-state Bayesian MS-GJR-GARCH(1,1) copula EVT

VaR model does not overestimate or underestimate the level of risk on the portfolio and

is thus reliable as a measure of risk, whereas the two-state MS-GJR-GARCH(1,1) copula

EVT VaR model and the benchmark VaR models seems to overestimate the level of risk;

Tables 6.14 and 6.15.
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In recent decades, VaR has become the most common risk management measure used

by financial institutions to assess the market risk of financial assets. VaR models often

focus on the behavior of asset returns in the left tail and is therefore important that the

models are calibrated such that they do not underestimate or overestimate the proportion

of outliers, as this will have significant effects on the allocation of economic capital for

investments. Due to the “Extremistan” (Taleb, 2017) nature of financial asset returns and

volatility, the real tail risk of a financial asset is not stable as time passes, and the maximum

loss is difficult to predict. Thus, to implement a reliable VaR model, the time horizon

and type of volatility model used is very important. However, we have demonstrated

through a variety of different VaR models that when EVT is employed for VaR estimations,

the type of volatility model used is not very important as long as the volatility model is

conditional on the previous days information.

It is important to draw attention to the fact that when employing EVT, the qth quantile

of the estimator; VaRq(Z) (Eqn.(3.30)) is a point estimate with an error band that gets

154



Chapter 7. Conclusion and proposed future work 155

bigger as we move to more extreme quantiles. It is concerned only with the number of

exceedances above a certain threshold and is not affected by data outside the tail of the

distribution (Wong, 2013). This can be problematic in some cases due to limited data

points in the tail, which can inhibit proper analysis. VaRq(Z) depends on the threshold

and the number of points (i.e. exceedances) above the threshold because the parameters

are estimated based on the exceedances. Thus, it is logical to say that the reliability of

Eqn.(3.30) rests solely on the choice of the thresholds, which is very subjective.

In Chapter 3, we presented a novel approach for estimating VaR using multivariate

GARCH models, copula functions and EVT. We estimated VaR using multivariate Dy-

namic Conditional Correlation (DCC) GARCH models as the underlying volatility model

to model the correlation structure of the covariance matrix of multiple asset returns, cop-

ula functions to model dependence among the asset returns and EVT to model the tail

behavior.

In Chapter 4 we introduced a novel approach for VaR estimation by combining

Bayesian GARCH(1,1) model with Student’s-t distributions as the underlying volatil-

ity model, vine copula functions and EVT. We proposed a new method for threshold

selection; an objective hybrid method that restricts inferences on the tails of the distribu-

tions and diminishes the possibility of selecting a threshold that can compromise VaR

estimates when employing EVT.

In Chapter 5, we applied EVT directly to the exposures to risk factors to further test

the hybrid method of threshold selection. The underlying volatility model is a Bayesian

GARCH(1,1) model with Student’s-t distribution. This chapter also compared results of

the various VaR models proposed in this research to the traditional VaR models commonly

used by financial institutions.

Chapter 6 proposed a model for forecasting Value-at-Risk (VaR) using a Bayesian
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Markov Switching GJR-GARCH(1,1) model with skewed Student’s-t innovations, copula

functions and extreme value theory, taking into account regime changes and time varying

parameters.

The overall test suggest that VaR models based on EVT produced more reliable results

and VaR models based on EVT incorporating the hybrid method for threshold selection

(EVT?) produced VaR estimates that are more stable at higher confidence levels.

This research, based on the calculated MCR for market risk in relation to Basel II and

Basel III (4.11), also adds evidence to the previous findings by McAleer et al. (2011) as

stated earlier that the global financial crisis cannot be associated to the failure of Basel

II as it was implemented in Europe only from 2008, and never in the USA. Banks that

were presumed to be in good shape with higher solvency ratios and higher credit-to-GDP

ratios before their collapse or bailouts probably tampered with their internal risk models

for market risk or as a result of poor VaR models that were unable to capture fat-tail risk.

This claim is evident in the banking system of Greece which was one of the countries that

was gravely affected from the end of 2008 to around early 2014. However, this claim is

not 100% certain as the proposed VaR models need to be tested in other countries whose

banks were severely affected during the crisis period and needed to be bailed out.

In this research, we have used stock prices in the banking sector to build the proposed

VaR models. It would be interesting to see how the model behaves when applied to stock

indices and high frequency financial data.

We conclude by saying that this approach can be implemented with other conditional

multivariate volatility models providing positive-definite volatility matrices such as the

exponential weighted moving average (EWMA) model, BEKK model by Engle and Kroner

(1995) and more.



Chapter 8

Appendix

A.1 Autoregressive Moving Average Model

A time series {Xt} is an ARMA(1,1) model if

Xt = φ1Xt−1 + φ0 + Zt + ΘZt−1 (A.1)

for every t, where φ1, φ0, and Θ are constant parameters, and Zt is a random Gaussian

variable with zero mean and standard deviation σt (Boone, 2005). The model is stationary

if |φ1| < 1 and E(Xt) =
φ0

1−φ1
. When φ = 0, then Xt is a MA(1)=ARMA(0,1) model defined

as

MA(1) : Xt = Zt + ΘZt−1. (A.2)

When Θ = 0, then Xt is an AR(1)=ARMA(1,0) model defined as

AR(1) : Xt = φXt−1 + φ0 + Zt (A.3)
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A.2 Akaike information criterion (AIC) and Bayesian information

criterion

Akaike information criterion (AIC) and Bayesian information criterion (BIC) are used for model

selection and defined as

AIC = 2k − 2ln(L) (A.4)

BIC = ln(n)k − 2ln(L) (A.5)

where k is the number of estimated parameters, n is the sample size, and L is the maximum

value of the likelihood function for the model. The best model selected from a set of

models is that with the smallest AIC or BIC value.
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A.3 R-code syntax for bootstrapping of 95% confidence interval

ϑ = c(ϑ1, ϑ2, . . . , ϑ})

set.seed(20)

empDistϑ = rnorm(10000,mean = mean(ϑ), sd = sd(ϑ))

ϑ = NULL

for (i in 1 : 1000){

S = sample(1 : length(empDistϑ), replace = TRUE)

empDistϑS = empDistϑ[S]

ϑ∗ = mean(empDistϑS)

ϑ = c(ϑ,ϑ∗)

}

qupper = 0.975

qlower = 0.025

CI = c(quantile(ϑ, qlower), quantile(ϑ, qupper))

CI

error = quantile(eta, qupper) − quantile(eta, qlower)

par(m f col = c(1, 1))

hist(ϑ,main = ”95% confidence interval”, xlab = ”Threshold”)

SE = abs((quantile(ϑ, qupper) − quantile(ϑ, qlower))/(2 ∗ qnorm(qlower)))

segments(CI, y0 = 0, y1 = 250, lty = 2)

text(CI, y = 210, labels = c(”2.5%ile”, ”97.5%ile”))
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Country Parameters Stocks from various banks

France ARMA(1,1)-GARCH(1,1) F.BNP F.SGE F.CRDA F.KNF F.CC F.CAI
µ 0.0003 (0.0003) 0.0004 (0.0003) 0.0004 (0.0004) 0.0009 (0.0004) 0.0002 (0.0000) -0.0001 (0.0002)

ar1 0.8233 (0.0471) -0.2975 (0.1619) -0.3488 (0.6253) -0.9447 (0.0067) 0.9925 (0.0018) 0.7760 (0.0423)
ma1 -0.8598 (0.0413) 0.3571 (0.1569) 0.3711 (0.1569) 0.9521 (0.0061) -0.9872 (0.0000) -0.6907 (0.0502)
α0 6e-6 (0.0000) 6e-6 (0.0000) 5e-6 (0.0000) 8e-6 (0.0000) 3e-6 (0.0000) 1.2e-5 (0.0000)
α1 0.0877 (0.0122) 0.0896 (0.0123) 0.0731 (0.0216) 0.1131 (0.0242) 0.1219 (0.1264) 0.3267 (0.0449)
β1 0.9113 (0.0153) 0.9094 (0.0158) 0.9259 (0.0267) 0.8859 (0.0228) 0.8386 (0.1746) 0.5879 (0.0533)
Θ 0.9683 (0.0234) 1.0195 (0.0242) 1.0328 (0.0257) 1.0471 (0.0241) 1.1086 (0.0242) 1.0039 (0.0205)

Greece G.PIST G.PEIR G.EFG G.ETE G.ATT G.ELL
µ 0.0004 (0.0005) 0.0007 (0.0005) -0.0002 (0.0005) 0.0001 (0.0005) -0.0010 (0.0005) -0.0002 (0.0003)

ar1 -0.6948 (0.1440) -0.1810 (0.2638) -0.4041 (0.2476) -0.2960 (0.7176) -0.5073 (0.1328) 0.0304 (0.5809)
ma1 0.7342 (0.1350) 0.2556 (0.2574) 0.4705 (0.2381) 0.3476 (0.7050) 0.5544 (0.1263) -0.0158 (0.5801)
α0 1.1e-5 (0.0000) 6e-6 (0.0000) 1.5e-5 (0.0000) 1.9e-5 (0.0000) 4.6e-5 (0.0000) 8e-6 (0.0000)
α1 0.1067 (0.0158) 0.1011 (0.0215) 0.1473 (0.0191) 0.1490 (0.0299) 0.2260 (0.0372) 0.1963 (0.0296)
β1 0.8923 (0.0172) 0.8979 (0.0242) 0.8517 (0.0214) 0.8500 (0.0338) 0.7628 (0.0335) 0.7991 (0.0285)
Θ 1.0270 (0.0203) 1.0258 (0.0183) 1.0179 (0.0196) 1.0010 (0.0205) 1.0539 (0.0222) 1.0877 (0.0244)

UK UK.HSBA UK.BARC UK.LLOY UK.RBS UK.STAN
µ 1.6e-5 (0.0002) 0.0002 (0.0003) 0.0002 (0.0003) 9.7e-5 (0.0003) 0.0002 (0.0003)

ar1 0.9295 (0.0255) -0.4523 (0.2222) -0.4647 (0.1583) -0.5187 (0.1638) 0.8675 (0.0348)
ma1 -0.9470 (0.0172) 0.5032 (0.2141) 0.5070 (0.1444) 0.5750 (0.1558) -0.8900 (0.0312)
α0 2e-6 (0.0000) 6e-6 (0.0000) 2e-6 (0.0000) 4e-6 (0.0000) 8e-6 (0.0000)
α1 0.0895 (0.2937) 0.0990 (0.0171) 0.0753 (0.1924) 0.0998 (0.0267) 0.1151 (0.0213)
β1 0.9095 (0.2991) 0.9000 (0.0181) 0.9237 (0.2046) 0.8992 (0.0304) 0.8810 (0.0210)
Θ 1.0022 (0.0392) 1.0097 (0.0231) 1.0086 (0.0257) 1.0194 (0.0227) 1.0308 (0.0233)

Spain E.SCH E.BBVA E.BSAB E.BKT E.POP
µ 0.0005 (0.0002) 0.0003 (0.0003) 0.0000 (0.0003) 0.0004 (0.0003) -0.0001 (0.0003)

ar1 0.7919 (0.0715) -0.2010 (0.2426) 0.3666 (0.5211) -0.3081 (0.9202) 0.1617 (0.2908)
ma1 -0.8227 (0.0666) 0.2565 (0.2383) -0.2901 (0.5395) 0.3308 (0.9114) -0.1045 (0.2937)
α0 5e-6 (0.0000) 4e-6 (0.0000) 2e-6 (0.0000) 6e-6 (0.0000) 2e-6 (0.0000)
α1 0.0934 (0.0187) 0.0843 (0.0187) 0.0469 (0.0162) 0.0994 (0.0242) 0.0588 (0.0346)
β1 0.9056 (0.0212) 0.9147 (0.0223) 0.9476 (0.0189) 0.8996 (0.0365) 0.9402 (0.0392)
Θ 0.9515 (0.0220) 0.9925 (0.0234) 0.9878 (0.0205) 1.0359 (0.0226) 1.0271 (0.0205)

Sweden W.NDA W.SVK W.SWED W.SEA
µ 0.0005 (0.0003) 0.0004 (0.0002) 0.0007 (0.0002) 0.0008 (0.00022

ar1 0.2752 (0.2913) 0.4971 (0.4552) 0.8133 (0.0553) 0.7318 (0.1505)
ma1 -0.3478 (0.2865) -0.5455 (0.4397) -0.8490 (0.0498) -0.7758 (0.1405)
α0 5e-6 (0.0000) 4e-6 (0.0000) 3e-6 (0.0000) 6e-6 (0.0000)
α1 0.0777 (0.0806) 0.0924 (0.0505) 0.0640 (0.0225) 0.0869 (0.0212)
β1 0.9213 (0.0979) 0.9066 (0.0536) 0.9350 (0.0255) 0.9121 (0.0271)
Θ 1.0083 (0.0239) 0.9734 (0.0221) 0.9510 (0.0225) 1.0055 (0.0227)

Table A.T1: ARMA(1,1)-GARCH(1,1) parameter estimates following M-GARCH(1,1) DCC model, standard errors in parenthesis.
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Country Parameters Stocks from various banks

France ARMA(1,1)-GARCH(1,1) F.BNP F.SGE F.CRDA F.KNF F.CC F.CAI
µ 0.0003 (0.0003) 0.0004 (0.0004) 0.0004 (0.0004) 0.0009 (0.0004) 0.0002 (0.0000) -0.0001 (0.0002)

ar1 0.8233 (0.0469) -0.2969 (0.1616) -0.3480 (0.6203) -0.9448 (0.0070) 0.9925 (0.0018) 0.7758 (0.0424)
ma1 -0.8599 (0.0412) 0.3566 (0.1566) 0.3704 (0.6139) 0.9522 (0.0066) -0.9872 (0.0000) -0.6903 (0.0503)
α0 6e-6 (0.0000) 6e-6 (0.0000) 5e-6 (0.0000) 8e-6 (0.0000) 3e-6 (0.0000) 1.2e-5 (0.0000)
α1 0.0876 (0.0127) 0.0896 (0.0126) 0.0729 (0.0232) 0.1124 (0.0244) 0.1213 (0.1269) 0.3251 (0.0445)
β1 0.9114 (0.0157) 0.9094 (0.0160) 0.9261 (0.0282) 0.8862 (0.0231) 0.8386 (0.1765) 0.5882 (0.0529)
Θ 0.9681 (0.0234) 1.0197 (0.0243) 1.0328 (0.0257) 1.0469 (0.0241) 1.1090 (0.0244) 1.0039 (0.0204)

Greece G.PIST G.PEIR G.EFG G.ETE G.ATT G.ELL
µ 0.0004 (0.0005) 0.0007 (0.0005) -0.0002 (0.0005) 0.0001 (0.0005) -0.0010 (0.0005) -0.0002 (0.0003)

ar1 -0.6948 (0.1442) -0.1811 (0.2637) -0.4041 (0.2472) -0.2962 (0.7179) -0.5076 (0.1324) 0.0309 (0.5625)
ma1 0.7343 (0.1352) 0.2557 (0.2574) 0.4704 (0.2377) 0.3478 (0.7053) 0.5546 (0.1260) -0.0162 (0.5617)
α0 1.1e-5 (0.0000) 6e-6 (0.0000) 1.5e-5 (0.0000) 1.9e-5 (0.0000) 4.6e-5 (0.0000) 8e-6 (0.0000)
α1 0.1067 (0.0157) 0.1011 (0.0211) 0.1473 (0.0200) 0.1490 (0.0311) 0.2258 (0.0372) 0.1963 (0.0296)
β1 0.8923 (0.0170) 0.8979 (0.0238) 0.8517 (0.0222) 0.8500 (0.0350) 0.7628 (0.0335) 0.7992 (0.0286)
Θ 1.0270 (0.0202) 1.0258 (0.0183) 1.0179 (0.0197) 1.0011 (0.0206) 1.0539 (0.0222) 1.0877 (0.0244)

UK UK.HSBA UK.BARC UK.LLOY UK.RBS UK.STAN
µ 1.7e-5 (0.0007) 0.0002 (0.0003) 0.0002 (0.0003) 9.9e-5 (0.0003) 0.0002 (0.0003)

ar1 0.9304 (0.1149) -0.4508 (0.2167) -0.4645 (0.1742) -0.5177 (0.1633) 0.8677 (0.0348)
ma1 -0.9477 (0.0793) 0.5018 (0.2087) 0.5069 (0.1565) 0.5740 (0.1553) -0.8901 (0.0312)
α0 2e-6 (0.0001) 5e-6 (0.0000) 2e-6 (0.0000) 4e-6 (0.0000) 8e-6 (0.0000)
α1 0.0891 (1.4566) 0.0988 (0.0185) 0.0757 (0.2489) 0.0999 (0.0281) 0.1137 (0.0209)
β1 0.9099 (1.4662) 0.9002 (0.0193) 0.9233 (0.2607) 0.8991 (0.0312) 0.8808 (0.0211)
Θ 1.0020 (0.1686) 1.0092 (0.0232) 1.0086 (0.0278) 1.0190 (0.0228) 1.0307 (0.0233)

Spain E.SCH E.BBVA E.BSAB E.BKT E.POP
µ 0.0005 (0.0002) 0.0003 (0.0003) 0.0000 (0.0003) 0.0004 (0.0003) 0.0001 (0.0003)

ar1 0.7919 (0.0712) -0.2004 (0.2411) 0.3778 (0.5023) -0.3066 (0.8087) 0.1618 (0.2887)
ma1 -0.8228 (0.0663) 0.2560 (0.2369) -0.3000 (0.5217) 0.3295 (0.8009) -0.1045 (0.2915)
α0 5e-6 (0.0000) 4e-6 (0.0000) 2e-6 (0.0000) 6e-6 (0.0000) 2e-6 (0.0000)
α1 0.0934 (0.0194) 0.0842 (0.0196) 0.0460 (0.0161) 0.0990 (0.0253) 0.0589 (0.0353)
β1 0.9056 (0.0219) 0.9146 (0.0229) 0.9484 (0.0190) 0.9000 (0.0370) 0.9401 (0.0398)
Θ 0.9512 (0.0221) 0.9923 (0.0235) 0.9878 (0.0204) 1.0361 (0.0227) 1.0273 (0.0206)

Sweden W.NDA W.SVK W.SWED W.SEA
µ 0.0005 (0.0003) 0.0004 (0.0002) 0.0007 (0.002) 0.0008 (0.0002)

ar1 0.2776 (0.3282) 0.4994 (0.4733) 0.8135 (0.0550) 0.7337 (0.1483)
ma1 -0.3502 (0.3240) -0.5479 (0.4570) -0.8491 (0.0495) -0.7774 (0.1384)
α0 4e-6 (0.0000) 4e-6 (0.0000) 3e-6 (0.0000) 5e-6 (0.0000)
α1 0.0772 (0.1521) 0.0917 (0.0498) 0.0639 (0.0219) 0.0868 (0.0237)
β1 0.9218 (0.1801) 0.9065 (0.0532) 0.9351 (0.0246) 0.9122 (0.0295)
Θ 1.0083 (0.0244) 0.9730 (0.0222) 0.9508 (0.0226) 1.0053 (0.0228)

Table A.T2: ARMA(1,1)-GARCH(1,1) parameter estimates following M-GARCH(1,1) aDCC model, standard errors in parenthesis.
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France Greece UK Spain Sweden
Qk(5) 5726.8990 2598.1180 1938.3120 1772.3850 4590.3380
p-value 0.0000 0.0000 0.0000 0.0000v 0.0000

Qr
k(5) 18150.1700 3055.1820 10519.9600 3182.9470 4545.424

p-value 0.0000 0.0000 0.0000 0.0000 0.0000

Qk(10) 8873.0210 4062.3610 2678.1480 2722.5010 7513.1970
p-value 0.0000 0.0000 0.0000 0.0000 0.0000

Qr
k(10) 28610.3900 4440.2240 14539.9800 4072.3640 5502.2000

p-value 0.0000 0.0000 0.0000 0.0000 0.0000

Table A.T3: Multivariate ARCH test on the standardised residuals after the fitted M-GARCH(1,1) aDCC
model for France, Greece, UK, Sweden, and M-GARCH(1,1) DCC model for Spain shows evidence of
ARCH effect or conditional heteroscedasticity.
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Archimedean Copula family Elliptical t-Copula
France Greece UK Spain Sweden France Greece UK Spain Sweden

Qk(5) 3.9751 3.2266 4.7525 3.6042 4.5163 7.7360 6.8554 12.4768 10.7047 2.4232
p-value 0.5530 0.6651 0.4468 0.6077 0.4778 0.1714 0.2316 0.0288 0.0691 0.7880

Qr
k(5) 165.7847 174.2798 113.2169 134.8293 74.1949 168.4713 166.4156 142.2465 120.6231 87.2783

p-value 0.7687 0.6062 0.7665 0.2585 0.6618 0.7210 0.7579 0.1387 0.5940 0.2705

Qk(10) 8.3966 5.1023 9.6294 7.8085 6.1371 11.6012 10.1747 17.4906 16.2716 11.3141
p-value 0.5902 0.8842 0.4736 0.6475 0.8036 0.3126 0.4253 0.0642 0.0921 0.3336

Qr
k(10) 366.2421 329.8300 227.0368 266.6985 147.5931 347.5079 366.3677 283.3849 221.8118 186.1114

p-value 0.3989 0.8713 0.8485 0.2235 0.7501 0.6222 0.3971 0.0720 0.8999 0.0772

Table A.T4: Multivariate ARCH test on the standardised residuals after modeling dependence with copulas. We see that the null hypothesis of no conditional
heteroscedasticity is rejected for UK after modeling dependence with t-copula for m = 5 at 5% significance level for the non-robust test.
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m = 5 m = 10 m = 15 m = 20 m = 30
t-distribution Qk(m) 1.8923 4.9683 7.1327 9.3807 19.0364

p-value 0.8638 0.8933 0.9539 0.9781 0.9392

Qr
k(m) 117.9122 251.0490 371.3950 519.748 764.4626

p-value 0.6608 0.4694 0.5429 0.2619 0.3489

normal distribution Qk(m) 2.6596 5.1806 10.9645 15.7037 28.9405
p-value 0.7523 0.8788 0.7551 0.7348 0.5207

Qr
k(m) 123.6943 245.9011 348.5009 491.0212 705.8559

p-value 0.5162 0.5614 0.8332 0.6043 0.8740

Table A.T5: Multivariate ARCH test on the standardised residuals after modeling dependence with C-vine
copulas. There is no evidence of ARCH effect or conditional heteroscedasticity.
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Figure A.F1: Scatter plots of simulated standardised residuals; Figure 8.1(a), and the new return distribu-
tion; Figure 8.1(b), following Frank copula with t-marginals, plotted together with the original standardised
residuals and original return distribution between banks. As can be seen, the Frank copula produce results
that captures the extreme observations.
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Figure A.F2: see Figure A.F1.
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Figure A.F3: Scatter plots of simulated standardised residuals; Figure 8.3(a) and the new return distri-
bution; Figure 8.3(b), following t-copula with t-marginals, plotted together with the original standardised
residuals and original return distribution between banks the various banks. As can be seen, the t-copula
produce results that captures the extreme observations.
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Figure A.F4: See Figure A.F3.
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