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Abstract

Selection of accurate and diverse trees based on individual and collective performance in an

ensemble has recently been studied for classification and regression problems. Following

this notion, the possibility of selecting optimal survival trees is considered in this work.

Initially, a large set of survival trees are grown by the method of random survival forest.

Using out-of-bag observations for each corresponding survival tree, the trees grown are

ranked in ascending order with respect to their prediction errors. A certain number of the

top ranked survival trees are selected to be assessed for their collective performance in an

ensemble. An ensemble is initiated from the top ranked selected survival tree and further

trees are tested one by one by adding them to the ensemble. A survival tree is selected for the

final ensemble if it improves the performance by assessing on an independent training data.

This ensemble is called optimal survival trees ensemble (OSTE). The proposed method is

checked on 17 benchmark datasets and the results are compared with those of random

survival forest, conditional inference forest, bagging and Cox proportional hazard model.

In addition to improved predictive performance, the proposed method also reduces the

number of survival trees in the ensemble as compared to the other tree based methods.

Furthermore, the method is implemented in an R package called “OSTE”.
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Chapter 1

Introduction

Survival analysis is one of the subfields of statistics that analyses the measurements of

time from a specific point of time until the occurrence of an event of interest. The event

could be marriage, death, recovery from a certain disease, censored, i .e. observations with

track lost, etc. The main purpose of survival analysis is the estimation and comparison of

survival and hazard functions where the former is the survival probability of an individual

from some time point to the point of interest and the later is the ratio of the probability

density function to the survival function. Survival analysis also assesses how the predictor

variables are related to the survival time.

During analysis of survival data, there are some individuals for whom the information

about their survival times are incomplete hence, happening of events for such cases remains

unobserved. Such type of observations/individuals are called censored. In other words,

observations are said to be censored when the event of interest happens before the start or

after the end of the study. Here the issue of removing those observations for whom the event

happened after the given time of interest is the reduction in sample size. Many attempts

1



Chapter 1. Introduction 2

are made in different ways to find the solution of such problems. Methods in survival

analysis are divided into parametric, non-parametric and semi-parametric methods. Many

techniques are developed in each division to solve the issue.

In today’s developed world, the success of machine learning techniques, especially

tree based techniques, is remarkable. How to use tree structure introduced by Breiman

et al. [1] for survival data was under discussion for several years. Ishwaran et al. [2]

grown the survival tree using the approach of maximizing within nodes homogeneity and

between nodes heterogeneity. The interpretation of such tree is very easy because of its

flexibility and requirement of few assumptions. However, too big or too small tree creates

generalization problems for the population of interest. At this point the researchers turns

from single learners to group of learners called ensemble methods.

Hothorn et al. [3] bagged survival trees by averaging the predications of survival trees

instead of using majority voting, extending the concept of Breiman’s [4] bootstrap aggre-

gation. Random survival forests (RSF) are introduced for more refinement of the bagging

idea [5]. For further improving random survival forest, the idea of selecting accurate and

diverse survival trees from a large initial ensemble of survival trees is introduced in this

thesis. This idea was originally introduced by Khan et al. [6, 7] for classification and re-

gression by selecting classification and regression trees from a large pool. The aim here is

to achieve promising predictive performance by using an ensemble of a small number of

survival trees.

This thesis consists of a total of 5 chapters where the rest of the 4 chapters are arranged

as follows.

Chapter 2 gives a short overview of survival analysis. Moreover, tree based techniques
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for survival data starting from a general introduction to ensemble methods and the associ-

ated literature are also given briefly. A detailed description of some stat-of-the-art methods

such as bagging survival trees, random survival forest and conditional inference forest are

given in the chapter as a background for this work. A semi-parametric method i.e. Cox

proportional hazard model is also discussed in the chapter for comparison purpose.

Chapter 3 discusses the research methodology followed in this thesis. This describes

benchmarking for evaluating the methods considered and the datasets used for this purpose

along with their sources. The software packages used for benchmark analysis throughout

the thesis are also mentioned in this chapter. Furthermore, evaluation metrics used in the

thesis are also described in this chapter.

Chapter 4 carries the original work of this thesis. Ensemble of optimal trees for survival

data, OSTE, is introduced in this chapter. Benchmarking is done on a number of benchmark

problems. The results are compared with those of Cox proportional hazard, bootstrap

aggregation of survival trees, random survival forest and conditional inference forest.

The overall conclusion based on the results from the previous chapters is given in

Chapter 5. Advantages and shortcomings of the proposed method and some possible

directions for future work based on the contribution made in the thesis are also given in

this chapter.

The last part of this thesis is the appendix where the pdf manual of the R package OSTE

is given. The package implements the proposed method in the R language.



Chapter 2

Review of survival analysis with machine
learning methods and relevant literature

2.1 Introduction

Due to developed technologies, many disciplines have the capability to collect and moni-

tor observations in various experiments over long-term periods. The primary objective of

monitoring is to acquire a better estimate of the time of occurrence of a particular event

of interest. This predication/estimation process faces many challenges. One of the main

challenges is the presence of censored instances e.g. unobservable event outcomes after

certain time or losing track during the monitoring period. In the literature, traditional

statistical methods are developed to solve these complications. Survival analysis, an im-

portant subfield of statistics, is the most commonly used technique to handle such issues.

In addition to these challenges, predictive modelling of survival data has some issues and

hence, recently, researchers have developed some machine learning methods and new

computational algorithms to tackle such complex problems of survival analysis.

The study of time until some endpoint of interest is called survival analysis [8]. The

endpoint is often a combination of different event types. For example, the combination of

4
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different causes of death or the occurance of a disease and the occurance of death without

prior disease in the form of one single endpoint [9]. In other words, survival analysis is

a statistical procedure used for the analysis of data where time until the occurrence of an

event is the outcome variable of interest [10, 11].

The origin of survival analysis may be traced back to 1600’s where the main goal was

the construction of better life tables and long term extensions of non-parametric estimators

of data. It is one of the most commonly used methods for analysing data in many fields

of study ranging from environmental health and medicine to astronomy and marketing

especially after World War II [12, 13].

Survival analysis has three main purposes [14]:

1. Estimation of survival and hazard functions from survival data.

2. Comparison of hazard and survival functions between groups.

3. Assessment of the relationship between predictor variables and survival time.

There are three main divisions of survival analysis based on the assumptions and how

the parameters are used in the model. These are parametric, semi-parametric and non-

parametric. The main focus here is on the machine learning algorithms, such as survival

trees and ensemble learning like bagging survival trees and random survival forest which

have gained much attention in the recent years and come under a separate branch. As

a starting argument, one of the semi-parametric methods i.e. Cox proportional hazard

model is also discussed in this chapter.

Survival methods estimate important model parameters by assimilating the information

from both censored and uncensored data unlike ordinary regression model which can not
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handle censored observations. Censored observations are those for which information

about their survival time is incomplete.

2.2 Basics of survival analysis

A brief description of the fundamentals of survival analysis and the preliminaries used are

given in the following sub-sections.

2.2.1 Censoring

Censoring, a distinguishing factor of survival analysis that differentiate it from other sta-

tistical analyses, is a common issue in survival analysis. It arises when there is some

information available about an individual’s survival time but the exact survival time is

unknown [15]. Censoring might be of three types; interval, left and right. If the event of

interest occurs after some time of the recorded follow-up time then it is called right cen-

sored. A subject is said to be left censored if the event of interest occurs some time before

the recorded follow up time. Lack of required information make this type of censoring

difficult to handle. For interval censoring, the exact time of failure is unknown but it is

known that the event of interest will occur within a given range.

For example a group of those cancer patients from whom the primary tumour is re-

moved during surgery is followed in a survey examining them after every 3 months period.

The time to recurrence is investigated in each examination. In the first period of survey,

just after 3 months of the surgery, if the investigated/examined patient had a recurrence

then his/her survival time is said to be left censored because the recurrence occurred in
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less than 3 months period. The survival time of a patient will be right censored if the

recurrence is not observed yet but it is unknown that the tumour will re-occur until next

investigation period of survey or not. Patients whose examination results at 3 months are

disease free but they are lost to follow-up until 6 months investigation or in other words

if the information about them is missing in next examination are considered to be interval

censored [16]. Right censoring is the most popular among all.

The presence of censoring differentiate survival analysis from other statistical analyses.

2.2.2 Survival time and event of interest

Time starting from a specific point to the occurrence of an event, for example treatment

period till recovery of a certain disease is called survival time denoted by T. Time is

assumed to be continuous and positive (except in case of discrete-time models examination)

therefore, the probability of an event at a single point of a continuous distribution is zero.

Survival analysis problems are familiar with survival time of only those instances for which

the event has occurred during the study period. Therefore, this can be affected if there are

some subjects in the study who may not experience the event or they do not remain in

the study. For these instances, only the censored time denoted by C is available. For an

individual i we can observe the minimum of Ti and Ci which is represented as:

yi = min(Ti,Ci). (2.1)

The censoring can thus be defined by the following indicator function
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δi =


0, if uncensored i.e. Ti ≤ Ci,

1, if censored i.e. Ti > Ci.

(2.2)

As given before, the definition of the event is another important concept in survival

analysis. It is an important consideration to specify the start and end dates of an event

when designing the study [16].

2.2.3 The cumulative density function and probability density function

To describe the continuous probability distribution of a random variable in survival analy-

sis, for example time the cumulative density function, cdf denoted by FT(t) is usually used.

It is defined as

FT(t) = P(T < t) =

∫ t

0
fT(t)dt. (2.3)

FT(t) is a non decreasing function of T ranging from 0 to t (the actual value of T that we

select). It shows the probability that the event of interest occurs earlier than t.

In terms of survival function it can be represented as

FT(t) = 1 − S(t), (2.4)

where S(t) is the survival function (defined later).

The Probability density function, pdf denoted by fT(t) is the slope of cdf defined as

fT(t) =
d
dt

FT(t). (2.5)
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2.2.4 Survival function

Survival function describes and models survival data. The word survival or survive has

its roots in medicine where death is the event of interest. It can be estimated by the Kaplan

Meier method (see Section 2.2.7) representing the probability of an individual surviving

from the time of origin to some given time t. It is also known as survivor or reliability

function. Suppose T is a continues and positive random variable representing the time

until some event of interest then S(t) represent the probability of surviving beyond time t,

given as

S(t) = P(T ≥ t) = 1 − FT(t),

where FT(t) is the density function of T.

Taking integration on both sides of Equation 2.5,

FT(t) =

∫ t

0
f (t)dt.

Thus

S(t) = 1 −
∫ t

0
f (t)dt. (2.6)

The initial value of survival function i.e. S(t) is 1 when t = 0 showing that 100% of

observed subjects have survived in the beginning or an event of interest has not occurred

yet. For t = ∞, S(t) = 0. The survival curve (i.e. graph of S(t)) begins at S(0) = 1 and as t

increases to infinity it decreases to 0.
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2.2.5 Hazard function

Another commonly used function is the hazard function that gives the ratio of the proba-

bility density function to the survival function. It is used for determining a mathematical

model for survival analysis shown as

h(t) = lim
4t→0

P(t ≤ T < t + 4t|T ≥ t)
4t

= lim
4t→0

F(t + 4t) − F(t)
4t S(t)

. (2.7)

The numerator of the above equation shows the probability of the occurrence of an

event in the interval (t, t + 4t) given that no event has occurred before time t [17]. It

is clear from the lim4t→0 that the probability is within very small intervals and thus the

hazard function also got the name of instantaneous risk [18]. Stated differently, the hazard

function measures the immediate risk, that is for subject survived till time t an event at

time t will happen. It thus seems more spontaneous to be used in survival analysis [16].

If h(t) is known, S(t) can be calculated and vice-versa. The hazard function can also be

represented as

h(t) =
fT(t)
S(t)

=
fT(t)

1 − FT(t)
, (2.8)

where FT(t), distribution function, is the probability that a variate T takes on a value less

than or equal to a number t. Thus

h(t) = −
∂
∂t

log[1 − FT(t)],

= −
∂
∂t

log[S(t)].
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The estimation process of h(t) is not simple. Alternatively the cumulative hazard function

(CHF) [16] is used. It is the integration of hazard function and can be interpreted as the

probability of failure at time t given survival until time t, i.e.,

CHF(t) =

∫ t

0
h(t)dt. (2.9)

Most of the time for right censored data the survival distribution function of an individual

that survives at time t can be calculated using the following relation [19]

S(t) = exp[−CHF(t)].

Taking log on both sides of the above equation

logS(t) = log(exp[−CHF(t)])

= [−CHF(t)]

=
1

CHF(t)
,

and thus

CHF(t) =
1

logS(t)
= −log[S(t)]. (2.10)

CHF is also used in the calculation of Nelson-Aalen estimator [16].
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2.2.6 Test statistics for survival data

There are several statistics used for survival data. Some of the most commonly used are

briefly mentioned here. The emphasis will be to describe them in the context of a survival

tree.

Log-rank test is a hypothesis test usually used to compare the survival distribution

of two samples/groups. It is applicable to the data consisting of progressive/continues

censoring and where the early and late events of interest have the same probabilities. It

is a non-parametric test that targets on hazard function. It records the time at which the

failure event occurs and creates a two-by-two contingency table. This table shows the

total number of subjects under study and the total deaths occurred. To yield a χ2 statistic

with 1 degree of freedom, quantities e.g. observed deaths, expected deaths i.e. sum of the

expected number of events at the time of each event and variance of the expected number

of deaths in each group are summed [16]. It is calculated as follows:

χ2 =

g∑
l=1

(Ol − EI)2

El
, (2.11)

which is a χ2 distribution with g − 1 degree of freedom. In the above statistic Ol and

El represents the observed number of events and the total expected number of events in

each group l respectively. Moreover, the expected number of events at the time that each

event happens is obtained by multiplying the risk of death at that time (number of deaths

divided by number alive), with the number alive in each group.

In the context of survival trees based methods the log-rank statistic and its extensions

such as a conservation of events splitting rule, a log-rank score rule and a fast approximation
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to the log-rank splitting rule, might be used to measure the distance between the two

daughter nodes of a tree (see section 2.4.1.1 ) [2, 20]. The log-rank splitting rule has been

used in this work.

Let assume that parent node h consisting of N individuals with their survival times and

censoring information denoted by (T1, δ1), . . . , (TN, δN) is required to be split in daughter

nodes. Let the death times in the node h are t1 < t2 < · · · < tN. The number of deaths and

individuals at risk at time ti in the daughter nodes j = 1, 2 are represented by di, j and Yi, j.

The test statistic is calculated using the following formula:

L(x, c) =

∑N
i=1(di,1 − Yi,1

di
Yi

)√∑N
i=1

Yi,1

Yi
(1 − Yi,1

Yi
)(Yi−di

Yi−1 )di

,

where Yi and di are the total number of individuals at risk and total number of deaths

in under study node. Node separation is based on the value of a statistic obtained from

the split with the largest value of |L(x, c)|. It is clear that the larger the test statistic value

the better is the split. The log-rank test encourages the daughter nodes in the tree to be

far apart. Leblanc and Crowley [21] also used the log-rank statistic as a splitting rule for

nodes. It’s calculation also produces the ratio of observed events to the expected events

of interest [16]. To test the differences between survival curves for groups, log-rank test

may be used [16]. This test allows the comparison of two Kaplan-Meier survival curves.

The log-rank test shows that the survival between two groups is significantly different, but

it does not provide informations that how different they are [22]. To solve this issue, one

method is to show the survival in each group at comparable times. Another method is

the comparison of observed and expected numbers of events in each group. It is known
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that for two groups in which the survivals are equal, the number of observed events will

be proportional to the number of expected events and will be the same in each group. For

example if O1
E1

shows the ratio of observed events to the expected events in the first group

under the true null hypothesis then the ratio, also called the hazard ratio

R =
O1/E1

O2/E2
,

is an estimate of the relative event rates in two groups. The hazard ratio is also known as

failure rate [23].

It is defined as a measure of deaths for the items involved in a study. It play a useful

role in the analysis of survival data in that it counts the rate at which the failures occur.

The relative hazard in the two groups is based on the complete study period and thus it

does not stay the same throughout the whole period. The word “proportional” is used as

a keyword associated with this test. This means that the chance of the hazard occurring in

one group is proportional in comparison to the other group or the survival curves for two

groups must have hazard functions that are proportional over time. In other words, it is an

assumption of the Cox proportional hazards model which shows that a linear increase in

the predictor will have a uniform multiplicative relationship with the hazard. Moreover,

it states that the hazard ratio for two subjects characterized by different sets of covariates

is independent of time and depends only on the values of these covariates. In other words

at all time points the effect of a given covariate on a hazard level is the same, meaning that

the hazard ratio is constant over time [24]. The following equation determines the hazard
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rate at any time point

h(t) =
f (t)

1 − F(t)
=

f (t)
S(t)

, (2.12)

where f (t) is the probability that failure will occur in a stated interval while S(t) is the

survival function. The hazard rate is always positive.

2.2.7 Kaplan-Meier estimator

Kaplan and Meier [25] developed the Kaplan-Meier (KM) or the product-limit (PL) esti-

mator to estimate the survival function using the actual length of the observed time. It is

defined as the probability of surviving in a specified time while observing the time in small

intervals. The product limit estimator, combine the informations from all censored and

uncensored observations as a series of steps defined by the observed censored and survival

times at any point in time. It is the simplest way to compute the successive probabilities

of occurrence of an event at a certain point of time. In other words, it is a non-parametric

estimator that estimate the survival function from long term data. To get the resultant

cumulative survival probability, the survival probabilities from one interval to the next

may be multiplied together by assuming the independent occurrence of events [22].

In the underlying analysis three assumptions are used. First it is assumed that the sub-

jects whether censored or still continue to be followed have the same prospects of survival

at any time in a study. Second assumption is that the probabilities for the subjects entered in

the study either early or late are same. It means that the conditional survival probabilities

of the observations, with time limits greater or less than t, are same. Happening of an event

at specified time comes under third assumption [25].
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Total survival probability till the specified time interval is the multiplication of all

probabilities of survivals at all intervals of time preceding that time interval.

Let T1 < T2 < · · · < Tk be a set of distinct event times observed for n (k ≤ n) instances.

The number of observed events is o j ≥ 1 for a specific event time T j, where ( j = 1, 2, . . . ,K).

r j are censored instances with a censored time equal or greater than T j. Due to censoring, r j

can not be considered as the difference between r j−1 and d j−1. The correct way is to subtract

the number of instances censored during the time period between T j−1 and T j i.e. c j−1 and

o j−1 from r j as:

r j = r j−1 − o j−1 − c j−1.

The conditional probability of those subjects surviving beyond time T j can be defined as:

p(T j) =
r j − o j

r j
,

and thus the KM or PL estimate of S(t) = P(T ≥ t) can be written as:

Ŝ(t) =
∏
j:T j<t

p(T j) =
∏

j: decreases to 0 j<t

(1 −
o j

r j
). (2.13)

Kaplan-Meier is one of the widely used estimators. To summarize the given data in the

best way, KM survival curve, plot of survival probabilities estimated by KM estimator

against time t is used [22]. Similarly, KM estimator has a small sampling variance and

fewer discontinuities and hence there is no need to know about the observation limits for

the dead/lost items [25]. However, if the data consist of a large number of subjects or they

are grouped into some interval periods according to the time, or if a very large population is
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under discussion then the results of life table are more optimal [26]. For sampled population

the PL estimates may fall out side the range of true values unlike reduce sample estimates

which are weighted averages [25]. Similarly, to estimate the cumulative hazard function

for censored data Nelson-Aalen estimator [19] is used.

Nelson-Aalen is a non-parametric estimator suggested by Nelson for the graphical

representation of how the parametric models fit to the data. Later on, Aalen studied

the properties of this estimator taking large and small samples of a given data. For this

purpose martingale methods are used. This work prepared the ground for the extension

of the estimator for survival data [19]. Let (t1, t2, . . . ) be the times observed for the event of

interest then the Nelson-Aalen estimator is given as:

Â(t) =
∑
t j≤t

o j

r j
, (2.14)

where o j represents observed events of interest and r j the individuals at risk.

As survival data are incomplete due to the presence of censoring hence, the variance is

calculated as [19]

σ̂2(t) =
∑
t j≤t

(r j − o j)o j

(r j − 1)r2
j

. (2.15)

Here r j is the number of subjects/individuals entered in the study earlier than time t j and

are still there instead of individuals at risk.

There are numerous approaches used for analyzing survival data, some state-of-the-art

methods are briefly described in the following sections.
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2.3 Cox proportional hazard model

Under the semi-parametric category, the most commonly used approach for survival data

are Cox models [27]. Cox [27] mainly focused on hazard function and introduced a large

family of models. A broadly applicable and the most widely used representative member

of this family is Cox proportional hazard (Coxph) model. The core idea of this model is

to define a hazard level as a dependent variable explained by the baseline hazard a time-

related component and the covariates-related component. The model is based on several

assumptions one of which is the proportional hazard assumption. The Cox proportional

hazard model is a method used to investigate that how the variables effect the time that a

specified event happens. These effects on survival are assumed to be constant over time

and additive in one scale, showing the semi-parametric nature of the model. It leaves the

baseline hazard undefined while the partial likelihood is maximized to address the problem

of censoring [28]. Researchers need to discuss and interpret only one assumption that the

hazards are proportional over time. No assumption about the parametric distribution of

the survival times is required, which makes the method more robust. The Cox model gives

the relative risk type measure of association which explains the risk of the events for certain

categories of covariates. Moreover, the use of partial likelihood function gives flexibility

to the model to introduce explanatory variables dependent on time and handle censored

survival time [27]. In this model, the measure of effect is hazard rate, which is the risk of
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failure. The model can be written as

h(t, xi) = h0(t) exp(β1x1 + β2x2+, . . . ,+βixi), (2.16)

= h0(t) exp(β′xi), (2.17)

where h0(t) represents the baseline hazard, (x1, x2, . . . , xi) is a vector of covariates and

(β1, β2, . . . , βi) is a coefficient vector that measures the size of effect made by the covari-

ates.

The baseline hazard is independent of x. It depends on t only. The exponential involves

x where x is independent of time. h(t, xi) is the product of h0(t) and the exponential

function [18]. The Cox model is a flexible model which allows to leave the baseline hazard

function completely unspecified. The above equation can be written in a linear form by

taking natural logarithm of both sides as

log h(t, xi) = log(h0(t) exp(β′xi)), (2.18)

= log h0(t) + β′xi, (2.19)

where β′ is a regression coefficient vector, which can also be expressed as “relative risk”

an attractive feature of the under discussion model [18]. The parameters of the Cox model

can be interpreted by coding the single covariate x as 0 or 1. From Equation 2.16 we obtain

h(t, x = 0) = h0(t), (2.20)

h(t, x = 1) = exp(β)h0(t), (2.21)
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where exp(β) is referred to as relative risk. The positive β shows high hazard of group with

x = 1 as compared to a group with x = 0, while negative β shows higher hazard for x = 0

among the groups. The hazard will change by a factor of exp(β) for continuous x if a 1 unit

change occurs in x [18].

Cox proportional hazard model interprets the effect of covariate variables in a simple

manner and can be used easily for inference [5]. The most interesting attribute is that

for estimating regression coefficient only failure time ranking is needed. However, Cox

proportional hazard models forces a particular link (i.e. the effect of one-unit increase in a

covariate is a constant multiple) between the responses and covariates.

In some cases the model may not fulfil the proportionality assumption and hence, this

will lead to the misspecification of the model [29].

As mentioned above, the advantage of the semi-parametric methods, for example Cox

proportional hazard model is that they requires no information about the distribution of

survival time. This, however, on the other hand makes model interpretation difficult [30].

Non-parametric methods show higher efficiency when no suitable theoretical distri-

bution is known. Survival function and its graphical presentation is the most widely

used non-parametric function among all in survival analysis. Different approaches such

as Kaplan-Meier, Nelson-Aalen and Life-Tables are used by researches to estimate sur-

vival function. Kaplan-Meier and Nelson-Aalen, the most popular and commonly used

estimators in non-parametric technique are discussed in the previous section.
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2.4 Machine learning methods

Due to their ability of modeling the non-linear relationships and quality of prediction,

machine learning methods achieved a remarkable success in the near past [31]. Dealing

with the issues of censored information and time estimation of the model in survival

analysis are the main challenges for machine learning methods [32].

A comprehensive review of most commonly used machine learning methods in survival

analysis is given in the following sections.

2.4.1 The basics of tree methods

Tree-based methods have several advantages over common regression methods, used

for the process of estimating and testing the effects of covariates and for predicting the

outcomes [33]. One of the popular machine learning methods for classifying given ob-

servations on the basis of recursive binary partitioning into small subgroups is called

classification and regression tree (CART) introduced by Breiman et al. [1].

CARTs are receiving great attention in all research areas. The main idea behind a

tree based model is to partition the data according to some splitting criterion recursively

and place similar objects based on the event of interest in one or the same node. For the

development of tree methods two approaches are used. Growing a tree to maximize homo-

geneity of the outcomes within-node is the first approach that aims to identify set/groups of

observations with similar outcomes. To maximize the between-node heterogeneity, there

is a second approach of growing tree in which the splits that produce the largest differ-

ence between the subgroups is chosen. An example of such approaches could be found
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in [34], where p-values on all available factors and all possible splits within the factors

are computed. Observations are divided into two subgroups based on the factor and the

corresponding split point within the factor with the smallest p-value. This process is re-

peated recursively until there is no allowable split or the p-value becomes greater than

some specified threshold. This method is also adjusted for variables measured on different

scales [34]. However, due to characteristics of censored data, standard CART algorithms

are not directly interchangeable to the context of survival analysis. Ciampi et al. [35] first

attempted to use tree structure for survival data. However, the creation of survival trees

was first discussed by Gordon and Olshen [20].

2.4.1.1 Survival tree

Survival trees were augmented from the mid–1980s up to the mid–1990s, where the main

goal was to extend existing tree methods to the survival data with censoring [5].

Trees for survival data use both the approaches of CARTs as mentioned in the previous

section [33]. The only difference is in the choice of splitting criterion. CART technique can

be used for both univariate and multivariate survival data. Thus the most popular tool of

survival analysis is a CART-style decision tree called survival tree.

Let (yi, δi, xi) be the available survival data for N subjects where yi = min(Ti,Ci), δi

is a censoring indicator that takes values 0 and 1 for uncensored and censored subjects

respectively, xi is a vector of covariates and subscript i = 1, 2, 3, . . . ,N. Survival tree consists

of three types of nodes called root/parent node, internal/daughter/child nodes and terminal

nodes. A tree is grown by taking all given observations in the root node. Then split the

root node into two daughter nodes using predetermined survival criterion (see Section
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2.2.6). To achieve a maximum difference between daughter nodes all possible cut-offs of

all independent variables are needed to be tried. Split the consequent daughter nodes into

left and right daughters again using the same strategy. For each subsequent node the same

steps are repeated recursively [2].

To further illustrate, consider the following example. Suppose we want to predict a

response from a given data, a binary survival tree needs to be grow by recursively splitting

the given data at parent node h on a single predictor. The two inequalities x ≤ c and x > c

are used as criteria for splitting the parent node h in a child nodes v and w respectively. A

value c for a given predictor x that maximize the survival difference between two nodes

is needed. For this, first of all we chose x from given predictor variables, determining a

split value c and place an individuals in either right or left child/daughter node based on

the above inequalities. Then we calculate the survival difference between the two child

nodes using a predetermined splitting rule. The process is repeated with another c until we

find the value of c which maximizes survival differences. In other words, the best split for

node h is the one for which predictor x and split value c maximize the survival difference

between the two daughter nodes. To each of the two daughter nodes the same process is

applied recursively until the sample size of a node is sufficiently small.

The splitting rule used in growing survival tree must involve survival time and infor-

mation about censoring. The best split is that which maximize survival difference between

daughter nodes. The maximum survival difference not only increases the number of nodes

in a tree but also makes nodes homogeneous and populated with similar survival cases [2].

Here in this thesis, the log-rank statistic (see section 2.2.6) is used.

Survival trees are used for the construction of models that predicts the outcomes by us-
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ing covariates like regression techniques. However, survival trees are more advantageous

than simple regression techniques. Interpretation of survival trees is very easy as they are

based on a range of non-hazard measures of risk (i.e. assumptions of Cox proportional

hazard model) unlike regression techniques. In general they require fewer assumptions

than regression techniques and is free from proportional hazard assumption. There are

several extensions of the Cox model that relax the proportional hazard assumption. Ex-

amples of such models can be found in [24, 36]. These methods, however, do not come

under the scope of this thesis. They provide straightforward rule for the classification of

outcomes which is the common objective of survival analysis. Survival trees can easily

handle high-level interactions and those covariates whose values change over time, i.e.

time dependent covariates and hence their graphical representation in the form of binary

trees is very easy. It is one of the non-parametric alternatives to (semi) parametric models.

Survival trees are very flexible and can identify many types of interaction with out the

need of beforehand specification [5]. Selection of single tree as a final model and deciding

about splitting criterion, that when to stop growing the tree is an important aspect. The

population of interest will not be generalized properly if the tree overfits the data. Sim-

ilarly important attributes of the relationship between covariates and the outcome might

be missing if the tree is too small.

Two approaches are used to select best final tree. Backward selection method, which

selects relevant subtree by pruning some branches of already grown large tree and forward

selection method, in which splitting a node further is stopped by using a built–in stopping

rule. Although, there are several advancements made by using ensemble of trees instead

of using a single tree, a stand alone tree is still of great importance to know about the data
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in details [5]. Some ensemble methods are described in the following sections.

2.4.2 Ensemble methods

The word ensemble means a group. Ensemble methods are actually the group of predictive

models to achieve cohesive and accurate models. Previous research shows that an ensemble

is more accurate than any of the single learner in the ensemble [37]. Ensemble methods are

supervised learning algorithms where the main idea is to generate a set of models (base

learners) from training data for the solution of the same problem instead of using a single

learner as is done in ordinary learning approaches. The main aim of ensemble methods is

to bunch up the estimations of many base learners produced by given learning algorithms

to upgrade strength or generalization over one learner. The values for the response variable

for the new/test data points are then predicted by considering the prediction results from

all generated learners.

In the last two decades these methods have enjoyed growing attention in machine

learning community [38]. The reasons of using ensembles are numerous, a few of them are

listed here.

First and foremost reason to use ensemble is the statistical reason, for example the

randomly chosen base model from many that have similar test errors or training might

be really poor, however, averaging them may prevent us from making a weak decision.

Secondly, computation via ensembles makes it easy to find close to global minimum solu-

tion by combining different results obtained from learning algorithm run many times [39].

Thirdly, these methods are used for the solution of representational problems, for instance,

the combination of linear models can solve non-linearly separable problems [39].
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The main focus of this work will be on survival tree based ensemble methods, it is,

therefore, considered important to discuss the more advanced machine learning methods

that have been developed to deal with and predict from censored data.

To study survival data with censoring Cox proportional hazard regression model, dis-

cussed in earlier section, is widely used. These models on one hand, allows simple inter-

pretations of the covariate effects and thus can be used for inference. However, on the other

hand, they force a specific link between the covariates and the response which must be

specified by the analyst. Moreover, the statistical properties of inference made after many

models have been tried are still largely unknown. Furthermore, transformations or expan-

sion of the design matrix becomes necessary for modeling non-linear effects of variables.

Similarly identification of multiple variables interactions is also a great problem [2].

One of the alternative solution of these problems are the ensemble methods e.g., bagging

and forests.

2.4.2.1 Bagging for survival data

Instability, small change in learning sample inducing large change in the resulting predictor,

in learning algorithms was first examined by Breiman and reviewed different ways for

eliminating or reducing these instabilities. Bootstrap aggregation/bagging is one of the

oldest and most commonly used ensemble method which typically reduces the variance

of the base models that are used and improves classification accuracy by manipulating

instability [4].

Well known problems of tree based methods are instability and variable selection bias.

In many applications bagging stabilize the predictors. Instability of tree in survival appli-
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cation was examined by Dannegger [40].

The general methodology of bagging is drawing bootstrap samples from the original

data and for each of these samples growing maximal survival tree without pruning, a

technique that reduces the size of over-fitted decision trees by removing some of its sections.

Then calculating prediction for each individual survival tree and finally averaging the

individual survival trees prediction for final prediction. Hothorn et al. [3] introduced the

averaging of single tree predications for the aggregation of survival function instead of

majority voting.

Suppose that L = (X,Y) be the given dataset. The X = {x1, x2, . . . , xd} is the set of d

features where each feature is a record of n observations. The response Y = {y1, y2, . . . , yn}

is a vector of n values where each yi takes on the value as defined in Equation 2.1. The

steps of bagging procedure are [3]:

• From the given training data draw a total of B bootstrap samples, where approxi-

mately 37% of the original data will be missing from each sample due to sampling

with replacement.

• Grow a survival tree for each bootstrap sample by calculating the corresponding

splitting criterion for each candidate variable. Repeat the same steps for all candidate

variables ensuring that, the number of events in all terminal nodes to be homogeneous

and equal to the pre-defined minimum node size.

• For each and every terminal node of each survival tree, calculate the required hazard

function estimator.

• Calculate the prediction estimate of the hazard function by dropping the new ob-
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servation down in the tree and taking weighted aggregate of the estimated hazard

function over all trees.

A general work-flow of the bagging procedure is given in Figure 2.1.

Trainind

data

Training

data set

Bootstrap

sample 1

Bootstrap

sample 2

Bootstrap

sample 3

Train learning

algorithm

Train learning

algorithm

Train learning

algorithm

Learner 1

Learner 2

Learner 3

Final

model

Figure 2.1: A general workflow of bagging procedure.

Survival trees bagging achieved great importance in variable selection and prediction in

genomic study, where the main goal is to detect the ratio of non-susceptible individuals to

susceptible individuals [41]. On the other hand, bagging shows less efficiency in situations

where single predicator is extremely stable [40]. Aggregation increases the predictive

accuracy but still it is considered as a black box of multiple trees [3].

2.4.2.2 Random survival forest (RSF)

Survival trees, ideal candidates for combination by means of an ensemble method can be

converted into very robust predictive tools, such as survival forests [5]. Actually, ensemble

is constructed from base learners such as trees to improve the prediction performance.

This ensemble learning can further be improved by introducing randomization into base

learning process in two forms. First, growing trees on bootstrap samples drawn randomly

from given data. Secondly, selecting subset of variables(covariates) randomly as candidate
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variables for splitting, at each node of the tree. This approach is called random forest [42].

Random survival forest (RSF) is actually the extension of random forest and bagging for

survival data. The use of a random subset of features for the selection of attributes in a

certain node based on a given splitting criterion is the only property of random forest that

differentiate it from bagging.

In RSF, each tree is grown on independent bootstrap samples from original data exclud-

ing 37% of the given data. The data not included in bootstrapping are called out-of-bag

observations which are used for the calculation of prediction error at the end. After boot-

strapping, splitting is required that is split each node in the grown tree by selecting a

candidate variable (from the random subset of features) which maximize survival differ-

ence between daughter nodes. RSF splits trees continuously until terminal nodes reach the

same type of cases or further division of daughter/child nodes is not possible. Ensemble

cumulative hazard function (CHF) is obtained by averaging the individual cumulative

hazard functions calculated for each tree [2].

• Draw B bootstrap samples from the given original training data.

• On each bootstrap sample grow a survival tree by randomly selecting a subset of

p < d features at each node while splitting the nodes of each tree. Split on each node

is decided on the candidate variable that maximizes survival difference between

daughter nodes.

• Continue the above process until the terminal node has greater than or equal to a

specific number of unique deaths.

• Average the CHF calculated for individual trees using the required estimator to obtain
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CHF for ensemble.

Pseudo code of random survival forest is given in Algorithm 1.
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Take L = (X,Y) as the training data; B as the number of bootstrap samples,

RSF.Ensemble = NULL;

for b = 1→ B do

Take a bootstrap sample Sb from L;

Call GrowTree(Si) and save result as Ŝb;

if b == 1 then

RSF.Ensemble = Ŝ1;

else

RSF.Ensemble = Combine(RSF.Ensemble, Ŝb);

end

end

GrowTree(Sb);

Qroot = Sb or a subset of Sb;

{

if Qroot has greater than or equal to a specific number of unique deaths then

return (Qroot);

else

Randomly select p candidate variable from all d features;

Select the feature that best split Qroot to create child nodes of Qroot;

for j = 1→ |child nodes| do

GrowTree(child node);

end

end

}
Algorithm 1: Pseudocode for random survival forest algorithm
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2.4.2.3 Merits and demerits of RSF

RSF can handle the problem of multicollinearity and can identify predictive variables.

Similarly RSF reduces over fitting of training data by using bootstrap samples [2]. RSF is

independent of hypothesis testing and uses raw data directly for the computation of RSF

models. Only few parameters need to be specified because of largely automated process.

RSF prefer continues variables to split node from data consisting of continuous and

categorical variables [2]. RSFs are able to model complex interactions and non-linear

effects which make it an attractive tool for the complex survival data analysis. RSF puts

equal weights on all terminal nodes [43]. Some of the observations are assigned high

weights and thus appears in every bootstrap sample due to which the computation of out-

of-bag error rate estimates becomes impossible. Thus out-of-bag prediction in such cases

is the main drawback of random survival forest [28]. RSF uses log-rank test statistic as

the splitting criterion and selects only those variables that have several split points. Thus

RSF favours splits for covariates with many possible split points and hence, induces bias

in other parameters estimates e.g variable importance, which in turn effect the prediction

accuracy [44].

2.4.2.4 Conditional inference forest

Conditional inference forests (CIF) that uses linear-rank statistic by default as splitting

criterion is an approach to reduce split points bias in RSF by using two step approach.

In the first step, a log-rank transformation test is performed to check if any independent

variables are associated with the given response variable. The variable is considered to be

best for splitting if the association is found to be significant with a small p-value of covariate
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otherwise no splitting is conducted. The p-values are obtained through permutation.

Permutation means the repeated rearrangement of labels on the observed data points and

computation of the relevant test statistic for each rearranged data point. This is a way of

obtaining the distribution of the test statistic under the null hypothesis of no difference,

no association, etc. The best split point is found in the second step where the algorithm

makes a binary split in the selected best variable, dividing the dataset into two sub-sets.

For all possible partitions of the split variable two-sample linear statistics are calculated

and compared to find optimal split point. For each subset the above discussed two steps

are repeated until no variable is found to be associated with the outcome at the pre-

defined level of statistical significance. The algorithm is thus called recursive. Ensemble

of conditional inference trees have several advantages over traditional approaches. First,

pruning (i.e. simplifying) the resulting tree to avoid over fitting is not required. Second,

the algorithm also returns the p-values that give confidence to the programmer about every

split. The ensemble of trees grown using conditional inference results into a conditional

inference (CIF) model. The CIF model put more weight on terminal nodes where there

is a large number of subjects at risk. This is because of the use of a weighted Kaplan-

Meier estimate which is based on all subjects from the training dataset [43]. CIF perform

linear rank statistic (the statistics that are used as tests in survival analysis as generalised

non-parametric methods for testing the null hypothesis of equal survival distributions

among groups. Such tests are commonly used when making comparisons among two or

more than two groups or when comparing a single group with a known or hypothesized

group [45]. The logrank test is an example of such tests.) between split variables and

responses and finds optimal split points by comparing two-sample linear statistics for all
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possible partitions [46].

2.5 Other related work

Several other machine learning methods are used for the analysis of survival data. Condi-

tional inference forests (CIF), a machine learning method, has been suggested for survival

analysis like random survival forest (RSF) and bagging survival trees discussed in previous

sections. CIF uses different statistical approaches for the selection of split variables and split

points. Therefore, to avoid this change an other method called maximally selected rank

statistic [29] is used. The proposed method deals with the non-linearity in the covariates

and hence reduce bias [29].

Maximally selected rank statistic is a statistic that allows the evaluation of cut-points on

continuous or ordinal predictor variable which leads to the classification of observations

into two classes. This test does not need to transform the time-dependent end point and

calculates an exact cut-off point. The discrimination power of the cut-off point is also

evaluated and estimated with a p-value. The statistic is applied to obtain an exact p-

value for classification and to asses the effect of selected cut-points in case of binary class

problems instead of log-rank statistic [47]. Generalized maximally selected rank statistic is

used to evaluate large number of cut points and to analyze the asymptotic distribution of

these maximally selected statistics [48]. Moreover, an algorithm for the exact distribution

of a linear rank statistics is extended to calculate a lower bound in order to get the exact

distribution of maximally selected rank statistics [49].
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2.6 Chapter summary

This chapter gave a general introduction to survival analysis and the basic preliminaries

used in the field. Some widely used methods for survival analysis are also discussed in the

chapter. These methods include the Cox proportional hazard model, survival tree, random

survival forest, bagging for survival trees and some other related methods. Advantages

and disadvantages of the methods are also given in this chapter.



Chapter 3

Research methodology

3.1 Introduction

This chapter gives the objectives of the work done and the basic methodology used in

carrying out the research in this thesis. To this end benchmarking, benchmark datasets and

packages used for the methods in the thesis are described. Methods used for the purpose

of comparison are also given.

3.2 Objectives of the work

This research work is done aiming at the following main objectives:

1. Extending the notion of optimal tree selection for survival analysis.

2. Reducing the number of survival trees in the forest.

3. Achieving better/comparable results by using the reduced size ensemble.

36
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3.3 Benchmarking

In any research field learning and its generalization are the main issues. In machine

learning approach the main concern is learning based on training data and generalizing

it to unseen/testing data. For this purpose machine learning methods are desired to go

through some standard solutions. These standards are called benchmarks. To inform

programmers of the best choice of algorithms for their task at hand is a primary goal of

benchmarking. It establishes the strengths and weaknesses of different machine learning

implementations when applied to distinct types of data. According to Bache and Lichman

[50] standard benchmark problems are given in the repository of machine learning or

some other sources that are used to compare newly proposed methods with some other

state-of-the-art methods.

3.3.1 Benchmark datasets

The datasets used for the purpose of benchmarking are called benchmark datasets. In this

work, 17 such datasets are considered for the assessment of the performance of the proposed

method in comparison to other state-of-the-art methods. The datasets are open problems

from various sources used to evaluate and compare different learning algorithms. These

datasets are summarized briefly in Table 3.1. Against each dataset number of observations,

number of features and type of features whether real, integer or nominal is given.

The datasets used here are all of survival type. The description and sources from where

these datasets have been taken is given in the following section.
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Table 3.1: Datasets description: Number of observations, number of features, type of features whether integer,
real, or nominal (I/N/F) and data source are given against each dataset.

Datasets No. of No. of Features Censored Source

observations features type observations

kidney 119 3 (2/1/0) 26 [51]

twins 24 4 (4/0/0) 8 [51]

kidtran 863 5 (5/0/0) 140 [51]

channing 462 5 (5/0/0) 176 [51]

Hodg 43 6 (6/0/0) 26 [51]

myeloid 646 6 (5/0/1) 320 [52]

veteran 137 8 (0/7/1) 128 [52]

retinopathy 394 9 (5/1/3) 155 [52]

bfeed 927 10 (10/0/0) 892 [51]

GBSG2 686 10 (7/0/3) 299 [53]

https://www.ncbi.

NKI 295 14 (0/8/6) 79 nlm.nih.gov/gap/?

term=phs000547.v1.p1

cgd 203 15 (6/4/5) 76 [52]

colon 1858 15 (0/15/1) 920 [52]

cost 518 15 (4/1/10) 404 [53]

burn 154 17 (17/0/0) 99 [51]

Pbc 418 19 (11/7/1) 347 [52]

BMT 137 22 (22/0/0) 81 [51]



3.3. Benchmarking 39

3.3.2 Veteran

The dataset Veteran consists of the data from the Veteran’s Administration Lung Cancer

Trial (Kalbfleisch and Prentice) [54]. It is a standard survival analysis dataset and is available

in survival [52] R package. It is the randomized trial of two treatment procedures for lung

cancer. The dataset consists of a total of 137 observations with 8 variables. The variables

consist of the type of lung cancer treatment (i.e. 1-standard 2-test drug), cell type, Status

that denotes the status of the patient as 1 if dead or 0 if alive, survival time in days since the

treatment, Diag represents the time since diagnosis in months, age in years, the Karnofsky

score, therapy that denotes any prior therapy (0=none, 1=yes).

3.3.3 kidtran

The times to infection of kidney dialysis patients (kidtran) dataset has 863 observations

and 5 variables. The original source of the dataset is ”Survival Analysis Techniques for

Censored and Truncated Data“ [10] and is freely available in R package KMsurv [51]. The

variables are gender (1-male, 2-female), race i.e. 1 if white and 2 if black, age in years, time

which shows period of study, death indicator delta as 0 if alive otherwise 1(dead). The

objective of the study is to assess the time to first clinically apparent infection in a group of

patients suffering from renal insufficiency.

3.3.4 Twins

This dataset consists of a total of 24 observations on 4 features. The dataset is about the

patients died from coronary heart disease. The features are named as id, age, death and
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gender. The response variable is shown in months as age followed by an indicator death

(i.e. 1 if died from CHD, 0 otherwise). The other two variables show the identification

number and gender whether male or female of the subject under study. The dataset is used

in ”Survival Analysis Techniques for Censored and Truncated Data“ [10] and is readily

available in R package KMsurve [51].

3.3.5 Hodg

The hodg dataset has 43 observations and 6 variables. This dataset contains the variables

gtype (graft type 1 for allogenic and 2 for autologous), dtype (disease type: 1 and 2

for Non Hodgkin lymphoma and Hodgkins disease respectively), Time to death, delta

(death/relapse indicator (0 if alive otherwise 1), Karnofsky score and Waiting time in

months to transplant. The dataset is used in ”Survival Analysis Techniques for Censored

and Truncated Data“ [10] and readily available in R package KMsurve [51].

3.3.6 bfeed

bfeed (breast feeding) data is taken from the survey asking female about any pregnancies

that have occurred in 1983 since they were last surveyed, conducted by “National Longi-

tudinal Survey of Youth“ that begun in 1979. This dataset consists of the breast feeding

related information, one of the main section of survey questioner. The information is

taken from 927 mothers (became mothers for the first time) who select breast feeding and

gave answers for all the variables of interest. The children born after 1978 and having

20 < gestational age < 45 weeks are included in the survey. Duration is the response vari-

able in the dataset followed by an indicator whether the weaning to infant is completed
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or not. Race of mother is represented as 1, 2, 3 whether white, black or other, poverty

status of a mother is indicated by 1 if mother is in poverty, the status of mother whether

smoking and drinking at child birth are recorded as separate variables, that is one if yes or

0 otherwise, age and education of mother and the year in which the child born are other

information recorded in this dataset. Prenatal care in first three months (first trimester) of

pregnancy and after that are taken as explanatory variables. The dataset is originally from

“Survival Analysis Techniques for Censored and Truncated Data“ [10].

3.3.7 kidney

This dataset is the record of the time assessment to first clinically apparent infection at

the exit site in patients who has a defect in renal i.e. inability to clear waste products

from body. About the placement of a catheter two choices, whether surgical placement or

percutaneous placement, is given to each patient. There are 43 patients who select surgery

while 76 patients utilized a percutaneous placement of their catheter. Thus a total of 119

persons are observed on 3 variables. Delta is used as censored indicator. This dataset is

available free in KMsurv R package [51].

3.3.8 cgd

This dataset has been taken from a placebo controlled trial of gamma interferon in a

chronic granulotomous disease (CGD). The dataset consists of a records on time to serious

infections observed in patients through the end of the study. There are a total of 15

variables in this dataset. These variables are enrolling centre, treatment whether placebo

or gamma interferon, sex, age, entry at study, height, weight (in kg), inheritance pattern,
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use of steroids, use of prophylactic antibiotics, 4 groups of centres, days to last follow-up,

start and end of each time interval and observation number within subject with the status

1 if the interval ends with an infection otherwise 0 as a censoring indicator. The original

source of the data is “Counting Processes and Survival Analysis“ [55] and the data is freely

available in package survival [52].

3.3.9 Burn

This dataset consists the 18-months treatment records of burned patients.

The dataset provide information about the care methods used for the burned patients,

infections in burn wound and other medical cares. During study period the time in days

until staphylococcus infection was recorded. The information that whether an infection

had occurred or not is recorded as an indicator variable. Gender, race, burn site, severity

and type of burn are other fixed covariates recorded in the under discussion study. Excision

time and time to prophylactic antibiotic treatment administered are also recorded during

study. Two other covariates dependent on time, namely, whether the patient’s wound had

been excised or not and whether the patient sometime during the course of the study had

been treated with an antibiotic or not are recorded as indicator variables.

A total of 154 patients are observed in which 84 patients received chlorhexidine, the

new bathing solution, while other 70 patients served as the historical control group by

giving them povidone-iodine, the routine bathing care. The original source of the data

is the ”Survival Analysis Techniques for Censored and Truncated Data“ [10] while in the

KMsurv R package [51] the dataset is available readily.
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3.3.10 GBSG2

This dataset contains observations on 686 women who suffered from breast cancer. The

original source of the data is “Building multivariable prognostic and diagnostic models:

transformation of the predictors by using fractional polynomials“ [56]. The features in the

data are age of the patients in years, time of recurrence free survival time (in days), hormonal

therapy, a factor at two levels yes and no, menopausal status, a factor at two levels pre

(premenopausal) and post (postmenopausal) as horTh and menostat respectively. Variables

tsize and tgrade denote the size of tumour in mm and grade of tumour, an ordered factor at

levels I < II < III respectively while, number of positive nodes and progesterone receptor

are shown by variables names pnodes and progrec respectively. Censoring indicator is

represented by cens i.e 0 if censored and 1 if event happens. The estrogen receptor is

showed by variable named estrec. The dataset is freely available in the pec R package [53].

3.3.11 Channing

This dataset consists the information of individuals ages at death who were in residence

in Palo Alto, California from January 1964 to July 1975. A health care program provided

by the centre observed a total of 462 individuals, whose allowed for easy access to medical

care without any additional financial burden on the resident.

The original source of the data is the ”Survival Analysis Techniques for Censored and

Truncated Data“ [10] while in the KMsurv R package [51] the dataset is available for free.

There are a total of 5 variables in the dataset i.e. status of death (1:dead otherwise 0), age

(in months) of entry into retirement home, age of death or left retirement home, time as a
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difference between the above two ages and gender i.e. 1 for male and 2 for female.

3.3.12 retinopathy

The dataset is based on a trial to delay diabetic retinopathy through laser coagulation

treatment. A data frame consists of 394 observations on 9 variables i.e, type of laser used,

treated eye whether right or left, age of a person at diagnosis time, type of diabetes, trt

that is 0 for control eye and 1 for treated eye, time to loss of vision and eye risk score.

A status variable 0 if censored and 1 otherwise is recorded as censoring indicator where

censoring is caused by death, remove from study or end of the study. For each patient

there are two observations in the dataset, one for the eye received laser treatment and the

other for the untreated eye. The time when treatment starts to the time when visual acuity

dropped below 5/200 is considered as the event of interest for each eye. Survival times in

this dataset are the difference between actual time when vision lost and minimum possible

time to event.

The dataset is available in survival R package [52].

3.3.13 myeloid

This dataset consists of 646 observations on 6 variables. These variables are, treatment arm

(A or B), time to death represented by futime 1 for those who died and 0 for censored or lost,

time to hematropetic stem cell transplant, complete response time and time to recurrence

of disease. In survival R package [52] the dataset is available free of cost.
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3.3.14 Pbc ( Primary Biliary Cirrhosis)

This dataset has been taken from the trial conducted by Mayo Clinic between 1974 and

1984. The information about the primary biliary cirrhosis (PBC) of the liver were collected

during the trial. The eligibility criteria for the randomized placebo controlled trial of

the drug D-penicillamine was met by a total of 424 PBC patients in which first 312 cases

participated in the randomized trial and contain largely complete data. The remaining 112

cases just consented to have basic measurements recorded and to be followed for survival.

The variables are arranged in the data as follows: age in years, serum albumin (g/dl),

alkaline phosphotase as alk.phos, presence of ascites, aspartate aminotransferase, once

called SGOT as ast, bili (serum bilirunbin), serum cholesterol as chol, urine copper, edema

as 0 no edema, 0.5 untreated or successfully treated, 1 edema despite diuretic therapy and

h.epato (presence of hepatomegaly or enlarged liver).

3.3.15 Colon

Colon cancer is actually a disease occurs due to the growth of out-of-control cell. It

originate from small, noncancerous tumours called adenomatous polyps that form on

the inner walls of the large intestine and damage healthy tissue that is near the tumour

causing many complications. This dataset is about one of the first successful adjuvant

chemotherapy trials for colon cancer. A low-toxicity compound Levamisole that is used

previously for the treatment of worm infestations in animals while 5-FU is a moderate

toxic chemotherapy agent. Per person two records, one for recurrence and one for death

are collected in the under discussion study. There are total of 1858 subjects observed on
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15 variables. The variable are study i.e. 1 for all patients, (Treatment - Obs(ervation),

Lev(amisole), Lev(amisole)+5-FU) namely rx, sex and age of patient, colon obstruction and

perforation, adherence to nearby organs, number of cancer detectable lymph nodes, days

until event or censoring, differentiation of tumour as 1, 2, 3 whether well, moderate or

poor), Extent of local spread i.e. 1:submucosa, 2:muscle, 3:serosa, 4:contiguous structures,

time from surgery to registration, positive lymph nodes that is more than 4, type of event

and status as a censoring status.

3.3.16 BMT

This dataset consists of the information about the process of recovery from a bone marrow

transplantation. A total of 137 patients were treated during study for maximum follow-

up of 7 years. During follow up time it is observed that 42 patients are relapsed and 41

died, 26 patients had an episode of acute GVHD. The number of patients whose either

relapsed or died in remission without their platelets returning to normal levels, recorded

is 17. Several potential risk factors were measured at transplantation time. For each

disease, patients on the bases of their status at transplantation time were grouped into

risk categories. These categories are Disease Group 1, 2 and 3 for ALL, AML Low Risk

and for AML High Risk respectively. Other risk factors denoted from z1 to z10 consists

of recipient and donor age and gender, cytomegalovirus immune status, waiting time

from diagnosis until transplantation, French-American-British (FAB) classification based

on standard morphological criteria, Hospital i.e 1, 2, 3 and 4 for the Ohio State University,

Alferd, St. Vincent and Hahnemann respectively. MTX is recorded as a graft-versus-host-

Prophylactic that is 1 if Yes and 0 otherwise. t1 represents time to death or on study time
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while t2 is a survival time free from any disease. d1, d2 and d3 show death indicator

(i.e 1 for those who died and 0 for others), relapse indicator and survival indicator that is

completely disease free while da, dc and dp variables shows acute GVHD indicator and

chronic GVHD indicator and platelet recovery indicator respectively. Variables ta, tc and

tp show time to acute and chronic Graft-Versus-Host disease.

3.3.17 NKI

In this dataset the gene expression measurements of 337 lymph node positive breast cancer

patients are recorded. Originally, the dataset included 3322 patients, 17 clinical variables

and 693,543 SNPs. The benchmarking is performed on 2781 individuals and 331,195

SNPs after application of a standard quality control and linkage disequilibrium pruning

(r2 > 0.7) [29]. Finally, the computational burden is reduced and missing data is elimi-

nated by excluding all SNPs with a call fraction below 100% keeping 151,346 SNPs. The

endpoint relapse-free survival are analysed. This dataset is available at dbGaP and has ID

phs000547.v1.p1 (https://www.ncbi.nlm.nih.gov/gap/?term=phs000547.v1.p1).

3.3.18 cost

This dataset is actually a subset of the data from the Copenhagen stroke study. A total of 518

stroke patients are observed. There are a total of 14 features i.e. age and sex, Hypertension,

History of ischemic heart disease at the time of admission, history of previous strokes before

admission, history of other disabilities (e.g. severe dementia), daily alcohol consumption,

mellitus status of diabetes that indicates the glucose level higher than 11 mmol/L, daily

smoking status, atrial fibrillation, hemorrhage (stroke subtype), strokeScore, cholesterol
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level are recorded with the survival time and status (0: censored, 1: event). The dataset

is freely available in R package pec [53] while the original source is “Evaluating random

forests for survival analysis using prediction error curves” [57].

3.3.19 Software and packages

R is a computer programming language that provides a friendly environment for every

body to participate. This is a free of cost language with a huge repository of utilities

for solving various problems that are regularly developing. Therefore, for execution of

algorithms, obtaining the results for the methods on the benchmark dataset in this thesis,

R [58] programming language is used.

The corresponding R packages for the methods considered in this thesis are described

as follows.

For random survival forest ensemble the package ranger [59] is used. This package is

considered to be a fast implementation of the “randomForest” [60] R package originally

developed for classification and regression. The hyper-parameters tuned, by 10-fold cross

validation, are total number of trees, number of features selected at each node for splitting

and terminal node size. These are denoted by num.trees, mtry and min.node.size,

respectively in the ranger R package.

For bagging survival trees the R package ipred [61] is used. The only hyper-parameter

that is tuned is the number of trees denoted by nbagg in the R package. Similarly for

conditional inference forest, free available package party [37] is used. The total number of

trees and number of features that are selected at each node for splitting the nodes are the

only hyper-parameters denoted by ntree and mtry defined via c f orest control are tuned.
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The package survival [62] is used for Cox proportional hazard model using default

values for all parameters. For the variable initial iteration values, the default is zero for

all features, i.e init is set to zero. Iterations continues until the relative change in the log

partial likelihood is smaller than 1e−09, i.e. eps< 1e−09. The maximum iteration attempts

for convergence is 20 by default. For tie handling, the Efron [63] approximation is used as

the default i.e. ties=‘‘efron’’.

3.4 Error estimation

In survival analysis numerous methods are used to estimate the predictive performance of

the model. Here, we use integrated Brier score as the performance metric for comparing

the methods considered in this work. The following section describe how to calculate Brier

score and its integration in detail.

3.4.1 Integrated Brier score (IBS)

IBS is calculated simply by taking the integration of Brier score [64]. Brier score (BS) is

actually a measure of the mean squared difference between the actual outcome yi and

the predicted probability of the possible outcome for the ith observation at given time t.

The advantage of BS over other common methods for prediction assessment is its correct

classification in different outcome groups and agreement of the predictions with the true

risk. In other words, these are called discrimination and calibration (see section 4.2.1) [65].

In survival analysis the Brier score is the squared difference between the survival func-

tion indicator and the predicted survival probability at given time t0. In free censored sur-
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vival data BS can easily be estimated by taking average of the squared distances between

the indicator of survival function for the subjects and the survival probability predicted

by the model for that subjects [65]. However, for right censored data which is the main

concern here in this thesis, the integrated brier score technique is used.

Let the time of the event of interest of subject i be Ti, the outcome is δi = 1(Ti > t0) and

Ŝ(t0|xi) is the probability estimate of a subject at risk observing at t0, where t0 is the exact

follow-up time and xi are the given covariates then the BS is given as [65]

BS(t0) = E(1(Ti > t0) − Ŝ(t0|xi))2,

= E(1(Ti > t0) − S(t0|x) − Ŝ(t0|xi) + S(t0|x))2,

= E(1(Ti > t0) − S(t0|x))2 + E(Ŝ(t0|xi) + S(t0|x))2.

The censored indicator δi is not always easy to calculate. If an individual i survived at least

until time t0 i.e 1(Ti > t0) then δi = 1 otherwise 0. The indicator is consider to be unknown

if the individual is censored before t0 i.e Ti < t0. Inverse probability of censoring weighting

(IPCW) [66] is used to overcome this issue. Hence, the Brier score can be written as:

B̂S(t0) =
1
n

n∑
i=1

(1(Ti > t0) − Ŝ(t0|xi))2wi,
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where

wi =



0, if Ti > t0 and oi = 0,

1
Ĝ(t0)

, if Ti > t0,

1
Ĝ(Ti)

, if Ti < t0 and oi = 1,

(3.1)

where Ĝ(t0) is the Kaplan-Meier estimate of the probability of being uncensored at time t0.

The predictive performance of the model is said to be better for the lower values of the

Brier score. 0 indicates perfect predictions, however, in practice it is very rare or may be

impossible to get 0 value for the brier score.

The Brier score defined above is a function of time t0 where in right censored data

measure of predictive accuracy over a range of time points is required. Therefore, an

integrated Brier score (IBS) with respect to some weight function can be estimated by

integrating the BS calculated through the aforementioned method [67].

The integrated Brier score (IBS) for t ∈ (0, t∗) is calculated as follows:

IBS(t0) =

∫ t∗

0
B̂S(t0)dt ŵ(t0),

where ŵ(t0) is a function that weight the Brier scores at individual time points. It is a

straightforward trapezoidal rule that integrate the area under the prediction curve [67].



Chapter 4

Optimal survival trees ensemble

4.1 Introduction

The main objective of monitoring and analyzing survival data for long period of time is to

estimate the time of occurrence of a particular event of interest in the best way. To increase

the predictive performance of the survival model tree based approaches might be used.

Intuitively, a survival forest of accurate and diverse survival trees may perform better than

a forest consisting of simple survival trees. This intuition also hold for the Breiman’s [1]

forest of regression and classification trees, which has led to the method of optimal trees

ensemble (OTE) for regression and classification [6].

Ensemble of optimal trees refines the idea of bagging and random forest based on the

Breiman’s upper bound for the overall prediction of random forest given as:

(PE)∗ ≤ ρ̄PE j,

52
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where PE∗ denotes the overall prediction error of random forest, ρ̄ is the weighted cor-

relation between residuals from two independent classification or regression trees and

PE j, j = (1, . . . ,B) is the prediction error of the jth classification or regression tree in the

forest. B is the total number of trees in the forest.

OTE selects the best tree from a large number of trees initially grown by random forest

on the basis of their individual and collective performance. On the bases of individual

performance on out-of-bag observations, a proportion of top ranked trees are selected and

assessed on an independent training data for their collective performance using Brier score.

A tree is said to be suitable for the final ensemble if its addition to the previously added

trees increase its predictive performance [6]. OTE method select trees for final ensemble

one by one starting from the tree with the highest prediction accuracy. The method has

been shown to give comparable results using fewer trees than some other state-of-the-art

methods considered.

Here it is aimed to extend OTE to survival data and to select the best survival trees

from an initial ensemble in terms of their individual predictive accuracy as well as their

contribution to the ensemble and integrate them together to develop a new forest ensemble.

This ensemble will be called as optimal survival trees ensemble (OSTE). Using a total of 17

benchmark datasets, the results from OSTE are compared with those of bagging survival

trees, random survival forest, conditional inference forest and Cox proportional hazard

model.
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4.2 Optimal ensemble of survival tree (OSTE)

Optimal survival trees (OSTE) is an attempt to refine the idea of random survival forest by

assessing survival trees not only on their collective performance but also on their individual

performance. To obtain the ensemble, divide the given training data L = (X,Y) into two

parts LB = (XB,YB) and LV = (XV,YV). LB and LV are random and non-overlapping

partitions of the training data. From LB = (XB,YB) draw B bootstrap samples and grow

survival tree on each sample. To induce more randomness select a subset of p < d features

at each node of the tree. During bootstrapping some observations are left out of samples

which are called out-of-bag (OOB) observations. In training the corresponding model,

OOB observations play no role, these observations, however, could be used as test data

from each of the corresponding bootstrap sample for prediction error of individual survival

trees. The grown survival trees are arranged in ascending order according to their C-index

(introduced in Section ) and the top M trees are selected. To check the diversity of the

selected trees, they are tested one by one as follows:

• To get the final ensemble of survival trees, trees collective performance is assessed

on the independent training data LV = (XV,YV). The second best survival tree is

combined with the best survival tree and the resultant ensemble is assessed by using

the training dataLV = (XV,YV). The third best survival tree is added to the ensemble

of size two and the performance is measured similarly. A survival tree is selected for

the final ensemble if its addition decreases the prediction error of the ensemble. This

is done for all the M survival trees.

• A survival tree, L̂k where k = (1, 2, . . . ,M) is chosen for the final ensemble of optimal
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survival trees if its addition to the ensemble with out kth survival tree fulfills the

following criterion

IBS(k−) > IBS(k+),

where IBS(k+) is the integrated brier score (IBS) of the ensemble including the kth tree and

IBS(k−) is the integrated brier score of the ensemble in which the kth tree is not included yet.

4.2.1 Concordance index

Discrimination and Calibration [68] are two measures used to check the predictive perfor-

mance of mathematical model having binary outcomes. Discrimination check that how

much ability the model has to classify the subject into relevant class while calibration de-

scribe that how closely the actual outcomes relate to the numerical values of the predicted

probabilities. Discrimination is the most preferred one due to the fact that re-discrimination

is not possible unlike calibration. On the other hand implementation of discrimination does

not affect the calibration.

In survival analysis, for each subject we have survival times and predictions about them

unlike logistic regression where each subject has to fall into one of two possible categories.

This makes discrimination in survival analysis difficult. Survival model can be evaluated

by considering the relative risk of an event for different subjects instead of the absolute sur-

vival times for each subject. The concordance index (C-index) [69] is one of the suggested

measures. It is the extension of the concept of the receiver operating characteristic (ROC)

curve area (the area under the receiver operating characteristic curve) where ROC mea-

sure the discriminative ability of the under discussion biomarker at each time point [70].
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Concordance index is one of the most reported metrics to predict biomarkers in survival

setting. It is also used for the comparison of models derived in different statistical cultures,

such as a Cox regression model and a random survival forest model [42]. A pair is said

to be concordant if an individual predicted risk is high while the survival time is short.

Among all pairs of an individual the relative frequency of the concordant pair is called

C-index when the data under study is not censored. Briefly, the C-index can be described

as the probability that a subject under study with a small survival time is associated with

a high value of an indicator (biomarker) and vice versa. In other words C-index measures

the ability of a biomarker to discriminate between subjects with small survival times and

subjects with large survival times. This strategy is very helpful in the field of biomedi-

cal research where patients are needed to be subdivided into groups with good or poor

prognosis [70]. It is also applicable to continuous, ordinal and dichotomous outcomes. For

survival outcomes, the C-index is defined as:

C = P(δ1 > δ2|T1 < T2), (4.1)

where T1,T2 and δ1, δ2 are the event times and the predicted biomarker values [70], respec-

tively. The biomarker value shows closeness to a perfect discriminatory power for C = 1

while for C = 0.5 a marker does not perform well.

4.2.2 OSTE Algorithm

The algorithm of the proposed method OSTE consists of the following steps:

• Partition the training data into two non-overlapping parts L = (X,Y) = LB and LV.
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• Draw B bootstrap samples from the data LB = (XB,YB) .

• On the bootstrap samples grow survival trees in such a way that the splitting variable

is chosen from p < d features at each node.

• Arrange the grown trees on the bases of their individual prediction error on OOB

data in ascending order and select the top M trees. The prediction error is estimated

via concordance index given in Section 4.2.

• Add the M selected trees one by one and calculate integrated Brier score. Check the

performance on validation data LV = (XV,YV). Select the survival tree if the results

are improved otherwise discard.

• New data are predicted by combining the results of the selected trees in the final

ensemble.

Figure 4.1: Work flow of the OSTE method.
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Take LB = (XB,YB) as the training data; B as the number of bootstrap sample, ;
for i = 1→ B do

Take a bootstrap sample si from LB;
Store the observation left out from the ith sample as OOB(i);
Make a root node Qroot containing si;
Call GrowTree(si) to grow tree ith tree ;
Estimate prediction error for ith tree using OOB(i)

end
GrowTree (si);
Qroot = si or a subset of si;

{
if Qroot has greater than or equal to a specific number of unique deaths then

return (Qroot);
else

Randomly select p candidate variable from all d features;
Select the feature that best split Qroot to create child nodes of Qroot;
for j = 1→ |child nodes| do

GrowTree(child node);
end

end

}
Select the best trees based on individual performance;

{
for j = 1→ B do

if prediction error of tree j is < q then
select Sb;
(q is a quantile point in the error distribution of B trees.)

else
Drop;

end
end

}
Select the best survival trees based on ensemble performance ;
Initialize the ensemble from the first top ranked tree;
for k = 2→M do

if B̂S
(k−)

< B̂S
(k+)

then
Select the kth tree, where B̂S

(k+)
is the Brier score of the ensemble having the

kth tree and B̂S
(k−)

is the Brier score of the ensemble with out the kth tree after
applying data, LV = (XV,YV);

else
Do not select the kth tree

end
end
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4.3 Experiment and results

4.3.1 Experimental setup

Each data set is divided into training and testing parts. A random set of 70% of the total

dataset is taken as the training while the remaining 30% of the dataset is left for testing

purposes. The same training and testing parts are used for all the methods considered in

the analysis for valid comparison.

In the case of OSTE, a total of 1000 independent survival trees are grown on bootstrap

samples selected from 95% of the training data as the initial ensemble. For splitting the

nodes of the trees, p features are randomly selected at each node from the total of d features

while growing the trees. The remaining 5% of the training data is used for diversity check.

For all datasets the number p of feature is taken as the square root of the total features i.e

p =
√

d, which is also the default value in the standard random survival forest. Terminal

node size is fixed at 3. Based on individual accuracy, M = 20% of total trees grown are

selected. A total of 1000 runs are performed for each data set and the final results are

the average from all these runs using the 30% test data. Log-rank statistic is used while

growing the forest.

In the case of RSF, number of trees is tuned by using 10-fold cross validation on values

from the set {500, 1000, 1500, 2000}. Tree are grown unproned with terminal node size equal

to 3. The value of mtry is tuned by using 10-fold cross validation considering all possible

values of the number of features for all the datasets on the corresponding training part.

Log-rank statistic is used while growing the forest.

In the case of bagging for survival trees, number of trees is tuned by using 10-fold cross
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validation on {500, 1000, 1500, 2000}. Trees are grown unproned. Log-rank statistic is used

while growing the forest.

For conditional inference forest, number of trees are fine tuned using values from the

set {500, 1000, 1500, 2000}. The party R package is used for getting the result with the rest

of the parameters on their default values.

For Cox-proportional hazard model, the default setting is used as implemented in the

R package described in Section 3.3.19 of Chapter 3.

4.4 Results and discussion

Using the experimental settings given in Section 4.3.1, integrated Brier scores for all the

methods are calculated on the datasets introduced in Chapter 3. The results are given in

Table 4.1 The results are the average integrated Brier scores from a total of 1000 repetitions

of applying the methods each time randomly dividing the data into training and testing

parts as described in the above section. The table show that OSTE is giving better average

results than the others on 5 out of 17 data sets. RSF gives better results on 1 data set while

bagging outperformed others on 5 datasets. The results of bagging and RSF were same on

twins dataset. CIF gave better results on 4 and Cox on 3 datasets.

Figures 4.2-4.4 give the results of the methods for the 17 datasets in the form of box

plots. The box plots for Cox, bagging, RSF, CIF and OSTE are shown by brown, gray, red,

yellow and blue colors, receptively. Figure 4.2 gives the integrated Brier scores for all the

methods on the datasets veteran, kidtran, bfeed, twins, GBSG2 and burn. OSTE shows

better performance on kidtran and bfeed datasets while for other datasets the results are
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Table 4.1: Integrated Brier scores of the methods against each data set. The best score is highlighted in bold
font.

Datasets n d Cox bagging RSF CIF OSTE

kidney 119 3 0.1272 0.1296 0.1296 0.1257 0.1291

twins 24 4 0.0144 0.0132 0.0132 0.0147 0.0139

kidtran 863 5 0.0341 0.0324 0.0144 0.0203 0.0135

channing 462 5 0.0584 0.0512 0.0554 0.0664 0.0550

Hodg 43 6 0.1521 0.1885 0.1836 0.1703 0.2067

myeloid 646 6 0.1393 0.1348 0.1349 0.1360 0.2474

veteran 137 8 0.2571 0.1707 0.1692 0.1582 0.1683

retinopathy 394 9 0.1757 0.1795 0.1765 0.1714 0.1762

bfeed 927 10 0.1925 0.2397 0.1942 0.1941 0.1478

GBSG2 686 10 0.0148 0.0151 0.0149 0.0182 0.0170

NKI 295 14 0.1510 0.1154 0.1113 0.1077 0.1110

cgd 203 15 0.2831 0.0819 0.0862 0.0831 0.0844

colon 1858 15 0.1737 0.1534 0.1605 0.1735 0.1897

cost 518 15 0.1764 0.1825 0.1807 0.1851 0.1789

burn 154 17 0.1661 0.1477 0.1474 0.1527 0.1469

Pbc 418 19 0.0669 0.0669 0.0504 0.0523 0.0082

BMT 137 22 0.0799 0.0450 0.0560 0.0511 0.0299
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similar to the rest of the methods.
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Figure 4.2: The boxplots showing IBS on the datasets veteran, kidtran, bfeed, twins, GBSG2 and burn. Cox,
Bagging, RSF, CIF and OSTE are shown by brown, gray, red, yellow and blue colors, respectively. OSTE
shows better performance on kidtran and bfeed datasets while for others datasets the results are similar to the
rest of the methods.
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Figure 4.3: The boxplots showing IBS on the datasets retinophty, cgd, cost, myeliod, channing and NKI.
Cox, Bagging, RSF, CIF and OSTE are shown by brown, gray, red, yellow and blue colors, respectively.
OSTE shows similar performance on all the datasets except myeliod.
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The boxplots given in Figure 4.3 show the IBS on the datasets retinophty, cgd, cost,

myeliod, channing and NKI. Cox, Bagging, RSF, CIF and OSTE are shown by brown, gray,

red, yellow and blue colors, respectively. OSTE shows similar performance on all the

datasets except myeliod. Cox shows poor performance on cgd and NKI datasets. Results

of the methods on other datasets are similar to the rest of the methods.
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Figure 4.4: The boxplots showing IBS on the datasets BMT, colon, Hodg, kidney and Pbc. Cox, Bagging,
RSF, CIF and OSTE are shown by brown, gray, red, yellow and blue colors, respectively. For kidney dataset
OSTE shows similar performance while on Pbc and BMT datasets OSTE shows better results.
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The boxplots given in Figure 4.4 showing IBS on the datasets BMT, colon, Hodg, kidney

and Pbc. Cox, Bagging, RSF, CIF and OSTE are shown by brown, gray, red, yellow and

blue colours, respectively. For kidney dataset OSTE shows similar performance while the

results of OSTE are better on Pbc and BMT datasets.

Due to tree selection with specific patterns, OSTE might give comparatively larger error

estimates on some of the random splits of the data into training and testing parts. This

may happen when patterns in the selected trees are not in-line with those in the test data.

This can be seen in Figure 4.4 for Pbc data, for example.

As OSTE improves RSF by discarding trees from the original forest with adverse effects

on its overall efficiency, a further comparison of the two methods is given in terms of feature

importance. Feature importance for both the methods is estimated via the permutation

method [71]. For both the methods, a variable’s permutation importance is estimated by

randomly permuting the given variable in the out-of-bag (OOB) data for the tree, and the

permuted OOB data is dropped down the tree. The OOB estimate of prediction error is

then calculated. The estimate of the variable importance is the difference between this

estimate and the OOB error without permutation, averaged over all trees. The larger the

permutation importance of a variable, the more predictive the variable.

Variable importance on 4 data sets, burn, bmt, GBSG2 and colon is estimated for both

the methods as shown in Figure 4.5. OSTE discards harmful trees from the forest that

might have the effects of non-informative features thus giving larger importance values to

predictive features compared to random survival forest as shown for the burn and bmt data

sets (top panel of Figure 4.5). OSTE fails to achieve this in the cases of colon and GBSB2

data sets (bottom panel of Figure 4.5) which might be a reason of OSTE outperformed by
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RSF in the cases of these data sets.
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Figure 4.5: The plots showing feature importance for RSF and OSTE. The dots and + sign shows RSF and
OSTE respectively.

4.4.1 Hyper-parameters assessment

The effect of various number of trees (B) grown in the initial ensemble, proportion of trees

(M) selected based on individual accuracy and the number of features p have been assessed

on the results of OSTE. For assessing the effect of B, various values are tried in the initial

set. The results are given in Figure 4.6. It can be seen that increasing the number of trees

from 1000 has no/little effect on the Brier scores on the given datasets. For kidtran dataset,

growing more than 1000 trees increase the error.
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Figure 4.6: The boxplot showing a comparison of IBS on four datasets for different number of trees B in the
inital set.

OSTE is also checked for various values of M i.e. 5%, 10%, . . . , 60%. The results are

shown in Figure 4.7. As can be seen in the figure that OSTE gives almost same results by

only selecting 5% of trees from the total initial set based on individual accuracy against

higher values of M. This has led to a final ensemble of sizes 25, 23, 31 and 24 for veteran,

kidtran, bfeed and twins datasets respectively. This reveals that a significant reduction in

the number of trees used for the final ensemble can be achieved by using OSTE.
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Figure 4.7: The boxplot showing a comparison of IBS on the datasets for different percentages of total number
of trees (M) selected in the first phase. The trees selected by OSTE for the final ensemble are given on the
x-axis.

The effect of the number of features selected at random for splitting the nodes of the

trees on IBS are shown in Figure 4.8. The figure shows that there are variations in the

results for changing value of p. This suggest that this parameter may be tuned for the

corresponding data set.
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Figure 4.8: Boxplots showing a comparison of IBS on veteran, kidtran and bfeed datasets for different values
of p.

4.4.2 Size comparison

A comparative analysis of ensemble sizes in terms of the number of survival trees used has

also been done. The number of survival trees used in the final ensemble by the methods are

given in Table 4.2. The table shows that by choosing M = 20%, a comparable performance

could be achieved by a total of 103, 92, 109, 1, 87, 35, 99, 104, 95, 102, 105, 203, 109, 97, 34,

46, 39 and 51 trees for veteran-Pbc datasets, receptively as compared to the other methods

using hundreds of survival trees in the corresponding final ensembles. This might be very

helpful in reducing computational cost of the ensemble in terms of storage resources.
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Table 4.2: Table showing sizes of ensemble for the datasets. Size of OSTE is shown for M = 20%.

Dataset Bagging RSF CIF OSTE

veteran 1000 1500 1000 103

kidtran 1500 1000 1000 92

bfeed 500 1000 500 109

twins 1000 1000 1500 1

VA 1000 1000 1500 87

BMT 1000 1000 1000 35

retinophty 1000 1000 1000 99

cgd 1000 1000 1500 104

channing 1000 1500 1000 95

Burn 1500 1000 1500 102

GBSG2 1500 1500 1500 105

Cost 1500 1000 1000 203

myeliod 1000 1000 1500 109

NKI 1000 1500 1000 97

colon 1500 1500 1500 34

Hodg 1500 1000 1000 46

Kidney 1000 1500 1000 39

Pbc 1000 1000 1500 51
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4.5 Chapter summary

This chapter has given the proposed ensemble of optimal survival trees. The metric used

in the ensemble formation has also been briefly described. Experiments on 17 benchmark

datasets are given using Cox model, bagging, RSF, CIF and OSTE. Performance of the

methods is shown by calculating integrated Brier scores on all the datasets. The effect of

various hyper-parameters on OSTE has also been checked. Ensemble size comparison of

the methods is also done.



Chapter 5

Conclusion

This thesis has aimed at reducing the number of survival trees in the forest in addition to

improving its performance. Hence, the idea of “optimal survival trees ensemble“ OSTE, is

proposed to achieve this goal. Out-of-bag (OOB) observations are used from the bootstrap

samples taken from training data as the test subjects to find trees that showed better

performance based on C-index. The top ranked survival trees are then assessed on an

independent training data for ensemble predictive accuracy. Survival trees that performed

well both individually and collectively were selected for the final ensemble. OSTE is then

applied on 17 datasets and the results, in terms of integrated Brier score, are compared with

some stat-of-the-art method i.e. Cox proportional hazard model, random survival forest,

conditional inference forest and bagging survival trees.

Average integrated Brier scores are calculated and Boxplots have been constructed from

the integrated Brier scores after applying all the methods on the benchmark data sets. It

has been observed that the proposed OSTE is giving better/comparable results to the best

of the other methods.

74
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In addition to improved predictive performance, OSTE has also been observed to sig-

nificantly reduce the number of survival trees in the final ensemble. OSTE consisting of

less than 20 survival trees is seen to give comparable results to ensembles of hundreds of

survival trees.

Furthermore, the effect of various hyper-parameters on the performance of OSTE has

also been checked. In this regard, the effect of changing the number p of features selected

at the nodes of the survival trees, proportion M of the top ranked trees and number of trees

in the initial ensemble have been checked. p is thus considered to be a tuning parameter of

the methods and shall be fine tuned for a data set accordingly. M needs to be no more than

20% as higher values only increase the size of the ensemble with no improvements. As an

initial set, a total of 1000 survival trees are suggested to be grown for better results.

The proposed ensemble is implemented in an R package “OSTE“.

Optimal survival trees ensemble might be used in future to reduce the number of

survival trees in the final ensemble to a level that can be interpreted. However, due to the

additional filters used in survival trees selection, OSTE is more complex compared to the

others and will consequently need more training time. Parallel computing [72] in R could

be used in high dimensional settings to reduce training time of the proposed method.

As the proposed OSTE leaves some observations from the training data for internal

validation purpose, therefore, some important information could be lost in the learning

process, where as the rest of the methods learn from the entire training set. This might

negatively affect the performance of OSTE. To solve this problem and further improve

OSTE as a future direction, out-of-bag observations could be used for internal validation

as well.
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Another way to further improve the proposed method is to look for alternative statistics

instead of log-rank test while growing survival tree in that this test favours splitting on

variables with many possible split points. Maximally selected rank statistic [47] could

serve as an off-the-shelve tool for split point selection while growing trees for OSTE.

To prepare the proposed method to work well in high dimensional settings, some

state-of-the-art feature selection/dimensionality reduction techniques could be used with

OSTE.
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Appendix A

R-Package

This package consists of function for growing survival trees ensemble, that are grown by
the method of random survival forest. The survival trees grown are assessed for both
individual and collective performances. The ensemble can give promising results on fewer
survival trees selected based on their individual and collective performance in the final
ensemble.
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Package ‘OSTE’
September 30, 2017

Type Package

Title Optimal survival trees ensemble

Version 1.0

Date 2017-09-23

Author Naz Gul, Nosheen Faiz, Zardad Khan and Berthold Lausen

Maintainer Naz Gul <ngul@essex.ac.uk>

Description This package consiste of function for growing survival trees ensemble,
that are grown by the method of random survival forest.
The survival trees grown are assessed for both individual and collective performances.
The ensemble can give promising results on fewer survival trees selected in the final ensemble.

Depends ranger,pec,stats,survival,prodlim

LazyLoad yes

License GPL (>= 2)

R topics documented:
comb.ranger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
OSTE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
OSTE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
predict.OSTE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
predictSurvProb.ranger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
VETERAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Index 8

comb.ranger Combining ranger objects for survival analysis

Description

This function combines two or more than two ranger objects for survival analysis

Usage

comb.ranger(...)

1



2 OSTE

Arguments

... ojects of class ranger for survival analysis

Author(s)

Naz Gul, Nosheen Faiz, Zardad Khan and Berthold Lausen.

References

Marvin N. Wright, Andreas Ziegler (2017). ranger: A Fast Implementation of Random Forests for
High Dimensional Data in C++ and R. Journal of Statistical Software, 77(1), 1-17. doi:10.18637/jss.v077.i01

See Also

OSTE

OSTE Optimal Survival Trees Ensembles

Description

This package consists of function for growing survival trees ensemble, that are grown by the method
of random survival forest. The survival trees grown are assessed for both individual and collective
performances. The ensemble can give promising results on fewer survival trees selected based on
their individual and collective performance in the final ensemble.

Details

Package: OSTE
Type: Package
Version: 1.0
Date: 2017-09-28
License: GPL (>= 2)

Author(s)

Naz Gul, Nosheen Faiz, Zardad Khan and Berthold Lausen.

Maintainer: Naz Gul <ngul@essex.ac.uk>

References

Gul, N., Faiz, N., Khan, Z. and Lausen, B.(2017) “Optimal survival trees ensemble”. Journal name
to appear
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OSTE Optimal survival trees ensemble

Description

Optimal survival trees ensemble is the main function of OSTE package that grows a sufficiently large
number, t.initial, of survival trees and selects optimal survival trees from the total trees grown
by random survival forest. Number of survival trees in the initial set, t.initial, is chosen by the
user. If not chosen, then the default t.initial = 500 is used. Based on empirical investigation,
t.initial =1000 is recommended.

Usage

OSTE(formula = NULL, data, t.initial = NULL, v.size = NULL, mtry = NULL,
M = NULL, minimum.node.size = NULL, always.split.features = NULL,
replace = TRUE, splitting.rule = NULL, info = TRUE)

Arguments

formula Object of class formula describing the required model to be fitted. Interaction
terms are not supported in the current version.

data A nxd matrix or data frame of n observations on d features along with response
variables that are described by the formula.

t.initial Number of survival trees to be grown initially. If equal to NULL then the defalut
of t.initial = 500 is taken. A recommended value is t.initial = 1000.

v.size Portion of data used for validation in the second phase i.e. for assessing survival
trees performance in the ensemble. If equal to NULL then the defalut v.size=0.1

mtry Number of features selected at random at each node of the survival trees for
splitting. If equal to NULL then the default sqrt(d) is taken.

M Percent of the best t.initial survival trees to be selected on the basis of their
performance on out-of-bag observations. For selecting 20% of trees, take M=0.2.

minimum.node.size

Minimal node size. If equal to NULL then the default minimum.node.size = 3
is executed.

always.split.features

Vector of variable names if desired to be always selected in addition to the mtry
variables tried for splitting.

replace Whether sampling should be done with or without replacement.

splitting.rule Splitting rule."logrank", "C" or "maxstat" are suported with default "logrank".

info If TRUE, displays process status .

Details

Large values are recommended for t.initial for better performance as possible under the avail-
able computational resources. The log-rank test statistic is used as defalut, A C-index based splitting
rule (Schmid et al. 2015) and maximally selected rank statistics (Wright et al. 2016) are available.
The C-index shows better predictive performance in case of high censoring rate, where logrank is
best for situations where the data are noisy (Schmid et al. 2015).
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Value
unique.death.times

Unique death times.

CHF Estimated cumulative hazard function for each observation.

Survival_Prob Estimated survival probability for each observation.

trees_selected Number of trees selected.

mtry Value of mtry used.

forest Saved forest for prediction purposes.

Note

In the case of missing values in any dataset prior action needs to be taken as the fuction can not
handle them at the current version. Moreover, the status/delta variable in the data must be code as
0, 1.

Author(s)

Naz Gul, Nosheen Faiz, Zardad Khan and Berthold Lausen.

References

Marvin N. Wright, Andreas Ziegler (2017). ranger: A Fast Implementation of Random Forests for
High Dimensional Data in C++ and R. Journal of Statistical Software, 77(1), 1-17. doi:10.18637/jss.v077.i01

Terry Therneau, Beth Atkinson and Brian Ripley (2015) rpart: Recursive Partitioning and Regres-
sion Trees. R package version 4.1-10. https://CRAN.R-project.org/package=rpart

Ulla B. Mogensen, Hemant Ishwaran, Thomas A. Gerds (2012). Evaluating Random Forests for
Survival Analysis Using Prediction Error Curves. Journal of Statistical Software, 50(11), 1-23.
URL http://www.jstatsoft.org/v50/i11/.

Schmid, M., Wright, M. N. & Ziegler, A. (2016). On the use of Harrell’s C for clinical risk predic-
tion via random survival forests. Expert Syst Appl 63:450-459. http://dx.doi.org/10.1016/j.eswa.2016.07.018.

Wright, M. N., Dankowski, T. & Ziegler, A. (2017). Unbiased split variable selection for random
survival forests using maximally selected rank statistics. Stat Med. http://dx.doi.org/10.1002/sim.7212.

Zardad Khan, Asma Gul, Aris Perperoglou, Osama Mahmoud, Werner Adler, Miftahuddin and
Berthold Lausen (2015). OTE: Optimal Trees Ensembles for Regression, Classification and Class
Membership Probability Estimation. R package version 1.0. https://CRAN.R-project.org/package=OTE

See Also

predict.OSTE

Examples

#Load the data
data(VETERAN)

#Divide the data into training and test parts

n <- nrow(VETERAN)
trainind <- sample(1:n,n*0.7)
testind <- (1:n)[-trainind]
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# Grow OSTE on the training data

OSTE.fit <- OSTE(Surv(time,status)~.,data=VETERAN[trainind,],t.initial=100)

# Predict on the test data

pred <- predict.OSTE(OSTE.fit,newdata=VETERAN[testind,])

# Index various values

pred$survival_prob

#etc.

predict.OSTE Prediction function for OSTE object

Description

This function provides prediction for test data on the trained OSTE object for survival analysis.

Usage

predict.OSTE(object, newdata)

Arguments

object An OSTE object.

newdata New/test data.

Value

CHF A vector of cumulative hazard function of training data.

survival_prob A vector of survivalprobability of testing data.

time_points A vector of unique death times.

Author(s)

Naz Gul, Nosheen Faiz, Zardad Khan and Berthold Lausen.

References

Marvin N. Wright, Andreas Ziegler (2017). ranger: A Fast Implementation of Random Forests for
High Dimensional Data in C++ and R. Journal of Statistical Software, 77(1), 1-17. doi:10.18637/jss.v077.i01

See Also

OSTE



6 predictSurvProb.ranger

Examples

#Load the data
data(VETERAN)

#Divide the data into training and test parts

n <- nrow(VETERAN)
trainind <- sample(1:n,n*0.7)
testind <- (1:n)[-trainind]

# Grow OSTE on the training data

OSTE.fit <- OSTE(Surv(time,status)~.,data=VETERAN[trainind,])

# Predict on the test data

pred <- predict.OSTE(OSTE.fit,newdata=VETERAN[testind,])

# Index various values

pred$survival_prob

predictSurvProb.ranger

Survival probabilities for working with pec R package

Description

This function facilitates pec R package to work with the OSTE package.

Author(s)

Naz Gul, Nosheen Faiz, Zardad Khan and Berthold Lausen.

References

Ulla B. Mogensen, Hemant Ishwaran, Thomas A. Gerds (2012). Evaluating Random Forests for
Survival Analysis Using Prediction Error Curves. Journal of Statistical Software, 50(11), 1-23.
URL http://www.jstatsoft.org/v50/i11/.

See Also

OSTE
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VETERAN Data on randomized trial of two treatment procedures for lung cancer.

Description

The data set consist of a total 137 observations on 8 variables. The variables consist of the type of
lung cancer treatment i.e 1 (standard) and 2 (test drug), cell Type, Status, that denotes the status of
the patient as 1 (dead) or 0 (alive), survival time in days since the treatment, Diag, the time since
diagnosis in months, age in years, the Karnofsky score, therapy that denotes any prior therapy 0
(none), 1 (yes).

Usage

data("VETERAN")

Format

A data frame with 137 observations on the following 8 variables.

trt: a numeric vector denoting type of lung cancer treatment i.e 1 (standard) and 2 (test drug).

celltype: a factor with levels squamous, smallcell, adeno and large.

time: a numeric vector denoting survival time in days since the treatment.

status: a numeric vector that denotes the status of the patient as 1 (dead) or 0 (alive).

karno: a numeric vector denoting the Karnofsky score.

diagtime: a numeric vector denoting the time since diagnosis in months.

age: age in years.

prior: a numeric vector denoting prior therapy; 0 (none), 1 (yes).

References

Therneau T (2015). A Package for Survival Analysis in S. version 2.38, <URL: https://CRAN.R-
project.org/package=survival>.

Terry M. Therneau and Patricia M. Grambsch (2000). Modeling Survival Data: Extending the Cox
Model. Springer, New York. ISBN 0-387-98784-3

Examples

#To load the data
data(VETERAN)
# To see the structure
str(VETERAN)
#etc.
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