New Remedial Approaches to the Breakdown of Lanczos-type Algorithms

Syed Muhammad Ghufran

A Thesis presented for the degree of Doctor of Philosophy
at the
Department of Mathematical Sciences
University of Essex
October 2017

Dedicated to

In loving memory of my Father and Mother, my so sweet children and all who continually pray for my fortune.

SYED ABDUL GHAFFAR (Late)
SHEREEN TAJ

Acknowledgements

I would like to take this opportunity to acknowledge many people who have assisted me during my studies.

First of all, I gratefully acknowledge the support and generosity of my supervisor Professor Abdellah Salhi, his patience, time and most important his guidence and support in this research.

To Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa, Pakistan for their financial support.

To my Supervisory Board member Dr Hongsheng Dai and Dr Hadi Susanto, who gave me their valuable suggestions and inputs. To the administrative staff specially Mrs Shauna Meyers, of Department of Mathematical Sciences, University of Essex for their kindness and assistance. To Dr Georgi Grahovski and Professor Edward Codling for giving me chance to work as GTA in their module and their invaluable guidance. To my office fellows at University of Essex for their help and guidance, specially Maharani, Arief Setyanto, Muhammad Sulaiman, Zardad Khan, Tanhi, Junaid Mustafa, Amal Mohammed, Omar Karakchi, Ms Nosheen and Muhammad Farooq.

To all my friends at Essex, with whom I have enjoyed my stay at Essex. Especially to Mr Abdulkareem Alzahrani, Mr Muhammad Ahmed Khan, Mr Ahmad Alzahrani, Mr

Zia ul Hassan Khan, Mr Atal Khan Gardiwal, Mr Javed, Muhammad Parvez, Mr Alhaji Bukar, Farrukh Rasheed and Abdul Aziz Aljohar who helped me a lot during hard times. I would also like to thank all my friends in Pakistan especially Mr Shah Jehan who always remember me in their prayer and pray for my success in research study.

Finally, I especially thank to my beloved children Laiqa Mehreen, Farwah Ghufran, Syed Muuamad Muneeb, Syed Muhammad Mutahir and my wife for their continuous support and patience. To my mother for their unconditional love, support and encouragement. To my brothers Syed Muhammad Nawaz, Musharraf Shah, Farhan Danish, and my sisters for their moral support, prayer and encouragement. To my family of brothers in laws, my uncles and my aunts for their encouragement, prayer and moral support throughout my studies.

Abstract

There are numerous algorithms for the solution of systems of linear equations and eigenvalue problems. Among such methods, one of the best known iterative schemes is the Lanczos algorithm. It has however, a very serious shortcoming in that it break down frequently before achieving convergence to an acceptable solution. This project focuses on investigating this breakdown issue. There are a number of attempts to address it. Restarting and Switching as implemented previously by Farooq and Maharani, which rely on guessing the appropriate number of iterations before halting the Lanczos process and restarting it or switching to a different one. This guess is very sensitive to the type of problem solved, its data and size. If underestimated then the process is stopped too early, too often. This means that a lot of stable iterations are wasted, potentially. If, on the other hand, this number is over-estimated, then the process will breakdown which means that restarting and / or switching will be more costly. The aim of this thesis is to avoid guessing the number of iteration by monitoring the parameters of the recurrence relations on which the given Lanczos-type algorithms are based, which cause breakdown. This monitoring is targeted to the appropriate or problematic parameters. In this thesis we show that this approach is effective as it does not require too much extra work. At the same time it cuts on the wasted iterations and the full blown breakdown caused by inaccurate guesses of the number of iterations one has to let the algorithm run before halting it.

Although this is the core of our contributions in this thesis, we have also suggested new Lanczos-type algorithms and tested them against existing ones. This work complements that of Farooq, Mahrani, Baheux and the Brezinski team. The results show that we have made Lanczos-type algorithms old and new more reliable and robust.

Declaration

The work in this thesis is based on research carried out at Department of Mathematical Sciences, University of Essex, United Kingdom. No part of this thesis has been submitted elsewhere for any other degree or qualification, and it is all my own work, unless referenced, to the contrary, in the text.

Copyright © 2017 by Syed Muhammad Ghufran.

"The copyright of this thesis rests with the author. No quotations from it should be published without the author's prior written consent, and information derived from it should be acknowledged.".

Contents

Acknowledgements iii
Abstract V
Declaration vi
1 Introduction and Literature Review 1
1.1 Introduction 1
1.2 Objective and Approach of the Project 3
1.3 Thesis Outline 4
1.4 Review of Literature 5
1.4.1 The Krylov Subspace Method (KSM) 5
1.4.2 KSM for Solving SLEs 6
1.4.3 Formal Orthogonal Polynomials 6
1.4.4 Adjacents Families of FOP 9
1.5 The Lanczos Approach 10
1.6 Classification 12
1.7 The Breakdown Issue in Lanczos-type Algorithms 14
1.8 Remedial Strategies 16
1.8.1 Restarting Strategies 16
1.8.2 Switching Strategies 17
1.9 Summary 18
2 Recursive Computation Based on High Degree FOPs and Lanczos-type Algo-
rithms 19
2.1 Introduction 19
2.2 Recursive Computation Between the FOPs for A_{i} Algorithms 19
2.2.1 $\quad A_{20}$ for $U_{i}(x)=x^{i}$ 20
2.2.2 $\quad A_{21}$ for $U_{i}(x)=x^{i}$ 23
2.2.3 $\quad A_{22}$ for $U_{i}(x)=x^{i}$ 25
2.2.4 A_{23} for $U_{i}(x)=x^{i}$ 27
2.2.5 $\quad A_{24}$ for $U_{i}(x)=x^{i}$ 29
2.2.6 $\quad A_{25}$ for $U_{i}(x)=x^{i}$ 32
2.2.7 $\quad A_{26}$ for $U_{i}(x)=x^{i}$ 34
2.2.8 $\quad A_{27}$ for $U_{i}(x)=x^{i}$ 36
2.2.9 $\quad A_{28}$ for $U_{i}(x)=x^{i}$ 38
2.3 Recursive Computation Between the FOPs for B_{i} Algorithms 40
2.3.1 $\quad B_{17}$ for $U_{i}(x)=x^{i}$ 40
2.3.2 $\quad B_{18}$ for $U_{i}(x)=x^{i}$ 41
2.3.3 $\quad B_{19}$ for $U_{i}(x)=x^{i}$ 43
2.3.4 $\quad B_{20}$ for $U_{i}(x)=x^{i}$ 45
2.3.5 $\quad B_{21}$ for $U_{i}(x)=x^{i}$. 46
2.4 Design of Lanczos-type Algorithms 49
2.4.1 Lanczos-type Algorithm Based on A_{20} 49
2.4.2 Lanczos-type Algorithm Based on A_{22} / B_{19} 51
2.4.3 Lanczos-type Algorithm Based on A_{22} / B_{21} 55
2.4.4 Lanczos-type Algorithm Based on A_{25} / B_{19} 57
2.4.5 Lanczos-type Algorithm Based on A_{25} / B_{21} 58
2.4.6 Lanczos-type Algorithm Based on A_{28} / B_{19} 59
2.4.7 Lanczos-type Algorithm Based on A_{28} / B_{21} 61
2.5 Numerical results of $A_{20}, A_{22} / B_{19}, A_{22} / B_{21}$ and A_{28} / B_{19} 62
2.6 Restarting Lanczos-type Algorithm based on relation A_{20} 64
2.6.1 Numerical results 65
2.7 Summary 66
3 New Recurrence Relations for the Different Choices of Unit Polynomials $U_{i}(x)$ 67
3.1 Introduction 67
3.2 Formula A_{i} when $U_{i}(x)=P_{i}(x)$ 67
3.2.1 Formula $A_{13 \text { neew }}$ 68
3.2.2 Formula $A_{1 \text { bnew }}$ 70
3.2.3 Formula $A_{19 n e w}$ 72
3.3 Formula B_{j} when $U_{i}(x)=P_{i}(x)$ 74
3.3.1 Formula $B_{13 n e w}$ 74
3.3.2 Formula $B_{15 \text { new }}$ 77
3.3.3 Formula $B_{1 \text { bnew }}$ 79
3.4 Lanczos-type Algorithms for the Choice of $U_{i}(x)=P_{i}(x)$ 80
3.4.1 $\quad A_{1 \text { nnew }} / B_{15 \text { new }}$ Based Lanczos-type Algorithm 81
3.4.2 $A_{1 \text { nnew }} / B_{16 n e w}$ Based Lanczos-type Algorithm 82
3.4.3 $A_{19 n e w} / B_{15 n e w}$ Based Lanczos-type Algorithm 83
3.4.4 $A_{19 \text { new }} / B_{1 \text { nnew }}$ Based Lanczos-type Algorithm 85
3.4.5 Numerical Results of $A_{19 \text { new }} / B_{15 \text { new }}$ 85
3.5 Summary 87
4 Monitoring Breakdown in Lanczos-type Algorithms 88
4.1 Introduction 88
4.2 Recalling some existing Lanczos-type algorithms 88
4.2.1 Lanczos-type algorithm based on relation A_{12} 89
4.2.2 Lanczos-type Algorithm Based on Relation A_{4} 91
4.2.3 Lanczos-type Algorithm Based on Relations A_{8} / B_{10} 92
4.2.3.1 Formula A_{8} 92
4.2.3.2 Formula B_{10} 93
4.2.4 Lanczos-type Algorithm Based on Relations A_{8} / B_{6}. 95
4.2.4.1 Formula B_{6} 95
4.3 Numerical Results 96
4.4 Pre-emptive restarting approach to Lanczos-type algorithms 97
4.4.1 Monitoring Lanczos-type Algorithm based on relation A_{12} 98
4.4.2 Monitoring Lanczos-type Algorithm based on relation A_{4} (Orthores) 101
4.4.3 Monitoring Lanczos-type Algorithm based on relations A_{8} / B_{6} 105
4.4.4 Monitoring Lanczos-type Algorithm based on relations A_{8} / B_{10} 108
4.4.5 Can a test be based on the number of iteration.? 112
4.5 Restarting Strategies 113
4.5.1 ST2 Implementation 114
4.6 Restarting Algorithm 17 114
4.6.1 Numerical Results 115
4.7 Restarting Algorithm 16 116
4.7.1 Numerical Results 117
4.8 Restarting Algorithm 18 118
4.8.1 Numerical Results 119
4.9 Restarting Algorithm 19 120
4.9.1 Numerical results 121
4.10 Comments 123
4.11 Summary 123
5 Switching Between Lanczos-type Algorithms to Avoid Breakdown 124
5.1 Switching Algorithm 124
5.2 Switching between Algorithm 16 and Algorithm 17 125
5.2.1 Numerical Results 125
5.3 Switching between Algorithm 17 and Algorithm 18 127
5.3.1 Numerical Results 128
5.4 Switching between Algorithm 17 and Algorithm 19 129
5.4.1 Numerical Results 130
5.5 Switching between Algorithm 16 and Algorithm 18 131
5.5.1 Numerical Results 132
5.6 Switching between Algorithm 16 and Algorithm 19 133
5.6.1 Numerical Results 134
5.7 Switching between Algorithm 18 and Algorithm 19 135
5.7.1 Numerical Results 136
5.8 Comparison between restarting and switching strategies 137
5.8.1 Comparing Algorithm 20 with Algorithm 21, based on A_{4} and A_{12} 138
5.8.2 Comparing Algorithm 20 with Algorithm 21 based on A_{8} / B_{6} and A_{8} / B_{10} 139
5.9 Summary 140
6 Conclusion and Further Work 141
6.1 Further research work 143
Appendix 152
A Basic and Auxiliary Results 152
A. 1 Convergence Analysis of Iterative Methods 152
A.1.1 Convergence analysis of Lanczos/Orthodir 153
A. 2 Tables for Monitoring Lanczos-type algorithm
Chapter 4 154
A.2.1 Monitoring Lanczos-type Algorithm based on relation A_{12} 154
A.2.2 Monitoring Lanczos-type Algorithm based on relation A_{4} 157
A.2.3 Monitoring Lanczos-type Algorithm based on relation A_{8} / B_{6} 160

List of Tables

1.1 Computation formulae of A_{i} and B_{j} from different polynomials [4]. 13
1.2 Computation formulae of A_{i} and B_{j} from different polynomials [33] 13
1.3 Computation formulae of A_{i} and B_{j} from different polynomials 14
2.1 Results of $A_{20}, A_{22} / B_{21}, A_{25} / B_{19}$ and A_{28} / B_{19}, on Baheux-type problems when $\delta=0$ 63
2.2 Results of A_{20}, A_{4} and A_{12} on Baheux-type problems when $\delta=0$ 65
3.1 Results of Algorithm 9 and Algorithm 10 on Baheux-type problems for $\delta=0$ 86
4.1 Results of Lanczos-type algorithms on Baheux-type problems for $\delta=0$ 97
4.2 Behaviour of coefficients of A_{12} on Baheux-type problems when $\delta=0$. 99
4.3 Behaviour of the parameters of the offending coefficients of A_{12} on Baheux- type problems when $\delta=0$. 100
4.4 Behaviour of coefficients of A_{4} on Baheux-type problems when $\delta=0$. 103
4.5 Behaviour of the parameters of the offending coefficients of A_{4} on Baheux- type problems when $\delta=0$ 103
4.6 Behaviour of coefficients of A_{8} / B_{6} on Baheux-type problems when $\delta=0$. 106
4.7 Behaviour of the parameters of the offending coefficients of A_{8} / B_{6} on Baheux- type problems when $\delta=0$ 107
4.8 Behaviour of the parameters of the offending coefficients of A_{8} / B_{10} on Baheux- type problems when $\delta=0$ 110
4.9 Behaviour of the parameters of the offending coefficients of A_{8} / B_{10} on Baheux- type problems when $\delta=0$ 110
4.10 Behaviour of the parameters of the offending coefficients of A_{8} / B_{10} on Baheux- type problems when $\delta=0$ 113
4.11 Results of Algorithm 12 and Algorithm 20 on Baheux-type problems when $\delta=0$ 115
4.12 Results of Algorithm 12 and Algorithm 20 on Baheux-type problems when $\delta=0.2$ 115
4.13 Results of Algorithm 12 and Algorithm 20 on Baheux-type problems when $\delta=5$ 116
4.14 Results of Algorithm 12 and Algorithm 20 on Baheux-type problems when $\delta=8$ 116
4.15 Results of Algorithm 11 and Algorithm 20 on Baheux-type problems when $\delta=0$ 117
4.16 Results of Algorithm 11 and Algorithm 20 on Baheux-type problems when $\delta=0.2$ 117
4.17 Results of Algorithm 11 and Algorithm 20 on Baheux-type problems when $\delta=5$ 118
4.18 Results of Algorithm 11 and Algorithm 20 on Baheux-type problems when $\delta=8$ 118
4.19 Results of Algorithm 14 and Algorithm 20 on Baheux-type problems when $\delta=0$ 119
4.20 Results of Algorithm 14 and Algorithm 20 on Baheux-type problems when $\delta=0.2$ 119
4.21 Results of Algorithm 14 and Algorithm 20 on Baheux-type problems when $\delta=5$ 120
4.22 Results of Algorithm 14 and Algorithm 20 on Baheux-type problems when $\delta=8$ 120
4.23 Results of Algorithm 13 and Algorithm 20 on Baheux-type problems when $\delta=0$ 121
4.24 Results of Algorithm 13 and Algorithm 20 on Baheux-type problems when $\delta=0.2$ 121
4.25 Results of Algorithm 13 and Algorithm 20 on Baheux-type problems when $\delta=5$ 122
4.26 Results of Algorithm 13 and Algorithm 20 on Baheux-type problems when $\delta=8$ 122
5.1 Results of Algorithm 11, Algorithm 12 and Algorithm 21 on Baheux-type problems when $\delta=0$ 126
5.2 Results of Algorithm 11, Algorithm 12 and Algorithm 21 on Baheux-type problems when $\delta=0.2$ 126
5.3 Results of Algorithm 11, Algorithm 12 and Algorithm 21 on Baheux-type problems when $\delta=5$ 127
5.4 Results of Algorithm 11, Algorithm 12 and Algorithm 21 on Baheux-type problems when $\delta=8$ 127
5.5 Results of Algorithm 12, Algorithm 14 and Algorithm 21 on Baheux-type problems when $\delta=0$ 128
5.6 Results of Algorithm 12, Algorithm 14 and Algorithm 21 on Baheux-type problems when $\delta=0.2$ 128
5.7 Results of Algorithm 12, Algorithm 14 and Algorithm 21 on Baheux-type problems when $\delta=5$ 129
5.8 Results of Algorithm 12, Algorithm 14 and Algorithm 21 on Baheux-type problems when $\delta=8$ 129
5.9 Results of Algorithm 12, Algorithm 13 and Algorithm 21 on Baheux-type problems when $\delta=0$ 130
5.10 Results of Algorithm 12, Algorithm 13 and Algorithm 21 on Baheux-type problems when $\delta=0.2$ 130
5.11 Results of Algorithm 12, ALgorithm 13 and Algorithm 21 on Baheux-type problems when $\delta=5$ 131
5.12 Results of Algorithm 12, Algorithm 13 and Algorithm 21 on Baheux-type problems when $\delta=8$ 131
5.13 Results of Algorithm 11, Algorithm 14 and Algorithm 21 on Baheux-type problems when $\delta=0$ 132
5.14 Results of Algorithm 11, ALgorithm 14 and Algorithm 21 on Baheux-type problems when $\delta=0.2$132
5.15 Results of Algorithm 11, Algorithm 14 and Algorithm 21 on Baheux-type problems when $\delta=5$ 133
5.16 Results of Algorithm 11, Algorithm 14 and Algorithm 21 on Baheux-type problems when $\delta=8$ 133
5.17 Results of Algorithm 11, Algorithm 13 and Algorithm 21 on Baheux-type problems when $\delta=0$ 134
5.18 Results of Algorithm 11, Algorithm 13 and Algorithm 21 on Baheux-type problems when $\delta=0.2$ 134
5.19 Results of Algorithm 11, Algorithm 13 and Algorithm 21 on Baheux-type problems when $\delta=5$ 135
5.20 Results of Algorithm 11, Algorithm 13 and Algorithm 21 on Baheux-type problems when $\delta=8$ 135
5.21 Results of Algorithm 13, Algorithm 14 and Algorithm 21 on Baheux-type problems when $\delta=0$ 136
5.22 Results of Algorithm 13, Algorithm 14 and Algorithm 21 on Baheux-type problems when $\delta=0.2$ 136
5.23 Results of Algorithm 13, Algorithm 14 and Algorithm 21 on Baheux-type problems when $\delta=5$ 137
5.24 Results of Algorithm 13, Algorithm 14 and Algorithm 21 on Baheux-type problems when $\delta=8$ 137
5.25 A comparison of the restarting algorithms, Algorithm 17 and Algorithm 16 against the switching algorithm, Algorithm 21 on a Baheux-type problems of different sizes when $\delta=0$ 138
5.26 A comparison of the restarting algorithms, Algorithm 17 and Algorithm 16 against the switching algorithm, Algorithm 21 on a Baheux-type problems of different sizes, when $\delta=0.2$ 138
5.27 A comparison of the restarting algorithms, Algorithm 18 and Algorithm 19 against the switching algorithm, Algorithm 21 on a Baheux-type problems of different sizes, when $\delta=0$ 139
5.28 A comparison of the restarting algorithms, Algorithm 18 and Algorithm 19 against the switching algorithm, Algorithm 21 on a Baheux-type problems of different sizes, when $\delta=0.2$ 139
A. 1 Behaviour of coefficients of A_{12}, on Baheux-type problems, when $\delta=0.2 \ldots$ 154
A. 2 Behaviour of coefficients of A_{12}, on Baheux-type problems, when $\delta=5$ 155
A. 3 Behaviour of coefficients of A_{12}, on Baheux-type problems, when $\delta=8$ 155
A. 4 Behaviour of the parameters of the offending coefficients of A_{12}, on Baheux- type problems, when $\delta=0.2$ 156
A. 5 Behaviour of the parameters of the offending coefficients of A_{12}, on Baheux- type problems, when $\delta=5$ 156
A. 6 Behaviour of the parameters of the offending coefficients of A_{12}, on Baheux- type problems, when $\delta=8$ 157
A. 7 Behaviour of coefficients of A_{4}, on Baheux-type problems, when $\delta=0.2$. 157
A. 8 Behaviour of coefficients of A_{4}, on Baheux-type problems, when $\delta=5$. 158
A. 9 Behaviour of coefficients of A_{4}, on Baheux-type problems, when $\delta=8$. 158
A. 10 Behaviour of the parameters of the offending coefficients of A_{4}, on Baheux- type problems, when $\delta=0.2$ 159
A. 11 Behaviour of the parameters of the offending coefficients of A_{4}, on Baheux- type problems, when $\delta=5$ 159
A. 12 Behaviour of the parameters of the offending coefficients of A_{4}, on Baheux- type problems, when $\delta=8$ 160
A. 13 Behaviour of coefficients of A_{8} / B_{6}, on Baheux-type problems, when $\delta=0.2$. 160
A. 14 Behaviour of coefficients of A_{8} / B_{6}, on Baheux-type problems, when $\delta=5$. 161
A. 15 Behaviour of coefficients of A_{8} / B_{6}, on Baheux-type problems, when $\delta=8$. 161
A. 16 Behaviour of the parameters of the offending coefficients of A_{8} / B_{6}, on Baheux- type problems, when $\delta=0.2$ 162
A. 17 Behaviour of the parameters of the offending coefficients of A_{8} / B_{6}, on Baheux- type problems, when $\delta=5$ 162
A. 18 Behaviour of the parameters of the offending coefficients of A_{8} / B_{6}, on Baheux- type problems, when $\delta=8$ 163
A. 19 Behaviour of the parameters of the offending coefficients of A_{8} / B_{10}, on Baheux-type problems, when $\delta=0.2$ 163
A. 20 Behaviour of the parameters of the offending coefficients of A_{8} / B_{10}, on Baheux-type problems, when $\delta=5$ 164
A. 21 Behaviour of the parameters of the offending coefficients of A_{8} / B_{10}, on Baheux-type problems, when $\delta=8$ 164
A. 22 Behaviour of the parameters of the offending coefficients of A_{8} / B_{10}, onBaheux-type problems, when $\delta=0.2$165
A. 23 Behaviour of the parameters of the offending coefficients of A_{8} / B_{10}, on Baheux-type problems, when $\delta=5$ 165
A. 24 Behaviour of the parameters of the offending coefficients of A_{8} / B_{10}, on Baheux-type problems, when $\delta=8$ 166

Chapter 1

Introduction and Literature Review

1.1 Introduction

One of the most important tasks in numerical methods is the ability to solve the linear system

$$
\begin{equation*}
A \mathbf{x}=\mathbf{b} \tag{1.1}
\end{equation*}
$$

where $A \in \mathbb{R}^{n \times n}$ and $\mathbf{x}, \mathbf{b} \in \mathbb{R}^{n}$.
Systems of Linear Equations (SLEs) are an important practical problem in many aspects of life. It has found its way into natural sciences and management sciences. Therefore, solutions to this problem have to be found frequently. This means that new improvements, however small, are always welcome.

One way to solve it is to put it in matrix form and then use special techniques based on matrix algebra. For a small number of linear equations, the standard approach is to use direct methods [27,28], but for large and practical problems iterative methods are usually the norm $[1,41,61,64,69]$.

In 1950, Cornelius Lanczos, introduced his algorithm [52]. The most prominent feature of the method is that it reduces a symmetric matrix A into an equivalent tridiagonal one and initially it was aimed at finding eigenvalues and corresponding eigenvectors of matrix A [59]. As the computation of eigenvalues of a matrix and the solution of the SLEs are equivalent problems, the Lanczos method for the eigenvalue problem was extended by Lanczos in 1952, to solve SLEs especially when they are large and sparse [53]. The Lanczos approach for solving (1.1), is an orthogonal projection method on Krylov subspace $\mathcal{K}_{k}\left(A, r_{0}\right)$ of order $k[64,65]$. The definition of this space will be given in the next section. In the same year, 1952, another iterative scheme for solving SLEs was presented by Hestenes and Stiefel in $[37,45]$, known as the Conjugate Gradient (CG) method. This method is useful when the matrix is symmetric and positive definite. In 1964, Lanczos and Householder pointed out that both the Lanczos and CG-method were the same for symmetric and positive definite matrices. Extension to the non-symmetric case was studied by Hestenes in [44]. In early periods, the Lanczos process was ignored by numerical analysts due to various reasons. One of the main ones is the loss of orthogonality in Lanczos vectors [53] which affects the accuracy in the iterative process as the accuracy of the Lanczos process is related to the orthogonality of Lanczos vectors.

In the last few decades, different variants of Lanczos algorithm have been designed. A transpose free algorithm was presented by C. Brezinski in [7]. In 1992, a Breakdown-free Lanczos-type algorithm was given in [17] which was known as MRZ (Method of Recursive Zoom). In [20] Brezinski derived new Lanczos algorithms using two different ways that are matrix and polynomial approaches. New variants of these algorithms have been derived by Baheux in [4] using recurrence relationships between Formal Orthogonal Polynomials
(FOPs) [5]. Recently in [33], Lanczos-type algorithms have been presented using new recurrence relationships between these FOPs. The Lanczos [53] method solves SLEs with an iterative process which gives the exact solution in a finite number of steps not greater than the dimension of the system, in exact arithmetic.

In the last few decades, different variants of Lanczos-type algorithms have been designed $[4,20,23,33,38,42,48-50,60,63,66,68]$. One particular weakness of the Lanczos-type algorithm is that, it easily breaks down, causing the process to stop. This is either due to a division by zero when computing the coefficients of those relations or due to the non-existence of FOP $[12,18]$. Division by a quantity close to zero causes near-breakdown thus producing numerical instability in the algorithm. These breakdown problems were partially solved in a series of papers by C. Brezinski, M. Redivo-Zaglia and H. Saddok, [7,13,15-17,19,22,25], and Farooq [33] and Maharani [55].

1.2 Objective and Approach of the Project

In this thesis our focus is mainly on the breakdown issues of Lanczos-type algorithms when solving large sparse systems of linear equations. The strategy adopted for avoiding the breakdown problem is monitoring the behaviour of the denominators and the components of the offending components of some of the coefficients involved in the recurrence relations that make up the Lanczos-type algorithm. We choose a threshold value ϵ for that component. When this component falls below ϵ, for instance, $\left|c\left(x^{k} P_{k}\right)\right| \leq \epsilon$, where c is linear functional, P_{k} is the family of formal orthogonal polynomials and x^{i} is a monic polynomial of degree i, then the process is stopped explicitly instead of letting it breakdown. We then restart it as fast as we can avoid wasting time due to recovering and resetting the process.

1.3 Thesis Outline

The thesis is organized as follows.
In Chapter 1 we briefly review the notion of Formal Orthogonal Polynomials. We discuss the basic theory of Lanczos-type algorithms for solving SLEs. The breakdown issue and the existing strategies to cure it are also explained.

In Chapter 2 we will extend the existing Lanczos-type algorithm using recurrence relationships between higher degree FOPs.

In Chapter 3 we will derive other variants of the Lanczos-type algorithm involving the ordinary polynomial $U_{i}(x)=P_{i}(x)$ and the monic polynomial $U_{i}(x)=P_{i}^{(1)}(x)$ instead of the standard auxiliary polynomial $U_{i}(x)=x^{i}$ that is used in Baheux [4] and Farooq [33]. The $P_{i}^{(1)}(x)$ in this selection is a monic polynomial of degree i belonging to the family of FOPs with respect to the linear functional $c^{(1)}$ defined by $c^{(1)}\left(x^{i}\right)=c\left(x^{i+1}\right)$.

In Chapter 4 we mainly discuss the prominent issues of breakdown in the Lanczos-type algorithms. We regularly monitor the components of those coefficients with denominators that blow up prior to breakdown. We suggest a stopping test that detects the imminence of a breakdown. It is used in restarting and switching strategies, that we are putting forward and implementing.

In Chapter 5 we suggest an alternative way to continue the solution process after it has been halted. This is the switching approach between different algorithms.

Chapter 6 contains conclusions and suggestions for further work.

1.4 Review of Literature

A number of concepts are needed for this study which include

- Understanding how the derivation of the Lanczos algorithm using the Krylov subspace method and its use in solving SLEs;
- The theory of Formal Orthogonal Polynomials (FOPs);
- The breakdown in the Lanczos-type algorithms and its remedies.

1.4.1 The Krylov Subspace Method (KSM)

Krylov subspace methods are widely used for solving a system of linear equations and eigenvalue problems, involving large and sparse matrices. They are popular iterative methods.

Definition 1.4.1 Given $A \in \mathbb{R}^{n \times n}$ and $\mathbf{b} \in \mathbb{R}^{n}$ with $\mathbf{b} \neq 0$ then,

1. the Krylov sequence is

$$
\mathbf{b}, A \mathbf{b}, A^{2} \mathbf{b}, A^{3} \mathbf{b}, \ldots,
$$

2. the $k^{\text {th }}$ Krylov Matrix is

$$
\mathrm{K}_{\mathrm{k}}=\left[\mathbf{b}, A \mathbf{b}, A^{2} \mathbf{b}, \ldots, A^{k-1} \mathbf{b}\right],
$$

3. the Krylov subspace of dimension k is

$$
\begin{equation*}
\mathcal{K}_{k}(A, \mathbf{b})=\operatorname{span}\left\{\mathbf{b}, A \mathbf{b}, A^{2} \mathbf{b}, \ldots, A^{k-1} \mathbf{b}\right\} . \tag{1.2}
\end{equation*}
$$

1.4.2 KSM for Solving SLEs

The Krylov subspace method for solving SLEs is given in [62,64,69]. Mathematically, KSMs are based on projection methods.

Consider (1.1) again. KSM is an iterative method stating with

- an initial approximation \mathbf{x}_{0} to the solution of (1.1),
- an initial residual $\mathbf{r}_{0}=\mathbf{b}-A \mathbf{x}_{0}$.

The Krylov subspace of dimension k defined by A and \mathbf{r}_{0} is

$$
\mathcal{K}_{k}\left(A, \mathbf{r}_{0}\right)=\operatorname{span}\left\{\mathbf{r}_{0}, A \mathbf{r}_{0}, A^{2} \mathbf{r}_{0}, \ldots, A^{k-1} \mathbf{r}_{0}\right\} .
$$

Let \mathcal{L}_{k} and \mathcal{K}_{k} be the two subspaces of dimensions k. The idea behind KSM $[54,64]$ is solving the system (1.1) by choosing an initial approximate solution \mathbf{x}_{0} and generating a sequence of approximate solutions \mathbf{x}_{k} from

$$
\begin{gather*}
\mathbf{x}_{0}+\mathcal{K}_{k}, \quad \text { and } \tag{1.3}\\
\mathbf{r}_{k}=\left(b-A \mathbf{x}_{k}\right) \perp \mathcal{L}_{k} \tag{1.4}
\end{gather*}
$$

is projection method is called the Krylov subspace method [6,64]. Furthermore, according to the choice of \mathcal{L}_{k} there exist several KSM [21]. For example, if $\mathcal{L}_{k}=\mathcal{K}_{k}\left(A^{T}, \mathbf{y}\right)$, where \mathbf{y} is some nonzero vector, then the KSM is known as the Lanczos method.

1.4.3 Formal Orthogonal Polynomials

Let c_{0}, c_{1}, \ldots be a sequence of real and complex numbers. We define the linear functional c on the vector space of complex polynomials by

$$
\begin{equation*}
c\left(x^{i}\right)=c_{i}, \quad i \geq 0 \tag{1.5}
\end{equation*}
$$

The numbers c_{i} are called the moments of c [8].

Definition 1.4.1 The polynomials $\left\{P_{k}\right\}$ are said to form the family of Formal Orthogonal Polynomials $[5,8,11]$ with respect to $c i f, \forall k$ they are defined by

1. P_{k} has exact degree k,
2. $c\left(U_{i}(x) P_{k}(x)\right)=0$ for $i=0, \ldots, k-1$,
3. $c\left(U_{i}(x) P_{k}(x)\right) \neq 0$,
where $U_{i}(x)$ is the unitary polynomial of exact degree $i[4]$. The second condition is called the orthogonality condition. Some of the choices of $U_{i}(x)$ are

- $U_{i}(x)=x^{i}$,
- $U_{i}(x)=P_{i}(x)$,
- $U_{i}(x)=P_{i}^{(1)}(x)$.

By linear combination, it can also be written as

$$
\begin{equation*}
c\left(p_{i}(x) P_{k}(x)\right)=0 \quad \text { for } \quad i=0, \ldots, k-1 \tag{1.6}
\end{equation*}
$$

where $p_{i}(x)$ is any polynomial of degree $k-1$ at most. Thus, it also follows that

$$
\begin{equation*}
c\left(P_{n}(x) P_{k}(x)\right)=0 \quad \text { for } \quad n \neq k \tag{1.7}
\end{equation*}
$$

when assumed that the degrees of both polynomials are different. If we set P_{k} to be the polynomial assumed to exist as

$$
\begin{equation*}
P_{k}(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{k} x^{k} \tag{1.8}
\end{equation*}
$$

and satisfying the orthogonality conditions which are equivalent to

$$
\begin{equation*}
c\left(x^{i} P_{k}(x)\right)=0, \text { for } i=0,1,2, \ldots, k-1, \tag{1.9}
\end{equation*}
$$

then

$$
a_{0} c_{i}+a_{1} c_{i+1}+\ldots+a_{k} c_{i+k}=0
$$

This is a system of k equations in $k+1$ unknowns, of the form, for $i=0,1, \ldots, k-1$,

$$
\left\{\begin{array}{l}
a_{0} c_{0}+a_{1} c_{1}+\ldots+a_{k} c_{k}=0 \tag{1.10}\\
a_{0} c_{1}+a_{1} c_{2}+\ldots+a_{k} c_{k+1}=0 \\
\vdots \\
a_{0} c_{k-1}+a_{1} c_{k}+\ldots+a_{k} c_{2 k-1}=0
\end{array}\right.
$$

Its solution is completely determined, once a supplementary condition has been added. Now adding an equation $-P_{k}(x)+a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{k} x^{k}=0$ to the system, we have $(k+1) \times(k+1)$ system of linear equations in a_{i} for $i=0,1, \ldots, k$. The polynomial P_{k} can be expressed by the determinantal formula as following [8,9].

$$
P_{k}(x)=\frac{1}{H_{k}^{(0)}}\left|\begin{array}{cccc}
1 & x & \cdots & x^{k} \tag{1.11}\\
c_{0} & c_{1} & \cdots & c_{k} \\
\vdots & \vdots & & \vdots \\
c_{k-1} & c_{k} & \cdots & c_{2 k-1}
\end{array}\right|, H_{k}^{(0)}=\left|\begin{array}{ccc}
c_{1} & \cdots & c_{k} \\
\vdots & & \vdots \\
c_{k} & \cdots & c_{2 k-1}
\end{array}\right| .
$$

Where the denominator of $P_{k}(x)$ is the Hankel determinant $H_{k}^{(0)}$ [23]. It is clear that $P_{k}(x)$ exists if and only if $H_{k}^{(0)} \neq 0$. The normalization of $P_{k}(x)$ is obtained by the condition $P_{k}(0)=1$. If for some $k, H_{k}^{(0)}=0$, then P_{k} does not exist, and the breakdown occurs in the solution process.

1.4.4 Adjacents Families of FOP

We consider the linear functionals $c^{(n)}, n=0,1, \ldots$, defined by

$$
\begin{equation*}
c^{(n)}\left(x^{i}\right)=c\left(x^{n+i}\right)=c_{n+i}, \quad i=0,1, \ldots \tag{1.12}
\end{equation*}
$$

with the assumption that $c_{i}=0$ if $i<0,[8]$.
Let us consider $P_{k}^{(n)}$ be the family of monic FOP's with respect to $c^{(n)}$, such that

$$
\begin{equation*}
c^{(n)}\left(x^{i} P_{k}^{(n)}(x)\right)=0, \quad i=0,1, \ldots, k-1 . \tag{1.13}
\end{equation*}
$$

Thus the polynomials $P_{k}^{(0)}$ are identical to the polynomials P_{k} defined above. $P_{k}^{(1)}$ is the family of monic formal orthogonal polynomials of degree k (where a_{k} is the coefficient of x^{k} in $P_{k}^{(1)}$ equal to 1), with respect to a linear functional $c^{(1)}$ defined by

$$
\begin{equation*}
c^{(1)}\left(x^{i}\right)=c\left(x^{i+1}\right)=c_{i+1}, \quad i=0,1, \ldots \tag{1.14}
\end{equation*}
$$

and which satisfies the orthogonality conditions

$$
\begin{equation*}
c^{(1)}\left(x^{i} P_{k}^{(1)}(x)\right)=c\left(x^{(i+1)} P_{k}\right)=0, \quad i=0,1, \ldots, k-1 \tag{1.15}
\end{equation*}
$$

Now consider the monic polynomials $P_{k}^{(1)}(x)$ defined by the determinantal formula, [23,34].

$$
P_{k}^{(1)}(x)=\frac{\left|\begin{array}{cccc}
c_{1} & c_{2} & \cdots & c_{k+1} \tag{1.16}\\
\vdots & \vdots & & \vdots \\
c_{k} & c_{k+1} & \cdots & c_{2 k} \\
1 & x & \cdots & x^{k}
\end{array}\right|}{H_{k}^{(0)}} .
$$

$P_{k}^{(1)}(x)$ exists if and only if $H_{k}^{(0)} \neq 0$, hence $P_{k}(x)$ and $P_{k}^{(1)}(x)$ exist under the same condition. So $\left\{P_{k}\right\}$ and $\left\{P_{k}^{(1)}\right\}$ are called adjacent families of FOPs $[8,9]$. There exist many recurrence relations between the two adjacent families of polynomials P_{k} and $P_{k}^{(1)}[3,4,15,17]$. More
relations have been studied in [33], leading to new Lanczos-type algorithms.

1.5 The Lanczos Approach

Let us consider a linear system of equations (1.1) again For solving this system, the Lanczos method $[51-53,56]$ consists in constructing a sequence of vectors $\mathbf{x}_{k} \in R^{n}$ defined by the following steps, [21]:

1. choose two arbitrary vectors \mathbf{x}_{0} and \mathbf{y} in R^{n} such that $\mathbf{y} \neq 0$,
2. set $\mathbf{r}_{0}=\mathbf{b}-A \mathbf{x}_{0}$,
3. determine \mathbf{x}_{k} such that

$$
\begin{gather*}
\mathbf{x}_{k}-\mathbf{x}_{0} \in \mathcal{K}_{k}\left(A, \mathbf{r}_{0}\right)=\operatorname{span}\left\{\mathbf{r}_{0}, A \mathbf{r}_{0}, A^{2} \mathbf{r}_{0}, \ldots, A^{k-1} \mathbf{r}_{0}\right\}, \tag{1.17}\\
\mathbf{r}_{k}=b-A \mathbf{x}_{k} \perp \mathcal{K}_{k}\left(A^{T}, \mathbf{y}\right)=\operatorname{span}\left\{\mathbf{y}, A^{T} \mathbf{y},\left(A^{t}\right)^{2} \mathbf{y}, \ldots,\left(A^{T}\right)^{k-1} \mathbf{y}\right\}, \tag{1.18}
\end{gather*}
$$

where $\mathcal{K}_{k}\left(A, \mathbf{r}_{0}\right)$ is called a Krylov subspace and A^{T} is the transpose of A.
From eq (1.17), we set $\mathbf{x}_{k}-\mathbf{x}_{0}$ as

$$
\mathbf{x}_{k}-\mathbf{x}_{0}=-a_{1} \mathbf{r}_{0}-a_{2} A \mathbf{r}_{0}-a_{3} A^{2} \mathbf{r}_{0}-\ldots-a_{k} A^{k-1} \mathbf{r}_{0} .
$$

Now, multiplying both sides by A and adding and subtracting \mathbf{b} on the left hand side, we obtain

$$
\begin{equation*}
\mathbf{r}_{k}=\mathbf{r}_{0}+a_{1} A \mathbf{r}_{0}+a_{2} A^{2} \mathbf{r}_{0}+\ldots++a_{k} A^{k} \mathbf{r}_{0} \tag{1.19}
\end{equation*}
$$

From (1.18), the orthogonality condition gives

$$
\left(A^{T^{i}} y, \mathbf{r}_{k}\right)=\left(y, A^{i} \mathbf{r}_{k}\right)=\left(y, A^{i} P_{k}(A) \mathbf{r}_{0}\right)=0, \text { for } i=0.1, \ldots, k-1 .
$$

$$
\begin{array}{r}
\left(\mathbf{y}, A^{i} \mathbf{r}_{0}+a_{1} A^{i+1} \mathbf{r}_{0}+a_{2} A^{i+2} \mathbf{r}_{0}+\ldots+a_{k} A^{i+k} \mathbf{r}_{0}\right)=0 \tag{1.19}\\
\left(\mathbf{y}, A^{i} \mathbf{r}_{0}\right)+a_{1}\left(y, A^{i+1} \mathbf{r}_{0}\right)+\ldots+a_{k}\left(y, A^{i+k} \mathbf{r}_{0}\right)=0
\end{array}
$$

we obtain the following system of linear equations

$$
\left\{\begin{array}{l}
a_{1}\left(\mathbf{y}, A \mathbf{r}_{0}\right)+\ldots+a_{k}\left(\mathbf{y}, A^{k} \mathbf{r}_{0}\right)=-\left(\mathbf{y}, \mathbf{r}_{0}\right) \tag{1.20}\\
a_{1}\left(A^{T} \mathbf{y}, A \mathbf{r}_{0}\right)+\ldots+a_{k}\left(A^{T} \mathbf{y}, A^{k} \mathbf{r}_{0}\right)=-\left(A^{T} \mathbf{y}, \mathbf{r}_{0}\right) \\
\vdots \\
a_{1}\left(\left(A^{T}\right)^{k-1} \mathbf{y}, A \mathbf{r}_{0}\right)+\ldots+a_{k}\left(\left(A^{T}\right)^{k-1} \mathbf{y}, A^{k} \mathbf{r}_{0}\right)=-\left(\left(A^{T}\right)^{k-1} \mathbf{y}, \mathbf{r}_{0}\right)
\end{array}\right.
$$

If the determinant of (1.20) is different from zero then its solution exists and formulae (1.17) and (1.18) allow to obtain \mathbf{x}_{k} and \mathbf{r}_{k}. Obviously, solving systems (1.20) is impractical. Such computation is feasible as the polynomials P_{k} form a family of FOPs, with respect to the linear functional $c[10,71]$. The easiest way to get the solutions of the system is by computing recursively the polynomial $P_{k}(x)$.

If we consider the polynomial

$$
\begin{equation*}
P_{k}(x)=1+a_{1} x+a_{2} x^{2} \ldots+a_{k} x^{k} \tag{1.21}
\end{equation*}
$$

then \mathbf{r}_{k} can be written as

$$
\begin{equation*}
\mathbf{r}_{k}=P_{k}(A) \mathbf{r}_{0} . \tag{1.22}
\end{equation*}
$$

The polynomial P_{k} is known as the residual polynomial [23]. Let c be the linear functional [8] defined by

$$
\begin{equation*}
c\left(x^{i}\right)=c_{i}, \quad \text { for } \quad i \geq 0 \tag{1.23a}
\end{equation*}
$$

Moreover by setting

$$
\begin{equation*}
c_{i}=\left(\mathbf{y}, A^{i} \mathbf{r}_{0}\right), \quad \text { for } \quad i=0,1, \ldots \tag{1.23b}
\end{equation*}
$$

then the system (1.20) can be written as

$$
c_{i}+a_{1} c_{i+1}+\ldots+a_{k} c_{i+k}=0, \quad \text { for } \quad i=0,1, \ldots, k-1
$$

The preceding orthogonality conditions are equivalent to

$$
\begin{equation*}
c\left(x^{i} P_{k}(x)\right)=0, \text { for } i=0,1, \ldots k-1 . \tag{1.24}
\end{equation*}
$$

These conditions show that P_{k} is the polynomial of degree at most k belonging to the formal orthogonal polynomials with respect to c, normalized by the condition $P_{k}(0)=1$. Since the polynomial $P_{k}(x)$ in (1.21), can be written as

$$
P_{k}(x)=1+x Q_{k-1}(x) .
$$

Replace x by A and also multiply both side by \mathbf{r}_{0} in the last relation, to get

$$
\begin{gather*}
\mathbf{r}_{k}=\mathbf{r}_{0}+A Q_{k-1}(A) \mathbf{r}_{0}, \tag{1.25}\\
\mathbf{b}-A \mathbf{x}_{k}=\mathbf{b}-A \mathbf{x}_{0}+A Q_{k-1}(A) \mathbf{r}_{0}, \\
-A \mathbf{x}_{k}=-A \mathbf{x}_{0}+A Q_{k-1}(A) \mathbf{r}_{0}
\end{gather*}
$$

and multiplying both sides by $-A^{-1}$, we get

$$
\begin{equation*}
\mathbf{x}_{k}=\mathbf{x}_{0}-Q_{k-1}(A) \mathbf{r}_{0} \tag{1.26}
\end{equation*}
$$

Which shows that \mathbf{x}_{k} can be computed from \mathbf{r}_{k} without using A^{-1}. This is the Lanczos method.

1.6 Classification

There exist several recurrence relationships for implementing Lanczos methods. They can all be derived using the theory of FOPs. Here, we consider two families of FOPs $P_{k}(x)$ and $P_{k}^{(1)}(x)$. The polynomial $P_{k}(x)$ will be related to the residual $\mathbf{r}_{k}=\mathbf{b}-A \mathbf{x}_{k}$ of the Lanczos method by $\mathbf{r}_{k}=P_{k}(A) \mathbf{r}_{0}$, while the polynomial $P_{k}^{(1)}(x)$ will define $\mathbf{z}_{k}=P_{k}^{(1)}(A) \mathbf{r}_{0}$. They are represented by A_{i} and B_{j} for $P_{k}(x)$ and $P_{k}^{(1)}(x)$ respectively. The Lanczos-type algorithm based only on relations A_{i} are named A_{i}-type algorithms, and those which are
characterized by both types of the relations A_{i} and B_{j} are represented by A_{i} / B_{j}-type Lanczos algorithms. [4,23,34].
C. Baheux and C. Brezinski $[3,4,23]$ studied the relations where the degrees of the polynomials in the right and left hand sides of the relation differ by one or two at most. In Farooq's work $[33,34]$ the difference in degrees is two or three. We will adopt the same idea here and extend the list accordingly, where the difference of the degrees in the relations is three or four. They are given in Tables 1.1-1.3

Table 1.1: Computation formulae of A_{i} and B_{j} from different polynomials [4].

Relation A_{i}	Computation of P_{k} from	Relation B_{j}	Computation of $P_{k}^{(1)}$ from		
A_{1}	P_{k-2}	$P_{k-2}^{(1)}$	B_{1}	P_{k-2}	$P_{k-2}^{(1)}$
A_{2}	P_{k-2}	$P_{k-1}^{(1)}$	B_{2}	P_{k-2}	$P_{k-1}^{(1)}$
A_{3}	P_{k-2}	$P_{k}^{(1)}$	B_{3}	P_{k-2}	P_{k}
A_{4}	P_{k-2}	P_{k-1}	B_{4}	P_{k-2}	P_{k-1}
A_{5}	$P_{k-2}^{(1)}$	P_{k-1}	B_{5}	$P_{k-2}^{(1)}$	P_{k-1}
A_{6}	$P_{k-2}^{(1)}$	$P_{k-1}^{(1)}$	B_{6}	$P_{k-2}^{(1)}$	$P_{k-1}^{(1)}$
A_{7}	$P_{k-2}^{(1)}$	$P_{k}^{(1)}$	B_{7}	$P_{k}^{(1)}$	P_{k}
A_{8}	$P_{k-1}^{1(1)}$	P_{k-1}	B_{8}	$P_{k-1}^{(1)} P_{k-1}$	
A_{9}	P_{k-1}	$P_{k}^{(1)}$	B_{9}	P_{k-1}	P_{k}
A_{10}	$P_{k-1}^{(1)}$	$P_{k}^{(1)}$	B_{10}	$P_{k-1}^{(1)}$	P_{k}

Table 1.2: Computation formulae of A_{i} and B_{j} from different polynomials [33].

Relation A_{i}	Computation of P_{k} from	Relation B_{j}	Computation of $P_{k}^{(1)}$ from		
A_{11}	P_{k-3}	$P_{k-1}^{(1)}$	B_{11}	P_{k-3}	P_{k-1}
A_{12}	P_{k-2}	P_{k-3}	B_{12}	P_{k-2}	P_{k-3}
A_{13}	P_{k-2}	$P_{k-3}^{(1)}$	B_{13}	$P_{k-2}^{(1)}$	$P_{k-3}^{(1)}$
A_{14}	$P_{k-2}^{(1)}$	$P_{k-3}^{(1)}$	B_{14}	$P_{k-3}^{(1)}$	P_{k-1}
A_{15}	$P_{k-3}^{(1)}$	$P_{k-1}^{(1)}$	B_{15}	P_{k-2}	$P_{k-2}^{(1)}$
A_{16}	P_{k-2}	$P_{k-2}^{(1)}$	B_{16}	$P_{k-2}^{(1)}$	P_{k-1}
A_{17}	P_{k-2}	$P_{k-1}^{(1)}$	-	-	-
A_{18}	$P_{k-1}^{(1)}$	$P_{k-2}^{(1)}$	-	-	-
A_{19}	$P_{k-2}^{11)}$	P_{k-1}	-	-	-

Table 1.3: Computation formulae of A_{i} and B_{j} from different polynomials

Relation A_{i}	Computation of P_{k} from	Relation B_{j}	Computation of $P_{k}^{(1)}$ from		
A_{20}	P_{k-3}	P_{k-4}	B_{17}	$P_{k-4} P_{k-2}$	
A_{21}	P_{k-4}	$P_{k-2}^{(1)}$	B_{18}	P_{k-3}	P_{k-4}
A_{22}	P_{k-3}	$P_{k-4}^{(1)}$	B_{19}	$P_{k-3}^{(1)}$	$P_{k-4}^{(1)}$
A_{23}	$P_{k-3}^{(1)}$	$P_{k=4}^{(1)}$	B_{20}	P_{k-4}	P_{k-2}
A_{24}	$P_{k-4}^{(1)}$	$P_{k-2}^{(1)}$	B_{21}	P_{k-3}	$P_{k-3}^{(1)}$
A_{25}	P_{k-3}	$P_{k-3}^{(1)}$	-	-	-
A_{26}	P_{k-3}	$P_{k-2}^{(1)}$	-	-	-
A_{27}	$P_{k-2}^{(1)}$	$P_{k-3}^{(1)}$	-	-	-
A_{28}	$P_{k-3}^{(1)}$	P_{k-2}	-	-	-

1.7 The Breakdown Issue in Lanczos-type Algorithms

The Lanczos-type algorithms for solving systems of linear equations are based on formal orthogonal polynomials. Different variants of Lanczos-type algorithms have been derived using recurrence relationships between polynomials of a family of orthogonal polynomials or between those adjacent to families of orthogonal polynomials. When computing the coefficients of the FOPs involved in these recurrence relationships, which are in the ratio of scalar products, and these scalar products in the denominator become zero, then breakdown occurs in the algorithm. When such a scalar product is nearly equal to zero (near-breakdown) $[14,15,18]$ then rounding errors can seriously affect the numerical stability of the algorithm and the process has to be stopped $[13,14,18]$. To illustrate the breakdown condition in calculating the recurrence relationships, let us consider the three-term recurrence relationship of a monic polynomial $P_{k+1}(x)$ as follows [12].

$$
\begin{equation*}
P_{k+1}(x)=\left(A_{k+1} x+B_{k+1}\right) P_{k}-C_{k+1} P_{k-1}, \tag{1.27}
\end{equation*}
$$

for $k=0,1,2, \ldots$, with $P_{-1}(x)=0$ and $P_{0}(x)=1$, where the coefficients A_{k+1}, B_{k+1} and C_{k+1} appearing in the relations are obtained by imposing the orthogonality condition with respect to the linear function c on both sides. This leads to

$$
\begin{gathered}
c\left(x^{i} P_{k+1}\right)=A_{k+1} c\left(x^{i+1} P_{k}(x)\right)+B_{k+1} c\left(x^{i} P_{k}\right)+C_{k+1} c\left(x^{i} P_{k-1}\right), \\
A_{k+1} c\left(x^{i+1} P_{k}(x)\right)+B_{k+1} c\left(x^{i} P_{k}\right)+C_{k+1} c\left(x^{i} P_{k-1}\right)=0 .
\end{gathered}
$$

The orthogonality condition is always true for $i=0,1,2, \ldots, k$. Therefore for $i=k-1$,

$$
\begin{equation*}
A_{k+1} c\left(x^{k} P_{k}(x)\right)-C_{k+1} c\left(x^{k-1} P_{k-1}\right)=0 \tag{1.28}
\end{equation*}
$$

For $i=k$,

$$
\begin{equation*}
A_{k+1} c\left(x^{k+1} P_{k}(x)\right)+B_{k+1} c\left(x^{x} P_{k}(x)-C_{k+1} c\left(x^{k} P_{k-1}(x)\right)=0 .\right. \tag{1.29}
\end{equation*}
$$

The normalization conditions $P_{k+1}(0)=1$ give the third equation

$$
\begin{equation*}
B_{k+1}-C_{k+1}=1 . \tag{1.30}
\end{equation*}
$$

So, we obtain a system of three equations for three unknowns A_{k+1}, B_{k+1} and C_{k+1}. The determinant of the above 3×3 system of linear equations is given by

$$
\begin{equation*}
\Delta_{k}=-c\left(x^{k} P_{k}\right)\left[c\left(x^{k} P_{k}\right)-c\left(x^{k} P_{k-1}\right)\right]-c\left(x^{k-1} P_{k-1}\right) c\left(x^{k+1} P_{k}\right) . \tag{1.31}
\end{equation*}
$$

This system may be singular $\left(\Delta_{k}=0\right)$ and a breakdown can occur in the recurrence relationship even if $P_{k+1}\left(H_{k+1}^{(1)} \neq 0\right)$ exists and so, the recurrence relation cannot be used. This kind of breakdown is called ghost breakdown [18], which occurs due to the relation used for its computation. It does not correspond to the non-existence of an orthogonal polynomial of the family. When a breakdown occurs for some value of k, if $H_{k+1}^{(1)}=0$ then the corresponding orthogonal polynomial P_{k+1} does not exist and a breakdown is due to the nonexistence of the polynomial which is called a true breakdown [18].

Several procedures for that purpose are present in the literature in the last few decades.

These breakdown problems were partially solved in a series of papers by C. Brezinski, M. Redivo-Zaglia and H. Saddok, [12,13,15,17,19,43] and Farooq [33] and Maharani [55]. There are many possible strategies to cure a breakdown issues in the Lanczos-type algorithms.

Breakdown can be avoided by jumping over the polynomials involved or over those that cannot be computed by the recurrence relationship under consideration, [15, 17]. In this case, more complicated recurrences based on those given in [19] have to be used.

The problem of near-breakdown, due to a division by scalar product close to zero, can be treated in a similar way as in [19]. The theory of Formal Orthogonal Polynomials greatly simplifies the treatment of breakdowns and near-breakdowns as shown in $[20,30,31]$. Other strategies such as restarting the Lanczos-type algorithms and switching between them have also been considered $[35,36]$.

1.8 Remedial Strategies

As mentioned earlier, Lanczos-type algorithms suffer from breakdown. Several procedures for dealing with these breakdowns are present in the literature. Recently alternative ways implement restarting and switching between algorithms.

1.8.1 Restarting Strategies

Restarting of iterative methods to avoid breakdown and improve convergence is not new [57]. This is one way to avoid the breakdown in the Lanczos-type algorithms. This strategies consists of restarting the same algorithm that fails [24,33,35,58], when breakdown occurs in the algorithm due to the non-existence of some coefficients of the FOPs involved in its recurrence relations. In these strategies, the idea is either to stop the Lancozs-type
algorithm pre-emptively and restart it with some iterate or wait until breakdown occurs and then restart from the last iterate found. It is reasonable to restart from the point immediately before the breakdown occurred if one can detect it. Otherwise, one may consider restarting strategy after breakdown has happened [36]. Different strategies can be used for restarting various algorithms. In this procedure the algorithm starts working in a different Krylov subspace than the one it started with. These strategies are listed below. Note that ST stands for "Strategy".

1. Restarting After Breakdown: In this strategy, a particular Lanczos algorithm is run until a breakdown occurs. After the breakdown, the same Lanczos algorithm is restarted, but this time initializing it with the last iterate of the previously failed algorithm. This strategy is named ST1.
2. Pre-emptive Restarting: In this strategy, a Lanczos-type algorithm is run iteratively. Then it is halted and restarted again initializing it with the last iterate. While doing so, it can not be guaranteed that a breakdown will not happen before the interval end. This strategy is named ST2.
3. Breakdown Monitoring: In this strategy, the coefficients with the denominators causing the breakdown are regularly examined. When the values of these coefficients become less than a specified threshold then switching to another algorithm is implemented. This strategy is named ST3.

1.8.2 Switching Strategies

Switching is another way of curing breakdown in Lanczos-type algorithms. It follows the same pattern as restarting. In the switching strategy, different methods can be followed
between two or more algorithms. If the running algorithm is switched to another algorithm based on different recurrence relations then this will be a proper switching.

1.9 Summary

In this chapter we have discussed the basic Lanczos process for solving systems of linear equations, the theory of Formal Orthogonal Polynomials (FOP's) on which the Lanczostype algorithms are based. We have also discussed the breakdown issue in these algorithms and the current procedures for curing it. A brief review of the relevant literature was also given. The next chapter will consider the design of Lanczos-type algorithms based on recurrence relationships between FOPs of higher degrees than previously considered. These relations are in Table 1.3. Then we will compare the experiemental results of the new algorithm with the existing algorithms in [4,33].

Chapter 2

Recursive Computation Based on High

Degree FOPs and Lanczos-type

Algorithms

2.1 Introduction

In this chapter, we introduce Lanczos-type algorithms based on high degree FOPs. We will derive new recurrence relationships which will be used for the derivation of these new Lanczos-type algorithms, [23,33,67]. C. Brezinski and his colleagues discussed all the variations which are expressed in Chapter 1, [3,4,11,23,29,30,63]. We will follow the same notation.

2.2 Recursive Computation Between the FOPs for A_{i}

First, we will derive some relationships $A_{i}(i>19)$ for P_{k} which can be used to find \mathbf{r}_{k} and then \mathbf{x}_{k} without using A^{-1}. We will only find the coefficients of the recurrence relations
by using the orthogonality condition (1.24), which can be used for the implementation of Lanczos-type algorithms. However, if a recurrence relation exists but cannot be used for the implementation of Lanczos algorithm then there is no need to calculate its coefficients. The reason for this will be given. If we consider the condition

$$
\begin{align*}
& c\left(U_{i} P_{k}\right)=0, \quad \forall \quad i=0,1, \ldots, k-1, \tag{2.1}\\
& c^{(1)}\left(U_{i} P_{k}^{(1)}\right)=0, \quad \forall \quad i=0,1, \ldots, k-1, \tag{2.2}
\end{align*}
$$

where U_{i} be an arbitrary family of polynomials [4] of exact degree i, then some of the possible choices of $U_{i}(x)$ are

- $U_{i}(x)=x^{i}$,
- $U_{i}(x)=P_{i}(x)$,
- $U_{i}(x)=P_{i}^{(1)}(x)$.

2.2.1 $\quad A_{20}$ for $U_{i}(x)=x^{i}$

Consider the following recurrence relationship for $k \geq 4$,

$$
\begin{equation*}
P_{k}(x)=A_{k}\left\{\left(x^{3}+B_{k} x^{2}+C_{k} x+D_{k}\right) P_{k-3}+\left(E_{k} x^{4}+F_{k} x^{3}+G_{k} x^{2}+H_{k} x+I_{k}\right) P_{k-4}\right\} \tag{2.3}
\end{equation*}
$$

where $P_{k}(x), P_{k-3}(x)$ and $P_{k-4}(x)$ are polynomials of degree $k, k-3$ and $k-4$ respectively. The constant coefficients $A_{k}, B_{k}, C_{k}, D_{k}, E_{k}, F_{k}, G_{k}, H_{k}$ and I_{k} are determined by $P_{k}(0)=1$ and imposing the orthogonality condition (2.1).

Since $P_{k}(0)=1, \forall k$, then for $x=0$, equation (2.3) becomes

$$
\begin{equation*}
A_{k}=\frac{1}{D_{k}+I_{k}} \tag{2.4}
\end{equation*}
$$

After multiplying (2.3) by x^{i} and applying the linear functional c on both sides it becomes

$$
\begin{align*}
c\left(x^{i} P_{k}\right)=A_{k}\left\{c\left(x^{i+3} P_{k-3}\right)+\right. & B_{k} c\left(x^{i+2} P_{k-3}\right)+C_{k} c\left(x^{i+1} P_{k-3}\right)+D_{k} c\left(x^{i} P_{k-3}\right)+E_{k} c\left(x^{i+4} P_{k-4}\right) \\
& \left.+F_{k} c\left(x^{i+3} P_{k-4}\right)+G_{k} c\left(x^{i+2} P_{k-4}\right)+H_{k} c\left(x^{i+1} P_{k-4}\right)+I_{k} c\left(x^{i} P_{k-4}\right)\right\} . \tag{2.5}
\end{align*}
$$

Consequently, by applying (2.1), we have the relation for $i=0,1, \ldots, k-1$,

$$
\begin{align*}
c\left(x^{i+3} P_{k-3}\right)+B_{k} c\left(x^{i+2} P_{k-3}\right)+C_{k} c\left(x^{i+1} P_{k-3}\right)+D_{k} c\left(x^{i} P_{k-3}\right)+E_{k} c\left(x^{i+4} P_{k-4}\right)+F_{k} c\left(x^{i+3} P_{k-4}\right) \\
+G_{k} c\left(x^{i+2} P_{k-4}\right)+H_{k} c\left(x^{i+1} P_{k-4}\right)+I_{k} c\left(x^{i} P_{k-4}\right)=0 . \tag{2.6}
\end{align*}
$$

The orthogonality condition is always true for $i=0,1,2, \ldots \ldots, k-9$.
Therefore for $i=k-8$, equation (2.6) gives

$$
E_{k} c\left(x^{k-4} P_{k-4}\right)=0 \quad \Rightarrow \quad c\left(x^{k-4} P_{k-4}\right) \neq 0, \quad E_{k}=0
$$

For $i=k-7$, equation (2.6) gives

$$
F_{k} c\left(x^{k-4} P_{k-4}\right)=0 \Rightarrow c\left(x^{k-4} P_{k-4}\right) \neq 0, F_{k}=0
$$

For $i=k-6$, equation (2.6) gives

$$
\begin{equation*}
G_{k}=-\frac{c\left(x^{k-3} P_{k-3}\right)}{c\left(x^{k-4} P_{k-4}\right)} \tag{2.7}
\end{equation*}
$$

For $i=k-5$, equation (2.6) gives

$$
\begin{equation*}
B_{k} c\left(x^{k-3} P_{k-3}\right)+H_{k} c\left(x^{k-4} P_{k-4}\right)=-c\left(x^{k-2} P_{k-3}\right)-G_{k} c\left(x^{k-3} P_{k-4}\right) . \tag{2.8}
\end{equation*}
$$

For $i=k-4$, equation (2.6) gives

$$
\begin{equation*}
B_{k} c\left(x^{k-2} P_{k-3}\right)+C_{k} c\left(x^{k-3} P_{k-3}\right)+H_{k} c\left(x^{k-3} P_{k-4}\right)+I_{k} c\left(x^{k-4} P_{k-4}\right)=-c\left(x^{k-1} P_{k-3}\right)-G_{k} c\left(x^{k-2} P_{k-4}\right) . \tag{2.9}
\end{equation*}
$$

For $i=k-3$, and equation (2.6) gives

$$
\begin{align*}
B_{k} c\left(x^{k-1} P_{k-3}\right)+C_{k} c\left(x^{k-2} P_{k-3}\right)+D_{k} c\left(x^{k-3} P_{k-3}\right)+ & H_{k} c\left(x^{k-2} P_{k-4}\right)+I_{k} c\left(x^{k-3} P_{k-4}\right) \\
& =-c\left(x^{k} P_{k-3}\right)-G_{k} c\left(x^{k-1} P_{k-4}\right) . \tag{2.10}
\end{align*}
$$

For $i=k-2$, and equation (2.6) gives

$$
\begin{align*}
B_{k} c\left(x^{k} P_{k-3}\right)+C_{k} c\left(x^{k-1} P_{k-3}\right)+D_{k} c\left(x^{k-2} P_{k-3}\right)+ & H_{k} c\left(x^{k-1} P_{k-4}+I_{k} c\left(x^{k-2} P_{k-4}\right)\right. \\
& =-c\left(x^{k+1} P_{k-3}\right)-G_{k} c\left(x^{k} P_{k-4}\right) . \tag{2.11}
\end{align*}
$$

For $i=k-1$, and equation (2.6) gives

$$
\begin{align*}
B_{k} c\left(x^{k+1} P_{k-3}\right)+C_{k} c\left(x^{k} P_{k-3}\right)+D_{k} c\left(x^{k-1} P_{k-3}\right)+H_{k} c\left(x^{k} P_{k-4}+I_{k} c\left(x^{k-1} P_{k-4}\right)\right. \\
=-c\left(x^{k+2} P_{k-3}\right)-G_{k} c\left(x^{k+1} P_{k-4}\right) \tag{2.12}
\end{align*}
$$

Equations (2.8), (2.9), (2.10), (2.11) and (2.12) can be written as

$$
\left\{\begin{array}{l}
a_{11} B_{k}+a_{14} H_{k}=b_{1} \tag{2.13}\\
a_{21} B_{k}+a_{22} C_{k}+a_{24} H_{k}+a_{25} I_{k}=b_{2} \\
a_{31} B_{k}+a_{32} C_{k}+a_{33} D_{k}+a_{34} H_{k}+a_{35} I_{k}=b_{3} \\
a_{41} B_{k}+a_{42} C_{k}+a_{43} D_{k}+a_{44} H_{k}+a_{45} I_{k}=b_{4} \\
a_{51} B_{k}+a_{52} C_{k}+a_{53} D_{k}+a_{54} H_{k}+a_{55} I_{k}=b_{5}
\end{array}\right.
$$

Where $a_{11}, a_{14}, a_{21}, a_{22}, a_{24}, a_{25}, a_{31}, a_{32}, a_{33}, a_{34}, a_{35}, a_{41}, a_{42}, a_{43}, a_{44}, a_{45}, a_{51}, a_{52}, a_{53}, a_{54}$, and a_{55} are the coefficients of $B_{k}, C_{k}, D_{k}, H_{k}$ and I_{k} respectively. Suppose $b_{1}, b_{2}, b_{3}, b_{4}$, and b_{5} are the corresponding right hand side terms of these equations. If Δ_{k} represents the determinant of the coefficients matrix of (2.13) then we have,

$$
\begin{equation*}
\Delta_{k}=\operatorname{det}(V) \tag{2.14}
\end{equation*}
$$

where $V=\operatorname{matrix}\left(\left[v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right]\right)$,
$v_{1}=\left[a_{11}, 0,0, a_{14}, 0\right], v_{2}=\left[a_{21}, a_{22}, 0, a_{24}, a_{25}\right], v_{3}=\left[a_{31}, a_{32}, a_{33}, a_{34}, a_{35}\right]$,
$v_{4}=\left[a_{41}, a_{42}, a_{43}, a_{44}, a_{45}\right], v_{5}=\left[a_{51}, a_{52}, a_{53}, a_{54}, a_{55}\right]$.

If $\Delta_{k} \neq 0$, then

$$
\left\{\begin{array}{l}
B_{k}=\frac{\operatorname{det}(W)}{\Delta_{k}}, \quad \text { where } W=\operatorname{matrix}\left(\left[w_{1}, w_{2}, w_{3}, w_{4}, w_{5}\right]\right), \tag{2.15}\\
w_{1}=\left[b_{1}, 0,0, a_{14}, 0\right], w_{2}=\left[b_{2}, a_{22}, 0, a_{24}, a_{25}\right], w_{3}=\left[b_{3}, a_{32}, a_{33}, a_{34}, a_{35}\right], \\
w_{4}=\left[b_{4}, a_{42}, a_{43}, a_{44}, a_{45}\right], w_{5}=\left[b_{5}, a_{52}, a_{53}, a_{54}, a_{55}\right], \\
C_{k}=\frac{\operatorname{det}(U)}{\Delta_{k}}, \quad \text { where } U=\operatorname{matrix}\left(\left[u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right]\right), \\
u_{1}=\left[a_{11}, b_{1}, 0, a_{14}, 0\right], u_{2}=\left[a_{21}, b_{2}, 0, a_{24}, a_{25}\right], u_{3}=\left[a_{31}, b_{3}, a_{33}, a_{34}, a_{35}\right], \\
u_{4}=\left[a_{41}, b_{4}, a_{43}, a_{44}, a_{45}\right], u_{5}=\left[a_{51}, b_{5}, a_{53}, a_{54}, a_{55}\right], \\
H_{k}=\frac{b_{1}-a_{11} B_{k}}{a_{14}}, \\
I_{k}=\frac{b_{2}-a_{21} B_{k}-a_{22} C_{k}-a_{24} H_{k}}{a_{25}}, \\
D_{k}=\frac{b_{3}-a_{31} B_{k}-a_{32} C_{k}-a_{34} H_{k}-a_{35} I_{k}}{a_{33}} .
\end{array}\right.
$$

Since $E_{k}=F_{k}=0$, relation A_{20} becomes

$$
\begin{equation*}
P_{k}(x)=A_{k}\left\{\left(x^{3}+B_{k} x^{2}+C_{k} x+D_{k}\right) P_{k-3}(x)+\left(G_{k} x^{2}+H_{k} x+I_{k}\right) P_{k-4}(x)\right\} . \tag{2.16}
\end{equation*}
$$

Therefore, A_{20} leads to a Lanczos-type algorithm.

2.2.2 $\quad A_{21}$ for $U_{i}(x)=x^{i}$

Consider the following recurrence relationship for $k \geq 4$

$$
\begin{equation*}
P_{k}(x)=\left(A_{k} x^{4}+B_{k} x^{3}+C_{k} x^{2}+D_{k} x+E_{k}\right) P_{k-4}+\left(F_{k} x^{2}+G_{k} x+H_{k}\right) P_{k-2}^{(1)} \tag{2.17}
\end{equation*}
$$

where $P_{k}, P_{k-2}^{(1)}$ and P_{k-4} are polynomials of degree $k, k-1$ and $k-4$ respectively. The constant coefficients $A_{k}, B_{k}, C_{k}, D_{k}, E_{k} F_{k} G_{k}$ and H_{k} are determined by $P_{k}(0)=1$ and imposing the orthogonality condition (2.1). Since $P_{k}(0)=1, \forall k$, then for $x=0$, equation (2.17) becomes

$$
\begin{equation*}
E_{k}+H_{k} P_{k-2}^{(1)}(0)=1 \tag{2.18}
\end{equation*}
$$

After multiplying equation (2.17) by x^{i} and applying linear functional c on both sides it
becomes

$$
\begin{array}{r}
c\left(x^{i} P_{k}\right)=A_{k} c\left(x^{i+4} P_{k-4}\right)+B_{k} c\left(x^{i+3} P_{k-4}\right)+C_{k} c\left(x^{i+2} P_{k-4}\right)+D_{k} c\left(x^{i+1} P_{k-4}\right)+E_{k} c\left(x^{i} P_{k-4}\right)+ \\
F_{k} c\left(x^{i+2} P_{k-2}^{(1)}\right)+G_{k} c\left(x^{i+1} P_{k-2}^{(1)}\right)+H_{k} c\left(x^{i} P_{k-2}^{(1)}\right) .
\end{array}
$$

Consequently, by applying (2.1), we have the relation for $i=0,1, \ldots, k-1$

$$
\begin{array}{r}
A_{k} c\left(x^{i+4} P_{k-4}\right)+B_{k} c\left(x^{i+3} P_{k-4}\right)+C_{k} c\left(x^{i+2} P_{k-4}\right)+D_{k} c\left(x^{i+1} P_{k-4}\right)+E_{k} c\left(x^{i} P_{k-4}\right)+ \\
F_{k} c^{(1)}\left(x^{i+1} P_{k-2}^{(1)}\right)+G_{k} c^{(1)}\left(x^{i} P_{k-2}^{(1)}\right)+H_{k} c\left(x^{i} P_{k-2}^{(1)}\right)=0 . \tag{2.19}
\end{array}
$$

For $i=0$, equation (2.19) gives

$$
H_{k} c\left(x^{0} P_{k-2}^{(1)}\right)=0 \Rightarrow c\left(P_{k-2}^{(1)}\right) \neq 0, H_{k}=0
$$

Hence from (2.18), we have $E_{k}=1$. For $i=0,1,2, \ldots, k-9$, the relation (2.19) is always true. Therefore for $i=k-8$, equation (2.19) gives

$$
A_{k} c\left(x^{k-4} P_{k-4}\right)=0 \Rightarrow c\left(x^{k-4} P_{k-4}\right) \neq 0, A_{k}=0
$$

For $i=k-7$, equation (2.19) gives

$$
B_{k} c\left(x^{k-4} P_{k-4}\right)=0 \Rightarrow c\left(x^{k-4} P_{k-4}\right) \neq 0, B_{k}=0
$$

For $i=k-6$, equation (2.19) gives

$$
C_{k} c\left(x^{k-4} P_{k-4}\right)=0 \Rightarrow c\left(x^{k-4} P_{k-4}\right) \neq 0, C_{k}=0
$$

For $i=k-5$, equation (2.19) gives

$$
D_{k} c\left(x^{k-4} P_{k-4}\right)=0 \Rightarrow c\left(x^{k-4} P_{k-4}\right) \neq 0, D_{k}=0
$$

For $i=k-4$ and $E_{k}=1$, equation (2.19) gives

$$
E_{k} c\left(x^{k-4} P_{k-4}\right)=0 \Rightarrow c\left(x^{k-4} P_{k-4}\right)=0 .
$$

This is impossible from condition (2.1). Therefore the formula A_{21} does not exist and consequently algorithm A_{21} does not exist too.

2.2.3 $\quad A_{22}$ for $U_{i}(x)=x^{i}$

Consider the following recurrence relationship for $k \geq 4$,

$$
\begin{equation*}
P_{k}(x)=A_{k}\left\{\left(x^{3}+B_{k} x^{2}+C_{k} x+D_{k}\right) P_{k-3}+\left(E_{k} x^{4}+F_{k} x^{3}+G_{k} x^{2}+H_{k} x+I_{k}\right) P_{k-4}^{(1)}\right\} \tag{2.20}
\end{equation*}
$$

where $P_{k}(x), P_{k-3}(x)$ and $P_{k-4}^{(1)}(x)$ are polynomials of degree $k, k-3$ and $k-4$ respectively. The constant coefficients $A_{k}, B_{k}, C_{k}, D_{k}, E_{k}, F_{k}, G_{k}, H_{k}$ and I_{k} are determined by $P_{k}(0)=1$ and imposing the orthogonality condition (2.1). Since $P_{k}(0)=1, \forall k$, then for $x=0$, equation (2.20) becomes

$$
\begin{equation*}
A_{k}\left\{D_{k}+I_{k} P_{k-4}^{(1)}(0)\right\}=1 \tag{2.21}
\end{equation*}
$$

After multiplying by x^{i} and applying linear functional c on both sides it becomes

$$
\begin{align*}
c\left(x^{i} P_{k}\right)=A_{k}\left\{c\left(x^{i+3} P_{k-3}\right)\right. & +B_{k} c\left(x^{i+2} P_{k-3}\right)+C_{k} c\left(x^{i+1} P_{k-3}\right)+D_{k} c\left(x^{i} P_{k-3}\right)+E_{k} c\left(x^{i+4} P_{k-4}^{(1)}\right) \\
+ & \left.F_{k} c\left(x^{i+3} P_{k-4}^{(1)}\right)+G_{k} c\left(x^{i+2} P_{k-4}^{(1)}\right)+H_{k} c\left(x^{i+1} P_{k-4}^{(1)}\right)+I_{k} c\left(x^{i} P_{k-4}^{(1)}\right)\right\} . \tag{2.22}
\end{align*}
$$

Consequently, by applying (2.1), we have the relation for $i=0,1, \ldots, k-1$

$$
\begin{array}{r}
c\left(x^{i+3} P_{k-3}\right)+B_{k} c\left(x^{i+2} P_{k-3}\right)+C_{k} c\left(x^{i+1} P_{k-3}\right)+D_{k} c\left(x^{i} P_{k-3}\right)+E_{k} c^{(1)}\left(x^{i+3} P_{k-4}^{(1)}\right)+F_{k} c^{(1)}\left(x^{i+2} P_{k-4}^{(1)}\right)+ \\
G_{k} c^{(1)}\left(x^{i+1} P_{k-4}^{(1)}\right)+H_{k} c^{(1)}\left(x^{i} P_{k-4}^{(1)}\right)+I_{k} c\left(x^{i} P_{k-4}^{(1)}\right)=0 . \tag{2.23}
\end{array}
$$

For $i=0$, equation (2.23) gives

$$
I_{k} c\left(x^{0} P_{k-4}^{(1)}\right)=0, \quad \Rightarrow \quad c\left(P_{k-4}^{(1)}\right) \neq 0, \quad I_{k}=0
$$

Hence from (2.21), we have

$$
\begin{equation*}
A_{k}=\frac{1}{D_{k}} . \tag{2.24}
\end{equation*}
$$

The orthogonality condition is always true for $i=0,1,2, \ldots \ldots ., k-8$. Therefore for $i=k-7$, equation (2.23) gives

$$
E_{k} c^{(1)}\left(x^{k-4} P_{k-4}^{(1)}\right)=0, \quad \Rightarrow \quad c^{(1)}\left(x^{k-4} P_{k-4}^{(1)}\right) \neq 0, \quad E_{k}=0
$$

For $i=k-6$, equation (2.23) gives

$$
\begin{equation*}
F_{k}=-\frac{c\left(x^{k-3} P_{k-3}\right)}{c\left(x^{k-3} P_{k-4}^{(1)}\right)} . \tag{2.25}
\end{equation*}
$$

For $i=k-5$, equation (2.23) gives

$$
\begin{equation*}
B_{k} c\left(x^{k-3} P_{k-3}\right)+G_{k} c^{(1)}\left(x^{k-4} P_{k-4}^{(1)}\right)=-c\left(x^{k-2} P_{k-3}\right)-F_{k} c^{(1)}\left(x^{k-3} P_{k-4}^{(1)}\right) . \tag{2.26}
\end{equation*}
$$

For $i=k-4$, equation (2.23) gives
$B_{k} c\left(x^{k-2} P_{k-3}\right)+C_{k} c\left(x^{k-3} P_{k-3}\right)+G_{k} c^{(1)}\left(x^{k-3} P_{k-4}^{(1)}\right)+H_{k} c^{(1)}\left(x^{k-4} P_{k-4}^{(1)}\right)=-c\left(x^{k-1} P_{k-3}\right)-F_{k} c^{(1)}\left(x^{k-2} P_{k-4}^{(1)}\right)$.

For $i=k-3$, and equation (2.23) gives

$$
\begin{align*}
B_{k} c\left(x^{k-1} P_{k-3}\right)+C_{k} c\left(x^{k-2} P_{k-3}\right)+D_{k} c\left(x^{k-3} P_{k-3}\right)+ & G_{k} c^{(1)}\left(x^{k-2} P_{k-4}^{(1)}+H_{k} c^{(1)}\left(x^{k-3} P_{k-4}^{(1)}\right)\right. \\
& =-c\left(x^{k} P_{k-3}\right)-F_{k} c^{(1)}\left(x^{k-1} P_{k-4}^{(1)}\right) . \tag{2.28}
\end{align*}
$$

For $i=k-2$ and equation (2.23) gives

$$
\begin{align*}
B_{k} c\left(x^{k} P_{k-3}\right)+C_{k} c\left(x^{k-1} P_{k-3}\right)+D_{k} c\left(x^{k-2} P_{k-3}\right)+ & G_{k} c^{(1)}\left(x^{k-1} P_{k-4}^{(1)}\right)+H_{k} c^{(1)}\left(x^{k-2} P_{k-4}^{(1)}\right) \\
= & -c\left(x^{k+1} P_{k-3}\right)-F_{k} c^{(1)}\left(x^{k} P_{k-4}^{(1)}\right) . \tag{2.29}
\end{align*}
$$

For $i=k-1$ and equation (2.23) gives

$$
\begin{align*}
B_{k} c\left(x^{k+1} P_{k-3}\right)+C_{k} c\left(x^{k} P_{k-3}\right)+D_{k} c\left(x^{k-1} P_{k-3}\right) & +G_{k} c^{(1)}\left(x^{k} P_{k-4}^{(1)}\right)+H_{k} c^{(1)}\left(x^{k-1} P_{k-4}^{(1)}\right) \\
& =-c\left(x^{k+2} P_{k-3}\right)-F_{k} c^{(1)}\left(x^{k+1} P_{k-4}^{(1)}\right) . \tag{2.30}
\end{align*}
$$

Equations (2.26), (2.27), (2.28), (2.29) and (2.30) can be written as

$$
\left\{\begin{array}{l}
a_{11} B_{k}+a_{14} G_{k}=b_{1} \tag{2.31}\\
a_{21} B_{k}+a_{22} C_{k}+a_{24} G_{k}+a_{25} H_{k}=b_{2} \\
a_{31} B_{k}+a_{32} C_{k}+a_{33} D_{k}+a_{34} G_{k}+a_{35} H_{k}=b_{3} \\
a_{41} B_{k}+a_{42} C_{k}+a_{43} D_{k}+a_{44} G_{k}+a_{45} H_{k}=b_{4} \\
a_{51} B_{k}+a_{52} C_{k}+a_{53} D_{k}+a_{54} G_{k}+a_{55} H_{k}=b_{5}
\end{array}\right.
$$

Where $a_{11}, a_{14}, a_{21}, a_{22}, a_{24}, a_{25}, a_{31}, a_{32}, a_{33}, a_{34}, a_{35}, a_{41}, a_{42}, a_{43}, a_{44}, a_{45}, a_{51}, a_{52}, a_{53}, a_{54}$, and a_{55} are the coefficients of $B_{k}, C_{k}, D_{k}, G_{k}$ and H_{k} respectively. Suppose $b_{1}, b_{2}, b_{3}, b_{4}$, and b_{5} are the corresponding right hand side terms of these equations. If Δ_{k} represents the determinant of the coefficients matrix of (2.31). From (2.14), if $\Delta_{k} \neq 0$, then

$$
\left\{\begin{array}{l}
B_{k}, C_{k} \text { as in }(2.15) \tag{2.32}\\
G_{k}=\frac{b_{1}-a_{11} B_{k}}{a_{14}}, \\
H_{k}=\frac{b_{2}-a_{21} B_{k}-a_{22} C_{k}-a_{24} G_{k}}{a_{25}}, \\
D_{k}=\frac{b_{3}-a_{31} B_{k}-a_{32} C_{k}-a_{34} G_{k}-a_{35} H_{k}}{a_{33}}
\end{array}\right.
$$

Since $E_{k}=I_{k}=0$, relation A_{22} becomes

$$
\begin{equation*}
P_{k}(x)=A_{k}\left\{\left(x^{3}+B_{k} x^{2}+C_{k} x+D_{k}\right) P_{k-3}(x)+\left(F_{k} x^{3}+G_{k} x^{2}+H_{k} x\right) P_{k-4}^{(1)}(x)\right\} . \tag{2.33}
\end{equation*}
$$

Therefore, A_{22} leads to a Lanczos-type algorithm.

2.2.4 $\quad A_{23}$ for $U_{i}(x)=x^{i}$

Consider the following recurrence relationship for $k \geq 4$,

$$
\begin{equation*}
P_{k}(x)=\quad A_{k}\left\{\left(x^{3}+B_{k} x^{2}+C_{k} x+D_{k}\right) P_{k-3}^{(1)}+\left(E_{k} x^{4}+F_{k} x^{3}+G_{k} x^{2}+H_{k} x+I_{k}\right) P_{k-4}^{(1)}\right\} \tag{2.34}
\end{equation*}
$$

where $P_{k}(x), P_{k-3}^{(1)}(x)$ and $P_{k-4}^{(1)}(x)$ are polynomials of degree $k, k-3$ and $k-4$ respectively. The constant coefficients $A_{k}, B_{k}, C_{k}, D_{k}, E_{k}, F_{k}, G_{k}, H_{k}$ and I_{k} are determined by $P_{k}(0)=1$ and imposing the orthogonality condition (2.1). Since $P_{k}(0)=1, \forall k$, then for $x=0$, equation (2.34) becomes

$$
\begin{equation*}
A_{k}\left\{D_{k} P_{k-3}^{(1)}+I_{k} P_{k-4}^{(1)}(0)\right\}=1 \tag{2.35}
\end{equation*}
$$

After multiplying by x^{i} and applying linear functional c on both sides it becomes

$$
\begin{array}{r}
c\left(x^{i} P_{k}\right)=A_{k}\left\{c\left(x^{i+3} P_{k-3}^{(1)}\right)+B_{k} c\left(x^{i+2} P_{k-3}^{(1)}\right)+C_{k} c\left(x^{i+1} P_{k-3}^{(1)}\right)+D_{k} c\left(x^{i} P_{k-3}^{(1)}\right)+E_{k} c\left(x^{i+4} P_{k-4}^{(1)}\right)\right. \\
\left.+F_{k} c\left(x^{i+3} P_{k-4}^{(1)}\right)+G_{k} c\left(x^{i+2} P_{k-4}^{(1)}\right)+H_{k} c\left(x^{i+1} P_{k-4}^{(1)}\right)+I_{k} c\left(x^{i} P_{k-4}^{(1)}\right)\right\} . \tag{2.36}
\end{array}
$$

Consequently, by applying (2.1), we have the relation for $i=0,1, \ldots, k-1$

$$
\begin{align*}
& c^{(1)}\left(x^{i+2} P_{k-3}^{(1)}\right)+B_{k} c^{(1)}\left(x^{i+1} P_{k-3}^{(1)}\right)+C_{k} c^{(1)}\left(x^{i} P_{k-3}^{(1)}\right)+D_{k} c\left(x^{i} P_{k-3}^{(1)}\right)+E_{k} c^{(1)}\left(x^{i+3} P_{k-4}^{(1)}\right) \\
& +F_{k} c^{(1)}\left(x^{i+2} P_{k-4}^{(1)}\right)+G_{k} c^{(1)}\left(x^{i+1} P_{k-4}^{(1)}\right)+H_{k} c^{(1)}\left(x^{i} P_{k-4}^{(1)}\right)+I_{k} c\left(x^{i} P_{k-4}^{(1)}\right)=0 . \tag{2.37}
\end{align*}
$$

For $i=0$, equation (2.37) gives

$$
\begin{equation*}
D_{k} c\left(P_{k-3}^{(1)}\right)+I_{k} c\left(P_{k-4}^{(1)}\right)=0 . \tag{2.38}
\end{equation*}
$$

The orthogonality condition is always true for $i=0,1,2, \ldots \ldots, k-8$. Therefore for $i=k-7$, equation (2.37) gives

$$
E_{k} c^{(1)}\left(x^{k-4} P_{k-4}^{(1)}\right)=0 \quad \Rightarrow \quad c^{(1)}\left(x^{k-4} P_{k-4}^{(1)}\right) \neq 0, \quad E_{k}=0
$$

For $i=k-6$, equation (2.37) gives

$$
F_{k} c^{(1)}\left(x^{k-4} P_{k-4}^{(1)}\right)=0, \quad \Rightarrow \quad c^{(1)}\left(x^{k-4} P_{k-4}^{(1)}\right) \neq 0, \quad F_{k}=0
$$

For $i=k-5$, equation (2.37) gives

$$
\begin{gather*}
c^{(1)}\left(x^{k-3} P_{k-3}^{(1)}\right)+G_{k} c^{(1)}\left(x^{k-4} P_{k-4}^{(1)}\right)=0, \\
G_{k}=\frac{-c\left(x^{k-2} P_{k-3}^{(1)}\right)}{c\left(x^{k-3} P_{k-4}^{(1)}\right)} . \tag{2.39}
\end{gather*}
$$

For $i=k-4$, equation (2.37) gives

$$
\begin{equation*}
B_{k} c^{(1)}\left(x^{k-3} P_{k-3}^{(1)}\right)+H_{k} c^{(1)}\left(x^{k-4} P_{k-4}^{(1)}\right)+I_{k} c\left(x^{k-4} P_{k-4}^{(1)}\right)=-c\left(x^{k-1} P_{k-3}\right)-G_{k} c^{(1)}\left(x^{k-3} P_{k-4}^{(1)}\right) \tag{2.40}
\end{equation*}
$$

For $i=k-3$, and equation (2.37) gives

$$
\begin{align*}
B_{k} c^{(1)}\left(x^{k-2} P_{k-3}^{(1)}\right)+C_{k} c^{(1)}\left(x^{k-3} P_{k-3}^{(1)}\right)+D_{k} c\left(x^{k-3} P_{k-3}^{(1)}\right)+ & H_{k} c^{(1)}\left(x^{k-3} P_{k-4}^{(1)}+I_{k} c\left(x^{k-3} P_{k-4}^{(1)}\right)\right. \\
= & -c^{(1)}\left(x^{k-1} P_{k-3}^{(1)}\right)-G_{k} c^{(1)}\left(x^{k-2} P_{k-4}^{(1)}\right) . \tag{2.41}
\end{align*}
$$

For $i=k-2$, and equation (2.37) gives

$$
\begin{align*}
B_{k} c^{(1)}\left(x^{k-1} P_{k-3}^{(1)}\right)+C_{k} c^{(1)}\left(x^{k-2} P_{k-3}^{(1)}\right)+D_{k} c\left(x^{k-2} P_{k-3}^{(1)}\right)+ & H_{k} c^{(1)}\left(x^{k-2} P_{k-4}^{(1)}+I_{k} c\left(x^{k-2} P_{k-4}^{(1)}\right)\right. \\
= & -c^{(1)}\left(x^{k} P_{k-3}^{(1)}\right)-G_{k} c^{(1)}\left(x^{k-1} P_{k-4}^{(1)}\right) . \tag{2.42}
\end{align*}
$$

For $i=k-1$, and equation (2.37) gives

$$
\begin{align*}
B_{k} c^{(1)}\left(x^{k} P_{k-3}^{(1)}\right)+C_{k} c^{(1)}\left(x^{k-1} P_{k-3}^{(1)}\right)+D_{k} c\left(x^{k-1} P_{k-3}^{(1)}\right) & +H_{k} c^{(1)}\left(x^{k-1} P_{k-4}^{(1)}+I_{k} c\left(x^{k-1} P_{k-4}^{(1)}\right)\right. \\
= & -c^{(1)}\left(x^{k+1} P_{k-3}^{(1)}\right)-G_{k} c^{(1)}\left(x^{k} P_{k-4}^{(1)}\right) \tag{2.43}
\end{align*}
$$

The values of constant coefficients $A_{k}, B_{k}, C_{k}, D_{k}, G_{k}, H_{k}$ and I_{k} can be obtained by solving the equations (2.38), (2.40), (2.41), (2.42) and (2.43). Since $E_{k}=F_{k}=0$, relation A_{23} becomes

$$
\begin{equation*}
P_{k}(x)=A_{k}\left\{\left(x^{3}+B_{k} x^{2}+C_{k} x+D_{k}\right) P_{k-3}^{(1)}+\left(G_{k} x^{2}+H_{k} x+I_{k}\right) P_{k-4}^{(1)}\right\} . \tag{2.44}
\end{equation*}
$$

Since $\mathbf{r}_{k}=P_{k}(A) \mathbf{r}_{0}$, the equation (2.44), after replacing x by A, becomes

$$
\begin{equation*}
\mathbf{r}_{k}=A_{k}\left\{\left(A^{3}+B_{k} A^{2}+C_{k} A+D_{k}\right) \mathbf{z}_{k-3}+\left(G_{k} A^{2}+H_{k} A+I_{k}\right) \mathbf{z}_{k-4}\right\} \tag{2.45}
\end{equation*}
$$

Using $\mathbf{r}_{k}=\mathbf{b}-A \mathbf{x}_{k}$, we get

$$
\begin{equation*}
A \mathbf{x}_{k}=\mathbf{b}-A_{k}\left\{\left(A^{3}+B_{k} A^{2}+C_{k} A+D_{k}\right) \mathbf{z}_{k-3}+\left(G_{k} A^{2}+H_{k} A+I_{k}\right) \mathbf{z}_{k-4}\right\} . \tag{2.46}
\end{equation*}
$$

It is clear from the above equation (2.46) that we cannot find x_{k} from r_{k} without inverting A. So, a Lanczos algorithm based on A_{23} cannot be implemented.

2.2.5 $\quad A_{24}$ for $U_{i}(x)=x^{i}$

Consider the following recurrence relationship for $k \geq 4$

$$
\begin{equation*}
P_{k}(x)=\left(A_{k} x^{4}+B_{k} x^{3}+C_{k} x^{2}+D_{k} x+E_{k}\right) P_{k-4}^{(1)}+\left(F_{k} x^{2}+G_{k} x+H_{k}\right) P_{k-2^{\prime}}^{(1)} \tag{2.47}
\end{equation*}
$$

where $P_{k}, P_{k-2}^{(1)}$ and $P_{k-4}^{(1)}$ are polynomials of degree $k, k-1$ and $k-4$ respectively. The constant coefficients $A_{k}, B_{k}, C_{k}, D_{k}, E_{k} F_{k} G_{k}$ and H_{k} are determined by $P_{k}(0)=1$ and imposing the orthogonality condition (2.1). Since $P_{k}(0)=1, \forall k$, then for $x=0$, equation (2.47) becomes

$$
\begin{equation*}
E_{k} P_{k-4}^{(1)}(0)+H_{k} P_{k-2}^{(1)}(0)=1 \tag{2.48}
\end{equation*}
$$

After multiplying equation (2.47) by x^{i} and applying linear functional c on both sides it becomes

$$
\begin{aligned}
c\left(x^{i} P_{k}\right)=A_{k} c\left(x^{i+4} P_{k-4}^{(1)}\right)+B_{k} c\left(x^{i+3} P_{k-4}^{(1)}\right)+ & C_{k} c\left(x^{i+2} P_{k-4}^{(1)}\right)+D_{k} c\left(x^{i+1} P_{k-4}^{(1)}\right)+E_{k} c\left(x^{i} P_{k-4}^{(1)}\right)+ \\
& F_{k} c\left(x^{i+2} P_{k-2}^{(1)}\right)+G_{k} c\left(x^{i+1} P_{k-2}^{(1)}\right)+H_{k} c\left(x^{i} P_{k-2}^{(1)}\right) .
\end{aligned}
$$

Consequently, by applying (2.1), we have the relation for $i=0,1, \ldots, k-1$

$$
\begin{array}{r}
A_{k} c^{(1)}\left(x^{i+3} P_{k-4}^{(1)}\right)+B_{k} c^{(1)}\left(x^{i+2} P_{k-4}^{(1)}\right)+C_{k} c^{(1)}\left(x^{i+1} P_{k-4}^{(1)}\right)+D_{k} c^{(1)}\left(x^{i} P_{k-4}^{(1)}\right)+E_{k} c\left(x^{i} P_{k-4}^{(1)}\right)+ \\
F_{k} c^{(1)}\left(x^{i+1} P_{k-2}^{(1)}\right)+G_{k} c^{(1)}\left(x^{i} P_{k-2}^{(1)}\right)+H_{k} c\left(x^{i} P_{k-2}^{(1)}\right)=0 . \tag{2.49}
\end{array}
$$

For $i=0$, equation (2.49) gives

$$
\begin{equation*}
E_{k} c\left(P_{k-4}^{(1)}\right)+H_{k} c\left(P_{k-2}^{(1)}\right)=0 \tag{2.50}
\end{equation*}
$$

For $i=0,1,2, \ldots, k-8$, the relation (2.49) is always true. Therefore for $i=k-7$, equation (2.49) gives

$$
A_{k} c^{(1)}\left(x^{k-4} P_{k-4}^{(1)}\right)=0 \Rightarrow c^{(1)}\left(x^{k-4} P_{k-4}^{(1)}\right) \neq 0, A_{k}=0 .
$$

For $i=k-6$, equation (2.49) gives

$$
B_{k} c^{(1)}\left(x^{k-4} P_{k-4}^{(1)}\right)=0 \Rightarrow c^{(1)}\left(x^{k-4} P_{k-4}^{(1)}\right) \neq 0, B_{k}=0
$$

For $i=k-5$, equation (2.49) gives

$$
C_{k} c^{(1)}\left(x^{k-4} P_{k-4}^{(1)}\right)=0 \Rightarrow c^{(1)}\left(x^{k-4} P_{k-4}^{(1)}\right) \neq 0, C_{k}=0
$$

For $i=k-4$, equation (2.49) gives

$$
\begin{equation*}
D_{k} c^{(1)}\left(x^{k-4} P_{k-4}^{(1)}\right)+E_{k} c\left(x^{k-4} P_{k-4}^{(1)}=0\right. \tag{2.51}
\end{equation*}
$$

For $i=k-3$, equation (2.49) gives

$$
\begin{equation*}
D_{k} c^{(1)}\left(x^{k-3} P_{k-4}^{(1)}\right)+E_{k} c\left(x^{k-3} P_{k-4}^{(1)}\right)+F_{k} c^{(1)}\left(x^{k-2} P_{k-2}^{(1)}\right)=0 \tag{2.52}
\end{equation*}
$$

For $i=k-2$, equation (2.49) gives

$$
\begin{equation*}
D_{k} c^{(1)}\left(x^{k-2} P_{k-4}^{(1)}\right)+E_{k} c\left(x^{k-2} P_{k-4}^{(1)}\right)+F_{k} c^{(1)}\left(x^{k-1} P_{k-2}^{(1)}\right)+G_{k} c^{(1)}\left(x^{k-2} P_{k-2}^{(1)}\right)+H_{k} c\left(x^{k-2} P_{k-2}^{(1)}\right)=0 \tag{2.53}
\end{equation*}
$$

For $i=k-1$, equation (2.49) gives

$$
\begin{equation*}
D_{k} c^{(1)}\left(x^{k-1} P_{k-4}^{(1)}\right)+E_{k} c\left(x^{k-1} P_{k-4}^{(1)}\right)+F_{k} c^{(1)}\left(x^{k} P_{k-2}^{(1)}\right)+G_{k} c^{(1)}\left(x^{k-1} P_{k-2}^{(1)}\right)+H_{k} c\left(x^{k-1} P_{k-2}^{(1)}\right)=0 . \tag{2.54}
\end{equation*}
$$

Hence, we have six equations (2.48), (2.50), (2.51), (2.52), (2.53) and (2.54) to find five unknown constants $D_{k}, E_{k}, F_{k}, G_{k}$ and H_{k}, showing that the system is overdetermined. The recurrence relation A_{24} therefore cannot be used to implement a Lanczos-type algorithm. Since $A_{k}=B_{k}=C_{k}=0$, relation A_{24} becomes

$$
\begin{equation*}
P_{k}(x)=\left(D_{k} x+E_{k}\right) P_{k-4}^{(1)}+\left(F_{k} x^{2}+G_{k} x+H_{k}\right) P_{k-2}^{(1)} . \tag{2.55}
\end{equation*}
$$

One more reason which explains, why we cannot use the relation A_{24} for the implementation of a Lanczos-type algorithm, even if the above relationship is perfectly valid and exists, is as follows. Multiplying both sides of equation (2.55) by \mathbf{r}_{0}, after replacing x by A and simplifying by using $\mathbf{r}_{k}=P_{k}(A) \mathbf{r}_{0}$ and $\mathbf{z}_{k}=P_{k}^{(1)}(A) \mathbf{r}_{0}$, we have

$$
\begin{equation*}
\mathbf{r}_{k}=\left(A_{k} x^{4}+B_{k} x^{3}+C_{k} x^{2}+D_{k} x+E_{k}\right) \mathbf{z}_{k-4}+\left(F_{k} x^{2}+G_{k} x+H_{k}\right) \mathbf{z}_{k-2} \tag{2.56}
\end{equation*}
$$

Using $\mathbf{r}_{k}=\mathbf{b}-A \mathbf{x}_{k}$, we get

$$
\begin{equation*}
\mathbf{x}_{k}=A^{-1} \mathbf{b}-A^{-1}\left(A_{k} x^{4}+B_{k} x^{3}+C_{k} x^{2}+D_{k} x+E_{k}\right) \mathbf{z}_{k-4}+\left(F_{k} x^{2}+G_{k} x+H_{k}\right) \mathbf{z}_{k-2} . \tag{2.57}
\end{equation*}
$$

It is clear from equation (2.57) that we cannot find \mathbf{x}_{k} from \mathbf{r}_{k} without inverting A. So, this relation is not desirable for implementing a Lanczos-type algorithm as it involves a matrix inversion.

2.2.6 A_{25} for $U_{i}(x)=x^{i}$

Consider the following recurrence relationship for $k \geq 3$

$$
\begin{equation*}
P_{k}(x)=\left(A_{k} x^{3}+B_{k} x^{2}+C_{k} x+D_{k}\right) P_{k-3}+\left(E_{k} x^{3}+F_{k} x^{2}+G_{k} x+H_{k}\right) P_{k-3}^{(1)} \tag{2.58}
\end{equation*}
$$

where $P_{k}, P_{k-3}^{(1)}$ and P_{k-3} are polynomials of degree $k, k-3$ and $k-3$ respectively. The constant coefficients $A_{k}, B_{k}, C_{k}, D_{k}, E_{k}, F_{k}$ and G_{k} are determined by $P_{k}(0)=1$ and imposing the orthogonality condition (2.1). Since $P_{k}(0)=1, \forall k$, then for $x=0$, equation (2.58) becomes

$$
\begin{equation*}
D_{k}+H_{k} P_{k-3}^{(1)}(0)=1 \tag{2.59}
\end{equation*}
$$

After multiplying equation (2.58) by x^{i} and applying linear functional c on both sides it becomes

$$
\begin{array}{r}
c\left(x^{i} P_{k}\right)=A_{k} c\left(x^{i+3} P_{k-3}\right)+B_{k} c\left(x^{i+2} P_{k-3}\right)+C_{k} c\left(x^{i+1} P_{k-3}\right)+D_{k} c\left(x^{i} P_{k-3}\right)+E_{k} c\left(x^{i+3} P_{k-3}^{(1)}\right)+ \\
F_{k} c\left(x^{i+2} P_{k-3}^{(1)}\right)+G_{k} c\left(x^{i+1} P_{k-3}^{(1)}\right)+H_{k} c\left(x^{i} P_{k-3}^{(1)}\right) .
\end{array}
$$

Consequently, by applying (2.1), we have the relation for $i=0,1, \ldots, k-1$

$$
\begin{array}{r}
A_{k} c\left(x^{i+3} P_{k-3}\right)+B_{k} c\left(x^{i+2} P_{k-3}\right)+C_{k} c\left(x^{i+1} P_{k-3}\right)+D_{k} c\left(x^{i} P_{k-3}\right)+E_{k} c^{(1)}\left(x^{i+2} P_{k-3}\right)+ \\
F_{k} c^{(1)}\left(x^{i+1} P_{k-3}^{(1)}\right)+G_{k} c^{(1)}\left(x^{i} P_{k-3}^{(1)}\right)+H_{k} c\left(x^{i} P_{k-3}^{(1)}\right)=0 . \tag{2.60}
\end{array}
$$

For $i=0$, equation (2.60) gives

$$
H_{k} c\left(x^{0} P_{k-3}^{(1)}\right)=0 \quad \Rightarrow \quad c\left(P_{k-3}^{(1)}\right) \neq 0, \quad H_{k}=0 .
$$

Hence from (2.59), we have $D_{k}=1$. For $i=0,1,2, \ldots, k-7$, the relation (2.60) is always true. Therefore for $i=k-6$, equation (2.60) gives

$$
\begin{equation*}
A_{k} c\left(x^{k-3} P_{k-3}\right)=0 \quad \Rightarrow \quad c\left(x^{k-3} P_{k-3}\right) \neq 0, \quad A_{k}=0 \tag{2.61}
\end{equation*}
$$

For $i=k-5$, equation (2.60) gives

$$
\begin{equation*}
B_{k} c\left(x^{k-3} P_{k-3}\right)+E_{k} c^{(1)}\left(x^{k-3} P_{k-3}^{(1)}\right)=0 \tag{2.62}
\end{equation*}
$$

For $i=k-4$, equation (2.60) gives

$$
\begin{equation*}
B_{k} c\left(x^{k-2} P_{k-3}\right)+C_{k} c\left(x^{k-3} P_{k-3}\right)+E_{k} c^{(1)}\left(x^{k-2} P_{k-3}^{(1)}\right)+F_{k} c^{(1)}\left(x^{k-3} P_{k-3}^{(1)}\right)=0 . \tag{2.63}
\end{equation*}
$$

For $i=k-3$, equation (2.60) gives

$$
\begin{align*}
B_{k} c\left(x^{k-1} P_{k-3}\right)+C_{k} c\left(x^{k-2} P_{k-3}\right)+E_{k} c^{(1)}\left(x^{k-1} P_{k-3}^{(1)}\right)+F_{k} c^{(1)}\left(x^{k-2} P_{k-3}^{(1)}\right)+ & G_{k} c^{(1)}\left(x^{k-3} P_{k-3}^{(1)}\right) \\
& =-c\left(x^{k-3} P_{k-3}\right) \tag{2.64}
\end{align*}
$$

For $i=k-2$, equation (2.60) gives

$$
\begin{align*}
B_{k} c\left(x^{k} P_{k-3}\right)+C_{k} c\left(x^{k-1} P_{k-3}\right)+E_{k} c^{(1)}\left(x^{k} P_{k-3}^{(1)}\right)+F_{k} c^{(1)}\left(x^{k-1} P_{k-3}^{(1)}\right)+ & G_{k} C^{(1)}\left(x^{k-2} P_{k-3}^{(1)}\right) \\
& =-c\left(x^{k-2} P_{k-3}\right) . \tag{2.65}
\end{align*}
$$

For $i=k-1$, equation (2.60) gives

$$
\begin{align*}
B_{k} c\left(x^{k+1} P_{k-3}\right)+C_{k} c\left(x^{k} P_{k-3}\right)+E_{k} c^{(1)}\left(x^{k+1} P_{k-3}^{(1)}\right)+F_{k} c^{(1)}\left(x^{k} P_{k-3}^{(1)}\right)+ & G_{k} C^{(1)}\left(x^{k-1} P_{k-3}^{(1)}\right) \\
& =-c\left(x^{k-1} P_{k-3}\right) . \tag{2.66}
\end{align*}
$$

Equations (2.62), (2.63), (2.64), (2.65) and (2.66) can be written as

$$
\left\{\begin{array}{l}
a_{11} B_{k}+a_{13} E_{k}=0 \tag{2.67}\\
a_{21} B_{k}+a_{22} C_{k}+a_{23} E_{k}+a_{24} F_{k}=0 \\
a_{31} B_{k}+a_{32} C_{k}+a_{33} E_{k}+a_{34} F_{k}+G_{k} a_{35}=b_{3} \\
a_{41} B_{k}+a_{42} C_{k}+a_{43} E_{k}+a_{44} F_{k}+G_{k} a_{45}=b_{4} \\
a_{51} B_{k}+a_{52} C_{k}+a_{53} E_{k}+a_{54} F_{k}+G_{k} a_{55}=b_{5}
\end{array}\right.
$$

Where $a_{11}, a_{13}, a_{21}, a_{22}, a_{23}, a_{24}, a_{31}, a_{32}, a_{33}, a_{34}, a_{35}, a_{41}, a_{42}, a_{43}, a_{44}, a_{45}, a_{51}, a_{52}, a_{53}, a_{54}$, and a_{55} are the coefficients of $B_{k}, C_{k}, E_{k}, F_{k}$ and G_{k} respectively. Suppose b_{3}, b_{4}, and b_{5} are the corresponding right hand side terms of these equations. If Δ_{k} represents the determinant of the coefficients matrix of (2.67) then we have,

$$
\begin{equation*}
\Delta_{k}=\operatorname{det}(Q) \tag{2.68}
\end{equation*}
$$

where $Q=\operatorname{matrix}\left(\left[q_{1}, q_{2}, q_{3}, q_{4}, q_{5}\right]\right)$,
$q_{1}=\left[a_{11}, 0, a_{13}, 0,0\right], q_{2}=\left[a_{21}, a_{22}, a_{23}, a_{24}, 0\right], q_{3}=\left[a_{31}, a_{32}, a_{33}, a_{34}, a_{35}\right]$,
$q_{4}=\left[a_{41}, a_{42}, a_{43}, a_{44}, a_{45}\right], q_{5}=\left[a_{51}, a_{52}, a_{53}, a_{54}, a_{55}\right]$.
If $\Delta_{k} \neq 0$, then

$$
\left\{\begin{array}{l}
B_{k}=\frac{\operatorname{det}(S)}{\Delta_{k}}, \quad \text { where } S=\operatorname{matrix}\left(\left[s_{1}, s_{2}, s_{3}, s_{4}, s_{5}\right]\right), \tag{2.69}\\
s_{1}=\left[0,0, a_{13}, 0,0\right], s_{2}=\left[0, a_{22}, a_{23}, a_{24}, 0\right], s_{3}=\left[b_{3}, a_{32}, a_{33}, a_{34}, a_{35}\right], \\
s_{4}=\left[b_{4}, a_{42}, a_{43}, a_{44}, a_{45}\right], s_{5}=\left[b_{5}, a_{52}, a_{53}, a_{54}, a_{55}\right], \\
C_{k}=\frac{\operatorname{det}(T)}{\Delta_{k}}, \quad \text { where } T=\operatorname{matrix}\left(\left[t_{1}, t_{2}, t_{3}, t_{4}, t_{5}\right]\right), \\
t_{1}=\left[a_{11}, 0, a_{13}, 0,0\right], t_{2}=\left[a_{21}, 0, a_{23}, a_{24}, 0\right], t_{3}=\left[a_{31}, b_{3}, a_{33}, a_{34}, a_{35}\right], \\
t_{4}=\left[a_{41}, b_{4}, a_{43}, a_{44}, a_{45}\right], t_{5}=\left[a_{51}, b_{5}, a_{53}, a_{54}, a_{55}\right], \\
E_{k}=-\frac{a_{11} B_{k}}{a_{13}}, \\
F_{k}=-\frac{a_{21} B_{k}+a_{22} C_{k}+a_{23} E_{k}}{a_{24}}, \\
G_{k}=\frac{b_{3}-a_{31} B_{k}-a_{32} c_{k}-a_{33} E_{k}-a_{34} F_{k}}{a_{35}} .
\end{array}\right.
$$

Since $A_{k}=H_{k}=0$ and $D_{k}=1$, relation A_{25} becomes

$$
\begin{equation*}
P_{k}(x)=\left(B_{k} x^{2}+C_{k} x+I\right) P_{k-3}(x)+\left(E_{k} x^{3}+F_{k} x^{2}+G_{k} x\right) P_{k-3}^{(1)}(x) . \tag{2.70}
\end{equation*}
$$

Therefore A_{25} can lead to a Lanczos-type algorithm.

2.2.7 $\quad A_{26}$ for $U_{i}(x)=x^{i}$

Let $P_{k}(x), P_{k-2}^{(1)}(x)$ and $P_{k-3}(x)$ be the orthogonal polynomials of degree $k, k-2$ and $k-3$ respectively.

Consider the following recurrence relationship for $k \geq 3$

$$
\begin{equation*}
P_{k}(x)=\left(A_{k} x^{3}+B_{k} x^{2}+C_{k} x+D_{k}\right) P_{k-3}+\left(E_{k} x^{2}+F_{k} x+G_{k}\right) P_{k-2}^{(1)} . \tag{2.71}
\end{equation*}
$$

The constant coefficients $A_{k}, B_{k}, C_{k}, D_{k}, E_{k} F_{k}$ and G_{k} are determined by $P_{k}(0)=1$ and imposing the orthogonality condition (2.1). Since $P_{k}(0)=1, \forall k$, then for $x=0$, equation (2.71) becomes

$$
\begin{equation*}
D_{k}+G_{k} P_{k-2}^{(1)}(0)=1 \tag{2.72}
\end{equation*}
$$

After multiplying equation (2.71) by x^{i} and applying linear functional c on both sides it becomes

$$
\begin{aligned}
c\left(x^{i} P_{k}\right)=A_{k} c\left(x^{i+3} P_{k-3}\right)+B_{k} c\left(x^{i+2} P_{k-3}\right)+C_{k} c\left(x^{i+1} P_{k-3}\right) & +D_{k} c\left(x^{i} P_{k-3}\right)+E_{k} c\left(x^{i+2} P_{k-2}^{(1)}\right) \\
& +F_{k} c\left(x^{i+1} P_{k-2}^{(1)}\right)+G_{k} c\left(x^{i} P_{k-2}^{(1)}\right) .
\end{aligned}
$$

Consequently, by applying (2.1), we have the relation for $i=0,1, \ldots, k-1$

$$
\begin{align*}
A_{k} c\left(x^{i+3} P_{k-3}\right)+B_{k} c\left(x^{i+2} P_{k-3}\right)+C_{k} c\left(x^{i+1} P_{k-3}\right) & +D_{k} c\left(x^{i} P_{k-3}\right)+E_{k} c^{(1)}\left(x^{i+1} P_{k-2}^{(1)}\right) \\
+ & F_{k} c^{(1)}\left(x^{i} P_{k-2}^{(1)}\right)+G_{k} c\left(x^{i} P_{k-2}^{(1)}\right)=0 . \tag{2.73}
\end{align*}
$$

For $i=0$, equation (2.73) gives

$$
G_{k} c\left(x^{0} P_{k-2}^{(1)}\right)=0 \quad \Rightarrow \quad c\left(P_{k-2}^{(1)}\right) \neq 0, \quad G_{k}=0
$$

Hence from (2.72), we have $D_{k}=1$. For $i=0,1,2, \ldots, k-7$, the relation (2.73) is always true.
Therefore for $i=k-6$, equation (2.73) gives

$$
A_{k} c\left(x^{k-3} P_{k-3}\right)=0 \Rightarrow c\left(x^{k-3} P_{m-3}\right) \neq 0, A_{k}=0
$$

For $i=k-5$, equation (2.73) gives

$$
B_{k} c\left(x^{k-3} P_{k-3}\right)=0 \Rightarrow c\left(x^{k-3} P_{k-3}\right) \neq 0, B_{k}=0
$$

For $i=k-4$, equation (2.73) gives

$$
C_{k} c\left(x^{k-3} P_{k-3}\right)=0, \Rightarrow c\left(x^{k-3} P_{k-3}\right) \neq 0, C_{k}=0
$$

For $i=k-3$, equation (2.73) gives

$$
D_{k} c\left(x^{k-3} P_{k-3}\right)+E_{k} c^{(1)}\left(x^{k-2} P_{k-2}^{(1)}\right)=0 .
$$

Since $D_{k}=1$, then

$$
E_{k}=\frac{c\left(x^{k-3} P_{k-3}\right)}{c^{(1)}\left(x^{k-2} P_{k-2}^{(1)}\right)}
$$

For $i=k-2$, equation (2.73) gives

$$
F_{k}=\frac{-c\left(x^{k-2} P_{k-3}\right)-E_{k} c^{(1)}\left(x^{k-1} P_{k-2}^{(1)}\right)}{c^{(1)}\left(x^{k-2} P_{k-2}^{(1)}\right)} .
$$

For $i=k-1$, equation (2.73) gives

$$
F_{k}=\frac{-c\left(x^{k-1} P_{k-3}\right)-E_{k} c^{(1)}\left(x^{k} P_{k-2}^{(1)}\right)}{c^{(1)}\left(x^{k-1} P_{k-2}^{(1)}\right)}
$$

So, due to multiple values for the constant coefficient F_{k} involved. Therefore, this formula A_{26} is not suitable for the implementation of a Lanczos-type algorithm.

2.2.8 $\quad A_{27}$ for $U_{i}(x)=x^{i}$

Consider the following recurrence relationship for $k \geq 3$,

$$
\begin{equation*}
P_{k}(x)=A_{k}\left\{\left(x^{2}+B_{k} x+C_{k}\right) P_{k-2}^{(1)}+\left(D_{k} x^{3}+E_{k} x^{2}+F_{k} x+G_{k}\right) P_{k-3}^{(1)}\right\}, \tag{2.74}
\end{equation*}
$$

where $P_{k}(x), P_{k-2}^{(1)}$ and $P_{k-3}^{(1)}$ are polynomials of degree $k, k-2$ and $k-3$ respectively. The constant coefficients $A_{k}, B_{k}, C_{k}, D_{k}, E_{k}, F_{k}$, and G_{k} are determined by $P_{k}(0)=1$ and imposing the orthogonality condition (2.1). Since $P_{k}(0)=1, \forall k$, then for $x=0$, equation (2.74) becomes

$$
\begin{equation*}
A_{k}\left\{C_{k} P_{k-2}^{(1)}(0)+G_{k} P_{k-3}^{(1)}(0)\right\}=1 \tag{2.75}
\end{equation*}
$$

After multiplying by x^{i} and applying linear functional c on both sides it becomes

$$
\begin{align*}
c\left(x^{i} P_{k}\right)=A_{k}\left\{c\left(x^{i+2} P_{k-2}^{(1)}\right)+B_{k} c\left(x^{i+1} P_{k-2}^{(1)}\right)+C_{k} c\left(x^{i} P_{k-2}^{(1)}\right)\right. & +D_{k} c\left(x^{i+3} P_{k-3}^{(1)}\right)+E_{k} c\left(x^{i+2} P_{k-3}^{(1)}\right) \\
& \left.+F_{k} c\left(x^{i+1} P_{k-3}^{(1)}\right)+G_{k} c\left(x^{i} P_{k-3}^{(1)}\right)\right\} . \tag{2.76}
\end{align*}
$$

Consequently, by applying (2.1), we have the relation for $i=0,1, \ldots, k-1$

$$
\begin{align*}
B_{k} c^{(1)}\left(x^{i} P_{k-2}^{(1)}\right)+C_{k} c\left(x^{i} P_{k-2}^{(1)}\right)+D_{k} c^{(1)}\left(x^{i+2} P_{k-3}^{(1)}\right)+ & E_{k} c^{(1)}\left(x^{i+1} P_{k-3}^{(1)}\right)+F_{k} c^{(1)}\left(x^{i} P_{k-3}^{(1)}\right) \\
& +G_{k} c\left(x^{i} P_{k-3}^{(1)}\right)=-c^{(1)}\left(x^{i+1} P_{k-2}^{(1)}\right) . \tag{2.77}
\end{align*}
$$

For $i=0$, equation (2.77) gives

$$
\begin{equation*}
C_{k} c\left(P_{k-2}^{(1)}\right)+G_{k} c\left(P_{k-3}^{(1)}\right)=0 \tag{2.78}
\end{equation*}
$$

The orthogonality condition is always true for $i=0,1,2, \ldots \ldots, k-6$. Therefore for $i=k-5$, equation (2.77) gives

$$
D_{k} c^{(1)}\left(x^{k-3} P_{k-3}^{(1)}\right)=0 \quad \Rightarrow \quad c^{(1)}\left(x^{k-3} P_{k-3}^{(1)}\right) \neq 0, \quad D_{k}=0 .
$$

For $i=k-4$, equation (2.77) gives

$$
E_{k} c^{(1)}\left(x^{k-3} P_{k-3}^{(1)}\right)=0, \quad \Rightarrow \quad c^{(1)}\left(x^{k-3} P_{k-3}^{(1)}\right) \neq 0, \quad E_{k}=0
$$

For $i=k-3$, equation (2.77) gives

$$
\begin{equation*}
F_{k} c^{(1)}\left(x^{k-3} P_{k-3}\right)+G_{k} c\left(x^{k-3} P_{k-3}^{(1)}\right)=-c\left(x^{k-2} P_{k-2}\right) \tag{2.79}
\end{equation*}
$$

For $i=k-2$, equation (2.77) gives

$$
\begin{equation*}
B_{k} c^{(1)}\left(x^{k-2} P_{k-2}^{(1)}\right)+C_{k} c\left(x^{k-2} P_{k-2}^{(1)}\right)+F_{k} c^{(1)}\left(x^{k-2} P_{k-3}^{(1)}\right)+G_{k} c\left(x^{k-2} P_{k-3}^{(1)}\right)=-c^{(1)}\left(x^{k-1} P_{k-2}^{(1)}\right) \tag{2.80}
\end{equation*}
$$

For $i=k-1$, and equation (2.77) gives

$$
\begin{equation*}
B_{k} c^{(1)}\left(x^{k-1} P_{k-2}^{(1)}\right)+C_{k} c\left(x^{k-2} P_{k-2}^{(1)}\right)+F_{k} c^{(1)}\left(x^{k-1} P_{k-3}^{(1)}\right)+G_{k} c^{(1)}\left(x^{k-1} P_{k-3}^{(1)}\right)=-c^{(1)}\left(x^{k} P_{k-2}\right) \tag{2.81}
\end{equation*}
$$

The values of constant coefficients $A_{k}, B_{k}, C_{k}, F_{k}$ and G_{k} can be obtained by solving the equations (2.75), (2.78), (2.79), (2.80) and (2.81). Since $D_{k}=E_{k}=0$, relation A_{27} becomes

$$
\begin{equation*}
P_{k}(x)=A_{k}\left\{\left(x^{2}+B_{k} x+C_{k}\right) P_{k-2}^{(1)}+\left(F_{k} x+G_{k}\right) P_{k-3}^{(1)}\right\} . \tag{2.82}
\end{equation*}
$$

Multiplying bothe sides of equation (2.82) by \mathbf{r}_{0}, after replacing x by A and simplifying by using $\mathbf{r}_{k}=P_{k}(A) \mathbf{r}_{0}$, and $\mathbf{z}_{k}=P_{k}(A)^{(1)} \mathbf{r}_{0}$ we have

$$
\begin{equation*}
\mathbf{r}_{k}=A_{k}\left\{\left(A^{2}+B_{k} A+C_{k}\right) \mathbf{z}_{k-2}+\left(F_{k} A+G_{k} I\right) \mathbf{z}_{k-3}\right\} . \tag{2.83}
\end{equation*}
$$

Using $\mathbf{r}_{k}=\mathbf{b}-A \mathbf{x}_{k}$, we get

$$
\begin{equation*}
A \mathbf{x}_{k}=\mathbf{b}-A_{k}\left\{\left(A^{2}+B_{k} A+C_{k}\right) \mathbf{z}_{k-2}+\left(F_{k} A+G_{k} I\right) \mathbf{z}_{k-3}\right\} . \tag{2.84}
\end{equation*}
$$

It is clear from the above equation (2.84) that we cannot find \mathbf{x}_{k} from \mathbf{r}_{k} without inverting A. So, the Lanczos algorithm cannot be implemented.

2.2.9 A_{28} for $U_{i}(x)=x^{i}$

Consider the following recurrence relationship for $k \geq 3$,

$$
\begin{equation*}
P_{k}(x)=A_{k}\left\{\left(x^{2}+B_{k} x+C_{k}\right) P_{k-2}+\left(D_{k} x^{3}+E_{k} x^{2}+F_{k} x+G_{k}\right) P_{k-3}^{(1)}\right\}, \tag{2.85}
\end{equation*}
$$

where $P_{k}(x), P_{k-2}(x)$ and $P_{k-3}^{(1)}(x)$ are polynomials of degree $k, k-2$ and $k-3$ respectively. The constant coefficients $A_{k}, B_{k}, C_{k}, D_{k}, E_{k}, F_{k}$ and G_{k} are determined by $P_{k}(0)=1$ and imposing the orthogonality condition (2.1). Since $P_{k}(0)=1, \forall k$, then for $x=0$, equation (2.85) becomes

$$
\begin{equation*}
A_{k}\left\{C_{k}+G_{k} P_{k-3}^{(1)}\right\}=1 \tag{2.86}
\end{equation*}
$$

After multiplying by x^{i} and applying linear functional c on both sides it becomes

$$
\begin{align*}
c\left(x^{i} P_{k}\right)=A_{k}\left\{c\left(x^{i+2} P_{k-2}\right)+B_{k} c\left(x^{i+1} P_{k-2}\right)+C_{k} c\left(x^{i} P_{k-2}\right)\right. & +D_{k} c\left(x^{i+3} P_{k-3}^{(1)}\right)+E_{k} c\left(x^{i+2} P_{k-3}^{(1)}\right) \\
& \left.+F_{k} c\left(x^{i+1} P_{k-3}^{(1)}\right)+G_{k} c\left(x^{i} P_{k-3}^{(1)}\right)\right\} . \tag{2.87}
\end{align*}
$$

Consequently, by applying (2.1), we have the relation for $i=0,1, \ldots, k-1$

$$
\begin{array}{r}
c\left(x^{i+2} P_{k-2}\right)+B_{k} c\left(x^{i+1} P_{k-2}\right)+C_{k} c\left(x^{i} P_{k-2}\right)+D_{k} c\left(x^{i+3} P_{k-3}^{(1)}\right)+E_{k} c\left(x^{i+2} P_{k-3}^{(1)}\right)+ \\
F_{k} c\left(x^{i+1} P_{k-3}^{(1)}\right)+G_{k} c\left(x^{i} P_{k-3}^{(1)}\right)=0 . \tag{2.88}
\end{array}
$$

For $i=0$, equation (2.88) becomes

$$
G_{k} c\left(P_{k-3}^{(1)}\right)=0, \quad \text { since } \quad c\left(P_{k-3}^{(1)}\right) \neq 0 \quad \Rightarrow \quad G_{k}=0
$$

Therefore, from (2.86) we have

$$
\begin{equation*}
A_{k}=\frac{1}{C_{k}} . \tag{2.89}
\end{equation*}
$$

The orthogonality condition is always true for $i=0,1,2, \ldots \ldots, k-6$. Therefore, for $i=k-5$, equation (2.88) gives, $D_{k} c^{(1)}\left(x^{k-3} P_{k-3}^{(1)}\right)=0 \quad \Rightarrow \quad c^{(1)}\left(x^{k-3} P_{k-3}^{(1)}\right) \neq 0, \quad D_{k}=0$.

For $i=k-4$, equation (2.88) gives

$$
\begin{equation*}
E_{k}=-\frac{c\left(x^{k-2} P_{k-2}\right)}{c^{(1)}\left(x^{k-3} P_{k-3}^{(1)}\right)} . \tag{2.90}
\end{equation*}
$$

For $i=k-3$, equation (2.88) gives

$$
\begin{equation*}
B_{k} c\left(x^{k-2} P_{k-2}\right)+F_{k} c^{(1)}\left(x^{k-3} P_{k-3}^{(1)}\right)=-c\left(x^{k-1} P_{k-2}\right)-E_{k} c^{(1)}\left(x^{k-2} P_{k-3}^{(1)}\right) . \tag{2.91}
\end{equation*}
$$

For $i=k-2$, equation (2.88) gives

$$
\begin{equation*}
B_{k} c\left(x^{k-1} P_{k-2}\right)+C_{k} c\left(x^{k-2} P_{k-2}\right)+F_{k} c^{(1)}\left(x^{k-2} P_{k-3}^{(1)}\right)=-c\left(x^{k} P_{k-2}\right)-E_{k} c^{(1)}\left(x^{k-1} P_{k-3}^{(1)}\right) . \tag{2.92}
\end{equation*}
$$

For $i=k-1$, and equation (2.88) gives

$$
\begin{equation*}
B_{k} c\left(x^{k} P_{k-2}\right)+C_{k} c\left(x^{k-1} P_{k-2}\right)+F_{k} c^{(1)}\left(x^{k-1} P_{k-3}^{(1)}\right)=-c\left(x^{k+1} P_{k-2}\right)-E_{k} c^{(1)}\left(x^{k} P_{k-3}^{(1)}\right) . \tag{2.93}
\end{equation*}
$$

Equations (2.91), (2.92) and (2.93) can be written as

$$
\left\{\begin{array}{l}
a_{11} B_{k}+a_{13} F_{k}=b_{1} \tag{2.94}\\
a_{21} B_{k}+a_{22} C_{k}+a_{23} F_{k}=b_{2} \\
a_{31} B_{k}+a_{32} C_{k}+a_{33} F_{k}=b_{3}
\end{array}\right.
$$

Where $a_{11}, a_{13}, a_{21}, a_{22}, a_{23}, a_{31}, a_{32}, a_{33}$, are the coefficients of B_{k}, C_{k}, and F_{k} respectively. Suppose b_{1}, b_{2} and b_{3} are the corresponding right hand side terms of these equations. If Δ_{k} represents the determinant of the coefficients matrix of (2.94) then we have,

$$
\Delta_{k}=a_{11}\left(a_{22} a_{33}-a_{23} a_{32}\right)+a_{13}\left(a_{21} a_{32}-a_{31} a_{22}\right) .
$$

If $\Delta_{k} \neq 0$, then

$$
\left\{\begin{array}{l}
B_{k}=\frac{1}{\Delta_{k}}\left\{b_{1}\left(a_{22} a_{33}-a_{23} a_{32}\right)+a_{13}\left(b_{2} a_{32}-b_{3} a_{22}\right)\right\} \tag{2.95}\\
C_{k}=\frac{b_{2}-a_{21} B_{k}-F_{k} a_{23}}{a_{22}} \\
F_{k}=\frac{b_{1}-a_{11} B_{k}}{a_{13}}
\end{array}\right.
$$

Since $D_{k}=G_{k}=0$, relation A_{28} becomes

$$
\begin{equation*}
P_{k}(x)=A_{k}\left\{\left(x^{2}+B_{k} x+C_{k}\right) P_{k-2}(x)+\left(E_{k} x^{2}+F_{k} x\right) P_{k-3}^{(1)}(x)\right\} . \tag{2.96}
\end{equation*}
$$

Therefore A_{28} can lead to a Lanczos-type algorithm.

2.3 Recursive Computation Between the FOPs for B_{i}

Now we consider recurrence relations of the type B_{j} for the choice $U_{i}(x)=x^{i}$. These formulae, when they exist, will be used in combination with formulae A_{i} to derive Lanczostype algorithms.

2.3.1 $\quad B_{17}$ for $U_{i}(x)=x^{i}$

Consider the following recurrence relationship for $k \geq 4$

$$
\begin{equation*}
P_{k}^{(1)}(x)=\left(A_{k}^{1} x^{4}+B_{k}^{1} x^{3}+C_{k}^{1} x^{2}+D_{k}^{1} x+E_{k}^{1}\right) P_{k-4}+\left(F_{k}^{1} x^{2}+G_{k}^{1} x+H_{k}^{1}\right) P_{k-2} \tag{2.97}
\end{equation*}
$$

where $P_{k}(x), P_{k-2}(x)$ and $P_{k-4}(x)$ are polynomials of degree $k, k-1$ and $k-4$ respectively. The constant coefficients $A_{k^{\prime}}^{1} B_{k^{\prime}}^{1} C_{k^{\prime}}^{1} D_{k^{\prime}}^{1} E_{k}^{1} F_{k}^{1} G_{k}^{1}$ and H_{k}^{1} are determined. After multiplying equation (2.97) by x^{i} and applying linear functional $c^{(1)}$ on both sides it becomes

$$
\begin{aligned}
c^{(1)}\left(x^{i} P_{k}\right)=A_{k}^{1} c\left(x^{i+5} P_{k-4}\right)+B_{k}^{1} c\left(x^{i+4} P_{k-4}\right) & +C_{k}^{1} c\left(x^{i+3} P_{k-4}\right)+D_{k}^{1} c\left(x^{i+2} P_{k-4}\right)+E_{k}^{1} c\left(x^{i+1} P_{k-4}\right) \\
& +F_{k}^{1} c\left(x^{i+3} P_{k-2}\right)+G_{k}^{1} c\left(x^{i+2} P_{k-2}\right)+H_{k}^{1} c\left(x^{i+1} P_{k-2}\right) .
\end{aligned}
$$

Consequently, by applying (2.2), we have the relation for $i=0,1, \ldots, k-1$.

$$
\begin{array}{r}
A_{k}^{1} c\left(x^{i+5} P_{k-4}\right)+B_{k}^{1} c\left(x^{i+4} P_{k-4}\right)+C_{k}^{1} c\left(x^{i+3} P_{k-4}\right)+D_{k}^{1} c\left(x^{i+2} P_{k-4}\right)+E_{k}^{1} c\left(x^{i+1} P_{k-4}\right)+F_{k}^{1} c\left(x^{i+3} P_{k-2}\right)+ \\
G_{k}^{1} c\left(x^{i+2} P_{k-2}\right)+H_{k}^{1} c\left(x^{i+1} P_{k-2}\right)=0 . \tag{2.98}
\end{array}
$$

For $i=0,1,2, \ldots, k-10$, the relation (2.98) is always true. Therefore for $i=k-9$, equation (2.98) gives

$$
A_{k}^{1} c\left(x^{k-4} P_{k-4}\right)=0 \Rightarrow c\left(x^{k-4} P_{k-4}\right) \neq 0, A_{k}^{1}=0
$$

For $i=k-8, i=k-7$, and $i=k-6$ equation (2.98) gives $B_{k}^{1}=0, C_{k}^{1}=0$ and $D_{k}^{1}=0$.
For $i=k-5, i=k-4, i=k-3, i=k-2$ and $i=k-1$, we get five equations to determine four unknown constant coefficients, $E_{k^{\prime}}^{1}, F_{k^{\prime}}^{1}, G_{k}^{1}$ and H_{k}^{1}. This shows that the obtained equations are over-determined, so a Lanczos-type algorithm based on B_{17} cannot be implemented.

2.3.2 $\quad B_{18}$ for $U_{i}(x)=x^{i}$

Consider the following recurrence relationship for $k \geq 4$,

$$
\begin{equation*}
P_{k}^{(1)}=\left(A_{k}^{1} x^{4}+B_{k}^{1} x^{3}+C_{k}^{1} x^{2}+D_{k}^{1} x+E_{k}^{1}\right) P_{k-4}+\left(F_{k}^{1} x^{3}+G_{k}^{1} x^{2}+H_{k}^{1} x+I_{k}^{1}\right) P_{k-3}, \tag{2.99}
\end{equation*}
$$

where $P_{k}^{(1)}(x), P_{k-3}(x)$ and $P_{k-4}(x)$ are polynomials of degree $k, k-3$ and $k-4$ respectively. The constant coefficients $A_{k^{\prime}}^{1} B_{k^{\prime}}^{1} C_{k^{\prime}}^{1}, D_{k^{\prime}}^{1}, E_{k^{\prime}}^{1}, F_{k^{\prime}}^{1}, G_{k}^{1}$ and H_{k}^{1} are determined. After multiplying equation (2.99) by x^{i} and applying linear functional $c^{(1)}$ on both sides it becomes

$$
\begin{align*}
c^{(1)}\left(x^{i} P_{k}\right)= & A_{k}^{1} c\left(x^{i+5} P_{k-4}\right)+B_{k}^{1} c\left(x^{i+4} P_{k-4}\right)+C_{k}^{1} c\left(x^{i+3} P_{k-4}\right)+D_{k}^{1} c\left(x^{i+2} P_{k-4}\right)+E_{k}^{1} c\left(x^{i+1} P_{k-4}\right) \\
& +F_{k}^{1} c\left(x^{i+4} P_{k-3}\right)+G_{k}^{1} c\left(x^{i+3} P_{k-3}\right)+H_{k}^{1} c\left(x^{i+2} P_{k-3}\right)+I_{k}^{1} c\left(x^{i+1} P_{k-3}\right) . \tag{2.100}
\end{align*}
$$

Consequently, by applying (2.2), we have the relation for $i=0,1, \ldots, k-1$

$$
\begin{array}{r}
A_{k}^{1} c\left(x^{i+5} P_{k-4}\right)+B_{k}^{1} c\left(x^{i+4} P_{k-4}\right)+C_{k}^{1} c\left(x^{i+3} P_{k-4}\right)+D_{k}^{1} c\left(x^{i+2} P_{k-4}\right)+E_{k}^{1} c\left(x^{i+1} P_{k-4}\right)+ \\
F_{k}^{1} c\left(x^{i+4} P_{k-3}\right)+G_{k}^{1} c\left(x^{i+3} P_{k-3}\right)+H_{k}^{1} c\left(x^{i+2} P_{k-3}\right)+I_{k}^{1} c\left(x^{i+1} P_{k-3}\right)=0 . \tag{2.101}
\end{array}
$$

The orthogonality condition is always true for $i=0,1,2, \ldots \ldots, k-10$. Therefore for $i=k-9$, equation (2.101) gives

$$
A_{k}^{1} c\left(x^{k-4} P_{k-4}\right)=0, \Rightarrow c\left(x^{k-4} P_{k-4}\right) \neq 0, A_{k}^{1}=0
$$

For $i=k-8$, equation (2.101) gives

$$
B_{k}^{1} c\left(x^{k-4} P_{k-4}\right)=0, \Rightarrow c\left(x^{k-4} P_{k-4}\right) \neq 0, B_{k}^{1}=0 .
$$

For $i=k-7$, equation (2.101) gives

$$
\begin{equation*}
C_{k}^{1} c\left(x^{k-4} P_{k-4}\right)+F_{k}^{1} c\left(x^{k-3} P_{k-3}\right)=0 \tag{2.102}
\end{equation*}
$$

For $i=k-6$, equation (2.101) gives

$$
\begin{equation*}
C_{k}^{1} c\left(x^{k-3} P_{k-4}\right)+D_{k}^{1} c\left(x^{k-4} P_{k-4}\right)+F_{k}^{1} c\left(x^{k-2} P_{k-3}\right)+G_{k}^{1} c\left(x^{k-3} P_{k-3}\right)=0 . \tag{2.103}
\end{equation*}
$$

For $i=k-5$, equation (2.101) gives

$$
\begin{array}{r}
C_{k}^{1} c\left(x^{k-2} P_{k-4}\right)+D_{k}^{1} c\left(x^{k-3} P_{k-4}\right)+E_{k}^{1} c\left(x^{k-4} P_{k-4}\right)+F_{k}^{1} c\left(x^{k-1} P_{k-3}\right)+G_{k}^{1} c\left(x^{k-2} P_{k-3}\right) \\
+H_{k}^{1} c\left(x^{k-3} P_{k-3}\right)=0 . \tag{2.104}
\end{array}
$$

For $i=k-4$, equation (2.101) gives

$$
\begin{align*}
& C_{k}^{1} c\left(x^{k-1} P_{k-4}\right)+D_{k}^{1} c\left(x^{k-2} P_{k-4}\right)+E_{k}^{1} c\left(x^{k-3} P_{k-4}\right)+F_{k}^{1} c\left(x^{k} P_{k-3}\right)+G_{k}^{1} c\left(x^{k-1} P_{k-3}\right) \\
&+ H_{k}^{1} c\left(x^{k-2} P_{k-3}\right)+I_{k}^{1} c\left(x^{k-3} P_{k-3}\right)=0 . \tag{2.105}
\end{align*}
$$

For $i=k-3$, equation (2.101) gives

$$
\begin{array}{r}
C_{k}^{1} c\left(x^{k} P_{k-4}\right)+D_{k}^{1} c\left(x^{k-1} P_{k-4}\right)+E_{k}^{1} c\left(x^{k-2} P_{k-4}\right)+F_{k}^{1} c\left(x^{k+1} P_{k-3}\right)+G_{k}^{1} c\left(x^{k} P_{k-3}\right) \\
+H_{k}^{1} c\left(x^{k-1} P_{k-3}\right)+I_{k}^{1} c\left(x^{k-2} P_{k-3}\right)=0 . \tag{2.106}
\end{array}
$$

For $i=k-2$, equation (2.101) gives

$$
\begin{align*}
C_{k}^{1} c\left(x^{k+1} P_{k-4}\right)+D_{k}^{1} c\left(x^{k} P_{k-4}\right)+E_{k}^{1} c\left(x^{k-1} P_{k-4}\right)+ & F_{k}^{1} c\left(x^{k+2} P_{k-3}\right)+G_{k}^{1} c\left(x^{k+1} P_{k-3}\right) \\
+ & H_{k}^{1} c\left(x^{k} P_{k-3}\right)+I_{k}^{1} c\left(x^{k-1} P_{k-3}\right)=0 \tag{2.107}
\end{align*}
$$

For $i=k-1$, equation (2.101) gives

$$
\begin{align*}
C_{k}^{1} c\left(x^{k+2} P_{k-4}\right)+D_{k}^{1} c\left(x^{k+1} P_{k-4}\right)+E_{k}^{1} c\left(x^{k} P_{k-4}\right)+ & F_{k}^{1} c\left(x^{k+3} P_{k-3}\right)+G_{k}^{1} c\left(x^{k+1} P_{k-3}\right) \\
+ & H_{k}^{1} c\left(x^{k+1} P_{k-3}\right)+I_{k}^{1} c\left(x^{k} P_{k-3}\right)=0 . \tag{2.108}
\end{align*}
$$

Since the above system of equations is homogenous. Its coefficient matrix is non-singular, we get $C_{k}^{1}=D_{k}^{1}=E_{k}^{1}=F_{k}^{1}=G_{k}^{1}=H_{k}^{1}=I_{k}^{1}=0$.

Hence the recurrence relation B_{18} becomes

$$
P_{k}^{(1)}=0 .
$$

Hence, a Lanczos-type algorithm based on B_{18} cannot be implemented.

2.3.3 $\quad B_{19}$ for $U_{i}(x)=x^{i}$

Consider the following recurrence relation for $k \geq 4$,

$$
\begin{equation*}
P_{k}^{(1)}(x)=\left(A_{k}^{1} x^{4}+B_{k}^{1} x^{3}+C_{k}^{1} x^{2}+D_{k}^{1} x+E_{k}^{1}\right) P_{k-4}^{(1)}+\left(F_{k}^{1} x^{3}+G_{k}^{1} x^{2}+H_{k}^{1} x+I_{k}^{1}\right) P_{k-3}^{(1)} . \tag{2.109}
\end{equation*}
$$

where $P_{k}^{(1)}, P_{k-3}^{(1)}$ and $P_{k-4}^{(1)}$ be the orthogonal polynomials of degree $k, k-3$ and $k-4$ respectively. The constant coefficients $A_{k^{\prime}}^{1}, B_{k^{\prime}}^{1}, C_{k^{\prime}}^{1} D_{k^{\prime}}^{1}, E_{k^{\prime}}^{1}, F_{k^{\prime}}^{1}, G_{k^{\prime}}^{1} H_{k}^{1}$ and I_{k}^{1} are to be determined. After multiplying equation (2.109) by x^{i} and applying $c^{(1)}$ on both sides it becomes

$$
\begin{aligned}
c^{(1)}\left(x^{i} P_{k}^{(1)}\right)= & A_{k}^{1} c^{(1)}\left(x^{i+4} P_{k-4}^{(1)}\right)+B_{k}^{1} c^{(1)}\left(x^{i+3} P_{k-4}^{(1)}\right)+C_{k}^{1} c^{(1)}\left(x^{i+2} P_{k-4}^{(1)}\right)+D_{k}^{1} c^{(1)}\left(x^{i+1} P_{k-4}^{(1)}\right)+ \\
& E_{k}^{1} c^{(1)}\left(x^{i} P_{k-4}^{(1)}\right)+F_{k}^{1} c^{(1)}\left(x^{i+3} P_{k-3}^{(1)}\right)+G_{k}^{1} c^{(1)}\left(x^{i+2} P_{k-3}^{(1)}\right)+H_{k}^{1} c^{(1)}\left(x^{i+1} P_{k-3}^{(1)}\right)+I_{k}^{1} c^{(1)}\left(x^{i} P_{k-3}^{(1)}\right) .
\end{aligned}
$$

Consequently, by applying (2.2), we have the relation for $i=0,1, \ldots, k-1$

$$
\begin{array}{r}
A_{k}^{1} c^{(1)}\left(x^{i+4} P_{k-4}^{(1)}\right)+B_{k}^{1} c^{(1)}\left(x^{i+3} P_{k-4}^{(1)}\right)+C_{k}^{1} c^{(1)}\left(x^{i+2} P_{k-4}^{(1)}\right)+D_{k}^{1} c^{(1)}\left(x^{i+1} P_{k-4}^{(1)}\right)+E_{k}^{1} c^{(1)}\left(x^{i} P_{k-4}^{(1)}\right)+ \\
F_{k}^{1} c^{(1)}\left(x^{i+3} P_{k-3}^{(1)}\right)+G_{k}^{1} c^{(1)}\left(x^{i+2} P_{k-3}^{(1)}\right)+H_{k}^{1} c^{(1)}\left(x^{i+1} P_{k-3}^{(1)}\right)+I_{k}^{1} c^{(1)}\left(x^{i} P_{k-3}^{(1)}\right)=0 . \tag{2.110}
\end{array}
$$

For $i=0,1,2, \ldots, k-9$, the relation (2.110) is always true.
Therefore, for $i=k-8$, equation (2.110) gives

$$
A_{k}^{1} c^{(1)}\left(x^{k-4} P_{k-4}^{(1)}\right)=0 \Rightarrow c^{(1)}\left(x^{k-4} P_{k-4}^{(1)}\right) \neq 0, A_{k}^{1}=0
$$

Since $P_{k}^{(1)}(x)$ is monic-polynomial of degree k, therefore, $F_{k}^{1}=1$.
For $i=k-7$, equation (2.110) gives

$$
B_{k}^{1} c^{(1)}\left(x^{k-4} P_{k-4}^{(1)}\right)=0 \Rightarrow c^{(1)}\left(x^{k-4} P_{k-4}^{(1)}\right) \neq 0, \quad B_{k}^{1}=0 .
$$

For $i=k-6$, equation (2.110) gives

$$
\begin{equation*}
C_{k}^{1}=-\frac{c\left(x^{k-2} P_{k-3}^{(1)}\right)}{c\left(x^{k-3} P_{k-4}^{(1)}\right)} . \tag{2.111}
\end{equation*}
$$

For $i=k-5$, equation (2.110) gives

$$
\begin{equation*}
D_{k}^{1} c^{(1)}\left(x^{k-4} P_{k-4}^{(1)}\right)+G_{k}^{1} c^{(1)}\left(x^{k-3} P_{k-3}^{(1)}\right)=-c^{(1)}\left(x^{k-2} P_{k-3}^{(1)}\right)-C_{k}^{1} c^{(1)}\left(x^{k-3} P_{k-4}^{(1)}\right) . \tag{2.112}
\end{equation*}
$$

For $i=k-4$, equation (2.110) gives

$$
\begin{align*}
D_{k}^{1} c^{(1)}\left(x^{k-3} P_{k-4}^{(1)}\right)+E_{k}^{1} c^{(1)}\left(x^{k-4} P_{k-4}^{(1)}\right) & +G_{k}^{1} c^{(1)}\left(x^{k-2} P_{k-3}^{(1)}\right)+H_{k}^{1} c^{(1)}\left(x^{k-3} P_{k-3}^{(1)}\right) \\
& =-c^{(1)}\left(x^{k-1} P_{k-3}^{(1)}\right)-C_{k}^{1} c^{(1)}\left(x^{k-2} P_{k-4}^{(1)}\right) . \tag{2.113}
\end{align*}
$$

For $i=k-3$, equation (2.110) gives

$$
\begin{align*}
D_{k}^{1} c^{(1)}\left(x^{k-2} P_{k-4}^{(1)}\right)+E_{k}^{1} c^{(1)}\left(x^{k-3} P_{k-4}^{(1)}\right)+G_{k}^{1} c^{(1)}\left(x^{k-1} P_{k-3}^{(1)}\right)+ & H_{k}^{1} c^{(1)}\left(x^{k-2} P_{k-3}^{(1)}\right)+I_{k}^{1} c^{(1)}\left(x^{k-3} P_{k-3}^{(1)}\right) \\
& =-c^{(1)}\left(x^{k} P_{k-3}^{(1)}\right)-C_{k}^{1} c^{(1)}\left(x^{k-1} P_{k-4}^{(1)}\right) . \tag{2.114}
\end{align*}
$$

For $i=k-2$, equation (2.110) gives

$$
\begin{align*}
D_{k}^{1} c^{(1)}\left(x^{k-1} P_{k-4}^{(1)}\right)+E_{k}^{1} c^{(1)}\left(x^{k-2} P_{k-4}^{(1)}\right)+G_{k}^{1} c^{(1)}\left(x^{k} P_{k-3}^{(1)}\right)+ & H_{k}^{1} c^{(1)}\left(x^{k-1} P_{k-3}^{(1)}\right)+I_{k}^{1} c^{(1)}\left(x^{k-2} P_{k-3}^{(1)}\right) \\
& =-c^{(1)}\left(x^{k+1} P_{k-3}^{(1)}\right)-C_{k}^{1} c^{(1)}\left(x^{k} P_{k-4}^{(1)}\right) . \tag{2.115}
\end{align*}
$$

For $i=k-1$, equation (2.110) gives

$$
\begin{align*}
D_{k}^{1} c^{(1)}\left(x^{k} P_{k-4}^{(1)}\right)+E_{k}^{1} c^{(1)}\left(x^{k-1} P_{k-4}^{(1)}\right)+G_{k}^{1} c^{(1)}\left(x^{k+1} P_{k-3}^{(1)}\right) & +H_{k}^{1} c^{(1)}\left(x^{k} P_{k-3}^{(1)}\right)+I_{k}^{1} c^{(1)}\left(x^{k-1} P_{k-3}^{(1)}\right) \\
& =-c^{(1)}\left(x^{k+2} P_{k-3}^{(1)}\right)-C_{k}^{1} c^{(1)}\left(x^{k+1} P_{k-4}^{(1)}\right) \tag{2.116}
\end{align*}
$$

Equations (2.112), (2.113), (2.114), (2.115) and (2.116) can be written as

$$
\left\{\begin{array}{l}
a_{11} D_{k}^{1}+a_{13} G_{k}^{1}=b_{1} \tag{2.117}\\
a_{21} D_{k}^{1}+a_{22} E_{k}^{1}+a_{23} G_{k}^{1}+a_{24} H_{k}^{1}=b_{2} \\
a_{31} D_{k}^{1}+a_{32} E_{k}^{1}+a_{33} G_{k}^{1}+a_{34} H_{k}^{1}+a_{35} I_{k}^{1}=b_{3} \\
a_{41} D_{k}^{1}+a_{42} E_{k}^{1}+a_{43} G_{k}^{1}+a_{44} H_{k}^{1}+a_{45} I_{k}^{1}=b_{4} \\
a_{51} D_{k}^{1}+a_{52} E_{k}^{1}+a_{53} G_{k}^{1}+a_{54} H_{k}^{1}+a_{55} I_{k}^{1}=b_{5}
\end{array}\right.
$$

Where $a_{11}, a_{13}, a_{21}, a_{22}, a_{23}, a_{24}, a_{31}, a_{32}, a_{33}, a_{34}, a_{35}, a_{41}, a_{42}, a_{43}, a_{44}, a_{45}, a_{51}, a_{52}, a_{53}, a_{54}$, and a_{55} are the coefficients of $D_{k^{\prime}}^{1}, E_{k^{\prime}}^{1}, G_{k^{\prime}}^{1} H_{k}^{1}$ and I_{k}^{1} respectively. Suppose $b_{1}, b_{2}, b_{3}, b_{4}$, and b_{5} are the corresponding right hand side terms of these equations. If Δ_{k} represents the determinant
of the coefficients matrix of (2.117) then we have,

$$
\begin{equation*}
\Delta_{k}=\operatorname{det}(L), \tag{2.118}
\end{equation*}
$$

where $L=\operatorname{matrix}\left(\left[l_{1}, l_{2}, l_{3}, l_{4}, l_{5}\right]\right)$,
$l_{1}=\left[a_{11}, 0, a_{13}, 0,0\right], l_{2}=\left[a_{21}, a_{22}, a_{23}, a_{24}, 0\right], l_{3}=\left[a_{31}, a_{32}, a_{33}, a_{34}, a_{35}\right]$,
$l_{4}=\left[a_{41}, a_{42}, a_{43}, a_{44}, a_{45}\right], l_{5}=\left[a_{51}, a_{52}, a_{53}, a_{54}, a_{55}\right]$.
If $\Delta_{k} \neq 0$, then

$$
\left\{\begin{array}{l}
D_{k}^{1}=\frac{\operatorname{det}(M)}{\Delta_{k}}, \quad \text { where } M=\operatorname{matrix}\left(\left[m_{1}, m_{2}, m_{3}, m_{4}, m_{5}\right]\right), \tag{2.119}\\
m_{1}=\left[b_{1}, 0, a_{13}, 0,0\right], m_{2}=\left[b_{2}, a_{22}, a_{23}, a_{24}, 0\right], m_{3}=\left[b_{3}, a_{32}, a_{33}, a_{34}, a_{35}\right], \\
m_{4}=\left[b_{4}, a_{42}, a_{43}, a_{44}, a_{45}\right], m_{5}=\left[b_{5}, a_{52}, a_{53}, a_{54}, a_{55}\right], \\
E_{k}^{1}=\frac{\operatorname{det}(N)}{\Delta_{k}}, \quad \text { where } N=\operatorname{matrix}\left(\left[n_{1}, n_{2}, n_{3}, n_{4}, n_{5}\right]\right), \\
n_{1}=\left[a_{11}, b_{1}, a_{13}, 0,0\right], n_{2}=\left[a_{21}, b_{2}, a_{23}, a_{24}, 0\right], n_{3}=\left[a_{31}, b_{3}, a_{33}, a_{34}, a_{35}\right], \\
n_{4}=\left[a_{41}, b_{4}, a_{43}, a_{44}, a_{45}\right], n_{5}=\left[a_{51}, b_{5}, a_{53}, a_{54}, a_{55}\right], \\
G_{k}^{1}=\frac{b_{1}-a_{11} D_{k}}{a_{13}}, \\
H_{k}^{1}=\frac{b_{2}-a_{21} D_{k}-a_{22} E_{k}-a_{23} G_{k}}{a_{24}}, \\
I_{k}^{1}=\frac{b_{3}-a_{31} D_{k}-a_{32} E_{k}-a_{33} G_{k}-a_{34} H_{k}}{a_{35}} .
\end{array}\right.
$$

Since $A_{k}^{1}=B_{k}^{1}=0$ and $F_{k}^{1}=1$, relation B_{19} becomes

$$
\begin{equation*}
\left.P_{k}^{(1)}(x)=\left\{C_{k}^{1} x^{2}+D_{k}^{1} x+E_{k}^{1}\right) P_{k-4}^{(1)}(x)+\left(x^{3}+G_{k}^{1} x^{2}+H_{k}^{1} x+I_{k}^{1}\right) P_{k-3}^{(1)}(x)\right\} . \tag{2.120}
\end{equation*}
$$

This means B_{19} can lead to the implementation of a Lanczos-type algorithm.

2.3.4 $\quad B_{20}$ for $U_{i}(x)=x^{i}$

Consider the following recurrence relationship for $k \geq 4$

$$
\begin{equation*}
P_{k}^{(1)}(x)=\left(A_{k} x^{4}+B_{k} x^{3}+C_{k} x^{2}+D_{k} x+E_{k}\right) P_{k-4}^{(1)}+\left(F_{k} x^{2}+G_{k} x+H_{k}\right) P_{k-2}, \tag{2.121}
\end{equation*}
$$

where $P_{k}^{(1)}, P_{k-2}$ and $P_{k-4}^{(1)}$ are polynomials of degree $k, k-2$ and $k-4$ respectively. The constant coefficients $A_{k}^{1}, B_{k}^{1}, C_{k}^{1}, D_{k}^{1}, E_{k}^{1} F_{k}^{1} G_{k}^{1}$ and H_{k}^{1} are determined. After multiplying
equation (2.121) by x^{i} and applying linear functional $c^{(1)}$ on both sides it becomes

$$
\begin{aligned}
c^{(1)}\left(x^{i} P_{k}\right)= & A_{k}^{1} c^{(1)}\left(x^{i+4} P_{k-4}^{(1)}\right)+B_{k}^{1} c^{(1)}\left(x^{i+3} P_{k-4}^{(1)}\right)+C_{k}^{1} c^{(1)}\left(x^{i+2} P_{k-4}^{(1)}\right)+D_{k}^{1} c^{(1)}\left(x^{i+1} P_{k-4}^{(1)}\right)+E_{k}^{1} c^{(1)}\left(x^{i} P_{k-4}^{(1)}\right) \\
& +F_{k}^{1} c\left(x^{i+3} P_{k-2}\right)+G_{k}^{1} c\left(x^{i+2} P_{k-2}\right)+H_{k}^{1} c\left(x^{i+1} P_{k-2}\right) .
\end{aligned}
$$

Consequently, by applying (2.2), we have the relation for $i=0,1, \ldots, k-1$

$$
\begin{align*}
A_{k}^{1} c^{(1)}\left(x^{i+4} P_{k-4}^{(1)}\right)+B_{k}^{1} c^{(1)}\left(x^{i+3} P_{k-4}^{(1)}\right) & +C_{k}^{1} c^{(1)}\left(x^{i+2} P_{k-4}^{(1)}\right)+D_{k}^{1} c^{(1)}\left(x^{i+1} P_{k-4}^{(1)}\right)+E_{k}^{1} c^{(1)}\left(x^{i} P_{k-4}^{(1)}\right) \\
& +F_{k}^{1} c\left(x^{i+3} P_{k-2}\right)+G_{k}^{1} c\left(x^{i+2} P_{k-2}\right)+H_{k}^{1} c\left(x^{i+1} P_{k-2}\right)=0 . \tag{2.122}
\end{align*}
$$

For $i=0,1,2, \ldots, k-9$, the relation (2.122) is always true. Therefore for $i=k-8$, equation (2.122) gives

$$
A_{k}^{1} c^{(1)}\left(x^{k-4} P_{k-4}^{(1)}\right)=0 \Rightarrow c^{(1)}\left(x^{k-4} P_{k-4}^{(1)}\right) \neq 0, A_{k}^{1}=0
$$

For $i=k-7, i=k-6$, equation (2.122) gives $B_{k}^{1}=0, C_{k}^{1}=0$ respectively. For $i=k-5$, $i=k-4, i=k-3, i=k-2$ and $i=k-1$. We get five homogenous equations and its coefficient matrix is non-singular, so we have $D_{k}^{1}=E_{k}^{1}=F_{k}^{1}=G_{k}^{1}=H_{k}^{1}=0$. This shows that the relation B_{20} defined above becomes

$$
P_{k}^{(1)}=0 .
$$

Hence, a Lanczos-type algorithm based on B_{20} cannot be implemented.

2.3.5 $\quad B_{21}$ for $U_{i}(x)=x^{i}$

Let $P_{k}^{(1)}, P_{k-3}$ and $P_{k-3}^{(1)}$ be the orthogonal polynomials of degree $k, k-3$ and $k-3$ respectively and consider the following recurrence relation for $k \geq 3$,

$$
\begin{equation*}
P_{k}^{(1)}(x)=\left(A_{k}^{1} x^{3}+B_{k}^{1} x^{2}+C_{k}^{1} x+D_{k}^{1}\right) P_{k-3}+\left(E_{k}^{1} x^{3}+F_{k}^{1} x^{2}+G_{k}^{1} x+H_{k}^{1}\right) P_{k-3^{\prime}}^{(1)} \tag{2.123}
\end{equation*}
$$

The constant coefficients $A_{k^{\prime}}^{1}, B_{k^{\prime}}^{1}, C_{k^{\prime}}^{1}, D_{k^{\prime}}^{1}, E_{k^{\prime}}^{1}, F_{k}^{1}$ and G_{k}^{1} are to be determined. After multi-
plying equation (2.123) by x^{i} and applying linear function $c^{(1)}$ on both sides it becomes

$$
\begin{aligned}
c^{(1)}\left(x^{i} P_{k}^{(1)}\right)= & A_{k}^{1} c^{(1)}\left(x^{i+3} P_{k-3}\right)+B_{k}^{1} c^{(1)}\left(x^{i+2} P_{k-3}\right)+C_{k}^{1} c^{(1)}\left(x^{i+1} P_{k-3}\right)+D_{k}^{1} c^{(1)}\left(x^{i} P_{k-3}\right)+ \\
& E_{k}^{1} c^{(1)}\left(x^{i+3} P_{k-3}^{(1)}\right)+F_{k}^{1} c^{(1)}\left(x^{i+2} P_{k-3}^{(1)}\right)+G_{k}^{1} c^{(1)}\left(x^{i+1} P_{k-3}^{(1)}\right)+H_{k}^{1} c^{(1)}\left(x^{i} P_{k-3}^{(1)}\right) .
\end{aligned}
$$

Consequently, by applying (2.2), we have the relation for $i=0,1, \ldots, k-1$

$$
\begin{array}{r}
A_{k}^{1} c\left(x^{i+4} P_{k-3}\right)+B_{k}^{1} c\left(x^{i+3} P_{k-3}\right)+C_{k}^{1} c\left(x^{i+2} P_{k-3}\right)+D_{k}^{1} c\left(x^{i+1} P_{k-3}\right)+E_{k}^{1} c^{(1)}\left(x^{i+2} P_{k-3}^{(1)}\right) \\
+F_{k}^{1} c^{(1)}\left(x^{i+1} P_{k-3}^{(1)}\right)+G_{k}^{1} c^{(1)}\left(x^{i} P_{k-3}^{(1)}\right)+H_{k}^{1} c\left(x^{i} P_{k-3}^{(1)}\right)=0 . \tag{2.124}
\end{array}
$$

For $i=0,1,2, \ldots, k-8$, the relation (2.124) is always true. Therefore for $i=k-7$, equation (2.124) gives, $A_{k}^{1} c\left(x^{k-3} P_{k-3}\right)=0 \Rightarrow c\left(x^{k-3} P_{k-3}\right) \neq 0, \quad A_{k}^{1}=0$. Since $P_{k}^{(1)}(x)$ is monic, therefore $E_{k}^{1}=1$. For $i=k-6$, equation (2.124) gives

$$
\begin{equation*}
B_{k}^{1}=-\frac{c\left(x^{k-2} P_{k-3}^{(1)}\right)}{c\left(x^{k-3} P_{k-3}\right)} . \tag{2.125}
\end{equation*}
$$

For $i=k-5$, equation (2.124) gives

$$
\begin{equation*}
C_{k}^{1} c\left(x^{k-3} P_{k-3}\right)+F_{k}^{1} c^{(1)}\left(x^{k-3} P_{k-3}^{(1)}\right)=-c^{(1)}\left(x^{k-2} P_{k-3}^{(1)}\right)-B_{k}^{1} c\left(x^{k-2} P_{k-3}\right) . \tag{2.126}
\end{equation*}
$$

For $i=k-4$, equation (2.124) gives

$$
\begin{equation*}
C_{k}^{1} c\left(x^{k-2} P_{k-3}\right)+D_{k}^{1} c\left(x^{k-3} P_{k-3}\right)+F_{k}^{1} c^{(1)}\left(x^{k-2} P_{k-3}^{(1)}\right)+G_{k}^{1} c^{(1)}\left(x^{k-3} P_{k-3}^{(1)}\right)=-c^{(1)}\left(x^{k-1} P_{k-3}^{(1)}\right)-B_{k}^{1} c\left(x^{k-1} P_{k-3}\right) . \tag{2.127}
\end{equation*}
$$

For $i=k-3$, equation (2.124) gives

$$
\begin{array}{r}
C_{k}^{1} c\left(x^{k-1} P_{k-3}\right)+D_{k}^{1} c\left(x^{k-2} P_{k-3}\right)+F_{k}^{1} c^{(1)}\left(x^{k-1} P_{k-3}^{(1)}\right)+G_{k}^{1} c^{(1)}\left(x^{k-2} P_{k-3}^{(1)}\right)+H_{k}^{1} c^{(1)}\left(x^{k-3} P_{k-3}^{(1)}\right) \\
=-c^{(1)}\left(x^{k} P_{k-3}^{(1)}\right)-B_{k}^{1} c\left(x^{k} P_{k-3}\right) . \tag{2.128}
\end{array}
$$

For $i=k-2$, equation (2.124) gives

$$
\begin{align*}
C_{k}^{1} c\left(x^{k} P_{k-3}\right)+D_{k}^{1} c\left(x^{k-1} P_{k-3}\right)+F_{k}^{1} c^{(1)}\left(x^{k} P_{k-3}^{(1)}\right)+ & G_{k}^{1} c^{(1)}\left(x^{k-1} P_{k-3}^{(1)}\right)+H_{k}^{1} c^{(1)}\left(x^{k-2} P_{k-3}^{(1)}\right) \\
& =-c^{(1)}\left(x^{k+1} P_{k-3}^{(1)}\right)-B_{k}^{1} c\left(x^{k+1} P_{k-3}\right) . \tag{2.129}
\end{align*}
$$

For $i=k-1$, equation (2.124) gives

$$
\begin{align*}
C_{k}^{1} c\left(x^{k+1} P_{k-3}\right)+D_{k}^{1} c\left(x^{k} P_{k-3}\right)+F_{k}^{1} c^{(1)}\left(x^{k+1} P_{k-3}^{(1)}\right) & +G_{k}^{1} c^{(1)}\left(x^{k} P_{k-3}^{(1)}\right)+H_{k}^{1} c^{(1)}\left(x^{k-1} P_{k-3}^{(1)}\right) \\
& =-c^{(1)}\left(x^{k+2} P_{k-3}^{(1)}\right)-B_{k}^{1} c\left(x^{k+2} P_{k-3}\right) . \tag{2.130}
\end{align*}
$$

Equations (2.126), (2.127), (2.128), (2.129) and (2.130) can be written as

$$
\left\{\begin{array}{l}
a_{11} C_{k}^{1}+a_{13} F_{k}^{1}=b_{1} \tag{2.131}\\
a_{21} C_{k}^{1}+a_{22} D_{k}^{1}+a_{23} F_{k}^{1}+a_{24} G_{k}^{1}=b_{2} \\
a_{31} C_{k}^{1}+a_{32} D_{k}^{1}+a_{33} F_{k}^{1}+a_{34} G_{k}^{1}+H_{k}^{1} a_{35}=b_{3} \\
a_{41} C_{k}^{1}+a_{42} D_{k}^{1}+a_{43} F_{k}^{1}+a_{44} G_{k}^{1}+H_{k}^{1} a_{45}=b_{4} \\
a_{51} C_{k}^{1}+a_{52} D_{k}^{1}+a_{53} F_{k}^{1}+a_{54} G_{k}^{1}+H_{k}^{1} a_{55}=b_{5}
\end{array}\right.
$$

Where $a_{11}, a_{13}, a_{21}, a_{22}, a_{23}, a_{24}, a_{31}, a_{32}, a_{33}, a_{34}, a_{35}, a_{41}, a_{42}, a_{43}, a_{44}, a_{45}, a_{51}, a_{52}, a_{53}, a_{54}$, and a_{55} are the coefficients of $C_{k^{\prime}}^{1} D_{k^{\prime}}^{1} F_{k^{\prime}}^{1}, G_{k}^{1}$ and H_{k}^{1} respectively. Suppose $b_{1}, b_{2}, b_{3}, b_{4}$, and b_{5} are the corresponding right hand side terms of these equations. If Δ_{k} represents the determinant of the coefficients matrix of (2.131). From (2.118), if $\Delta_{k} \neq 0$, then

$$
\left\{\begin{array}{l}
C_{k}^{1}=D_{k}^{1} \text { as in }(2.119), \tag{2.132}\\
D_{k}^{1}=E_{k}^{1} \text { as in }(2.119), \\
F_{k}^{1}=\frac{b_{1}-a_{11} C_{k}^{1}}{a_{13}}, \\
G_{k}^{1}=-\frac{b_{2}-a_{21} C_{k}^{1}-a_{22} D_{k}^{1}-a_{23} F_{k}^{1}}{a_{24}}, \\
H_{k}^{1}=\frac{b_{3}-a_{31} C_{k}^{1}-a_{32} D_{k}^{1}-a_{33} F_{k}^{1}-a_{34} G_{k}^{1}}{a_{35}}
\end{array}\right.
$$

Since $A_{k}^{1}=0$ and $E_{k}^{1}=1$, relation B_{21} becomes

$$
\begin{equation*}
\left.P_{k}^{(1)}(x)=\left\{B_{k}^{1} x^{2}+C_{k}^{1} x+D_{k}^{1}\right) P_{k-3}(x)+\left(x^{3}+F_{k}^{1} x^{2}+G_{k}^{1} x+H_{k}^{1}\right) P_{k-3}^{(1)}(x)\right\} . \tag{2.133}
\end{equation*}
$$

Therefore, B_{21} leads to a Lanczos-type algorithm.

2.4 Design of Lanczos-type Algorithms

In sections 2.2 and 2.3, we derived some new FOPs based recurrence relations. Here, we will derive new variants of the Lanczos algorithm based on these relations. By writing $\mathbf{r}_{k}=P_{k}(A) \mathbf{r}_{0}=\mathbf{b}-A \mathbf{x}_{k}$ and $\mathbf{z}_{k}=P_{k}^{(1)}(A) \mathbf{r}_{0}$, the relations A_{i} allow to derive expressions for \mathbf{r}_{k} and \mathbf{x}_{k}, and the relations B_{j} allow to find the expression of \mathbf{z}_{k}, recursively. Hence, new Lanczos-type algorithms are introduced.

2.4.1 Lanczos-type Algorithm Based on A_{20}

From the recurrence relation A_{20} of subsection 2.2.1, the equation (2.16), after replacing x by A. Since $\mathbf{r}_{k}=P_{k}(A) \mathbf{r}_{0}$, we have

$$
\begin{equation*}
\mathbf{r}_{k}=A_{k}\left\{\left(A^{3}+B_{k} A^{2}+C_{k} A+D_{k}\right) \mathbf{r}_{k-3}+\left(G_{k} A^{2}+H_{k} A+I_{k}\right) \mathbf{r}_{k-4}\right\} . \tag{2.134}
\end{equation*}
$$

Using $\mathbf{r}_{k}=b-A \mathbf{x}_{k}$, we get

$$
\begin{equation*}
\mathbf{x}_{k}=A_{k}\left\{I_{k} \mathbf{x}_{k-4}+D_{k} \mathbf{x}_{k-3}-\left(A^{2}+B_{k} A+C_{k}\right) \mathbf{r}_{k-3}-\left(G_{k} A+H_{k}\right) \mathbf{r}_{k-4}\right\} . \tag{2.135}
\end{equation*}
$$

Equations (2.134) and (2.135) define a Lanczos-type algorithm. Now, we have to find the expressions of the coefficients $A_{k}, B_{k}, C_{k}, D_{k}, G_{k}, H_{k}$ and I_{k} appearing in them, have been derived in subsection (2.2.1). We know that

$$
\left\{\begin{array}{l}
c\left(x^{k} P_{k}\right)=\left(\left(A^{T}\right)^{k} \mathbf{y}, P_{k}(A) \mathbf{r}_{0}\right)=\left(\mathbf{y}_{k^{\prime}} \mathbf{r}_{k}\right) \tag{2.136}\\
\text { with } \mathbf{y}_{k}=A^{T} \mathbf{y}_{k-1}
\end{array}\right.
$$

Therefore, we can write using Eq (2.136) we get

$$
\begin{equation*}
G_{k}=-\frac{\left(\mathbf{y}_{k-3}, \mathbf{r}_{k-3}\right)}{\left(\mathbf{y}_{k-4}, \mathbf{r}_{k-4}\right)} . \tag{2.137}
\end{equation*}
$$

The rest of the coefficents can be written explicitly as follows;
$a_{11}=\left(\mathbf{y}_{k-3}, \mathbf{r}_{k-3}\right), a_{14}=\left(\mathbf{y}_{k-4}, \mathbf{r}_{k-4}\right), a_{21}=\left(\mathbf{y}_{k-2}, \mathbf{r}_{k-3}\right), a_{22}=a_{11}, a_{24}=\left(\mathbf{y}_{k-3}, \mathbf{r}_{k-4}\right), a_{25}=a_{14}$,
$a_{31}=\left(\mathbf{y}_{k-1}, \mathbf{r}_{k-3}\right), a_{32}=a_{21}, a_{33}=a_{11}, a_{34}=\left(\mathbf{y}_{k-2}, \mathbf{r}_{k-4}\right), a_{35}=a_{24}, a_{41}=\left(\mathbf{y}_{k}, \mathbf{r}_{k-3}\right), a_{42}=a_{31}$,
$a_{43}=a_{21}, a_{44}=\left(\mathbf{y}_{k-1}, \mathbf{r}_{k-4}\right), a_{45}=a_{34}, a_{51}=\left(\mathbf{y}_{k+1}, \mathbf{r}_{k-3}\right), a_{52}=a_{41}, a_{53}=a_{31}, a_{54}=\left(\mathbf{y}_{k}, \mathbf{r}_{k-4}\right)$,
$a_{55}=a_{44}$.
Using these relations we get
$b_{1}=-\left(\mathbf{y}_{k-2}, \mathbf{r}_{k-3}\right)-G_{k}\left(\mathbf{y}_{k-3}, \mathbf{r}_{k-4}\right)=-a_{21}-G_{k} a_{24}$,
$b_{2}=-\left(\mathbf{y}_{k-1}, \mathbf{r}_{k-3}\right)-G_{k}\left(\mathbf{y}_{k-2}, \mathbf{r}_{k-4}\right)=-a_{31}-G_{k} a_{34}$,
$b_{3}=-\left(\mathbf{y}_{k^{\prime}}, \mathbf{r}_{k-3}\right)-G_{k}\left(\mathbf{y}_{k-1}, \mathbf{r}_{k-4}\right)=-a_{41}-G_{k} a_{44}$,
$b_{4}=-\left(\mathbf{y}_{k+1}, \mathbf{r}_{k-3}\right)-G_{k}\left(\mathbf{y}_{k}, \mathbf{r}_{k-4}\right)=-a_{51}-G_{k} a_{54}$,
$b_{5}=-c\left(x^{k+2} P_{k-3}\right)-G_{k} c\left(x^{k+1} P_{k-4}\right)=-s-G_{k} t$,
where $s=c\left(x^{k+2} P_{k-3}\right)=\left(\mathbf{y}_{k+2}, \mathbf{r}_{k-3}\right), \quad t=c\left(x^{k+1} P_{k-4}\right)=\left(\mathbf{y}_{k+1}, \mathbf{r}_{k-4}\right)$.
Since all previous formulae are valid for $k \geq 4$, therefor we need $\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}, \mathbf{x}_{1}, \mathbf{x}_{2}$ and \mathbf{x}_{3}, which are necessary to evaluate (2.134) and (2.135) recursively, which are below.

Since $\mathbf{r}_{k}=P_{k}(A) \mathbf{r}_{0}$, therefore, we can write using (1.11), we get

$$
\left\{\begin{array}{l}
\mathbf{r}_{1}=\mathbf{r}_{0}-\frac{c_{0}}{c_{1}} A \mathbf{r}_{0} \tag{2.138}\\
\mathbf{x}_{1}=\mathbf{x}_{0}+\frac{c_{0}}{c_{1}} \mathbf{r}_{0}
\end{array}\right.
$$

Where $c_{i}=\left(\mathbf{y}, A^{i} \mathbf{r}_{0}\right)$. Again using (1.11), we get

$$
\left\{\begin{array}{l}
\mathbf{r}_{2}=\mathbf{r}_{0}-\alpha A \mathbf{r}_{0}+\beta A^{2} \mathbf{r}_{0} \tag{2.139}\\
\mathbf{x}_{2}=\mathbf{x}_{0}+\alpha \mathbf{r}_{0}-\beta A \mathbf{r}_{0}
\end{array}\right.
$$

with $\alpha=\frac{c_{0} c_{3}-c_{1} c_{2}}{\rho}, \quad \beta=\frac{c_{0} c_{2}-c_{1}^{2}}{\rho}$ and $\rho=c_{1} c_{3}-c_{2}^{2}$.
Again using (1.11), we get

$$
\left\{\begin{array}{l}
\mathbf{r}_{3}=\mathbf{r}_{0}-\eta A \mathbf{r}_{0}+\mu A^{2} \mathbf{r}_{0}-v A^{3} \mathbf{r}_{0} \tag{2.140}\\
\mathbf{x}_{3}=\mathbf{x}_{0}+\eta \mathbf{r}_{0}-\mu A \mathbf{r}_{0}+v A^{2} \mathbf{r}_{0}
\end{array}\right.
$$

Where

$$
\begin{aligned}
& \eta=\frac{c_{0}\left(c_{3} c_{5}-c_{4}^{2}\right)-c_{2}\left(c_{1} c_{5}-c_{2} c_{4}\right)+c_{3}\left(c_{1} c_{4}-c_{2} c_{3}\right)}{\omega}, \\
& \mu=\frac{c_{0}\left(c_{2} c_{5}-c_{3} c_{4}\right)-c_{1}\left(c_{1} c_{5}-c_{2} c_{4}\right)+c_{3}\left(c_{1} c_{3}-c_{2}^{2}\right)}{\omega}
\end{aligned}
$$

$$
v=\frac{c_{0}\left(c_{2} c_{4}-c_{3}^{2}\right)-c_{1}\left(c_{1} c_{4}-c_{2} c_{3}\right)+c_{2}\left(c_{1} c_{3}-c_{2}^{2}\right)}{\omega}
$$

with $\omega=c_{1}\left(c_{3} c_{5}-c_{4}^{2}\right)-c_{2}\left(c_{2} c_{5}-c_{3} c_{4}\right)+c_{3}\left(c_{2} c_{4}-c_{3}^{2}\right)$.
We finally have the following algorithm after gathering together all these formulae.
Algorithm 1 Lanczos-type Algorithm based on relation A_{20}
Input: A an $n \times n$ matrix, \mathbf{b} an n-vector.
Output: the approximations solution, \mathbf{x}_{k}, norm of the residual, $\left\|\mathbf{r}_{k}\right\|$.
Initializations: Choose \mathbf{x}_{0} and \mathbf{y}, such that $\mathbf{y} \neq 0$ and the tolerance ε to $1.0 E-13$.
Set: $\mathbf{r}_{0}=\mathbf{b}-A \mathbf{x}_{0}, \mathbf{y}_{0}=\mathbf{y}$.

Compute:

$c_{0}, c_{1}, c_{2}, c_{3}, c_{4}$ and c_{5} as in (1.23b).
$\mathbf{r}_{1}, \mathbf{x}_{1}, \mathbf{r}_{2}, \mathbf{x}_{2}, \mathbf{r}_{3}$ and \mathbf{x}_{3} as in (2.138), (2.139) and (2.140).
$\mathbf{y}_{1}, \mathbf{y}_{2}, \mathbf{y}_{3}, \mathbf{y}_{4}, \mathbf{y}_{5}$ with $\mathbf{y}_{k}=A^{T} \mathbf{y}_{k-1}$.
$k=4$,
While $\left\|\mathbf{r}_{k}\right\|>\varepsilon$ do
$\mathbf{y}_{k+2}=A^{T} \mathbf{y}_{k+1}$,
A_{k}, as in (2.4),
$B_{k}, C_{k}, D_{k}, H_{k}$ and I_{k}, as in (2.15);
G_{k}, as in (2.137).
$\mathbf{r}_{k}=A_{k}\left\{\left(A^{3}+B_{k} A^{2}+C_{k} A+D_{k}\right) \mathbf{r}_{k-3}+\left(G_{k} A^{2}+H_{k} A+I_{k}\right) \mathbf{r}_{k-4}\right\}$,
$\mathbf{x}_{k}=A_{k}\left\{I_{k} \mathbf{x}_{k-4}+D_{k} \mathbf{x}_{k-3}-\left(A^{2}+B_{k} A+C_{k}\right) \mathbf{r}_{k-3}-\left(G_{k} A+H_{k}\right) \mathbf{r}_{k-4}\right\}$.
$k=k+1$,

EndWhile

Obtain the approximate solution as well as the residual norm;
$\mathrm{sol}_{\text {last }}=\mathbf{x}_{k}$,
norm $_{\text {last }}=\left\|\mathbf{r}_{k}\right\|$.

Stop.

2.4.2 Lanczos-type Algorithm Based on A_{22} / B_{19}

From recurrence relation A_{22} of subsection 2.2.3, the equation (2.33), after replacing x by A.
Since $\mathbf{r}_{k}=P_{k}(A) \mathbf{r}_{0}$, we have

$$
\begin{equation*}
\mathbf{r}_{k}=\mathbf{r}_{k-3}+A_{k}\left\{\left(A^{3}+B_{k} A^{2}+C_{k} A\right) \mathbf{r}_{k-3}+\left(F_{k} A^{3}+G_{k} A^{2}+H_{k} A\right) \mathbf{z}_{k-4}\right\} . \tag{2.141}
\end{equation*}
$$

$\because A_{k} D_{k}=1$. Using $\mathbf{r}_{k}=\mathbf{b}-A \mathbf{x}_{k}$, we get

$$
\begin{equation*}
\mathbf{x}_{k}=\mathbf{x}_{k-3}-A_{k}\left\{\left(A^{2}+B_{k} A+C_{k}\right) \mathbf{r}_{k-3}+\left(F_{k} A^{2}+G_{k} A+H_{k}\right) \mathbf{z}_{k-4}\right\} . \tag{2.142}
\end{equation*}
$$

Equations (2.141) and (2.142) define a Lanczos-type algorithm. Now, we have to find the expressions of the coefficients $A_{k}, B_{k}, C_{k}, D_{k}, F_{k}, G_{k}$, and H_{k} appearing in them, have been derived in subsection 2.2.3. Therefore, we can write using Eq (2.136) we get

$$
\begin{equation*}
F_{k}=-\frac{\left(\mathbf{y}_{k-3}, \mathbf{r}_{k-3}\right)}{\left(\mathbf{y}_{k-3}, \mathbf{z}_{k-4}\right)} . \tag{2.143}
\end{equation*}
$$

The rest of the coefficents can be written explicitly as follow;
$a_{11}=\left(\mathbf{y}_{k-3}, \mathbf{r}_{k-3}\right), a_{14}=\left(\mathbf{y}_{k-3}, \mathbf{z}_{k-4}\right), a_{21}=\left(\mathbf{y}_{k-2}, \mathbf{r}_{k-3}\right), a_{22}=a_{11}, a_{24}=\left(\mathbf{y}_{k-2}, \mathbf{z}_{k-4}\right), a_{25}=a_{14}$,
$a_{31}=\left(\mathbf{y}_{k-1}, \mathbf{r}_{k-3}\right), a_{32}=a_{21}, a_{33}=a_{11}, a_{34}=\left(\mathbf{y}_{k-1}, \mathbf{z}_{k-4}\right), a_{35}=a_{24}, a_{41}=\left(\mathbf{y}_{k}, \mathbf{r}_{k-3}\right), a_{42}=a_{31}$,
$a_{43}=a_{21}, a_{44}=\left(\mathbf{y}_{k}, \mathbf{z}_{k-4}\right), a_{45}=a_{34}, a_{51}=\left(\mathbf{y}_{k+1}, \mathbf{r}_{k-3}\right), a_{52}=a_{41}, a_{53}=a_{31}, a_{54}=\left(\mathbf{y}_{k+1}, \mathbf{z}_{k-4}\right)$,
$a_{55}=a_{44}$,
Using these relations we get
$b_{1}=-\left(\mathbf{y}_{k-2}, \mathbf{r}_{k-3}\right)-F_{k}\left(\mathbf{y}_{k-2}, \mathbf{z}_{k-4}\right)=-a_{21}-F_{k} a_{24}, \quad b_{2}=-\left(\mathbf{y}_{k-1}, \mathbf{r}_{k-3}\right)-F_{k}\left(\mathbf{y}_{k-1}, \mathbf{z}_{k-4}\right)=-a_{31}-F_{k} a_{34}$,
$b_{3}=-\left(\mathbf{y}_{k}, \mathbf{r}_{k-3}\right)-F_{k}\left(\mathbf{y}_{k}, \mathbf{z}_{k-4}\right)=-a_{41}-F_{k} a_{44}, \quad b_{4}=-\left(\mathbf{y}_{k+1}, \mathbf{r}_{k-3}\right)-F_{k}\left(\mathbf{y}_{k+1}, \mathbf{z}_{k-4}\right)=a_{51}-F_{k} a_{54}$,
$b_{5}=-c\left(x^{k+2} P_{k-3}\right)-F_{k} c^{(1)}\left(x^{k+1} P_{k-4}^{(1)}\right)=-s-F_{k} t$,
$s=c\left(x^{k+2} P_{k-3}\right)=\left(\mathbf{y}_{k+2}, \mathbf{r}_{k-3}\right), \quad t=c^{(1)}\left(x^{k+1} P_{k-4}^{(1)}\right)=\left(\mathbf{y}_{k+2}, \mathbf{z}_{k-4}\right)$
All previous formulae are valid for $k \geq 4$, therefor we need $\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}, \mathbf{x}_{1}, \mathbf{x}_{2}$ and \mathbf{x}_{3}, which are necessary to evaluate (2.141) and (2.142) recursively, which can be computed by equations (2.138), (2.139) and (2.140) respectively.

From recurrence relation B_{19} of subsection 2.3.3, the equation (2.120), after replacing x by A. Since $\mathbf{z}_{k}=P_{k}^{(1)}(A) \mathbf{r}_{0}$, we have

$$
\begin{equation*}
\mathbf{z}_{k}=\left(C_{k}^{1} A^{2}+D_{k}^{1} A+E_{k}^{1}\right) \mathbf{z}_{k-4}+\left(A^{3}+G_{k}^{1} A^{2}+H_{k}^{1} A+I_{k}^{1}\right) \mathbf{z}_{k-3} . \tag{2.144}
\end{equation*}
$$

Now, we have to find the expressions of the coefficients $C_{k}^{1}, D_{k^{\prime}}^{1}, E_{k}^{1}, G_{k}^{1}, H_{k}^{1}$ and I_{k}^{1} appearing in them, have been derived in subsection 2.3.3. Therefore, we can write using Eq (2.136) we get

$$
\begin{equation*}
C_{k}^{1}=-\frac{\left(\mathbf{y}_{k-2}, \mathbf{z}_{k-3}\right)}{\left(\mathbf{y}_{k-3}, \mathbf{z}_{k-4}\right)} \tag{2.145}
\end{equation*}
$$

The rest of the coefficents can be written explicitly as follow;
$a_{11}=\left(\mathbf{y}_{k-3}, \mathbf{z}_{k-4}\right), \quad a_{13}=\left(\mathbf{y}_{k-2}, \mathbf{z}_{k-3}\right), \quad a_{21}=\left(\mathbf{y}_{k-2}, \mathbf{z}_{k-4}\right), \quad a_{22}=a_{11}, \quad a_{23}=\left(\mathbf{y}_{k-1}, \mathbf{z}_{k-3}\right), \quad a_{24}=a_{13}$,
$a_{31}=\left(\mathbf{y}_{k-1}, \mathbf{z}_{k-4}\right), \quad a_{32}=a_{21}, a_{33}=\left(\mathbf{y}_{k}, \mathbf{z}_{k-3}\right), a_{34}=a_{23}, a_{35}=a_{13}, a_{41}=\left(\mathbf{y}_{k}, \mathbf{z}_{k-4}\right), \quad a_{42}=a_{31}$,
$a_{43}=\left(\mathbf{y}_{k+1}, \mathbf{z}_{k-3}\right), a_{44}=a_{33}, a_{45}=a_{23}, \quad a_{51}=\left(\mathbf{y}_{k+1}, \mathbf{z}_{k-4}\right), a_{52}=a_{41}, \quad a_{53}=\left(\mathbf{y}_{k+2}, \mathbf{z}_{k-3}\right)$,
$a_{54}=a_{43}, \quad a_{55}=a_{33}$,
Using these relations we get
$b_{1}=-\left(\mathbf{y}_{k-1}, \mathbf{z}_{k-3}\right)-C_{k}^{1}\left(\mathbf{y}_{k-2}, \mathbf{z}_{k-4}\right)=-a_{23}-C_{k}^{1} a_{21}, \quad b_{2}=-\left(\mathbf{y}_{k}, \mathbf{z}_{k-3}\right)-C_{k}^{1}\left(\mathbf{y}_{k-1}, \mathbf{z}_{k-4}\right)=-a_{33}-C_{k}^{1} a_{31}$,
$b_{3}=-\left(\mathbf{y}_{k+1}, \mathbf{z}_{k-3}\right)-C_{k}^{1}\left(\mathbf{y}_{k^{\prime}} \mathbf{z}_{k-4}\right)=-a_{43}-C_{k}^{1} a_{41}, \quad b_{4}=-\left(\mathbf{y}_{k+2}, \mathbf{z}_{k-3}\right)-C_{k}^{1}\left(\mathbf{y}_{k+1}, \mathbf{z}_{k-4}\right)=-a_{53}-C_{k}^{1} a_{51}$,
$b_{5}=-c^{(1)}\left(x^{k+2} P_{k-3}^{(1)}\right)-C_{k}^{1} c^{(1)}\left(x^{k+1} P_{k-4}^{(1)}\right)=-s-C_{k}^{1} t$
where $s=\left(\mathbf{y}_{k+3}, \mathbf{z}_{k-3}\right)$ and $t=\left(\mathbf{y}_{k+2}, \mathbf{z}_{k-4}\right)$ If $\Delta_{k}=0$, then there is ghost-breakdown, [12,18]. For $k \geq 4$, all above formulae are valid. This means that we have to find $\mathbf{z}_{1}, \mathbf{z}_{2}$ and \mathbf{z}_{3} by alternative ways. Since $\mathbf{z}_{k}=P_{k}^{(1)} \mathbf{r}_{0}$, therefore, we can write using (1.16), we get

$$
\begin{equation*}
\mathbf{z}_{1}=A \mathbf{r}_{0}-\frac{c_{2}}{c_{1}} \mathbf{r}_{0} . \tag{2.146}
\end{equation*}
$$

Again from (1.16), we have

$$
\begin{equation*}
\mathbf{z}_{2}=A^{2} \mathbf{r}_{0}-\mu A \mathbf{r}_{0}+v \mathbf{r}_{0} \tag{2.147}
\end{equation*}
$$

where $\mu=\frac{c_{1} c_{4}-c_{2} c_{3}}{\rho}, \quad v=\frac{c_{2} c_{4}-c_{3}^{2}}{\rho}$ with $\rho=c_{1} c_{3}-c_{2}^{2}$.
Similarly we have

$$
\begin{equation*}
\mathbf{z}_{3}=A^{3} \mathbf{r}_{0}-\eta^{\prime} A^{2} \mathbf{r}_{0}+\mu^{\prime} A \mathbf{r}_{0}-v^{\prime} \mathbf{r}_{0} \tag{2.148}
\end{equation*}
$$

where

$$
\begin{aligned}
& \eta^{\prime}=\frac{c_{1}\left(c_{3} c_{6}-c_{4} c_{5}\right)-c_{2}\left(c_{2} c_{6}-c_{3} c_{5}\right)+c_{4}\left(c_{2} c_{4}-c_{3}^{2}\right)}{\rho^{\prime}} \\
& \mu^{\prime}=\frac{c_{1}\left(c_{4} c_{6}-c_{5}^{2}\right)-c_{3}\left(c_{2} c_{6}-c_{3} c_{5}\right)+c_{4}\left(c_{2} c_{5}-c_{4} c_{3}\right)}{\rho^{\prime}}, \\
& v^{\prime}=\frac{c_{2}\left(c_{4} c_{6}-c_{5}^{2}\right)-c_{3}\left(c_{3} c_{6}-c_{4} c_{5}\right)+c_{4}\left(c_{3} c_{5}-c_{4}^{2}\right)}{\rho^{\prime}} .
\end{aligned}
$$

with $\rho^{\prime}=c_{1}\left(c_{3} c_{5}-c_{4}^{2}\right)-c_{2}\left(c_{2} c_{5}-c_{3} c_{4}\right)+c_{3}\left(c_{2} c_{4}-c_{3}^{2}\right)$.
We finally have the following algorithm after gathering together all these formulae.
Algorithm 2 Lanczos-type Algorithm based on relations A_{22} / B_{19}
Input: A an $n \times n$ matrix, \mathbf{b} an n-vector.
Output: the approximations solution, \mathbf{x}_{k}, norm of the residual, $\left\|\mathbf{r}_{k}\right\|$.
Initializations: Choose \mathbf{x}_{0} and \mathbf{y}, such that $\mathbf{y} \neq 0$ and the tolerance ε to $1.0 E-13$.

$$
\text { Set } \mathbf{r}_{0}=\mathbf{b}-A \mathbf{x}_{0} ; \quad \mathbf{y}_{0}=\mathbf{y} ; \quad \mathbf{z}_{0}=\mathbf{r}_{0} \text {. }
$$

Compute:

$c_{0}, c_{1}, c_{2}, c_{3}, c_{4}$ and c_{5}; as in (1.23b).
$\mathbf{r}_{1}, \mathbf{x}_{1}, \mathbf{r}_{2}, \mathbf{x}_{2}, \mathbf{r}_{3}$ and \mathbf{x}_{3} as in (2.138), (2.139) and (2.140).
$\mathbf{z}_{1}, \mathbf{z}_{2}$, and \mathbf{z}_{3}, as in (2.146), (2.147) and (2.148).
$\mathbf{y}_{1}, \mathbf{y}_{2}, \mathbf{y}_{3}, \mathbf{y}_{4}$ with $\mathbf{y}_{k}=A^{T} \mathbf{y}_{k-1}$.
$k=3$;
While $\left\|\mathbf{r}_{k}\right\|>\varepsilon$ do
$\mathbf{y}_{k+2}=A^{T} \mathbf{y}_{k+1}$.
A_{k}, as in (2.24),
$B_{k}, C_{k}, D_{k}, G_{k}$, and H_{k}, as in (2.32);
F_{k} as in (2.143).
$\mathbf{r}_{k}=\mathbf{r}_{K-3}+A_{k}\left\{\left(A^{3}+B_{k} A^{2}+C_{k} A\right) \mathbf{r}_{k-3}+\left(F_{k} A^{3}+G_{k} A^{2}+H_{k} A\right) \mathbf{z}_{k-4}\right\}$,
$\left.\mathbf{x}_{k}=\mathbf{x}_{k-3}-A_{k}\left\{\left(A^{2}+B_{k} A+C_{k}\right) \mathbf{r}_{k-3}+\left(F_{k} A^{2}+G_{k}\right) A+H_{k}\right) \mathbf{z}_{k-4}\right\}$.
$C_{k^{\prime}}^{1}$, as in (2.145);
$D_{k^{\prime}}^{1}, E_{k^{\prime}}^{1}, G_{k^{\prime}}^{1}, H_{k}^{1}$, and I_{k}^{1} as in (2.119).
$\mathbf{z}_{k}=\left(C_{k}^{1} A^{2}+D_{k}^{1} A+E_{k}^{1}\right) \mathbf{z}_{k-4}+\left(A^{3}+G_{k}^{1} A^{2}+H_{k}^{1} A+I_{k}^{1}\right) \mathbf{z}_{k-3}$.
$k=k+1$,

EndWhile

Obtain the approximate solution as well as the residual norm;
$\mathrm{sol}_{\text {last }}=\mathbf{x}_{k}$,
norm $_{\text {last }}=\left\|\mathbf{r}_{k}\right\|$.
Stop.

2.4.3 Lanczos-type Algorithm Based on A_{22} / B_{21}

The relation A_{22} of this algorithm have already been derived in subsection 2.4.2. From Eqs (2.141) and (2.142) we have

$$
\left\{\begin{array}{l}
\mathbf{r}_{k}(x)=\mathbf{r}_{k-3}+A_{k}\left\{\left(A^{3}+B_{k} A^{2}+C_{k} A\right) \mathbf{r}_{k-3}+\left(F_{k} A^{3}+G_{k} A^{2}+H_{k} A\right) \mathbf{z}_{k-4}(x)\right\} \tag{2.149}\\
\mathbf{x}_{k}=\mathbf{x}_{k-3}-A_{k}\left\{\left(A^{2}+B_{k} A+C_{k}\right) \mathbf{r}_{k-3}+\left(F_{k} A^{2}+G_{k} A+H_{k}\right) \mathbf{z}_{k-4}\right\} .
\end{array}\right.
$$

Equations (2.149) define a Lanczos-type algorithm. Now, we have to find the expressions of the coefficients $A_{k}, B_{k}, C_{k}, D_{k}, F_{k}, G_{k}$, and H_{k} appearing in them, have been derived in subsection 2.4.2. Since all previous formulae are valid for $k \geq 4$, therefore we need $\mathbf{r}_{1}, \mathbf{r}_{2}$, $\mathbf{r}_{3}, \mathbf{x}_{1}, \mathbf{x}_{2}$ and \mathbf{x}_{3}, which are necessary to evaluate (2.149) recursively, which are given as in equations (2.138), (2.139) and (2.140).

From relation B_{21} of subsection 2.3.5, the Eq (2.133), after replacing x by A.
Since $\mathbf{z}_{k}=P_{k}^{(1)}(A) \mathbf{r}_{0}$ we have

$$
\begin{equation*}
\mathbf{z}_{k}=\left(B_{k}^{1} A^{2} \mathbf{r}_{k-3}+C_{k}^{1} A \mathbf{r}_{k-3}+D_{k}^{1} \mathbf{r}_{k-3}+A^{3} \mathbf{z}_{k-3}+F_{k}^{1} A^{2} \mathbf{z}_{k-3}+G_{k}^{1} A \mathbf{z}_{k-3}+H_{k}^{1} \mathbf{z}_{k-3}\right) . \tag{2.150}
\end{equation*}
$$

Now, we have to find the expressions of the coefficients $B_{k^{\prime}}^{1} C_{k^{\prime}}^{1} D_{k^{\prime}}^{1} F_{k^{\prime}}^{1} G_{k^{\prime}}^{1}$ and H_{k}^{1} appearing in them, have been derived in subsection 2.3.5. Therefore, we can write using Eq (2.136) we get

$$
\begin{equation*}
B_{k}^{1}=-\frac{\left(\mathbf{y}_{k-2}, \mathbf{z}_{k-3}\right)}{\left(\mathbf{y}_{k-3}, \mathbf{r}_{k-3}\right)} . \tag{2.151}
\end{equation*}
$$

The rest of the coefficents can be written explicitly as follow;
$a_{11}=\left(\mathbf{y}_{k-3}, \mathbf{r}_{k-3}\right), a_{13}=\left(\mathbf{y}_{k-2}, \mathbf{z}_{k-3}\right), a_{21}=\left(\mathbf{y}_{k-2}, \mathbf{r}_{k-3}\right), a_{22}=a_{11}, a_{23}=\left(\mathbf{y}_{k-1}, \mathbf{z}_{k-3}\right), a_{24}=a_{13}$,
$a_{31}=\left(\mathbf{y}_{k-1}, \mathbf{r}_{k-3}\right), a_{32}=a_{21}, a_{33}=\left(\mathbf{y}_{k}, \mathbf{z}_{k-3}\right), a_{34}=\left(\mathbf{y}_{k-1}, \mathbf{z}_{k-3}\right), a_{35}=a_{13}, a_{41}=\left(\mathbf{y}_{k}, \mathbf{r}_{k-3}\right)$,
$a_{42}=a_{31}, a_{43}=\left(\mathbf{y}_{k+1}, \mathbf{z}_{k-3}\right), a_{44}=a_{33}, a_{45}=a_{23}, a_{51}=\left(\mathbf{y}_{k+1}, \mathbf{r}_{k-3}\right), a_{52}=a_{41}, a_{53}=\left(\mathbf{y}_{k+2}, \mathbf{z}_{k-3}\right)$,
$a_{54}=a_{43}, a_{55}=a_{33}$

Using these relations we get
$b_{1}=-\left(\mathbf{y}_{k-1}, \mathbf{z}_{k-3}\right)-B_{k}^{1}\left(\mathbf{y}_{k-2}, \mathbf{r}_{k-3}\right)=-a_{23}-B_{k}^{1} a_{21}, b_{2}=-\left(\mathbf{y}_{k}, \mathbf{z}_{k-3}\right)-B_{k}^{1}\left(\mathbf{y}_{k-1}, \mathbf{r}_{k-3}\right)=-a_{33}-B_{k}^{1} a_{31}$
$b_{3}=-\left(\mathbf{y}_{k+1}, \mathbf{z}_{k-3}\right)-B_{k}^{1}\left(\mathbf{y}_{k}, \mathbf{r}_{k-3}\right)=-a_{43}-B_{k}^{1} a_{41}, b_{4}=-\left(\mathbf{y}_{k+2}, \mathbf{z}_{k-3}\right)-B_{k}^{1}\left(\mathbf{y}_{k+1}, \mathbf{r}_{k-3}\right)=-a_{53}-B_{k}^{1} a_{51}$
$b_{5}=-\left(\mathbf{y}_{k+3}, \mathbf{z}_{k-3}\right)-B_{k}^{1}\left(\mathbf{y}_{k+2}, \mathbf{r}_{k-3}\right)=-s^{\prime}-B_{k}^{1} t^{\prime}$,
where $s^{\prime}=\left(\mathbf{y}_{k+3}, \mathbf{z}_{k-3}\right)$ and $t^{\prime}=\left(\mathbf{y}_{k+2}, \mathbf{r}_{k-3}\right)$.
If $\Delta_{k}=0$, then there is ghost-breakdown, $[12,18]$. For $k \geq 3$, all above formulae are valid.
This means that we have to find $\mathbf{z}_{1}, \mathbf{z}_{2}$ and \mathbf{z}_{3} by alternative ways as in subsection 2.4.2.
Which can be computed by equations (2.146), (2.147) and (2.18).
We finally have the following algorithm after gathering together all these formulae.

```
Algorithm 3 Lanczos-type Algorithm based on relations \(A_{22} / B_{21}\)
Input: \(A\) an \(n \times n\) matrix, \(\mathbf{b}\) an n-vector.
Output: the approximations solution, \(\mathbf{x}_{k}\), norm of the residual, \(\left\|\mathbf{r}_{k}\right\|\).
Initializations: Choose \(\mathbf{x}_{0}\) and \(\mathbf{y}\), such that \(\mathbf{y} \neq 0\) and the tolerance \(\varepsilon\) to \(1.0 E-13\).
    Set \(\mathbf{r}_{0}=\mathbf{b}-A \mathbf{x}_{0} ; \quad \mathbf{y}_{0}=\mathbf{y} ; \quad \mathbf{z}_{0}=\mathbf{r}_{0}\).
```


Compute:

```
\(c_{0}, c_{1}, c_{2}, c_{3}, c_{4}\) and \(c_{5}\); as in (1.23b),
\(\mathbf{r}_{1}, \mathbf{x}_{1}, \mathbf{r}_{2}, \mathbf{x}_{2}, \mathbf{r}_{3}\) and \(\mathbf{x}_{3}\) as in (2.138), (2.139) and (2.140),
\(\mathbf{z}_{1}, \mathbf{z}_{2}\), and \(\mathbf{z}_{3}\), as in (2.146), (2.147) and (2.148),
\(\mathbf{y}_{1}, \mathbf{y}_{2}, \mathbf{y}_{3}, \mathbf{y}_{4}\) with \(\mathbf{y}_{k}=A^{T} \mathbf{y}_{k-1}\).
\(k=3\),
While \(\left\|\mathbf{r}_{k}\right\|>\varepsilon\) do
\(\mathbf{y}_{k+2}=A^{T} \mathbf{y}_{k+1}\),
\(A_{k}\), as in (2.24), \(B_{k}, C_{k}, D_{k}, G_{k}\), and \(H_{k}\), as in (2.32) and \(F_{k}\) as in (2.143),
\(\mathbf{r}_{k}=\mathbf{r}_{k-3}+A_{k}\left\{\left(A^{3}+B_{k} A^{2}+C_{k} A\right) \mathbf{r}_{k-3}+\left(F_{k} A^{3}+G_{k} A^{2}+H_{k} A\right) \mathbf{z}_{k-4}\right\}\),
\(\left.\mathbf{x}_{k}=\mathbf{x}_{k-3}-A_{k}\left\{\left(A^{2}+B_{k} A+C_{k}\right) \mathbf{r}_{k-3}+\left(F_{k} A^{2}+G_{k}\right) A+H_{k}\right) \mathbf{z}_{k-4}\right\}\).
\(B_{k^{\prime}}^{1}\) as in (2.151) and \(C_{k^{\prime}}^{1} D_{k^{\prime}}^{1} F_{k^{\prime}}^{1} G_{k^{\prime}}^{1}\), and \(H_{k^{\prime}}^{1}\) as in (2.132),
\(\mathbf{z}_{k}=\left(B_{k}^{\prime} A^{2}+C_{k}^{\prime} A+D_{k}^{\prime}\right) \mathbf{r}_{k-3}+\left(A^{3}+F_{k}^{\prime} A^{2}+G_{k}^{\prime} A+H_{k}^{\prime}\right) \mathbf{z}_{k-3}\).
\(k=k+1\),
EndWhile
Obtain the approximate solution as well as the residual norm;
\(\operatorname{sol}_{\text {last }}=\mathbf{x}_{k}\),
norm \(_{\text {last }}=\left\|\mathbf{r}_{k}\right\|\).
Stop.
```


2.4.4 Lanczos-type Algorithm Based on A_{25} / B_{19}

From relation A_{25} of subsection 2.2.6, Eq (2.70), after replacing x by A. Since $\mathbf{r}_{k}=P_{k}(A) \mathbf{r}_{0}$, we have

$$
\begin{equation*}
\mathbf{r}_{k}(x)=\mathbf{r}_{k-3}+\left(B_{k} A^{2}+C_{k} A\right) \mathbf{r}_{k-3}+\left(E_{k} A^{3}+F_{k} A^{2}+G_{k} A\right) \mathbf{z}_{k-3} . \tag{2.152}
\end{equation*}
$$

Using $\mathbf{r}_{k}=\mathbf{b}-A \mathbf{x}_{k}$, we get

$$
\begin{equation*}
\mathbf{x}_{k}=\mathbf{x}_{k-3}-\left(B_{k} A+C_{k} I\right) \mathbf{r}_{k-3}-\left(E_{k} A^{2}+F_{k} A+G_{k}\right) \mathbf{z}_{k-3} \tag{2.153}
\end{equation*}
$$

Eqs (2.152) and (2.153) define a Lanczos-type algorithm. Now, we have to find the expressions of the coefficients $B_{k}, C_{k}, E_{k}, F_{k}$, and G_{k} appearing in them, have been derived in subsection 2.2.6.

The rest of the coefficient can be written explicitly as follow:
$a_{11}=\left(\mathbf{y}_{k-3}, \mathbf{r}_{k-3}\right), a_{13}=\left(\mathbf{y}_{k-2}, \mathbf{z}_{k-3}\right)$,
$a_{21}=\left(\mathbf{y}_{k-2}, \mathbf{r}_{k-3}\right), a_{22}=a_{11}, a_{23}=\left(\mathbf{y}_{k-1}, \mathbf{z}_{k-3}\right), a_{24}=a_{13}$,
$a_{31}=\left(\mathbf{y}_{k-1}, \mathbf{r}_{k-3}\right), a_{32}=a_{21}, a_{33}=\left(\mathbf{y}_{k}, \mathbf{z}_{k-3}\right), a_{34}=a_{23}, a_{35}=a_{24}$,
$a_{41}=\left(\mathbf{y}_{k}, \mathbf{r}_{k-3}\right), a_{42}=a_{31}, a_{43}=\left(\mathbf{y}_{k+1}, \mathbf{z}_{k-3}\right), a_{44}=a_{33}, a_{45}=a_{34}$,
$a_{51}=\left(\mathbf{y}_{k+1}, \mathbf{r}_{k-3}\right), a_{52}=a_{41}, a_{53}=\left(\mathbf{y}_{k+2}, \mathbf{z}_{k-3}\right), a_{54}=a_{43}, a_{55}=a_{44}$,
Using these relations we get
$b_{3}=-\left(\mathbf{y}_{k-3}, \mathbf{r}_{k-3}\right)=-a_{11}$,
$b_{4}=-\left(\mathbf{y}_{k-2}, \mathbf{r}_{k-3}\right)=-a_{21}$,
$b_{5}=-\left(\mathbf{y}_{k-1}, \mathbf{r}_{k-3}\right)=-a_{31}$,
Since all previous formulae are valid for $k \geq 3$, therefor we need $\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{x}_{1}$, and \mathbf{x}_{2}, which are necessary to evaluate (2.152) and (2.153) recursively, which are given as in Eqs (2.138) and (2.139).

From relation B_{19} of subsection 2.4.2, we have

$$
\begin{equation*}
\mathbf{z}_{k}=\left(C_{k}^{1} A^{2}+D_{k}^{1} A+E_{k}^{1}\right) \mathbf{Z}_{k-4}+\left(A^{3}+G_{k}^{1} A^{2}+H_{k}^{1} A+I_{k}^{1}\right) \mathbf{z}_{k-3} . \tag{2.154}
\end{equation*}
$$

Note that the coefficients of (2.154) are already derived in subsection 2.4.2. We finally have the following algorithm after gathering together all these formulae.

```
Algorithm 4 Lanczos-type Algorithm based on relations \(A_{25} / B_{19}\)
Input: \(A\) an \(n \times n\) matrix, \(\mathbf{b}\) an n-vector.
Output: the approximations solution, \(\mathbf{x}_{k}\), norm of the residual, \(\left\|\mathbf{r}_{k}\right\|\).
Initializations: Choose \(\mathbf{x}_{0}\) and \(\mathbf{y}\), such that \(\mathbf{y} \neq 0\) and the tolerance \(\varepsilon\) to \(1.0 E-13\).
\[
\text { Set } \mathbf{r}_{0}=\mathbf{b}-A \mathbf{x}_{0} ; \quad \mathbf{y}_{0}=\mathbf{y} ; \quad \mathbf{z}_{0}=\mathbf{r}_{0} .
\]
```


Compute:

$c_{0}, c_{1}, c_{2}, c_{3}, c_{4}$ and c_{5}; as in (1.23b).
$\mathbf{r}_{1}, \mathbf{x}_{1}, \mathbf{r}_{2}, \mathbf{x}_{2}, \mathbf{r}_{3}$ and \mathbf{x}_{3} as in (2.138), (2.139) and (2.140).
$\mathbf{z}_{1}, \mathbf{z}_{2}$, and \mathbf{z}_{3}, as in (2.146), (2.147) and (2.148).
$\mathbf{y}_{1}, \mathbf{y}_{2}, \mathbf{y}_{3}, \mathbf{y}_{4}$ with $\mathbf{y}_{k}=A^{T} \mathbf{y}_{k-1}$.
$k=3$,
While $\left\|\mathbf{r}_{k}\right\|>\varepsilon$ do
$\mathbf{y}_{k+2}=A^{T} \mathbf{y}_{k+1}$.
$B_{k}, C_{k}, E_{k}, F_{k}$, and G_{k}, as in (2.69).
$\mathbf{r}_{k}=\mathbf{r}_{k-3}+\left(B_{k} A^{2}+C_{k} A\right) \mathbf{r}_{k-3}+\left(E_{k} A^{3}+F_{k} A^{2}+G_{k} A\right) \mathbf{z}_{k-3}$,
$\mathbf{x}_{k}=\mathbf{x}_{k-3}-\left(B_{k} A+C_{k}\right) \mathbf{r}_{k-3}-\left(E_{k} A^{2}+F_{k} A+G_{k}\right) \mathbf{z}_{k-3}$.
$C_{k^{\prime}}^{1}$, as in (2.145);
$D_{k^{\prime}}^{1}, E_{k^{\prime}}^{1}, G_{k^{\prime}}^{1} H_{k}^{1}$ and $I_{k^{\prime}}^{1}$, as in (2.119),
$\mathbf{z}_{k}=\left(C_{k}^{\prime} A^{2}+D_{k}^{\prime} A+E_{k}^{\prime}\right) \mathbf{z}_{k-4}+\left(A^{3}+G_{k}^{\prime} A^{2}+H_{k}^{\prime} A+I_{k}^{\prime}\right) \mathbf{z}_{k-3}$.
$k=k+1$,
EndWhile
Obtain the approximate solution as well as the residual norm;
$\operatorname{sol}_{\text {last }}=\mathbf{x}_{k}$,
norm $_{\text {last }}=\left\|\mathbf{r}_{k}\right\|$.
Stop.

2.4.5 Lanczos-type Algorithm Based on A_{25} / B_{21}

From equations (2.152) and (2.153) of subsection 2.4.4, we have

$$
\left\{\begin{array}{l}
\mathbf{r}_{k}=\mathbf{r}_{k-3}+\left(B_{k} A^{2}+C_{k} A\right) \mathbf{r}_{k-3}+\left(E_{k} A^{3}+F_{k} A^{2}+G_{k} A\right) \mathbf{z}_{k-3} . \tag{2.155}\\
\mathbf{x}_{k}=\mathbf{x}_{k-3}-\left(B_{k} A+C_{k} I\right) \mathbf{r}_{k-3}-\left(E_{k} A^{2}+F_{k} A+G_{k}\right) \mathbf{z}_{k-3} .
\end{array}\right.
$$

With all coefficients involved have been derived in subsection 2.4.4.
The equation (2.150) of subsection 2.4.3, we have

$$
\mathbf{z}_{k}=\left(B_{k} A^{2} \mathbf{r}_{k-3}+C_{k} A \mathbf{r}_{k-3}+D_{k} \mathbf{r}_{k-3}+A^{3} \mathbf{z}_{k-3}+F_{k} A^{2} \mathbf{z}_{k-3}+G_{k} A \mathbf{z}_{k-3}+H_{k} \mathbf{z}_{k-3}\right),
$$

with all coefficients involved already derived in subsection 2.4.3. We finally have the following algorithm after gathering together all these formulae.

```
Algorithm 5 Lanczos-type Algorithm based on relations \(A_{25} / B_{21}\)
Input: \(A\) an \(n \times n\) matrix, \(\mathbf{b}\) an n-vector.
Output: the approximations solution, \(\mathbf{x}_{k}, \quad\) norm of the residual, \(\left\|\mathbf{r}_{k}\right\|\).
Initializations: Choose \(\mathbf{x}_{0}\) and \(\mathbf{y}\), such that \(\mathbf{y} \neq 0\) and the tolerance \(\varepsilon\) to \(1.0 E-13\).
\[
\text { Set } \mathbf{r}_{0}=\mathbf{b}-A \mathbf{x}_{0} ; \quad \mathbf{y}_{0}=\mathbf{y} ; \quad \mathbf{z}_{0}=\mathbf{r}_{0} .
\]
```


Compute:

$c_{0}, c_{1}, c_{2}, c_{3}, c_{4}$ and c_{5} as in (1.23b),
$\mathbf{r}_{1}, \mathbf{x}_{1}, \mathbf{r}_{2}, \mathbf{x}_{2}, \mathbf{r}_{3}$ and \mathbf{x}_{3} as in (2.138), (2.139) and (2.140),
$\mathbf{z}_{1}, \mathbf{z}_{2}$, and \mathbf{z}_{3}, as in (2.146), (2.147) and (2.148),
$\mathbf{y}_{1}, \mathbf{y}_{2}, \mathbf{y}_{3}, \mathbf{y}_{4}$ with $\mathbf{y}_{k}=A^{T} \mathbf{y}_{k-1}$.
$k=3$.
While $\left\|\mathbf{r}_{k}\right\|>\varepsilon$ do
$\mathbf{y}_{k+2}=A^{T} \mathbf{y}_{k+1}$,
$B_{k}, C_{k}, E_{k}, F_{k}$, and G_{k} as in (2.69),
$\mathbf{r}_{k}=\mathbf{r}_{k-3}+\left(B_{k} A^{2}+C_{k} A\right) \mathbf{r}_{k-3}+\left(E_{k} A^{3}+F_{k} A^{2}+G_{k} A\right) \mathbf{z}_{k-3}$,
$\mathbf{x}_{k}=\mathbf{x}_{k-3}-\left(B_{k} A+C_{k}\right) \mathbf{r}_{k-3}-\left(E_{k} A^{2}+F_{k} A+G_{k}\right) \mathbf{z}_{k-3}$.
$B_{k^{\prime}}^{1}$, as in (2.151);
$C_{k^{\prime}}^{1} D_{k^{\prime}}^{1} F_{k^{\prime}}^{1}, G_{k^{\prime}}^{1}$, and $H_{k^{\prime}}^{1}$ as in (2.132),
$\mathbf{z}_{k}=\left(B_{k}^{\prime} A^{2}+C_{k}^{\prime} A+D_{k}^{\prime}\right) \mathbf{r}_{k-3}+\left(A^{3}+F_{k}^{\prime} A^{2}+G_{k}^{\prime} A+H_{k}^{\prime}\right) \mathbf{z}_{k-3}$.
$k=k+1$,

EndWhile

Obtain the approximate solution as well as the residual norm;
$\operatorname{sol}_{\text {last }}=\mathbf{x}_{k}$,
norm $_{\text {last }}=\left\|\mathbf{r}_{k}\right\|$.
Stop.

2.4.6 Lanczos-type Algorithm Based on A_{28} / B_{19}

From relation A_{28} of subsection 2.2.9, the equation (2.96), after replacing x by A. Since $\mathbf{r}_{k}=P_{k}(A) \mathbf{r}_{0}$, we have

$$
\begin{equation*}
\mathbf{r}_{k}(x)=\mathbf{r}_{k-2}+A_{k}\left\{A^{2} \mathbf{r}_{k-2}+B_{k} A \mathbf{r}_{k-2}+E_{k} A^{2} \mathbf{z}_{k-3}+F_{k} A \mathbf{z}_{k-3}\right\} \tag{2.156}
\end{equation*}
$$

Using $\mathbf{r}_{k}=\mathbf{b}-A \mathbf{x}_{k}$, we get

$$
\begin{equation*}
\mathbf{x}_{k}=\mathbf{x}_{k-2}-A_{k}\left\{A \mathbf{r}_{k-2}+B_{k} \mathbf{r}_{k-2}+E_{k} A \mathbf{z}_{k-3}+F_{k} \mathbf{z}_{k-3}\right\} . \tag{2.157}
\end{equation*}
$$

Equations (2.156) and (2.157) define a Lanczos-type algorithm. Now, we have to find the expressions of the coefficients $A_{k}, B_{k}, C_{k}, E_{k}$ and F_{k}, appearing in them, have been derived in subsection (2.2.9). Therefore, we can write using equation (2.136) we get

$$
\begin{equation*}
E_{k}=-\frac{\left(\mathbf{y}_{k-2}, \mathbf{r}_{k-2}\right)}{\left(\mathbf{y}_{k-2}, \mathbf{z}_{k-3}\right)} . \tag{2.158}
\end{equation*}
$$

The rest of the coefficient can be written explicitly as follow:
$a_{11}=\left(\mathbf{y}_{k-2}, \mathbf{r}_{k-2}\right), \quad a_{13}=\left(\mathbf{y}_{k-2}, \mathbf{z}_{k-3}\right)$,
$a_{21}=\left(\mathbf{y}_{k-1}, \mathbf{r}_{k-2}\right), \quad a_{22}=a_{11}, \quad a_{23}=\left(\mathbf{y}_{k-1}, \mathbf{z}_{k-3}\right)$,
$a_{31}=\left(\mathbf{y}_{k}, \mathbf{r}_{k-2}\right), a_{32}=a_{21}, a_{33}=\left(\mathbf{y}_{k}, \mathbf{Z}_{k-3}\right)$
Using these relations we get
$b_{1}=-a_{21}-E_{k} a_{23}$,
$b_{2}=-a_{31}-E_{k} a_{33}$,
$b_{3}=-s-t E_{k}$, where $s=\left(\mathbf{y}_{k+1}, \mathbf{r}_{k-2}\right)$ and $t=\left(\mathbf{y}_{k+1}, \mathbf{z}_{k-3}\right)$.
Equations (2.156) and (2.157) are valid for $k \geq 3$. We need $\mathbf{r}_{1}, \mathbf{x}_{1}, \mathbf{r}_{2}$ and \mathbf{x}_{2}, which can be evaluated by equations (2.138) and (2.139).

Eq (2.144), from relation B_{19} of subsection 2.4.2, we have

$$
\begin{equation*}
\mathbf{z}_{k}=\left(C_{k}^{1} A^{2}+D_{k}^{1} A+E_{k}^{1}\right) \mathbf{Z}_{k-4}+\left(A^{3}+G_{k}^{1} A^{2}+H_{k}^{1} A+I_{k}^{1}\right) \mathbf{z}_{k-3} . \tag{2.159}
\end{equation*}
$$

Now, we have to find the expressions of the coefficients $C_{k^{\prime}}^{1}, D_{k^{\prime}}^{1}, E_{k^{\prime}}^{1} G_{k^{\prime}}^{1} H_{k}^{1}$ and I_{k}^{1} appearing in them, have already been derived in subsection 2.4.2. We finally have the following algorithm after gathering together all these formulae.

```
Algorithm 6 Lanczos-type Algorithm based on relations \(A_{28} / B_{19}\)
Input: \(A\) an \(n \times n\) matrix, \(\mathbf{b}\) an n-vector.
Output: the approximations solution, \(\mathbf{x}_{k}\), norm of the residual, \(\left\|\mathbf{r}_{k}\right\|\).
Initializations: Choose \(\mathbf{x}_{0}\) and \(\mathbf{y}\), such that \(\mathbf{y} \neq 0\) and the tolerance \(\varepsilon\) to \(1.0 E-13\).
                    Set \(\mathbf{r}_{0}=b-A \mathbf{x}_{0} ; \quad \mathbf{y}_{0}=\mathbf{y} ; \quad \mathbf{z}_{0}=\mathbf{r}_{0} ;\)
```


Compute:

```
\(c_{0}, c_{1}, c_{2}, c_{3}, c_{4}\) and \(c_{5}\); as in (1.23b),
\(\mathbf{r}_{1}, \mathbf{x}_{1}, \mathbf{r}_{2}, \mathbf{x}_{2}, \mathbf{r}_{3}\) and \(\mathbf{x}_{3}\) as in (2.138), (2.139) and (2.140),
\(\mathbf{z}_{1}, \mathbf{z}_{2}\), and \(\mathbf{z}_{3}\), as in (2.146), (2.147) and (2.148),
\(\mathbf{y}_{1}, \mathbf{y}_{2}, \mathbf{y}_{3}, \mathbf{y}_{4}\) with \(\mathbf{y}_{k}=A^{T} \mathbf{y}_{k-1}\).
\(k=3\).
```

While $\left\|\mathbf{r}_{k}\right\|>\varepsilon$ do
$\mathbf{y}_{k+2}=A^{T} \mathbf{y}_{k+1}$,
$A_{k}, E_{k}, B_{k}, C_{k}$, and F_{k}, as in (2.89), (2.158) and (2.95) respectively,
$\mathbf{r}_{k}=\mathbf{r}_{k-2}+A_{k}\left\{A^{2} \mathbf{r}_{k-2}+B_{k} A \mathbf{r}_{k-2}+E_{k} A^{2} \mathbf{z}_{k-3}+F_{k} A \mathbf{z}_{k-3}\right\}$,
$\mathbf{x}_{k}=\mathbf{x}_{k-2}-A_{k}\left\{A \mathbf{r}_{k-2}+B_{k} \mathbf{r}_{k-2}+E_{k} A \mathbf{z}_{k-3}+F_{k} \mathbf{z}_{k-3}\right\}$.
$C_{k^{\prime}}^{1}$, as in (2.145);
$D_{k^{\prime}}^{1}, E_{k^{\prime}}^{1}, G_{k^{\prime}}^{1} H_{k^{\prime}}^{1}$ and $I_{k^{\prime}}^{1}$ as in (2.119),
$\mathbf{z}_{k}=\left(C_{k}^{\prime} A^{2}+D_{k}^{\prime} A+E_{k}^{\prime}\right) \mathbf{z}_{k-4}+\left(A^{3}+G_{k}^{\prime} A^{2}+H_{k}^{\prime} A+I_{k}^{\prime}\right) \mathbf{z}_{k-3}$.
$k=k+1$.
EndWhile
Obtain the approximate solution as well as the residual norm;
$\operatorname{sol}_{\text {last }}=\mathbf{x}_{k}$,
norm $_{\text {last }}=\left\|\mathbf{r}_{k}\right\|$.
Stop.

2.4.7 Lanczos-type Algorithm Based on A_{28} / B_{21}

From equations (2.156) and (2.157) of subsection 2.4.6, we have

$$
\left\{\begin{array}{l}
\mathbf{r}_{k}=\mathbf{r}_{k-2}+A_{k}\left\{A^{2} \mathbf{r}_{k-2}+B_{k} A \mathbf{r}_{k-2}+E_{k} A^{2} z_{k-3}+F_{k} A \mathbf{z}_{k-3}\right\} \tag{2.160}\\
\mathbf{x}_{k}=\mathbf{x}_{k-2}-A_{k}\left\{A \mathbf{r}_{k-2}+B_{k} \mathbf{r}_{k-2}+E_{k} A \mathbf{z}_{k-3}+F_{k} \mathbf{z}_{k-3}\right\}
\end{array}\right.
$$

with all coefficients involved being already derived in subsection 2.4.6.
From Eq 2.150, of subsection 2.4.3, we have

$$
\begin{equation*}
\mathbf{z}_{k}=\left(B_{k}^{1} A^{2} \mathbf{r}_{k-3}+C_{k}^{1} A \mathbf{r}_{k-3}+D_{k}^{1} \mathbf{r}_{k-3}+A^{3} \mathbf{z}_{k-3}+F_{k}^{1} A^{2} \mathbf{z}_{k-3}+G_{k}^{1} A \mathbf{z}_{k-3}+H_{k}^{1} \mathbf{z}_{k-3}\right), \tag{2.161}
\end{equation*}
$$

with all coefficients involved having been derived in subsection 2.4.3. We finally have the following algorithm after gathering together all these formulae.

```
Algorithm 7 Lanczos-type Algorithm based on relations \(A_{28} / B_{21}\)
Input: \(A\) an \(n \times n\) matrix, \(\mathbf{b}\) an \(n\)-vector.
Output: the approximations solution, \(\mathbf{x}_{k}\), norm of the residual, \(\left\|\mathbf{r}_{k}\right\|\).
Initializations: Choose \(\mathbf{x}_{0}\) and \(\mathbf{y}\), such that \(\mathbf{y} \neq 0\) and the tolerance \(\varepsilon\) to \(1.0 E-13\).
    Set \(\mathbf{r}_{0}=\mathbf{b}-A \mathbf{x}_{0} ; \quad \mathbf{y}_{0}=\mathbf{y} ; \quad \mathbf{z}_{0}=\mathbf{r}_{0}\).
Compute:
    \(c_{0}, c_{1}, c_{2}, c_{3}, c_{4}\) and \(c_{5}\); as in (1.23b),
    \(\mathbf{r}_{1}, \mathbf{x}_{1}, \mathbf{r}_{2}, \mathbf{x}_{2}, \mathbf{r}_{3}\) and \(\mathbf{x}_{3}\) as in (2.138), (2.139) and (2.140),
    \(\mathbf{z}_{1}, \mathbf{z}_{2}\), and \(\mathbf{z}_{3}\), as in (2.146), (2.147) and (2.148),
    \(\mathbf{y}_{1}, \mathbf{y}_{2}, \mathbf{y}_{3}, \mathbf{y}_{4}\) with \(\mathbf{y}_{k}=A^{T} \mathbf{y}_{k-1}\).
    \(k=3\).
While \(\left\|\mathbf{r}_{k}\right\|>\varepsilon\) do
    \(\mathbf{y}_{k+2}=A^{T} \mathbf{y}_{k+1}\),
    \(A_{k}, E_{k}, B_{k}, C_{k}\), and \(F_{k}\), as in (2.89), (2.158) and (2.95) respectively,
    \(\mathbf{r}_{k}=\mathbf{r}_{k-2}+A_{k}\left\{A^{2} \mathbf{r}_{k-2}+B_{k} A \mathbf{r}_{k-2}+E_{k} A^{2} \mathbf{z}_{k-3}+F_{k} A \mathbf{z}_{k-3}\right\}\),
    \(\mathbf{x}_{k}=\mathbf{x}_{k-2}-A_{k}\left\{A \mathbf{r}_{k-2}+B_{k} \mathbf{r}_{k-2}+E_{k} A \mathbf{z}_{k-3}+F_{k} \mathbf{z}_{k-3}\right\}\).
    \(B_{k^{\prime}}^{1}\), as in (2.151);
    \(C_{k^{\prime}}^{1} D_{k^{\prime}}^{1}, F_{k^{\prime}}^{1} G_{k^{\prime}}^{1}\), and \(H_{k}^{1}\), as in (2.132)
    \(\mathbf{z}_{k}=\left(B_{k}^{\prime} A^{2}+C_{k}^{\prime} A+D_{k}^{\prime}\right) \mathbf{r}_{k-3}+\left(A^{3}+F_{k}^{\prime} A^{2}+G_{k}^{\prime} A+H_{k}^{\prime}\right) \mathbf{z}_{k-3}\).
    \(k=k+1\).
```


EndWhile

```
Obtain the approximate solution as well as the residual norm.
\(\operatorname{sol}_{\text {last }}=\mathbf{x}_{k}\),
norm \(_{\text {last }}=\left\|\mathbf{r}_{k}\right\|\).
```


Stop.

2.5 Numerical results of $A_{20}, A_{22} / B_{19}, A_{22} / B_{21}$ and A_{28} / B_{19}

We have solved different small size problems [4,33]. These algorithms are coded out in Matlab R2014b and run on a PC under the Microsoft Windows 7 Enterprise, with 16.00GB RAM, and processor Intel(R) Core(TM) i5-3570 CPU 3.40GHz. Experimental results obtained on the test problem $A x=b$ with A refer to the Baheux-typ problems [4] as below are recorded in the following table. The stoping criteria is the norm of residual
$\left\|r_{k}\right\|=e p s=1.0 E-13$

$$
A=\left(\begin{array}{ccccc}
B & -I & \cdots & \cdots & 0 \\
-I & B & -I & & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & & -I & B & -I \\
0 & \cdots & \cdots & -I & B
\end{array}\right), \quad \text { with } \quad B=\left(\begin{array}{ccccc}
4 & \alpha & \cdots & \cdots & 0 \\
\beta & 4 & \alpha & & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & & \beta & 4 & \alpha \\
0 & \cdots & \cdots & \beta & 4
\end{array}\right)
$$

and $\alpha=-1+\delta, \beta=-1-\delta$. The parameter δ takes the value 0 and thus the matrix A is symmetric and the problem is easy to solve because the region is a regular mesh. While for all other values of δ the matrix A becomes non-symmetric and the problem is relatively harder to solve as the region is not regular mesh. The right hand side b is taken to be $b=A X$, where $X=(1,1, \ldots 1)^{T}$, is the solution of the system. The dimension of B is 10 . The computational results obtained with algorithms $A_{20}, A_{22} / B_{21}, A_{25} / B_{19}$ and A_{28} / B_{19} are recorded in Table 2.1.

Table 2.1: Results of $A_{20}, A_{22} / B_{21}, A_{25} / B_{19}$ and A_{28} / B_{19}, on Baheux-type problems when $\delta=0$

Dim of Prob	A_{20}		A_{22} / B_{21}		A_{25} / B_{19}		A_{28} / B_{19}									
$n_{1} \times n_{2}=n$	$\left\\|r_{k}\right\\|$	sec	$\left\\|r_{k}\right\\|$	sec	$\left\\|r_{k}\right\\|$	$\mathrm{t}(\mathrm{sec})$	$\left\\|r_{k}\right\\|$	sec								
10	$1.9828 \mathrm{e}-14$	$1.2818 \mathrm{E}-02$	$1.5104 \mathrm{E}-14$	$4.4420 \mathrm{E}-03$	$5.0861 \mathrm{E}-14$	$7.4318 \mathrm{E}-03$	$3.8274 \mathrm{E}-14$	$6.29054 \mathrm{E}-03$								
20	NaN		$2.5648 \mathrm{E}-14$	$5.8613 \mathrm{E}-03$	$4.0278 \mathrm{E}-14$	$2.1781 \mathrm{E}-03$	$8.9743 \mathrm{E}-14$	$7.5220 \mathrm{E}-04$								
50	NaN		NaN		NaN		NaN									
100	NaN		NaN		NaN		NaN									
500	NaN		NaN		NaN	NaN										
1000	NaN		NaN		NaN		NaN									

The experimental results which are recorded in the Table 2.1 show that algorithms $A_{22} / B_{21}, A_{25} / B_{21}$ and A_{28} / B_{19} solved the problems with up to dimension 20. These algorithms failed for $n \geq 30$. The reason is obvious, it is due to a division by zero that can not be avoided when computing the coefficients of those recurrence relations based on $P_{k}(x)$ and
$P_{k}^{(1)}(x)$. Some of the scalar products in the denominator are as small as E-14, which causes the breakdown of these Lanczos-type of algorithms and the algorithms have generally to be stopped. Equivalently, in the recursive computation of FOPs, a breakdown can be caused by the non-existence of some coefficients of the FOPs involved in the recurrence relations. Restarting is used to avoid the problem. This strategy either stops the Lancozs-type algorithm pre-emptively and restarts it with some iterate or waits until the breakdown occurs and then restarts from the last iterate found. Various Krylov subspaces are considered for the algorithm to start working. The existing algorithms A_{4}, and A_{12} are considered the most robust Lanczos-type algorithms according to $[4,33]$. Therefore, we have compared our new algorithms A_{20} with these on the standard problems considered in [3,33]. These breakdowns are mainly of two types:

1. Since all algorithms of this type are based on recurrence relationships between FOPs $P_{k}(x)$, these polynomials involve the computation of some scalar products appearing as denominators and numerators of the coefficients of the recursive relationships, with some of the denominators becoming smaller than $1.000 E-14$ which causes a breakdown in these algorithms and the algorithms have to be stopped.
2. The breakdown is due to the non-existence of some polynomials $P_{k}(x)$.

2.6 Restarting Lanczos-type Algorithm based on relation A_{20}

The solution is obtained via restarting algorithm A_{20} as given in Algorithm 8. Utilizing regular intervals, the algorithm is restarted using the current iterate. The restarting procedure can be described follows.

```
Algorithm 8 Restarting Lanczos-type Algorithm based on relation \(A_{20}\)
Run Algorithm 1 for a fixed number of iterations \(k\) or until it halts and obtain the
approximate solution \(\operatorname{sol}_{\text {last }}=\mathbf{x}_{k}\) as well as the residual norm norm last \(=\left\|\mathbf{r}_{k}\right\|\).
While \(\left\|\mathbf{r}_{k}\right\|>\varepsilon\) do
    initialize it with the current iterate of the algorithm run,
    \(\mathbf{x}=\) sol \(_{\text {last }}\),
    \(\mathbf{y}=\mathbf{b}-A \mathbf{x}\).
    Run Algorithm 1 for a fixed number of iterations \(k\)
```


EndWhile

```
Obtain the optimal solution as well as the optimal residual norm as follows
sol \(_{\text {optimal }}=\mathbf{x}_{k}\)
norm \(_{\text {optimal }}=\left\|\mathbf{r}_{k}\right\|\).
Stop.
```


2.6.1 Numerical results

The results obtained with Algorithm 8, restarting algorithm A_{20} on Baheux-type problems of different dimensions, for different values of $\delta=0[3,4]$ are presented in Table 2.2.

Table 2.2: Results of A_{20}, A_{4} and A_{12} on Baheux-type problems when $\delta=0$

Dim of Prob$n_{1} \times n_{2}=n$	A_{20}			A_{4}				A_{12}							
	cycles	$\left\\|r_{k}\right\\|$	sec	cycles	$\left\\|r_{k}\right\\|$	sec	cycles	$\left\\|r_{k}\right\\|$	sec						
10	1	$1.9828 \mathrm{E}-14$	5.5432E-01	1	$3.7525 \mathrm{E}-14$	3.6798E-01	1	$2.2493 \mathrm{E}-14$	3.8486E-01						
50	3	$6.2988 \mathrm{E}-14$	5.9230E-01	2	$2.7427 \mathrm{E}-14$	$5.0729 \mathrm{E}-01$	2	$9.8576 \mathrm{E}-15$	4.6922E-01						
100	3	$3.8627 \mathrm{E}-14$	$1.4741 \mathrm{E}+00$	2	$4.5148 \mathrm{E}-14$	5.7386E-01	3	$6.2923 \mathrm{E}-14$	6.4445E-01						
500	10	$9.6832 \mathrm{E}-14$	$4.8584 \mathrm{E}+00$	11	$9.2011 \mathrm{E}-14$	7.7663E-01	10	$8.6145 \mathrm{E}-14$	8.2438E-01						
1000	11	$7.8684 \mathrm{E}-14$	$2.8250 \mathrm{E}+01$	11	8.3822E-14	$1.2431 \mathrm{E}+00$	10	$8.2999 \mathrm{E}-14$	$1.5196 \mathrm{E}+00$						
2000	11	$7.5277 \mathrm{E}-14$	$2.2839 \mathrm{E}+02$	10	$8.5165 \mathrm{E}-14$	$2.0823 \mathrm{E}+00$	12	$9.2854 \mathrm{E}-14$	$3.4794 \mathrm{E}+00$						
3000	11	$9.9051 \mathrm{E}-14$	$5.5966 \mathrm{E}+02$	10	8.8804E-14	$3.5308 \mathrm{E}+00$	11	8.5873E-14	$6.0836 \mathrm{E}+00$						
4000	11	$8.9856 \mathrm{E}-14$	$1.3869 \mathrm{E}+03$	10	$9.3931 \mathrm{E}-14$	$5.5072 \mathrm{E}+00$	10	$8.2973 \mathrm{E}-14$	$1.2737 \mathrm{E}+01$						
5000	11	$9.1068 \mathrm{E}-14$	$2.3177 \mathrm{E}+03$	10	$9.6259 \mathrm{E}-14$	7.7054E+00	13	8.8102E-14	$8.5873 \mathrm{E}+01$						

The Lanczos algorithm based on A_{20} involves higher degree FOPs, which means that many coefficients have to be estimated compared to A_{4} and A_{12} for instance in A_{20}, A_{12} and $A_{4}, 7,5$ and 3 are the number of coefficients respectively. This means error accumulation, loss of orthogonality and ultimately breakdown are likely to occur. For this reason only low dimensional problems can be solved without a remedial approach.

2.7 Summary

This chapter looked at new recurrence relations between FOP's in a systematic fashion where some of the relations might lead to new Lanczos-type algorithms. The expression of their coefficients have also been derived. The recurrence relations investigated here were not studied before. It was observed that relations $A_{21}, A_{23}, A_{24}, A_{26}, A_{27} B_{17}, B_{18}$, and B_{20} do not exist, while, relations A_{23}, A_{24}, and A_{27} do exist but could not be used for deriving Lanczos-type algorithms. Relations $A_{20}, A_{22}, A_{25}, A_{28}, B_{19}$, and B_{21} exist and were found suitable for the implementation of new Lanczos-type algorithms. Relation A_{20} alone led to a new Lanczos-type algorithm while the other relations can make new Lanczos-type algorithms when combined in A_{i} / B_{j} manner. Possible combinations are:
$A_{22} / B_{19}, A_{22} / B_{21}$,
$A_{25} / B_{19}, A_{25} / B_{21}$,
$A_{28} / B_{19}, A_{28} / B_{21}$.
All the algorithms mentioned above need $P_{k}(x)$ for the derivation of r_{k} and $P_{k}^{(1)}(x)$ for z_{k} except A_{20}. Algorithms A_{20}, A_{4} and A_{12} are tested on some problems of small size. The results of Algorithm A_{20} have been compared on problems of various sizes with algorithms A_{4} and A_{12} Lanczos-type algorithms.

Chapter 3

New Recurrence Relations for the

Different Choice of Unit Polynomials

$U_{i}(x)$

3.1 Introduction

In this chapter we derive new recurrence relationships between the adjacent orthogonal polynomials for the different choices of unit polynomial $U_{i}(x)=P_{i}(x)$ and $U_{i}(x)=P_{i}^{(1)}(x)$, that can be used in the derivation of new Lanczos-type algorithms [33].

3.2 Formula A_{i} when $U_{i}(x)=P_{i}(x)$

Consider the formulae of type A_{i} for the choice of $U_{i}(x)=P_{i}(x)$, which have not been considered before [33]. These formulae will be used in combination with formulae B_{j} to derive new Lanczos-type algorithms.

3.2.1 Formula $A_{13 \text { new }}$

Consider the following recurrence relationship for $k \geq 3$,

$$
\begin{equation*}
P_{k}(x)=A_{k}\left\{\left(x^{2}+B_{k} x+C_{k}\right) P_{k-2}+\left(D_{k} x^{3}+E_{k} x^{2}+F_{k} x+G_{k}\right) P_{k-3}^{(1)}\right\} \tag{3.1}
\end{equation*}
$$

where $P_{k}(x), P_{k-2}(x)$ and $P_{k-3}^{(1)}(x)$ are polynomials of degree $k, k-2$ and $k-3$ respectively. The constant coefficients $A_{k}, B_{k}, C_{k}, D_{k}, E_{k}, F_{k}$ and G_{k} are determined by $P_{k}(0)=1$ and imposing the orthogonality condition (2.1) with respect to the linear function c. Since $P_{k}(0)=1, \forall k$, then for $x=0$, equation (3.1) becomes

$$
\begin{equation*}
A_{k}\left\{C_{k}+G_{k} P_{k-3}^{(1)}\right\}=1 \tag{3.2}
\end{equation*}
$$

After multiplying equation (3.1) by U_{i} a polynomial of exact degree i and applying linear functional c on both sides it becomes

$$
\begin{align*}
c\left(U_{i} P_{k}\right)=A_{k}\left\{c\left(x^{2} U_{i} P_{k-2}\right)+B_{k} c\left(x U_{i} P_{k-2}\right)+C_{k} c\left(U_{i} P_{k-2}\right)\right. & +D_{k} c\left(x^{3} U_{i} P_{k-3}^{(1)}\right)+E_{k} c\left(x^{2} U_{i} P_{k-3}^{(1)}\right) \\
& \left.+F_{k} c\left(x U_{i} P_{k-3}^{(1)}\right)+G_{k} c\left(U_{i} P_{k-3}^{(1)}\right)\right\} \tag{3.3}
\end{align*}
$$

Consequently, by applying (2.1), we have the relation for $i=0,1, \ldots, k-1$.

$$
\begin{align*}
c\left(x^{2} U_{i} P_{k-2}\right)+B_{k} c\left(x U_{i} P_{k-2}\right)+C_{k} c\left(U_{i} P_{k-2}\right) & +D_{k} c\left(x^{3} U_{i} P_{k-3}^{(1)}\right)+E_{k} c\left(x^{2} U_{i} P_{k-3}^{(1)}\right) \\
& +F_{k} c\left(x U_{i} P_{k-3}^{(1)}\right)+G_{k} c\left(U_{i} P_{k-3}^{(1)}\right)=0 \\
c\left(x^{2} U_{i} P_{k-2}\right)+B_{k} c\left(x U_{i} P_{k-2}\right)+C_{k} c\left(U_{i} P_{k-2}\right)+ & D_{k} c^{(1)}\left(x^{2} U_{i} P_{k-3}^{(1)}\right)+E_{k} c^{(1)}\left(x U_{i} P_{k-3}^{(1)}\right) \\
& +F_{k} c^{(1)}\left(U_{i} P_{k-3}^{(1)}\right)+G_{k} c\left(U_{i} P_{k-3}^{(1)}\right)=0 . \tag{3.4}
\end{align*}
$$

For $i=0$, equation (3.4) becomes $G_{k} c\left(U_{0} P_{k-3}^{(1)}\right)=0$, since

$$
c\left(U_{0} P_{k-3}^{(1)}\right) \neq 0 \Rightarrow \quad G_{k}=0
$$

Therefore, from (3.2) we have

$$
A_{k}=\frac{1}{C_{k}}
$$

The orthogonality condition is always true for $i=0,1,2, \ldots \ldots, k-6$.
For $i=k-5$, equation (3.4) gives

$$
\begin{align*}
& D_{k} c^{(1)}\left(x^{2} U_{k-5} P_{k-3}^{(1)}\right)=0 \\
\Rightarrow \quad & c^{(1)}\left(x^{2} U_{k-5} P_{k-3}^{(1)}\right) \neq 0, \quad D_{k}=0 \tag{3.5}
\end{align*}
$$

For $i=k-4$, equation (3.4) gives

$$
\begin{gather*}
c\left(x^{2} U_{k-4} P_{k-2}\right)+E_{k} c^{(1)}\left(x U_{k-4} P_{k-3}^{(1)}\right)=0, \\
E_{k}=-\frac{c\left(x^{2} U_{k-4} P_{k-2}\right)}{c\left(x^{2} U_{k-4} P_{k-3}^{(1)}\right)} \tag{3.6}
\end{gather*}
$$

For $i=k-3$, equation (3.4) gives

$$
\begin{equation*}
B_{k} c\left(x U_{k-3} P_{k-2}\right)+F_{k} c^{(1)}\left(U_{k-3} P_{k-3}^{(1)}\right)=-c\left(x^{2} U_{k-3} P_{k-2}\right)-E_{k} c^{(1)}\left(x U_{k-3} P_{k-3}^{(1)}\right) \tag{3.7}
\end{equation*}
$$

For $i=k-2$, equation (3.4) gives

$$
\begin{equation*}
B_{k} c\left(x U_{k-2} P_{k-2}\right)+C_{k} c\left(U_{k-2} P_{k-2}\right)+F_{k} c^{(1)}\left(U_{k-2} P_{k-3}^{(1)}\right)=-c\left(x^{2} U_{k-2} P_{k-2}\right)-E_{k} c^{(1)}\left(x U_{k-2} P_{k-3}^{(1)}\right) . \tag{3.8}
\end{equation*}
$$

For $i=k-1$, and equation (3.4) gives

$$
\begin{equation*}
B_{k} c\left(x U_{k-1} P_{k-2}\right)+C_{k} c\left(U_{k-1} P_{k-2}\right)+F_{k} c^{(1)}\left(U_{k-1} P_{k-3}^{(1)}\right)=-c\left(x^{2} U_{k-1} P_{k-2}\right)-E_{k} c^{(1)}\left(x U_{k-1} P_{k-3}^{(1)}\right) \tag{3.9}
\end{equation*}
$$

Equations (3.7), (3.8) and (3.9) can be written as

$$
\left\{\begin{array}{l}
a_{11} B_{k}+a_{13} F_{k}=b_{1} \tag{3.10}\\
a_{21} B_{k}+a_{22} C_{k}+a_{23} F_{k}=b_{2} \\
a_{31} B_{k}+a_{32} C_{k}+a_{33} F_{k}=b_{3}
\end{array}\right.
$$

Where $a_{11}, a_{13}, a_{21}, a_{22}, a_{23}, a_{31}, a_{32}, a_{33}$, are the coefficients of B_{k}, C_{k}, and F_{k}. Suppose b_{1}, b_{2}, and b_{3} are the corresponding right hand side terms of these equations.

$$
\left\{\begin{array}{l}
b_{1}=-c\left(x^{2} U_{k-3} P_{k-2}\right)-E_{k} c\left(x^{2} U_{k-3} P_{k-3}^{(1)}\right) \tag{3.11}\\
b_{2}=-c\left(x^{2} U_{k-2} P_{k-2}\right)-E_{k} c\left(x^{2} U_{k-2} P_{k-3}^{(1)}\right) \\
b_{3}=-c\left(x^{2} U_{k-1} P_{k-2}\right)-E_{k} c\left(x^{2} U_{k-1} P_{k-3}^{(1)}\right)
\end{array}\right.
$$

If Δ_{k} represents the determinant of the coefficients matrix of (3.10) then we have

$$
\begin{equation*}
\Delta_{k}=a_{11}\left(a_{22} a_{33}-a_{23} a_{32}\right)+a_{13}\left(a_{21} a_{32}-a_{31} a_{22}\right) \tag{3.12}
\end{equation*}
$$

If $\Delta_{k} \neq 0$, then

$$
\left\{\begin{array}{l}
B_{k}=\frac{1}{\Delta_{k}}\left\{b_{1}\left(a_{22} a_{33}-a_{23} a_{32}\right)+a_{13}\left(b_{2} a_{32}-b_{3} a_{22}\right)\right\} \tag{3.13}\\
C_{k}=\frac{b_{2}-a_{21} B_{k}-F_{k} a_{23}}{a_{22}}, \\
F_{k}=\frac{b_{1}-a_{11} B_{k}}{a_{13}}, \\
A_{k}=\frac{1}{C_{k}}
\end{array}\right.
$$

Since, $D_{k}=G_{k}=0$, relation $A_{13 \text { new }}$ becomes

$$
\begin{equation*}
P_{k}(x)=A_{k}\left\{\left(x^{2}+B_{k} x+C_{k}\right) P_{k-2}(x)+\left(E_{k} x^{2}+F_{k} x\right) P_{k-3}^{(1)}(x)\right\} . \tag{3.14}
\end{equation*}
$$

Therefore $A_{13 n e w}$ can lead to a Lanczps-type algorithm.

3.2.2 Formula $A_{16 \text { пеш }}$

Consider the following recurrence relationship for $k \geq 2$,

$$
\begin{equation*}
P_{k}(x)=\left(A_{k} x^{2}+B_{k} x+C_{k}\right) P_{k-2}+\left(D_{k} x^{2}+E_{k} x+F_{k}\right) P_{k-2^{\prime}}^{(1)} \tag{3.15}
\end{equation*}
$$

where $P_{k}(x), P_{k-2}(x)$ and $P_{k-2}^{(1)}(x)$ are polynomials of degree $k, k-2$ and $k-2$ respectively. The constant coefficients $A_{k}, B_{k}, C_{k}, D_{k}, E_{k}$, and F_{k} are determined by $P_{k}(0)=1$ and imposing the orthogonality condition (2.1) with respect to the linear function c. Since $P_{k}(0)=1, \forall k$, then for $x=0$, equation (3.15) becomes

$$
\begin{equation*}
C_{k}+F_{k} P_{k-2}^{(1)}=1 \tag{3.16}
\end{equation*}
$$

After multiplying by U_{i} a polynomial of exact degree i and applying linear functional c on both sides it becomes

$$
\begin{align*}
c\left(U_{i} P_{k}\right)=A_{k} c\left(x^{2} U_{i} P_{k-2}\right)+B_{k} c\left(x U_{i} P_{k-2}\right)+ & C_{k} c\left(U_{i} P_{k-2}\right)+D_{k} c\left(x^{2} U_{i} P_{k-2}^{(1)}\right) \\
& +E_{k} c\left(x U_{i} P_{k-2}^{(1)}\right)+F_{k} c\left(U_{i} P_{k-2}^{(1)}\right) \tag{3.17}
\end{align*}
$$

Consequently, by applying (2.1), we have the relation for $i=0,1, \ldots, k-1$,

$$
\begin{array}{r}
A_{k} c\left(x^{2} U_{i} P_{k-2}\right)+B_{k} c\left(x U_{i} P_{k-2}\right)+C_{k} c\left(U_{i} P_{k-2}\right)+D_{k} c\left(x^{2} U_{i} P_{k-2}^{(1)}\right)+E_{k} c\left(x U_{i} P_{k-2}^{(1)}\right) \\
+F_{k} c\left(U_{i} P_{k-2}^{(1)}\right)=0 \\
A_{k} c\left(x^{2} U_{i} P_{k-2}\right)+B_{k} c\left(x U_{i} P_{k-2}\right)+C_{k} c\left(U_{i} P_{k-2}\right)+D_{k} c^{(1)}\left(x U_{i} P_{k-2}^{(1)}\right)+E_{k} c^{(1)}\left(U_{i} P_{k-2}^{(1)}\right) \\
+F_{k} c\left(U_{i} P_{k-2}^{(1)}\right)=0 \tag{3.18}
\end{array}
$$

For $i=0$, Eq (3.18) becomes $F_{k} c\left(U_{0} P_{k-2}^{(1)}\right)=0$. Since $c\left(U_{0} P_{k-2}^{(1)}\right) \neq 0 \Rightarrow F_{k}=0$, therefore, from (3.16) we have

$$
C_{k}=1
$$

The orthogonality condition is always true for $i=0,1,2, \ldots \ldots, k-5$.
For $i=k-4$, equation (3.18) gives

$$
A_{k} c\left(x^{2} U_{k-4} P_{k-2}\right)=0 \quad \Rightarrow \quad c^{(1)}\left(x^{2} U_{k-4} P_{k-3}^{(1)}\right) \neq 0, \quad A_{k}=0
$$

For $i=k-3$, equation (3.18) gives

$$
\begin{equation*}
B_{k} c\left(x U_{k-3} P_{k-2}\right)+D_{k} c^{(1)}\left(x U_{k-3} P_{k-2}^{(1)}\right)=0 \tag{3.19}
\end{equation*}
$$

For $i=k-2$, equation (3.18) gives

$$
\begin{equation*}
B_{k} c\left(x U_{k-2} P_{k-2}\right)+D_{k} c^{(1)}\left(x U_{k-2} P_{k-2}^{(1)}+E_{k} c^{(1)}\left(U_{k-2} P_{k-2}^{(1)}\right)=-c\left(U_{k-2} P_{k-2}\right)\right. \tag{3.20}
\end{equation*}
$$

For $i=k-1$, equation (3.18) gives

$$
\begin{equation*}
B_{k} c\left(x U_{k-1} P_{k-2}\right)+D_{k} c^{(1)}\left(x U_{k-1} P_{k-2}^{(1)}\right)+E_{k} c^{(1)}\left(U_{k-1} P_{k-2}^{(1)}\right)=-c\left(U_{k-1} P_{k-2}\right) \tag{3.21}
\end{equation*}
$$

Equations (3.19), (3.20) and (3.21) can be written as

$$
\left\{\begin{array}{l}
a_{11} B_{k}+a_{12} D_{k}=0 \tag{3.22}\\
a_{21} B_{k}+a_{22} D_{k}+a_{23} E_{k}=b_{2} \\
a_{31} B_{k}+a_{32} D_{k}+a_{33} E_{k}=b_{3}
\end{array}\right.
$$

Where $a_{11}, a_{12}, a_{21}, a_{22}, a_{23}, a_{31}, a_{32}, a_{33}$, are the coefficients of B_{k}, D_{k}, and E_{k}. Suppose b_{1}, b_{2}, and b_{3} are the corresponding right hand side terms of these equations.

$$
\left\{\begin{array}{l}
b_{1}=0 \tag{3.23}\\
b_{2}=-c\left(U_{k-2} P_{k-2}\right), \\
b_{3}=-c\left(U_{k-1} P_{k-2}\right)
\end{array}\right.
$$

If Δ_{k} represents the determinant of the coefficients matrix of (3.22) then we have

$$
\Delta_{k}=a_{11}\left(a_{22} a_{33}-a_{23} a_{32}\right)-a_{12}\left(a_{21} a_{33}-a_{31} a_{23}\right)
$$

If $\Delta_{k} \neq 0$, then

$$
\left\{\begin{array}{l}
B_{k}=\frac{a_{12}\left(b_{3} a_{23}-b_{2} a_{33}\right)}{\Delta_{k}}, \tag{3.24}\\
D_{k}=-\frac{a_{11} B_{k}}{a_{12}} \\
E_{k}=\frac{b_{2}-a_{21} B_{k}-D_{k} a_{22}}{a_{23}}
\end{array}\right.
$$

Since, $A_{k}=F_{k}=0$, relation $A_{1 \text { bnew }}$ becomes

$$
\begin{equation*}
P_{k}(x)=\left(B_{k} x+1\right) P_{k-2}(x)+\left(D_{k} x^{2}+E_{k} x\right) P_{k-2}^{(1)}(x) \tag{3.25}
\end{equation*}
$$

Therefore, $A_{16 n e w}$ can lead to a Lanczos-type algorithm.

3.2.3 Formula $A_{\text {19new }}$

Consider the following recurrence relationship for $k \geq 2$,

$$
\begin{equation*}
P_{k}(x)=\left(A_{k} x^{2}+B_{k} x+C_{k}\right) P_{k-2}^{(1)}+\left(D_{k} x+E_{k}\right) P_{k-1}, \tag{3.26}
\end{equation*}
$$

where $P_{k}(x), P_{k-2}^{(1)}(x)$ and $P_{k-1}(x)$ are polynomials of degree $k, k-2$ and $k-1$ respectively. The constant coefficients $A_{k}, B_{k}, C_{k}, D_{k}$, and E_{k}, are determined by $P_{k}(0)=1$ and imposing the orthogonality condition (2.1) with respect to the linear function c. Since $P_{k}(0)=1, \forall k$, then for $x=0$, equation (3.26) becomes

$$
\begin{equation*}
C_{k} P_{k-2}^{(1)}+E_{k}=1 \tag{3.27}
\end{equation*}
$$

After multiplying equation (3.26) by U_{i} a polynomial of exact degree i and applying linear functional c on both sides it becomes

$$
c\left(U_{i} P_{k}\right)=A_{k} c\left(x^{2} U_{i} P_{k-2}^{(1)}\right)+B_{k} c\left(x U_{i} P_{k-2}^{(1)}\right)+C_{k} c\left(U_{i} P_{k-2}^{(1)}\right)+D_{k} c\left(x U_{i} P_{k-1}\right)+E_{k} c\left(U_{i} P_{k-1}\right)
$$

Consequently, by applying (2.1), we have the relation for $i=0,1, \ldots, k-1$

$$
\begin{align*}
& A_{k} c\left(x^{2} U_{i} P_{k-2}^{(1)}\right)+B_{k} c\left(x U_{i} P_{k-2}^{(1)}\right)+C_{k} c\left(U_{i} P_{k-2}^{(1)}\right)+D_{k} c\left(x U_{i} P_{k-1}\right)+E_{k} c\left(U_{i} P_{k-1}\right)=0 \\
& A_{k} c^{(1)}\left(x U_{i} P_{k-2}^{(1)}\right)+B_{k} c^{(1)}\left(U_{i} P_{k-2}^{(1)}\right)+C_{k} c\left(U_{i} P_{k-2}^{(1)}\right)+D_{k} c\left(x U_{i} P_{k-1}\right)+E_{k} c\left(U_{i} P_{k-1}\right)=0 \tag{3.28}
\end{align*}
$$

Equation (3.28) is always true $i=0,1,2, \ldots, k-4$. For $i=0$, equation (3.28) becomes

$$
C_{k} c\left(U_{0} P_{k-2}^{(1)}\right)=0, \Rightarrow c\left(U_{0} P_{k-2}^{(1)}\right) \neq 0 \Rightarrow C_{k}=0
$$

Therefore, from (3.27) we have $E_{k}=1$.
For $i=k-3$, equation (3.28) gives

$$
A_{k} c^{(1)}\left(x U_{k-3} P_{k-2}^{(1)}\right)=0 \Rightarrow c^{(1)}\left(x U_{k-3} P_{k-3}^{(1)}\right) \neq 0, \Rightarrow A_{k}=0
$$

For $i=k-2$, equation (3.28) gives

$$
\begin{equation*}
B_{k} C^{(1)}\left(U_{k-2} P_{k-2}^{(1)}\right)+D_{k} c\left(x U_{k-2} P_{k-1}\right)=0 \tag{3.29}
\end{equation*}
$$

For $i=k-1$, equation (3.28) gives

$$
B_{k} C^{(1)}\left(U_{k-1} P_{k-2}^{(1)}\right)+D_{k} c\left(x U_{k-1} P_{k-1}\right)+E_{k} c\left(U_{k-1} P_{k-1}\right)=0
$$

$\because \quad E_{k}=1$, therefore

$$
\begin{equation*}
B_{k} c^{(1)}\left(U_{k-1} P_{k-2}^{(1)}\right)+D_{k} c\left(x U_{k-1} P_{k-1}\right)=-c\left(U_{k-1} P_{k-1}\right) \tag{3.30}
\end{equation*}
$$

Equations (3.29) and (3.30) can be written as

$$
\left\{\begin{array}{l}
a_{11} B_{k}+a_{12} D_{k}=0 \tag{3.31}\\
a_{21} B_{k}+a_{22} D_{k}=b_{2}
\end{array}\right.
$$

Where a_{11}, a_{12}, a_{21}, and a_{22}, are the coefficients of B_{k}, and D_{k}. Suppose b_{2}, is the corresponding right hand side term of these equations.

$$
\begin{equation*}
b_{2}=-c\left(U_{k-1} P_{k-1}\right) . \tag{3.32}
\end{equation*}
$$

If Δ_{k} represents the determinant of the coefficients matrix of (3.31) then we have

$$
\Delta_{k}=a_{11} a_{22}-a_{12} a_{21} .
$$

If $\Delta_{k} \neq 0$, then

$$
\left\{\begin{array}{l}
B_{k}=-\frac{a_{12} b_{2}}{\Delta_{k}} \tag{3.33}\\
D_{k}=\frac{a_{11} b_{2}}{\Delta_{k}}
\end{array}\right.
$$

Since, $A_{k}=C_{k}=0$, relation $A_{19 n e w}$ becomes

$$
\begin{equation*}
P_{k}(x)=B_{k} x P_{k-2}^{(1)}(x)+\left(D_{k} x+I\right) P_{k-1}(x) . \tag{3.34}
\end{equation*}
$$

Therefore, $A_{\text {new19 }}$ can lead to a Lanczos-type algorithm.

3.3 Formula B_{j} when $U_{i}(x)=P_{i}(x)$

Now we consider the formulae of type B_{j} for the choice of $U_{i}(x)=P_{i}(x)$, which have not been considered before [33]. These formulae will be used in combination with formulae A_{i} to derive new Lanczos-type algorithms.

3.3.1 Formula $B_{13 \text { new }}$

Consider the following recurrence relationship for $k \geq 3$,

$$
\begin{equation*}
P_{k}^{(1)}=\left(A_{k}^{1} x^{3}+B_{k}^{1} x^{2}+C_{k}^{1} x+D_{k}^{1}\right) P_{k-3}^{(1)}+\left(E_{k}^{1} x^{2}+F_{k}^{1} x+G_{k}^{1}\right) P_{k-2^{\prime}}^{(1)} \tag{3.35}
\end{equation*}
$$

where $P_{k}^{(1)}, P_{k-2}^{(1)}$ and $P_{k-3}^{(1)}$ are polynomials of degree $k, k-2$ and $k-3$ respectively. The constant coefficients $A_{k}^{1}, B_{k}^{1}, C_{k}^{1}, D_{k}^{1}, E_{k}^{1}, F_{k}^{1}$ and G_{k}^{1} are to be determined by imposing the orthogonality condition (2.2) with respect to the linear function $c^{(1)}$.

Multiplying equation (3.35) by U_{i} a polynomial of exact degree i and applying linear functional $c^{(1)}$ on both sides it becomes

$$
\begin{array}{r}
c^{(1)}\left(U_{i} P_{k}^{(1)}\right)=A_{k}^{1} c^{(1)}\left(x^{3} U_{i} P_{k-3}^{(1)}\right)+B_{k}^{1} c^{(1)}\left(x^{2} U_{i} P_{k-3}^{(1)}\right)+C_{k}^{1} c^{(1)}\left(x U_{i} P_{k-3}^{(1)}\right)+D_{k}^{1} c^{(1)}\left(U_{i} P_{k-3}^{(1)}\right)+ \\
E_{k}^{1} c^{(1)}\left(x^{2} U_{i} P_{k-2}^{(1)}\right)+F_{k}^{1} c^{(1)}\left(x U_{i} P_{k-2}^{(1)}\right)+G_{k}^{1} c^{(1)}\left(U_{i} P_{k-2}^{(1)}\right) .
\end{array}
$$

Consequently, by applying (2.2), we have the relation for $i=0,1, \ldots, k-1$.

$$
\begin{align*}
& A_{k}^{1} c^{(1)}\left(x^{3} U_{i} P_{k-3}^{(1)}\right)+ B_{k}^{1} c^{(1)}\left(x^{2} U_{i} P_{k-3}^{(1)}\right)+C_{k}^{1} c^{(1)}\left(x U_{i} P_{k-3}^{(1)}\right)+D_{k}^{1} c^{(1)}\left(U_{i} P_{k-3}^{(1)}\right)+ \\
& E_{k}^{1} c^{(1)}\left(x^{2} U_{i} P_{k-2}^{(1)}\right)+F_{k}^{1} c^{(1)}\left(x U_{i} P_{k-2}^{(1)}\right)+G_{k}^{1} c^{(1)}\left(U_{i} P_{k-2}^{(1)}\right)=0 \tag{3.36}
\end{align*}
$$

The orthogonality condition is always true for $i=0,1,2, \ldots \ldots, k-7$.
For $i=k-6$, equation (3.36) gives

$$
A_{k}^{1} c^{(1)}\left(x^{3} U_{k-6} P_{k-3}^{(1)}\right)=0 \quad \Rightarrow \quad c^{(1)}\left(x^{3} U_{k-6} P_{k-3}^{(1)}\right) \neq 0, \quad A_{k}^{1}=0
$$

For $i=k-5$, equation (3.36) gives

$$
B_{k}^{1} c^{(1)}\left(x^{2} U_{k-5} P_{k-3}^{(1)}\right)=0 \quad \Rightarrow \quad c^{(1)}\left(x^{2} U_{k-5} P_{k-3}^{(1)}\right) \neq 0, \quad B_{k}^{1}=0
$$

For $i=k-4$, equation (3.36) gives

$$
C_{k}^{1} c^{(1)}\left(x U_{k-4} P_{k-3}^{(1)}\right)+E_{k}^{1} c^{(1)}\left(x^{(2)} U_{k-4} P_{k-2}^{(1)}\right)=0
$$

Since $P_{k}^{(1)}$ is a monic polynomial of degree k, therefore, $E_{k}=1$.

$$
\begin{gather*}
C_{k}^{1} c^{(1)}\left(x U_{k-4} P_{k-3}^{(1)}\right)+c^{(1)}\left(x^{2} U_{k-4} P_{k-2}^{(1)}\right)=0 \\
C_{k}^{1}=-\frac{c\left(x^{3} U_{k-4} P_{k-2}^{(1)}\right)}{c\left(x^{2} U_{k-4} P_{k-3}^{(1)}\right)} \tag{3.37}
\end{gather*}
$$

For $i=k-3$, equation (3.36) gives

$$
\begin{equation*}
D_{k}^{1} c^{(1)}\left(U_{k-3} P_{k-3}^{(1)}\right)+F_{k}^{1} c^{(1)}\left(x U_{k-3} P_{k-2}^{(1)}\right)=-c^{(1)}\left(x^{2} U_{k-3} P_{k-2}^{(1)}\right)-C_{k}^{1} c^{(1)}\left(x U_{k-3} P_{k-3}^{(1)}\right) \tag{3.38}
\end{equation*}
$$

For $i=k-2$, equation (3.36) gives

$$
\begin{equation*}
D_{k}^{1} c^{(1)}\left(U_{k-2} P_{k-3}^{(1)}\right)+F_{k}^{1} c^{(1)}\left(x U_{k-2} P_{k-2}^{(1)}\right)+G_{k}^{1} c^{(1)}\left(U_{k-2} P_{k-2}^{(1)}\right)=-c^{(1)}\left(x^{2} U_{k-2} P_{k-2}^{(1)}\right)-C_{k}^{1} c^{(1)}\left(x U_{k-2} P_{k-3}^{(1)}\right) . \tag{3.39}
\end{equation*}
$$

For $i=k-1$, and equation (3.36) gives

$$
\begin{equation*}
D_{k}^{1} c^{(1)}\left(U_{k-1} P_{k-3}^{(1)}\right)+F_{k}^{1} c^{(1)}\left(x U_{k-1} P_{k-2}^{(1)}\right)+G_{k}^{1} c^{(1)}\left(U_{k-1} P_{k-2}^{(1)}\right)=-c^{(1)}\left(x^{2} U_{k-1} P_{k-2}^{(1)}\right)-C_{k}^{1} c^{(1)}\left(x U_{k-1} P_{k-3}^{(1)}\right) \tag{3.40}
\end{equation*}
$$

Equations (3.38), (3.39) and (3.40) can be written as

$$
\left\{\begin{array}{l}
a_{11}^{\prime} D_{k}^{1}+a_{12}^{\prime} F_{k}^{1}=b_{1^{\prime}}^{\prime} \tag{3.41}\\
a_{21}^{\prime} D_{k}^{1}+a_{22}^{\prime} F_{k}^{1}+a_{23}^{\prime} G_{k}^{1}=b_{2 \prime}^{\prime} \\
a_{31}^{\prime} D_{k}^{1}+a_{32}^{\prime} F_{k}^{1}+a_{33}^{\prime} G_{k}^{1}=b_{3}^{\prime}
\end{array}\right.
$$

Where $a_{11}^{\prime}, a_{12}^{\prime}, a_{21}^{\prime}, a_{22}^{\prime}, a_{23}^{\prime}, a_{31}^{\prime}, a_{32}^{\prime}, a_{33}^{\prime}$, are the coefficients of $D_{k}^{1}, F_{k^{\prime}}^{1}$ and G_{k}^{1}. Suppose $b_{1}^{\prime}, b_{2}^{\prime}$, and b_{3}^{\prime} are the corresponding right hand side terms of these equations.

$$
\left\{\begin{array}{l}
b_{1}^{\prime}=-c^{(1)}\left(x^{2} U_{k-3} P_{k-2}^{(1)}\right)-C_{k}^{1} c^{(1)}\left(x U_{k-3} P_{k-3}^{(1)}\right) \tag{3.42}\\
b_{2}^{\prime}=-c^{(1)}\left(x^{2} U_{k-2} P_{k-2}^{(1)}\right)-C_{k}^{1} c^{(1)}\left(x U_{k-2} P_{k-3}^{(1)}\right) \\
b_{3}^{\prime}=-c^{(1)}\left(x^{2} U_{k-1} P_{k-2}^{(1)}\right)-C_{k}^{1} c^{(1)}\left(x U_{k-1} P_{k-3}^{(1)}\right)
\end{array}\right.
$$

If Δ_{k} represents the determinant of the coefficients matrix of (3.41) then we have

$$
\begin{equation*}
\Delta_{k}=a_{11}^{\prime}\left(a_{22}^{\prime} a_{33}^{\prime}-a_{23}^{\prime} a_{32}^{\prime}\right)-a_{12}^{\prime}\left(a_{21}^{\prime} a_{33}^{\prime}-a_{31}^{\prime} a_{23}^{\prime}\right), \tag{3.43}
\end{equation*}
$$

If $\Delta_{k} \neq 0$, then

$$
\left\{\begin{array}{l}
D_{k}^{1}=\frac{1}{\Delta_{k}}\left\{b_{1}^{\prime}\left(a_{22}^{\prime} a_{33}^{\prime}-a_{23}^{\prime} a_{32}^{\prime}\right)-a_{12}^{\prime}\left(b_{2}^{\prime} a_{33}^{\prime}-b_{3}^{\prime} a_{23}^{\prime}\right)\right\} \tag{3.44}\\
F_{k}^{1}=\frac{b_{1}^{\prime}-a_{11}^{\prime} D_{k}^{1}}{a_{12}^{\prime}}, \\
G_{k}^{1}=\frac{b_{2}^{\prime}-a_{21}^{\prime} D_{k}^{1}-F_{k}^{1} a_{22}^{\prime}}{a_{23}^{\prime}}
\end{array}\right.
$$

Since, $A_{k}^{1}=B_{k}^{1}=0$ and $E_{k}^{1}=1$, relation $B_{13 \text { new }}$ becomes

$$
\begin{equation*}
P_{k}^{(1)}(x)=\left(C_{k}^{1} x+D_{k}^{1}\right) P_{k-3}^{(1)}(x)+\left(x^{2}+F_{k}^{1} x+G_{k}^{1}\right) P_{k-2}^{(1)}(x) \tag{3.45}
\end{equation*}
$$

Therefore, $B_{13 \text { new }}$ can lead to a Lanczos-type algorithm.

3.3.2 Formula $B_{15 \text { new }}$

Consider the following recurrence relationship for $k \geq 2$,

$$
\begin{equation*}
P_{k}^{(1)}(x)=\left(A_{k}^{1} x^{2}+B_{k}^{1} x+C_{k}^{1}\right) P_{k-2}+\left(D_{k}^{1} x^{2}+E_{k}^{1} x+F_{k}^{1}\right) P_{k-2^{\prime}}^{(1)} \tag{3.46}
\end{equation*}
$$

where $P_{k}^{(1)}(x), P_{k-2}(x)$ and $P_{k-2}^{(1)}(x)$ are polynomials of degree $k, k-2$ and $k-2$ respectively. The constant coefficients $A_{k^{\prime}}^{1}, B_{k^{\prime}}^{1}, C_{k^{\prime}}^{1}, D_{k^{\prime}}^{1}, E_{k^{\prime}}^{1}$ and F_{k}^{1} are to be determined by imposing the orthogonality condition (2.2) with respect to the linear function $c^{(1)}$. After multiplying equation (3.46) by U_{i} a polynomial of exact degree i and applying linear functional $c^{(1)}$ on both sides it becomes

$$
\begin{align*}
c^{(1)}\left(U_{i} P_{k}\right)=A_{k}^{1} c^{(1)}\left(x^{2} U_{i} P_{k-2}\right)+B_{k}^{1} c^{(1)}\left(x U_{i} P_{k-2}\right) & +C_{k}^{1} c^{(1)}\left(U_{i} P_{k-2}\right)+D_{k}^{1} c^{(1)}\left(x^{2} U_{i} P_{k-2}^{(1)}\right) \\
& +E_{k}^{1} c^{(1)}\left(x U_{i} P_{k-2}^{(1)}\right)+F_{k}^{1} c^{(1)}\left(U_{i} P_{k-2}^{(1)}\right) \tag{3.47}
\end{align*}
$$

Consequently, by applying (2.2), we have the relation for $i=0,1, \ldots, k-1$.
$A_{k}^{1} c\left(x^{3} U_{i} P_{k-2}\right)+B_{k}^{1} c\left(x^{2} U_{i} P_{k-2}\right)+C_{k}^{1} c\left(x U_{i} P_{k-2}\right)+D_{k}^{1} c^{(1)}\left(x^{2} U_{i} P_{k-2}^{(1)}\right)+E_{k}^{1} c^{(1)}\left(x U_{i} P_{k-2}^{(1)}\right)+F_{k}^{1} c^{(1)}\left(U_{i} P_{k-2}^{(1)}\right)=0$

The orthogonality condition is always true for $i=0,1,2, \ldots \ldots, k-6$. For $i=k-5$, equation (3.48) gives

$$
A_{k}^{1} c\left(x^{3} U_{k-4} P_{k-2}\right)=0 \quad \Rightarrow \quad c\left(x^{3} U_{k-4} P_{k-3}^{(1)}\right) \neq 0, \quad A_{k}^{1}=0 .
$$

Since $P_{k}^{(1)}$ is monic, $D_{k}^{1}=1$. For $i=k-4$, equation (3.48) gives

$$
\begin{gather*}
B_{k}^{1} c\left(x^{2} U_{k-4} P_{k-2}\right)+D_{k}^{1} c^{(1)}\left(x^{2} U_{k-4} P_{k-2}^{(1)}\right)=0, \\
B_{k}^{1}=-\frac{c\left(x^{3} U_{k-4} P_{k-2}^{(1)}\right)}{c\left(x^{2} U_{k-4} P_{k-2}\right)} . \tag{3.49}
\end{gather*}
$$

For $i=k-3$, equation (3.48) gives

$$
\begin{equation*}
C_{k}^{1} c\left(x U_{k-3} P_{k-2}\right)+E_{k}^{1} c^{(1)}\left(x U_{k-3} P_{k-2}^{(1)}\right)=-c^{(1)}\left(x^{2} U_{k-3} P_{k-2}^{(1)}\right)-B_{k}^{1} c\left(x U_{k-3} P_{k-2}\right) . \tag{3.50}
\end{equation*}
$$

For $i=k-2$, equation (3.48) gives

$$
\begin{equation*}
C_{k}^{1} c\left(x U_{k-2} P_{k-2}\right)+E_{k}^{1} c^{(1)}\left(x U_{k-2} P_{k-2}^{(1)}\right)+F_{k}^{1} c^{(1)}\left(U_{k-2} P_{k-2}^{(1)}\right)=-c^{(1)}\left(x^{2} U_{k-2} P_{k-2}^{(1)}\right)-B_{k}^{1} c\left(x^{2} U_{k-2} P_{k-2}\right) \tag{3.51}
\end{equation*}
$$

For $i=k-1$, equation (3.48) gives

$$
\begin{equation*}
C_{k}^{1} c\left(x U_{k-1} P_{k-2}\right)+E_{k}^{1} c^{(1)}\left(x U_{k-1} P_{k-2}^{(1)}\right)+F_{k}^{1} c^{(1)}\left(U_{k-1} P_{k-2}^{(1)}\right)=-c^{(1)}\left(x^{2} U_{k-1} P_{k-2}^{(1)}\right)-B_{k}^{1} c\left(x^{2} U_{k-1} P_{k-2}\right) \tag{3.52}
\end{equation*}
$$

Equations (3.50), (3.51) and (3.52) can be written as

$$
\left\{\begin{array}{l}
a_{11}^{\prime} C_{k}^{1}+a_{12}^{\prime} E_{k}^{1}=b_{1^{\prime}}^{\prime} \tag{3.53}\\
a_{21}^{\prime} C_{k}^{1}+a_{22}^{\prime} E_{k}^{1}+a_{23}^{\prime} F_{k}^{1}=b_{2}^{\prime} \\
a_{31}^{\prime} C_{k}^{1}+a_{32}^{\prime} E_{k}^{1}+a_{33}^{\prime} F_{k}^{1}=b_{3}^{\prime}
\end{array}\right.
$$

Where $a_{11}^{\prime}, a_{12}^{\prime}, a_{21}^{\prime}, a_{22}^{\prime}, a_{23}^{\prime}, a_{31}^{\prime}, a_{32}^{\prime}, a_{33}^{\prime}$, are the coefficients of $C_{k^{\prime}}^{1}, E_{k^{\prime}}^{1}$, and F_{k}^{1}. Suppose $b_{1}^{\prime}, b_{2}^{\prime}$, and b_{3}^{\prime} are the corresponding right hand side terms of these equations.

$$
\left\{\begin{array}{l}
b_{1}^{\prime}=-c\left(x^{3} U_{k-3} P_{k-2}^{(1)}\right)-B_{k}^{1} c\left(x U_{k-3} P_{k-2}\right) \tag{3.54}\\
b_{2}^{\prime}=-c\left(x^{3} U_{k-2} P_{k-2}^{(1)}\right)-B_{k}^{1} c\left(x^{2} U_{k-2} P_{k-2}\right) \\
b_{3}^{\prime}=-c\left(x^{3} U_{k-1} P_{k-2}^{(1)}\right)-B_{k}^{1} c\left(x^{2} U_{k-1} P_{k-2}\right)
\end{array}\right.
$$

If Δ_{k}^{1} represents the determinant of the coefficients matrix of (3.53) then we have

$$
\Delta_{k}^{1}=a_{11}^{\prime}\left(a_{22}^{\prime} a_{33}^{\prime}-a_{23}^{\prime} a_{32}^{\prime}\right)-a_{12}^{\prime}\left(a_{21}^{\prime} a_{33}^{\prime}-a_{31}^{\prime} a_{23}^{\prime}\right)
$$

If $\Delta_{k} \neq 0$, then

$$
\left\{\begin{array}{l}
C_{k}^{1}=\frac{b_{1}^{\prime}\left(a_{22}^{\prime} a_{33}^{\prime}-a_{23}^{\prime} a_{32}^{\prime}\right)-a_{12}^{\prime}\left(b_{2}^{\prime} a_{33}^{\prime}-b_{3}^{\prime} a_{23}^{\prime}\right)}{\Delta_{k}^{\prime}}, \tag{3.55}\\
E_{k}^{1}=\frac{b_{1}^{\prime}-C_{k}^{1} a_{11}^{\prime}}{a_{12}^{\prime}}, \\
F_{k}^{1}=\frac{b_{2}^{\prime}-a_{21}^{\prime} C_{k}^{1}-E_{k}^{1} a_{22}^{\prime}}{a_{23}^{\prime}}
\end{array}\right.
$$

Since, $A_{k}^{1}=0$ and $D_{k}^{1}=1$, relation $B_{15 \text { new }}$ becomes

$$
\begin{equation*}
P_{k}^{(1)}(x)=\left(B_{k}^{1} x+C_{k}^{1}\right) P_{k-2}(x)+\left(x^{2}+E_{k}^{1} x+F_{k}^{1}\right) P_{k-2}^{(1)}(x) \tag{3.56}
\end{equation*}
$$

This means $B_{15 n e w}$ can lead to the implementation of a Lanczos-type algorithm.

3.3.3 Formula $B_{16 \text { new }}$

Consider the following recurrence relationship for $k \geq 2$,

$$
\begin{equation*}
P_{k}^{(1)}(x)=\left(A_{k}^{1} x^{2}+B_{k}^{1} x+C_{k}^{1}\right) P_{k-2}^{(1)}+\left(D_{k}^{1} x+E_{k}^{1}\right) P_{k-1}, \tag{3.57}
\end{equation*}
$$

where $P_{k}^{(1)}(x), P_{k-2}^{(1)}(x)$ and $P_{k-1}(x)$ are polynomials of degree $k, k-2$ and $k-1$ respectively. The constant coefficients $A_{k^{\prime}}^{1} B_{k^{\prime}}^{1} C_{k^{\prime}}^{1} D_{k^{\prime}}^{1}$ and $E_{k^{\prime}}^{1}$ are to be determined by imposing the orthogonality condition (2.2) with respect to the linear function $c^{(1)}$. After multiplying (3.57) by U_{i} a polynomial of exact degree i and applying linear functional $c^{(1)}$ on both sides it becomes

$$
\begin{equation*}
c^{(1)}\left(U_{i} P_{k}^{(1)}\right)=A_{k}^{1} c^{(1)}\left(x^{2} U_{i} P_{k-2}^{(1)}\right)+B_{k}^{1} c^{(1)}\left(x U_{i} P_{k-2}^{(1)}\right)+C_{k}^{1} c^{(1)}\left(U_{i} P_{k-2}^{(1)}\right)+D_{k}^{1} c^{(1)}\left(x U_{i} P_{k-1}\right)+E_{k}^{1} c^{(1)}\left(U_{i} P_{k-1}\right) \tag{3.58}
\end{equation*}
$$

Consequently, by applying (2.2), we have the relation for $i=0,1, \ldots, k-1$

$$
\begin{align*}
& A_{k}^{1} c^{(1)}\left(x^{2} U_{i} P_{k-2}^{(1)}\right)+B_{k}^{1} c^{(1)}\left(x U_{i} P_{k-2}^{(1)}\right)+C_{k}^{1} c^{(1)}\left(U_{i} P_{k-2}^{(1)}\right)+D_{k}^{1} c^{(1)}\left(x U_{i} P_{k-1}\right)+E_{k}^{1} c^{(1)}\left(U_{i} P_{k-1}\right)=0, \\
& A_{k}^{1} c^{(1)}\left(x^{2} U_{i} P_{k-2}^{(1)}\right)+B_{k}^{1} c^{(1)}\left(x U_{i} P_{k-2}^{(1)}\right)+C_{k}^{1} c^{(1)}\left(U_{i} P_{k-2}^{(1)}\right)+D_{k}^{1} c\left(x^{2} U_{i} P_{k-1}\right)+E_{k}^{1} c\left(x U_{i} P_{k-1}\right)=0 \tag{3.59}
\end{align*}
$$

Equation (3.59) is always true $i=0,1,2, \ldots, k-5$.
For $i=k-4$, equation (3.59) gives

$$
A_{k}^{1} c^{(1)}\left(x^{2} U_{k-4} P_{k-2}^{(1)}\right)=0 \quad \Rightarrow \quad c^{(1)}\left(x^{2} U_{k-4} P_{k-2}^{(1)}\right) \neq 0, \quad A_{k}^{1}=0
$$

Since $P_{k}^{(1)}(x)$ is monic, therefore $D_{k}^{1} a_{k-1}=1, \Rightarrow D_{k}^{1}=\frac{1}{a_{k-1}}$
For $i=k-3$, equation (3.59) gives

$$
B_{k}^{1} c^{(1)}\left(x U_{k-3} P_{k-2}^{(1)}\right)+D_{k}^{1} c^{(1)}\left(x U_{k-3} P_{k-1}\right)=0, \Rightarrow B_{k}^{1}=-\frac{D_{k}^{1} c^{(1)}\left(x U_{k-3} P_{k-1}\right)}{c^{(1)}\left(x U_{k-3} P_{k-2}^{(1)}\right)}
$$

For $i=k-2$, equation (3.59) gives

$$
\begin{equation*}
C_{k}^{1} c\left(x U_{k-2} P_{k-2}^{(1)}\right)+E_{k}^{1} c\left(x U_{k-2} P_{k-1}\right)=-B_{k}^{1} c\left(x^{2} U_{k-2} P_{k-2}^{(1)}\right)-D_{k}^{1} c\left(x^{2} U_{k-2} P_{k-1}\right) . \tag{3.60}
\end{equation*}
$$

For $i=k-1$, equation (3.59) gives

$$
\begin{equation*}
C_{k}^{1} c\left(x U_{k-1} P_{k-2}^{(1)}\right)+E_{k}^{1} c\left(x U_{k-1} P_{k-1}\right)=-B_{k}^{1} c\left(x^{2} U_{k-1} P_{k-2}^{(1)}\right)-D_{k}^{1} c\left(x^{2} U_{k-1} P_{k-1}\right) \tag{3.61}
\end{equation*}
$$

Equations (3.60) and (3.61) can be written as

$$
\left\{\begin{array}{l}
a_{11}^{\prime} C_{k}^{1}+a_{12}^{\prime} E_{k}^{1}=b_{1}^{\prime} \tag{3.62}\\
a_{21}^{\prime} C_{k}^{1}+a_{22}^{\prime} E_{k}^{1}=b_{2}^{\prime}
\end{array}\right.
$$

Where $a_{11}^{\prime}, a_{12}^{\prime}, a_{21}^{\prime}$, and a_{22}^{\prime}, are the coefficients of $C_{k^{\prime}}^{1}$, and $E_{k^{\prime}}^{1}$, and suppose b_{1}^{\prime}, and b_{2}^{\prime} are the corresponding right hand side terms of these equations.

$$
\left\{\begin{array}{l}
b_{1}^{\prime}=-B_{k}^{1} c\left(x^{2} U_{k-2} P_{k-2}^{(1)}\right)-D_{k}^{1} c\left(x^{2} U_{k-2} P_{k-1}\right) \tag{3.63}\\
b_{2}^{\prime}=-B_{k}^{1} c\left(x^{2} U_{k-1} P_{k-2}^{(1)}\right)-D_{k}^{1} c\left(x^{2} U_{k-1} P_{k-1}\right)
\end{array}\right.
$$

If Δ_{k} represents the determinant of the coefficients matrix of (3.62) then we have

$$
\Delta_{k}=a_{11}^{\prime} a_{22}^{\prime}-a_{12}^{\prime} a_{21}^{\prime}
$$

If $\Delta_{k} \neq 0$, then

$$
\left\{\begin{array}{l}
D_{k}^{1}=\frac{1}{a_{k-1}}, \tag{3.64}\\
B_{k}^{1}=-\frac{D_{k}^{\prime} c\left(x^{2} P_{k-3} P_{k-1}\right)}{c\left(x^{2} P_{k-3} P_{k-2}^{1(1)}\right)}, \\
C_{k}^{1}=\frac{b_{1}^{\prime} a_{22}^{\prime}-b_{2}^{\prime} a_{12}^{\prime}}{\Delta_{k}}, \\
E_{k}^{1}=\frac{b_{2}^{\prime} a_{11}^{\prime}-b_{1}^{\prime} a_{12}^{\prime}}{\Delta_{k}}
\end{array}\right.
$$

Since, $A_{k}^{1}=0$, relation $B_{1 \text { new }}$ becomes

$$
\begin{equation*}
P_{k}^{(1)}(x)=\left(B_{k}^{1} x+C_{k}^{1}\right) P_{k-2}^{(1)}(x)+\left(D_{k}^{1} x+E_{k}^{1}\right) P_{k-1}(x) . \tag{3.65}
\end{equation*}
$$

This means $B_{16 n e w}$ can lead to the implementation of a Lanczos-type algorithm.

3.4 Lanczos-type Algorithms for the Choice of $U_{i}(x)=P_{i}(x)$

In this chapter, we have derived new FOPs based recurrence formulae. Now we derive Lanczos-type algorithm which are based on these formulae. If we write $\mathbf{r}_{k}=P_{k}(x) \mathbf{r}_{0}$, $\mathbf{r}_{k}=\mathbf{b}-A \mathbf{x}_{k}$ and $\mathbf{z}_{k}=P_{k}^{(1)}(x) \mathbf{r}_{0}$, the formulae A_{i} provide expressions for \mathbf{r}_{k} and \mathbf{x}_{k}, and the
formulae B_{j} help to find \mathbf{z}_{k}, recursively.

3.4.1 $A_{16 \text { new }} / B_{15 \text { new }}$ Based Lanczos-type Algorithm

From relation $A_{1 \text { tпnew }}$ of subsection 3.2.2, the equation (3.25), after replacing x by A. Since $\mathbf{r}_{k}=P_{k}(A) \mathbf{r}_{0}$, we have

$$
\left\{\begin{array}{l}
\mathbf{r}_{k}=\mathbf{r}_{k-2}+B_{k} A \mathbf{r}_{k-2}+D_{k} A^{2} \mathbf{z}_{k-2}+E_{k} A \mathbf{z}_{k-2} \tag{3.66}\\
\tilde{\mathbf{r}}_{k}=\tilde{\mathbf{r}}_{k-2}+B_{k} A^{T} \tilde{\mathbf{r}}_{k-2}+D_{k}\left(A^{T}\right)^{2} \tilde{\mathbf{z}}_{k-2}+E_{k} A^{T} \tilde{\mathbf{z}}_{k-2}
\end{array}\right.
$$

Using $\mathbf{r}_{k}=\mathbf{b}-A \mathbf{x}_{k}$, we get

$$
\begin{equation*}
\mathbf{x}_{k}=\mathbf{x}_{k-2}-B_{k} \mathbf{r}_{k-2}-D_{k} A \mathbf{z}_{k-2}-E_{k} \mathbf{z}_{k-2} . \tag{3.67}
\end{equation*}
$$

The equations (3.66) and (3.67) with all coefficients involved have been derived as (3.24) in subsection 3.2.2, are valid for $k \geq 2$. We have to calculate \mathbf{r}_{1} and \mathbf{x}_{1} differently as in equations (2.138).

If we set,

$$
\left\{\begin{array}{l}
\mathbf{r}_{k}=P_{k} \mathbf{r}_{0}, \quad \tilde{\mathbf{r}}_{k}=P_{k}\left(A^{T}\right) \mathbf{y} \tag{3.68}\\
\mathbf{z}_{k}=P_{k}^{(1)}(A) \mathbf{r}_{0}, \quad \tilde{\mathbf{z}}_{k}=P_{k}^{(1)}\left(A^{T}\right) \tilde{\mathbf{z}}_{0}
\end{array}\right.
$$

Now, for $U_{i}(x)=P_{i}(x)$. Therefore, the rest of the coefficients can be written explicitly as follow;
$a_{11}=\left(\tilde{\mathbf{r}}_{k-3}, A \mathbf{r}_{k-2}\right), \quad a_{12}=\left(\tilde{\mathbf{r}}_{k-3}, A^{2} \mathbf{z}_{k-2}\right), \quad a_{21}=\left(\tilde{\mathbf{r}}_{k-2}, A \mathbf{r}_{k-2}\right), \quad a_{22}=\left(\tilde{\mathbf{r}}_{k-2}, A^{2} \mathbf{z}_{k-2}\right)$,
$a_{23}=\left(\tilde{\mathbf{r}}_{k-2}, A \mathbf{z}_{k-2}\right), \quad a_{31}=\left(\tilde{\mathbf{r}}_{k-2}, A \mathbf{r}_{k-1}\right), \quad a_{32}=\left(\tilde{\mathbf{r}}_{k-1}, A^{2} \mathbf{z}_{k-2}\right), \quad a_{33}=\left(\tilde{\mathbf{r}}_{k-1}, A \mathbf{z}_{k-2}\right)$.
$b_{1}=0, \quad b_{2}=-\left(\tilde{\mathbf{r}}_{k-2}, \mathbf{r}_{k-2}\right), \quad b_{3}=-c\left(P_{k-1} P_{k-2}\right)=0$.
From formula $B_{15 n e w}$ of subsection 3.3.2, equation (3.56), after replacing x by A. Since $\mathbf{z}_{k}=P_{k}^{(1)}(A) \mathbf{r}_{0}$, we have

$$
\left\{\begin{array}{l}
\mathbf{z}_{k}=B_{k} A \mathbf{r}_{k-2}+C_{k} \mathbf{r}_{k-2}+A^{2} \mathbf{z}_{k-2}+E_{k} A \mathbf{z}_{k-2}+F_{k} \mathbf{z}_{k-2} \tag{3.69}\\
\tilde{\mathbf{z}}_{k}=B_{k} A^{T} \tilde{\mathbf{r}}_{k-2}+C_{k} \tilde{\mathbf{r}}_{k-2}+\left(A^{T}\right)^{2} \tilde{\mathbf{z}}_{k-2}+E_{k} A^{T} \tilde{\mathbf{z}}_{k-2}+F_{k} \tilde{\mathbf{z}}_{k-2}
\end{array}\right.
$$

The equations (3.69) with all coefficients involved have been derived as (3.49) and (3.55) in subsection 3.3.2, are valid for $k \geq 2$.

Now, for $U_{i}(x)=P_{i}(x)$, if we set, $\mathbf{r}_{k}=P_{k}(A) \mathbf{r}_{0}, \tilde{\mathbf{r}}_{k}=P_{k}\left(A^{T}\right) \mathbf{y}$, and $\mathbf{z}_{k}=P_{k}^{(1)}(A) \mathbf{r}_{0}$
$a_{11}^{\prime}=\left(\tilde{\mathbf{r}}_{k-3}, A \mathbf{r}_{k-2}\right), \quad a_{12}^{\prime}=\left(\tilde{\mathbf{r}}_{k-3}, A^{2} \mathbf{z}_{k-2}\right), \quad a_{21}^{\prime}=\left(\tilde{\mathbf{r}}_{k-2}, A \mathbf{r}_{k-2}\right), \quad a_{22}^{\prime}=\left(\tilde{\mathbf{r}}_{k-2}, A^{2} \mathbf{z}_{k-2}\right)$,
$a_{23}^{\prime}=\left(\tilde{\mathbf{r}}_{k-2}, A \mathbf{z}_{k-2}\right), a_{31}^{\prime}=\left(\tilde{\mathbf{r}}_{k-2}, A \mathbf{r}_{k-1}\right), \quad a_{32}=\left(\tilde{\mathbf{r}}_{k-1}, A^{2} \mathbf{z}_{k-2}\right), a_{33}^{\prime}=\left(\tilde{\mathbf{r}}_{k-1}, A \mathbf{z}_{k-2}\right)$.
$b_{1}=-\left(\tilde{\mathbf{r}}_{k-3}, A^{3} \mathbf{z}_{k-2}\right)-B_{k+1}\left(\tilde{\mathbf{r}}_{k-3}, A^{2} \mathbf{r}_{k-2}\right), \quad b_{2}=-\left(\tilde{\mathbf{r}}_{k-2}, A^{3} \mathbf{z}_{k-2}\right)-B_{k+1}\left(\tilde{\mathbf{r}}_{k-2}, A^{2} \mathbf{r}_{k-2}\right)$,
$b_{3}=-\left(\tilde{\mathbf{r}}_{k-1}, A^{3} \mathbf{z}_{k-2}\right)-B_{k+1}\left(\tilde{\mathbf{r}}_{k-1}, A^{2} \mathbf{r}_{k-2}\right)$.
After gathering together all these formulae, we finally have the Lanczos algorithm based on $A_{16 \text { new }}$ and $B_{15 \text { new }}$.

3.4.2 $A_{16 \text { new }} / B_{16 n e w}$ Based Lanczos-type Algorithm

From equations (3.66), and (3.67), we have

$$
\left\{\begin{array}{l}
\mathbf{r}_{k}=\mathbf{r}_{k-2}+B_{k} A \mathbf{r}_{k-2}+D_{k} A^{2} \mathbf{z}_{k-2}+E_{k} A \mathbf{z}_{k-2} \tag{3.70}\\
\tilde{\mathbf{r}}_{k}=\tilde{\mathbf{r}}_{k-2}+B_{k} A^{T} \tilde{\mathbf{r}}_{k-2}+D_{k}\left(A^{T}\right)^{2} \tilde{\mathbf{z}}_{k-2}+E_{k} A^{T} \tilde{\mathbf{z}}_{k-2} \\
\mathbf{x}_{k}=\mathbf{x}_{k-2}-B_{k} \mathbf{r}_{k-2}-D_{k} A \mathbf{z}_{k-2}-E_{k} \mathbf{z}_{k-2}
\end{array}\right.
$$

The equations (3.70) with all coefficients involved have been derived as (3.24) in subsection 3.2.2, are valid for $k \geq 2$. We have to calculate \mathbf{r}_{1} and \mathbf{x}_{1} differently as in equations (2.138). From formula $B_{16 n e w}$ of subsection 3.3.3, equation (3.65), after replacing x by A. Since $\mathbf{z}_{k}=P_{k}^{(1)}(A) \mathbf{r}_{0}$, we have

$$
\left\{\begin{array}{l}
\mathbf{z}_{k}=B_{k} A \mathbf{z}_{k-2}+C_{k} \mathbf{z}_{k-2}+D_{k} A \mathbf{r}_{k-1}+E_{k} \mathbf{r}_{k-1} \tag{3.71}\\
\tilde{\mathbf{z}}_{k}=B_{k} A^{T} \tilde{\mathbf{z}}_{k-2}+C_{k} \tilde{\mathbf{z}}_{k-2}+D_{k} A^{T} \tilde{\mathbf{r}}_{k-1}+E_{k} \tilde{\mathbf{r}}_{k-1}
\end{array}\right.
$$

The equations (3.71) with all coefficients involved have been derived as (3.64) in subsection 3.3.3, are valid for $k \geq 2$. Therefore, we need to find \mathbf{z}_{1} as in Eq (2.146). Since $D_{k}^{1}=\frac{1}{a_{k-1}}$ is defined by $P_{k-1}=a_{k-1} x^{k-1}+a_{k-2} x^{k-2}+\ldots+1$, and $a_{k}=D a_{k-1}, \quad a_{k-1}=D_{k-1} k_{k-2}$,
therefore, $D_{k}^{1}=\frac{D_{k-1}^{1}}{D_{k-1}}$.
Now, for $U_{i}(x)=P_{i}(x)$, using Eq (3.68) the rest of the coefficients can be written explicitly as follows;
$a_{11}^{\prime}=\left(\tilde{\mathbf{r}}_{k-2}, A \mathbf{z}_{k-2}\right), \quad a_{12}^{\prime}=\left(\tilde{\mathbf{r}}_{k-2}, A \mathbf{r}_{k-1}\right), \quad a_{21}^{\prime}=\left(\tilde{\mathbf{r}}_{k-1}, A \mathbf{z}_{k-2}\right), \quad a_{22}^{\prime}=\left(\tilde{\mathbf{r}}_{k-1}, A \mathbf{r}_{k-1}\right)$
$b_{1}^{\prime}=-B_{k}\left(\tilde{\mathbf{r}}_{k-2}, A^{2} \mathbf{z}_{k-2}\right)-D_{k}\left(\tilde{\mathbf{r}}_{k-2}, A^{2} \mathbf{r}_{k-1}\right), \quad b_{2}^{\prime}=-B_{k}\left(\tilde{\mathbf{r}}_{k-1}, A^{2} \mathbf{z}_{k-2}\right)-D_{k}\left(\tilde{\mathbf{r}}_{k-1}, A^{2} \mathbf{r}_{k-1}\right)$
After gathering together all these formulae, we finally have the Lanczos algorithm based on $A_{1 \text { neew }}$ and $B_{16 \text { new }}$.

3.4.3 $A_{19 \text { пеш }} / B_{15 \text { пеш }}$ Based Lanczos-type Algorithm

From formula $A_{19 n e w}$ of subsection 3.2.3, the equation (3.34), after replacing x by A. Since $\mathbf{r}_{k}=P_{k}(A) \mathbf{r}_{0}$, we have

$$
\left\{\begin{array}{l}
\mathbf{r}_{k}=\mathbf{r}_{k-1}+D_{k} A \mathbf{r}_{k-1}+B_{k} A \mathbf{z}_{k-2} \tag{3.72}\\
\tilde{\mathbf{r}}_{k}=\tilde{\mathbf{r}}_{k-1}+D_{k} A^{T} \tilde{\mathbf{r}}_{k-1}+B_{k} A^{T} \tilde{\mathbf{z}}_{k-2}
\end{array}\right.
$$

Using $\mathbf{r}_{k}=\mathbf{b}-A \mathbf{x}_{k}$, we get

$$
\begin{equation*}
\mathbf{x}_{k}=\mathbf{x}_{k-1}-B_{k} \mathbf{z}_{k-2}-D_{k} \mathbf{r}_{k-1} . \tag{3.73}
\end{equation*}
$$

The equations (3.72) and (3.73) with all coefficients involved having been derived as (3.33) in subsection 3.2.3, are valid for $k \geq 2$. However, we have to calculate $\mathbf{r}_{1}, \mathbf{x}_{1}$ differently as in (2.138) and $\tilde{\mathbf{r}}_{1}$ from equations (2.138) we have

$$
\begin{equation*}
\tilde{\mathbf{r}}_{1}=\tilde{\mathbf{r}}_{0}-\frac{c_{0}}{c_{1}} A^{T} \tilde{\mathbf{r}}_{0} \tag{3.74}
\end{equation*}
$$

Now, for $U_{i}(x)=P_{i}(x)$, using Eq (3.68) the rest of the coefficients can be written explicitly as follow;
$a_{11}=\left(\tilde{\mathbf{r}}_{k-2}, A \mathbf{z}_{k-2}\right), \quad a_{12}=\left(\tilde{\mathbf{r}}_{k-2}, A \mathbf{r}_{k-1}\right), \quad a_{21}=\left(\tilde{\mathbf{r}}_{k-1}, A \mathbf{z}_{k-2}\right), \quad a_{22}=\left(\tilde{\mathbf{r}}_{k-1}, A \mathbf{r}_{k-1}\right)$
$b_{1}=0, \quad b_{2}=-\left(\tilde{\mathbf{r}}_{k-1}, \mathbf{r}_{k-1}\right)$.

From equation (3.68) in subsection (3.4.1), we have for $B_{15 n e w}$,

$$
\left\{\begin{array}{l}
\mathbf{z}_{k}=B_{k}^{1} A \mathbf{r}_{k-2}+C_{k}^{1} \mathbf{r}_{k-2}+A^{2} \mathbf{z}_{k-2}+E_{k}^{1} A \mathbf{z}_{k-2}+F_{k}^{1} \mathbf{z}_{k-2} \tag{3.75}\\
\tilde{\mathbf{z}}_{k}=B_{k}^{1} A^{T} \tilde{\mathbf{r}}_{k-2}+C_{k}^{1} \tilde{\mathbf{r}}_{k-2}+\left(A^{T}\right)^{2} \tilde{\mathbf{z}}_{k-2}+E_{k}^{1} A^{T} \tilde{\mathbf{z}}_{k-2}+F_{k}^{1} \tilde{\mathbf{z}}_{k-2}
\end{array}\right.
$$

The equations (3.75) with all coefficients involved already derived as (3.49) and (3.55) in subsection 3.3.2, are valid for $k \geq 2$. Therefore, we need to find \mathbf{z}_{1}, and $\tilde{\mathbf{z}}_{1}$ by alternative ways as in (2.146), (2.147) and (2.148) of subsection 2.4.2.

$$
\left\{\begin{array}{l}
\tilde{\mathbf{z}}_{1}=A \tilde{\mathbf{z}}_{0}-\frac{c_{2}}{c_{1}} \tilde{\mathbf{z}}_{0}, \tag{3.76}\\
\tilde{\mathbf{z}}_{2}=A^{2} \tilde{\mathbf{z}}_{0}-\mu A \tilde{\mathbf{z}}_{0}+v \tilde{\mathbf{z}}_{0} \\
\tilde{\mathbf{z}}_{3}=A^{3} \tilde{\mathbf{z}}_{0}-\eta^{\prime} A^{2} \tilde{\mathbf{z}}_{0}+\mu^{\prime} A \tilde{\mathbf{z}}_{0}-v^{\prime} \tilde{\mathbf{z}}_{0}
\end{array}\right.
$$

We finally have Algorithm 9, after gathering together all these formulae.

```
Algorithm 9 Lanczos-type Algorithm based on relations \(A_{19 \text { new }} / B_{15 \text { new }}\)
Input: \(A\) an \(n \times n\) matrix, \(b\) an \(n\)-vector.
Output: the approximations solution, \(\mathbf{x}_{k}\), norm of the residual, \(\left\|\mathbf{r}_{k}\right\|\).
Initializations: Choose \(\mathbf{x}_{0}\) and \(\mathbf{y}\), such that \(y \neq 0\) and the tolerance \(\varepsilon\) to \(1.0 E-13\).
\[
\text { Set } \mathbf{r}_{0}=\mathbf{b}-\mathbf{A} \mathbf{x}_{0}, \mathbf{y}_{0}=\mathbf{y}, \mathbf{z}_{0}=\mathbf{r}_{0}, \tilde{\mathbf{z}}_{0}=\mathbf{y}, \tilde{\mathbf{r}}_{0}=\mathbf{y} .
\]
```


Compute:

```
\(c_{0}\) and \(c_{1}\), as in (1.23b),
\(\mathbf{r}_{1}, \mathbf{x}_{1}\), as in (2.138), \(\tilde{\mathbf{r}}_{1}\), as in (3.74)
\(\mathbf{z}_{1}\), as in (2.146), \(\tilde{\mathbf{z}}_{1}, \tilde{\mathbf{z}}_{2}, \tilde{\mathbf{z}}_{3}\) as in (3.76)
\(k=2\);
While \(\left\|\mathbf{r}_{k}\right\|>\varepsilon\) do
\(B_{k}, D_{k}\) as in subsection (3.33),
\(\mathbf{r}_{k}=\mathbf{r}_{k-1}+D_{k} A \mathbf{r}_{k-1}+B_{k} A \mathbf{z}_{k-1}\),
\(\tilde{\mathbf{r}}_{k}=\tilde{\mathbf{r}}_{k-1}+D_{k} A^{\prime} \tilde{\mathbf{r}}_{k-1}+B_{k} A^{\prime} \tilde{\mathbf{z}}_{k-1}\),
\(\mathbf{x}_{k}=\mathbf{x}_{k-1}-D_{k} \mathbf{r}_{k-1}-B_{k} A \mathbf{z}_{k-2}\).
\(B_{k^{\prime}}^{\prime}\) as in (3.49),
\(C_{k^{\prime}}^{\prime}, E_{k^{\prime}}^{\prime} F_{k^{\prime}}^{\prime}\), as in (3.55),
\(\mathbf{z}_{k}=B_{k}^{\prime} A \mathbf{r}_{k-2}+C_{k}^{\prime} \mathbf{r}_{k-2}+A^{2} \mathbf{z}_{k-2}+E_{k}^{\prime} A \mathbf{z}_{k-2}+F_{k}^{\prime} \mathbf{z}_{k-2}\),
\(\tilde{\mathbf{z}}_{k}=B_{k}^{\prime} A^{\prime} \tilde{\mathbf{r}}_{k-2}+C_{k}^{\prime} \tilde{\mathbf{r}}_{k-2}+A^{\prime 2} \tilde{\mathbf{z}}_{k-2}+E_{k}^{\prime} A^{\prime} \tilde{\mathbf{z}}_{k-2}+F_{k}^{\prime} \tilde{\mathbf{z}}_{k-2}\).
\(k=k+1\).
```


EndWhile

Obtain the approximate solution as well as the residual norm.
$\operatorname{sol}_{\text {last }}=\mathbf{x}_{k}$,
norm $_{\text {last }}=\left\|\mathbf{r}_{k}\right\|$.

Stop.

3.4.4 $A_{19 \text { пеш }} / B_{16 \text { пеш }}$ Based Lanczos-type Algorithm

From equation (3.72), and (3.73) in subsection 3.4.3, we have for $A_{19 n e w}$

$$
\left\{\begin{array}{l}
\mathbf{r}_{k}=\mathbf{r}_{k-1}+D_{k} A \mathbf{r}_{k-1}+B_{k} A \mathbf{z}_{k-2} \tag{3.77}\\
\tilde{\mathbf{r}}_{k}=\tilde{\mathbf{r}}_{k-1}+D_{k} A^{T} \tilde{\mathbf{r}}_{k-1}+B_{k} A^{T} \tilde{\mathbf{z}}_{k-2} \\
\mathbf{x}_{k}=\mathbf{x}_{k-1}-B_{k} \mathbf{z}_{k-2}-D_{k} \mathbf{r}_{k-1}
\end{array}\right.
$$

The Eqs (3.77) with all coefficients involved already derived as Eq (3.33) in subsection 3.2.3, are valid for $k \geq 2$. We have to calculate \mathbf{r}_{1} and \mathbf{x}_{1} differently as Eq (2.138). From Eqs (3.71) in subsection 3.4.2, we have

$$
\left\{\begin{array}{l}
\mathbf{z}_{k}=B_{k}^{1} A \mathbf{z}_{k-2}+C_{k}^{1} \mathbf{z}_{k-2}+D_{k}^{1} A \mathbf{r}_{k-1}+E_{k}^{1} \mathbf{r}_{k-1}, \tag{3.78}\\
\tilde{\mathbf{z}}_{k}=B_{k}^{1} A^{T} \tilde{\mathbf{z}}_{k-2}+C_{k}^{1} \tilde{\mathbf{z}}_{k-2}+D_{k}^{1} A^{T} \tilde{\mathbf{r}}_{k-1}+E_{k}^{1} \tilde{\mathbf{r}}_{k-1}
\end{array}\right.
$$

Similarly, Eqs (3.78) with all coefficients involved already derived in subsection 3.3.3, are valid for $k \geq 2$. Therefore, we only need to find \mathbf{z}_{1}, as Eq (2.146) and $\tilde{\mathbf{z}}_{1}$ as Eq (3.76)

3.4.5 Numerical Results of $A_{1 \text { new }} / B_{15 \text { new }}$

The algorithms are coded in Matlab R2014b and run on a PC under Microsoft Windows 7 Enterprise, with 16.00GB RAM, and processor Intel(R) Core(TM) i5-3570 CPU 3.40GHz. Experimental results are recorded in the Table 3.1 for different size problems ranging from 10 to 5000 of Baheux-type problems [3,33]. Experimental results on instances of problem $A x=b$ with A refer in section 2.5 are recorded in the following Table 3.1. The stoping criterion is the norm of residual $\left\|r_{k}\right\|=t o l=1.0000 E-13$.

```
Algorithm 10 Restarting Lanczos-type Algorithm based on relations \(A_{19 n e w} / B_{15 \text { new }}\)
Run Algorithm 9 for a fixed number of iterations \(k\) or until it halts;
Obtain the solution sol last \(=\mathbf{x}_{k}\) as well as the residual norm norm last \(=\left\|\mathbf{r}_{k}\right\|\).
While \(\left\|\mathbf{r}_{k}\right\|>\varepsilon\) do
    initialize it with the current iterate of the algorithm run,
    \(\mathbf{x}=\) sol \(_{\text {last }}\),
    \(\mathbf{y}=\mathbf{b}-A \mathbf{x}\).
    Run Algorithm 9 for a fixed number of iterations \(k\)
```


EndWhile

```
Obtain the optimal solution as well as the optimal residual norm as follows
sol \(_{\text {optimal }}=\mathbf{x}_{k}\)
norm \(_{\text {optimal }}=\left\|\mathbf{r}_{k}\right\|\).
Stop.
```

Table 3.1: Results of Algorithm 9 and Algorithm 10 on Baheux-type problems for $\delta=0$

Dim of Prob	Algorithm 9		Algorithm 10					
	$\left\\|r_{k}\right\\|$	sec	$\left\\|r_{k}\right\\|$	sec				
10	$1.5145 \mathrm{E}-16$	$9.8426 \mathrm{E}-01$	$1.5145 \mathrm{E}-16$	$9.6844 \mathrm{E}-01$				
50	$1.5310 \mathrm{E}-14$	$8.8283 \mathrm{E}-01$	$1.5310 \mathrm{E}-14$	$9.1245 \mathrm{E}-01$				
100	$7.0504 \mathrm{E}-15$	$9.8697 \mathrm{E}-01$	$7.0504 \mathrm{E}-15$	$9.3030 \mathrm{E}-01$				
200	NaN		$8.1359 \mathrm{E}-14$	$1.3221 \mathrm{E}+00$				
500	NaN		$9.3504 \mathrm{E}-14$	$1.0537 \mathrm{E}+01$				
1000	NaN		$9.1007 \mathrm{E}-14$	$7.9361 \mathrm{E}+01$				
5000	NaN		$8.6604 \mathrm{E}-14$	$7.5275 \mathrm{E}+03$				
10000	NaN		$8.5147 \mathrm{E}-14$	$5.2613 \mathrm{E}+04$				

Table 3.1 lists the results obtained from computations with Algorithm $9\left(A_{19} / B_{15}\right)_{\text {new }}$, and its restart version Algorithm 10. It is clear from the results that the Lanczos-type algorithm suffers from breakdown. It is due to a division by zero that can not be avoided when computing the coefficients of those recurrence relations based on $P_{k}(x)$ and $P_{k}^{(1)}(x)$. The coefficients of different recurrence relations between orthogonal polynomials consist of ratios of scalar products. Some of the scalar products in the denominator are as small as E-14, which causes the breakdown and the algorithms have to be stopped. Secondly,
causes of breakdown may be due to the non-existence of some of the FOPs involved in the recurrence relations. Restarting is used to avoid the problem. This strategy either stops the Lancozs-type algorithm pre-emptively and restarts it with some iterate or waits until breakdown occurs and then restarts from the last iterate found.

3.5 Summary

The focus of this chapter was on obtaining the recurrence relations between FOPs taking into consideration the common family of auxiliary polynomials $U_{i}(x)$. This relation for $U_{i}(x)=x^{i}$ [33] is then explained concisely. Following this, the expressions for the coefficients of this polynomial are derived for a new choice of $U_{i}(x)=P_{i}(x)$. The relations A_{i} / B_{j} [33] are also recalled for the same choice of the auxiliary polynomials $U_{i}(x)=P_{i}(x)$ or $U_{i}(x)=P_{i}^{(1)}(x)$. It should be noted that these Lanczos-type of algorithms suffers from breakdown. This issue is going to be addressed in the next chapter.

Chapter 4

Monitoring breakdown issue in

Lanczos-type algorithms

4.1 Introduction

Because every algorithms relies on different recurrence relations between different FOPs, it is difficult to generate a test for monitoring the components that cause breakdown which is valid for all Lanczos-type algorithms. Every algorithm, therefore will have its own test. This is the best one can do at the moment. It is worth noting that for a given Lanczos-type algorithm the test works well and prevent the algorithm from breaking down.

4.2 Recalling some existing Lanczos-type algorithms

We revisit some established Lanczos-type algorithms such as A_{12} [33], Orthores, Orthodir and Orthomin as mentioned in [4].

4.2.1 Lanczos-type algorithm based on relation A_{12}

Consider the recurrence relationship for $k \geq 3$,

$$
\begin{equation*}
P_{k}(x)=A_{k}\left\{\left(x^{2}+B_{k} x+C_{k}\right) P_{k-2}+\left(D_{k} x^{3}+E_{k} x^{2}+F_{k} x+G_{k}\right) P_{k-3}\right\}, \tag{4.1}
\end{equation*}
$$

where $P_{k}(x), P_{k-2}(x)$ and $P_{k-3}(x)$ are polynomials of degree $k, k-2$ and $k-3$ respectively. The constant coefficients $A_{k}, B_{k}, C_{k}, D_{k}, E_{k}, F_{k}$, and G_{k} are determined by the normalization condition $P_{k}(0)=1$ and imposing the orthogonality condition (2.1). For the detailed derivation, the identification of the coefficients and the algorithm itself, please refer to [33]. From the above we immediately obtain

$$
\begin{equation*}
P_{k}(x)=A_{k}\left\{\left(x^{2}+B_{k} x+C_{k}\right) P_{k-2}+\left(F_{k} x+G_{k}\right) P_{k-3}\right\} . \tag{4.2}
\end{equation*}
$$

Their coefficients are estimated as $D_{k}=0$ and $E_{k}=0$. If $\Delta_{k} \neq 0$, then

$$
\begin{equation*}
B_{k}=\frac{b_{1}\left(a_{22} a_{33}-a_{32} a_{23}\right)+a_{13}\left(b_{2} a_{32}-b_{3} a_{22}\right)}{\Delta_{k}} \tag{4.3}
\end{equation*}
$$

where $\Delta_{k}=a_{11}\left(a_{22} a_{33}-a_{32} a_{23}\right)+a_{13}\left(a_{21} a_{32}-a_{31} a_{22}\right)$,

$$
\begin{align*}
& F_{k}=-\frac{c\left(x^{k-2} P_{k-2}\right)}{c\left(x^{k-3} P_{k-3}\right)} \\
& \left\{\begin{array}{l}
G_{k}=\frac{b_{1}-a_{11} B_{k}}{a_{13}}, \\
C_{k}=\frac{b_{2}-a_{21} B_{k}-a_{23} G_{k}}{a_{22}}, \\
A_{k}=\frac{1}{C_{k}+G_{k}} .
\end{array}\right. \tag{4.4}
\end{align*}
$$

Since $\mathbf{r}_{k}=P_{k}(A) \mathbf{r}_{0}$, the equation (4.2), after replacing x by A and using $\mathbf{r}_{k}=\mathbf{b}-A \boldsymbol{x}_{k}$, we get

$$
\left\{\begin{array}{l}
\mathbf{r}_{k}=A_{k}\left\{\left(A^{2}+B_{k} A+C_{k}\right) \mathbf{r}_{k-2}+\left(F_{k} A+G_{k}\right) \mathbf{r}_{k-3}\right\} \tag{4.5}\\
\mathbf{x}_{k}=A_{k}\left\{C_{k} \mathbf{x}_{k-2}+G_{k} \mathbf{x}_{k-3}-\left(A \mathbf{r}_{k-2}+B_{k} \mathbf{r}_{k-2}+F_{k}\right) \mathbf{r}_{k-3}\right\}
\end{array}\right.
$$

Equations (4.5) define a Lanczos-type algorithm. Now, we have to find the expressions of the coefficients $A_{k}, B_{k}, C_{k}, F_{k}$, and G_{k} appearing in them. We know that Therefore, we can
write using Eq (2.136) we get

$$
\begin{equation*}
F_{k}=-\frac{\left(\mathbf{y}_{k-2}, \mathbf{r}_{k-2}\right)}{\left(\mathbf{y}_{k-3}, \mathbf{r}_{k-3}\right)} . \tag{4.6}
\end{equation*}
$$

The rest of the coefficients can be written explicitly as follows:
$a_{11}=\left(\mathbf{y}_{k-2}, \mathbf{r}_{k-2}\right), a_{12}=0, a_{13}=\left(\mathbf{y}_{k-3}, \mathbf{r}_{k-3}\right)$,
$a_{21}=\left(\mathbf{y}_{k-1}, \mathbf{r}_{k-2}\right), a_{22}=a_{11}, a_{23}=\left(\mathbf{y}_{k-2}, \mathbf{r}_{k-3}\right)$,
$a_{31}=\left(\mathbf{y}_{k}, \mathbf{r}_{k-2}\right), a_{32}=a_{21}, a_{33}=\left(\mathbf{y}_{k-1}, \mathbf{r}_{k-3}\right)$,
$b_{1}=-a_{21}-F_{k} a_{23}, \quad b_{2}=-a_{31}-F_{k} a_{33}, \quad b_{3}=-s-F_{k} t$,
where $s=\left(\mathbf{y}_{k+1}, \mathbf{r}_{k-2}\right), t=\left(\mathbf{y}_{k}, \mathbf{r}_{k-3}\right)$
We finally have the following algorithm after gathering all these formulae [33].

```
Input: \(A\) an \(n \times n\) matrix, \(\mathbf{b}\) an n-vector.
```


Compute:

```
\(c_{0}, c_{1}, c_{2}, c_{3}\); as in (1.23b)
\(\mathbf{r}_{1}\), and \(\mathbf{x}_{1}\), as in (2.138), [33]
\(\mathbf{r}_{2}\) and \(\mathbf{x}_{2}\) and (2.139), [33]
\(k=2\);
While \(\left\|\mathbf{r}_{k}\right\|>\varepsilon\) do
\(\mathbf{y}_{k+1}=A^{T} \mathbf{y}_{k}\);
\(B_{k}\) as in (4.3),
\(A_{k}, C_{k}\), and \(G_{k}\), as in (4.4),
\(F_{k}\) as in (4.6).
\(\mathbf{r}_{k}\) and \(\mathbf{x}_{k}\) as in (4.5).
\(k=k+1\);
```

Algorithm 11 Lanczos-type Algorithm based on relation A_{12}
Output: the approximations solution, \mathbf{x}_{k}, norm of the residual, $\left\|\mathbf{r}_{k}\right\|$.
Initializations: Choose \mathbf{x}_{0} and \mathbf{y}, such that $\mathbf{y} \neq 0$ and the tolerance ε to $1 E-13$.

$$
\text { Set } \mathbf{r}_{0}=\mathbf{b}-A \mathbf{x}_{0} ; \quad \mathbf{y}_{0}=\mathbf{y} ;
$$

EndWhile

Obtain the approximate solution as well as the residual norm.
$\operatorname{sol}_{\text {last }}=\mathbf{x}_{k}$;
norm $_{\text {last }}=\left\|\mathbf{r}_{k}\right\|$;
Stop.

4.2.2 Lanczos-type Algorithm Based on Relation A_{4}

Algorithm A_{4} is well-known as the Orthores algorithm [4]. Let us now consider the recurrence relation on which it is based. It written can be as

$$
\begin{equation*}
P_{k}(x)=A_{k}\left\{\left(x+B_{k}\right) P_{k-1}+\left(C_{k} x^{2}+D_{k} x+E_{k}\right) P_{k-2}\right\}, \tag{4.7}
\end{equation*}
$$

where $P_{k}(x), P_{k-1}(x)$ and $P_{k-2}(x)$ are polynomials of degree $k, k-1$ and $k-2$ respectively. The constant coefficients $A_{k}, B_{k}, C_{k}, D_{k}$, and E_{k}, are determined by the normalization condition $P_{k}(0)=1$ and imposing the orthogonality condition (2.1). For the detailed derivation, the identification of the coefficients and the algorithm itself, please refer to [4].

From the above we immediately obtain

$$
\begin{equation*}
P_{k}(x)=A_{k}\left\{\left(x+B_{k} x\right) P_{k-1}+E_{k} P_{k-2}\right\} . \tag{4.8}
\end{equation*}
$$

Their coefficients are estimated as $C_{k}=0$ and $D_{k}=0$,

$$
\left\{\begin{array}{l}
E_{k}=-\frac{c\left(x^{k-1} P_{k-1}\right)}{c\left(x^{k-2} P_{k-2}\right)} \tag{4.9}\\
B_{k}=\frac{-c\left(x^{k} P_{k-1}\right)-E_{k} c\left(x^{k-1} P_{k-2}\right)}{c\left(x^{k-1} P_{k-1}\right)}, \\
A_{k}=\frac{1}{B_{k}+E_{k}} .
\end{array}\right.
$$

Since $\mathbf{r}_{k}=P_{k}(A) \mathbf{r}_{0}$, the equation (4.8), after replacing x by A and using $\mathbf{r}_{k}=\mathbf{b}-A \mathbf{x}_{k}$, we get

$$
\left\{\begin{array}{l}
\mathbf{r}_{k}=A_{k}\left\{\left(A \mathbf{r}_{k-1}+B_{k} \mathbf{r}_{k-1}+E_{k} \mathbf{r}_{k-2}\right\},\right. \tag{4.10}\\
\left.\mathbf{x}_{k}=A_{k}\left\{B_{k} \mathbf{x}_{k-1}+E_{k} \mathbf{x}_{k-2}-\mathbf{r}_{k-1}\right)\right\} .
\end{array}\right.
$$

Equations (4.10) define a Lanczos-type algorithm. Now, we have to find the expressions of the coefficients A_{k}, B_{k}, and E_{k} appearing in them. Therefore, we can write using Eq (2.136) we get

$$
\left\{\begin{array}{l}
E_{k}=-\frac{\left(y_{k-1}, r_{k-1}\right)}{\left(y_{k-2}, r_{k-2}\right)}, \tag{4.11}\\
B_{k}=\frac{-\left(y_{k}, r_{k-1}\right)-E_{k}\left(y_{k-1}, r_{k-2}\right)}{\left(y_{k-1}, r_{k-1}\right)}, \\
A_{k}=\frac{1}{B_{k}+E_{k}} .
\end{array}\right.
$$

After gathering all these formulae, thus, we finally obtain the following algorithm also known as $A_{4} /$ Orthores [4]

```
Algorithm 12 Lanczos-type Algorithm based on relation \(A_{4}\)
Input: \(A\) an \(n \times n\) matrix, \(\mathbf{b}\) an n-vector.
Output: the approximations solution, \(\mathbf{x}_{k}\), norm of the residual, \(\left\|\mathbf{r}_{k}\right\|\).
Initializations: Choose \(\mathbf{x}_{0}\) and \(\mathbf{y}\), such that \(\mathbf{y} \neq 0\) and the tolerance \(\varepsilon\) to \(1 E-13\).
    Set \(\mathbf{r}_{0}=\mathbf{b}-A \mathbf{x}_{0} ; \quad \mathbf{y}_{0}=\mathbf{y} ;\)
Compute:
    \(\mathbf{r}_{1}, \mathbf{x}_{1}\), as in (2.138) [33];
    \(k=0\);
While \(\left\|\mathbf{r}_{k}\right\|>\varepsilon\) do
    \(\mathbf{y}_{k+1}=A^{T} \mathbf{y}_{k}\);
    \(A_{k}, B_{k}\) and \(E_{k}\), for \(k \geq 1\), and \(E_{1}=0\) as in (4.11)
    \(\mathbf{r}_{k}\) and \(\mathbf{x}_{k}\) as in (4.10)
    \(k=k+1\);
EndWhile
Obtain the approximate solution as well as the residual norm.
\(\mathrm{sol}_{\text {last }}=\mathrm{x}_{k}\);
norm \(_{\text {last }}=\left\|\mathbf{r}_{k}\right\| ;\)
Stop.
```


4.2.3 Lanczos-type Algorithm Based on Relations A_{8} / B_{10}

This kind combination is known as the Orthomin algorithm [4]. The algorithm A_{8} / B_{10} is based on recurrence relations A_{8} and B_{10} [4].

4.2.3.1 Formula A_{8}

The formula A_{8} is obtained by calculating recursively the family of orthogonal polynomial P_{k} from $P_{k-1}^{(1)}$ and P_{k-1}. Consider the relation below

$$
\begin{equation*}
P_{k}(x)=\left(A_{k} x+B_{k}\right) P_{k-1}^{(1)}+\left(C_{k} x+D_{k}\right) P_{k-1} . \tag{4.12}
\end{equation*}
$$

The constant coefficients A_{k}, B_{k}, C_{k}, and D_{k}, are determined by the normalization condition $P_{k}(0)=1$ and imposing the orthogonality condition (2.1). For the detailed derivation, the identification of the coefficients and the algorithm itself, please refer to [4].

From the above we immediately obtain

$$
\begin{equation*}
P_{k}(x)=A_{k} x P_{k-1}^{(1)}+P_{k-1} . \tag{4.13}
\end{equation*}
$$

Their coefficients are estimated as $B_{k}=0, C_{k}=0, D_{k}=1$, and

$$
\begin{equation*}
A_{k}=-\frac{c\left(x^{k-1} P_{k-1}\right)}{c\left(x^{k} P_{k-1}^{(1)}\right)} . \tag{4.14}
\end{equation*}
$$

Since $\mathbf{r}_{k}=P_{k}(A) \mathbf{r}_{0}$, the equation (4.14), after replacing x by A and using $\mathbf{r}_{k}=\mathbf{b}-A \mathbf{x}_{k}$, we get

$$
\left\{\begin{array}{l}
\mathbf{r}_{k}=\mathbf{r}_{k-1}+A_{k} \mathbf{z}_{k-1} \tag{4.15}\\
\mathbf{x}_{k}=\mathbf{x}_{k-1}-A_{k} \mathbf{z}_{k-1}
\end{array}\right.
$$

with z_{k} defined in Eq (4.20)
Equations (4.15) define a Lanczos-type algorithm. Now, we have to find the expression of the coefficients A_{k}, appearing in them. Therefore, we can write using Eq (2.136) we get

$$
\begin{equation*}
A_{k}=-\frac{\left(\mathbf{y}_{k-1}, \mathbf{r}_{k-1}\right)}{\left(\mathbf{y}_{k-1}, A \mathbf{z}_{k-1}\right)^{\prime}} \tag{4.16}
\end{equation*}
$$

4.2.3.2 Formula B_{10}

Consider the relation

$$
\begin{equation*}
P_{k}^{(1)}(x)=\left(A_{k}^{1} x+B_{k}^{1}\right) P_{k-1}^{(1)}+C_{k}^{1} P_{k}, \tag{4.17}
\end{equation*}
$$

The constant coefficients $A_{k^{\prime}}^{1} B_{k^{\prime}}^{1}$ and $C_{k^{\prime}}^{1}$, are determined by imposing the orthogonality condition (2.2). For the detailed derivation, the identification of the coefficients and the algorithm itself, please refer to [4].

From the above we immediately obtain

$$
\begin{equation*}
P_{k}^{(1)}(x)=B_{k}^{1} P_{k-1}^{(1)}+C_{k}^{1} P_{k} . \tag{4.18}
\end{equation*}
$$

Their coefficients are estimated as $A_{k}^{1}=0$, with $C_{k}^{1}=\frac{1}{a_{k}}$ and a_{k} being the coefficient of x^{k} in $P_{k}(x)=a_{k} x^{k}+\ldots+1$, we have, $a_{k}=A_{k} C_{k-1}^{1} a_{k-1}=A_{k}$.

$$
\left\{\begin{array}{l}
B_{k}^{1}=-\frac{C_{k}^{1} c\left(x^{k} P_{k}\right)}{c\left(x^{k} P_{k-1}^{(1)}\right)}, \tag{4.19}\\
C_{k}^{1}=\frac{1}{A_{k}} .
\end{array}\right.
$$

Since $\mathbf{z}_{k}=P_{k}^{(1)}(A) \mathbf{r}_{0}$, the equation (4.19), after replacing x by A, we get

$$
\begin{equation*}
\mathbf{z}_{k}=B_{k}^{1} \mathbf{z}_{k-1}+C_{k}^{1} \mathbf{r}_{k}, \tag{4.20}
\end{equation*}
$$

Now, we have to find the expression of the coefficients $B_{k^{\prime}}^{1}$ and C_{k}^{1} appearing in them.
Therefore, we can write using Eq (2.136) we get

$$
\left\{\begin{array}{l}
B_{k}^{1}=-\frac{C_{k}^{1}\left(y_{k}, r_{k}\right)}{\left(y_{k-1}, A z_{k-1}\right)}, \tag{4.21}\\
C_{k}^{1}=\frac{1}{A_{k}} .
\end{array}\right.
$$

Thus we finally obtain algorithm $A_{8} / B_{10}[4]$

```
Algorithm 13 Lanczos-type Algorithm based on relations \(A_{8} / B_{10}\)
Input: \(A\) an \(n \times n\) matrix, \(\mathbf{b}\) an n-vector.
Output: the approximations solution, \(\mathbf{x}_{k}, \quad\) norm of the residual, \(\left\|\mathbf{r}_{k}\right\|\).
Initializations: Choose \(\mathbf{x}_{0}\) and \(\mathbf{y}\), such that \(\mathbf{y} \neq 0\) and the tolerance \(\varepsilon\) to \(1 E-13\).
\[
\text { Set } \mathbf{r}_{0}=\mathbf{b}-A \mathbf{x}_{0} ; \quad \mathbf{y}_{0}=\mathbf{y}, \quad \mathbf{z}_{0}=\mathbf{r}_{0} ;
\]
```


Compute:

$$
\begin{aligned}
& \quad \mathbf{y}_{1}=A^{T} \mathbf{y}_{0} ; A_{1} \text { as in (4.16); } \\
& \quad k=0 ; \\
& \text { While }\left\|\mathbf{r}_{k}\right\|>\varepsilon \text { do } \\
& \mathbf{y}_{k}=A^{T} \mathbf{y}_{k-1} ; \\
& A_{k} \text {, as in }(4.16) ; \\
& B_{k^{\prime}}^{1} C_{k}^{1} \text { as in }(4.21) ; \\
& \mathbf{r}_{k}, \mathbf{x}_{k} \text { as in }(4.15) ; \\
& \mathbf{z}_{k} \text { as in }(4.20) ; \\
& k=k+1 ; \\
& \text { EndWhile }
\end{aligned}
$$

Obtain the approximate solution as well as the residual norm.
$\operatorname{sol}_{\text {last }}=\mathbf{x}_{k}$;
norm $_{\text {last }}=\left\|\mathbf{r}_{k}\right\|$;
Stop.

4.2.4 Lanczos-type Algorithm Based on Relations A_{8} / B_{6}

The implementation of this combination is known as the Orthodir algorithm [4]. The algorithm is based on recurrence relations A_{8} and B_{6} [4].

4.2.4.1 Formula B_{6}

Consider the relation below

$$
\begin{equation*}
P_{k}^{(1)}(x)=\left(A_{k}^{1} x^{2}+B_{k}^{1} x+C_{k}^{1}\right) P_{k-2}^{(1)}+\left(D_{k}^{1} x+E_{k}^{1}\right) P_{k-1}^{(1)} . \tag{4.22}
\end{equation*}
$$

The constant coefficients $A_{k^{\prime}}^{1}, B_{k^{\prime}}^{1} C_{k^{\prime}}^{1} D_{k}^{1}$ and E_{k}^{1} are determined by imposing the orthogonality condition (2.1). For the detailed derivation, the identification of the coefficients and the algorithm itself, please refer to [4].

From the above we immediately obtain

$$
\begin{equation*}
P_{k}^{(1)}(x)=C_{k}^{1} P_{k-2}^{(1)}+\left(x+E_{k}^{1}\right) P_{k-1^{\prime}}^{(1)} \tag{4.23}
\end{equation*}
$$

Their coefficients are estimated as $A_{k}^{1}=0, B_{k}=0, D_{k}^{1}=1$ and

$$
\left\{\begin{array}{l}
C_{k}^{1}=-\frac{c\left(x^{k} P_{k-1}^{(1)}\right)}{c\left(x^{k-1} P_{k-2}^{(1)}\right)}, \tag{4.24}\\
E_{k}^{1}=-\frac{-c\left(x^{k+1} P_{k-1}^{(1)}\right)-C_{k}^{1} c\left(x^{k} P_{k-2}^{(1)}\right)}{c\left(x^{k} P_{k-1}^{(1)}\right)}
\end{array}\right.
$$

Since $\mathbf{z}_{k}=P_{k}^{(1)}(A) \mathbf{r}_{0}$, the equation (4.23), after replacing x by A, we get

$$
\begin{equation*}
\mathbf{z}_{k}=C_{k}^{1} \mathbf{z}_{k-2}+E_{k}^{1} \mathbf{z}_{k-1}+A \mathbf{z}_{k-1}, \tag{4.25}
\end{equation*}
$$

Now, we have to find the expression of the coefficients $C_{k^{\prime}}^{1}$ and E_{k}^{1} appearing in them. Therefore, we can write using Eq (2.136) we get with

$$
\left\{\begin{array}{l}
C_{k}^{1}=-\frac{\left(y_{k}, z_{k-1}\right)}{\left(y_{k-1}, z_{k-2}\right)} \tag{4.26}\\
E_{k}^{1}=-\frac{-\left(y_{k}, A z_{k-1}\right)-C_{k}^{1}\left(y_{k}, z_{k-2}\right)}{\left(y_{k} z_{k-1}\right)}
\end{array}\right.
$$

Let us now design an algorithm which combines A_{8} and B_{6} for the computation of the residuals \mathbf{r}_{k}, the corresponding vectors \mathbf{x}_{k} from A_{8} of section 4.2.3.1, and \mathbf{z}_{k}, from B_{6} of
section 4.2.4.1. Thus we finally obtain the following algorithm $A_{8} / B_{6}[4]$.

```
Algorithm 14 Lanczos-type Algorithm based on relations \(A_{8} / B_{6}\)
Input: \(A\) an \(n \times n\) matrix, \(\mathbf{b}\) an n-vector.
Output: the approximations solution, \(\mathbf{x}_{k}\), norm of the residual, \(\left\|\mathbf{r}_{k}\right\|\).
Initializations: Choose \(\mathbf{x}_{0}\) and \(\mathbf{y}\), and the tolerance \(\varepsilon\) to \(1.0 E-13\).
    Set \(\mathbf{r}_{0}=\mathbf{b}-A \mathbf{x}_{0} ; \quad \mathbf{y}_{0}=\mathbf{y}, \quad \mathbf{z}_{0}=\mathbf{r}_{0}\);
Compute:
    \(\mathbf{r}_{1}, \mathbf{x}_{1}\), as in (2.138), \(\mathbf{z}_{1}\) as in (2.146);
    \(k=0\);
While \(\left\|\mathbf{r}_{k}\right\|>\varepsilon\) do
    \(\mathbf{y}_{k}=A^{T} \mathbf{y}_{k-1}\);
    \(A_{k}\), as in (4.16) and \(C_{k+1}^{1}, E_{k+1}^{1}\) as in (4.26) respectively;
    \(\mathbf{r}_{k}, \mathbf{x}_{k}\) as in (4.15) and \(\mathbf{z}_{k}\) as in (4.25) respectively;
    \(k=k+1\);
```


EndWhile

```
Obtain the approximate solution as well as the residual norm.
\(\operatorname{sol}_{\text {last }}=\mathbf{x}_{k}\);
norm \(_{\text {last }}=\left\|\mathbf{r}_{k}\right\| ;\)
Stop.
```


4.3 Numerical Results

The experimental results which are recorded in Table 4.1 show that algorithms A_{4}, A_{12}, A_{8} / B_{6} and A_{8} / B_{10} solved the problem up to dimension 20. These algorithms failed for $n \geq 30$ and above. The reason is that the Lanczos-type algorithms breaks down. Since all algorithms of this type are based on recurrence relationships between FOPs $P_{k}(x)$ and $P_{k}^{(1)}(x)$, the polynomials involve the computation of some scalar products appearing as denominators and numerators of the coefficients of the recursive relationships. Some of the denominators becomes smaller than $1.0 E-14$ which causes breakdown in these algorithms and they have to be stopped. The breakdown is also due to the non-existence of some polynomials $P_{k}(x)$. This breakdown issue will be discussed and addressed in Section 4.4.

Table 4.1: Results of Lanczos-type algorithms on Baheux-type problems for $\delta=0$

Dim of Prob	A_{4}		A_{12}		A_{8} / B_{6}		A_{8} / B_{10}									
$n_{1} \times n_{2}=n$	$\left\\|r_{k}\right\\|$	$\mathrm{t}(\mathrm{sec})$	$\left\\|r_{k}\right\\|$	$\mathrm{t}(\mathrm{sec})$	$\left\\|r_{k}\right\\|$	$\mathrm{t}(\mathrm{sec})$	$\left\\|r_{k}\right\\|$	$\mathrm{t}(\mathrm{sec})$								
10	$3.7525 \mathrm{E}-14$	$9.0644 \mathrm{E}-01$	$2.2493 \mathrm{E}-14$	$8.0559 \mathrm{E}-01$	$6.4731 \mathrm{E}-16$	$9.0150 \mathrm{E}-01$	$3.8369 \mathrm{E}-14$	$8.0912 \mathrm{E}-01$								
20	$5.2880 \mathrm{E}-14$	$1.0880 \mathrm{E}+00$	$8.6013 \mathrm{E}-14$	$1.4494 \mathrm{E}+00$	$4.2156 \mathrm{E}-14$	$8.7512 \mathrm{E}-01$	$1.4607 \mathrm{E}-14$	$9.5158 \mathrm{E}-01$								
30	NaN		NaN		NaN		NaN									
100	NaN		NaN		NaN		NaN									

4.4 Pre-emptive restarting approach to Lanczos-type algorithms

The causes of breakdown in the most common Lanczos-type algorithms can be found by monitoring the components of the coefficients that blow up prior to breakdown. Our aim is to investigate the behaviour of the coefficients involved in the recurrence relations and the parameters of the offending coefficents/denominators of the Lanczos algorithm under consideration. When any of these offending denominators/coefficents goes to zero/NaN the Lanczos algorithm fails. The NaN situation arises due to overflow or underflow of the coefficients involved [39, 46,47]. After careful monitoring, the coefficients which cause the breakdown will be identified. A possible remedy to avoid this problem could be to design a test/rule by which the Lanczos algorithm can be stopped before breakdown. This is referred to as the break statement. The test might be based on choosing a threshold value ϵ, for instance, for that parameter in the coefficients which caused breakdown. After deciding on the threshold, restarting/switching with a pre-emption approach can be implemented.

[^0]
4.4.1 Monitoring Lanczos-type Algorithm based on relation A_{12}

As an example, the behaviour of coefficients used in Algorithm A_{12} has been investigated for $\delta=0,0.2,5$ and 8 . First, consider the case of $\delta=0$. It can be seen in Table 4.2 that the problem of breakdown is caused by the coefficient A_{k+1} whose values for various dimensions are given in column 8 of the table. The corresponding dimensions are given in the first column of the table and range from 100 to 90000 . The coefficient values in column 8 are actually the additive combination of columns 5 and 7. Both column 5 and column 7 seem to have blown up (showing $N a N$) when column 8 is $N a N$. Therefore, it is important to concentrate on each of column 5 and column 7 to see which of their building component is the culprit. To this end, all the coefficients $A_{k}, B_{k}, C_{k}, F_{k}, G_{k}$ and Δ_{k}, can be written in terms of $a_{i j}, i=1,2,3 ; j=1,2,3$ and see which of them causes the breakdown. There will be a compound term in the expression of the coefficients or cluster of $a_{i j}$ which blows up (i.e. goes to NaN or ∞). While monitoring the A_{12} algorithm, it turns out that breakdown is caused by a_{11} and a_{13}. As shown in Table 4.3, the behaviour of these coefficients is monitored by trying various values starting from the highest possible value of $1.0 E+103$ and $1.0 E+102$ for a_{11} and a_{13}, respectively, and reach the final default values at which the algorithm does not breakdown for the size of the problem ranging from 100 to 90000 . The observed default values are $1.0 E+80$ and $1.0 E+80$ for a_{11} and a_{13}, respectively.

As has been mentioned above, the A_{12} algorithm is also investigated for systems generated through discretisation of an integral operator for values $\delta=0.2,5$ and 8 as done for $\delta=0$, for $\delta=0.2$, shown in Table A.1. The behaviour of the culprit coefficients is monitored by trying various values starting from the highest possible value of $1.0 E+103$ and $1.0 E+102$
for a_{11} and a_{13}, respectively as shown in Table A.4. The final default values for which the algorithm does not breakdown are ultimately reached. The observed default values are $1.0 E+90$ and $1.0 E+90$ for a_{11} and a_{13}, respectively. For $\delta=5$ as shown in Table A.2, the observed default values are $1.0 E+90$ and $1.0 E+90$ for a_{11} and a_{13}, respectively, with the starting highest values the same as those for for $\delta=0.2$ as shown in Table A.5. Similarly, for $\delta=8$ the behaviour of coefficients as shown in Table A.3, and the observed default values are $1.0 E+95$ and $1.0 E+95$ for a_{11} and a_{13}, respectively, with the starting highest possible values of $1.000 E+104$ and $1.000 E+101$ for a_{11} and a_{13}, respectively, as shown in Table A. 6 . The numerical evidence for the above scenario are recorded in Tables 4.2-A.6. Similar tables

Table 4.2: Behaviour of coefficients of A_{12} on Baheux-type problems when $\delta=0$.

Col.1	Col.2	Col.3	Col.4	Col. 5	Col.6	Col.7	Col.8
Dim. of A	k	Δ_{k}	B_{k}	C_{k}	F_{k}	G_{k}	A_{k}
100	148	Inf	NaN	NaN	$-4.8175 \mathrm{E}-01$	NaN	NaN
500	140	Inf	NaN	NaN	$-2.1018 \mathrm{E}+01$	NaN	NaN
1000	138	$-1.6699 \mathrm{E}+307$	-Inf	NaN	$-2.3393 \mathrm{E}+01$	Inf	NaN
5000	139	$6.9121 \mathrm{E}+307$	NaN	NaN	$1.1891 \mathrm{E}+01$	NaN	NaN
10000	139	NaN	NaN	NaN	$7.9101 \mathrm{E}+00$	NaN	NaN
15000	137	$-4.9561 \mathrm{E}+303$	$7.6200 \mathrm{E}+00$	Inf	$0.0000 \mathrm{E}+00$	$7.4146 \mathrm{E}+00$	$0.0000 \mathrm{E}+00$
20000	135	$-1.5143 \mathrm{E}+306$	-Inf	Inf	$5.4000 \mathrm{E}+01$	Inf	NaN
30000	138	Inf	NaN	NaN	$3.1908 \mathrm{E}+00$	NaN	NaN
40000	139	NaN	NaN	NaN	$-5.6457 \mathrm{E}+02$	NaN	NaN
50000	122	$3.3211 \mathrm{E}+263$	$1.1387 \mathrm{E}+02$	NaN	$0.0000 \mathrm{E}+00$	$8.0000 \mathrm{E}+01$	NaN
60000	138	-Inf	NaN	NaN	$1.2075 \mathrm{E}-01$	NaN	NaN
70000	138	-Inf	NaN	NaN	$4.7600 \mathrm{E}+02$	NaN	NaN
80000	139	Inf	NaN	NaN	$7.8443 \mathrm{E}+00$	NaN	NaN
90000	139	$1.1064 \mathrm{e}+308$	-Inf	NaN	$3.0815 \mathrm{E}+00$	-Inf	NaN

are generated for different instances of the problem. These can be seen as Tables A.1-A.3, subsection A.2.1 of Appendix A. The purpose of these tables is to show that monitoring by coefficients helps to avoid breakdown. As these tables show, as soon as any of the entries in a row hits infinity or is Not a Number (Inf or NaN), the Lanczos-type algorithm breaks down. Note that, while Table 4.2 shows the values of compound coefficient such

Table 4.3: Behaviour of the parameters of the offending coefficients of A_{12} on Baheux-type problems when $\delta=0$.

Col. 1	Col. 2	Col. 3	Col. 4	Col. 5	Col. 6	Col. 7	Col. 8
Dim. of A	k	a_{11}	a_{13}	a_{21}	a_{23}	a_{31}	a_{33}
100	148	$1.1549 \mathrm{E}+102$	$2.3972 \mathrm{E}+102$	$2.7997 \mathrm{E}+101$	$3.7936 \mathrm{E}+103$	$-3.3596 \mathrm{E}+102$	$1.3998 \mathrm{E}+104$
500	140	$5.9603 \mathrm{E}+101$	$2.8357 \mathrm{E}+100$	$1.1013 \mathrm{E}+104$	$1.1516 \mathrm{E}+102$	$1.7730 \mathrm{E}+105$	$5.5652 \mathrm{E}+103$
1000	138	$1.8548 \mathrm{E}+102$	$7.9288 \mathrm{E}+100$	$3.5810 \mathrm{E}+103$	$1.5792 \mathrm{E}+102$	$6.1768 \mathrm{E}+104$	$2.2485 \mathrm{E}+103$
5000	139	$-2.6553 \mathrm{E}+102$	$2.2330 \mathrm{E}+101$	$-5.5792 \mathrm{E}+103$	$3.5762 \mathrm{E}+102$	$-9.2291 \mathrm{E}+104$	$6.3973 \mathrm{E}+103$
10000	139	$-6.1593 E+102$	$7.7866 \mathrm{E}+101$	$-2.1502 \mathrm{E}+104$	$1.1339 \mathrm{E}+103$	$-3.8344 \mathrm{E}+105$	$1.8982 \mathrm{E}+104$
15000	137	$0.0000 \mathrm{E}+00$	$-4.4839 \mathrm{E}+100$	$3.3246 \mathrm{E}+101$	$-6.3430 \mathrm{E}+101$	$2.1698 \mathrm{E}+102$	$-9.4839 \mathrm{E}+102$
20000	135	$-2.9528 \mathrm{E}+101$	$5.4681 \mathrm{E}+99$	-7.1917E+102	$-1.6536 \mathrm{E}+102$	$-1.4320 \mathrm{E}+104$	$-5.8233 \mathrm{E}+103$
30000	138	$1.8285 \mathrm{E}+102$	$-5.7306 \mathrm{E}+101$	$3.9895 \mathrm{E}+103$	$-1.0271 \mathrm{E}+103$	$7.5983 \mathrm{E}+104$	$-1.5482 \mathrm{E}+104$
40000	139	$-6.9152 \mathrm{E}+103$	$-1.2249 \mathrm{E}+101$	$-2.1726 \mathrm{E}+105$	$-3.2196 \mathrm{E}+102$	$-4.2609 \mathrm{E}+106$	$-1.4558 \mathrm{E}+103$
50000	122	$0.0000 \mathrm{E}+00$	$3.7299 \mathrm{E}+86$	$-2.9839 \mathrm{E}+88$	$3.7797 \mathrm{E}+88$	$3.7399 \mathrm{E}+89$	$8.0765 \mathrm{E}+89$
60000	138	$3.4996 \mathrm{E}+100$	$-2.8981 \mathrm{E}+101$	$-2.9257 \mathrm{E}+103$	$-1.2144 \mathrm{E}+103$	$-8.0295 \mathrm{E}+104$	$-2.7647 \mathrm{E}+104$
70000	138	$-1.2494 \mathrm{E}+103$	$2.6247 \mathrm{E}+100$	$-2.2341 \mathrm{E}+104$	$1.2074 \mathrm{E}+102$	$-3.5254 \mathrm{E}+105$	$2.0158 \mathrm{E}+103$
80000	139	$-3.5258 \mathrm{E}+102$	$4.4948 \mathrm{E}+101$	$-6.4533 \mathrm{E}+103$	$1.5258 \mathrm{E}+103$	$-1.1305 \mathrm{E}+105$	$3.8209 \mathrm{E}+104$
90000	139	$-1.8198 \mathrm{E}+102$	$5.9056 \mathrm{E}+101$	$-2.6457 \mathrm{E}+103$	$8.2591 \mathrm{E}+102$	$-3.2924 \mathrm{E}+104$	$1.3550 \mathrm{E}+104$

as $\Delta_{k}, A_{k}, B_{k}, C_{k}, F_{k}$ and G_{k}, Table 4.3 involves the particular parameters of the compound coefficient which is responsible for the breakdown. Therefore, it is potentially cheaper to check for breakdown in Table 4.3 than in Table 4.2. Similar tables for different instance can be found in Tables A.4-A.6, Subsection A.2.1 of Appendix A. After gathering all these, thus, we finally obtain the following algorithm

```
Algorithm 16 Monitoring Lanczos-type Algorithms based on relation \(A_{12}\)
Input: \(A\) an \(n \times n\) matrix, \(\mathbf{b}\) an n-vector.
Output: the approximations solution, \(\mathbf{x}_{k}\), norm of the residual, \(\left\|\mathbf{r}_{k}\right\|\).
Initializations: Choose \(\mathbf{x}_{0}\) and \(\mathbf{y}\), such that \(y \neq 0\) and the tolerance \(\varepsilon\) to \(1 E-13\).
    Set \(\quad \mathbf{r}_{0}=\mathbf{b}-A \mathbf{x}_{0} ; \quad \mathbf{y}_{0}=\mathbf{y}\);
```


Compute:

```
\(\mathbf{r}_{1}, \mathbf{x}_{1}, \mathbf{r}_{2}\) and \(\mathbf{x}_{2}\) as in (2.138) and (2.139), [33]
\(k=2\);
While \(\left\|\mathbf{r}_{k}\right\|>\varepsilon\)
\(\mathbf{y}_{k+1}=A^{T} \mathbf{y}_{k}\);
\(B_{k}\) as in (4.3)
\(A_{k}, C_{k}\), and \(G_{k}\), as in (4.4),
\(F_{k}\) as in (4.6);
\(\mathbf{r}_{k}\) and \(\mathbf{x}_{k}\) as in (4.5)
/* Monitor coefficients and denominators: \(A_{k}, B_{k}, C_{k}, F_{k}, G_{k}, a_{11}, a_{13 . * /}\)
\(/ *\) Design a test/rule. The test might be based on choosing a threshold value \(\epsilon\), for instance, for that parameter in the coefficients which caused breakdown. */
```

```
Algorithm 16 Lanczos-type Algorithm based on relations \(A_{12}\) (continued)
    If \(\left(\left|a_{11}\right| \leq 1.0 E-25\right)\);
    display('Check zero ......');
    break;
    End;
    If ( \(\left|a_{11}\right| \geq \omega_{i}\) and \(\left.\left|a_{13}\right| \geq \omega_{i}\right)\)
        display('Check Yes ......');
        break;
    End;
    where \(\omega_{i}=1.0 E+80,1.0 E+90,1.0 E+90,1.0 E+95\)
    for different \(\delta_{i}=0,0.2,5,8\), when \(i=1,2,3,4\) respectively;
    \(k=k+1\);
EndWhile
Obtain the approximate solution as well as the residual norm;
\(\mathrm{sol}_{\text {last }}=\mathbf{x}_{k}\);
norm \(_{\text {last }}=\left\|\mathbf{r}_{k}\right\|\);
Stop.
```


4.4.2 Monitoring Lanczos-type Algorithm based on relation A_{4} (Orthores)

Similarly to monitoring A_{12}, the behaviour of coefficients used in Algorithm A_{4} has also been investigated for $\delta=0,0.2,5$ and 8 . Here also, the behaviour of coefficients for $\delta=0$ are considered first. It can be seen in Table 4.4 that the problem of breakdown is caused by the coefficient B_{k+1} whose values for various dimensions of the test problems are given in column 4 of the table. The corresponding dimensions are given in the first column of the table that range from 100 to 90000 . The coefficient values in column 4 seem to have blown up showing $\pm \infty$ or $N a N$. Therefore it becomes important to concentrate on B_{k} as a good term to observe in order to detect breakdown. Moreover, when B_{k} takes $\pm \infty, a_{k}$ is always 0 . Therefore, one can design a test in two parts, one on a_{k} and the other on c_{k}. To this end, all the coefficients A_{k}, B_{k} and E_{k} can be written in terms of a_{k}, b_{k}, c_{k} and d_{k} to see which
cluster of these causes the breakdown. Like in A_{12} algorithm, there will be a compound term in the expression of the coefficients or cluster of these which blows up (i.e. goes to NaN or ∞). The components that cause the breakdown are a_{k} and c_{k}. As shown in Table 4.5, the behaviour of these coefficients is monitored by trying various values starting from the highest possible value of $1.0 E+292$ and $1.0 E+287$ for a_{k} and c_{k}, respectively, and reach the final default values at which the algorithm does not breakdown for the size of the problem ranging from 100 to 90000 . The observed default values are $1.0 E+124$ and $1.0 E+125$ for a_{k} and c_{k}, respectively.

Furthermore, the A_{4} algorithm is also investigated for discretisation values $\delta=0.2,5$ and 8. Similar to $\delta=0$, for $\delta=0.2$, as shown in Table A. 7 the behaviour of the culprit coefficients is monitored by trying various values starting from the highest possible value of $1.0 E+291$ and $1.0 E+262$ for a_{k} and c_{k}, as shown in Table A.10, respectively, and reaching the final default values at which the algorithm does not breakdown for the size of the problem ranging from 100 to 90000 . The observed default values are $1.0 E+118$ and $1.0 E+119$ for a_{k} and c_{k}, respectively. In a similar fashion, the behaviour of the coefficients for the value of $\delta=5$ are shown in Table A.8. The observed default values are $1.0 E+275$ and $1.0 E+277$ for a_{k} and c_{k}, respectively, with the starting highest values being $1.0 E+293$ and $1.0 E+291$ as show in Table A.11. Similarly, for $\delta=8$ the observed default values are $1.0 E+277$ and $1.0 E+278$ for a_{k} and c_{k}, respectively, with the starting highest values are $1.0 E+295$ and $1.0 E+295$ as shown in Table A.12. The numerical evidence for the above scenario relating to algorithm A_{4} are recorded in Tables 4.4-A. 12

Similar tables are generated for different instances of the problem. These can be seen as Tables A.7-A.9, subsection A.2.2 of Appendix A. The purpose of these tables is to show

Table 4.4: Behaviour of coefficients of A_{4} on Baheux-type problems when $\delta=0$.

Col.1	Col.2	Col.3	Col.4	Col.5
Dim. of A	k	A_{k}	B_{k}	E_{k}
100	358	NaN	NaN	$-3.1373 \mathrm{E}+00$
500	352	NaN	NaN	$1.8452 \mathrm{E}+01$
1000	352	NaN	NaN	$4.6160 \mathrm{E}-01$
5000	352	NaN	NaN	$6.9004 \mathrm{E}+02$
10000	182	$0.0000 \mathrm{E}+00$	Inf	$0.0000 \mathrm{E}+00$
15000	257	$0.0000 \mathrm{E}+00$	-Inf	$0.0000 \mathrm{E}+00$
20000	237	$0.0000 \mathrm{E}+00$	-Inf	$0.0000 \mathrm{E}+00$
30000	311	NaN	NaN	$0.0000 \mathrm{E}+00$
40000	319	$0.0000 \mathrm{E}+00$	Inf	$0.0000 \mathrm{E}+00$
50000	227	$0.0000 \mathrm{E}+00$	-Inf	$0.0000 \mathrm{E}+00$
60000	352	NaN	NaN	$1.4815 \mathrm{E}+01$
70000	147	$0.0000 \mathrm{E}+00$	Inf	$0.0000 \mathrm{E}+00$
80000	345	$0.0000 \mathrm{E}+00$	Inf	$0.0000 \mathrm{E}+00$
90000	352	NaN	NaN	$1.6602 \mathrm{E}+01$

that monitoring by coefficients helps to avoid breakdown. As these tables show, as soon as any of the entries in a row hits infinity or is Not a Number (Inf or NaN), the Lanczostype algorithm breaks down. Note that, while Table 4.4 shows the values of compound

Table 4.5: Behaviour of the parameters of the offending coefficients of A_{4} on Baheux-type problems when $\delta=0$

Col.1	Col.2	Col.3	Col.4	Col. 5	Col.6
Dim. of A	k	a_{k}	b_{k}	c_{k}	d_{k}
100	358	$2.2305 \mathrm{E}+285$	$7.1098 \mathrm{E}+284$	NaN	$3.9406 \mathrm{E}+285$
500	352	$2.2297 \mathrm{E}+292$	$-1.2084 \mathrm{E}+291$	NaN	$3.4070 \mathrm{E}+292$
1000	352	$-8.6946 \mathrm{E}+289$	$1.8836 \mathrm{E}+290$	NaN	$1.8598 \mathrm{E}+291$
5000	352	$-5.5848 \mathrm{E}+291$	$8.0935 \mathrm{E}+288$	NaN	$1.1405 \mathrm{E}+290$
10000	182	$0.0000 \mathrm{E}+00$	$-2.1331 \mathrm{E}+141$	$-3.2391 \mathrm{E}+141$	$-3.5654 \mathrm{E}+142$
15000	257	$0.0000 \mathrm{E}+00$	$8.5280 \mathrm{E}+205$	$8.8290 \mathrm{E}+206$	$1.3845 \mathrm{E}+207$
20000	237	$0.0000 \mathrm{E}+00$	$-1.4141 \mathrm{E}+187$	$2.0885 \mathrm{E}+188$	$4.7862 \mathrm{E}+188$
30000	311	$0.0000 \mathrm{E}+00$	$1.1914 \mathrm{E}+253$	$0.0000 \mathrm{E}+00$	$-1.4663 \mathrm{E}+253$
40000	319	$0.0000 \mathrm{E}+00$	$-3.5363 \mathrm{E}+260$	$-1.3530 \mathrm{E}+262$	$-1.7835 \mathrm{E}+261$
50000	227	$0.0000 \mathrm{E}+00$	$-1.0455 \mathrm{E}+180$	$2.3341 \mathrm{E}+180$	$-1.3162 \mathrm{E}+181$
60000	352	$1.2182 \mathrm{E}+290$	$-8.2226 \mathrm{E}+288$	NaN	$4.3854 \mathrm{E}+289$
70000	147	$0.0000 \mathrm{E}+00$	$-3.5815 \mathrm{E}+109$	$-8.8305 \mathrm{E}+110$	$-9.4646 \mathrm{E}+110$
80000	345	$0.0000 \mathrm{E}+00$	$-5.4950 \mathrm{E}+284$	$-1.9034 \mathrm{E}+287$	$-5.9202 \mathrm{E}+285$
90000	352	$1.6811 \mathrm{E}+290$	$-1.0126 \mathrm{E}+289$	NaN	$2.0709 \mathrm{E}+290$

coefficient such as A_{k}, B_{k}, and E_{k}, Table 4.5 involves the particular parameters of the compound coefficient which is responsible for the breakdown. Therefore, it is potentially cheaper to check for breakdown in Table 4.5 than in Table 4.4. Similar tables for different instance can be found in Tables A.10-A.12, Subsection A.2.2 of Appendix A. After gathering all these, thus, we finally obtain the following algorithm

```
Algorithm 17 Monitoring Lanczos-type Algorithm based on relation \(A_{4}\)
Input: \(A\) an \(n \times n\) matrix, \(\mathbf{b}\) an n-vector.
Output: the approximations solution, \(\mathbf{x}_{k}, \quad\) norm of the residual, \(\left\|\mathbf{r}_{k}\right\|\).
Initializations: Choose \(\mathbf{x}_{0}\) and \(\mathbf{y}\), and the tolerance \(\varepsilon\) to \(1 E-13\).
    Set \(\quad \mathbf{r}_{0}=\mathbf{b}-A \mathbf{x}_{0} ; \quad \mathbf{y}_{0}=\mathbf{y}\);
Compute:
    \(\mathbf{r}_{1}, \mathbf{x}_{1}\), as in (2.138) [33];
    \(k=0\);
While \(\left\|\mathbf{r}_{k}\right\|>\varepsilon\)
    \(\mathbf{y}_{k}=A^{T} \mathbf{y}_{k-1}\);
    \(A_{k}, B_{k}\) and \(E_{k}\), for \(k \geq 1\), and \(E_{1}=0\) as in (4.11);
    \(\mathbf{r}_{k}\) and \(\mathbf{x}_{k}\) as in (4.10)
    /* Monitor Denominators: \(A_{k}, B_{k}, E_{k}, a_{k}, c_{k} * * /\)
    \(/ *\) Design a test/rule. The test might be based on choosing a threshold value \(\epsilon\),
    for instance, for that parameter in the coefficients which caused breakdown. */
    If \(\left(\left|a_{k}\right| \leq 1.0 E-25\right)\);
    display('Check zero ......');
    break;
    End;
    If \(\left(\left|a_{k}\right| \geq \alpha_{i}\right.\) and \(\left.\left|c_{k}\right| \geq \beta_{i}\right)\)
        display('Check Yes ......');
        break;
    End;
    where \(\alpha_{i}=1.0 E+124,1.0 E+118,1.0 E+275,1.0 E+277\);
    where \(\beta_{i}=1.0 E+125,1.0 E+119,1.0 E+277,1.0 E+278\);
    when \(i=1,2,3,4\), for different \(\delta_{i}=0,0.2,5,8\); respectively;
    \(k=k+1\);
EndWhile
Obtain the approximate solution as well as the residual norm;
\(\mathrm{sol}_{\text {last }}=\mathbf{x}_{k}\);
norm \(_{\text {last }}=\left\|\mathbf{r}_{k}\right\| ;\)
Stop.
```


4.4.3 Monitoring Lanczos-type Algorithm based on relations A_{8} / B_{6}

Here also, the behaviour of the coefficients used in Algorithm A_{8} / B_{6} have been investigated for $\delta=0,0.2,5$ and 8 . The behaviour for $\delta=0$ is considered first. It can be seen in Table 4.6 that the problem of breakdown is caused by the coefficient E_{k}^{1} whose values for various dimension are given in column 5 of the table. The corresponding dimensions are given in the first column of the table that range from 100 to 90000 . The coefficient values in column 5 seem to have blown up showing $N a N$. Therefore it becomes important to concentrate on E_{k}^{1} as a good term to observe in order to detect breakdown. To this end, all the coefficients A_{k}, C_{k}^{1} and $E_{k^{\prime}}^{1}$ can be written in terms of a_{k}, b_{k} and c_{k} to see which cluster of these causes the breakdown. Like in A_{4} and A_{12} algorithms, there is a term in the expression of the coefficients which blows up (i.e. goes to NaN or zero). The components that cause the breakdown are b_{k}. As shown in Table 4.7, the behaviour of these coefficients is monitored by trying various values starting from the highest possible value of $1.0 E+295$ for b_{k}, and reach the final default values at which the algorithm does not breakdown for the size of the problem ranging from 100 to 90000 . The observed default values are $1.0 E+90$ for b_{k}. Furthermore, the A_{8} / B_{6} algorithm is also investigated for discretisation values $\delta=0.2,5$ and 8 . Similarly to $\delta=0$, for $\delta=0.2$, as shown in Table A. 13 , the behaviour of the culprit coefficients is monitored by trying various values starting from the highest possible value of $1.0 E+294$ for b_{k}, as shown in Table A.16, and reaching the final default values at which the algorithm does not breakdown for the size of the problem ranging from 100 to 90000 . The observed default values are $1.0 E+130$ for b_{k}. In a similar fashion, the behaviour of the coefficients is monitored for the value of $\delta=5$ shown in Table A.14. The observed default
values are $1.0 E+280$ for b_{k}, with the starting highest value $1.0 E+294$ as show in Table A.17. Similarly, the behaviour of coefficients for $\delta=8$ are shown in Table A.15. The observed default values are $1.0 E+290$ for b_{k}, with the starting highest value being $1.0 E+294$ as shown in Table A.18. The numerical evidence for the above scenario relating to algorithm A_{8} / B_{6} are recorded in Tables 4.6-A. 18

Table 4.6: Behaviour of coefficients of A_{8} / B_{6} on Baheux-type problems when $\delta=0$.

Col.1	Col.2	Col.3	Col.4	Col.5
Dim. of A	k	A_{k}	C_{k}^{1}	E_{k}^{1}
100	45	NaN	NaN	NaN
500	176	NaN	NaN	NaN
1000	174	NaN	NaN	NaN
5000	174	NaN	NaN	NaN
10000	176	NaN	NaN	NaN
15000	174	NaN	NaN	NaN
20000	174	NaN	NaN	NaN
30000	168	NaN	NaN	NaN
40000	174	NaN	NaN	NaN
50000	133	NaN	NaN	NaN
60000	129	NaN	NaN	NaN
70000	171	NaN	NaN	NaN
80000	170	NaN	NaN	NaN
90000	177	NaN	NaN	NaN

Similar tables are generated for different instances of the problem. These can be seen as Tables A.13-A.15, subsection A.2.3 of Appendix A. The purpose of these tables is to show that monitoring by coefficients helps to avoid breakdown. As these tables show, as soon as any of the entries in a row hits infinity or is Not a Number (Inf or NaN), the Lanczos-type algorithm breaks down.

Note that, while Table 4.6 shows the values of compound coefficient such as A_{k}, C_{k}^{1}, and $E_{k^{\prime}}^{1}$, Table 4.7 involves the particular parameters of the compound coefficient which is responsible for the breakdown. Therefore, it is potentially cheaper to check for breakdown

Table 4.7: Behaviour of the parameters of the offending coefficients of A_{8} / B_{6} on Baheux-type problems when $\delta=0$

Col. 1	Col. 2	Col.3	Col. 4	Col. 5	Col. 6	Col. 7
Dim. of A	k	a_{k}	b_{k}	c_{k}	f_{k}	e_{k}
100	45	$5.0320 \mathrm{E}+13$	NaN	$-4.3429 \mathrm{E}+40$	$-4.4917 \mathrm{E}+41$	NaN
500	176	$2.1279 \mathrm{E}+144$	NaN	$2.2442 \mathrm{E}+292$	$1.1997 \mathrm{E}+293$	NaN
1000	174	$7.0826 \mathrm{E}+141$	NaN	NaN	$-3.7561 \mathrm{E}+294$	NaN
5000	174	$2.7973 \mathrm{E}+142$	NaN	NaN	$1.7832 \mathrm{E}+294$	NaN
10000	176	$-2.0730 \mathrm{E}+143$	NaN	NaN	NaN	NaN
15000	174	$7.7219 \mathrm{E}+138$	NaN	NaN	$-5.9177 \mathrm{E}+294$	NaN
20000	174	$-8.2407 \mathrm{E}+141$	NaN	NaN	NaN	NaN
30000	168	$1.8353 \mathrm{E}+136$	NaN	NaN	$1.9360 \mathrm{E}+294$	NaN
40000	174	$3.4297 \mathrm{E}+142$	NaN	$-5.4886 \mathrm{E}+292$	$-4.3877 \mathrm{E}+293$	NaN
50000	133	$-7.7943 \mathrm{E}+104$	NaN	$3.5244 \mathrm{E}+222$	$2.2999 \mathrm{E}+223$	NaN
60000	129	NaN	NaN	$-4.0132 \mathrm{E}+205$	$5.1369 \mathrm{E}+207$	NaN
70000	171	$-2.2328 \mathrm{E}+140$	NaN	NaN	NaN	NaN
80000	170	$6.0473 \mathrm{E}+137$	NaN	NaN	$-7.5842 \mathrm{E}+293$	NaN
90000	177	$-6.2923 \mathrm{E}+144$	NaN	NaN	NaN	NaN

in Table 4.7 than in Table 4.6. Similar tables for different instance can be found in Tables A.16-A.18, subsection A.2.3 of Appendix A. After gathering all these, thus, we finally obtain the following algorithm

```
Algorithm 18 Monitoring Lanczos-type Algorithm based on relation \(A_{8} / B_{6}\)
Input: \(A\) an \(n \times n\) matrix, \(b\) an n-vector.
Output: the approximations solution, \(\mathbf{x}_{k}\), norm of the residual, \(\left\|\mathbf{r}_{k}\right\|\).
Initializations: Choose \(\mathbf{x}_{0}\) and \(\mathbf{y}\), and the tolerance \(\varepsilon\) to \(1 E-13\).
    Set \(\quad \mathbf{r}_{0}=b-A \mathbf{x}_{0} ; \quad \mathbf{y}_{0}=\mathbf{y}, \quad \mathbf{z}_{0}=\mathbf{r}_{0} ;\)
Compute:
    \(\mathbf{r}_{1}, \mathbf{x}_{1}\), as in (2.138);
    \(\mathbf{z}_{1}\) as in (2.146);
    \(k=0\);
While \(\left\|\mathbf{r}_{k}\right\|>\varepsilon\)
    \(\mathbf{y}_{k}=A^{T} \mathbf{y}_{k-1}\)
    \(A_{k}\), as in (4.16);
    \(\mathbf{r}_{k}, \mathbf{x}_{k}\) as in (4.15);
```

```
Algorithm \(18 A_{8} / B_{6}\) based algorithm(continued)
    \(C_{k^{\prime}}^{1} E_{k}^{1}\) as in (4.26);
    \(z_{k}\) as in (4.25);
    \(/ *\) Monitor Denominators: \(A_{k}, C_{k^{\prime}}^{1} E_{k^{\prime}}^{1} b_{k}, c_{k} \cdot * /\)
    \(/ *\) Design a test/rule. The test might be based on choosing a threshold value \(\epsilon\),
    for instance, for that parameter in the coefficients which caused breakdown. */
    If \(\left(\left|b_{k}\right| \leq 1.0 E-25\right.\) or \(\left.\left|c_{k}\right| \leq 1.0 E-25\right)\);
        display('Check zero ......');
        break;
    End;
    If \(\left(\left|b_{k}\right| \geq \alpha_{i}\right)\)
        display('Check Yes ......');
        break;
    End;
    where \(\alpha_{i}=1.0 E+90,1.0 E+130\) when \(i=1,2\), for \(\delta_{i}=0,0.2\) respectively;
    If \(\left(\left|b_{k}\right| \geq \beta_{i}\right)\)
        display('Check Yes ......');
        break;
    End;
    where \(\beta_{i}=1.0 E+280,1.0 E+290\), when \(i=1,2\), for \(\delta_{i}=5,8\) respectively;
    \(k=k+1\);
EndWhile
Obtain the approximate solution as well as the residual norm;
\(\mathrm{sol}_{\text {last }}=\mathbf{x}_{k}\);
norm \(_{\text {last }}=\left\|\mathbf{r}_{k}\right\| ;\)
Stop.
```


4.4.4 Monitoring Lanczos-type Algorithm based on relations A_{8} / B_{10}

Here also, the behaviour of coefficients for $\delta=0$ is considered first. It can be seen in Table 4.8 that the problem of breakdown is caused by the coefficient B_{k}^{1} whose values for various dimension are given in column 5 of the table. The corresponding dimensions are given in the first column of the table that range from 100 to 90000 . The coefficient values in column

5 seem to have blown up showing $N a N$. Therefore, we should concentrate on B_{k}^{1} as a good term to observe in order to detect breakdown. To this end, all the coefficients A_{k}, C_{k}^{1} and B_{k}^{1} can be written in terms of a_{k}, b_{k} and c_{k} to see which cluster of these causes the breakdown. Like A_{8} / B_{6} algorithm, there will be a term in the expression of the coefficients which blows up (i.e. goes to NaN). The components that cause the breakdown are b_{k}. As shown in Table 4.9, the behaviour of these coefficients is monitored by trying various values starting from the highest possible value of $1.0000 E+292$ for b_{k}, and reach the final default values at which the algorithm does not breakdown for the size of the problem ranging from 100 to 90000 . The observed default values are $1.0000 E+130$ for b_{k}.

Furthermore, the A_{8} / B_{10} algorithm is also investigated for discretisation values $\delta=0.2$, 5 and 8 . Similarly to $\delta=0$, for $\delta=0.2$, and as shown in Table A.19, the behaviour of the culprit coefficients is monitored by trying various values starting from the highest possible value of $1.000 E+293$ for b_{k}, as shown in Table A.22, and reach the final default values at which the algorithm does not breakdown for the size of the problem ranging from 100 to 90000 . The observed default values are $1.0000 E+150$ for b_{k}. In a similar fashion, the behaviour of the coefficients for the value of $\delta=5$ is shown in Table A.20. The observed default values are $1.0000 E+280$ for b_{k}, with the starting highest values $1.000 E+295$ as show in Table A.23. Similarly, the behaviour of coefficients for $\delta=8$ is shown in Table A.21. The observed default values being $1.000 E+270$ for b_{k}, with the starting highest values are $1.000 E+296$ as shown in Table A.24. The numerical evidence for the above scenario relating to algorithm A_{8} / B_{10} are recorded in Tables 4.8-A.24.

Similar tables are generated for different instances of the problem. These can be seen as Tables A.19-A.21, subsection A.2.4 of Appendix A. The purpose of these tables is to show

Table 4.8: Behaviour of the parameters of the offending coefficients of A_{8} / B_{10} on Baheux-type problems when $\delta=0$

Col.1	Col.2	Col.3	Col.4	Col.5
Dim. of A	k	A_{k}	C_{k}^{1}	B_{k}^{1}
100	171	NaN	NaN	NaN
500	182	NaN	NaN	NaN
1000	184	NaN	NaN	NaN
5000	183	NaN	NaN	NaN
10000	183	NaN	NaN	NaN
15000	143	Inf	$0.0000 \mathrm{E}+00$	NaN
20000	117	NaN	NaN	NaN
30000	124	-Inf	$0.0000 \mathrm{E}+00$	NaN
40000	183	-Inf	$0.0000 \mathrm{E}+00$	NaN
50000	184	NaN	NaN	NaN
60000	180	NaN	NaN	NaN
70000	184	NaN	NaN	NaN
80000	183	NaN	NaN	NaN
90000	177	NaN	NaN	NaN

that monitoring by coefficients helps to avoid breakdown. As these tables show, as soon as any of the entries in a row hits infinity or is Not a Number (Inf or NaN), the Lanczos-type algorithm breaks down.

Table 4.9: Behaviour of the parameters of the offending coefficients of A_{8} / B_{10} on Baheux-type problems when $\delta=0$

Col.1	Col.2	Col.3	Col.4	Col.5
Dim. of A	k	a_{k}	b_{k}	c_{k}
100	171	$-2.9969 \mathrm{E}+148$	NaN	NaN
500	182	$-9.5213 \mathrm{E}+146$	NaN	NaN
1000	184	$-8.0820 \mathrm{E}+142$	NaN	NaN
5000	183	$1.2419 \mathrm{E}+144$	NaN	NaN
10000	183	$2.4934 \mathrm{E}+149$	NaN	NaN
15000	143	$-9.2885 \mathrm{E}+111$	$0.0000 \mathrm{E}+00$	NaN
20000	117	$-1.0017 \mathrm{E}+84$	NaN	NaN
30000	124	$7.7153 \mathrm{E}+91$	$0.0000 \mathrm{E}+00$	NaN
40000	183	$1.1238 \mathrm{E}+146$	$0.0000 \mathrm{E}+00$	NaN
50000	184	$-1.5609 \mathrm{E}+146$	NaN	NaN
60000	180	$4.7634 \mathrm{E}+139$	NaN	NaN
70000	184	$-2.8970 \mathrm{E}+147$	NaN	NaN
80000	183	$-1.5784 \mathrm{E}+148$	NaN	NaN
90000	177	$7.6215 \mathrm{E}+141$	NaN	NaN

Note that, while Table 4.8 shows the values of compound coefficient such as $A_{k}, B_{k^{\prime}}^{1}$ and $C_{k^{\prime}}^{1}$, Table 4.9 involves the particular parameters of the compound coefficient which is responsible for the breakdown. Therefore, it is potentially cheaper to check for breakdown in Table 4.9 than in Table 4.8. Similar tables for different instance can be found in Tables A.22-A.24, subsection A.2.4 of Appendix A. After gathering all these, thus, we finally obtain the following algorithm

```
Algorithm 19 Monitoring Lanczos-type Algorithm based on relation \(A_{8} / B_{10}\)
Input: \(A\) an \(n \times n\) matrix, \(b\) an n-vector.
Output: the approximations solution, \(\mathbf{x}_{k}\), norm of the residual, \(\left\|\mathbf{r}_{k}\right\|\).
Initializations: Choose \(\mathbf{x}_{0}\) and \(\mathbf{y}\), and the tolerance \(\varepsilon\) to \(1 E-13\).
    Set \(\mathbf{r}_{0}=b-A \mathbf{x}_{0} ; \quad \mathbf{y}_{0}=\mathbf{y}, \quad \mathbf{z}_{0}=\mathbf{r}_{0}\);
```


Compute:

```
\(\mathbf{y}_{1}=A^{T} \mathbf{y}_{0} ; A_{1}\) as in (4.16);
\(k=0\);
While \(\left\|\mathbf{r}_{k}\right\|>\varepsilon\) do
\(\mathbf{y}_{k}=A^{T} \mathbf{y}_{k-1}\);
\(A_{k}\), as in (4.16) and \(C_{k^{\prime}}^{1}, B_{k}^{1}\) as in(4.21) respectively;
\(\mathbf{r}_{k}, \mathbf{x}_{k}\) as in (4.15) and \(z_{k}\) as in (4.20) respectively
\(/ *\) Monitor Denominators: \(A_{k}, B_{k}^{1}, C_{k}^{1}, a_{k}, b_{k} . * /\)
/* Design a test/rule. The test might be based on choosing a threshold value \(\epsilon\), for instance, for that parameter in the coefficients which caused breakdown. */
If ( \(\left|a_{k}\right| \leq 1 E-25\) or \(\left.\left|b_{k}\right| \leq 1 E-25\right)\);
display('Check Z1 ......');
break;
End;
If \(\left(\left|b_{k}\right| \geq \alpha_{i}\right)\)
display('Check Y1 ......');
break;
End;
where \(\alpha_{i}=1 E+130,1.0 E+150,1 E+280\);
when \(i=1,2,3\), for \(\delta=0,0.2,5\) respectively;
```

```
Algorithm \(19 A_{8} / B_{10}\) based algorithm(continued)
    If \(\left(\left|b_{k}\right| \leq 1.0 E-25\right)\);
        display('Check Z2 ......');
        break;
    End;
    If ( \(\left|b_{k}\right| \geq 1 E+270\) );
        display('Check Y2 ......');
        break;
    End;
    for \(\delta=8\);
    \(k=k+1\);
EndWhile
Obtain the approximate solution as well as the residual norm;
\(\mathrm{sol}_{\text {last }}=\mathbf{x}_{k}\);
norm \(_{\text {last }}=\left\|\mathbf{r}_{k}\right\| ;\)
Stop.
```


4.4.5 Can a test be based on the number of iteration.?

By looking at the column of k in Table 4.10, it is obvious k changes little with the change in dimension of the matrix except in few cases. It is, therefore, possible to design a restarting test based on k. however, at least up to dimension 180000, about 30% of cases will be missed. A test that also includes the value of A_{k} may remedy this shortcoming such a test may be as

Test:

maxval=300;
If $(\mathrm{k} \geq$ maxval $)$ or $\left(A_{k}==0\right)$ Then
Restart;

EndIf

Table 4.10: Behaviour of the parameters of the offending coefficients of A_{8} / B_{10} on Baheux-type problems when $\delta=0$

Col.1	Col.2	Col.3	Col.4	Col.5
Dim. of A	k	A_{k}	B_{k}	E_{k}
100	110	$0.0000 \mathrm{E}+00$	-Inf	$0.0000 \mathrm{E}+00$
500	300	$0.0000 \mathrm{E}+00$	Inf	$0.0000 \mathrm{E}+00$
1000	354	NaN	NaN	$2.7707 \mathrm{E}+01$
5000	347	$0.0000 \mathrm{E}+00$	-Inf	$0.0000 \mathrm{E}+00$
10000	217	$0.0000 \mathrm{E}+00$	Inf	$0.0000 \mathrm{E}+00$
20000	354	NaN	NaN	$-1.2788 \mathrm{E}+02$
30000	354	NaN	NaN	$2.2656 \mathrm{e}-01$
40000	354	NaN	NaN	$-5.5784 \mathrm{E}+01$
50000	198	$0.0000 \mathrm{E}+00$	Inf	$0.0000 \mathrm{E}+00$
60000	354	NaN	NaN	$-2.1109 \mathrm{E}+00$
70000	326	$0.0000 \mathrm{E}+00$	Inf	$0.0000 \mathrm{E}+00$
80000	354	NaN	NaN	$-1.0170 \mathrm{E}+01$
90000	182	$0.0000 \mathrm{E}+00$	-Inf	$0.0000 \mathrm{E}+00$
100000	113	$0.0000 \mathrm{E}+00$	Inf	$0.0000 \mathrm{E}+00$
110000	354	NaN	NaN	$-1.3942 \mathrm{E}+01$
120000	354	NaN	NaN	$-1.3913 \mathrm{E}+00$
130000	354	NaN	NaN	$-5.5625 \mathrm{E}+00$
140000	354	NaN	NaN	$-2.2225 \mathrm{E}+01$
150000	354	NaN	NaN	$-5.3333 \mathrm{E}+00$
160000	354	NaN	NaN	$-3.4702 \mathrm{E}+00$
170000	354	NaN	NaN	$-1.3091 \mathrm{E}+01$
180000	151	$0.0000 \mathrm{E}+00$	-Inf	$0.0000 \mathrm{E}+00$

4.5 Restarting Strategies

In these strategies, the idea is either to stop the Lancozs-type algorithm pre-emptively and restart it with some iterate or wait until breakdown occurs and then restart from the last iterate found. It is reasonable to restart from the point immediately before the breakdown occurred if one can detect it. Otherwise, one may consider restarting strategy after breakdown has happened [36]. Different strategies, ST1, ST2 and ST3, can be used for restarting various algorithms as already explained in Section 1.8.1.

4.5.1 ST2 Implementation

ST2 takes as input a given algorithm from a prespecified list. Here, these algorithms are the ones already listed above, i.e. $A_{4}, A_{12}, A_{8} / B_{6}$, and A_{8} / B_{10}. Depending on whether the algorithms are of the A_{i}-type (i.e. Lanczos-type algorithm based on a single recurrence relation) or A_{i} / B_{j}-type (i.e. Lanczos-type algorithm based on two recurrence relations), initialisation has to be done differently; A_{i}-type requires $x_{0}, r_{0}=b-A x$ and $y_{0}=y$, and A_{i} / B_{j}-type requires $x_{0}, r_{0}=b-A x$ and $y_{0}=y$, as well as $z_{0}=r_{0}$. The general ST2 algorithm can be described, therefore, as follows.

```
Algorithm 20 Restarting Algorithm Based on Monitoring
Choose restarting strategy ST2.
\{Step 1\}
Start with Monitoring Lanczos-type algorithms from prespecified list
\(\{\) Alg : 16, Alg : 17, Alg : 18, Alg : 19\}.
\{Step 2\}
Run chosen Monitoring Lanczos-type algorithm until it halts;
Obtain the solution sol last \(=\mathbf{x}_{k}\) as well as the residual norm norm last \(=\left\|\mathbf{r}_{k}\right\|\).
While \(\left\|\mathbf{r}_{k}\right\|>\varepsilon\) do
    Initialize it with the current iterate of the algorithm run;
    \(\mathbf{x}=\) sol \(_{\text {last }}\),
    \(\mathbf{y}=b-A \mathbf{x}\).
    Run chosen Monitoring algorithm;
EndWhile
Obtain the optimal solution as well as the optimal residual norm as follows
sol \({ }_{\text {optimal }}=\mathbf{x}_{k}\)
norm \(_{\text {optimal }}=\left\|\mathbf{r}_{k}\right\|\).
```


Stop.

4.6 Restarting Algorithm 17

The solution is obtained via restarting the Algorithm 17 as given in Algorithm 20. Utilizing regular intervals, the algorithm is restarted using the current iterate.

4.6.1 Numerical Results

The results obtained with Algorithm 12 and Algorithm 20, on Baheux-type problems of different dimensions, for different values of $\delta[3,4]$, are presented in Tables 4.11-4.14.

Table 4.11: Results of Algorithm 12 and Algorithm 20 on Baheux-type problems when $\delta=0$

Algorithm 12		Algorithm 20							
Prob. size		Total-numit	Cycles	Residual Norm	Elapsed time				
$n_{1} \times n_{2}=n$	$\left\\|r_{k}\right\\|$	$\mathrm{t}(\mathrm{sec})$	$\sum k$		$\left\\|r_{k}\right\\|$				
100	NaN	185	2	$4.9751 \mathrm{E}-14$	$7.0910 \mathrm{E}-01$				
500	NaN	906	6	$9.7847 \mathrm{E}-14$	$1.1169 \mathrm{E}+00$				
1000	NaN	964	6	$9.1003 \mathrm{E}-14$	$1.5922 \mathrm{E}+00$				
5000	NaN	1011	6	$9.3487 \mathrm{E}-14$	$3.6608 \mathrm{E}+01$				
10000	NaN	1085	7	$9.9417 \mathrm{E}-14$	$7.4854 \mathrm{E}+01$				
20000	NaN	988	6	$9.9324 \mathrm{E}-14$	$6.9171 \mathrm{E}+02$				
30000	NaN	1089	7	$9.9248 \mathrm{E}-14$	$3.4193 \mathrm{E}+03$				
40000	NaN	1082	7	$7.5591 \mathrm{E}-14$	$2.5580 \mathrm{E}+03$				
50000	NaN	1257	8	$8.1885 \mathrm{E}-14$	$2.9318 \mathrm{E}+03$				
60000	NaN	1303	8	$8.4811 \mathrm{E}-14$	$7.2413 \mathrm{E}+03$				
70000	NaN	1128	7	$8.7667 \mathrm{E}-14$	$7.3412 \mathrm{E}+03$				
80000	NaN	1120	7	$9.9146 \mathrm{E}-14$	$6.5786 \mathrm{E}+03$				
90000	NaN	1072	7	$9.0707 \mathrm{E}-14$	$5.0874 \mathrm{E}+03$				

Table 4.12: Results of Algorithm 12 and Algorithm 20 on Baheux-type problems when $\delta=0.2$

	Algorithm 12		Algorithm 20						
Prob. size			Total-numit	Cycles	Residual Norm	Elapsed time			
$n_{1} \times n_{2}=n$	\|rrk $\\|$	t(sec)	$\sum k$		$\left\\|r_{k}\right\\|$	t (sec)			
100	NaN		356	3	3.4466E-14	$9.0114 \mathrm{E}-01$			
500	NaN		862	6	$8.6592 \mathrm{E}-14$	$1.1456 \mathrm{E}+00$			
1000	NaN		1355	8	8.1958E-14	$2.2509 \mathrm{E}+00$			
5000	NaN		898	6	$9.4303 \mathrm{E}-14$	$2.9377 \mathrm{E}+01$			
10000	NaN		883	6	8.9325E-14	$1.7968 \mathrm{E}+02$			
20000	NaN		972	6	$8.3356 \mathrm{E}-14$	$3.9526 \mathrm{E}+02$			
30000	NaN		1038	7	8.1079E-14	$1.3205 \mathrm{E}+03$			
40000	NaN		1220	8	$8.9458 \mathrm{E}-14$	$3.3931 \mathrm{E}+03$			
50000	NaN		1069	7	7.5661E-14	$3.6229 \mathrm{E}+03$			
60000	NaN		1051	7	$9.1927 \mathrm{E}-14$	$4.7638 \mathrm{E}+03$			
70000	NaN		904	6	$8.2881 \mathrm{E}-14$	$6.3346 \mathrm{E}+03$			
80000	NaN		1065	7	7.2007E-14	$5.3332 \mathrm{E}+03$			
90000	NaN		949	7	$8.7481 \mathrm{E}-14$	$4.4072 \mathrm{E}+03$			

Table 4.13: Results of Algorithm 12 and Algorithm 20 on Baheux-type problems when $\delta=5$

Algorithm 12			Algorithm 20							
Prob. size			Total-numit	Cycles	Residual Norm					
Elapsed time										
$n_{1} \times n_{2}=n$	$\left\\|r_{k}\right\\|$	$\mathrm{t}(\mathrm{sec})$	$\sum k$		$\left\\|r_{k}\right\\|$					
100	NaN		1610	6	$8.7093 \mathrm{E}-14$					
500	NaN	1582	6	$8.0338 \mathrm{E}-14$	$1.5935 \mathrm{E}+0.2823 \mathrm{E}+00$					
1000	NaN	1370	5	$9.7527 \mathrm{E}-14$	$1.3913 \mathrm{E}+01$					
5000	NaN	1302	5	$7.1808 \mathrm{E}-14$	$9.1577 \mathrm{E}+01$					
10000	NaN	1739	6	$8.5618 \mathrm{E}-14$	$3.8901 \mathrm{E}+02$					
20000	NaN	1153	4	$9.3103 \mathrm{E}-14$	$1.4575 \mathrm{E}+03$					
30000	NaN	1846	7	$7.3421 \mathrm{E}-14$	$2.6401 \mathrm{E}+03$					
40000	NaN	1442	5	$8.2381 \mathrm{E}-14$	$2.2795 \mathrm{E}+03$					
50000	NaN	1093	4	$9.0785 \mathrm{E}-14$	$4.9594 \mathrm{E}+03$					
60000	NaN	1438	5	$9.1695 \mathrm{E}-14$	$6.8288 \mathrm{E}+03$					
70000	NaN	2623	9	$9.9138 \mathrm{E}-14$	$7.6795 \mathrm{E}+03$					
80000	NaN	110	4	$9.8909 \mathrm{E}-14$	$5.2076 \mathrm{E}+03$					
90000	NaN	1445	5	$9.5266 \mathrm{E}-14$	$8.4268 \mathrm{E}+03$					

Table 4.14: Results of Algorithm 12 and Algorithm 20 on Baheux-type problems when $\delta=8$

Algorithm 12		Algorithm 20							
Prob. size		Total-numit	Cycles	Residual Norm	Elapsed time				
$n_{1} \times n_{2}=n$	$\left\\|r_{k}\right\\|$	$\mathrm{t}(\mathrm{sec})$	$\sum k$		$\left\\|r_{k}\right\\|$				
100	NaN		1520	7	$9.9093 \mathrm{E}-14$				
500	NaN	2045	9	$7.7985 \mathrm{E}-14$	$2.1651 \mathrm{sec})$				
1000	NaN		1489	6	$9.3571 \mathrm{E}+00$				
5000	NaN	2258	9	$9.9643 \mathrm{E}-14$	$3.2646 \mathrm{E}+01$				
10000	NaN	2379	10	$8.1828 \mathrm{E}-14$	$8.7535 \mathrm{E}+01$				
20000	NaN	1419	6	$9.3375 \mathrm{E}+02$					
30000	NaN	2735	11	$9.9598 \mathrm{E}-14$	$6.1979 \mathrm{E}+03$				
40000	NaN	2462	10	$9.1988 \mathrm{E}-14$	$2.4927 \mathrm{E}+03$				
50000	NaN	2658	11	$9.6892 \mathrm{E}-14$	$3.5659 \mathrm{E}+03$				
60000	NaN	5637	22	$9.7572 \mathrm{E}-14$	$2.4112 \mathrm{E}+04$				
70000	NaN	2024	8	$8.1102 \mathrm{E}-14$	$7.5391 \mathrm{E}+03$				
80000	NaN	4308	17	$9.4350 \mathrm{E}-14$	$1.6636 \mathrm{E}+04$				
90000	NaN	3812	15	$7.5429 \mathrm{E}-14$	$1.7716 \mathrm{E}+04$				

4.7 Restarting Algorithm 16

The solution is obtained via restarting Algorithm 16 as given in Algorithm 20. Utilizing regular intervals, the algorithm is restarted using the current iterate.

4.7.1 Numerical Results

The results obtained with Algorithm 11, and Algorithm 20 described above, on Baheuxtype problems of different dimensions, for different values of δ [3,4], are presented in Tables

4.15-4.18.

Table 4.15: Results of Algorithm 11 and Algorithm 20 on Baheux-type problems when $\delta=0$

Algorithm 11		Algorithm 20							
Prob. size		Total-numit	Cycles	Residual Norm	Elapsed time				
$n_{1} \times n_{2}=n$	$\left\\|r_{k}\right\\|$	$\mathrm{t}(\mathrm{sec})$	$\sum k$		$\left\\|r_{k}\right\\|$				
100	NaN		149	2	$5.4429 \mathrm{E}-14$				
500	NaN	916	8	$9.8779 \mathrm{E}-14$	$1.5120 \mathrm{sec})$				
1000	NaN	783	7	$7.8942 \mathrm{E}-14$	$1.8649 \mathrm{E}+00$				
5000	NaN	1046	9	$9.6411 \mathrm{E}-14$	$6.2534 \mathrm{E}+01$				
10000	NaN	924	8	$8.6591 \mathrm{E}-14$	$1.2378 \mathrm{E}+02$				
20000	NaN	1036	9	$9.0168 \mathrm{E}-14$	$1.2158 \mathrm{E}+03$				
30000	NaN	1046	9	$6.2128 \mathrm{E}-14$	$1.7086 \mathrm{E}+03$				
40000	NaN	1368	11	$8.5319 \mathrm{E}-14$	$2.9172 \mathrm{E}+03$				
50000	NaN	1180	10	$8.8686 \mathrm{E}-14$	$5.6647 \mathrm{E}+03$				
60000	NaN	1056	9	$9.6952 \mathrm{E}-14$	$7.0835 \mathrm{E}+03$				
70000	NaN	1013	8	$9.9118 \mathrm{E}-14$	$9.3068 \mathrm{E}+03$				
80000	NaN	919	8	$9.7447 \mathrm{E}-14$	$6.9428 \mathrm{E}+03$				
90000	NaN		936	8	$9.3677 \mathrm{E}-14$				

Table 4.16: Results of Algorithm 11 and Algorithm 20 on Baheux-type problems when $\delta=0.2$

Algorithm 11		Algorithm 20							
Prob. size		Total-numit	Cycles	Residual Norm	Elapsed time				
$n_{1} \times n_{2}=n$	$\left\\|r_{k}\right\\|$	$\mathrm{t}(\mathrm{sec})$	$\sum k$		$\left\\|r_{k}\right\\|$				
100	NaN		352	4	$8.4201 \mathrm{E}-14$				
500	NaN	743	6	$8.2836 \mathrm{E}-14$	$1.3534 \mathrm{E}-01$				
1000	NaN	737	6	$9.6689 \mathrm{E}-14$	$2.8613 \mathrm{E}+00$				
5000	NaN	1159	9	$8.7238 \mathrm{E}-14$	$4.1919 \mathrm{E}+01$				
10000	NaN	884	7	$9.3045 \mathrm{E}-14$	$1.2608 \mathrm{E}+02$				
20000	NaN	853	7	$9.3119 \mathrm{E}-14$	$7.3278 \mathrm{E}+02$				
30000	NaN	1053	8	$8.6376 \mathrm{E}-14$	$2.0646 \mathrm{E}+03$				
40000	NaN	812	7	$7.7838 \mathrm{E}-14$	$2.9067 \mathrm{E}+03$				
50000	NaN	867	7	$7.8088 \mathrm{E}-14$	$3.8596 \mathrm{E}+03$				
60000	NaN	995	8	$9.7165 \mathrm{E}-14$	$8.0922 \mathrm{E}+03$				
70000	NaN	868	7	$9.1179 \mathrm{E}-14$	$8.8500 \mathrm{E}+03$				
80000	NaN	966	7	$9.4984 \mathrm{E}-14$	$9.5485 \mathrm{E}+03$				
90000	NaN	905	7	$8.4068 \mathrm{E}-14$	$1.1762 \mathrm{E}+04$				

Table 4.17: Results of Algorithm 11 and Algorithm 20 on Baheux-type problems when $\delta=5$

Algorithm 11		Algorithm 20							
Prob. size		Total-numit	Cycles	Residual Norm	Elapsed time				
$n_{1} \times n_{2}=n$	$\left\\|r_{k}\right\\|$	$\mathrm{t}(\mathrm{sec})$	$\sum k$		$\left\\|r_{k}\right\\|$				
100	NaN		802	8	$7.3557 \mathrm{E}-14$				
500	NaN	717	7	$7.4404 \mathrm{E}-14$	$1.0901 \mathrm{sec})$				
1000	NaN		895	9	$7.7603 \mathrm{E}-14$				
5000	NaN	1027	10	$8.8162 \mathrm{E}-14$	$7.9029 \mathrm{E}+00$				
10000	NaN	2576	23	$6.6752 \mathrm{E}-14$	$9.0615 \mathrm{E}+01$				
20000	NaN	1842	17	$5.0440 \mathrm{E}-14$	$1.9670 \mathrm{E}+03$				
30000	NaN	1568	14	$7.8304 \mathrm{E}-14$	$2.1650 \mathrm{E}+03$				
40000	NaN	6878	59	$8.3005 \mathrm{E}-14$	$1.6076 \mathrm{E}+04$				
50000	NaN	1505	14	$8.3499 \mathrm{E}-14$	$6.1923 \mathrm{E}+03$				
60000	NaN	2180	20	$9.6363 \mathrm{E}-14$	$1.2218 \mathrm{E}+04$				
70000	NaN	3007	27	$6.6189 \mathrm{E}-14$	$2.8736 \mathrm{E}+04$				
80000	NaN	1059	10	$7.0086 \mathrm{E}-14$	$1.1031 \mathrm{E}+04$				
90000	NaN		1990	18	$9.4227 \mathrm{E}-14$				

Table 4.18: Results of Algorithm 11 and Algorithm 20 on Baheux-type problems when $\delta=8$

Algorithm 11		Algorithm 20							
Prob. size		Total-numit	Cycles	Residual Norm	Elapsed time				
$n_{1} \times n_{2}=n$	$\left\\|r_{k}\right\\|$	$\mathrm{t}(\mathrm{sec})$	$\sum k$		$\left\\|r_{k}\right\\|$				
100	NaN		1036	11	$9.7360 \mathrm{E}-14$				
500	NaN	1139	12	$9.8301 \mathrm{E}-14$	$1.3808 \mathrm{E}+00$				
1000	NaN	1273	13	$9.43975 \mathrm{E}+00$					
5000	NaN	1607	16	$8.6392 \mathrm{E}-14$	$3.7262 \mathrm{E}+00$				
10000	NaN	1991	20	$7.6799 \mathrm{E}-14$	$5.9519 \mathrm{E}+02$				
20000	NaN	3216	31	$8.7604 \mathrm{E}-14$	$3.0332 \mathrm{E}+03$				
30000	NaN	7017	66	$4.2110 \mathrm{E}-14$	$1.2230 \mathrm{E}+04$				
40000	NaN	6411	61	$6.3927 \mathrm{E}-14$	$1.9988 \mathrm{E}+04$				
50000	NaN	9148	86	$6.9372 \mathrm{E}-14$	$2.5205 \mathrm{E}+04$				
60000	NaN	1350	14	$7.6603 \mathrm{E}-14$	$9.4175 \mathrm{E}+03$				
70000	NaN	12687	119	$7.8368 \mathrm{E}-14$	$1.0022 \mathrm{E}+05$				
80000	NaN	1463	15	$9.5044 \mathrm{E}-14$	$1.4259 \mathrm{E}+04$				
90000	NaN	1684	17	$9.9384 \mathrm{E}-14$	$1.7534 \mathrm{E}+04$				

4.8 Restarting Algorithm 18

The solution is obtained via restarting Algorithm 18 as given in Algorithm 20. Utilizing regular intervals, the algorithm is restarted using the current iterate.

4.8.1 Numerical Results

The results obtained with Algorithm 14 and its restarting version Algorithm 20, on Baheuxtype problems of different dimensions, for different values of $\delta[3,4]$, are presented in Tables

4.19-4.22.

Table 4.19: Results of Algorithm 14 and Algorithm 20 on Baheux-type problems when $\delta=0$

Algorithm 14		Algorithm 20							
Prob. size		Total-numit	Cycles	Residual Norm	Elapsed time				
$n_{1} \times n_{2}=n$	$\left\\|r_{k}\right\\|$	$\mathrm{t}(\mathrm{sec})$	$\sum k$		$\left\\|r_{k}\right\\|$				
100	NaN	57	2	$6.115 \mathrm{E}-14$	$6.2013 \mathrm{E}-01$				
500	NaN	529	9	$9.8912 \mathrm{E}-14$	$5.3377 \mathrm{E}+00$				
1000	NaN	1060	15	$8.5325 \mathrm{E}-14$	$2.8432 \mathrm{E}+00$				
5000	NaN	611	9	$9.0619 \mathrm{E}-14$	$1.5942 \mathrm{E}+01$				
10000	NaN	612	9	$8.7698 \mathrm{E}-14$	$6.3695 \mathrm{E}+01$				
20000	NaN	916	13	$9.6487 \mathrm{E}-14$	$3.2046 \mathrm{E}+02$				
30000	NaN	763	11	$9.7053 \mathrm{E}-14$	$4.6949 \mathrm{E}+02$				
40000	NaN	922	13	$9.7491 \mathrm{E}-14$	$1.2360 \mathrm{E}+03$				
50000	NaN	766	11	$8.7656 \mathrm{E}-14$	$1.2205 \mathrm{E}+03$				
60000	NaN	679	10	$8.7424 \mathrm{E}-14$	$1.5603 \mathrm{E}+03$				
70000	NaN	633	9	$9.0205 \mathrm{E}-14$	$1.8936 \mathrm{E}+03$				
80000	NaN	706	10	$9.8981 \mathrm{E}-14$	$2.7773 \mathrm{E}+03$				
90000	NaN	830	12	$8.4513 \mathrm{E}-14$	$4.3607 \mathrm{E}+03$				

Table 4.20: Results of Algorithm 14 and Algorithm 20 on Baheux-type problems when $\delta=0.2$

Algorithm 14		Algorithm 20							
Prob. size			Total-numit	Cycles	Residual Norm				
Elapsed time									
$n_{1} \times n_{2}=n$	$\left\\|r_{k}\right\\|$	$\mathrm{t}(\mathrm{sec})$	$\sum k$		$\left\\|r_{k}\right\\|$				
100	NaN		689	8	$7.7436 \mathrm{E}-14$				
500	NaN	1463	16	$5.9065 \mathrm{E}-14$	$1.4320 \mathrm{E}-01$				
1000	NaN	1359	15	$7.9484 \mathrm{E}-14$	$2.4188 \mathrm{E}+00$				
5000	NaN	1717	19	$9.7027 \mathrm{E}-14$	$7.6450 \mathrm{E}+01$				
10000	NaN	1256	14	$8.6415 \mathrm{E}-14$	$2.1527 \mathrm{E}+02$				
20000	NaN	897	10	$5.8727 \mathrm{E}-14$	$4.2976 \mathrm{E}+02$				
30000	NaN	1634	18	$9.6493 \mathrm{E}-14$	$1.7039 \mathrm{E}+03$				
40000	NaN	1155	13	$8.3941 \mathrm{E}-14$	$2.5913 \mathrm{E}+03$				
50000	NaN	1564	17	$7.4461 \mathrm{E}-14$	$3.9558 \mathrm{E}+03$				
60000	NaN	1249	14	$8.6231 \mathrm{E}-14$	$4.7694 \mathrm{E}+03$				
70000	NaN	1207	14	$7.7883 \mathrm{E}-14$	$5.7245 \mathrm{E}+03$				
80000	NaN	1896	21	$7.9999 \mathrm{E}-14$	$8.5143 \mathrm{E}+03$				
90000	NaN	2231	24	$9.2184 \mathrm{E}-14$	$1.4880 \mathrm{E}+04$				

Table 4.21: Results of Algorithm 14 and Algorithm 20 on Baheux-type problems when $\delta=5$

Algorithm 14			Algorithm 20							
Prob. size			Total-numit	Cycles	Residual Norm					
Elapsed time										
$n_{1} \times n_{2}=n$	$\left\\|r_{k}\right\\|$	$\mathrm{t}(\mathrm{sec})$	$\sum k$		$\left\\|r_{k}\right\\|$					
100	NaN	686	5	$9.0831 \mathrm{E}-14$	$8.3733 \mathrm{E}-01$					
500	NaN	777	6	$9.0251 \mathrm{E}-14$	$1.7225 \mathrm{E}+00$					
1000	NaN	1065	8	$5.6323 \mathrm{E}-14$	$3.8374 \mathrm{E}+00$					
5000	NaN	1081	8	$6.4990 \mathrm{E}-14$	$4.8549 \mathrm{E}+01$					
10000	NaN	1360	10	$8.6696 \mathrm{E}-14$	$2.1502 \mathrm{E}+02$					
20000	NaN	1509	11	$5.7739 \mathrm{E}-14$	$7.5752 \mathrm{E}+02$					
30000	NaN	1518	11	$7.5207 \mathrm{E}-14$	$1.6380 \mathrm{E}+03$					
40000	NaN	1370	10	$7.2925 \mathrm{E}-14$	$2.8792 \mathrm{E}+03$					
50000	NaN	1246	9	$6.8686 \mathrm{E}-14$	$3.5663 \mathrm{E}+03$					
60000	NaN	1068	8	$5.5732 \mathrm{E}-14$	$4.5924 \mathrm{E}+03$					
70000	NaN	1374	10	$8.4638 \mathrm{E}-14$	$6.2884 \mathrm{E}+03$					
80000	NaN	1221	9	$7.0494 \mathrm{E}-14$	$6.2962 \mathrm{E}+03$					
90000	NaN		1373	10	$9.0335 \mathrm{E}-14$					

Table 4.22: Results of Algorithm 14 and Algorithm 20 on Baheux-type problems when $\delta=8$

Algorithm 14		Algorithm 20							
Prob. size		Total-numit	Cycles	Residual Norm	Elapsed time				
$n_{1} \times n_{2}=n$	$\left\\|r_{k}\right\\|$	$\mathrm{t}(\mathrm{sec})$	$\sum k$		$\left\\|r_{k}\right\\|$				
100	NaN		827	7	$8.7952 \mathrm{E}-14$				
500	NaN	961	8	$5.5997 \mathrm{E}-14$	$1.5710 \mathrm{E}-01$				
1000	NaN	1083	9	$9.5325 \mathrm{E}-14$	$1.9542 \mathrm{E}+00$				
5000	NaN	1217	10	$9.5816 \mathrm{E}-14$	$3.4618 \mathrm{E}+01$				
10000	NaN	1227	10	$9.8573 \mathrm{E}-14$	$1.1067 \mathrm{E}+02$				
20000	NaN	1487	12	$7.3681 \mathrm{E}-14$	$5.3876 \mathrm{E}+02$				
30000	NaN	1363	11	$4.6276 \mathrm{E}-14$	$1.0301 \mathrm{E}+03$				
40000	NaN	1247	10	$9.0025 \mathrm{E}-14$	$1.5393 \mathrm{E}+03$				
50000	NaN	1616	13	$9.1182 \mathrm{E}-14$	$3.2238 \mathrm{E}+03$				
60000	NaN	1224	10	$4.9347 \mathrm{E}-14$	$3.7250 \mathrm{E}+03$				
70000	NaN	1359	11	$7.1960 \mathrm{E}-14$	$4.0946 \mathrm{E}+03$				
80000	NaN	1617	13	$9.0161 \mathrm{E}-14$	$5.9952 \mathrm{E}+03$				
90000	NaN	1362	11	$5.8420 \mathrm{E}-14$	$6.4207 \mathrm{E}+03$				

4.9 Restarting Algorithm 19

The solution is obtained via restarting Algorithm 19 as given in Algorithm 20. Utilizing regular intervals, the algorithm is restarted using the current iterate.

4.9.1 Numerical results

The results obtained with Algorithm 13 and its restarting version Algorithm 20, on Baheuxtype problems of different dimensions, for different values of δ [3,4], are presented in Tables

4.23-4.26.

Table 4.23: Results of Algorithm 13 and Algorithm 20 on Baheux-type problems when $\delta=0$

Algorithm 13			Algorithm 20							
Prob. size		Total-numit	Cycles	Residual Norm	Elapsed time					
$n_{1} \times n_{2}=n$	$\left\\|r_{k}\right\\|$	$\mathrm{t}(\mathrm{sec})$	$\sum k$		$\left\\|r_{k}\right\\|$					
100	NaN	665	7	$9.3606 \mathrm{E}-14$	$8.9790 \mathrm{E}-01$					
500	NaN	3776	40	$8.8988 \mathrm{E}-14$	$5.1838 \mathrm{E}+00$					
1000	NaN	5343	57	$9.3373 \mathrm{E}-14$	$2.5808 \mathrm{E}+01$					
5000	NaN	4173	44	$9.3051 \mathrm{E}-14$	$4.6781 \mathrm{E}+02$					
10000	NaN	3027	33	$9.1131 \mathrm{E}-14$	$1.1683 \mathrm{E}+03$					
20000	NaN	1256	14	$8.7733 \mathrm{E}-14$	$1.9221 \mathrm{E}+03$					
30000	NaN	1186	13	$7.9795 \mathrm{E}-14$	$4.0962 \mathrm{E}+03$					
40000	NaN	2269	26	$9.5148 \mathrm{E}-14$	$1.2473 \mathrm{E}+04$					
50000	NaN	2107	23	$9.9344 \mathrm{E}-14$	$1.8289 \mathrm{E}+03$					
60000	NaN	2751	29	$9.5721 \mathrm{E}-14$	$2.8230 \mathrm{E}+04$					
70000	NaN	4505	49	$9.1219 \mathrm{E}-14$	$6.4745 \mathrm{E}+04$					
80000	NaN	1925	21	$8.9973 \mathrm{E}-14$	$3.7393 \mathrm{E}+04$					
90000	NaN	2448	27	$9.0799 \mathrm{E}-14$	$5.8112 \mathrm{E}+04$					

Table 4.24: Results of Algorithm 13 and Algorithm 20 on Baheux-type problems when $\delta=0.2$

Algorithm 13		Algorithm 20							
Prob. size		Total-numit	Cycles	Residual Norm	Elapsed time				
$n_{1} \times n_{2}=n$	$\left\\|r_{k}\right\\|$	$\mathrm{t}(\mathrm{sec})$	$\sum k$		$\left\\|r_{k}\right\\|$				
100	NaN	885	9	$9.3360 \mathrm{E}-14$	$9.8385 \mathrm{E}-01$				
500	NaN	4965	47	$9.6024 \mathrm{E}-14$	$1.3427 \mathrm{E}+01$				
1000	NaN	2517	25	$8.2166 \mathrm{E}-14$	$1.9866 \mathrm{E}+01$				
5000	NaN	991	10	$8.7901 \mathrm{E}-14$	$1.2460 \mathrm{E}+02$				
10000	NaN	1865	19	$9.9181 \mathrm{E}-14$	$8.3228 \mathrm{E}+02$				
20000	NaN	1463	15	$9.5309 \mathrm{E}-14$	$2.4773 \mathrm{E}+03$				
30000	NaN	2593	26	$7.9825 \mathrm{E}-14$	$1.0237 \mathrm{E}+04$				
40000	NaN	2211	21	$8.9642 \mathrm{E}-14$	$1.4145 \mathrm{E}+04$				
50000	NaN	1521	15	$8.1724 \mathrm{E}-14$	$1.1617 \mathrm{E}+04$				
60000	NaN	1299	13	$9.9193 \mathrm{E}-14$	$1.6511 \mathrm{E}+04$				
70000	NaN	2784	27	$8.4839 \mathrm{E}-14$	$4.0159 \mathrm{E}+04$				
80000	NaN	2181	21	$8.9733 \mathrm{E}-14$	$4.2025 \mathrm{E}+04$				
90000	NaN		912	9	$8.7492 \mathrm{E}-14$				

Table 4.25: Results of Algorithm 13 and Algorithm 20 on Baheux-type problems when $\delta=5$

Algorithm 13		Algorithm 20							
Prob. size		Total-numit	Cycles	Residual Norm	Elapsed time				
$n_{1} \times n_{2}=n$	$\left\\|r_{k}\right\\|$	$\mathrm{t}(\mathrm{sec})$	$\sum k$		$\left\\|r_{k}\right\\|$				
100	NaN	633	5	$7.5452 \mathrm{E}-14$	$8.0537 \mathrm{E}-01$				
500	NaN	953	7	$8.8992 \mathrm{E}-14$	$1.9199 \mathrm{E}+00$				
1000	NaN	1218	9	$8.5448 \mathrm{E}-14$	$9.9276 \mathrm{E}+00$				
5000	NaN	1379	10	$6.4556 \mathrm{E}-14$	$1.6484 \mathrm{E}+01$				
10000	NaN	1377	10	$6.5695 \mathrm{E}-14$	$6.7022 \mathrm{E}+02$				
20000	NaN	1510	11	$8.0851 \mathrm{E}-14$	$2.7845 \mathrm{E}+03$				
30000	NaN	1507	11	$9.0990 \mathrm{E}-14$	$6.0153 \mathrm{E}+03$				
40000	NaN	1806	13	$7.9073 \mathrm{E}-14$	$1.2243 \mathrm{E}+04$				
50000	NaN	2093	15	$9.2173 \mathrm{E}-14$	$1.9044 \mathrm{E}+04$				
60000	NaN	2572	18	$9.5965 \mathrm{E}-14$	$2.9860 \mathrm{E}+04$				
70000	NaN	1814	13	$4.4036 \mathrm{E}-14$	$3.2972 \mathrm{E}+04$				
80000	NaN	1800	13	$5.1310 \mathrm{E}-14$	$4.9652 \mathrm{E}+04$				
90000	NaN	1840	13	$3.2006 \mathrm{E}-14$	$4.3166 \mathrm{E}+04$				

Table 4.26: Results of Algorithm 13 and Algorithm 20 on Baheux-type problems when $\delta=8$

Algorithm 13			Algorithm 20							
Prob. size		Total-numit 1	Cycles 2	Residual Norm	Elapsed time					
$n_{1} \times n_{2}=n$	$\left\\|r_{k}\right\\|$	$\mathrm{t}(\mathrm{sec})$	$\sum k$		$\left\\|r_{k}\right\\|$					
100	NaN	817	7	$9.295 \mathrm{E}-14$	$8.4382 \mathrm{E}-01$					
500	NaN	1035	9	$8.1199 \mathrm{E}-14$	$2.7530 \mathrm{E}+00$					
1000	NaN	1144	10	$8.3085 \mathrm{E}-14$	$5.4307 \mathrm{E}+00$					
5000	NaN	1758	15	$9.1337 \mathrm{E}-14$	$1.9199 \mathrm{E}+02$					
10000	NaN	1408	12	$6.6426 \mathrm{E}-14$	$5.4412 \mathrm{E}+02$					
20000	NaN	1267	11	$8.4975 \mathrm{E}-14$	$1.5009 \mathrm{E}+03$					
30000	NaN	1777	15	$8.6743 \mathrm{E}-14$	$4.9905 \mathrm{E}+03$					
40000	NaN	1773	15	$9.5829 \mathrm{E}-14$	$8.518 \mathrm{E}+03$					
50000	NaN	1654	14	$6.6637 \mathrm{E}-14$	$1.5988 \mathrm{E}+04$					
60000	NaN	1643	14	$5.2675 \mathrm{E}-14$	$2.3131 \mathrm{E}+04$					
70000	NaN	1533	13	$7.9407 \mathrm{E}-14$	$2.5631 \mathrm{E}+04$					
80000	NaN	1395	12	$7.0229 \mathrm{E}-14$	$2.7149 \mathrm{E}+04$					
90000	NaN	1711	14	$8.0416 \mathrm{E}-14$	$4.1674 \mathrm{E}+04$					
add all the number of iteration during each cycle										
${ }^{2}$ A cycle is a number of iterations carried out in a restart or a switch.										

4.10 Comments

These tests and tables prove that it is possible to have a more targeted number of cycles (switches/ restarts) and their lengths. To illustrate, consider a similar test in Maharani [55] shows that our approach leads to a more efficient and robust Lanczos-type algorithm implementation.

4.11 Summary

The restarting strategies ST2 and ST3 used in this work are successful in handling the breakdown in Lanczos-type algorithms. This is supported by strong numerical evidence. They successfully solved problems with dimensions up to 90000 whereas individual algorithms with no restarting facility could only solve problems with dimensions ≤ 30. Moreover, the cost involved in such preemptive restarting is not very high. Monitoring the coefficients that can approach zero, has a cost which is similar to that of a test of the form "if |MonitorDenom value| \leq tolerance-then stop". Many such tests could be done by using various tolerance levels. It impact on the overall computing time has not been measured in this thesis. Favourable results hint to restarting as a useful approach to handling breakdown while solving SLE's by Lanczos-type algorithms. The idea not only differs from existing strategies for handling breakdowns, $[12,15,18]$, but it is also simple to understand and use. Further extensive testing needs to be done on both large real and randomly generated problems to get a complete picture of the behavior and cost of the restarting approach in comparison to state-of-the-art Lanczos-type algorithms.

Chapter 5

Switching between Lanczos-type

algorithms to avoid breakdown

This chapter is devoted to the switching strategy to avoid the issue of breakdown in Lanczos-type algorithms that arises due to the non-existence of some coefficients of the recurrence relations that provide a base for the algorithms. The non-existence of coefficients for Lanczos-type algorithm on a specific iterate of the recurrence relations does not, necessarily, cause the problem for another Lanczos-type algorithm, based on different recurrence relations. It, thus, follows that one might switch to other algorithms to avoid breakdown. This allows to carry on in a Krylov space having a different basis. It, therefore, could be concluded that switching might be considered as a potential remedy for the breakdown issues [33].

5.1 Switching Algorithm

A set of Lanczos-type algorithms can be switched from one algorithm to another using strategies ST1, ST2 or ST3 as given in Section 1.8.1. Note that in the last cycle, if the chosen algorithm is the same as the one running in the first cycle, then it is a case of restarting.

Otherwise, it is switching.

```
Algorithm 21 Switching Algorithm Based on Monitoring
\{Step 1\}
Choose a strategy ST2.
Start with Monitoring Lanczos-type algorithms from prespecified list
\{Alg : 16, Alg : 17, Alg : 18, Alg : 19\}.
\{Step 2\}
Run algorithm until it halts;
If solution is obtained Then
    Stop;
Else
    Switch to another algorithm;
    Initialize it with current iterate of the algorithm running in the last cycle;
    \(\mathbf{x}=s o l_{\text {last }}\);
    \(\mathbf{y}=b-A \mathbf{x}\);
    go to Step 2;
```


EndIf

```
Obtain the optimal solution as well as the optimal residual norm as follows
sol \(_{\text {optimal }}=\mathbf{x}_{k}\)
norm \(_{\text {optimal }}=\left\|\mathbf{r}_{k}\right\|\).
Stop.
```


5.2 Switching between Algorithm 16 and Algorithm 17

Algorithm 21, starts with either Algorithm 16 or Algorithm 17. Then it is halted before breakdown, and switching to the other is carried out.

5.2.1 Numerical Results

The switching procedure between Algorithms 16 and Algorithm 17 has been implemented in Matlab and applied to Baheux-type problems of different dimensions, for different values of $\delta=0,0.2,5$ and 8 . These problems have been described in $[3,4]$. The dimension of the coefficient matrix A is $n=n_{1} \times n_{2}$, where n_{1} is the number of block matrices in A and n_{2} is the dimension of the matrix B which is fixed to 10. The results obtained with Algorithm 11, Algorithm 12 and the switching Algorithm 21, are presented in Tables 5.1-5.4.

Table 5.1: Results of Algorithm 11, Algorithm 12 and Algorithm 21 on Baheux-type problems when $\delta=0$

	Algorithm 11		Algorithm 12		Algorithm 21									
Prob. size			Total-numit	Cycles	Residual Norm	Elapsed time								
$n_{1} \times n_{2}=n$	$\left\\|r_{k}\right\\|$	$\left\\|r_{k}\right\\|$	$\sum k$		$\left\\|r_{k}\right\\|$	sec								
100	NaN	NaN	142	2	$6.4799 \mathrm{E}-14$	$1.0229 \mathrm{E}+00$								
500	NaN	NaN	858	6	$9.9621 \mathrm{E}-14$	$1.3673 \mathrm{E}+00$								
1000	NaN	NaN	926	7	$8.3930 \mathrm{E}-14$	$1.5031 \mathrm{E}+00$								
5000	NaN	NaN	1011	6	$9.3487 \mathrm{E}-14$	$3.0330 \mathrm{E}+01$								
10000	NaN	NaN	1064	8	$9.2032 \mathrm{E}-14$	$1.3467 \mathrm{E}+02$								
20000	NaN	NaN	1009	7	$9.1714 \mathrm{E}-14$	$3.7645 \mathrm{E}+02$								
30000	NaN	NaN	1131	8	$9.5415 \mathrm{E}-14$	$8.7870 \mathrm{E}+02$								
40000	NaN	NaN	1181	8	$9.8820 \mathrm{E}-14$	$1.5565 \mathrm{E}+03$								
50000	NaN	NaN	1312	9	$9.9651 \mathrm{E}-14$	$2.6257 \mathrm{E}+03$								
60000	NaN	NaN	972	7	$9.4797 \mathrm{E}-14$	$2.3296 \mathrm{E}+03$								
70000	NaN	NaN	1146	8	$8.0121 \mathrm{E}-14$	$3.9998 \mathrm{E}+03$								
80000	NaN	NaN	1071	8	$8.0435 \mathrm{E}-14$	$5.7842 \mathrm{E}+03$								
90000	NaN	NaN	1072	7	$9.0707 \mathrm{E}-14$	$4.6034 \mathrm{E}+03$								

Table 5.2: Results of Algorithm 11, Algorithm 12 and Algorithm 21 on Baheux-type problems when $\delta=0.2$

Algorithm 11			Algorithm 12		Algorithm 21									
Prob. size			Total-numit	Cycles	Residual Norm	Elapsed time								
$n_{1} \times n_{2}=n$	$\left\\|r_{k}\right\\|$	$\left\\|r_{k}\right\\|$	$\sum k$		$\left\\|r_{k}\right\\|$	sec								
100	NaN	NaN	409	3	$7.2018 \mathrm{E}-14$	$1.7407 \mathrm{E}+00$								
500	NaN	NaN	1015	7	$6.3987 \mathrm{E}-14$	$1.1266 \mathrm{E}+00$								
1000	NaN	NaN	1087	8	$8.2681 \mathrm{E}-14$	$2.0396 \mathrm{E}+00$								
5000	NaN	NaN	886	7	$9.3962 \mathrm{E}-14$	$2.4518 \mathrm{E}+01$								
10000	NaN	NaN	913	7	$9.3596 \mathrm{E}-14$	$8.1512 \mathrm{E}+01$								
20000	NaN	NaN	1236	8	$8.6842 \mathrm{E}-14$	$7.7655 \mathrm{E}+02$								
30000	NaN	NaN	1160	8	$9.2112 \mathrm{E}-14$	$1.1766 \mathrm{E}+03$								
40000	NaN	NaN	1588	10	$8.4260 \mathrm{E}-14$	$2.7420 \mathrm{E}+03$								
50000	NaN	NaN	938	7	$9.5880 \mathrm{E}-14$	$2.6978 \mathrm{E}+03$								
60000	NaN	NaN	1017	7	$9.6912 \mathrm{E}-14$	$2.8531 \mathrm{E}+03$								
70000	NaN	NaN	949	7	$9.6283 \mathrm{E}-14$	$3.5907 \mathrm{E}+03$								
80000	NaN	NaN	1041	7	$9.5650 \mathrm{E}-14$	$6.0355 \mathrm{E}+03$								
90000	NaN	NaN	818	6	$8.3997 \mathrm{E}-14$	$5.0977 \mathrm{E}+03$								

Table 5.3: Results of Algorithm 11, Algorithm 12 and Algorithm 21 on Baheux-type problems when $\delta=5$

Algorithm 11			Algorithm 12	Algorithm 21			
Prob. size			$\left\\|r_{k}\right\\|$	Total-numit	Cycles	Residual Norm	

Table 5.4: Results of Algorithm 11, Algorithm 12 and Algorithm 21 on Baheux-type problems when $\delta=8$

	Algorithm 11	Algorithm 12	Algorithm 21									
Prob. size			Total-numit	Cycles	Residual Norm	Elapsed time						
$n_{1} \times n_{2}=n$	$\left\\|r_{k}\right\\|$	$\left\\|r_{k}\right\\|$	$\sum k$		$\left\\|r_{k}\right\\|$	sec						
100	NaN	NaN	1128	7	$8.1255 \mathrm{E}-14$	$2.3917 \mathrm{E}+00$						
500	NaN	NaN	1178	8	$9.8984 \mathrm{E}-14$	$3.0222 \mathrm{E}+00$						
1000	NaN	NaN	1359	8	$8.8030 \mathrm{E}-14$	$7.9943 \mathrm{E}+00$						
5000	NaN	NaN	1298	9	$7.7964 \mathrm{E}-14$	$8.0938 \mathrm{E}+01$						
10000	NaN	NaN	1855	10	$9.9435 \mathrm{E}-14$	$3.8959 \mathrm{E}+02$						
20000	NaN	NaN	1700	9	$7.2781 \mathrm{E}-14$	$1.0799 \mathrm{E}+03$						
30000	NaN	NaN	1442	9	$6.8522 \mathrm{E}-14$	$2.0707 \mathrm{E}+03$						
40000	NaN	NaN	2248	12	$9.9335 \mathrm{E}-14$	$3.9593 \mathrm{E}+03$						
50000	NaN	NaN	2254	15	$9.6901 \mathrm{E}-14$	$8.6370 \mathrm{E}+03$						
60000	NaN	NaN	2405	15	$6.6847 \mathrm{E}-14$	$8.7347 \mathrm{E}+03$						
70000	NaN	NaN	1752	13	$8.6180 \mathrm{E}-14$	$7.9854 \mathrm{E}+03$						
80000	NaN	NaN	1361	8	$9.3185 \mathrm{E}-14$	$6.6251 \mathrm{E}+03$						
90000	NaN	NaN	1894	10	$9.7444 \mathrm{E}-14$	$1.0476 \mathrm{E}+04$						

5.3 Switching between Algorithm 17 and Algorithm 18

Algorithm 21 is started with either Algorithm 17 or Algorithm 18. The started algorithm after breakdown is switched to either of the two Algorithm 17 or Algorithm 18 chosen randomly.

5.3.1 Numerical Results

The results obtained with Algorithm 12, Algorithm 14 and the switching Algorithm 21 on Baheux-type problems of different dimensions, for different values of δ are shown in Tables

5.5-5.8.

Table 5.5: Results of Algorithm 12, Algorithm 14 and Algorithm 21 on Baheux-type problems when $\delta=0$

	Algorithm 12		Algorithm 14		Algorithm 21								
Prob. size			Total-numit	Cycles	Residual Norm	Elapsed time							
$n_{1} \times n_{2}=n$	$\left\\|r_{k}\right\\|$	$\left\\|r_{k}\right\\|$	$\sum k$		$\left\\|r_{k}\right\\|$	sec							
100	NaN	NaN	185	2	$4.9961 \mathrm{E}-14$	$3.4382 \mathrm{E}+00$							
500	NaN	NaN	911	6	$9.0453 \mathrm{E}-14$	$2.9074 \mathrm{E}+00$							
1000	NaN	NaN	874	7	$7.2280 \mathrm{E}-14$	$2.8669 \mathrm{E}+00$							
5000	NaN	NaN	858	8	$9.6192 \mathrm{E}-14$	$2.1875 \mathrm{E}+01$							
10000	NaN	NaN	1119	9	$9.5648 \mathrm{E}-14$	$1.2321 \mathrm{E}+02$							
20000	NaN	NaN	1420	10	$8.1789 \mathrm{E}-14$	$5.3626 \mathrm{E}+02$							
30000	NaN	NaN	997	9	$9.0673 \mathrm{E}-14$	$7.8963 \mathrm{E}+02$							
40000	NaN	NaN	1038	9	$8.8592 \mathrm{E}-14$	$1.4397 \mathrm{E}+03$							
50000	NaN	NaN	841	8	$9.6474 \mathrm{E}-14$	$2.0097 \mathrm{E}+03$							
60000	NaN	NaN	911	9	$8.3200 \mathrm{E}-14$	$2.3240 \mathrm{E}+03$							
70000	NaN	NaN	981	9	$8.7603 \mathrm{E}-14$	$3.6600 \mathrm{E}+03$							
80000	NaN	NaN	983	7	$7.4715 \mathrm{E}-14$	$3.7517 \mathrm{E}+03$							
90000	NaN	NaN	890	7	$8.8803 \mathrm{E}-14$	$4.0620 \mathrm{E}+03$							

Table 5.6: Results of Algorithm 12, Algorithm 14 and Algorithm 21 on Baheux-type problems when $\delta=0.2$

Algorithm 12			Algorithm 14		Algorithm 21									
Prob. size				Total-numit	Cycles	Residual Norm								
$n_{1} \times n_{2}=n$	$\left\\|r_{k}\right\\|$	$\left\\|r_{k}\right\\|$	$\sum k$		$\left\\|r_{k}\right\\|$	Elapsed time								
100	NaN	NaN	356	3	$3.3645 \mathrm{E}-14$	$1.2079 \mathrm{E}+00$								
500	NaN	NaN	783	6	$7.1319 \mathrm{E}-14$	$1.7391 \mathrm{E}+00$								
1000	NaN	NaN	896	7	$8.7500 \mathrm{E}-14$	$2.8320 \mathrm{E}+00$								
5000	NaN	NaN	995	9	$5.8100 \mathrm{E}-14$	$4.5240 \mathrm{E}+01$								
10000	NaN	NaN	693	7	$8.3533 \mathrm{E}-14$	$7.8762 \mathrm{E}+01$								
20000	NaN	NaN	906	8	$9.9500 \mathrm{E}-14$	$3.8528 \mathrm{E}+02$								
30000	NaN	NaN	975	8	$7.7623 \mathrm{E}-14$	$1.3711 \mathrm{E}+03$								
40000	NaN	NaN	1152	8	$9.8596 \mathrm{E}-14$	$1.2034 \mathrm{E}+03$								
50000	NaN	NaN	1181	10	$9.3551 \mathrm{E}-14$	$1.8797 \mathrm{E}+03$								
60000	NaN	NaN	1351	11	$8.6233 \mathrm{E}-14$	$2.9447 \mathrm{E}+03$								
70000	NaN	NaN	1071	9	$7.2445 \mathrm{E}-14$	$5.1275 \mathrm{E}+03$								
80000	NaN	NaN	891	7	$8.8917 \mathrm{E}-14$	$4.8429 \mathrm{E}+03$								
90000	NaN	NaN	1074	8	$9.2474 \mathrm{E}-14$	$4.7860 \mathrm{E}+03$								

Table 5.7: Results of Algorithm 12, Algorithm 14 and Algorithm 21 on Baheux-type problems when $\delta=5$

	Algorithm 12	Algorithm 14		Algorithm 21						
Prob. size			Total-numit	Cycles	Residual Norm	Elapsed time				
$n_{1} \times n_{2}=n$	$\left\\|r_{k}\right\\|$	$\left\\|r_{k}\right\\|$	658	5	$8.7404 \mathrm{E}-14$	$1.2224 \mathrm{E}+00$				
100	NaN	NaN	1109	5	$9.1274 \mathrm{E}-14$	$1.5485 \mathrm{E}+00$				
500	NaN	NaN	1194	6	$9.5098 \mathrm{E}-14$	$2.5360 \mathrm{E}+00$				
1000	NaN	NaN	1264	5	$9.9088 \mathrm{E}-14$	$3.9120 \mathrm{E}+01$				
5000	NaN	NaN	1368	7	$4.2928 \mathrm{E}-14$	$1.2078 \mathrm{E}+02$				
10000	NaN	NaN	1153	4	$9.3103 \mathrm{E}-14$	$5.4273 \mathrm{E}+02$				
20000	NaN	NaN	1479	7	$8.9283 \mathrm{E}-14$	$1.3146 \mathrm{E}+03$				
30000	NaN	NaN	1906	7	$9.3332 \mathrm{E}-14$	$3.9116 \mathrm{E}+03$				
40000	NaN	NaN	1072	6	$7.3005 \mathrm{E}-14$	$2.7799 \mathrm{E}+03$				
50000	NaN	NaN	1056	5	$9.8609 \mathrm{E}-14$	$2.7222 \mathrm{E}+03$				
60000	NaN	NaN	1469	7	$5.9755 \mathrm{E}-14$	$5.9907 \mathrm{E}+03$				
70000	NaN	NaN	1050	5	$9.8520 \mathrm{E}-14$	$5.0974 \mathrm{E}+03$				
80000	NaN	NaN	NaN	1376	6	$9.2455 \mathrm{E}-14$				
90000	NaN	NaN	$6.1762 \mathrm{E}+03$							

Table 5.8: Results of Algorithm 12, Algorithm 14 and Algorithm 21 on Baheux-type problems when $\delta=8$

	Algorithm 12	Algorithm 14	Algorithm 21									
Prob. size			Total-numit	Cycles	Residual Norm	Elapsed time						
$n_{1} \times n_{2}=n$	$\left\\|r_{k}\right\\|$	$\left\\|r_{k}\right\\|$	\sum_{k}		$\left\\|r_{k}\right\\|$	sec						
100	NaN	NaN	1011	6	$9.0275 \mathrm{E}-14$	$1.4645 \mathrm{E}+00$						
500	NaN	NaN	1374	7	$9.2989 \mathrm{E}-14$	$1.5570 \mathrm{E}+00$						
1000	NaN	NaN	1179	7	$8.5810 \mathrm{E}-14$	$1.5081 \mathrm{E}+00$						
5000	NaN	NaN	1223	8	$9.5828 \mathrm{E}-14$	$4.9891 \mathrm{E}+01$						
10000	NaN	NaN	1425	8	$9.8665 \mathrm{E}-14$	$9.7959 \mathrm{E}+01$						
20000	NaN	NaN	1723	8	$8.2101 \mathrm{E}-14$	$6.9990 \mathrm{E}+02$						
30000	NaN	NaN	1542	8	$7.5286 \mathrm{E}-14$	$1.4793 \mathrm{E}+03$						
40000	NaN	NaN	1591	9	$8.4668 \mathrm{E}-14$	$3.8185 \mathrm{E}+03$						
50000	NaN	NaN	1684	11	$8.2775 \mathrm{E}-14$	$4.3103 \mathrm{E}+03$						
60000	NaN	NaN	1566	8	$5.3064 \mathrm{E}-14$	$4.0704 \mathrm{E}+03$						
70000	NaN	NaN	1810	9	$7.6455 \mathrm{E}-14$	$4.5509 \mathrm{E}+03$						
80000	NaN	NaN	1898	10	$7.9890 \mathrm{E}-14$	$8.6573 \mathrm{E}+03$						
90000	NaN	NaN	1490	9	$7.7909 \mathrm{E}-14$	$7.1199 \mathrm{E}+03$						

5.4 Switching between Algorithm 17 and Algorithm 19

Algorithm 21 is started with either Algorithm 17 or Algorithm 19, i.e. one of the algorithms run and halted before breakdown and then the switch to either of them chosen randomly is carried out.

5.4.1 Numerical Results

The results obtained with Algorithm 12, Algorithm 13 and the switching Algorithm 21 on Baheux-type problems of different dimensions, for different values of δ are shown in Tables

5.9-5.12.

Table 5.9: Results of Algorithm 12, Algorithm 13 and Algorithm 21 on Baheux-type problems when $\delta=0$

Algorithm 12			Algorithm 13		Algorithm 21									
Prob. size			Total-numit	Cycles	Residual Norm	Elapsed time								
$n_{1} \times n_{2}=n$	$\left\\|r_{k}\right\\|$	$\mathrm{t}(\mathrm{sec})$	$\left\\|r_{k}\right\\|$	$\mathrm{t}(\mathrm{sec})$	$\sum k$		$\left\\|r_{k}\right\\|$							
100	NaN	NaN	185	2	$4.9751 \mathrm{E}-14$	$7.4636 \mathrm{se})$								
500	NaN	NaN	822	6	$6.2396 \mathrm{E}-14$	$3.7712 \mathrm{E}+00$								
1000	NaN	NaN	1223	9	$9.2338 \mathrm{E}-14$	$2.3264 \mathrm{E}+01$								
5000	NaN	NaN	1026	9	$9.8010 \mathrm{E}-14$	$5.1871 \mathrm{E}+01$								
10000	NaN	NaN	1089	8	$9.5115 \mathrm{E}-14$	$2.0564 \mathrm{E}+02$								
20000	NaN	NaN	938	8	$9.9848 \mathrm{E}-14$	$1.5493 \mathrm{E}+03$								
30000	NaN	NaN	1448	11	$9.5437 \mathrm{E}-14$	$3.5232 \mathrm{E}+03$								
40000	NaN	NaN	1330	10	$9.5103 \mathrm{E}-14$	$6.3850 \mathrm{E}+03$								
50000	NaN	NaN	1099	8	$7.0693 \mathrm{E}-14$	$4.7826 \mathrm{E}+03$								
60000	NaN	NaN	1091	9	$7.9640 \mathrm{E}-14$	$7.6655 \mathrm{E}+03$								
70000	NaN	NaN	1537	11	$6.9828 \mathrm{E}-14$	$9.5479 \mathrm{E}+03$								
80000	NaN	NaN	1123	9	$9.3465 \mathrm{E}-14$	$1.0452 \mathrm{E}+04$								
90000	NaN	NaN	1187	8	$8.2007 \mathrm{E}-14$	$6.9342 \mathrm{E}+03$								

Table 5.10: Results of Algorithm 12, Algorithm 13 and Algorithm 21 on Baheux-type problems when $\delta=0.2$

ALgorithm 12			Algorithm 13		Algorithm 21									
Prob. size				Total-numit	Cycles	Residual Norm	Elapsed time							
$n_{1} \times n_{2}=n$	$\left\\|r_{k}\right\\|$	$\mathrm{t}(\mathrm{sec})$	$\left\\|r_{r}\right\\|$	$\mathrm{t}(\mathrm{sec})$	$\sum k$		$\left\\|r_{k}\right\\|$							
100	NaN	NaN	350	3	$9.5666 \mathrm{E}-14$	$9.11144 \mathrm{E})$								
500	NaN	NaN	956	7	$8.8636 \mathrm{E}-14$	$2.6458 \mathrm{E}+00$								
1000	NaN	NaN	1144	8	$9.6769 \mathrm{E}-14$	$3.6110 \mathrm{E}+00$								
5000	NaN	NaN	883	8	$7.7114 \mathrm{E}-14$	$9.8678 \mathrm{E}+01$								
10000	NaN	NaN	1256	10	$7.3386 \mathrm{E}-14$	$3.1896 \mathrm{E}+02$								
20000	NaN	NaN	1225	9	$9.3186 \mathrm{E}-14$	$8.6909 \mathrm{E}+02$								
30000	NaN	NaN	1322	10	$6.1560 \mathrm{E}-14$	$2.2937 \mathrm{E}+03$								
40000	NaN	NaN	1741	13	$7.4743 \mathrm{E}-14$	$4.0836 \mathrm{E}+03$								
50000	NaN	NaN	1287	10	$9.7009 \mathrm{E}-14$	$5.7353 \mathrm{E}+03$								
60000	NaN	NaN	913	6	$9.2335 \mathrm{E}-14$	$4.0548 \mathrm{E}+03$								
70000	NaN	NaN	1108	10	$9.216 \mathrm{E}-14$	$9.5479 \mathrm{E}+04$								
80000	NaN	NaN	1183	9	$9.4617 \mathrm{E}-14$	$1.1760 \mathrm{E}+04$								
90000	NaN	NaN	922	7	$9.7095 \mathrm{E}-14$	$7.1983 \mathrm{E}+03$								

Table 5.11: Results of Algorithm 12, ALgorithm 13 and Algorithm 21 on Baheux-type problems when $\delta=5$

Algorithm 12			Algorithm 13		Algorithm 21									
Prob. size				Total-numit	Cycles	Residual Norm	Elapsed time							
$n_{1} \times n_{2}=n$	$\left\\|r_{k}\right\\|$	$\mathrm{t}(\mathrm{sec})$	$\left\\|r_{k}\right\\|$	$\mathrm{t}(\mathrm{sec})$	$\sum k$		$\left\\|r_{k}\right\\|$							
100	NaN	NaN	917	5	$6.4851 \mathrm{E}-14$	$1.3184 \mathrm{E}+00$								
500	NaN	NaN	1045	5	$7.6471 \mathrm{E}-14$	$1.8536 \mathrm{E}+00$								
1000	NaN	NaN	1188	5	$7.6335 \mathrm{E}-14$	$2.8236 \mathrm{E}+00$								
5000	NaN	NaN	1483	8	$8.6355 \mathrm{E}-14$	$1.6630 \mathrm{E}+02$								
10000	NaN	NaN	1368	8	$9.7689 \mathrm{E}-14$	$5.3811 \mathrm{E}+02$								
20000	NaN	NaN	1626	8	$4.9152 \mathrm{E}-14$	$1.4922 \mathrm{E}+03$								
30000	NaN	NaN	1786	8	$9.7725 \mathrm{E}-14$	$2.5536 \mathrm{E}+03$								
40000	NaN	NaN	1351	7	$7.9681 \mathrm{E}-14$	$4.5328 \mathrm{E}+03$								
50000	NaN	NaN	1836	8	$9.6394 \mathrm{E}-14$	$8.1866 \mathrm{E}+03$								
60000	NaN	NaN	1055	5	$7.3147 \mathrm{E}-14$	$4.6252 \mathrm{E}+03$								
70000	NaN	NaN	3073	12	$9.0090 \mathrm{E}-14$	$2.2036 \mathrm{E}+04$								
80000	NaN	NaN	2405	12	$7.0835 \mathrm{E}-14$	$2.3165 \mathrm{E}+04$								
90000	NaN	NaN	1379	7	$9.0026 \mathrm{E}-14$	$1.5754 \mathrm{E}+04$								

Table 5.12: Results of Algorithm 12, Algorithm 13 and Algorithm 21 on Baheux-type problems when $\delta=8$

	Algorithm 12		Algorithm 13		Algorithm 21									
Prob. size			Total-numit	Cycles	Residual Norm	Elapsed time								
$n_{1} \times n_{2}=n$	$\left\\|r_{k}\right\\|$	$\mathrm{t}(\mathrm{sec})$	$\left\\|r_{k}\right\\|$	$\mathrm{t}(\mathrm{sec})$	$\sum k$		$\left\\|r_{k}\right\\|$							
100	NaN	NaN	1034	6	$9.8010 \mathrm{E}-14$	$1.9315 \mathrm{E})$								
500	NaN	NaN		1043	7	$7.7366 \mathrm{E}-14$	$3.9604 \mathrm{E}+00$							
1000	NaN	NaN		1031	7	$9.0470 \mathrm{E}-14$	$5.5949 \mathrm{E}+00$							
5000	NaN	NaN	1415	8	$9.4337 \mathrm{E}-14$	$9.4651 \mathrm{E}+01$								
10000	NaN	NaN	1298	8	$5.0643 \mathrm{E}-14$	$4.0015 \mathrm{E}+02$								
20000	NaN	NaN		1504	9	$9.9206 \mathrm{E}-14$	$1.8766 \mathrm{E}+03$							
30000	NaN	NaN	1911	11	$3.0963 \mathrm{E}-14$	$3.2570 \mathrm{E}+03$								
40000	NaN	NaN	2043	11	$7.2050 \mathrm{E}-14$	$4.943 \mathrm{E}+03$								
50000	NaN	NaN	2716	14	$9.9222 \mathrm{E}-14$	$1.1118 \mathrm{E}+04$								
60000	NaN	NaN	2844	14	$5.9696 \mathrm{E}-14$	$1.7674 \mathrm{E}+04$								
70000	NaN	NaN	NaN	1571	9	$7.4233 \mathrm{E}-14$	$1.1866 \mathrm{E}+04$							
80000	NaN	NaN	1781	10	$3.5099 \mathrm{E}-14$	$1.379 \mathrm{E}+04$								
90000	NaN	NaN	2291	13	$7.1423 \mathrm{E}-14$	$2.7015 \mathrm{E}+04$								

5.5 Switching between Algorithm 16 and Algorithm 18

Here the Algorithm 21 is initially started with either Algorithm 16 or Algorithm 18, and after executing few iterations, it is halted before breakdown and then the switch to either of them chosen randomly is carried out.

5.5.1 Numerical Results

The results obtained with Algorithm 11, Algorithm 14 and the switching Algorithm 21 on Baheux-type problems of different dimensions, for different values of δ are shown in Tables

5.13-5.16.

Table 5.13: Results of Algorithm 11, Algorithm 14 and Algorithm 21 on Baheux-type problems when $\delta=0$

Algorithm 11			Algorithm 14		Algorithm 21									
Prob. size				Total-numit	Cycles	Residual Norm	Elapsed time							
$n_{1} \times n_{2}=n$	$\left\\|r_{k}\right\\|$	$\mathrm{t}(\mathrm{sec})$	$\left\\|r_{k}\right\\|$	$\mathrm{t}(\mathrm{sec})$	$\sum k$		$\left\\|r_{k}\right\\|$							
100	NaN	NaN	149	2	$5.4429 \mathrm{E}-14$	$9.9340 \mathrm{E}-01$								
500	NaN	NaN	727	7	$8.4056 \mathrm{E}-14$	$3.9006 \mathrm{E}+00$								
1000	NaN	NaN	639	8	$9.8752 \mathrm{E}-14$	$3.6964 \mathrm{E}+00$								
5000	NaN	NaN	615	8	$8.5117 \mathrm{E}-14$	$7.8303 \mathrm{E}+01$								
10000	NaN	NaN	836	9	$9.0758 \mathrm{E}-14$	$2.6847 \mathrm{E}+02$								
20000	NaN	NaN	927	10	$9.1009 \mathrm{E}-14$	$8.4619 \mathrm{E}+02$								
30000	NaN	NaN	1005	10	$8.6259 \mathrm{E}-14$	$2.2710 \mathrm{E}+03$								
40000	NaN	NaN	1111	11	$7.5053 \mathrm{E}-14$	$3.5692 \mathrm{E}+03$								
50000	NaN	NaN	1022	11	$9.5679 \mathrm{E}-14$	$5.3113 \mathrm{E}+03$								
60000	NaN	NaN	1042	11	$9.0590 \mathrm{E}-14$	$9.1684 \mathrm{E}+03$								
70000	NaN	NaN	692	8	$8.7268 \mathrm{E}-14$	$5.3840 \mathrm{E}+03$								
80000	NaN	NaN	750	8	$9.4198 \mathrm{E}-14$	$8.7096 \mathrm{E}+03$								
90000	NaN	NaN	763	8	$8.8979 \mathrm{E}-14$	$5.6749 \mathrm{E}+03$								

Table 5.14: Results of Algorithm 11, ALgorithm 14 and Algorithm 21 on Baheux-type problems when $\delta=0.2$

ALgorithm 11			Algorithm 14		Algorithm 21									
Prob. size				Total-numit	Cycles	Residual Norm	Elapsed time							
$n_{1} \times n_{2}=n$	$\left\\|r_{k}\right\\|$	$\mathrm{t}(\mathrm{sec})$	$\left\\|r_{k}\right\\|$	$\mathrm{t}(\mathrm{sec})$	$\sum k$		$\left\\|r_{k}\right\\|$							
100	NaN	NaN	326	3	$6.8559 \mathrm{E}-14$	$2.0174 \mathrm{E}+00$								
500	NaN	NaN	822	8	$8.6396 \mathrm{E}-14$	$8.0691 \mathrm{E}+00$								
1000	NaN	NaN	812	7	$9.3881 \mathrm{E}-14$	$2.0436 \mathrm{E}+01$								
5000	NaN	NaN	1002	10	$4.9914 \mathrm{E}-14$	$1.1611 \mathrm{E}+02$								
10000	NaN	NaN	1018	9	$9.1225 \mathrm{E}-14$	$4.5456 \mathrm{E}+02$								
20000	NaN	NaN	964	9	$8.2257 \mathrm{E}-14$	$1.4541 \mathrm{E}+03$								
30000	NaN	NaN	1086	10	$4.9708 \mathrm{E}-14$	$3.3183 \mathrm{E}+03$								
40000	NaN	NaN	1085	10	$7.1491 \mathrm{E}-14$	$2.9397 \mathrm{E}+03$								
50000	NaN	NaN	1148	10	$7.8168 \mathrm{E}-14$	$4.4537 \mathrm{E}+03$								
60000	NaN	NaN	1339	13	$8.3200 \mathrm{E}-14$	$2.3240 \mathrm{E}+03$								
70000	NaN	NaN	1017	9	$8.1649 \mathrm{E}-14$	$5.8636 \mathrm{E}+03$								
80000	NaN	NaN	1231	11	$8.3876 \mathrm{E}-14$	$8.4180 \mathrm{E}+03$								
90000	NaN	NaN	844	8	$9.5212 \mathrm{E}-14$	$5.7511 \mathrm{E}+03$								

Table 5.15: Results of Algorithm 11, Algorithm 14 and Algorithm 21 on Baheux-type problems when $\delta=5$

Algorithm 11			Algorithm 14			Algorithm 21								
Prob. size				Total-numit	Cycles	Residual Norm	Elapsed time							
$n_{1} \times n_{2}=n$	$\left\\|r_{k}\right\\|$	$\mathrm{t}(\mathrm{sec})$	$\left\\|r_{k}\right\\|$	$\mathrm{t}(\mathrm{sec})$	$\sum k$		$\left\\|r_{k}\right\\|$							
100	NaN		NaN	807	7	$8.9095 \mathrm{E}-14$	$1.9904 \mathrm{E}+00$							
500	NaN	NaN	763	7	$7.8831 \mathrm{E}-14$	$3.2541 \mathrm{E}+00$								
1000	NaN	NaN	995	8	$5.1753 \mathrm{E}-14$	$2.7976 \mathrm{E}+00$								
5000	NaN	NaN	1132	9	$9.1870 \mathrm{E}-14$	$8.2868 \mathrm{E}+01$								
10000	NaN	NaN	1120	9	$6.3418 \mathrm{E}-14$	$2.6316 \mathrm{E}+02$								
20000	NaN	NaN	975	9	$6.4810 \mathrm{E}-14$	$4.3373 \mathrm{E}+02$								
30000	NaN	NaN	1145	10	$7.8598 \mathrm{E}-14$	$2.1784 \mathrm{E}+03$								
40000	NaN	NaN	1180	9	$6.6699 \mathrm{E}-14$	$3.1753 \mathrm{E}+03$								
50000	NaN	NaN	1200	10	$8.1069 \mathrm{E}-14$	$5.7859 \mathrm{E}+03$								
60000	NaN	NaN	980	9	$7.3003 \mathrm{E}-14$	$5.9071 \mathrm{E}+03$								
70000	NaN	NaN	1239	10	$4.9754 \mathrm{E}-14$	$8.5466 \mathrm{E}+03$								
80000	NaN	NaN	1226	10	$5.0487 \mathrm{E}-14$	$9.8900 \mathrm{E}+03$								
90000	NaN	NaN	1044	9	$6.9211 \mathrm{E}-14$	$7.6570 \mathrm{E}+03$								

Table 5.16: Results of Algorithm 11, Algorithm 14 and Algorithm 21 on Baheux-type problems when $\delta=8$

	Algorithm 11		Algorithm 14		Algorithm 21									
Prob. size			Total-numit	Cycles	Residual Norm	Elapsed time								
$n_{1} \times n_{2}=n$	$\left\\|r_{k}\right\\|$	$\mathrm{t}(\mathrm{sec})$	$\left\\|r_{k}\right\\|$	$\mathrm{t}(\mathrm{sec})$	$\sum k$		$\left\\|l_{r}\right\\|$							
100	NaN	NaN	641	6	$8.6998 \mathrm{E}-14$	$1.2136 \mathrm{~s})$								
500	NaN	NaN		906	8	$8.5903 \mathrm{E}-14$	$2.1504 \mathrm{E}+00$							
1000	NaN	NaN		936	8	$8.7768 \mathrm{E}-14$	$1.6959 \mathrm{E}+00$							
5000	NaN	NaN		1019	9	$8.7355 \mathrm{E}-14$	$3.9265 \mathrm{E}+01$							
10000	NaN	NaN	1128	10	$8.0363 \mathrm{E}-14$	$3.0057 \mathrm{E}+02$								
20000	NaN	NaN	1114	10	$5.8076 \mathrm{E}-14$	$8.9572 \mathrm{E}+02$								
30000	NaN	NaN		1162	11	$9.2923 \mathrm{E}-14$	$2.7459 \mathrm{E}+03$							
40000	NaN	NaN	1195	11	$5.5494 \mathrm{E}-14$	$2.5727 \mathrm{E}+03$								
50000	NaN	NaN	1520	13	$7.4189 \mathrm{E}-14$	$4.8640 \mathrm{E}+03$								
60000	NaN	NaN	1056	10	$9.7923 \mathrm{E}-14$	$6.4514 \mathrm{E}+03$								
70000	NaN	NaN	NaN	1331	13	$5.4630 \mathrm{E}-14$	$9.4084 \mathrm{E}+03$							
80000	NaN	NaN	1285	11	$6.1029 \mathrm{E}-14$	$8.763 \mathrm{E}+03$								
90000	NaN	NaN		1113	11	$9.5249 \mathrm{E}-14$	$8.4065 \mathrm{E}+03$							

5.6 Switching between Algorithm 16 and Algorithm 19

Algorithm 21 is started with either Algorithm 16 or Algorithm 19, i.e. one of the algorithms run and halted before breakdown and then the switch to either of them chosen randomly is carried out.

5.6.1 Numerical Results

The results obtained with Algorithm 11, Algorithm 13 and the switching Algorithm 21 on Baheux-type problems of different dimensions, for different values of δ are shown in Tables 5.17-5.20.

Table 5.17: Results of Algorithm 11, Algorithm 13 and Algorithm 21 on Baheux-type problems when $\delta=0$

Algorithm 11			Algorithm 13		Algorithm 21									
Prob. size				Total-numit	Cycles	Residual Norm	Elapsed time							
$n_{1} \times n_{2}=n$	$\left\\|r_{k}\right\\|$	$\mathrm{t}(\mathrm{sec})$	$\left\\|r_{k}\right\\|$	$\mathrm{t}(\mathrm{sec})$	$\sum k$		$\left\\|r_{k}\right\\|$							
100	NaN	NaN	143	2	$6.2489 \mathrm{E}-14$	$1.2875 \mathrm{E}+00$								
500	NaN	NaN	845	8	$8.7395 \mathrm{E}-14$	$6.0516 \mathrm{E}+00$								
1000	NaN	NaN	1151	11	$9.0760 \mathrm{E}-14$	$1.5740 \mathrm{E}+01$								
5000	NaN	NaN	1328	13	$9.1996 \mathrm{E}-14$	$1.7189 \mathrm{E}+02$								
10000	NaN	NaN	850	8	$9.9440 \mathrm{E}-14$	$3.3005 \mathrm{E}+02$								
20000	NaN	NaN	1156	10	$9.3026 \mathrm{E}-14$	$1.3018 \mathrm{E}+03$								
30000	NaN	NaN	1313	11	$8.9071 \mathrm{E}-14$	$5.9207 \mathrm{E}+03$								
40000	NaN	NaN	952	9	$7.4415 \mathrm{E}-14$	$5.2736 \mathrm{E}+03$								
50000	NaN	NaN	2028	19	$9.6995 \mathrm{E}-14$	$1.1173 \mathrm{E}+04$								
60000	NaN	NaN	1454	13	$9.5329 \mathrm{E}-14$	$1.3430 \mathrm{E}+04$								
70000	NaN	NaN	1360	12	$7.2751 \mathrm{E}-14$	$1.0816 \mathrm{E}+04$								
80000	NaN	NaN	1312	12	$9.9669 \mathrm{E}-14$	$1.3736 \mathrm{E}+04$								
90000	NaN	NaN	885	8	$9.5321 \mathrm{E}-14$	$9.9720 \mathrm{E}+03$								

Table 5.18: Results of Algorithm 11, Algorithm 13 and Algorithm 21 on Baheux-type problems when $\delta=0.2$

Algorithm 11			Algorithm 13		Algorithm 21									
Prob. size					Total-numit	Cycles	Residual Norm							
$n_{1} \times n_{2}=n$	$\left\\|r_{k}\right\\|$	$\mathrm{t}(\mathrm{sec})$	$\left\\|r_{k}\right\\|$	$\mathrm{t}(\mathrm{sec})$	$\sum k$		$\left\\|r_{k}\right\\|$							
100	NaN	NaN		361	4	$8.4116 \mathrm{E}-14$	$1.4017 \mathrm{E}+00$							
500	NaN	NaN	1196	11	$8.2264 \mathrm{E}-14$	$9.9396 \mathrm{E}+00$								
1000	NaN	NaN	753	7	$8.1432 \mathrm{E}-14$	$1.2279 \mathrm{E}+01$								
5000	NaN	NaN	957	9	$8.3569 \mathrm{E}-14$	$1.8631 \mathrm{E}+02$								
10000	NaN	NaN	1013	10	$6.3348 \mathrm{E}-14$	$8.1048 \mathrm{E}+02$								
20000	NaN	NaN	765	7	$6.7564 \mathrm{E}-14$	$1.6621 \mathrm{E}+03$								
30000	NaN	NaN	1121	10	$7.9328 \mathrm{E}-14$	$4.0938 \mathrm{E}+03$								
40000	NaN	NaN	1273	10	$9.8905 \mathrm{E}-14$	$4.1029 \mathrm{E}+03$								
50000	NaN	NaN	926	8	$8.4312 \mathrm{E}-14$	$5.1431 \mathrm{E}+03$								
60000	NaN	NaN	1716	14	$5.4933 \mathrm{E}-14$	$1.2862 \mathrm{E}+04$								
70000	NaN	NaN	1132	10	$8.2734 \mathrm{E}-14$	$9.4392 \mathrm{E}+03$								
80000	NaN	NaN	1770	16	$8.2071 \mathrm{E}-14$	$2.3258 \mathrm{E}+04$								
90000	NaN	NaN	1291	12	$8.2316 \mathrm{E}-14$	$2.3370 \mathrm{E}+04$								

Table 5.19: Results of Algorithm 11, Algorithm 13 and Algorithm 21 on Baheux-type problems when $\delta=5$

Algorithm 11			Algorithm 13		Algorithm 21									
Prob. size				Total-numit	Cycles	Residual Norm	Elapsed time							
$n_{1} \times n_{2}=n$	$\left\\|r_{k}\right\\|$	$\mathrm{t}(\mathrm{sec})$	$\left\\|r_{k}\right\\|$	$\mathrm{t}(\mathrm{sec})$	$\sum k$		$\left\\|r_{k}\right\\|$							
100	NaN		NaN	657	5	$6.1731 \mathrm{E}-14$	$1.0476 \mathrm{E}+00$							
500	NaN	NaN	962	7	$9.4535 \mathrm{E}-14$	$2.9009 \mathrm{E}+00$								
1000	NaN	NaN	960	8	$7.9350 \mathrm{E}-14$	$3.5007 \mathrm{E}+00$								
5000	NaN	NaN	906	8	$7.2284 \mathrm{E}-14$	$6.1979 \mathrm{E}+01$								
10000	NaN	NaN	1001	9	$7.8009 \mathrm{E}-14$	$2.2937 \mathrm{E}+02$								
20000	NaN	NaN	1160	10	$8.4021 \mathrm{E}-14$	$8.8056 \mathrm{E}+02$								
30000	NaN	NaN	1254	11	$6.1894 \mathrm{E}-14$	$2.1647 \mathrm{E}+03$								
40000	NaN	NaN	1141	10	$6.9793 \mathrm{E}-14$	$2.7633 \mathrm{E}+03$								
50000	NaN	NaN	1047	9	$6.8905 \mathrm{E}-14$	$6.3576 \mathrm{E}+03$								
60000	NaN	NaN	1144	10	$9.8689 \mathrm{E}-14$	$8.4959 \mathrm{E}+03$								
70000	NaN	NaN	1091	9	$8.5125 \mathrm{E}-14$	$1.2639 \mathrm{E}+04$								
80000	NaN	NaN	1233	10	$3.7479 \mathrm{E}-14$	$1.9849 \mathrm{E}+04$								
90000	NaN	NaN	915	8	$6.8924 \mathrm{E}-14$	$1.5634 \mathrm{E}+04$								

Table 5.20: Results of Algorithm 11, Algorithm 13 and Algorithm 21 on Baheux-type problems when $\delta=8$

	Algorithm 11		Algorithm 13		Algorithm 21									
Prob. size			Total-numit	Cycles	Residual Norm	Elapsed time								
$n_{1} \times n_{2}=n$	$\left\\|r_{k}\right\\|$	$\mathrm{t}(\mathrm{sec})$	$\left\\|r_{k}\right\\|$	$\mathrm{t}(\mathrm{sec})$	$\sum k$		$\left\\|r_{k}\right\\|$							
100	NaN	NaN	896	8	$9.0693 \mathrm{E}-14$	$2.1977 \mathrm{E})$								
500	NaN	NaN		925	9	$8.7449 \mathrm{E}-14$	$2.7038 \mathrm{E}+00$							
1000	NaN	NaN		899	9	$5.4287 \mathrm{E}-14$	$4.2063 \mathrm{E}+00$							
5000	NaN	NaN		996	9	$9.973 \mathrm{E}-14$	$7.8573 \mathrm{E}+01$							
10000	NaN	NaN	882	9	$9.7803 \mathrm{E}-14$	$1.8528 \mathrm{E}+02$								
20000	NaN	NaN	1134	11	$9.8800 \mathrm{E}-14$	$1.2316 \mathrm{E}+03$								
30000	NaN	NaN	1067	10	$8.1048 \mathrm{E}-14$	$3.3113 \mathrm{E}+03$								
4000	NaN	NaN	1066	10	$8.3712 \mathrm{E}-14$	$5.2839 \mathrm{E}+03$								
50000	NaN	NaN	1322	12	$5.7524 \mathrm{E}-14$	$7.2849 \mathrm{E}+03$								
60000	NaN	NaN	902	9	$9.5416 \mathrm{E}-14$	$6.3544 \mathrm{E}+03$								
70000	NaN	NaN	NaN	1178	11	$4.7848 \mathrm{E}-14$	$1.3715 \mathrm{E}+04$							
8000	NaN	NaN	1218	11	$9.0713 \mathrm{E}-14$	$1.7708 \mathrm{E}+04$								
90000	NaN	NaN	989	10	$6.1215 \mathrm{E}-14$	$1.5162 \mathrm{E}+04$								

5.7 Switching between Algorithm 18 and Algorithm 19

Here the Algorithm 21 is initially started with either Algorithm 18 or Algorithm 19, and after executing few iterations, it is halted before breakdown and then the switch to either of them chosen randomly is carried out.

5.7.1 Numerical Results

The results obtained with Algorithm 13, Algorithm 14 and the switching Algorithm 21 on Baheux-type problems of different dimensions, for different values of δ are shown in Tables

5.21-5.24.

Table 5.21: Results of Algorithm 13, Algorithm 14 and Algorithm 21 on Baheux-type problems when $\delta=0$

Algorithm 13			Algorithm 14		Algorithm 21									
Prob. size				Total-numit	Cycles	Residual Norm	Elapsed time							
$n_{1} \times n_{2}=n$	$\left\\|r_{k}\right\\|$	$\mathrm{t}(\mathrm{sec})$	$\left\\|r_{k}\right\\|$	$\mathrm{t}(\mathrm{sec})$	$\sum k$		$\left\\|r_{k}\right\\|$							
100	NaN	NaN		277	4	$7.1133 \mathrm{E}-14$	$1.2136 \mathrm{E}+00$							
500	NaN	NaN	655	9	$7.0303 \mathrm{E}-14$	$2.3065 \mathrm{E}+00$								
1000	NaN	NaN	794	10	$7.7291 \mathrm{E}-14$	$2.4763 \mathrm{E}+00$								
5000	NaN	NaN	676	9	$8.8608 \mathrm{E}-14$	$4.9447 \mathrm{E}+01$								
10000	NaN	NaN	670	9	$9.0541 \mathrm{E}-14$	$9.3519 \mathrm{E}+01$								
20000	NaN	NaN	1120	13	$9.4046 \mathrm{E}-14$	$1.0936 \mathrm{E}+03$								
30000	NaN	NaN	1003	12	$7.4658 \mathrm{E}-14$	$2.0624 \mathrm{E}+03$								
40000	NaN	NaN	1230	14	$9.9142 \mathrm{E}-14$	$5.0916 \mathrm{E}+03$								
50000	NaN	NaN	791	11	$9.9051 \mathrm{E}-14$	$2.4449 \mathrm{E}+03$								
60000	NaN	NaN	1104	14	$8.0392 \mathrm{E}-14$	$7.0366 \mathrm{E}+03$								
70000	NaN	NaN	939	12	$7.0694 \mathrm{E}-14$	$9.0725 \mathrm{E}+03$								
80000	NaN	NaN	1220	15	$9.3741 \mathrm{E}-14$	$1.5110 \mathrm{E}+04$								
90000	NaN	NaN	1015	13	$7.3478 \mathrm{E}-14$	$1.4508 \mathrm{E}+04$								

Table 5.22: Results of Algorithm 13, Algorithm 14 and Algorithm 21 on Baheux-type problems when $\delta=0.2$

Algorithm 13			Algorithm 14		Algorithm 21									
Prob. size					Total-numit	Cycles	Residual Norm							
$n_{1} \times n_{2}=n$	$\left\\|r_{k}\right\\|$	$\mathrm{t}(\mathrm{sec})$	$\left\\|r_{k}\right\\|$	$\mathrm{t}(\mathrm{sec})$	$\sum k$		$\left\\|r_{k}\right\\|$							
100	NaN	NaN		413	5	$7.6390 \mathrm{E}-14$	$1.1341 \mathrm{E}+00$							
500	NaN	NaN	1044	11	$5.8548 \mathrm{E}-14$	$1.7227 \mathrm{E}+00$								
1000	NaN	NaN	1248	13	$9.5118 \mathrm{E}-14$	$4.6651 \mathrm{E}+00$								
5000	NaN	NaN	1295	14	$8.5197 \mathrm{E}-14$	$6.1776 \mathrm{E}+01$								
10000	NaN	NaN	1252	13	$8.6696 \mathrm{E}-14$	$3.0083 \mathrm{E}+02$								
20000	NaN	NaN	1000	11	$8.2636 \mathrm{E}-14$	$4.5507 \mathrm{E}+02$								
30000	NaN	NaN	1115	12	$9.7625 \mathrm{E}-14$	$1.6191 \mathrm{E}+03$								
40000	NaN	NaN	881	9	$9.6819 \mathrm{E}-14$	$2.2483 \mathrm{E}+03$								
50000	NaN	NaN	1200	13	$9.4498 \mathrm{E}-14$	$4.4876 \mathrm{E}+03$								
60000	NaN	NaN	1211	13	$7.1510 \mathrm{E}-14$	$6.4184 \mathrm{E}+03$								
70000	NaN	NaN	1110	12	$9.4697 \mathrm{E}-14$	$8.3229 \mathrm{E}+03$								
80000	NaN	NaN	1029	11	$6.7186 \mathrm{E}-14$	$1.0473 \mathrm{E}+04$								
90000	NaN	NaN	1144	12	$8.2802 \mathrm{E}-14$	$1.6649 \mathrm{E}+04$								

Table 5.23: Results of Algorithm 13, Algorithm 14 and Algorithm 21 on Baheux-type problems when $\delta=5$

Algorithm 13			Algorithm 14			Algorithm 21								
Prob. size				Total-numit	Cycles	Residual Norm	Elapsed time							
$n_{1} \times n_{2}=n$	$\left\\|r_{k}\right\\|$	$\mathrm{t}(\mathrm{sec})$	$\left\\|r_{k}\right\\|$	$\mathrm{t}(\mathrm{sec})$	$\sum k$		$\left\\|r_{k}\right\\|$							
100	NaN	NaN	642	5	$7.3332 \mathrm{E}-14$	$1.2698 \mathrm{E}+00$								
500	NaN	NaN	783	6	$9.9579 \mathrm{E}-14$	$1.3623 \mathrm{E}+00$								
1000	NaN	NaN	1085	8	$9.2735 \mathrm{E}-14$	$2.7276 \mathrm{E}+00$								
5000	NaN	NaN	1209	9	$9.2111 \mathrm{E}-14$	$6.0750 \mathrm{E}+01$								
10000	NaN	NaN	1205	9	$8.8425 \mathrm{E}-14$	$1.4547 \mathrm{E}+02$								
20000	NaN	NaN	1368	10	$6.8308 \mathrm{E}-14$	$9.1618 \mathrm{E}+02$								
30000	NaN	NaN	1517	11	$7.7128 \mathrm{E}-14$	$3.1839 \mathrm{E}+03$								
40000	NaN	NaN	1941	14	$8.6248 \mathrm{E}-14$	$7.8021 \mathrm{E}+03$								
50000	NaN	NaN	1372	10	$8.7284 \mathrm{E}-14$	$6.7612 \mathrm{E}+03$								
60000	NaN	NaN	1523	11	$3.8548 \mathrm{E}-14$	$9.5253 \mathrm{E}+03$								
70000	NaN	NaN	1369	10	$6.3259 \mathrm{E}-14$	$1.1009 \mathrm{E}+04$								
80000	NaN	NaN	1521	11	$8.8217 \mathrm{E}-14$	$1.2977 \mathrm{E}+04$								
90000	NaN	NaN	1662	12	$6.5920 \mathrm{E}-14$	$2.3064 \mathrm{E}+04$								

Table 5.24: Results of Algorithm 13, Algorithm 14 and Algorithm 21 on Baheux-type problems when $\delta=8$

Algorithm 13			Algorithm 14			Algorithm 21								
Prob. size				Total-numit	Cycles	Residual Norm	Elapsed time							
$n_{1} \times n_{2}=n$	$\left\\|r_{k}\right\\|$	$\mathrm{t}(\mathrm{sec})$	$\left\\|r_{k}\right\\|$	$\mathrm{t}(\mathrm{sec})$	$\sum k$		$\left\\|r_{k}\right\\|$							
100	NaN	NaN	693	6	$7.7736 \mathrm{E}-14$	$1.2808 \mathrm{E}+00$								
500	NaN	NaN	937	8	$9.2642 \mathrm{E}-14$	$1.7363 \mathrm{E}+00$								
1000	NaN	NaN	1066	9	$7.9663 \mathrm{E}-14$	$4.2646 \mathrm{E}+00$								
5000	NaN	NaN	1208	10	$7.2772 \mathrm{E}-14$	$7.6251 \mathrm{E}+01$								
10000	NaN	NaN	1195	10	$6.7539 \mathrm{E}-14$	$2.8151 \mathrm{E}+02$								
20000	NaN	NaN	1195	10	$8.8780 \mathrm{E}-14$	$1.4111 \mathrm{E}+03$								
30000	NaN	NaN	1557	13	$7.5170 \mathrm{E}-14$	$3.6014 \mathrm{E}+03$								
40000	NaN	NaN	1457	12	$3.7015 \mathrm{E}-14$	$5.2550 \mathrm{E}+03$								
50000	NaN	NaN	1567	13	$9.0659 \mathrm{E}-14$	$8.1525 \mathrm{E}+03$								
60000	NaN	NaN	1690	14	$6.6446 \mathrm{E}-14$	$1.3709 \mathrm{E}+04$								
70000	NaN	NaN	1448	12	$7.2670 \mathrm{E}-14$	$1.1283 \mathrm{E}+04$								
80000	NaN	NaN	1317	11	$7.8829 \mathrm{E}-14$	$1.3046 \mathrm{E}+04$								
90000	NaN	NaN	1341	11	$8.1043 \mathrm{E}-14$	$1.3359 \mathrm{E}+04$								

5.8 Comparison between restarting and switching strategies

It can be observed from the results that the proposed switching algorithms are faster than the restarting ones especially when the problems are of high dimensions. As can be seen in Tables 5.25-5.28, these algorithms appear to have the same performance in terms of accuracy.

5.8.1 Comparing Algorithm 20 with Algorithm 21, based on A_{4} and A_{12}

The results obtained from Algorithm 20, which run separately for Algorithm 17 and Algorithm 16, are based on relation A_{4} and A_{12} respectively, are compared with the result of Algorithm 21. The Algorithm 21 is a switching algorithm between Algorithm 17 and Algorithm 16. Numerical results for different values of $\delta=0$ and $\delta=0.2$ are recorded in the following Tables 5.25-5.26.

Table 5.25: A comparison of the restarting algorithms, Algorithm 17 and Algorithm 16 against the switching algorithm, Algorithm 21 on a Baheux-type problems of different sizes when $\delta=0$

Dim of Prob	Algorithm 17		Algorithm 16		Algorithm 21							
$n_{1} \times n_{2}=n$	$\left\\|r_{k}\right\\|$	$\mathrm{t}(\mathrm{sec})$	$\left\\|r_{k}\right\\|$	$\mathrm{t}(\mathrm{sec})$	$\left\\|r_{k}\right\\|$	$\mathrm{t}(\mathrm{sec})$						
100	$4.9751 \mathrm{E}-14$	$7.0910 \mathrm{E}-01$	$5.4429 \mathrm{E}-14$	$7.5120 \mathrm{E}-01$	$6.4799 \mathrm{E}-14$	$1.0229 \mathrm{E}+00$						
500	$9.7847 \mathrm{E}-14$	$1.9640 \mathrm{E}+00$	$9.7779 \mathrm{E}-14$	$1.8921 \mathrm{E}+00$	$9.9621 \mathrm{E}-14$	$1.3673 \mathrm{E}+00$						
1000	$9.1003 \mathrm{E}-14$	$4.7824 \mathrm{E}+00$	$7.8942 \mathrm{E}-14$	$1.8649 \mathrm{E}+00$	$8.3930 \mathrm{E}-14$	$1.5031 \mathrm{E}+00$						
5000	$9.3487 \mathrm{E}-14$	$3.6608 \mathrm{E}+01$	$9.6411 \mathrm{E}-14$	$6.2534 \mathrm{E}+01$	$9.3487 \mathrm{E}-14$	$3.0330 \mathrm{E}+01$						
10000	$9.9417 \mathrm{E}-14$	$1.5808 \mathrm{E}+02$	$8.6591 \mathrm{E}-14$	$1.2378 \mathrm{E}+02$	$9.2032 \mathrm{E}-14$	$1.3467 \mathrm{E}+02$						
20000	$9.9324 \mathrm{E}-14$	$6.9171 \mathrm{E}+02$	$9.0168 \mathrm{E}-14$	$1.2158 \mathrm{E}+03$	$8.8114 \mathrm{E}-14$	$3.7645 \mathrm{E}+02$						
30000	$9.9248 \mathrm{E}-14$	$3.4193 \mathrm{E}+03$	$6.2128 \mathrm{E}-14$	$1.7086 \mathrm{E}+03$	$9.5415 \mathrm{E}-14$	$8.7870 \mathrm{E}+02$						
4000	$7.5591 \mathrm{E}-14$	$2.5580 \mathrm{E}+03$	$8.5319 \mathrm{E}-14$	$2.9172 \mathrm{E}+03$	$9.8820 \mathrm{E}-14$	$1.5565 \mathrm{E}+03$						
50000	$8.1885 \mathrm{E}-14$	$2.9318 \mathrm{E}+03$	$8.8686 \mathrm{E}-14$	$5.6647 \mathrm{E}+03$	$9.9651 \mathrm{E}-14$	$2.6257 \mathrm{E}+03$						
60000	$8.4811 \mathrm{E}-14$	$7.2413 \mathrm{E}+03$	$9.6952 \mathrm{E}-14$	$7.0835 \mathrm{E}+03$	$9.4797 \mathrm{E}-14$	$2.3296 \mathrm{E}+03$						
70000	$8.7667 \mathrm{E}-14$	$7.3412 \mathrm{E}+03$	$9.9118 \mathrm{E}-14$	$9.3068 \mathrm{E}+03$	$8.0121 \mathrm{E}-14$	$3.9998 \mathrm{E}+03$						
80000	$9.9146 \mathrm{E}-14$	$6.5786 \mathrm{E}+03$	$9.7447 \mathrm{E}-14$	$6.9428 \mathrm{E}+03$	$8.0435 \mathrm{E}-14$	$5.7842 \mathrm{E}+03$						
90000	$9.0707 \mathrm{E}-14$	$5.0874 \mathrm{E}+03$	$9.3677 \mathrm{E}-14$	$8.8362 \mathrm{E}+03$	$6.3203 \mathrm{E}-14$	$4.8621 \mathrm{E}+03$						

Table 5.26: A comparison of the restarting algorithms, Algorithm 17 and Algorithm 16 against the switching algorithm, Algorithm 21 on a Baheux-type problems of different sizes, when $\delta=0.2$

Dim of Prob	Algorithm 17		Algorithm 16		Algorithm 21							
$n_{1} \times n_{2}=n$	$\left\\|r_{k}\right\\|$	sec	$\left\\|r_{k}\right\\|$	sec	$\left\\|r_{k}\right\\|$	sec						
100	$3.4466 \mathrm{E}-14$	$9.0114 \mathrm{E}-01$	$8.4201 \mathrm{E}-14$	$9.3534 \mathrm{E}-01$	$7.2018 \mathrm{E}-14$	$1.7407 \mathrm{E}+00$						
500	$8.6592 \mathrm{E}-14$	$1.1456 \mathrm{E}+00$	$8.2836 \mathrm{E}-14$	$1.6902 \mathrm{E}+00$	$6.3987 \mathrm{E}-14$	$1.1266 \mathrm{E}+00$						
1000	$8.1958 \mathrm{E}-14$	$2.2509 \mathrm{E}+00$	$9.6689 \mathrm{E}-14$	$2.8613 \mathrm{E}+00$	$8.2681 \mathrm{E}-14$	$2.0396 \mathrm{E}+00$						
5000	$9.4303 \mathrm{E}-14$	$2.9377 \mathrm{E}+01$	$8.7238 \mathrm{E}-14$	$4.1919 \mathrm{E}+01$	$9.3962 \mathrm{E}-14$	$2.4518 \mathrm{E}+01$						
10000	$8.9325 \mathrm{E}-14$	$1.7968 \mathrm{E}+02$	$9.3045 \mathrm{E}-14$	$1.2608 \mathrm{E}+02$	$9.3596 \mathrm{E}-14$	$8.1512 \mathrm{E}+01$						
20000	$8.3356 \mathrm{E}-14$	$3.9526 \mathrm{E}+02$	$9.3119 \mathrm{E}-14$	$7.3278 \mathrm{E}+02$	$8.6842 \mathrm{E}-14$	$7.7655 \mathrm{E}+02$						
30000	$8.1079 \mathrm{E}-14$	$1.3205 \mathrm{E}+03$	$8.6376 \mathrm{E}-14$	$2.0646 \mathrm{E}+03$	$9.2112 \mathrm{E}-14$	$1.1766 \mathrm{E}+03$						
40000	$8.9458 \mathrm{E}-14$	$3.3931 \mathrm{E}+03$	$7.7838 \mathrm{E}-14$	$2.9067 \mathrm{E}+03$	$8.4260 \mathrm{E}-14$	$2.7420 \mathrm{E}+03$						
50000	$7.5661 \mathrm{E}-14$	$3.6229 \mathrm{E}+03$	$7.8088 \mathrm{E}-14$	$3.8596 \mathrm{E}+03$	$9.5880 \mathrm{E}-14$	$2.6978 \mathrm{E}+03$						
60000	$9.1927 \mathrm{E}-14$	$4.7638 \mathrm{E}+03$	$9.7165 \mathrm{E}-14$	$8.0922 \mathrm{E}+03$	$9.6912 \mathrm{E}-14$	$2.8531 \mathrm{E}+03$						
70000	$8.2881 \mathrm{E}-14$	$6.3346 \mathrm{E}+03$	$9.1179 \mathrm{E}-14$	$8.8500 \mathrm{E}+03$	$9.6283 \mathrm{E}-14$	$3.5907 \mathrm{E}+03$						
80000	$7.2007 \mathrm{E}-14$	$5.3332 \mathrm{E}+03$	$9.4984 \mathrm{E}-14$	$9.5485 \mathrm{E}+03$	$9.5650 \mathrm{E}-14$	$6.0355 \mathrm{E}+03$						
90000	$8.7481 \mathrm{E}-14$	$4.4072 \mathrm{E}+03$	$8.4068 \mathrm{E}-14$	$1.1762 \mathrm{E}+04$	$8.3997 \mathrm{E}-14$	$5.0977 \mathrm{E}+03$						

5.8.2 Comparing Algorithm 20 with Algorithm 21 based on A_{8} / B_{6} and

A_{8} / B_{10}

Now, we compare the results from Algorithm 20 which run separately Algorithm 18 and Algorithm 19, are based on relations A_{8} / B_{6} and A_{8} / B_{10} respectively, against the Algorithm 21 which switches between Algorithms 18 and 19. Numerical results for different values of $\delta=0$ and $\delta=0.2$ are recorded in the following Tables 5.27-5.28.

Table 5.27: A comparison of the restarting algorithms, Algorithm 18 and Algorithm 19 against the switching algorithm, Algorithm 21 on a Baheux-type problems of different sizes, when $\delta=0$

Dim of Prob	Algorithm 18		Algorithm 19		Algorithm 21							
$n_{1} \times n_{2}=n$	$\left\\|r_{k}\right\\|$	sec	$\left\\|r_{k}\right\\|$	sec	$\left\\|r_{k}\right\\|$	sec						
100	$6.1115 \mathrm{E}-14$	$6.2013 \mathrm{E}-01$	$9.3606 \mathrm{E}-14$	$8.9790 \mathrm{E}-01$	$7.1133 \mathrm{E}-14$	$1.2136 \mathrm{E}+00$						
500	$9.8912 \mathrm{E}-14$	$5.3377 \mathrm{E}+00$	$8.8988 \mathrm{E}-14$	$5.1838 \mathrm{E}+00$	$7.0303 \mathrm{E}-14$	$2.3065 \mathrm{E}+00$						
1000	$8.5325 \mathrm{E}-14$	$2.8432 \mathrm{E}+00$	$9.3373 \mathrm{E}-14$	$2.5808 \mathrm{E}+01$	$6.3383 \mathrm{E}-14$	$2.4763 \mathrm{E}+00$						
5000	$9.0619 \mathrm{E}-14$	$1.4516 \mathrm{E}+01$	$9.3051 \mathrm{E}-14$	$4.6781 \mathrm{E}+02$	$8.8608 \mathrm{E}-14$	$4.0568 \mathrm{E}+01$						
10000	$8.7698 \mathrm{E}-14$	$6.3695 \mathrm{E}+01$	$9.1131 \mathrm{E}-14$	$1.1683 \mathrm{E}+03$	$9.9832 \mathrm{E}-14$	$1.4636 \mathrm{E}+02$						
20000	$9.6487 \mathrm{E}-14$	$3.2046 \mathrm{E}+02$	$8.7733 \mathrm{E}-14$	$1.9221 \mathrm{E}+03$	$9.4046 \mathrm{E}-14$	$1.0936 \mathrm{E}+03$						
30000	$9.7053 \mathrm{E}-14$	$4.6949 \mathrm{E}+02$	$7.9795 \mathrm{E}-14$	$4.0962 \mathrm{E}+03$	$7.4658 \mathrm{E}-14$	$2.0624 \mathrm{E}+03$						
4000	$9.7791 \mathrm{E}-14$	$9.9272 \mathrm{E}+02$	$9.5148 \mathrm{E}-14$	$1.2473 \mathrm{E}+04$	$9.9142 \mathrm{E}-14$	$5.0916 \mathrm{E}+03$						
50000	$8.7656 \mathrm{E}-14$	$1.2205 \mathrm{E}+03$	$9.9344 \mathrm{E}-14$	$1.8289 \mathrm{E}+03$	$5.5027 \mathrm{E}-14$	$6.0572 \mathrm{E}+03$						
60000	$8.7424 \mathrm{E}-14$	$1.5603 \mathrm{E}+03$	$9.5721 \mathrm{E}-14$	$2.8230 \mathrm{E}+04$	$8.0392 \mathrm{E}-14$	$7.0366 \mathrm{E}+03$						
70000	$9.0205 \mathrm{E}-14$	$1.8936 \mathrm{E}+03$	$9.1219 \mathrm{E}-14$	$6.4745 \mathrm{E}+04$	$7.0694 \mathrm{E}-14$	$9.0725 \mathrm{E}+03$						
80000	$9.8981 \mathrm{E}-14$	$2.7773 \mathrm{E}+03$	$8.9973 \mathrm{E}-14$	$3.7393 \mathrm{E}+04$	$9.3741 \mathrm{E}-14$	$1.5110 \mathrm{E}+04$						
90000	$8.4513 \mathrm{E}-14$	$4.3607 \mathrm{E}+03$	$9.0799 \mathrm{E}-14$	$5.8112 \mathrm{E}+04$	$7.3478 \mathrm{E}-14$	$1.4508 \mathrm{E}+04$						

Table 5.28: A comparison of the restarting algorithms, Algorithm 18 and Algorithm 19 against the switching algorithm, Algorithm 21 on a Baheux-type problems of different sizes, when $\delta=0.2$

Dim of Prob	Algorithm 18		Algorithm 19		Algorithm 21							
$n_{1} \times n_{2}=n$	$\left\\|r_{k}\right\\|$	sec	$\left\\|r_{k}\right\\|$	sec	$\left\\|r_{k}\right\\|$	sec						
100	$7.7936 \mathrm{E}-14$	$8.4320 \mathrm{E}-01$	$9.3360 \mathrm{E}-14$	$9.8385 \mathrm{E}-01$	$7.6390 \mathrm{E}-14$	$1.1341 \mathrm{E}+00$						
500	$5.9065 \mathrm{E}-14$	$1.5156 \mathrm{E}+00$	$9.6024 \mathrm{E}-14$	$1.3427 \mathrm{E}+01$	$5.8548 \mathrm{E}-14$	$1.7227 \mathrm{E}+00$						
1000	$7.9484 \mathrm{E}-14$	$2.4188 \mathrm{E}+00$	$8.2166 \mathrm{E}-14$	$1.9866 \mathrm{E}+01$	$9.5118 \mathrm{E}-14$	$4.6651 \mathrm{E}+00$						
5000	$9.7027 \mathrm{E}-14$	$7.6450 \mathrm{E}+01$	$8.7901 \mathrm{E}-14$	$1.2460 \mathrm{E}+02$	$8.5197 \mathrm{E}-14$	$6.1776 \mathrm{E}+01$						
10000	$8.6415 \mathrm{E}-14$	$2.1527 \mathrm{E}+02$	$9.9181 \mathrm{E}-14$	$8.3228 \mathrm{E}+02$	$8.6696 \mathrm{E}-14$	$3.0083 \mathrm{E}+02$						
20000	$5.8727 \mathrm{E}-14$	$4.2976 \mathrm{E}+02$	$9.5309 \mathrm{E}-14$	$2.4773 \mathrm{E}+03$	$8.2636 \mathrm{E}-14$	$4.5507 \mathrm{E}+02$						
30000	$9.6493 \mathrm{E}-14$	$1.7039 \mathrm{E}+03$	$7.9825 \mathrm{E}-14$	$1.0237 \mathrm{E}+04$	$9.7625 \mathrm{E}-14$	$1.6191 \mathrm{E}+03$						
40000	$8.3941 \mathrm{E}-14$	$2.5913 \mathrm{E}+03$	$8.9642 \mathrm{E}-14$	$1.4145 \mathrm{E}+04$	$9.6819 \mathrm{E}-14$	$2.2483 \mathrm{E}+03$						
50000	$7.4461 \mathrm{E}-14$	$3.9558 \mathrm{E}+03$	$8.1724 \mathrm{E}-14$	$1.1617 \mathrm{E}+04$	$9.4498 \mathrm{E}-14$	$4.4876 \mathrm{E}+03$						
60000	$8.6231 \mathrm{E}-14$	$4.7694 \mathrm{E}+03$	$9.9193 \mathrm{E}-14$	$1.6511 \mathrm{E}+04$	$7.1510 \mathrm{E}-14$	$6.4184 \mathrm{E}+03$						
70000	$7.7883 \mathrm{E}-14$	$5.7245 \mathrm{E}+03$	$8.4839 \mathrm{E}-14$	$4.0159 \mathrm{E}+04$	$9.4697 \mathrm{E}-14$	$8.3229 \mathrm{E}+03$						
80000	$7.9999 \mathrm{E}-14$	$8.5143 \mathrm{E}+03$	$8.9733 \mathrm{E}-14$	$4.2025 \mathrm{E}+04$	$6.7186 \mathrm{E}-14$	$1.0473 \mathrm{E}+04$						
90000	$9.2184 \mathrm{E}-14$	$1.4880 \mathrm{E}+04$	$8.7492 \mathrm{E}-14$	$2.3436 \mathrm{E}+04$	$8.2802 \mathrm{E}-14$	$1.6649 \mathrm{E}+04$						

5.9 Summary

Algorithms $A_{4}, A_{12}, A_{8} / B_{6}$ and A_{8} / B_{10} are implemented to solve various problems of the type given in Sections 4.6, 4.7, 4.8 and 4.9, respectively, with different dimensions ranging from 100 to 90000 . The results from these algorithms are compared with those from the switching algorithms, i.e. Algorithms 19 to 24 on the same problems. The results reveal that $A_{4}, A_{12}, A_{8} / B_{6}$ and A_{8} / B_{10} are not as robust as the switching algorithms. Individual algorithms customarily solved problems with dimension $n \leq 20$ achieving poor accuracy. On the contrary, the switching algorithms solved these problems with a higher accuracy. This argument is supported by strong numerical evidence in favour of switching. It is obvious from the results obtained that switching is an effective strategy to handle the issue of breakdown in Lanczos-type algorithms. It is evident to say that switching strategies can be recommended for efficiency enhancement of the Lanczos-type algorithms along with their robustness. These strategies are also attractive for their simplicity and ease of implementation.

Chapter 6

Conclusion and Further Work

This thesis focuses on some iterative methods for solving linear systems of equations (SLEs). These methods are commonly known as Lanczos-type algorithms. Although these algorithms are known for their efficiency, they suffer from a major problem which is that of premature breakdown. This breakdown usually occurs well before convergence to a good approximate solution. This is due to the loss of orthogonality of the Formal Orthogonal Polynomials (FOPs) on which these algorithms are based, due to non-existence of FOPs, accumulation of errors or numerical difficulties while estimating their coefficients. The numerical difficulties in estimating the coefficients occur when these involve denominators which become zero during the computational process.

A number of attempts have been made to deal with the breakdown issue in Lanczos-type algorithms. Some of these attempts provided the foundation for look-ahead algorithms and look-around algorithms [11,18,19,32,40]. Some have led to jumping over non-existing FOPs [23], whereas others have inspired restarting from different points for desirable results in Krylov subspaces [35]. Some of the strategies have considered switching between
algorithms to provide a remedy to the breakdown and continue the process until achieving convergence [36]. It has been established that restarting and switching strategies are better than others in terms of robustness $[35,36]$. However, these strategies have not been applied to problems with large sizes. This work considers substantially larger instances of SLEs than those reported in the available literature. Our results on the whole support our hypothesis on switching and restarting.

In chapter 4, we have advocated the restarting of algorithms before they broke down. A test to detect the forthcoming breakdown is described. It relies on some parameters including the iteration number.

After explaining thoroughly the breakdown issue and some of the existing strategies to handle the breakdown of the Lanczos-type algorithm, a search has also been made to find algorithms that are more robust to the issue of breakdown. This is done by extending the degree of FOPs used in Lanczos-type algorithms. The extended degrees FOPs based algorithms are compared with the existing ones that are based on low degree FOPs. It has, however, been observed that the Lanczos-type algorithms based on high degree FOPs are computationally more expensive than the others. Moreover they face a breakdown issue due to error accumulation at a higher speed than the others.

Furthermore, other variants of Lanczos-type algorithms involving ordinary polynomial and monic polynomial have also been derived instead of standard auxiliary polynomial as used in some previous works by other researchers hinted to in Chapter 3 of the thesis. Further exploration of these algorithms might help in providing more insight into the matter.

The components of those coefficients with the denominators that blow up prior to
breakdown are regularly monitored. We have suggested a stopping test based on the value of those components that become less than a specified threshold. This test helps to stop the algorithms preemptively just before breakdown. This allows the algorithms to run for a maximum number of iterations unlike the conventional methods where the algorithms are run for a pre-decided number of iterations. The results given in this thesis have revealed that by utilising the maximum number of iterations, robustness can be achieved. This test is incorporated in both the restarting and switching strategies. The results show that these approaches are good competitors in terms of both their robustness and efficiency in comparison to other conventional methods. Some convergence analysis carried out on well known algorithm is included as appendix A.

6.1 Further research work

The generalisation of switching to a whole library of Lanczos-type algorithms may prove very beneficial since it is difficult to match a given Lanczos-type algorithm to a given problem. Here we have considered two-way switching between two distinct algorithms. A worthwhile investigation might be a k-way switching or switching between k distinct algorithms. Non-Lanczos-type algorithms might also be considered for this purpose.

This could be done by considering any number of algorithms which are suitable for solving SLEs and switch between them as soon as the current algorithm threatens to breakdown. While hitting on a good algorithm, switching away from it to another algorithm may be counter-productive. It is, therefore, also worthwhile to investigate a combination of switching and restarting. Here, restarting is equivalent to switching to the same algorithm. This can happen when the current algorithm is very appropriate for the SLE instance being solved. "Appropriateness" may be characterised by the number of iterations the algorithm
takes before monitoring shows that it is going to breakdown. There is also the analysis of all these approaches in terms of robustness and efficiency.

Bibliography

[1] Grégoire Allaire, Karim Trabelsi, and Sidi Mahmoud Kaber. Numerical Linear Algebra. Springer, 2008.
[2] Roberto Bagnara. A unified proof for the convergence of Jacobi and Gauss-Seidel methods. SIAM review, 37(1):93-97, 1995.
[3] Carole Baheux. New implementations of Lanczos method. Journal of computational and applied mathematics, 57(1):3-15, 1995.
[4] Carole Baheux. Algorithmes d'implémentation de la méthode de Lanczos. PhD thesis, University of Lille 1, France,1994.
[5] Claude Brezinski. Padé-type approximants. In Padé-Type Approximation and General Orthogonal Polynomials, pages 9-39. Springer, 1980.
[6] Claude Brezinski. Projection methods for linear systems. Journal of Computational and Applied Mathematics, 77(1-2):35-51, 1997.
[7] Claude Brezinski. A transpose-free "Lanczos/Orthodir" algorithm for linear systems. Comptes Rendus de l'Académie des Sciences-Series I-Mathematics, 324(3):349-354, 1997.
[8] Claude Brezinski. Computational aspects of linear control. Springer Science \& Business Media, 2002.
[9] Claude Brezinski. An intoduction to formal orthogonality and some of its applications. RACSAM, 96(2):157-173, 2002.
[10] Claude Brezinski, Ufr Ieea, and J Van Iseghem. A taste of Padé approximation. Acta numerica, 4:53-103, 1995.
[11] Claude Brezinski and M Redivo-Zaglia. A new presentation of orthogonal polynomials with applications to their computation. Numerical Algorithms, 1(2):207-221, 1991.
[12] Claude Brezinski and M Redivo-Zaglia. Breakdowns in the computation of orthogonal polynomials. Nonlinear Numerical Methods and Rational Approximation, Kluwer, Dordrecht, pages 49-59, 1994.
[13] Claude Brezinski and M Redivo-Zaglia. Treatment of near-breakdown in the CGS algorithm. Numerical Algorithms, 7(1):33-73, 1994.
[14] Claude Brezinski and M Redivo-Zaglia. A look-ahead strategy for the implementation of some old and new extrapolation methods. Numerical Algorithms, 11(1):35-55, 1996.
[15] Claude Brezinski, M Redivo-Zaglia, and Hassane Sadok. Avoiding breakdown and near-breakdown in Lanczos-type algorithms. Numerical Algorithms, 1(2):261-284, 1991.
[16] Claude Brezinski, M Redivo-Zaglia, and Hassane Sadok. Addendum to "Avoiding breakdown and near-breakdown in Lanczos-type algorithms". Numerical Algorithms, 2(2):133-136, 1992.
[17] Claude Brezinski, M Redivo-Zaglia, and Hassane Sadok. A breakdown-free Lanczostype algorithm for solving linear systems. Numerische Mathematik, 63(1):29-38, 1992.
[18] Claude Brezinski, M Redivo-Zaglia, and Hassane Sadok. Breakdowns in the implementation of the Lanczos method for solving linear systems. Computers \mathcal{E} Mathematics with Applications, 33(1):31-44, 1997.
[19] Claude Brezinski, M Redivo-Zaglia, and Hassane Sadok. New look-ahead Lanczostype algorithms for linear systems. Numerische Mathematik, 83(1):53-85, 1999.
[20] Claude Brezinski, M Redivo-Zaglia, and Hassane Sadok. The matrix and polynomial approaches to Lanczos-type algorithms. Journal of computational and applied mathematics, 123(1):241-260, 2000.
[21] Claude Brezinski, M Redivo-Zaglia, and Hassane Sadok. A review of formal orthogonality in Lanczos-based methods. Journal of Computational and Applied Mathematics, 140(1):81-98, 2002.
[22] Claude Brezinski and Hassane Sadok. Avoiding breakdown in the CGS algorithm. Numerical Algorithms, 1(2):199-206, 1991.
[23] Claude Brezinski and Hassane Sadok. Lanczos-type algorithms for solving systems of linear equation. Applied numerical mathematics, 11(6):443-473, 1993.
[24] Daniela Calvetti, L Reichel, and Danny Chris Sorensen. An implicitly restarted Lanczos method for large symmetric eigenvalue problems. Electronic Transactions on Numerical Analysis, 2(1):21, 1994.
[25] Zhi-Hao Cao. Avoiding breakdown in variants of the BI-CGSTAB algorithm. Linear algebra and its applications, 263:113-132, 1997.
[26] Ke Chen. Matrix preconditioning techniques and applications. Cambridge University Press, 2005.
[27] Biswa Nath Datta. Numerical linear algebra and applications. SIAM, 2010.
[28] James W Demmel. Applied Numerical Linear Algebra. SIAM, 1997.
[29] André Draux. Formal orthogonal polynomials and Pade approximants in a noncommutative algebra. In Mathematical Theory of Networks and Systems, pages 278-292. Springer, 1984.
[30] André Draux. Formal orthogonal polynomials revisited. Applications. Numerical Algorithms, 11(1):143-158, 1996.
[31] André Draux. Formal orthogonal polynomials and Newton-Padé approximants. Numerical Algorithms, 29(1-3):67-74, 2002.
[32] Antonio J Durán and Walter Van Assche. Orthogonal matrix polynomials and higherorder recurrence relations. Linear Algebra and its Applications, 219:261-280, 1995.
[33] Muhammad Farooq. New Lanczos-type algorithms and their implementation. PhD thesis, The University of Essex, 2011.
[34] Muhammad Farooq and Abdellah Salhi. New recurrence relationships between orthogonal polynomials which lead to new Lanczos-type algorithms. Journal of Prime Research in Mathematics, 8:61-75, 2012.
[35] Muhammad Farooq and Abdellah Salhi. A preemptive restarting approach to beating the inherent instability of Lanczos-type algorithms. Iranian Journal of Science and Technology (Sciences), 37(3.1):349-358, 2013.
[36] Muhammad Farooq and Abdellah Salhi. A switching approach to avoid breakdown in Lanczos-type algorithms. Applied Mathematics and Information Sciences, 8(5):2161-2169, 2014.
[37] Roger Fletcher. Conjugate gradient methods for indefinite systems. Lecture Notes in Mathematics, 506:73-89, 1976.
[38] Roland W Freund, Martin H Gutknecht, and Noël M Nachtigal. An implementation of the look-ahead Lanczos algorithm for non-Hermitian matrices. SIAM Journal on Scientific Computing, 14(1):137-158, 1993.
[39] Walter Gander, Martin J Gander, and Felix Kwok. Scientific Computing: An Introduction using Maple and MATLAB. Texts in Computational Science and Engineering, 11, 2014.
[40] Peter R Graves-Morris. A "look-around Lanczos" algorithm for solving a system of linear equations. Numerical Algorithms, 15(3):247-274, 1997.
[41] Anne Greenbaum. Iterative Methods for Solving Linear Systems. SIAM, 1997.
[42] Martin H Gutknecht. The unsymmetric Lanczos algorithms and their relations to Padé approximation, continued fractions and the QD algorithm. In Proceedings of the Copper Mountain Conference on Iterative Methods, volume 2, 1990.
[43] Martin H Gutknecht. Lanczos-type solvers for nonsymmetric linear systems of equations. Acta Numerica, 6:271-397, 1997.
[44] Magnus R Hestenes. The conjugate gradient method for solving linear systems. In Proc. Symp. Appl. Math VI, American Mathematical Society, pages 83-102, 1956.
[45] Magnus R Hestenes and Eduard Stiefel. Methods of conjugate gradients for solving linear systems'. Journal of Research of the National Bureau of Standards, 49(6), 1952.
[46] Desmond J Higham and Nicholas J Higham. MATLAB guide. SIAM, 2016.
[47] Nicholas J Higham. Accuracy and stability of numerical algorithms. SIAM, 2002.
[48] Kang C Jea and David M Young. On the simplification of generalized conjugategradient methods for nonsymmetrizable linear systems. Linear Algebra and its Applications, 52:399-417, 1983.
[49] Wayne Joubert. Generalized conjugate gradient and Lanczos methods for the solution of nonsymmetric systems of linear equations. Technical report, Texas Univ., Austin, TX (USA). Center for Numerical Analysis, 1990.
[50] Wayne Joubert. Lanczos methods for the solution of nonsymmetric systems of linear equations. SIAM Journal on Matrix Analysis and Applications, 13(3):926-943, 1992.
[51] Louis Komzsik. The Lanczos method: evolution and application. SIAM, 2003.
[52] Cornelius Lanczos. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. United States Governm. Press Office, 1950.
[53] Cornelius Lanczos. Solution of systems of linear equations by minimized iterations. J. Res. Nat. Bur. Standards, 49(1):33-53, 1952.
[54] Jörg Liesen and Zdenek Strakos. Krylov subspace methods: principles and analysis. Oxford University Press, 2013.
[55] Maharani Maharani. Enhanced Lanczos Algorithms for Solving Systems of Linear Equations with Embedding Interpolation and Extrapolation. PhD thesis, University of Essex, 2015.
[56] Gérard Meurant and Zdeněk Strakoš. The Lanczos and conjugate gradient algorithms in finite precision arithmetic. Acta Numerica, 15:471-542, 2006.
[57] Ronald Morgan. On restarting the Arnoldi method for large nonsymmetric eigenvalue problems. Mathematics of Computation of the American Mathematical Society, 65(215):1213-1230, 1996.
[58] Dywayne A Nicely. Restarting the Lanczos algorithm for large eigenvalue problems and linear equations. Baylor University, 2008.
[59] Christopher C Paige. The computation of eigenvalues and eigenvectors of very large sparse matrices. PhD thesis, University of London, 1971.
[60] Beresford N Parlett, Derek R Taylor, and Zhishun A Liu. A look-ahead Lanczos algorithm for unsymmetric matrices. Mathematics of Computation, 44(169):105-124, 1985.
[61] Alfio Quarteroni, Riccardo Sacco, and Fausto Saleri. Numerical Mathematics. Springer, 2007.
[62] Yousef Saad. Krylov subspace methods for solving large unsymmetric linear systems. Mathematics of computation, 37(155):105-126, 1981.
[63] Yousef Saad. On the Lanczos method for solving symmetric linear systems with several right-hand sides. Mathematics of computation, 48(178):651-662, 1987.
[64] Yousef Saad. Iterative methods for sparse linear systems. SIAM, 2003.
[65] Yousef Saad. Numerical Methods for Large Eigenvalue Problems: Revised Edition. SIAM, 2011.
[66] Peter Sonneveld. CGS, a fast Lanczos-type solver for nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing, 10(1):36-52, 1989.
[67] Gábor Szegö. Orthogonal polynomials. American Mathematical Soc., 1939.
[68] Henk A Van der Vorst. An iterative solution method for solving $f(A) x=b$, using Krylov subspace information obtained for the symmetric positive definite matrix A. Journal of Computational and Applied Mathematics, 18(2):249-263, 1987.
[69] Henk A Van der Vorst. Iterative Krylov methods for large linear systems. Cambridge University Press, 2003.
[70] Richard S Varga. Matrix iterative analysis. Springer, 2009.
[71] Jet Wimp. Padé-type approximation and general orthogonal polynomials. SIAM Review, 23(3):403-406, 1981.

Publications / Talks

1. I presented part my work at EGH2015 held at the Department of Mathematical Sciences, University of Essex (June 3, 2015).

Appendix A

Basic and Auxiliary Results

A. 1 Convergence Analysis of Iterative Methods

In general, consider an iterative solution of an $n \times n$ system of linear equation $A x=b$ as

$$
\begin{gather*}
x_{m+1}=B x_{m}+c, \tag{A.1.1}\\
x_{m+1}=x_{m}+M^{-1} r_{m} \tag{A.1.2}
\end{gather*}
$$

where $r_{m}=b-A x_{m}$ denotes the residual vector at step m, the matrix B is called an iteration matrix $B=M^{-1} N$, while $c=M^{-1} b$.

Suppose the sequence $\left\{x_{m}\right\}_{m=0}^{\infty}$ has to converges to the exact solution x. Since the error has the form

$$
e_{m+1}=B e_{m},
$$

by induction on m, we obtain

$$
\begin{equation*}
e_{m}=B^{m} e_{0} \tag{A.1.3}
\end{equation*}
$$

where e_{0} is the initial error. Taking the norm on both sides, then

$$
\left\|e_{m}\right\|=\left\|B^{m} e_{0}\right\| \Rightarrow\left\|e_{m}\right\| \leq\left\|B^{m}\right\|\left\|e_{0}\right\|=\|B\|^{m}\left\|e_{0}\right\| .
$$

If $\|B\|<1$, then $\|B\|^{m} \rightarrow 0$ as $m \rightarrow \infty$ and hence, $x_{m} \rightarrow x$ as $m \rightarrow \infty[26,70]$. [2]

To carry out the convergence analysis of Lanczos/Orthodir and Lanczos/Orthomin algorithms, we follow the same procedure for CG method given in $[1,61]$.

A.1.1 Convergence analysis of Lanczos/Orthodir

Lanczos/Orthodir algorithm is also called algorithm A_{8} / B_{6} in C. Baheux [4]. Using the three-term recurrence relationship we obtain the following expression for the residual and the next solution [3,4].

$$
\begin{align*}
r_{m+1} & =r_{m}+A_{m+1} A z_{m} \tag{A.1.4}\\
x_{m+1} & =x_{m}-A_{m+1} z_{m} \tag{A.1.5}
\end{align*}
$$

Since $z_{m}=P_{m}^{(1)}(A) r_{0}$, now subtracting $x^{(*)}$ on both sides of (4.5)

$$
\begin{gather*}
e_{m+1}=e_{m}-A_{m+1} z_{m} \\
\left\{\begin{array}{l}
e_{m}=e_{m-1}-A_{m} z_{m-1} \\
e_{m-1}=e_{m-2}-A_{m-1} z_{m-2} \\
e_{m-2}=e_{m-3}-A_{m-2} z_{m-3} \\
\vdots \\
e_{3}=e_{2}-A_{3} z_{2} \\
e_{2}=e_{1}-A_{2} z_{1} \\
e_{1}=e_{0}-A_{1} z_{0} \\
e_{m+1}=e_{0}-A_{1} z_{0}-A_{2} z_{1}-A_{3} z_{2}-\ldots-A_{m+1} z_{m} \\
e_{m+1}=e_{0}-\sum_{i=0}^{m} A_{i+1} z_{i} \\
\left\|x_{m+1}-x^{*}\right\| \leq\left\|x_{0}-x^{*}\right\|+\sum_{i=0}^{m}\left|A_{i+1}\right|\left\|z_{i}\right\| \\
\left\|x_{m+1}-x^{*}\right\| \leq\left\|x_{0}-x^{*}\right\|+\mid A_{m+1}\| \| z_{m} \| .
\end{array}\right.
\end{gather*}
$$

Now consider the second part of the equation (A.1.6) on the right hand side

$$
\begin{gathered}
\left\|z_{m}\right\|=\left\|P_{m}^{(1)}(A) r_{0}\right\| \\
\left\|z_{m}\right\| \leq\left\|P_{m}^{(1)}(A)\right\|\left\|r_{0}\right\| \\
\left\|x_{m+1}-x^{*}\right\| \leq\left\|x_{0}-x^{*}\right\|+\mid A_{m+1}\| \| P_{m}^{(1)}(A)\| \| r_{0} \| .
\end{gathered}
$$

$\|$.$\| is induced norm. Since A$ is symmetric positive definite, there exists an orthogonal matrix V such that $A=V \Lambda V^{-1}$ with $\Lambda=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right)$, i.e. $\lambda_{i} \in \rho(A)$, where $\rho(A)$ in

A.2. Tables for Monitoring Lanczos-type algorithm Chapter 4

known as the spectral radius of A. Let λ be any eigenvalue of matrix A. We also assume that the initial guess is chosen such that it is close to the true solution, so that $\left\|r_{0}\right\| \leq \epsilon_{2}$, for some $\epsilon_{2}>0$, we obtain the following result as

$$
\begin{gathered}
\left\|z_{m}\right\| \leq \epsilon_{2}\left\|P_{m}(A)\right\|=\epsilon_{2}\left\|V P_{m}(\Lambda) V^{-1}\right\| \\
\left\|z_{m}\right\| \leq \epsilon_{2}\|V\|\left\|\mid P_{m}(\Lambda)\right\|\| \| V^{-1} \| \\
\leq \epsilon_{2} \mathcal{K}(V) \max _{\lambda \epsilon \rho(A)}|\lambda|
\end{gathered}
$$

where $\kappa(V)$ is the condition number of matrix V, and its value is less than 1 . Since matrix V is a well conditioned. Since λ is any eigenvalue of matrix A. Therefore equation (A.1.6) becomes

$$
\begin{gathered}
\left\|x_{m+1}-x^{*}\right\| \leq \epsilon_{1}+\left|A_{i+1}\right| \epsilon_{2} \kappa(V) \max _{\lambda \epsilon \rho(A)}|\lambda|=\epsilon_{1}+\epsilon_{3} \kappa(V) \max _{\lambda \epsilon \rho(A)}|\lambda| \\
\left\|x_{m+1}-x^{*}\right\| \leq \epsilon .
\end{gathered}
$$

By following the same approach of section (4.1.1) for the convergence of Lanczos/Orthomin algorithm which is also called algorithm A_{8} / B_{10} in C. Baheux [4].

A. 2 Tables for Monitoring Lanczos-type algorithm Chapter 4

A.2.1 Monitoring Lanczos-type Algorithm based on relation A_{12}

Table A.1: Behaviour of coefficients of A_{12}, on Baheux-type problems, when $\delta=0.2$

Col. 1	Col. 2	Col. 3	Col. 4	Col. 5	Col. 6	Col. 7	Col. 8
Dim. of A	k	Δ_{k+1}	B_{k+1}	$\mathrm{C}_{\text {k+1 }}$	F_{k+1}	G_{k+1}	A_{k+1}
100	143	Inf	NaN	NaN	$-4.0667 \mathrm{E}+01$	NaN	NaN
500	138	-Inf	NaN	NaN	$-1.2363 \mathrm{E}+00$	NaN	NaN
1000	138	Inf	NaN	NaN	$-1.0483 \mathrm{E}+02$	NaN	NaN
5000	137	Inf	NaN	NaN	$3.1365 \mathrm{E}+01$	NaN	NaN
10000	136	NaN	NaN	NaN	$9.5220 \mathrm{E}+01$	NaN	NaN
15000	137	$-1.8339 \mathrm{E}+307$	Inf	NaN	-5.0930E+01	-Inf	NaN
20000	137	NaN	NaN	NaN	$-1.0087 \mathrm{E}+01$	NaN	NaN
30000	138	$1.4730 \mathrm{E}+308$	NaN	NaN	-3.2086E-01	NaN	NaN
40000	137	NaN	NaN	NaN	$3.1354 \mathrm{E}+01$	NaN	NaN
50000	137	NaN	NaN	NaN	$-8.4727 \mathrm{E}+01$	NaN	NaN
60000	137	-Inf	NaN	NaN	$-6.8333 \mathrm{E}+00$	NaN	NaN
70000	137	$2.1116 \mathrm{E}+307$	NaN	NaN	$-3.6980 \mathrm{E}+01$	NaN	NaN
80000	137	$7.0578 \mathrm{E}+307$	Inf	NaN	$-5.9747 \mathrm{E}+00$	-Inf	NaN
90000	98	-6.1147E+203	$2.8390 \mathrm{E}+01$	NaN	$0.0000 \mathrm{E}+00$	5.2821E+01	NaN

A.2. Tables for Monitoring Lanczos-type algorithm Chapter 4

Table A.2: Behaviour of coefficients of A_{12}, on Baheux-type problems, when $\delta=5$

Col.1	Col.2	Col.3	Col.4	Col.5	Col.6	Col.7	Col.8
Dim. of A	k	Δ_{k+1}	B_{k+1}	C_{k+1}	F_{k+1}	G_{k+1}	A_{k+1}
100	110	NaN	NaN	NaN	$-1.3579 \mathrm{E}+01$	NaN	NaN
500	110	NaN	NaN	NaN	$-1.8447 \mathrm{E}+00$	NaN	NaN
1000	110	NaN	NaN	NaN	$1.4353 \mathrm{E}+01$	NaN	NaN
5000	110	$1.0052 \mathrm{E}+307$	NaN	NaN	$-4.7945 \mathrm{E}-01$	NaN	NaN
10000	109	NaN	NaN	NaN	$-1.5253 \mathrm{E}+01$	NaN	NaN
15000	108	NaN	NaN	NaN	$-3.6764 \mathrm{E}+00$	NaN	NaN
20000	109	$5.1738 \mathrm{E}+306$	-Inf	NaN	$1.3255 \mathrm{E}+01$	-Inf	NaN
30000	111	NaN	NaN	NaN	$-3.6698 \mathrm{E}+00$	NaN	NaN
40000	110	NaN	NaN	NaN	$-4.9091 \mathrm{E}+01$	NaN	NaN
50000	108	$-7.9368 \mathrm{E}+306$	NaN	NaN	$-3.1271 \mathrm{E}-02$	NaN	NaN
60000	108	$5.2744 \mathrm{E}+306$	NaN	NaN	$3.3261 \mathrm{E}-01$	NaN	NaN
70000	107	NaN	NaN	NaN	$-1.0807 \mathrm{E}+01$	NaN	NaN
80000	110	-Inf	NaN	NaN	$8.1210 \mathrm{E}+01$	NaN	NaN
90000	109	$6.6387 \mathrm{E}+306$	NaN	NaN	$7.6687 \mathrm{E}+00$	NaN	NaN

Table A.3: Behaviour of coefficients of A_{12}, on Baheux-type problems, when $\delta=8$

Col.1	Col.2	Col.3	Col.4	Col.5	Col.6	Col.7	Col.8
Dim. of A	k	Δ_{k+1}	B_{k+1}	C_{k+1}	F_{k+1}	G_{k+1}	A_{k+1}
100	94	-Inf	NaN	NaN	$9.4810 \mathrm{E}+00$	NaN	NaN
500	95	$-1.2204 \mathrm{E}+308$	NaN	NaN	$1.7348 \mathrm{E}+00$	NaN	NaN
1000	95	NaN	NaN	NaN	$-4.6667 \mathrm{E}+03$	NaN	NaN
5000	94	NaN	NaN	NaN	$-1.7000 \mathrm{E}+01$	NaN	NaN
10000	94	NaN	NaN	NaN	$1.0163 \mathrm{E}+01$	NaN	NaN
15000	94	$2.3441 \mathrm{E}+307$	NaN	NaN	$-2.5800 \mathrm{E}-01$	NaN	NaN
20000	95	NaN	NaN	NaN	$1.1804 \mathrm{E}+02$	NaN	NaN
30000	94	NaN	NaN	NaN	$5.5824 \mathrm{E}+00$	NaN	NaN
40000	93	NaN	NaN	NaN	$-1.7267 \mathrm{E}+01$	NaN	NaN
50000	93	$1.6658 \mathrm{E}+306$	NaN	NaN	$-4.6611 \mathrm{E}+01$	NaN	NaN
60000	95	NaN	NaN	NaN	$-4.9448 \mathrm{E}+01$	NaN	NaN
70000	94	$-4.4610 \mathrm{E}+306$	NaN	NaN	$-6.0524 \mathrm{E}+01$	NaN	NaN
80000	94	$2.1993 \mathrm{E}+307$	-Inf	NaN	$2.9010 \mathrm{E}-01$	-Inf	NaN
90000	94	NaN	NaN	NaN	$-5.5529 \mathrm{E}+01$	NaN	NaN

A.2. Tables for Monitoring Lanczos-type algorithm Chapter 4

Table A.4: Behaviour of the parameters of the offending coefficients of A_{12}, on Baheux-type problems, when $\delta=0.2$

Col. 1	Col. 2	Col.	a_{11}	Col. 4	Col.	a_{13}	a_{21}

Table A.5: Behaviour of the parameters of the offending coefficients of A_{12}, on Baheux-type problems, when $\delta=5$

Col. 1	Col. 2	Col. 3	Col. 4	Col. 5	Col. 6	Col. 7	Col. 8
Dim. of A	k	a_{11}	a_{13}	a_{21}	a_{23}	a_{31}	a_{33}
100	110	$-1.8058 \mathrm{E}+103$	$-1.3298 \mathrm{E}+102$	$-1.1423 \mathrm{E}+104$	$2.9537 \mathrm{E}+103$	$8.7798 \mathrm{E}+104$	$4.4795 \mathrm{E}+104$
500	110	$-4.2549 \mathrm{E}+101$	$-2.3065 \mathrm{E}+101$	$-4.2090 \mathrm{E}+103$	$-1.6387 \mathrm{E}+103$	$-1.3707 \mathrm{E}+105$	$-4.2877 \mathrm{E}+104$
1000	110	$-2.6130 \mathrm{E}+102$	$1.8205 \mathrm{E}+101$	$-1.1263 \mathrm{E}+104$	$6.3211 \mathrm{E}+102$	$-9.2258 \mathrm{E}+104$	$4.5549 \mathrm{E}+103$
5000	110	$7.6554 \mathrm{E}+100$	$1.5967 \mathrm{E}+101$	$-3.8758 \mathrm{E}+102$	$8.9371 \mathrm{E}+102$	$-3.5219 \mathrm{E}+104$	$1.1899 \mathrm{E}+104$
10000	109	$2.2400 \mathrm{E}+102$	$1.4685 \mathrm{E}+101$	$8.0224 \mathrm{E}+103$	$5.6136 \mathrm{E}+102$	$6.8793 \mathrm{E}+104$	$6.8894 \mathrm{E}+103$
15000	108	$-1.9601 \mathrm{E}+102$	$-5.3314 \mathrm{E}+101$	$-7.2652 \mathrm{E}+103$	$-1.5652 \mathrm{E}+103$	$-3.3624 \mathrm{E}+104$	$-6.3133 \mathrm{E}+103$
20000	109	$-2.6466 \mathrm{E}+101$	$1.9967 \mathrm{E}+100$	$-2.1838 \mathrm{E}+103$	$9.4325 \mathrm{E}+100$	$-4.7791 \mathrm{E}+104$	$-1.8238 \mathrm{E}+103$
30000	111	$1.3239 \mathrm{E}+102$	$3.6076 \mathrm{E}+101$	$4.2144 \mathrm{E}+103$	$1.6207 \mathrm{E}+103$	$2.7656 \mathrm{E}+104$	$2.4866 \mathrm{E}+104$
40000	110	$-1.2697 \mathrm{E}+103$	$-2.5864 \mathrm{E}+101$	$-3.1937 \mathrm{E}+104$	$-1.2567 \mathrm{E}+103$	$2.2310 \mathrm{E}+105$	$-1.0233 \mathrm{E}+104$
50000	108	$-7.6622 \mathrm{E}+100$	$-2.4503 \mathrm{E}+102$	$-3.8456 \mathrm{E}+102$	$-1.6995 \mathrm{E}+103$	$-6.5245 \mathrm{E}+103$	$1.8808 \mathrm{E}+105$
60000	108	$-1.3012 \mathrm{E}+101$	$3.9120 \mathrm{E}+101$	$-7.6146 \mathrm{E}+102$	$1.1948 \mathrm{E}+103$	$-1.1666 \mathrm{E}+104$	$2.1676 \mathrm{E}+103$
70000	107	$-5.5172 \mathrm{E}+102$	$-5.1050 \mathrm{E}+101$	$-3.7042 \mathrm{E}+104$	$-2.1840 \mathrm{E}+103$	$-7.3643 \mathrm{E}+105$	$-2.5000 \mathrm{E}+104$
80000	110	$2.9225 \mathrm{E}+102$	$-3.5987 \mathrm{E}+100$	$6.4165 \mathrm{E}+103$	$-1.5732 \mathrm{E}+102$	$-1.0956 \mathrm{E}+105$	$-1.5510 \mathrm{E}+103$
90000	109	$6.1251 \mathrm{E}+101$	$-7.9871 \mathrm{E}+100$	$2.4999 \mathrm{E}+103$	$-9.1752 \mathrm{E}+101$	$3.2900 \mathrm{E}+104$	$7.0396 \mathrm{E}+103$

A.2. Tables for Monitoring Lanczos-type algorithm Chapter 4

Table A.6: Behaviour of the parameters of the offending coefficients of A_{12}, on Baheux-type problems, when $\delta=8$

Col. 1	Col. 2	Col. 3	Col. 4	Col. 5	Col. 6	Col. 7	Col. 8
Dim. of A	k	a_{11}	a_{13}	a_{21}	a_{23}	a_{31}	a_{33}
100	94	$1.1237 \mathrm{E}+102$	-1.1852E+101	$4.2013 \mathrm{E}+103$	$-1.6186 \mathrm{E}+102$	-1.5183E+104	$6.3063 \mathrm{E}+103$
500	95	$4.2745 \mathrm{E}+100$	$-2.4639 \mathrm{E}+100$	$-6.7927 \mathrm{E}+103$	$-1.8185 \mathrm{E}+102$	-2.8377E+105	$-4.7253 \mathrm{E}+103$
1000	95	$7.0922 \mathrm{E}+104$	$1.5198 \mathrm{E}+101$	$2.6040 \mathrm{E}+106$	$4.2108 \mathrm{E}+102$	$-9.4050 \mathrm{E}+107$	$-1.9920 \mathrm{E}+104$
5000	94	-1.9247E+102	-1.1322E+101	-1.1271E+104	$-3.7679 \mathrm{E}+102$	$3.1619 \mathrm{E}+103$	$1.3544 \mathrm{E}+104$
10000	94	$-2.3044 \mathrm{E}+102$	$2.2675 \mathrm{E}+101$	$-8.2123 \mathrm{E}+103$	$1.2106 \mathrm{E}+103$	$2.7346 \mathrm{E}+105$	-1.2306E+104
15000	94	$7.5894 \mathrm{E}+100$	$2.9416 \mathrm{E}+101$	$-5.2758 \mathrm{E}+102$	$1.2425 \mathrm{E}+103$	-5.0619E+104	$-1.7760 \mathrm{E}+104$
20000	95	$-2.6689 \mathrm{E}+103$	$2.2610 \mathrm{E}+101$	$-1.0952 \mathrm{E}+105$	$6.4725 \mathrm{E}+102$	$1.1355 \mathrm{E}+106$	-2.9162E+104
30000	94	$1.6055 \mathrm{E}+102$	-2.8761E+101	$2.8006 \mathrm{E}+103$	$-1.1438 \mathrm{E}+103$	-3.7849E+105	$2.2882 \mathrm{E}+104$
40000	93	$-2.7785 \mathrm{E}+102$	-1.6091E+101	$-1.5526 \mathrm{E}+104$	$-7.1012 \mathrm{E}+102$	$7.3789 \mathrm{E}+104$	$7.0175 \mathrm{E}+103$
50000	93	$1.1782 \mathrm{E}+102$	$2.5278 \mathrm{E}+100$	$6.7784 \mathrm{E}+103$	$1.7612 \mathrm{E}+102$	$2.3443 \mathrm{E}+104$	$2.3887 \mathrm{E}+103$
60000	95	$1.1910 \mathrm{E}+103$	$2.4086 \mathrm{E}+101$	$6.4289 \mathrm{E}+104$	$1.7077 \mathrm{E}+103$	$-4.3989 \mathrm{E}+105$	$1.1068 \mathrm{E}+104$
70000	94	-8.7863E+101	-1.4517E+100	$-2.9185 \mathrm{E}+103$	$-8.6296 \mathrm{E}+101$	$9.1446 \mathrm{E}+104$	-3.3167E+102
80000	94	$-1.7167 \mathrm{E}+101$	$5.9176 \mathrm{E}+101$	-1.5722E+101	$9.1937 \mathrm{E}+102$	$4.3609 \mathrm{E}+104$	-7.4905E+104
90000	94	$3.4012 \mathrm{E}+102$	$6.1252 \mathrm{E}+100$	$6.4194 \mathrm{E}+103$	$3.7219 \mathrm{E}+102$	$-5.7647 \mathrm{E}+105$	-9.6716E+10

A.2.2 Monitoring Lanczos-type Algorithm based on relation A_{4}

Table A.7: Behaviour of coefficients of A_{4}, on Baheux-type problems, when $\delta=0.2$.

Col.1	Col.2	Col.3	Col.4	Col.5
Dim. of A	k	A_{k+1}	B_{k+1}	E_{k+1}
100	353	NaN	NaN	$1.1163 \mathrm{E}+01$
500	348	NaN	NaN	$1.3478 \mathrm{E}+01$
1000	348	NaN	NaN	$-4.7831 \mathrm{E}-01$
5000	348	NaN	NaN	$-1.3990 \mathrm{E}+01$
10000	348	NaN	NaN	$-6.1613 \mathrm{E}+00$
15000	348	NaN	NaN	$-2.1622 \mathrm{E}-01$
20000	348	NaN	NaN	$1.3158 \mathrm{E}+00$
30000	348	NaN	NaN	$1.3723 \mathrm{E}+00$
40000	313	$0.0000 \mathrm{E}+00$	-Inf	$0.0000 \mathrm{E}+00$
50000	348	NaN	NaN	$-4.1474 \mathrm{E}+00$
60000	337	NaN	NaN	NaN
70000	233	$0.0000 \mathrm{E}+00$	-Inf	$0.0000 \mathrm{E}+00$
80000	348	NaN	NaN	$-3.4657 \mathrm{E}-01$
90000	348	NaN	NaN	$-1.2987 \mathrm{E}-01$

Table A.8: Behaviour of coefficients of A_{4}, on Baheux-type problems, when $\delta=5$.

Col. 1	Col.2	Col.3	Col.4	Col.5
Dim. of A	k	A_{k+1}	B_{k+1}	E_{k+1}
100	298	NaN	NaN	$-2.2381 \mathrm{E}+00$
500	297	NaN	NaN	$-1.8365 \mathrm{E}+00$
1000	297	NaN	NaN	$-5.2904 \mathrm{E}+00$
5000	297	NaN	NaN	$1.6413 \mathrm{E}+00$
10000	297	NaN	NaN	$-4.6932 \mathrm{E}+00$
15000	295	NaN	NaN	$-4.9449 \mathrm{E}+00$
20000	296	NaN	NaN	$5.3936 \mathrm{E}+01$
30000	296	NaN	NaN	$1.0081 \mathrm{E}+01$
40000	297	NaN	NaN	NaN
50000	297	NaN	NaN	$-3.0275 \mathrm{E}+00$
60000	297	NaN	NaN	$-1.0351 \mathrm{E}+01$
70000	292	NaN	NaN	$2.0430 \mathrm{E}+02$
80000	297	NaN	NaN	$-2.2461 \mathrm{E}+00$
90000	297	NaN	NaN	$6.4000 \mathrm{E}+01$

Table A.9: Behaviour of coefficients of A_{4}, on Baheux-type problems, when $\delta=8$.

Col.1	Col. 2	Col.3	Col.4	Col. 5
Dim. of A	k	A_{k+1}	B_{k+1}	E_{k+1}
100	256	NaN	NaN	$8.0417 \mathrm{E}+00$
500	256	NaN	NaN	$2.9273 \mathrm{E}+01$
1000	256	NaN	NaN	$4.8840 \mathrm{E}+00$
5000	256	NaN	NaN	$7.1727 \mathrm{E}+00$
10000	256	NaN	NaN	$5.1344 \mathrm{E}-01$
15000	256	NaN	NaN	$-1.1850 \mathrm{E}+00$
20000	256	NaN	NaN	$-5.4779 \mathrm{E}+01$
30000	256	NaN	NaN	$1.0123 \mathrm{E}+02$
40000	256	NaN	NaN	$2.6048 \mathrm{E}+01$
50000	255	NaN	NaN	$-3.0734 \mathrm{E}+01$
60000	256	NaN	NaN	$3.2115 \mathrm{E}+00$
70000	254	NaN	NaN	$-1.9930 \mathrm{E}+02$
80000	256	NaN	NaN	$1.4115 \mathrm{E}+02$
90000	256	NaN	NaN	$3.4716 \mathrm{E}+00$

A.2. Tables for Monitoring Lanczos-type algorithm Chapter 4

Table A.10: Behaviour of the parameters of the offending coefficients of A_{4}, on Baheux-type problems, when $\delta=0.2$

Col.1	Col. 2	Col.3	Col.4	Col. 5	Col.6
Dim. of A	k	a_{k}	b_{k}	c_{k}	d_{k}
100	353	$4.5681 \mathrm{E}+288$	$-4.0923 \mathrm{E}+287$	NaN	$-3.8068 \mathrm{E}+287$
500	348	$-2.0998 \mathrm{E}+290$	$1.5579 \mathrm{E}+289$	NaN	$-6.8065 \mathrm{E}+289$
1000	348	$2.7531 \mathrm{E}+290$	$5.7558 \mathrm{E}+290$	NaN	$7.4211 \mathrm{E}+291$
5000	348	$-4.6238 \mathrm{E}+291$	$-3.3050 \mathrm{E}+290$	NaN	$-1.5672 \mathrm{E}+291$
10000	348	$-5.8167 \mathrm{E}+289$	$-9.4408 \mathrm{E}+288$	NaN	$-1.6932 \mathrm{E}+290$
15000	348	$6.0908 \mathrm{E}+287$	$2.8170 \mathrm{E}+288$	NaN	$4.8727 \mathrm{E}+289$
20000	348	$-9.7453 \mathrm{E}+290$	$7.4064 \mathrm{E}+290$	NaN	$6.5878 \mathrm{E}+291$
30000	348	$4.2940 \mathrm{E}+290$	$-3.1292 \mathrm{E}+290$	NaN	$-4.8617 \mathrm{E}+291$
40000	313	$0.0000 \mathrm{E}+00$	$2.2141 \mathrm{E}+261$	$1.3776 \mathrm{E}+262$	$2.2879 \mathrm{E}+262$
50000	348	$3.8397 \mathrm{E}+291$	$9.2580 \mathrm{E}+290$	NaN	$1.6128 \mathrm{E}+292$
60000	337	NaN	$4.5380 \mathrm{E}+279$	NaN	$3.6304 \mathrm{E}+280$
70000	233	$0.0000 \mathrm{E}+00$	$3.1953 \mathrm{E}+186$	$1.4794 \mathrm{E}+188$	$-5.4389 \mathrm{E}+185$
80000	348	$-2.9236 \mathrm{E}+290$	$-8.4358 \mathrm{E}+290$	NaN	$-7.6598 \mathrm{E}+291$
90000	348	$-6.0908 \mathrm{E}+288$	$-4.6899 \mathrm{E}+289$	NaN	$-4.5316 \mathrm{E}+290$

Table A.11: Behaviour of the parameters of the offending coefficients of A_{4}, on Baheux-type problems, when $\delta=5$

Col.1	Col.2	Col.3	Col.4	Col. 5	Col.6
Dim. of A	k	a_{k}	b_{k}	C_{k}	d_{k}
100	298	$9.1606 \mathrm{E}+290$	$4.0930 \mathrm{E}+290$	NaN	$6.4514 \mathrm{E}+291$
500	297	$4.5647 \mathrm{E}+292$	$2.4856 \mathrm{E}+292$	NaN	$2.2671 \mathrm{E}+293$
1000	297	$-5.2231 \mathrm{E}+291$	$-9.8728 \mathrm{E}+290$	NaN	$-1.1289 \mathrm{E}+291$
5000	297	$-1.1806 \mathrm{E}+292$	$7.1935 \mathrm{E}+291$	NaN	$2.1548 \mathrm{E}+293$
10000	297	$5.3596 \mathrm{E}+289$	$1.1420 \mathrm{E}+289$	NaN	$1.4984 \mathrm{E}+290$
15000	295	$-9.2375 \mathrm{E}+292$	$-1.8681 \mathrm{E}+292$	NaN	$-2.3580 \mathrm{E}+292$
20000	296	$3.7422 \mathrm{E}+293$	$-6.9383 \mathrm{E}+291$	NaN	$6.2455 \mathrm{E}+291$
30000	296	$-8.4809 \mathrm{E}+292$	$8.4130 \mathrm{E}+291$	NaN	$-7.4832 \mathrm{E}+291$
40000	297	NaN	$3.7111 \mathrm{E}+292$	NaN	$5.9874 \mathrm{E}+293$
50000	297	$1.1261 \mathrm{E}+289$	$3.7195 \mathrm{E}+288$	NaN	$9.2564 \mathrm{E}+289$
60000	297	$1.5247 \mathrm{E}+290$	$1.4729 \mathrm{E}+289$	NaN	$1.6116 \mathrm{E}+290$
70000	292	$-6.9981 \mathrm{E}+292$	$3.4253 \mathrm{E}+290$	NaN	$-8.9949 \mathrm{E}+292$
80000	297	$-9.9810 \mathrm{E}+291$	$-4.4437 \mathrm{E}+291$	NaN	$-4.3663 \mathrm{E}+292$
90000	297	$-2.9933 \mathrm{E}+293$	$4.6770 \mathrm{E}+291$	NaN	$-1.6961 \mathrm{E}+293$

Table A.12: Behaviour of the parameters of the offending coefficients of A_{4}, on Baheux-type problems, when $\delta=8$

Col. 1	Col. 2	Col. 3	Col. 4	Col. 5	Col. 6
Dim. of A	k	a_{k}	b_{k}	c_{k}	d_{k}
100	256	$-1.5047 \mathrm{E}+292$	$1.8711 \mathrm{E}+291$	NaN	$6.3345 \mathrm{E}+291$
500	256	$-6.6790 \mathrm{E}+293$	$2.2816 \mathrm{E}+292$	NaN	$1.0601 \mathrm{E}+294$
1000	256	$1.3191 \mathrm{E}+293$	$-2.7009 \mathrm{E}+292$	NaN	$1.0367 \mathrm{E}+293$
5000	256	$3.2712 \mathrm{E}+292$	$-4.5607 \mathrm{E}+291$	NaN	$-1.1118 \mathrm{E}+293$
10000	256	$1.0976 \mathrm{E}+294$	$-2.1377 \mathrm{E}+294$	NaN	$-3.6692 \mathrm{E}+295$
15000	256	$2.2040 \mathrm{E}+293$	$1.8600 \mathrm{E}+293$	NaN	$5.2107 \mathrm{E}+294$
20000	256	$-6.1681 \mathrm{E}+293$	$-1.1260 \mathrm{E}+292$	NaN	$-2.4514 \mathrm{E}+293$
30000	256	$4.9756 \mathrm{E}+293$	$-4.9152 \mathrm{E}+291$	NaN	$-6.9766 \mathrm{E}+292$
40000	256	$-6.9928 \mathrm{E}+294$	$2.6846 \mathrm{E}+293$	NaN	$-7.6346 \mathrm{E}+293$
50000	255	$-1.9062 \mathrm{E}+295$	$-6.2023 \mathrm{E}+293$	NaN	$-1.9187 \mathrm{E}+295$
60000	256	$1.0319 \mathrm{E}+293$	$-3.2132 \mathrm{E}+292$	NaN	$-5.0331 \mathrm{E}+293$
70000	254	$7.7573 \mathrm{E}+293$	$3.8923 \mathrm{E}+291$	NaN	$-6.2404 \mathrm{E}+291$
80000	256	$-7.2403 \mathrm{E}+295$	$5.1294 \mathrm{E}+293$	NaN	$-1.3574 \mathrm{E}+295$
90000	256	$1.4881 \mathrm{E}+294$	$-4.2866 \mathrm{E}+293$	NaN	$-7.3728 \mathrm{E}+294$

A.2.3 Monitoring Lanczos-type Algorithm based on relation A_{8} / B_{6}

Table A.13: Behaviour of coefficients of A_{8} / B_{6}, on Baheux-type problems, when $\delta=0.2$.

Col.1	Col.2	Col.3	Col.4	Col.5
Dim. of A	k	A_{k+1}	C_{k+1}	E_{k+1}
100	131	NaN	NaN	NaN
500	171	NaN	NaN	NaN
1000	171	NaN	NaN	NaN
5000	170	NaN	NaN	NaN
10000	172	NaN	NaN	NaN
15000	167	NaN	NaN	NaN
20000	174	NaN	NaN	NaN
30000	172	NaN	NaN	NaN
40000	174	NaN	NaN	NaN
50000	173	NaN	NaN	NaN
60000	169	NaN	NaN	NaN
70000	175	NaN	NaN	NaN
80000	172	NaN	NaN	NaN
90000	170	NaN	NaN	NaN

Table A.14: Behaviour of coefficients of A_{8} / B_{6}, on Baheux-type problems, when $\delta=5$.

Col.1	Col.2	Col.3	Col.4	Col.5
Dim. of A	k	A_{k+1}	C_{k+1}	E_{k+1}
100	152	NaN	NaN	NaN
500	153	NaN	NaN	NaN
1000	150	NaN	NaN	NaN
5000	152	NaN	NaN	NaN
10000	151	NaN	NaN	NaN
15000	152	NaN	NaN	NaN
20000	152	NaN	NaN	NaN
30000	152	NaN	NaN	NaN
40000	151	NaN	NaN	NaN
50000	151	NaN	NaN	NaN
60000	152	NaN	NaN	NaN
70000	152	NaN	NaN	NaN
80000	151	NaN	NaN	NaN
90000	152	NaN	NaN	NaN

Table A.15: Behaviour of coefficients of A_{8} / B_{6}, on Baheux-type problems, when $\delta=8$.

Col.1	Col.2	Col.3	Col.4	Col.5
Dim. of A	k	A_{k+1}	C_{k+1}	E_{k+1}
100	134	NaN	NaN	NaN
500	132	NaN	NaN	NaN
1000	131	NaN	NaN	NaN
5000	131	NaN	NaN	NaN
10000	131	NaN	NaN	NaN
15000	131	NaN	NaN	NaN
20000	130	NaN	NaN	NaN
30000	131	NaN	NaN	NaN
40000	131	NaN	NaN	NaN
50000	131	NaN	NaN	NaN
60000	131	NaN	NaN	NaN
70000	132	NaN	NaN	NaN
80000	131	NaN	NaN	NaN
90000	131	NaN	NaN	NaN

A.2. Tables for Monitoring Lanczos-type algorithm Chapter 4

Table A.16: Behaviour of the parameters of the offending coefficients of A_{8} / B_{6}, on Baheux-type problems, when $\delta=0.2$

Col.1	Col.2	Col.3	Col. 4	Col. 5	Col.6	Col. 7
Dim. of A	k	a_{k}	b_{k}	c_{k}	f_{k}	e_{k}
100	131	$1.3670 \mathrm{E}+98$	NaN	$-7.1434 \mathrm{E}+207$	$-4.1336 \mathrm{E}+208$	NaN
500	171	$-2.9678 \mathrm{E}+140$	NaN	NaN	NaN	NaN
1000	171	$8.8225 \mathrm{E}+140$	NaN	$-1.8901 \mathrm{E}+292$	$7.5446 \mathrm{E}+292$	NaN
5000	170	$1.4692 \mathrm{E}+141$	NaN	$-5.4262 \mathrm{E}+292$	$-8.7330 \mathrm{E}+293$	NaN
10000	172	$5.4184 \mathrm{E}+140$	NaN	NaN	NaN	NaN
15000	167	$2.5975 \mathrm{E}+140$	NaN	$1.2349 \mathrm{E}+293$	$-1.5281 \mathrm{E}+293$	NaN
20000	174	$2.1493 \mathrm{E}+143$	NaN	NaN	NaN	NaN
30000	172	$-3.4297 \mathrm{E}+142$	NaN	$-3.3524 \mathrm{E}+291$	$-2.2901 \mathrm{E}+292$	NaN
40000	174	$1.6889 \mathrm{E}+144$	NaN	NaN	NaN	NaN
50000	173	$-5.0909 \mathrm{E}+140$	NaN	$-5.9875 \mathrm{E}+292$	$-1.1227 \mathrm{E}+293$	NaN
60000	169	$-5.4728 \mathrm{E}+139$	NaN	NaN	NaN	NaN
70000	175	$-1.0496 \mathrm{E}+138$	NaN	$-2.4948 \mathrm{E}+292$	$7.4766 \mathrm{E}+292$	NaN
80000	172	$-1.5667 \mathrm{E}+140$	NaN	NaN	NaN	NaN
90000	170	$2.7628 \mathrm{E}+141$	NaN	NaN	NaN	NaN

Table A.17: Behaviour of the parameters of the offending coefficients of A_{8} / B_{6}, on Baheux-type problems, when $\delta=5$

Col. 1	Col. 2	Col. 3	Col. 4	Col. 5	Col. 6	Col. 7
Dim. of A	k	a_{k}	b_{k}	c_{k}	f_{k}	e_{k}
100	152	$-4.9063 \mathrm{E}+141$	NaN	$-3.6447 \mathrm{E}+291$	$-5.2391 \mathrm{E}+292$	NaN
500	153	$-2.5626 \mathrm{E}+147$	NaN	$3.0950 \mathrm{E}+296$	NaN	NaN
1000	150	$1.8401 \mathrm{E}+144$	NaN	$-1.9097 \mathrm{E}+292$	$-2.4271 \mathrm{E}+294$	NaN
5000	152	$1.2775 \mathrm{E}+144$	NaN	$-5.6837 \mathrm{E}+293$	$-1.5076 \mathrm{E}+295$	NaN
10000	151	$5.2808 \mathrm{E}+142$	NaN	$3.6867 \mathrm{E}+295$	NaN	NaN
15000	152	$-1.6898 \mathrm{E}+145$	NaN	$1.2253 \mathrm{E}+294$	$4.1257 \mathrm{E}+295$	NaN
20000	152	$-3.3016 \mathrm{E}+145$	NaN	$-2.0971 \mathrm{E}+294$	$-9.3010 \mathrm{E}+295$	NaN
30000	152	$-1.0967 \mathrm{E}+143$	NaN	$-2.3205 \mathrm{E}+294$	$-6.2173 \mathrm{E}+295$	NaN
40000	151	$-7.9640 \mathrm{E}+144$	NaN	$9.5420 \mathrm{E}+293$	$5.3354 \mathrm{E}+295$	NaN
50000	151	$7.0552 \mathrm{E}+144$	NaN	$-5.0305 \mathrm{E}+293$	$-2.4010 \mathrm{E}+295$	NaN
60000	152	$1.4548 \mathrm{E}+145$	NaN	$-9.6633 \mathrm{E}+294$	NaN	NaN
70000	152	$-1.5788 \mathrm{E}+143$	NaN	$1.3788 \mathrm{E}+296$	NaN	NaN
80000	151	$2.3020 \mathrm{E}+145$	NaN	$8.7519 \mathrm{E}+292$	$1.0234 \mathrm{E}+295$	NaN
90000	152	$-6.9211 \mathrm{E}+144$	NaN	$-1.3999 \mathrm{E}+294$	$-4.8148 \mathrm{E}+295$	NaN

Table A.18: Behaviour of the parameters of the offending coefficients of A_{8} / B_{6}, on Baheux-type problems, when $\delta=8$

Col.1	Col.2	Col.3	Col. 4	Col. 5	Col. 6	Col. 7
Dim. of A	k	a_{k}	b_{k}	c_{k}	f_{k}	e_{k}
100	134	$-9.0009 \mathrm{E}+143$	NaN	$-2.4032 \mathrm{E}+292$	$2.6741 \mathrm{E}+293$	NaN
500	132	$-2.2024 \mathrm{E}+146$	NaN	$4.3841 \mathrm{E}+295$	NaN	NaN
1000	131	$-5.7515 \mathrm{E}+144$	NaN	$3.1145 \mathrm{E}+294$	NaN	NaN
5000	131	$1.6022 \mathrm{E}+147$	NaN	$4.6646 \mathrm{E}+292$	$6.2334 \mathrm{E}+295$	NaN
10000	131	$-2.3100 \mathrm{E}+145$	NaN	$1.2057 \mathrm{E}+294$	$4.1242 \mathrm{E}+295$	NaN
15000	131	$-6.0925 \mathrm{E}+145$	NaN	$-3.4951 \mathrm{E}+294$	$2.4083 \mathrm{E}+294$	NaN
20000	130	$-3.4270 \mathrm{E}+144$	NaN	$2.7443 \mathrm{E}+295$	$1.0791 \mathrm{E}+297$	NaN
30000	131	$-3.7728 \mathrm{E}+146$	NaN	$-7.5069 \mathrm{E}+293$	$-5.8624 \mathrm{E}+295$	NaN
40000	131	$4.2808 \mathrm{E}+144$	NaN	$-3.5174 \mathrm{E}+296$	$-1.7240 \mathrm{E}+298$	NaN
50000	131	$3.5555 \mathrm{E}+146$	NaN	$2.6283 \mathrm{E}+294$	$3.2205 \mathrm{E}+296$	NaN
60000	131	$-2.0559 \mathrm{E}+147$	NaN	$-4.1755 \mathrm{E}+293$	$3.6314 \mathrm{E}+294$	NaN
70000	132	$-1.3088 \mathrm{E}+147$	NaN	$-9.0732 \mathrm{E}+296$	NaN	NaN
80000	131	$-5.1805 \mathrm{E}+145$	NaN	$-2.7581 \mathrm{E}+295$	$-1.4887 \mathrm{E}+297$	NaN
90000	131	$9.6768 \mathrm{E}+145$	NaN	$4.8522 \mathrm{E}+295$	NaN	NaN

A.2.4 Monitoring Lanczos-type Algorithm based on relation A_{8} / B_{10}

Table A.19: Behaviour of the parameters of the offending coefficients of A_{8} / B_{10}, on Baheux-type problems, when $\delta=0.2$

Col.1	Col.2	Col.3	Col.4	Col.5
Dim. of A	k	A_{k}	C_{k}	B_{k}
100	178	NaN	NaN	NaN
500	183	NaN	NaN	NaN
1000	178	NaN	NaN	NaN
5000	182	NaN	NaN	NaN
10000	176	Inf	$0.0000 \mathrm{E}+00$	NaN
15000	181	NaN	NaN	NaN
20000	181	NaN	NaN	NaN
30000	181	NaN	NaN	NaN
40000	184	NaN	NaN	NaN
50000	181	NaN	NaN	NaN
60000	120	Inf	$0.0000 \mathrm{E}+00$	NaN
70000	176	NaN	NaN	NaN
80000	172	Inf	$0.0000 \mathrm{E}+00$	NaN
90000	183	NaN	NaN	NaN

Table A.20: Behaviour of the parameters of the offending coefficients of A_{8} / B_{10}, on Baheux-type problems, when $\delta=5$

Col.1	Col.2	Col.3	Col.4	Col.5
Dim. of A	k	A_{k}	C_{k}	B_{k}
100	158	NaN	NaN	NaN
500	155	NaN	NaN	NaN
1000	154	NaN	NaN	NaN
5000	153	NaN	NaN	NaN
10000	153	NaN	NaN	NaN
15000	153	NaN	NaN	NaN
20000	153	NaN	NaN	NaN
30000	153	NaN	NaN	NaN
40000	153	NaN	NaN	NaN
50000	152	NaN	NaN	NaN
60000	153	NaN	NaN	NaN
70000	153	NaN	NaN	NaN
80000	153	NaN	NaN	NaN
90000	153	NaN	NaN	NaN

Table A.21: Behaviour of the parameters of the offending coefficients of A_{8} / B_{10}, on Baheux-type problems, when $\delta=8$

Col.1	Col.2	Col.3	Col.4	Col.5
Dim. of A	k	A_{k}	C_{k}	B_{k}
100	135	NaN	NaN	NaN
500	133	NaN	NaN	NaN
1000	133	NaN	NaN	NaN
5000	132	NaN	NaN	NaN
10000	132	NaN	NaN	NaN
15000	132	NaN	NaN	NaN
20000	132	NaN	NaN	NaN
30000	133	NaN	NaN	NaN
40000	132	NaN	NaN	NaN
50000	131	NaN	NaN	NaN
60000	132	NaN	NaN	NaN
70000	132	NaN	NaN	NaN
80000	132	NaN	NaN	NaN
90000	132	NaN	NaN	NaN

Table A.22: Behaviour of the parameters of the offending coefficients of A_{8} / B_{10}, on Baheux-type problems, when $\delta=0.2$

Col.1	Col.2	Col.3	Col.4	Col.5
Dim. of A	k	a_{k}	b_{k}	c_{k}
100	178	$1.5104 \mathrm{E}+138$	NaN	NaN
500	183	$-2.3401 \mathrm{E}+145$	NaN	NaN
1000	178	$5.6782 \mathrm{E}+147$	NaN	NaN
5000	182	$-6.8952 \mathrm{E}+146$	NaN	NaN
10000	176	$-4.5252 \mathrm{E}+141$	$0.0000 \mathrm{E}+00$	NaN
15000	181	$2.7971 \mathrm{E}+148$	NaN	NaN
20000	181	$-2.5773 \mathrm{E}+148$	NaN	NaN
30000	181	$-7.2924 \mathrm{E}+147$	NaN	NaN
40000	184	$2.9969 \mathrm{E}+146$	NaN	NaN
50000	181	$-2.4662 \mathrm{E}+147$	NaN	NaN
60000	120	$-5.9679 \mathrm{E}+88$	$0.0000 \mathrm{E}+00$	NaN
70000	176	$-2.6050 \mathrm{E}+138$	NaN	NaN
80000	172	$-1.4973 \mathrm{E}+137$	$0.0000 \mathrm{E}+00$	NaN
90000	183	$6.2435 \mathrm{E}+144$	NaN	NaN

Table A.23: Behaviour of the parameters of the offending coefficients of A_{8} / B_{10}, on Baheux-type problems, when $\delta=5$

Col.1	Col.2	Col.3	Col.4	Col.5
Dim. of A	k	a_{k}	b_{k}	c_{k}
100	158	$-9.9506 \mathrm{E}+144$	NaN	NaN
500	155	$3.2130 \mathrm{E}+146$	NaN	NaN
1000	154	$-3.3970 \mathrm{E}+147$	NaN	NaN
5000	153	$1.6221 \mathrm{E}+145$	NaN	NaN
10000	153	$4.1643 \mathrm{E}+145$	NaN	NaN
15000	153	$-5.9692 \mathrm{E}+147$	NaN	NaN
20000	153	$-4.9588 \mathrm{E}+144$	NaN	NaN
30000	153	$1.9475 \mathrm{E}+146$	NaN	NaN
40000	153	$-2.0946 \mathrm{E}+147$	NaN	NaN
50000	152	$6.0330 \mathrm{E}+146$	NaN	NaN
60000	153	$-2.3041 \mathrm{E}+148$	NaN	NaN
70000	153	$9.0311 \mathrm{E}+144$	NaN	NaN
80000	153	$1.4389 \mathrm{E}+147$	NaN	NaN
90000	153	$2.8325 \mathrm{E}+145$	NaN	NaN

Table A.24: Behaviour of the parameters of the offending coefficients of A_{8} / B_{10}, on Baheux-type problems, when $\delta=8$

Col.1	Col.2	Col.3	Col.4	Col.5
Dim. of A	k	a_{k}	b_{k}	c_{k}
100	135	$2.3650 \mathrm{E}+148$	NaN	NaN
500	133	$2.4457 \mathrm{E}+146$	NaN	NaN
1000	133	$-5.6127 \mathrm{E}+146$	NaN	NaN
5000	132	$7.3507 \mathrm{E}+146$	NaN	NaN
10000	132	$2.5989 \mathrm{E}+147$	NaN	NaN
15000	132	$-1.6577 \mathrm{E}+147$	NaN	NaN
20000	132	$4.4906 \mathrm{E}+147$	NaN	NaN
30000	133	$-9.2673 \mathrm{E}+146$	NaN	NaN
40000	132	$-6.5140 \mathrm{E}+144$	NaN	NaN
50000	131	$1.0568 \mathrm{E}+145$	NaN	NaN
60000	132	$6.2999 \mathrm{E}+147$	NaN	NaN
70000	132	$-3.1328 \mathrm{E}+147$	NaN	NaN
80000	132	$-9.5886 \mathrm{E}+147$	NaN	NaN
90000	132	$-6.8746 \mathrm{E}+146$	NaN	NaN

[^0]: Algorithm 15 Monitoring Lanczos-type Algorithms
 Description:
 1: Choose Lanczos-type algorithms based on $\left\{A_{4}, A_{12}, A_{8} / B_{6}, A_{8} / B_{10}\right\}$
 2: Monitor coefficients and denominators:
 3: Design a test/rule. The test might be based on choosing a threshold value ϵ, for instance, for that parameter in the coefficients which caused breakdown:
 Obtain the approximate solution as well as the residual norm.
 5: Stop.

