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Abstract

There are numerous algorithms for the solution of systems of linear equations and eigen-

value problems. Among such methods, one of the best known iterative schemes is the

Lanczos algorithm. It has however, a very serious shortcoming in that it break down

frequently before achieving convergence to an acceptable solution. This project focuses

on investigating this breakdown issue. There are a number of attempts to address it.

Restarting and Switching as implemented previously by Farooq and Maharani, which rely

on guessing the appropriate number of iterations before halting the Lanczos process and

restarting it or switching to a different one. This guess is very sensitive to the type of

problem solved, its data and size. If underestimated then the process is stopped too early,

too often. This means that a lot of stable iterations are wasted, potentially. If, on the other

hand, this number is over-estimated, then the process will breakdown which means that

restarting and / or switching will be more costly. The aim of this thesis is to avoid guessing

the number of iteration by monitoring the parameters of the recurrence relations on which

the given Lanczos-type algorithms are based, which cause breakdown. This monitoring

is targeted to the appropriate or problematic parameters. In this thesis we show that this

approach is effective as it does not require too much extra work. At the same time it cuts

on the wasted iterations and the full blown breakdown caused by inaccurate guesses of the

number of iterations one has to let the algorithm run before halting it.

Although this is the core of our contributions in this thesis, we have also suggested new

Lanczos-type algorithms and tested them against existing ones. This work complements

that of Farooq, Mahrani, Baheux and the Brezinski team. The results show that we have

made Lanczos-type algorithms old and new more reliable and robust.
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Chapter 1

Introduction and Literature Review

1.1 Introduction

One of the most important tasks in numerical methods is the ability to solve the linear

system

Ax = b, (1.1)

where A ∈ Rn×n and x, b ∈ Rn.

Systems of Linear Equations (SLEs) are an important practical problem in many aspects

of life. It has found its way into natural sciences and management sciences. Therefore,

solutions to this problem have to be found frequently. This means that new improvements,

however small, are always welcome.

One way to solve it is to put it in matrix form and then use special techniques based on

matrix algebra. For a small number of linear equations, the standard approach is to use

direct methods [27, 28], but for large and practical problems iterative methods are usually

the norm [1, 41, 61, 64, 69].

1
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In 1950, Cornelius Lanczos, introduced his algorithm [52]. The most prominent feature

of the method is that it reduces a symmetric matrix A into an equivalent tridiagonal one

and initially it was aimed at finding eigenvalues and corresponding eigenvectors of matrix

A [59]. As the computation of eigenvalues of a matrix and the solution of the SLEs are

equivalent problems, the Lanczos method for the eigenvalue problem was extended by

Lanczos in 1952, to solve SLEs especially when they are large and sparse [53]. The Lanczos

approach for solving (1.1), is an orthogonal projection method on Krylov subspaceKk(A, r0)

of order k [64,65]. The definition of this space will be given in the next section. In the same

year, 1952, another iterative scheme for solving SLEs was presented by Hestenes and Stiefel

in [37,45], known as the Conjugate Gradient (CG) method. This method is useful when the

matrix is symmetric and positive definite. In 1964, Lanczos and Householder pointed out

that both the Lanczos and CG-method were the same for symmetric and positive definite

matrices. Extension to the non-symmetric case was studied by Hestenes in [44]. In early

periods, the Lanczos process was ignored by numerical analysts due to various reasons.

One of the main ones is the loss of orthogonality in Lanczos vectors [53] which affects the

accuracy in the iterative process as the accuracy of the Lanczos process is related to the

orthogonality of Lanczos vectors.

In the last few decades, different variants of Lanczos algorithm have been designed. A

transpose free algorithm was presented by C. Brezinski in [7]. In 1992, a Breakdown-free

Lanczos-type algorithm was given in [17] which was known as MRZ (Method of Recursive

Zoom). In [20] Brezinski derived new Lanczos algorithms using two different ways that are

matrix and polynomial approaches. New variants of these algorithms have been derived

by Baheux in [4] using recurrence relationships between Formal Orthogonal Polynomials
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(FOPs) [5]. Recently in [33], Lanczos-type algorithms have been presented using new

recurrence relationships between these FOPs. The Lanczos [53] method solves SLEs with

an iterative process which gives the exact solution in a finite number of steps not greater

than the dimension of the system, in exact arithmetic.

In the last few decades, different variants of Lanczos-type algorithms have been de-

signed [4,20,23,33,38,42,48–50,60,63,66,68]. One particular weakness of the Lanczos-type

algorithm is that, it easily breaks down, causing the process to stop. This is either due to a di-

vision by zero when computing the coefficients of those relations or due to the non-existence

of FOP [12, 18]. Division by a quantity close to zero causes near-breakdown thus producing

numerical instability in the algorithm. These breakdown problems were partially solved in

a series of papers by C. Brezinski, M. Redivo-Zaglia and H. Saddok, [7,13,15–17,19,22,25],

and Farooq [33] and Maharani [55].

1.2 Objective and Approach of the Project

In this thesis our focus is mainly on the breakdown issues of Lanczos-type algorithms

when solving large sparse systems of linear equations. The strategy adopted for avoiding

the breakdown problem is monitoring the behaviour of the denominators and the compo-

nents of the offending components of some of the coefficients involved in the recurrence

relations that make up the Lanczos-type algorithm. We choose a threshold value ǫ for that

component. When this component falls below ǫ, for instance, |c(xkPk)| ≤ ǫ,where c is linear

functional, Pk is the family of formal orthogonal polynomials and xi is a monic polynomial

of degree i, then the process is stopped explicitly instead of letting it breakdown. We then

restart it as fast as we can avoid wasting time due to recovering and resetting the process.
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1.3 Thesis Outline

The thesis is organized as follows.

In Chapter 1 we briefly review the notion of Formal Orthogonal Polynomials. We

discuss the basic theory of Lanczos-type algorithms for solving SLEs. The breakdown

issue and the existing strategies to cure it are also explained.

In Chapter 2 we will extend the existing Lanczos-type algorithm using recurrence

relationships between higher degree FOPs.

In Chapter 3 we will derive other variants of the Lanczos-type algorithm involving the

ordinary polynomial Ui(x) = Pi(x) and the monic polynomial Ui(x) = P(1)

i
(x) instead of the

standard auxiliary polynomial Ui(x) = xi that is used in Baheux [4] and Farooq [33]. The

P(1)

i
(x) in this selection is a monic polynomial of degree i belonging to the family of FOPs

with respect to the linear functional c(1) defined by c(1)(xi) = c(xi+1).

In Chapter 4 we mainly discuss the prominent issues of breakdown in the Lanczos-type

algorithms. We regularly monitor the components of those coefficients with denominators

that blow up prior to breakdown. We suggest a stopping test that detects the imminence of

a breakdown. It is used in restarting and switching strategies, that we are putting forward

and implementing.

In Chapter 5 we suggest an alternative way to continue the solution process after it has

been halted. This is the switching approach between different algorithms.

Chapter 6 contains conclusions and suggestions for further work.
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1.4 Review of Literature

A number of concepts are needed for this study which include

• Understanding how the derivation of the Lanczos algorithm using the Krylov sub-

space method and its use in solving SLEs;

• The theory of Formal Orthogonal Polynomials (FOPs);

• The breakdown in the Lanczos-type algorithms and its remedies.

1.4.1 The Krylov Subspace Method (KSM)

Krylov subspace methods are widely used for solving a system of linear equations and

eigenvalue problems, involving large and sparse matrices. They are popular iterative

methods.

Definition 1.4.1 Given A ∈ Rn×n and b ∈ Rn with b , 0 then,

1. the Krylov sequence is

b,Ab,A2b,A3b, ...,

2. the kth Krylov Matrix is

Kk = [b,Ab,A2b, ...,Ak−1b],

3. the Krylov subspace of dimension k is

Kk(A,b) = span{b,Ab,A2b, ...,Ak−1b}. (1.2)
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1.4.2 KSM for Solving SLEs

The Krylov subspace method for solving SLEs is given in [62,64,69]. Mathematically, KSMs

are based on projection methods.

Consider (1.1) again. KSM is an iterative method stating with

• an initial approximation x0 to the solution of (1.1),

• an initial residual r0 = b − Ax0.

The Krylov subspace of dimension k defined by A and r0 is

Kk(A, r0) = span{r0,Ar0,A
2r0, ...,A

k−1r0}.

Let Lk and Kk be the two subspaces of dimensions k. The idea behind KSM [54, 64] is

solving the system (1.1) by choosing an initial approximate solution x0 and generating a

sequence of approximate solutions xk from

x0 +Kk, and (1.3)

rk = (b − Axk) ⊥ Lk, (1.4)

is projection method is called the Krylov subspace method [6,64]. Furthermore, according

to the choice of Lk there exist several KSM [21]. For example, if Lk = Kk(A
T, y), where y is

some nonzero vector, then the KSM is known as the Lanczos method.

1.4.3 Formal Orthogonal Polynomials

Let c0, c1,... be a sequence of real and complex numbers. We define the linear functional c on

the vector space of complex polynomials by

c(xi) = ci, i ≥ 0, (1.5)

The numbers ci are called the moments of c [8].
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Definition 1.4.1 The polynomials {Pk} are said to form the family of Formal Orthogonal Polynomials

[5, 8, 11] with respect to c if, ∀ k they are defined by

1. Pk has exact degree k,

2. c(Ui(x)Pk(x)) = 0 for i = 0, ..., k − 1,

3. c(Ui(x)Pk(x)) , 0,

where Ui(x) is the unitary polynomial of exact degree i [4]. The second condition is called

the orthogonality condition. Some of the choices of Ui(x) are

• Ui(x) = xi,

• Ui(x) = Pi(x),

• Ui(x) = P(1)

i
(x).

By linear combination, it can also be written as

c(pi(x)Pk(x)) = 0 for i = 0, ..., k − 1, (1.6)

where pi(x) is any polynomial of degree k − 1 at most. Thus, it also follows that

c(Pn(x)Pk(x)) = 0 for n , k, (1.7)

when assumed that the degrees of both polynomials are different. If we set Pk to be the

polynomial assumed to exist as

Pk(x) = a0 + a1x + a2x2 + ... + akx
k, (1.8)

and satisfying the orthogonality conditions which are equivalent to

c(xiPk(x)) = 0, f or i = 0, 1, 2, ..., k− 1, (1.9)
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then

a0ci + a1ci+1 + ... + akci+k = 0.

This is a system of k equations in k + 1 unknowns, of the form, for i = 0, 1, ..., k − 1,






























































a0c0 + a1c1 + ... + akck = 0,

a0c1 + a1c2 + ... + akck+1 = 0,

...

a0ck−1 + a1ck + ... + akc2k−1 = 0.

(1.10)

Its solution is completely determined, once a supplementary condition has been added.

Now adding an equation −Pk(x) + a0 + a1x + a2x2 + ... + akx
k = 0 to the system, we have

(k + 1) × (k + 1) system of linear equations in ai for i = 0, 1, ..., k. The polynomial Pk can be

expressed by the determinantal formula as following [8, 9].

Pk(x) =
1

H(0)

k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 x · · · xk

c0 c1 · · · ck

...
...

...

ck−1 ck · · · c2k−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, H(0)

k
=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

c1 · · · ck

...
...

ck · · · c2k−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (1.11)

Where the denominator of Pk(x) is the Hankel determinant H(0)

k
[23]. It is clear that Pk(x) exists

if and only if H(0)

k
, 0. The normalization of Pk(x) is obtained by the condition Pk(0) = 1.

If for some k, H(0)

k
= 0, then Pk does not exist, and the breakdown occurs in the solution

process.
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1.4.4 Adjacents Families of FOP

We consider the linear functionals c(n), n = 0, 1, ..., defined by

c(n)(xi) = c(xn+i) = cn+i, i = 0, 1, ..., (1.12)

with the assumption that ci = 0 if i < 0, [8].

Let us consider P(n)

k
be the family of monic FOP’s with respect to c(n), such that

c(n)(xiP(n)

k
(x)) = 0, i = 0, 1, ..., k− 1. (1.13)

Thus the polynomials P(0)

k
are identical to the polynomials Pk defined above. P(1)

k
is the

family of monic formal orthogonal polynomials of degree k (where ak is the coefficient of xk

in P(1)

k
equal to 1), with respect to a linear functional c(1) defined by

c(1)(xi) = c(xi+1) = ci+1, i = 0, 1, ..., (1.14)

and which satisfies the orthogonality conditions

c(1)(xiP(1)

k
(x)) = c(x(i+1)Pk) = 0, i = 0, 1, ..., k − 1. (1.15)

Now consider the monic polynomials P(1)

k
(x) defined by the determinantal formula, [23,34].

P(1)

k
(x) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

c1 c2 · · · ck+1

...
...

...

ck ck+1 · · · c2k

1 x · · · xk

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

H(0)

k

. (1.16)

P(1)

k
(x) exists if and only if H(0)

k
, 0, hence Pk(x) and P(1)

k
(x) exist under the same condition.

So {Pk} and{P(1)

k
} are called adjacent families of FOPs [8, 9]. There exist many recurrence

relations between the two adjacent families of polynomials Pk and P(1)

k
[3, 4, 15, 17]. More
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relations have been studied in [33], leading to new Lanczos-type algorithms.

1.5 The Lanczos Approach

Let us consider a linear system of equations (1.1) again For solving this system, the Lanczos

method [51–53, 56] consists in constructing a sequence of vectors xk ∈ Rn defined by the

following steps, [21]:

1. choose two arbitrary vectors x0 and y in Rn such that y , 0,

2. set r0 = b − Ax0,

3. determine xk such that

xk − x0 ∈ Kk(A, r0) = span{r0,Ar0,A
2r0, ...,A

k−1r0}, (1.17)

rk = b − Axk ⊥ Kk(A
T, y) = span{y,ATy, (At)2y, ..., (AT)k−1y}, (1.18)

where Kk(A, r0) is called a Krylov subspace and AT is the transpose of A.

From eq (1.17), we set xk − x0 as

xk − x0 = −a1r0 − a2Ar0 − a3A2r0 − ... − akA
k−1r0.

Now, multiplying both sides by A and adding and subtracting b on the left hand side, we

obtain

rk = r0 + a1Ar0 + a2A2r0 + ... + +akA
kr0. (1.19)

From (1.18), the orthogonality condition gives

(ATi

y, rk) = (y,Airk) = (y,AiPk(A)r0) = 0, for i = 0.1, ..., k − 1.

By (1.19)

(y,Air0 + a1Ai+1r0 + a2Ai+2r0 + ... + akA
i+kr0) = 0,

(y,Air0) + a1(y,Ai+1r0) + ... + ak(y,Ai+kr0) = 0,
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we obtain the following system of linear equations










































































a1(y,Ar0) + ... + ak(y,A
kr0) = −(y, r0),

a1(ATy,Ar0) + ... + ak(A
Ty,Akr0) = −(ATy, r0),

...

a1((AT)k−1y,Ar0) + ... + ak((A
T)k−1y,Akr0) = −((AT)k−1y, r0).

(1.20)

If the determinant of (1.20) is different from zero then its solution exists and formulae

(1.17) and (1.18) allow to obtain xk and rk. Obviously, solving systems (1.20) is impractical.

Such computation is feasible as the polynomials Pk form a family of FOPs, with respect

to the linear functional c [10, 71]. The easiest way to get the solutions of the system is by

computing recursively the polynomial Pk(x).

If we consider the polynomial

Pk(x) = 1 + a1x + a2x2... + akx
k, (1.21)

then rk can be written as

rk = Pk(A)r0. (1.22)

The polynomial Pk is known as the residual polynomial [23]. Let c be the linear functional [8]

defined by

c(xi) = ci, for i ≥ 0, (1.23a)

Moreover by setting

ci = (y,Air0), for i = 0, 1, ..., (1.23b)

then the system (1.20) can be written as

ci + a1ci+1 + ... + akci+k = 0, for i = 0, 1, ..., k− 1.
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The preceding orthogonality conditions are equivalent to

c(xiPk(x)) = 0, for i = 0, 1, ...k − 1. (1.24)

These conditions show that Pk is the polynomial of degree at most k belonging to the formal

orthogonal polynomials with respect to c, normalized by the condition Pk(0) = 1. Since the

polynomial Pk(x) in (1.21), can be written as

Pk(x) = 1 + xQk−1(x).

Replace x by A and also multiply both side by r0 in the last relation, to get

rk = r0 + AQk−1(A)r0, (1.25)

b −Axk = b − Ax0 + AQk−1(A)r0,

−Axk = −Ax0 + AQk−1(A)r0,

and multiplying both sides by −A−1, we get

xk = x0 −Qk−1(A)r0. (1.26)

Which shows that xk can be computed from rk without using A−1. This is the Lanczos

method.

1.6 Classification

There exist several recurrence relationships for implementing Lanczos methods. They

can all be derived using the theory of FOPs. Here, we consider two families of FOPs

Pk(x) and P(1)

k
(x). The polynomial Pk(x) will be related to the residual rk = b − Axk of the

Lanczos method by rk = Pk(A)r0, while the polynomial P(1)

k
(x) will define zk = P(1)

k
(A)r0.

They are represented by Ai and B j for Pk(x) and P(1)

k
(x) respectively. The Lanczos-type

algorithm based only on relations Ai are named Ai-type algorithms, and those which are
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characterized by both types of the relations Ai and B j are represented by Ai/B j-type Lanczos

algorithms. [4, 23, 34].

C. Baheux and C. Brezinski [3, 4, 23] studied the relations where the degrees of the

polynomials in the right and left hand sides of the relation differ by one or two at most. In

Farooq’s work [33,34] the difference in degrees is two or three. We will adopt the same idea

here and extend the list accordingly, where the difference of the degrees in the relations is

three or four. They are given in Tables 1.1-1.3

Table 1.1: Computation formulae of Ai and B j from different polynomials [4].

Relation Ai Computation of Pk from Relation B j Computation of P(1)

k
from

A1 Pk−2 P(1)

k−2
B1 Pk−2 P(1)

k−2

A2 Pk−2 P(1)

k−1
B2 Pk−2 P(1)

k−1

A3 Pk−2 P(1)

k
B3 Pk−2 Pk

A4 Pk−2 Pk−1 B4 Pk−2 Pk−1

A5 P(1)

k−2
Pk−1 B5 P(1)

k−2
Pk−1

A6 P(1)

k−2
P(1)

k−1
B6 P(1)

k−2
P(1)

k−1

A7 P(1)

k−2
P(1)

k
B7 P(1)

k−2
Pk

A8 P(1)

k−1
Pk−1 B8 P(1)

k−1
Pk−1

A9 Pk−1 P(1)

k
B9 Pk−1 Pk

A10 P(1)

k−1
P(1)

k
B10 P(1)

k−1
Pk

Table 1.2: Computation formulae of Ai and B j from different polynomials [33].

Relation Ai Computation of Pk from Relation B j Computation of P(1)

k
from

A11 Pk−3 P(1)

k−1
B11 Pk−3 Pk−1

A12 Pk−2 Pk−3 B12 Pk−2 Pk−3

A13 Pk−2 P(1)

k−3
B13 P(1)

k−2
P(1)

k−3

A14 P(1)

k−2
P(1)

k−3
B14 P(1)

k−3
Pk−1

A15 P(1)

k−3
P(1)

k−1
B15 Pk−2 P(1)

k−2

A16 Pk−2 P(1)

k−2
B16 P(1)

k−2
Pk−1

A17 Pk−2 P(1)

k−1
- - -

A18 P(1)

k−1
P(1)

k−2
- - -

A19 P(1)

k−2
Pk−1 - - -
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Table 1.3: Computation formulae of Ai and B j from different polynomials

Relation Ai Computation of Pk from Relation B j Computation of P(1)

k
from

A20 Pk−3 Pk−4 B17 Pk−4 Pk−2

A21 Pk−4 P(1)

k−2
B18 Pk−3 Pk−4

A22 Pk−3 P(1)

k−4
B19 P(1)

k−3
P(1)

k−4

A23 P(1)

k−3
P(1)

k−4
B20 P(1)

k−4
Pk−2

A24 P(1)

k−4
P(1)

k−2
B21 Pk−3 P(1)

k−3

A25 Pk−3 P(1)

k−3
- - -

A26 Pk−3 P(1)

k−2
- - -

A27 P(1)

k−2
P(1)

k−3
- - -

A28 P(1)

k−3
Pk−2 - - -

1.7 The Breakdown Issue in Lanczos-type Algorithms

The Lanczos-type algorithms for solving systems of linear equations are based on formal

orthogonal polynomials. Different variants of Lanczos-type algorithms have been derived

using recurrence relationships between polynomials of a family of orthogonal polynomi-

als or between those adjacent to families of orthogonal polynomials. When computing

the coefficients of the FOPs involved in these recurrence relationships, which are in the

ratio of scalar products, and these scalar products in the denominator become zero, then

breakdown occurs in the algorithm. When such a scalar product is nearly equal to zero

(near-breakdown) [14,15,18] then rounding errors can seriously affect the numerical stability

of the algorithm and the process has to be stopped [13, 14, 18]. To illustrate the break-

down condition in calculating the recurrence relationships, let us consider the three-term

recurrence relationship of a monic polynomial Pk+1(x) as follows [12].

Pk+1(x) = (Ak+1x + Bk+1)Pk − Ck+1Pk−1, (1.27)
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for k = 0, 1, 2, ..., with P−1(x) = 0 and P0(x) = 1, where the coefficients Ak+1, Bk+1 and

Ck+1 appearing in the relations are obtained by imposing the orthogonality condition with

respect to the linear function c on both sides. This leads to

c(xiPk+1) = Ak+1c(xi+1Pk(x)) + Bk+1c(xiPk) + Ck+1c(xiPk−1),

Ak+1c(xi+1Pk(x)) + Bk+1c(xiPk) + Ck+1c(xiPk−1) = 0.

The orthogonality condition is always true for i = 0, 1, 2, ..., k. Therefore for i = k − 1,

Ak+1c(xkPk(x)) − Ck+1c(xk−1Pk−1) = 0. (1.28)

For i = k,

Ak+1c(xk+1Pk(x)) + Bk+1c(xxPk(x) − Ck+1c(xkPk−1(x)) = 0. (1.29)

The normalization conditions Pk+1(0) = 1 give the third equation

Bk+1 − Ck+1 = 1. (1.30)

So, we obtain a system of three equations for three unknowns Ak+1,Bk+1 and Ck+1. The

determinant of the above 3 × 3 system of linear equations is given by

∆k = −c(xkPk)[c(xkPk) − c(xkPk−1)] − c(xk−1Pk−1)c(xk+1Pk). (1.31)

This system may be singular (∆k = 0) and a breakdown can occur in the recurrence relation-

ship even if Pk+1 (H(1)

k+1
, 0) exists and so, the recurrence relation cannot be used. This kind

of breakdown is called ghost breakdown [18], which occurs due to the relation used for its

computation. It does not correspond to the non-existence of an orthogonal polynomial of

the family. When a breakdown occurs for some value of k, if H(1)

k+1
=0 then the corresponding

orthogonal polynomial Pk+1 does not exist and a breakdown is due to the nonexistence of

the polynomial which is called a true breakdown [18].

Several procedures for that purpose are present in the literature in the last few decades.
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These breakdown problems were partially solved in a series of papers by C. Brezinski, M.

Redivo-Zaglia and H. Saddok, [12,13,15,17,19,43] and Farooq [33] and Maharani [55]. There

are many possible strategies to cure a breakdown issues in the Lanczos-type algorithms.

Breakdown can be avoided by jumping over the polynomials involved or over those

that cannot be computed by the recurrence relationship under consideration, [15, 17]. In

this case, more complicated recurrences based on those given in [19] have to be used.

The problem of near-breakdown, due to a division by scalar product close to zero, can

be treated in a similar way as in [19]. The theory of Formal Orthogonal Polynomials greatly

simplifies the treatment of breakdowns and near-breakdowns as shown in [20,30,31]. Other

strategies such as restarting the Lanczos-type algorithms and switching between them have

also been considered [35, 36].

1.8 Remedial Strategies

As mentioned earlier, Lanczos-type algorithms suffer from breakdown. Several procedures

for dealing with these breakdowns are present in the literature. Recently alternative ways

implement restarting and switching between algorithms.

1.8.1 Restarting Strategies

Restarting of iterative methods to avoid breakdown and improve convergence is not new

[57]. This is one way to avoid the breakdown in the Lanczos-type algorithms. This

strategies consists of restarting the same algorithm that fails [24,33,35,58], when breakdown

occurs in the algorithm due to the non-existence of some coefficients of the FOPs involved

in its recurrence relations. In these strategies, the idea is either to stop the Lancozs-type



1.8. Remedial Strategies 17

algorithm pre-emptively and restart it with some iterate or wait until breakdown occurs

and then restart from the last iterate found. It is reasonable to restart from the point

immediately before the breakdown occurred if one can detect it. Otherwise, one may

consider restarting strategy after breakdown has happened [36]. Different strategies can be

used for restarting various algorithms. In this procedure the algorithm starts working in

a different Krylov subspace than the one it started with. These strategies are listed below.

Note that ST stands for ” Strategy”.

1. Restarting After Breakdown: In this strategy, a particular Lanczos algorithm is run

until a breakdown occurs. After the breakdown, the same Lanczos algorithm is

restarted, but this time initializing it with the last iterate of the previously failed

algorithm. This strategy is named ST1.

2. Pre-emptive Restarting: In this strategy, a Lanczos-type algorithm is run iteratively.

Then it is halted and restarted again initializing it with the last iterate. While doing

so, it can not be guaranteed that a breakdown will not happen before the interval

end. This strategy is named ST2.

3. Breakdown Monitoring: In this strategy, the coefficients with the denominators

causing the breakdown are regularly examined. When the values of these coeffi-

cients become less than a specified threshold then switching to another algorithm is

implemented. This strategy is named ST3.

1.8.2 Switching Strategies

Switching is another way of curing breakdown in Lanczos-type algorithms. It follows the

same pattern as restarting. In the switching strategy, different methods can be followed
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between two or more algorithms. If the running algorithm is switched to another algorithm

based on different recurrence relations then this will be a proper switching.

1.9 Summary

In this chapter we have discussed the basic Lanczos process for solving systems of linear

equations, the theory of Formal Orthogonal Polynomials (FOP’s) on which the Lanczos-

type algorithms are based. We have also discussed the breakdown issue in these algorithms

and the current procedures for curing it. A brief review of the relevant literature was

also given. The next chapter will consider the design of Lanczos-type algorithms based

on recurrence relationships between FOPs of higher degrees than previously considered.

These relations are in Table 1.3. Then we will compare the experiemental results of the new

algorithm with the existing algorithms in [4, 33].



Chapter 2

Recursive Computation Based on High

Degree FOPs and Lanczos-type

Algorithms

2.1 Introduction

In this chapter, we introduce Lanczos-type algorithms based on high degree FOPs. We

will derive new recurrence relationships which will be used for the derivation of these

new Lanczos-type algorithms, [23,33,67]. C. Brezinski and his colleagues discussed all the

variations which are expressed in Chapter 1, [3,4,11,23,29,30,63]. We will follow the same

notation.

2.2 Recursive Computation Between the FOPs for Ai

First, we will derive some relationships Ai (i > 19) for Pk which can be used to find rk and

then xk without using A−1. We will only find the coefficients of the recurrence relations

19
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by using the orthogonality condition (1.24), which can be used for the implementation of

Lanczos-type algorithms. However, if a recurrence relation exists but cannot be used for

the implementation of Lanczos algorithm then there is no need to calculate its coefficients.

The reason for this will be given. If we consider the condition

c(UiPk) = 0, ∀ i = 0, 1, ...., k − 1, (2.1)

c(1)(UiP
(1)

k
) = 0, ∀ i = 0, 1, ...., k− 1, (2.2)

where Ui be an arbitrary family of polynomials [4] of exact degree i, then some of the

possible choices of Ui(x) are

• Ui(x) = xi,

• Ui(x) = Pi(x),

• Ui(x) = P(1)

i
(x).

2.2.1 A20 for Ui(x) = xi

Consider the following recurrence relationship for k ≥ 4,

Pk(x) = Ak

{

(x3 + Bkx
2 + Ckx +Dk)Pk−3 + (Ekx

4 + Fkx
3 + Gkx

2 +Hkx + Ik)Pk−4

}

, (2.3)

where Pk(x), Pk−3(x) and Pk−4(x) are polynomials of degree k, k − 3 and k − 4 respectively.

The constant coefficients Ak, Bk, Ck, Dk, Ek, Fk, Gk, Hk and Ik are determined by Pk(0) = 1 and

imposing the orthogonality condition (2.1).

Since Pk(0) = 1, ∀ k, then for x = 0, equation (2.3) becomes

Ak =
1

Dk + Ik

. (2.4)

After multiplying (2.3) by xi and applying the linear functional c on both sides it becomes
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c(xiPk) = Ak

{

c(xi+3Pk−3) + Bkc(xi+2Pk−3) + Ckc(xi+1Pk−3) +Dkc(xiPk−3) + Ekc(xi+4Pk−4)

+ Fkc(xi+3Pk−4) + Gkc(xi+2Pk−4) +Hkc(xi+1Pk−4) + Ikc(xiPk−4)
}

. (2.5)

Consequently, by applying (2.1), we have the relation for i = 0, 1, ..., k − 1,

c(xi+3Pk−3) + Bkc(xi+2Pk−3) + Ckc(xi+1Pk−3) +Dkc(xiPk−3) + Ekc(xi+4Pk−4) + Fkc(xi+3Pk−4)

+ Gkc(xi+2Pk−4) +Hkc(xi+1Pk−4) + Ikc(xiPk−4) = 0. (2.6)

The orthogonality condition is always true for i = 0, 1, 2, ......, k− 9.

Therefore for i = k − 8, equation (2.6) gives

Ekc(xk−4Pk−4) = 0 ⇒ c(xk−4Pk−4) , 0, Ek = 0.

For i = k − 7, equation (2.6) gives

Fkc(xk−4Pk−4) = 0 ⇒ c(xk−4Pk−4) , 0, Fk = 0.

For i = k − 6, equation (2.6) gives

Gk = −
c(xk−3Pk−3)

c(xk−4Pk−4)
. (2.7)

For i = k − 5, equation (2.6) gives

Bkc(xk−3Pk−3) +Hkc(xk−4Pk−4) = −c(xk−2Pk−3) − Gkc(xk−3Pk−4). (2.8)

For i = k − 4, equation (2.6) gives

Bkc(xk−2Pk−3) + Ckc(xk−3Pk−3) +Hkc(xk−3Pk−4) + Ikc(xk−4Pk−4) = −c(xk−1Pk−3) − Gkc(xk−2Pk−4).

(2.9)

For i = k − 3, and equation (2.6) gives

Bkc(xk−1Pk−3) + Ckc(xk−2Pk−3) +Dkc(xk−3Pk−3) +Hkc(xk−2Pk−4) + Ikc(xk−3Pk−4)

= −c(xkPk−3) − Gkc(xk−1Pk−4). (2.10)
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For i = k − 2, and equation (2.6) gives

Bkc(xkPk−3) + Ckc(xk−1Pk−3) +Dkc(xk−2Pk−3) +Hkc(xk−1Pk−4 + Ikc(xk−2Pk−4)

= −c(xk+1Pk−3) − Gkc(xkPk−4). (2.11)

For i = k − 1, and equation (2.6) gives

Bkc(xk+1Pk−3) + Ckc(xkPk−3) +Dkc(xk−1Pk−3) +Hkc(xkPk−4 + Ikc(xk−1Pk−4)

= −c(xk+2Pk−3) − Gkc(xk+1Pk−4). (2.12)

Equations (2.8), (2.9), (2.10), (2.11) and (2.12) can be written as


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
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
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













a11Bk + a14Hk = b1,

a21Bk + a22Ck + a24Hk + a25Ik = b2,

a31Bk + a32Ck + a33Dk + a34Hk + a35Ik = b3,

a41Bk + a42Ck + a43Dk + a44Hk + a45Ik = b4,

a51Bk + a52Ck + a53Dk + a54Hk + a55Ik = b5.

(2.13)

Where a11, a14, a21, a22, a24, a25, a31, a32, a33, a34, a35, a41, a42, a43, a44, a45, a51, a52, a53, a54, and a55

are the coefficients of Bk, Ck, Dk, Hk and Ik respectively. Suppose b1, b2, b3, b4, and b5 are the

corresponding right hand side terms of these equations. If ∆k represents the determinant

of the coefficients matrix of (2.13) then we have,

∆k = det(V), (2.14)

where V = matrix([v1, v2, v3, v4, v5]),

v1 = [a11, 0, 0, a14, 0], v2 = [a21, a22, 0, a24, a25], v3 = [a31, a32, a33, a34, a35],

v4 = [a41, a42, a43, a44, a45], v5 = [a51, a52, a53, a54, a55].
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If ∆k , 0, then






















































































































































Bk =
det(W)

∆k
, where W = matrix([w1,w2,w3,w4,w5]),

w1 = [b1, 0, 0, a14, 0], w2 = [b2, a22, 0, a24, a25], w3 = [b3, a32, a33, a34, a35],

w4 = [b4, a42, a43, a44, a45], w5 = [b5, a52, a53, a54, a55],

Ck =
det(U)

∆k
, where U = matrix([u1, u2, u3, u4, u5]),

u1 = [a11, b1, 0, a14, 0], u2 = [a21, b2, 0, a24, a25], u3 = [a31, b3, a33, a34, a35],

u4 = [a41, b4, a43, a44, a45], u5 = [a51, b5, a53, a54, a55],

Hk =
b1−a11Bk

a14
,

Ik =
b2−a21Bk−a22Ck−a24Hk

a25
,

Dk =
b3−a31Bk−a32Ck−a34Hk−a35Ik

a33
.

(2.15)

Since Ek = Fk = 0, relation A20 becomes

Pk(x) = Ak

{

(x3 + Bkx
2 + Ckx +Dk)Pk−3(x) + (Gkx

2 +Hkx + Ik)Pk−4(x)
}

. (2.16)

Therefore, A20 leads to a Lanczos-type algorithm.

2.2.2 A21 for Ui(x) = xi

Consider the following recurrence relationship for k ≥ 4

Pk(x) = (Akx
4 + Bkx

3 + Ckx
2 +Dkx + Ek)Pk−4 + (Fkx

2 + Gkx +Hk)P
(1)

k−2
, (2.17)

where Pk, P(1)

k−2
and Pk−4 are polynomials of degree k, k−1 and k−4 respectively. The constant

coefficients Ak, Bk, Ck, Dk, Ek Fk Gk and Hk are determined by Pk(0) = 1 and imposing the

orthogonality condition (2.1). Since Pk(0) = 1, ∀ k, then for x = 0, equation (2.17) becomes

Ek +HkP
(1)

k−2
(0) = 1. (2.18)

After multiplying equation (2.17) by xi and applying linear functional c on both sides it
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becomes

c(xiPk) = Akc(xi+4Pk−4) + Bkc(xi+3Pk−4) + Ckc(xi+2Pk−4) +Dkc(xi+1Pk−4) + Ekc(xiPk−4)+

Fkc(xi+2P(1)

k−2
) + Gkc(xi+1P(1)

k−2
) +Hkc(xiP(1)

k−2
).

Consequently, by applying (2.1), we have the relation for i = 0, 1, ..., k − 1

Akc(xi+4Pk−4) + Bkc(xi+3Pk−4) + Ckc(xi+2Pk−4) +Dkc(xi+1Pk−4) + Ekc(xiPk−4)+

Fkc
(1)(xi+1P(1)

k−2
) +Gkc

(1)(xiP(1)

k−2
) +Hkc(xiP(1)

k−2
) = 0. (2.19)

For i = 0, equation (2.19) gives

Hkc(x0P(1)

k−2
) = 0 ⇒ c(P(1)

k−2
) , 0, Hk = 0.

Hence from (2.18), we have Ek = 1. For i = 0, 1, 2, ..., k− 9, the relation (2.19) is always true.

Therefore for i = k − 8, equation (2.19) gives

Akc(xk−4Pk−4) = 0 ⇒ c(xk−4Pk−4) , 0, Ak = 0.

For i = k − 7, equation (2.19) gives

Bkc(xk−4Pk−4) = 0 ⇒ c(xk−4Pk−4) , 0, Bk = 0.

For i = k − 6, equation (2.19) gives

Ckc(xk−4Pk−4) = 0 ⇒ c(xk−4Pk−4) , 0, Ck = 0.

For i = k − 5, equation (2.19) gives

Dkc(xk−4Pk−4) = 0 ⇒ c(xk−4Pk−4) , 0, Dk = 0.

For i = k − 4 and Ek = 1, equation (2.19) gives

Ekc(xk−4Pk−4) = 0 ⇒ c(xk−4Pk−4) = 0.

This is impossible from condition (2.1). Therefore the formula A21 does not exist and

consequently algorithm A21 does not exist too.
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2.2.3 A22 for Ui(x) = xi

Consider the following recurrence relationship for k ≥ 4,

Pk(x) = Ak

{

(x3 + Bkx
2 + Ckx +Dk)Pk−3 + (Ekx

4 + Fkx
3 + Gkx

2 +Hkx + Ik)P
(1)

k−4

}

, (2.20)

where Pk(x), Pk−3(x) and P(1)

k−4
(x) are polynomials of degree k, k − 3 and k − 4 respectively.

The constant coefficients Ak, Bk, Ck, Dk, Ek,Fk, Gk, Hk and Ik are determined by Pk(0) = 1 and

imposing the orthogonality condition (2.1). Since Pk(0) = 1, ∀ k, then for x = 0, equation

(2.20) becomes

Ak{Dk + IkP
(1)

k−4
(0)} = 1. (2.21)

After multiplying by xi and applying linear functional c on both sides it becomes

c(xiPk) = Ak

{

c(xi+3Pk−3) + Bkc(xi+2Pk−3) + Ckc(xi+1Pk−3) +Dkc(xiPk−3) + Ekc(xi+4P(1)

k−4
)

+Fkc(xi+3P(1)

k−4
) + Gkc(xi+2P(1)

k−4
) +Hkc(xi+1P(1)

k−4
) + Ikc(xiP(1)

k−4
)
}

. (2.22)

Consequently, by applying (2.1), we have the relation for i = 0, 1, ..., k − 1

c(xi+3Pk−3) + Bkc(xi+2Pk−3) + Ckc(xi+1Pk−3) +Dkc(xiPk−3) + Ekc
(1)(xi+3P(1)

k−4
) + Fkc

(1)(xi+2P(1)

k−4
)+

Gkc
(1)(xi+1P(1)

k−4
) +Hkc

(1)(xiP(1)

k−4
) + Ikc(xiP(1)

k−4
) = 0.

(2.23)

For i = 0, equation (2.23) gives

Ikc(x0P(1)

k−4
) = 0, ⇒ c(P(1)

k−4
) , 0, Ik = 0.

Hence from (2.21), we have

Ak =
1

Dk
. (2.24)

The orthogonality condition is always true for i = 0, 1, 2, ......, k − 8. Therefore for i = k − 7,

equation (2.23) gives

Ekc
(1)(xk−4P(1)

k−4
) = 0, ⇒ c(1)(xk−4P(1)

k−4
) , 0, Ek = 0.
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For i = k − 6, equation (2.23) gives

Fk = −
c(xk−3Pk−3)

c(xk−3P(1)

k−4
)
. (2.25)

For i = k − 5, equation (2.23) gives

Bkc(xk−3Pk−3) + Gkc
(1)(xk−4P(1)

k−4
) = −c(xk−2Pk−3) − Fkc

(1)(xk−3P(1)

k−4
). (2.26)

For i = k − 4, equation (2.23) gives

Bkc(xk−2Pk−3) + Ckc(xk−3Pk−3) + Gkc
(1)(xk−3P(1)

k−4
) +Hkc

(1)(xk−4P(1)

k−4
) = −c(xk−1Pk−3) − Fkc

(1)(xk−2P(1)

k−4
).

(2.27)

For i = k − 3, and equation (2.23) gives

Bkc(xk−1Pk−3) + Ckc(xk−2Pk−3) +Dkc(xk−3Pk−3) + Gkc
(1)(xk−2P(1)

k−4
+Hkc

(1)(xk−3P(1)

k−4
)

= −c(xkPk−3) − Fkc
(1)(xk−1P(1)

k−4
). (2.28)

For i = k − 2 and equation (2.23) gives

Bkc(xkPk−3) + Ckc(xk−1Pk−3) +Dkc(xk−2Pk−3) + Gkc
(1)(xk−1P(1)

k−4
) +Hkc

(1)(xk−2P(1)

k−4
)

= −c(xk+1Pk−3) − Fkc
(1)(xkP(1)

k−4
). (2.29)

For i = k − 1 and equation (2.23) gives

Bkc(xk+1Pk−3) + Ckc(xkPk−3) +Dkc(xk−1Pk−3) +Gkc
(1)(xkP(1)

k−4
) +Hkc

(1)(xk−1P(1)

k−4
)

= −c(xk+2Pk−3) − Fkc
(1)(xk+1P(1)

k−4
). (2.30)

Equations (2.26), (2.27), (2.28), (2.29) and (2.30) can be written as














































































a11Bk + a14Gk = b1,

a21Bk + a22Ck + a24Gk + a25Hk = b2,

a31Bk + a32Ck + a33Dk + a34Gk + a35Hk = b3,

a41Bk + a42Ck + a43Dk + a44Gk + a45Hk = b4,

a51Bk + a52Ck + a53Dk + a54Gk + a55Hk = b5.

(2.31)
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Where a11, a14, a21, a22, a24, a25, a31, a32, a33, a34, a35, a41, a42, a43, a44, a45, a51, a52, a53, a54, and a55

are the coefficients of Bk, Ck, Dk, Gk and Hk respectively. Suppose b1, b2, b3, b4, and b5 are the

corresponding right hand side terms of these equations. If ∆k represents the determinant

of the coefficients matrix of (2.31). From (2.14), if ∆k , 0, then































































Bk,Ck as in (2.15)

Gk =
b1−a11Bk

a14
,

Hk =
b2−a21Bk−a22Ck−a24Gk

a25
,

Dk =
b3−a31Bk−a32Ck−a34Gk−a35Hk

a33
.

(2.32)

Since Ek = Ik = 0, relation A22 becomes

Pk(x) = Ak

{

(x3 + Bkx
2 + Ckx +Dk)Pk−3(x) + (Fkx

3 + Gkx
2 +Hkx)P(1)

k−4
(x)
}

. (2.33)

Therefore, A22 leads to a Lanczos-type algorithm.

2.2.4 A23 for Ui(x) = xi

Consider the following recurrence relationship for k ≥ 4,

Pk(x) = Ak

{

(x3 + Bkx
2 + Ckx +Dk)P

(1)

k−3
+ (Ekx

4 + Fkx
3 + Gkx

2 +Hkx + Ik)P
(1)

k−4

}

, (2.34)

where Pk(x), P(1)

k−3
(x) and P(1)

k−4
(x) are polynomials of degree k, k − 3 and k − 4 respectively.

The constant coefficients Ak, Bk, Ck, Dk, Ek,Fk, Gk, Hk and Ik are determined by Pk(0) = 1 and

imposing the orthogonality condition (2.1). Since Pk(0) = 1, ∀ k, then for x = 0, equation

(2.34) becomes

Ak{DkP
(1)

k−3
+ IkP

(1)

k−4
(0)} = 1. (2.35)

After multiplying by xi and applying linear functional c on both sides it becomes

c(xiPk) = Ak

{

c(xi+3P(1)

k−3
) + Bkc(xi+2P(1)

k−3
) + Ckc(xi+1P(1)

k−3
) +Dkc(xiP(1)

k−3
) + Ekc(xi+4P(1)

k−4
)

+Fkc(xi+3P(1)

k−4
) + Gkc(xi+2P(1)

k−4
) +Hkc(xi+1P(1)

k−4
) + Ikc(xiP(1)

k−4
)
}

. (2.36)
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Consequently, by applying (2.1), we have the relation for i = 0, 1, ..., k − 1

c(1)(xi+2P(1)

k−3
) + Bkc

(1)(xi+1P(1)

k−3
) + Ckc

(1)(xiP(1)

k−3
) +Dkc(xiP(1)

k−3
) + Ekc

(1)(xi+3P(1)

k−4
)

+Fkc
(1)(xi+2P(1)

k−4
) +Gkc

(1)(xi+1P(1)

k−4
) +Hkc

(1)(xiP(1)

k−4
) + Ikc(xiP(1)

k−4
) = 0. (2.37)

For i = 0, equation (2.37) gives

Dkc(P(1)

k−3
) + Ikc(P(1)

k−4
) = 0. (2.38)

The orthogonality condition is always true for i = 0, 1, 2, ......, k − 8. Therefore for i = k − 7,

equation (2.37) gives

Ekc
(1)(xk−4P(1)

k−4
) = 0 ⇒ c(1)(xk−4P(1)

k−4
) , 0, Ek = 0.

For i = k − 6, equation (2.37) gives

Fkc
(1)(xk−4P(1)

k−4
) = 0, ⇒ c(1)(xk−4P(1)

k−4
) , 0, Fk = 0.

For i = k − 5, equation (2.37) gives

c(1)(xk−3P(1)

k−3
) +Gkc

(1)(xk−4P(1)

k−4
) = 0,

Gk =
−c(xk−2P(1)

k−3
)

c(xk−3P(1)

k−4
)
. (2.39)

For i = k − 4, equation (2.37) gives

Bkc
(1)(xk−3P(1)

k−3
) +Hkc

(1)(xk−4P(1)

k−4
) + Ikc(xk−4P(1)

k−4
) = −c(xk−1Pk−3) − Gkc

(1)(xk−3P(1)

k−4
). (2.40)

For i = k − 3, and equation (2.37) gives

Bkc
(1)(xk−2P(1)

k−3
) + Ckc

(1)(xk−3P(1)

k−3
) +Dkc(xk−3P(1)

k−3
) +Hkc

(1)(xk−3P(1)

k−4
+ Ikc(xk−3P(1)

k−4
)

= −c(1)(xk−1P(1)

k−3
) − Gkc

(1)(xk−2P(1)

k−4
). (2.41)

For i = k − 2, and equation (2.37) gives

Bkc
(1)(xk−1P(1)

k−3
) + Ckc

(1)(xk−2P(1)

k−3
) +Dkc(xk−2P(1)

k−3
) +Hkc

(1)(xk−2P(1)

k−4
+ Ikc(xk−2P(1)

k−4
)

= −c(1)(xkP(1)

k−3
) − Gkc

(1)(xk−1P(1)

k−4
). (2.42)
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For i = k − 1, and equation (2.37) gives

Bkc
(1)(xkP(1)

k−3
) + Ckc

(1)(xk−1P(1)

k−3
) +Dkc(xk−1P(1)

k−3
) +Hkc

(1)(xk−1P(1)

k−4
+ Ikc(xk−1P(1)

k−4
)

= −c(1)(xk+1P(1)

k−3
) − Gkc

(1)(xkP(1)

k−4
). (2.43)

The values of constant coefficients Ak, Bk, Ck, Dk, Gk, Hk and Ik can be obtained by solving

the equations (2.38), (2.40), (2.41), (2.42) and (2.43). Since Ek = Fk = 0, relation A23 becomes

Pk(x) = Ak

{

(x3 + Bkx
2 + Ckx +Dk)P

(1)

k−3
+ (Gkx

2 +Hkx + Ik)P
(1)

k−4

}

. (2.44)

Since rk = Pk(A)r0, the equation (2.44), after replacing x by A, becomes

rk = Ak

{

(A3 + BkA
2 + CkA +Dk)zk−3 + (GkA

2 +HkA + Ik)zk−4

}

. (2.45)

Using rk = b −Axk, we get

Axk = b − Ak

{

(A3 + BkA
2 + CkA +Dk)zk−3 + (GkA

2 +HkA + Ik)zk−4

}

. (2.46)

It is clear from the above equation (2.46) that we cannot find xk from rk without inverting

A. So, a Lanczos algorithm based on A23 cannot be implemented.

2.2.5 A24 for Ui(x) = xi

Consider the following recurrence relationship for k ≥ 4

Pk(x) = (Akx4 + Bkx3 + Ckx2 +Dkx + Ek)P
(1)

k−4
+ (Fkx2 + Gkx +Hk)P

(1)

k−2
, (2.47)

where Pk, P(1)

k−2
and P(1)

k−4
are polynomials of degree k, k−1 and k−4 respectively. The constant

coefficients Ak, Bk, Ck, Dk, Ek Fk Gk and Hk are determined by Pk(0) = 1 and imposing the

orthogonality condition (2.1). Since Pk(0) = 1, ∀ k, then for x = 0, equation (2.47) becomes

EkP
(1)

k−4
(0) +HkP

(1)

k−2
(0) = 1. (2.48)
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After multiplying equation (2.47) by xi and applying linear functional c on both sides it

becomes

c(xiPk) = Akc(xi+4P(1)

k−4
) + Bkc(xi+3P(1)

k−4
) + Ckc(xi+2P(1)

k−4
) +Dkc(xi+1P(1)

k−4
) + Ekc(xiP(1)

k−4
)+

Fkc(xi+2P(1)

k−2
) + Gkc(xi+1P(1)

k−2
) +Hkc(xiP(1)

k−2
).

Consequently, by applying (2.1), we have the relation for i = 0, 1, ..., k − 1

Akc
(1)(xi+3P(1)

k−4
) + Bkc

(1)(xi+2P(1)

k−4
) + Ckc

(1)(xi+1P(1)

k−4
) +Dkc

(1)(xiP(1)

k−4
) + Ekc(xiP(1)

k−4
)+

Fkc
(1)(xi+1P(1)

k−2
) + Gkc

(1)(xiP(1)

k−2
) +Hkc(xiP(1)

k−2
) = 0. (2.49)

For i = 0, equation (2.49) gives

Ekc(P(1)

k−4
) +Hkc(P(1)

k−2
) = 0. (2.50)

For i = 0, 1, 2, ..., k − 8, the relation (2.49) is always true. Therefore for i = k − 7, equation

(2.49) gives

Akc
(1)(xk−4P(1)

k−4
) = 0 ⇒ c(1)(xk−4P(1)

k−4
) , 0, Ak = 0.

For i = k − 6, equation (2.49) gives

Bkc
(1)(xk−4P(1)

k−4
) = 0 ⇒ c(1)(xk−4P(1)

k−4
) , 0, Bk = 0.

For i = k − 5, equation (2.49) gives

Ckc
(1)(xk−4P(1)

k−4
) = 0 ⇒ c(1)(xk−4P(1)

k−4
) , 0, Ck = 0.

For i = k − 4, equation (2.49) gives

Dkc
(1)(xk−4P(1)

k−4
) + Ekc(xk−4P(1)

k−4
= 0. (2.51)

For i = k − 3, equation (2.49) gives

Dkc
(1)(xk−3P(1)

k−4
) + Ekc(xk−3P(1)

k−4
) + Fkc

(1)(xk−2P(1)

k−2
) = 0. (2.52)
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For i = k − 2, equation (2.49) gives

Dkc
(1)(xk−2P(1)

k−4
) + Ekc(xk−2P(1)

k−4
) + Fkc

(1)(xk−1P(1)

k−2
) + Gkc

(1)(xk−2P(1)

k−2
) +Hkc(xk−2P(1)

k−2
) = 0. (2.53)

For i = k − 1, equation (2.49) gives

Dkc
(1)(xk−1P(1)

k−4
) + Ekc(xk−1P(1)

k−4
) + Fkc

(1)(xkP(1)

k−2
) + Gkc

(1)(xk−1P(1)

k−2
) +Hkc(xk−1P(1)

k−2
) = 0. (2.54)

Hence, we have six equations (2.48), (2.50), (2.51), (2.52), (2.53) and (2.54) to find five

unknown constants Dk, Ek, Fk, Gk and Hk, showing that the system is overdetermined. The

recurrence relation A24 therefore cannot be used to implement a Lanczos-type algorithm.

Since Ak = Bk = Ck = 0, relation A24 becomes

Pk(x) = (Dkx + Ek)P
(1)

k−4
+ (Fkx

2 + Gkx +Hk)P
(1)

k−2
. (2.55)

One more reason which explains, why we cannot use the relation A24 for the implementation

of a Lanczos-type algorithm, even if the above relationship is perfectly valid and exists,

is as follows. Multiplying both sides of equation (2.55) by r0, after replacing x by A and

simplifying by using rk = Pk(A)r0 and zk = P(1)

k
(A)r0, we have

rk = (Akx
4 + Bkx

3 + Ckx
2 +Dkx + Ek)zk−4 + (Fkx

2 + Gkx +Hk)zk−2. (2.56)

Using rk = b −Axk, we get

xk = A−1b − A−1(Akx
4 + Bkx

3 + Ckx
2 +Dkx + Ek)zk−4 + (Fkx

2 + Gkx +Hk)zk−2. (2.57)

It is clear from equation (2.57) that we cannot find xk from rk without inverting A. So, this

relation is not desirable for implementing a Lanczos-type algorithm as it involves a matrix

inversion.
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2.2.6 A25 for Ui(x) = xi

Consider the following recurrence relationship for k ≥ 3

Pk(x) = (Akx
3 + Bkx

2 + Ckx +Dk)Pk−3 + (Ekx
3 + Fkx

2 + Gkx +Hk)P
(1)

k−3
, (2.58)

where Pk, P(1)

k−3
and Pk−3 are polynomials of degree k, k − 3 and k − 3 respectively. The

constant coefficients Ak, Bk, Ck, Dk, Ek, Fk and Gk are determined by Pk(0) = 1 and imposing

the orthogonality condition (2.1). Since Pk(0) = 1, ∀ k, then for x = 0, equation (2.58)

becomes

Dk +HkP
(1)

k−3
(0) = 1. (2.59)

After multiplying equation (2.58) by xi and applying linear functional c on both sides it

becomes

c(xiPk) = Akc(xi+3Pk−3) + Bkc(xi+2Pk−3) + Ckc(xi+1Pk−3) +Dkc(xiPk−3) + Ekc(xi+3P(1)

k−3
)+

Fkc(xi+2P(1)

k−3
) + Gkc(xi+1P(1)

k−3
) +Hkc(xiP(1)

k−3
).

Consequently, by applying (2.1), we have the relation for i = 0, 1, ..., k − 1

Akc(xi+3Pk−3) + Bkc(xi+2Pk−3) + Ckc(xi+1Pk−3) +Dkc(xiPk−3) + Ekc
(1)(xi+2Pk−3)+

Fkc
(1)(xi+1P(1)

k−3
) +Gkc

(1)(xiP(1)

k−3
) +Hkc(xiP(1)

k−3
) = 0. (2.60)

For i = 0, equation (2.60) gives

Hkc(x0P(1)

k−3
) = 0 ⇒ c(P(1)

k−3
) , 0, Hk = 0.

Hence from (2.59), we have Dk = 1. For i = 0, 1, 2, ..., k− 7, the relation (2.60) is always true.

Therefore for i = k − 6, equation (2.60) gives

Akc(xk−3Pk−3) = 0 ⇒ c(xk−3Pk−3) , 0, Ak = 0. (2.61)

For i = k − 5, equation (2.60) gives

Bkc(xk−3Pk−3) + Ekc
(1)(xk−3P(1)

k−3
) = 0. (2.62)
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For i = k − 4, equation (2.60) gives

Bkc(xk−2Pk−3) + Ckc(xk−3Pk−3) + Ekc
(1)(xk−2P(1)

k−3
) + Fkc

(1)(xk−3P(1)

k−3
) = 0. (2.63)

For i = k − 3, equation (2.60) gives

Bkc(xk−1Pk−3) + Ckc(xk−2Pk−3) + Ekc
(1)(xk−1P(1)

k−3
) + Fkc

(1)(xk−2P(1)

k−3
) + Gkc

(1)(xk−3P(1)

k−3
)

= −c(xk−3Pk−3). (2.64)

For i = k − 2, equation (2.60) gives

Bkc(xkPk−3) + Ckc(xk−1Pk−3) + Ekc
(1)(xkP(1)

k−3
) + Fkc

(1)(xk−1P(1)

k−3
) + GkC

(1)(xk−2P(1)

k−3
)

= −c(xk−2Pk−3). (2.65)

For i = k − 1, equation (2.60) gives

Bkc(xk+1Pk−3) + Ckc(xkPk−3) + Ekc
(1)(xk+1P(1)

k−3
) + Fkc

(1)(xkP(1)

k−3
) + GkC

(1)(xk−1P(1)

k−3
)

= −c(xk−1Pk−3). (2.66)

Equations (2.62), (2.63), (2.64), (2.65) and (2.66) can be written as














































































a11Bk + a13Ek = 0,

a21Bk + a22Ck + a23Ek + a24Fk = 0,

a31Bk + a32Ck + a33Ek + a34Fk +Gka35 = b3,

a41Bk + a42Ck + a43Ek + a44Fk +Gka45 = b4,

a51Bk + a52Ck + a53Ek + a54Fk +Gka55 = b5.

(2.67)

Where a11, a13, a21, a22, a23, a24, a31, a32, a33, a34, a35, a41, a42, a43, a44, a45, a51, a52, a53, a54, and

a55 are the coefficients of Bk, Ck, Ek, Fk and Gk respectively. Suppose b3, b4, and b5 are the

corresponding right hand side terms of these equations. If ∆k represents the determinant

of the coefficients matrix of (2.67) then we have,

∆k = det(Q), (2.68)
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where Q = matrix([q1, q2, q3, q4, q5]),

q1 = [a11, 0, a13, 0, 0], q2 = [a21, a22, a23, a24, 0], q3 = [a31, a32, a33, a34, a35],

q4 = [a41, a42, a43, a44, a45], q5 = [a51, a52, a53, a54, a55].

If ∆k , 0, then
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
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






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
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
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
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








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





Bk =
det(S)

∆k
, where S = matrix([s1, s2, s3, s4, s5]),

s1 = [0, 0, a13, 0, 0], s2 = [0, a22, a23, a24, 0], s3 = [b3, a32, a33, a34, a35],

s4 = [b4, a42, a43, a44, a45], s5 = [b5, a52, a53, a54, a55],

Ck =
det(T)

∆k
, where T = matrix([t1, t2, t3, t4, t5]),

t1 = [a11, 0, a13, 0, 0], t2 = [a21, 0, a23, a24, 0], t3 = [a31, b3, a33, a34, a35],

t4 = [a41, b4, a43, a44, a45], t5 = [a51, b5, a53, a54, a55],

Ek = −
a11Bk

a13
,

Fk = −
a21Bk+a22Ck+a23Ek

a24
,

Gk =
b3−a31Bk−a32Ck−a33Ek−a34Fk

a35
.

(2.69)

Since Ak = Hk = 0 and Dk = 1, relation A25 becomes

Pk(x) = (Bkx
2 + Ckx + I)Pk−3(x) + (Ekx

3 + Fkx
2 + Gkx)P(1)

k−3
(x). (2.70)

Therefore A25 can lead to a Lanczos-type algorithm.

2.2.7 A26 for Ui(x) = xi

Let Pk(x), P(1)

k−2
(x) and Pk−3(x) be the orthogonal polynomials of degree k, k − 2 and k − 3

respectively.

Consider the following recurrence relationship for k ≥ 3

Pk(x) = (Akx
3 + Bkx

2 + Ckx +Dk)Pk−3 + (Ekx
2 + Fkx +Gk)P

(1)

k−2
. (2.71)
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The constant coefficients Ak, Bk, Ck, Dk, Ek Fk and Gk are determined by Pk(0) = 1 and

imposing the orthogonality condition (2.1). Since Pk(0) = 1, ∀ k, then for x = 0, equation

(2.71) becomes

Dk + GkP
(1)

k−2
(0) = 1. (2.72)

After multiplying equation (2.71) by xi and applying linear functional c on both sides it

becomes

c(xiPk) = Akc(xi+3Pk−3) + Bkc(xi+2Pk−3) + Ckc(xi+1Pk−3) +Dkc(xiPk−3) + Ekc(xi+2P(1)

k−2
)

+Fkc(xi+1P(1)

k−2
) + Gkc(xiP(1)

k−2
).

Consequently, by applying (2.1), we have the relation for i = 0, 1, ..., k − 1

Akc(xi+3Pk−3) + Bkc(xi+2Pk−3) + Ckc(xi+1Pk−3) +Dkc(xiPk−3) + Ekc
(1)(xi+1P(1)

k−2
)

+Fkc
(1)(xiP(1)

k−2
) + Gkc(xiP(1)

k−2
) = 0. (2.73)

For i = 0, equation (2.73) gives

Gkc(x0P(1)

k−2
) = 0 ⇒ c(P(1)

k−2
) , 0, Gk = 0.

Hence from (2.72), we have Dk = 1. For i = 0, 1, 2, ..., k− 7, the relation (2.73) is always true.

Therefore for i = k − 6, equation (2.73) gives

Akc(xk−3Pk−3) = 0 ⇒ c(xk−3Pm−3) , 0, Ak = 0.

For i = k − 5, equation (2.73) gives

Bkc(xk−3Pk−3) = 0 ⇒ c(xk−3Pk−3) , 0, Bk = 0.

For i = k − 4, equation (2.73) gives

Ckc(xk−3Pk−3) = 0, ⇒ c(xk−3Pk−3) , 0, Ck = 0.
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For i = k − 3, equation (2.73) gives

Dkc(xk−3Pk−3) + Ekc
(1)(xk−2P(1)

k−2
) = 0.

Since Dk = 1, then

Ek =
c(xk−3Pk−3)

c(1)(xk−2P(1)

k−2
)
.

For i = k − 2, equation (2.73) gives

Fk =
−c(xk−2Pk−3) − Ekc

(1)(xk−1P(1)

k−2
)

c(1)(xk−2P(1)

k−2
)

.

For i = k − 1, equation (2.73) gives

Fk =
−c(xk−1Pk−3) − Ekc

(1)(xkP(1)

k−2
)

c(1)(xk−1P(1)

k−2
)

.

So, due to multiple values for the constant coefficient Fk involved. Therefore, this formula

A26 is not suitable for the implementation of a Lanczos-type algorithm.

2.2.8 A27 for Ui(x) = xi

Consider the following recurrence relationship for k ≥ 3,

Pk(x) = Ak

{

(x2 + Bkx + Ck)P
(1)

k−2
+ (Dkx

3 + Ekx
2 + Fkx +Gk)P

(1)

k−3

}

, (2.74)

where Pk(x), P(1)

k−2
and P(1)

k−3
are polynomials of degree k, k − 2 and k − 3 respectively. The

constant coefficients Ak, Bk, Ck, Dk, Ek,Fk, and Gk are determined by Pk(0) = 1 and imposing

the orthogonality condition (2.1). Since Pk(0) = 1, ∀ k, then for x = 0, equation (2.74)

becomes

Ak{CkP
(1)

k−2
(0) + GkP

(1)

k−3
(0)} = 1. (2.75)

After multiplying by xi and applying linear functional c on both sides it becomes

c(xiPk) = Ak

{

c(xi+2P(1)

k−2
) + Bkc(xi+1P(1)

k−2
) + Ckc(xiP(1)

k−2
) +Dkc(xi+3P(1)

k−3
) + Ekc(xi+2P(1)

k−3
)

+Fkc(xi+1P(1)

k−3
) + Gkc(xiP(1)

k−3
)
}

. (2.76)
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Consequently, by applying (2.1), we have the relation for i = 0, 1, ..., k − 1

Bkc
(1)(xiP(1)

k−2
) + Ckc(xiP(1)

k−2
) +Dkc

(1)(xi+2P(1)

k−3
) + Ekc

(1)(xi+1P(1)

k−3
) + Fkc

(1)(xiP(1)

k−3
)

+Gkc(xiP(1)

k−3
) = −c(1)(xi+1P(1)

k−2
). (2.77)

For i = 0, equation (2.77) gives

Ckc(P(1)

k−2
) + Gkc(P(1)

k−3
) = 0. (2.78)

The orthogonality condition is always true for i = 0, 1, 2, ......, k − 6. Therefore for i = k − 5,

equation (2.77) gives

Dkc
(1)(xk−3P(1)

k−3
) = 0 ⇒ c(1)(xk−3P(1)

k−3
) , 0, Dk = 0.

For i = k − 4, equation (2.77) gives

Ekc
(1)(xk−3P(1)

k−3
) = 0, ⇒ c(1)(xk−3P(1)

k−3
) , 0, Ek = 0.

For i = k − 3, equation (2.77) gives

Fkc
(1)(xk−3Pk−3) + Gkc(xk−3P(1)

k−3
) = −c(xk−2Pk−2). (2.79)

For i = k − 2, equation (2.77) gives

Bkc
(1)(xk−2P(1)

k−2
) + Ckc(xk−2P(1)

k−2
) + Fkc

(1)(xk−2P(1)

k−3
) + Gkc(xk−2P(1)

k−3
) = −c(1)(xk−1P(1)

k−2
). (2.80)

For i = k − 1, and equation (2.77) gives

Bkc
(1)(xk−1P(1)

k−2
) + Ckc(xk−2P(1)

k−2
) + Fkc

(1)(xk−1P(1)

k−3
) + Gkc

(1)(xk−1P(1)

k−3
) = −c(1)(xkPk−2). (2.81)

The values of constant coefficients Ak, Bk, Ck, Fk and Gk can be obtained by solving the

equations (2.75), (2.78), (2.79), (2.80) and (2.81). Since Dk = Ek = 0, relation A27 becomes

Pk(x) = Ak

{

(x2 + Bkx + Ck)P
(1)

k−2
+ (Fkx + Gk)P

(1)

k−3

}

. (2.82)

Multiplying bothe sides of equation (2.82) by r0, after replacing x by A and simplifying by

using rk = Pk(A)r0, and zk = Pk(A)(1)r0 we have

rk = Ak

{

(A2 + BkA + Ck)zk−2 + (FkA + GkI)zk−3

}

. (2.83)
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Using rk = b −Axk, we get

Axk = b − Ak

{

(A2 + BkA + Ck)zk−2 + (FkA + GkI)zk−3

}

. (2.84)

It is clear from the above equation (2.84) that we cannot find xk from rk without inverting

A. So, the Lanczos algorithm cannot be implemented.

2.2.9 A28 for Ui(x) = xi

Consider the following recurrence relationship for k ≥ 3,

Pk(x) = Ak

{

(x2 + Bkx + Ck)Pk−2 + (Dkx
3 + Ekx

2 + Fkx +Gk)P
(1)

k−3

}

, (2.85)

where Pk(x), Pk−2(x) and P(1)

k−3
(x) are polynomials of degree k, k−2 and k−3 respectively. The

constant coefficients Ak, Bk, Ck, Dk, Ek,Fk and Gk are determined by Pk(0) = 1 and imposing

the orthogonality condition (2.1). Since Pk(0) = 1, ∀ k, then for x = 0, equation (2.85)

becomes

Ak{Ck +GkP
(1)

k−3
} = 1. (2.86)

After multiplying by xi and applying linear functional c on both sides it becomes

c(xiPk) = Ak

{

c(xi+2Pk−2) + Bkc(xi+1Pk−2) + Ckc(xiPk−2) +Dkc(xi+3P(1)

k−3
) + Ekc(xi+2P(1)

k−3
)

+Fkc(xi+1P(1)

k−3
) + Gkc(xiP(1)

k−3
)
}

. (2.87)

Consequently, by applying (2.1), we have the relation for i = 0, 1, ..., k − 1

c(xi+2Pk−2) + Bkc(xi+1Pk−2) + Ckc(xiPk−2) +Dkc(xi+3P(1)

k−3
) + Ekc(xi+2P(1)

k−3
)+

Fkc(xi+1P(1)

k−3
) + Gkc(xiP(1)

k−3
) = 0. (2.88)

For i = 0, equation (2.88) becomes

Gkc(P(1)

k−3
) = 0, since c(P(1)

k−3
) , 0 ⇒ Gk = 0.

Therefore, from (2.86) we have

Ak =
1

Ck
. (2.89)
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The orthogonality condition is always true for i = 0, 1, 2, ......, k− 6. Therefore, for i = k − 5,

equation (2.88) gives, Dkc
(1)(xk−3P(1)

k−3
) = 0 ⇒ c(1)(xk−3P(1)

k−3
) , 0, Dk = 0.

For i = k − 4, equation (2.88) gives

Ek = −
c(xk−2Pk−2)

c(1)(xk−3P(1)

k−3
)
. (2.90)

For i = k − 3, equation (2.88) gives

Bkc(xk−2Pk−2) + Fkc
(1)(xk−3P(1)

k−3
) = −c(xk−1Pk−2) − Ekc

(1)(xk−2P(1)

k−3
). (2.91)

For i = k − 2, equation (2.88) gives

Bkc(xk−1Pk−2) + Ckc(xk−2Pk−2) + Fkc
(1)(xk−2P(1)

k−3
) = −c(xkPk−2) − Ekc

(1)(xk−1P(1)

k−3
). (2.92)

For i = k − 1, and equation (2.88) gives

Bkc(xkPk−2) + Ckc(xk−1Pk−2) + Fkc
(1)(xk−1P(1)

k−3
) = −c(xk+1Pk−2) − Ekc

(1)(xkP(1)

k−3
). (2.93)

Equations (2.91), (2.92) and (2.93) can be written as

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
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






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a11Bk + a13Fk = b1,

a21Bk + a22Ck + a23Fk = b2,

a31Bk + a32Ck + a33Fk = b3.

(2.94)

Where a11, a13, a21, a22, a23, a31, a32, a33, are the coefficients of Bk, Ck, and Fk respectively.

Suppose b1, b2 and b3 are the corresponding right hand side terms of these equations. If ∆k

represents the determinant of the coefficients matrix of (2.94) then we have,

∆k = a11(a22a33 − a23a32) + a13(a21a32 − a31a22).

If ∆k , 0, then










































Bk =
1
∆k
{b1(a22a33 − a23a32) + a13(b2a32 − b3a22)},

Ck =
b2−a21Bk−Fka23

a22
,

Fk =
b1−a11Bk

a13
.

(2.95)
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Since Dk = Gk = 0, relation A28 becomes

Pk(x) = Ak

{

(x2 + Bkx + Ck)Pk−2(x) + (Ekx
2 + Fkx)P(1)

k−3
(x)
}

. (2.96)

Therefore A28 can lead to a Lanczos-type algorithm.

2.3 Recursive Computation Between the FOPs for Bi

Now we consider recurrence relations of the type B j for the choice Ui(x) = xi. These

formulae, when they exist, will be used in combination with formulae Ai to derive Lanczos-

type algorithms.

2.3.1 B17 for Ui(x) = xi

Consider the following recurrence relationship for k ≥ 4

P(1)

k
(x) = (A1

kx4 + B1
kx3 + C1

kx2 +D1
kx + E1

k)Pk−4 + (F1
kx2 +G1

kx +H1
k )Pk−2, (2.97)

where Pk(x), Pk−2(x) and Pk−4(x) are polynomials of degree k, k − 1 and k − 4 respectively.

The constant coefficients A1
k
, B1

k
, C1

k
, D1

k
, E1

k
F1

k
G1

k
and H1

k
are determined. After multiplying

equation (2.97) by xi and applying linear functional c(1) on both sides it becomes

c(1)(xiPk) = A1
kc(xi+5Pk−4) + B1

kc(xi+4Pk−4) + C1
kc(xi+3Pk−4) +D1

kc(xi+2Pk−4) + E1
kc(xi+1Pk−4)

+F1
kc(xi+3Pk−2) + G1

kc(xi+2Pk−2) +H1
kc(xi+1Pk−2).

Consequently, by applying (2.2), we have the relation for i = 0, 1, ..., k − 1.

A1
kc(xi+5Pk−4) + B1

kc(xi+4Pk−4) + C1
kc(xi+3Pk−4) +D1

kc(xi+2Pk−4) + E1
kc(xi+1Pk−4) + F1

kc(xi+3Pk−2)+

G1
kc(xi+2Pk−2) +H1

kc(xi+1Pk−2) = 0.

(2.98)

For i = 0, 1, 2, ..., k − 10, the relation (2.98) is always true. Therefore for i = k − 9, equation

(2.98) gives

A1
kc(xk−4Pk−4) = 0 ⇒ c(xk−4Pk−4) , 0, A1

k = 0.
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For i = k − 8, i = k − 7, and i = k − 6 equation (2.98) gives B1
k
= 0, C1

k
= 0 and D1

k
= 0.

For i = k−5, i = k−4, i = k−3, i = k−2 and i = k−1, we get five equations to determine four

unknown constant coefficients, E1
k
, F1

k
, G1

k
and H1

k
. This shows that the obtained equations

are over-determined, so a Lanczos-type algorithm based on B17 cannot be implemented.

2.3.2 B18 for Ui(x) = xi

Consider the following recurrence relationship for k ≥ 4,

P(1)

k
= (A1

kx4 + B1
kx3 + C1

kx2 +D1
kx + E1

k)Pk−4 + (F1
kx3 + G1

kx2 +H1
kx + I1

k)Pk−3, (2.99)

where P(1)

k
(x), Pk−3(x) and Pk−4(x) are polynomials of degree k, k − 3 and k − 4 respectively.

The constant coefficients A1
k
, B1

k
, C1

k
, D1

k
, E1

k
,F1

k
, G1

k
and H1

k
are determined. After multiplying

equation (2.99) by xi and applying linear functional c(1) on both sides it becomes

c(1)(xiPk) = A1
kc(xi+5Pk−4) + B1

kc(xi+4Pk−4) + C1
kc(xi+3Pk−4) +D1

kc(xi+2Pk−4) + E1
kc(xi+1Pk−4)

+F1
kc(xi+4Pk−3) + G1

kc(xi+3Pk−3) +H1
kc(xi+2Pk−3) + I1

kc(xi+1Pk−3). (2.100)

Consequently, by applying (2.2), we have the relation for i = 0, 1, ..., k − 1

A1
kc(xi+5Pk−4) + B1

kc(xi+4Pk−4) + C1
kc(xi+3Pk−4) +D1

kc(xi+2Pk−4) + E1
kc(xi+1Pk−4)+

F1
kc(xi+4Pk−3) + G1

kc(xi+3Pk−3) +H1
kc(xi+2Pk−3) + I1

k c(xi+1Pk−3) = 0. (2.101)

The orthogonality condition is always true for i = 0, 1, 2, ......, k− 10. Therefore for i = k − 9,

equation (2.101) gives

A1
kc(xk−4Pk−4) = 0, ⇒ c(xk−4Pk−4) , 0, A1

k = 0.

For i = k − 8, equation (2.101) gives

B1
kc(xk−4Pk−4) = 0, ⇒ c(xk−4Pk−4) , 0, B1

k = 0.

For i = k − 7, equation (2.101) gives

C1
kc(xk−4Pk−4) + F1

kc(xk−3Pk−3) = 0. (2.102)
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For i = k − 6, equation (2.101) gives

C1
kc(xk−3Pk−4) +D1

kc(xk−4Pk−4) + F1
kc(xk−2Pk−3) + G1

kc(xk−3Pk−3) = 0. (2.103)

For i = k − 5, equation (2.101) gives

C1
kc(xk−2Pk−4) +D1

kc(xk−3Pk−4) + E1
kc(xk−4Pk−4) + F1

kc(xk−1Pk−3) + G1
kc(xk−2Pk−3)

+H1
kc(xk−3Pk−3) = 0. (2.104)

For i = k − 4, equation (2.101) gives

C1
kc(xk−1Pk−4) +D1

kc(xk−2Pk−4) + E1
kc(xk−3Pk−4) + F1

kc(xkPk−3) + G1
kc(xk−1Pk−3)

+H1
kc(xk−2Pk−3) + I1

kc(xk−3Pk−3) = 0. (2.105)

For i = k − 3, equation (2.101) gives

C1
kc(xkPk−4) +D1

kc(xk−1Pk−4) + E1
kc(xk−2Pk−4) + F1

kc(xk+1Pk−3) + G1
kc(xkPk−3)

+H1
kc(xk−1Pk−3) + I1

k c(xk−2Pk−3) = 0. (2.106)

For i = k − 2, equation (2.101) gives

C1
kc(xk+1Pk−4) +D1

kc(xkPk−4) + E1
kc(xk−1Pk−4) + F1

kc(xk+2Pk−3) + G1
kc(xk+1Pk−3)

+H1
kc(xkPk−3) + I1

kc(xk−1Pk−3) = 0. (2.107)

For i = k − 1, equation (2.101) gives

C1
kc(xk+2Pk−4) +D1

kc(xk+1Pk−4) + E1
kc(xkPk−4) + F1

kc(xk+3Pk−3) + G1
kc(xk+1Pk−3)

+H1
kc(xk+1Pk−3) + I1

k c(xkPk−3) = 0. (2.108)

Since the above system of equations is homogenous. Its coefficient matrix is non-singular,

we get C1
k
= D1

k
= E1

k
= F1

k
= G1

k
= H1

k
= I1

k
= 0.

Hence the recurrence relation B18 becomes

P(1)

k
= 0.

Hence, a Lanczos-type algorithm based on B18 cannot be implemented.
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2.3.3 B19 for Ui(x) = xi

Consider the following recurrence relation for k ≥ 4,

P(1)

k
(x) = (A1

kx4 + B1
kx3 + C1

kx2 +D1
kx + E1

k)P(1)

k−4
+ (F1

kx3 + G1
kx2 +H1

kx + I1
k )P(1)

k−3
. (2.109)

where P(1)

k
, P(1)

k−3
and P(1)

k−4
be the orthogonal polynomials of degree k, k − 3 and k − 4

respectively. The constant coefficients A1
k
, B1

k
, C1

k
, D1

k
, E1

k
, F1

k
, G1

k
, H1

k
and I1

k
are to be

determined. After multiplying equation (2.109) by xi and applying c(1) on both sides it

becomes

c(1)(xiP(1)

k
) = A1

kc(1)(xi+4P(1)

k−4
) + B1

kc(1)(xi+3P(1)

k−4
) + C1

kc(1)(xi+2P(1)

k−4
) +D1

kc(1)(xi+1P(1)

k−4
) +

E1
kc(1)(xiP(1)

k−4
) + F1

kc(1)(xi+3P(1)

k−3
) + G1

kc(1)(xi+2P(1)

k−3
) +H1

kc(1)(xi+1P(1)

k−3
) + I1

kc(1)(xiP(1)

k−3
).

Consequently, by applying (2.2), we have the relation for i = 0, 1, ..., k − 1

A1
kc(1)(xi+4P(1)

k−4
) + B1

kc(1)(xi+3P(1)

k−4
) + C1

kc(1)(xi+2P(1)

k−4
) +D1

kc(1)(xi+1P(1)

k−4
) + E1

kc(1)(xiP(1)

k−4
)+

F1
kc(1)(xi+3P(1)

k−3
) + G1

kc(1)(xi+2P(1)

k−3
) +H1

k c(1)(xi+1P(1)

k−3
) + I1

kc(1)(xiP(1)

k−3
) = 0. (2.110)

For i = 0, 1, 2, ..., k− 9, the relation (2.110) is always true.

Therefore, for i = k − 8, equation (2.110) gives

A1
kc(1)(xk−4P(1)

k−4
) = 0 ⇒ c(1)(xk−4P(1)

k−4
) , 0, A1

k = 0.

Since P(1)

k
(x) is monic-polynomial of degree k, therefore, F1

k
= 1.

For i = k − 7, equation (2.110) gives

B1
kc(1)(xk−4P(1)

k−4
) = 0 ⇒ c(1)(xk−4P(1)

k−4
) , 0, B1

k = 0.

For i = k − 6, equation (2.110) gives

C1
k = −

c(xk−2P(1)

k−3
)

c(xk−3P(1)

k−4
)
. (2.111)

For i = k − 5, equation (2.110) gives

D1
kc(1)(xk−4P(1)

k−4
) + G1

kc(1)(xk−3P(1)

k−3
) = −c(1)(xk−2P(1)

k−3
) − C1

kc(1)(xk−3P(1)

k−4
). (2.112)
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For i = k − 4, equation (2.110) gives

D1
kc(1)(xk−3P(1)

k−4
) + E1

kc(1)(xk−4P(1)

k−4
) + G1

kc(1)(xk−2P(1)

k−3
) +H1

kc(1)(xk−3P(1)

k−3
)

= −c(1)(xk−1P(1)

k−3
) − C1

kc(1)(xk−2P(1)

k−4
). (2.113)

For i = k − 3, equation (2.110) gives

D1
kc(1)(xk−2P(1)

k−4
) + E1

kc(1)(xk−3P(1)

k−4
) + G1

kc(1)(xk−1P(1)

k−3
) +H1

kc(1)(xk−2P(1)

k−3
) + I1

k c(1)(xk−3P(1)

k−3
)

= −c(1)(xkP(1)

k−3
) − C1

kc(1)(xk−1P(1)

k−4
).

(2.114)

For i = k − 2, equation (2.110) gives

D1
kc(1)(xk−1P(1)

k−4
) + E1

kc(1)(xk−2P(1)

k−4
) + G1

kc(1)(xkP(1)

k−3
) +H1

kc(1)(xk−1P(1)

k−3
) + I1

k c(1)(xk−2P(1)

k−3
)

= −c(1)(xk+1P(1)

k−3
) − C1

kc(1)(xkP(1)

k−4
). (2.115)

For i = k − 1, equation (2.110) gives

D1
kc(1)(xkP(1)

k−4
) + E1

kc(1)(xk−1P(1)

k−4
) + G1

kc(1)(xk+1P(1)

k−3
) +H1

kc(1)(xkP(1)

k−3
) + I1

k c(1)(xk−1P(1)

k−3
)

= −c(1)(xk+2P(1)

k−3
) − C1

kc(1)(xk+1P(1)

k−4
). (2.116)

Equations (2.112), (2.113), (2.114), (2.115) and (2.116) can be written as














































































a11D1
k
+ a13G1

k
= b1,

a21D1
k
+ a22E1

k
+ a23G1

k
+ a24H1

k
= b2,

a31D1
k
+ a32E1

k
+ a33G1

k
+ a34H1

k
+ a35I1

k
= b3,

a41D1
k
+ a42E1

k
+ a43G1

k
+ a44H1

k
+ a45I1

k
= b4,

a51D1
k
+ a52E1

k
+ a53G1

k
+ a54H1

k
+ a55I1

k
= b5.

(2.117)

Where a11, a13, a21, a22, a23, a24, a31, a32, a33, a34, a35, a41, a42, a43, a44, a45, a51, a52, a53, a54, and a55

are the coefficients of D1
k
, E1

k
, G1

k
, H1

k
and I1

k
respectively. Suppose b1, b2, b3, b4, and b5 are the

corresponding right hand side terms of these equations. If ∆k represents the determinant
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of the coefficients matrix of (2.117) then we have,

∆k = det(L), (2.118)

where L = matrix([l1, l2, l3, l4, l5]),

l1 = [a11, 0, a13, 0, 0], l2 = [a21, a22, a23, a24, 0], l3 = [a31, a32, a33, a34, a35],

l4 = [a41, a42, a43, a44, a45], l5 = [a51, a52, a53, a54, a55].

If ∆k , 0, then

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




















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














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
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


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






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


























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


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



































D1
k
=

det(M)

∆k
, where M = matrix([m1,m2,m3,m4,m5]),

m1 = [b1, 0, a13, 0, 0], m2 = [b2, a22, a23, a24, 0], m3 = [b3, a32, a33, a34, a35],

m4 = [b4, a42, a43, a44, a45], m5 = [b5, a52, a53, a54, a55],

E1
k
=

det(N)

∆k
, where N = matrix([n1, n2, n3, n4, n5]),

n1 = [a11, b1, a13, 0, 0], n2 = [a21, b2, a23, a24, 0], n3 = [a31, b3, a33, a34, a35],

n4 = [a41, b4, a43, a44, a45], n5 = [a51, b5, a53, a54, a55],

G1
k
=

b1−a11Dk

a13
,

H1
k
=

b2−a21Dk−a22Ek−a23Gk

a24
,

I1
k
=

b3−a31Dk−a32Ek−a33Gk−a34Hk

a35
.

(2.119)

Since A1
k
= B1

k
= 0 and F1

k
= 1, relation B19 becomes

P(1)

k
(x) = {C1

kx2 +D1
kx + E1

k)P(1)

k−4
(x) + (x3 + G1

kx2 +H1
kx + I1

k )P(1)

k−3
(x)}. (2.120)

This means B19 can lead to the implementation of a Lanczos-type algorithm.

2.3.4 B20 for Ui(x) = xi

Consider the following recurrence relationship for k ≥ 4

P(1)

k
(x) = (Akx

4 + Bkx
3 + Ckx

2 +Dkx + Ek)P
(1)

k−4
+ (Fkx

2 + Gkx +Hk)Pk−2, (2.121)

where P(1)

k
, Pk−2 and P(1)

k−4
are polynomials of degree k, k − 2 and k − 4 respectively. The

constant coefficients A1
k
, B1

k
, C1

k
, D1

k
, E1

k
F1

k
G1

k
and H1

k
are determined. After multiplying
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equation (2.121) by xi and applying linear functional c(1) on both sides it becomes

c(1)(xiPk) = A1
kc(1)(xi+4P(1)

k−4
) + B1

kc(1)(xi+3P(1)

k−4
) + C1

kc(1)(xi+2P(1)

k−4
) +D1

kc(1)(xi+1P(1)

k−4
) + E1

kc(1)(xiP(1)

k−4
)

+F1
kc(xi+3Pk−2) + G1

kc(xi+2Pk−2) +H1
kc(xi+1Pk−2).

Consequently, by applying (2.2), we have the relation for i = 0, 1, ..., k − 1

A1
kc(1)(xi+4P(1)

k−4
) + B1

kc(1)(xi+3P(1)

k−4
) + C1

kc(1)(xi+2P(1)

k−4
) +D1

kc(1)(xi+1P(1)

k−4
) + E1

kc(1)(xiP(1)

k−4
)

+F1
kc(xi+3Pk−2) + G1

kc(xi+2Pk−2) +H1
kc(xi+1Pk−2) = 0. (2.122)

For i = 0, 1, 2, ..., k − 9, the relation (2.122) is always true. Therefore for i = k − 8, equation

(2.122) gives

A1
kc(1)(xk−4P(1)

k−4
) = 0 ⇒ c(1)(xk−4P(1)

k−4
) , 0, A1

k = 0.

For i = k − 7, i = k − 6, equation (2.122) gives B1
k
= 0, C1

k
= 0 respectively. For i = k − 5,

i = k − 4, i = k − 3, i = k − 2 and i = k − 1. We get five homogenous equations and its

coefficient matrix is non-singular, so we have D1
k
= E1

k
= F1

k
= G1

k
= H1

k
= 0. This shows that

the relation B20 defined above becomes

P(1)

k
= 0.

Hence, a Lanczos-type algorithm based on B20 cannot be implemented.

2.3.5 B21 for Ui(x) = xi

Let P(1)

k
, Pk−3 and P(1)

k−3
be the orthogonal polynomials of degree k, k−3 and k−3 respectively

and consider the following recurrence relation for k ≥ 3,

P
(1)

k
(x) = (A1

kx3 + B1
kx2 + C1

kx +D1
k)Pk−3 + (E1

kx3 + F1
kx2 + G1

kx +H1
k )P

(1)

k−3
, (2.123)

The constant coefficients A1
k
, B1

k
, C1

k
, D1

k
, E1

k
, F1

k
and G1

k
are to be determined. After multi-
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plying equation (2.123) by xi and applying linear function c(1) on both sides it becomes

c(1)(xiP(1)

k
) = A1

kc(1)(xi+3Pk−3) + B1
kc(1)(xi+2Pk−3) + C1

kc(1)(xi+1Pk−3) +D1
kc(1)(xiPk−3) +

E1
kc(1)(xi+3P(1)

k−3
) + F1

kc(1)(xi+2P(1)

k−3
) + G1

kc(1)(xi+1P(1)

k−3
) +H1

kc(1)(xiP(1)

k−3
).

Consequently, by applying (2.2), we have the relation for i = 0, 1, ..., k − 1

A1
kc(xi+4Pk−3) + B1

kc(xi+3Pk−3) + C1
kc(xi+2Pk−3) +D1

kc(xi+1Pk−3) + E1
kc(1)(xi+2P(1)

k−3
)

+F1
kc(1)(xi+1P(1)

k−3
) +G1

kc(1)(xiP(1)

k−3
) +H1

kc(xiP(1)

k−3
) = 0. (2.124)

For i = 0, 1, 2, ..., k − 8, the relation (2.124) is always true. Therefore for i = k − 7, equation

(2.124) gives, A1
k
c(xk−3Pk−3) = 0 ⇒ c(xk−3Pk−3) , 0, A1

k
= 0. Since P(1)

k
(x) is monic,

therefore E1
k
= 1. For i = k − 6, equation (2.124) gives

B1
k = −

c(xk−2P(1)

k−3
)

c(xk−3Pk−3)
. (2.125)

For i = k − 5, equation (2.124) gives

C1
kc(xk−3Pk−3) + F1

kc(1)(xk−3P(1)

k−3
) = −c(1)(xk−2P(1)

k−3
) − B1

kc(xk−2Pk−3). (2.126)

For i = k − 4, equation (2.124) gives

C1
kc(xk−2Pk−3) +D1

kc(xk−3Pk−3) + F1
kc(1)(xk−2P(1)

k−3
) + G1

kc(1)(xk−3P(1)

k−3
) = −c(1)(xk−1P(1)

k−3
) − B1

kc(xk−1Pk−3).

(2.127)

For i = k − 3, equation (2.124) gives

C1
kc(xk−1Pk−3) +D1

kc(xk−2Pk−3) + F1
kc(1)(xk−1P(1)

k−3
) + G1

kc(1)(xk−2P(1)

k−3
) +H1

kc(1)(xk−3P(1)

k−3
)

= −c(1)(xkP(1)

k−3
) − B1

kc(xkPk−3). (2.128)

For i = k − 2, equation (2.124) gives

C1
kc(xkPk−3) +D1

kc(xk−1Pk−3) + F1
kc(1)(xkP(1)

k−3
) + G1

kc(1)(xk−1P(1)

k−3
) +H1

kc(1)(xk−2P(1)

k−3
)

= −c(1)(xk+1P(1)

k−3
) − B1

kc(xk+1Pk−3). (2.129)
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For i = k − 1, equation (2.124) gives

C1
kc(xk+1Pk−3) +D1

kc(xkPk−3) + F1
kc(1)(xk+1P(1)

k−3
) + G1

kc(1)(xkP(1)

k−3
) +H1

kc(1)(xk−1P(1)

k−3
)

= −c(1)(xk+2P(1)

k−3
) − B1

kc(xk+2Pk−3). (2.130)

Equations (2.126), (2.127), (2.128), (2.129) and (2.130) can be written as

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



a11C1
k
+ a13F1

k
= b1,

a21C1
k
+ a22D1

k
+ a23F1

k
+ a24G1

k
= b2,

a31C1
k
+ a32D1

k
+ a33F1

k
+ a34G1

k
+H1

k
a35 = b3,

a41C1
k
+ a42D1

k
+ a43F1

k
+ a44G1

k
+H1

k
a45 = b4,

a51C1
k
+ a52D1

k
+ a53F1

k
+ a54G1

k
+H1

k
a55 = b5.

(2.131)

Where a11, a13, a21, a22, a23, a24, a31, a32, a33, a34, a35, a41, a42, a43, a44, a45, a51, a52, a53, a54, and a55

are the coefficients of C1
k
, D1

k
, F1

k
, G1

k
and H1

k
respectively. Suppose b1, b2, b3, b4, and b5 are the

corresponding right hand side terms of these equations. If ∆k represents the determinant

of the coefficients matrix of (2.131). From (2.118), if ∆k , 0, then

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C1
k
= D1

k
as in (2.119),

D1
k
= E1

k
as in (2.119),

F1
k
=

b1−a11C1
k

a13
,

G1
k
= −

b2−a21C1
k
−a22D1

k
−a23F1

k

a24
,

H1
k
=

b3−a31C1
k
−a32D1

k
−a33F1

k
−a34G1

k

a35
.

(2.132)

Since A1
k
= 0 and E1

k
= 1, relation B21 becomes

P(1)

k
(x) = {B1

kx2 + C1
kx +D1

k)Pk−3(x) + (x3 + F1
kx2 + G1

kx +H1
k)P(1)

k−3
(x)}. (2.133)

Therefore, B21 leads to a Lanczos-type algorithm.
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2.4 Design of Lanczos-type Algorithms

In sections 2.2 and 2.3, we derived some new FOPs based recurrence relations. Here, we

will derive new variants of the Lanczos algorithm based on these relations. By writing

rk = Pk(A)r0 = b − Axk and zk = P(1)

k
(A)r0, the relations Ai allow to derive expressions for

rk and xk, and the relations B j allow to find the expression of zk, recursively. Hence, new

Lanczos-type algorithms are introduced.

2.4.1 Lanczos-type Algorithm Based on A20

From the recurrence relation A20 of subsection 2.2.1, the equation (2.16), after replacing x

by A. Since rk = Pk(A)r0, we have

rk = Ak

{

(A3 + BkA
2 + CkA +Dk)rk−3 + (GkA

2 +HkA + Ik)rk−4

}

. (2.134)

Using rk = b − Axk, we get

xk = Ak

{

Ikxk−4 +Dkxk−3 − (A2 + BkA + Ck)rk−3 − (GkA +Hk)rk−4

}

. (2.135)

Equations (2.134) and (2.135) define a Lanczos-type algorithm. Now, we have to find the

expressions of the coefficients Ak, Bk, Ck, Dk, Gk, Hk and Ik appearing in them, have been

derived in subsection (2.2.1). We know that


























c(xkPk) = ((AT)ky,Pk(A)r0) = (yk, rk)

with yk = ATyk−1

(2.136)

Therefore, we can write using Eq (2.136) we get

Gk = −
(yk−3, rk−3)

(yk−4, rk−4)
. (2.137)

The rest of the coefficents can be written explicitly as follows;

a11 = (yk−3, rk−3), a14 = (yk−4, rk−4), a21 = (yk−2, rk−3), a22 = a11, a24 = (yk−3, rk−4), a25 = a14,

a31 = (yk−1, rk−3), a32 = a21, a33 = a11, a34 = (yk−2, rk−4), a35 = a24, a41 = (yk, rk−3), a42 = a31,
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a43 = a21, a44 = (yk−1, rk−4), a45 = a34, a51 = (yk+1, rk−3), a52 = a41, a53 = a31, a54 = (yk, rk−4),

a55 = a44.

Using these relations we get

b1 = −(yk−2, rk−3) − Gk(yk−3, rk−4) = −a21 − Gka24,

b2 = −(yk−1, rk−3) − Gk(yk−2, rk−4) = −a31 − Gka34,

b3 = −(yk, rk−3) − Gk(yk−1, rk−4) = −a41 − Gka44,

b4 = −(yk+1, rk−3) − Gk(yk, rk−4) = −a51 − Gka54,

b5 = −c(xk+2Pk−3) − Gkc(xk+1Pk−4) = −s − Gkt,

where s = c(xk+2Pk−3) = (yk+2, rk−3), t = c(xk+1Pk−4) = (yk+1, rk−4).

Since all previous formulae are valid for k ≥ 4, therefor we need r1, r2, r3, x1, x2 and x3,

which are necessary to evaluate (2.134) and (2.135) recursively, which are below.

Since rk = Pk(A)r0, therefore, we can write using (1.11), we get


























r1 = r0 −
c0

c1
Ar0,

x1 = x0 +
c0

c1
r0.

(2.138)

Where ci = (y,Air0). Again using (1.11), we get


























r2 = r0 − αAr0 + βA
2r0,

x2 = x0 + αr0 − βAr0,

(2.139)

with α = c0c3−c1c2

ρ
, β =

c0c2−c2
1

ρ
and ρ = c1c3 − c2

2.

Again using (1.11), we get


























r3 = r0 − ηAr0 + µA2r0 − νA
3r0,

x3 = x0 + ηr0 − µAr0 + νA
2r0.

(2.140)

Where

η =
c0(c3c5 − c2

4
) − c2(c1c5 − c2c4) + c3(c1c4 − c2c3)

ω
,

µ =
c0(c2c5 − c3c4) − c1(c1c5 − c2c4) + c3(c1c3 − c2

2)

ω
,
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ν =
c0(c2c4 − c2

3) − c1(c1c4 − c2c3) + c2(c1c3 − c2
2)

ω
,

with ω = c1(c3c5 − c2
4
) − c2(c2c5 − c3c4) + c3(c2c4 − c2

3
).

We finally have the following algorithm after gathering together all these formulae.

Algorithm 1 Lanczos-type Algorithm based on relation A20

Input: A an n × n matrix, b an n-vector.
Output: the approximations solution, xk, norm of the residual, ‖rk‖.
Initializations: Choose x0 and y, such that y , 0 and the tolerance ε to 1.0E − 13.

Set: r0 = b − Ax0, y0 = y.
Compute:

c0, c1, c2, c3, c4 and c5 as in (1.23b).
r1, x1, r2, x2, r3 and x3 as in (2.138), (2.139) and (2.140).
y1, y2, y3, y4, y5 with yk = ATyk−1.
k = 4,

While ‖rk‖ > ε do
yk+2 = ATyk+1,
Ak, as in (2.4),
Bk, Ck, Dk, Hk and Ik, as in (2.15);
Gk, as in (2.137).

rk = Ak

{

(A3 + BkA
2 + CkA +Dk)rk−3 + (GkA

2 +HkA + Ik)rk−4

}

,

xk = Ak

{

Ikxk−4 +Dkxk−3 − (A2 + BkA + Ck)rk−3 − (GkA +Hk)rk−4

}

.

k = k + 1,
EndWhile
Obtain the approximate solution as well as the residual norm;
sollast = xk,
normlast = ‖rk‖.
Stop.

2.4.2 Lanczos-type Algorithm Based on A22/B19

From recurrence relation A22 of subsection 2.2.3, the equation (2.33), after replacing x by A.

Since rk = Pk(A)r0, we have

rk = rk−3 + Ak

{

(A3 + BkA
2 + CkA)rk−3 + (FkA

3 + GkA
2 +HkA)zk−4

}

. (2.141)
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∵ AkDk = 1. Using rk = b − Axk, we get

xk = xk−3 − Ak

{

(A2 + BkA + Ck)rk−3 + (FkA
2 + GkA +Hk)zk−4

}

. (2.142)

Equations (2.141) and (2.142) define a Lanczos-type algorithm. Now, we have to find the

expressions of the coefficients Ak, Bk, Ck, Dk, Fk, Gk, and Hk appearing in them, have been

derived in subsection 2.2.3. Therefore, we can write using Eq (2.136) we get

Fk = −
(yk−3, rk−3)

(yk−3, zk−4)
. (2.143)

The rest of the coefficents can be written explicitly as follow;

a11 = (yk−3, rk−3), a14 = (yk−3, zk−4), a21 = (yk−2, rk−3), a22 = a11, a24 = (yk−2, zk−4), a25 = a14,

a31 = (yk−1, rk−3), a32 = a21, a33 = a11, a34 = (yk−1, zk−4), a35 = a24, a41 = (yk, rk−3), a42 = a31,

a43 = a21, a44 = (yk, zk−4), a45 = a34, a51 = (yk+1, rk−3), a52 = a41, a53 = a31, a54 = (yk+1, zk−4),

a55 = a44,

Using these relations we get

b1 = −(yk−2, rk−3)−Fk(yk−2, zk−4) = −a21−Fka24, b2 = −(yk−1, rk−3)−Fk(yk−1, zk−4) = −a31−Fka34,

b3 = −(yk, rk−3) − Fk(yk, zk−4) = −a41 − Fka44, b4 = −(yk+1, rk−3) − Fk(yk+1, zk−4) = a51 − Fka54,

b5 = −c(xk+2Pk−3) − Fkc
(1)(xk+1P(1)

k−4
) = −s − Fkt,

s = c(xk+2Pk−3) = (yk+2, rk−3), t = c(1)(xk+1P(1)

k−4
) = (yk+2, zk−4)

All previous formulae are valid for k ≥ 4, therefor we need r1, r2, r3, x1, x2 and x3, which are

necessary to evaluate (2.141) and (2.142) recursively, which can be computed by equations

(2.138), (2.139) and (2.140) respectively.

From recurrence relation B19 of subsection 2.3.3, the equation (2.120), after replacing x by

A. Since zk = P(1)

k
(A)r0, we have

zk = (C1
kA2 +D1

kA + E1
k)zk−4 + (A3 +G1

kA2 +H1
kA + I1

k )zk−3. (2.144)
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Now, we have to find the expressions of the coefficients C1
k
, D1

k
, E1

k
, G1

k
, H1

k
and I1

k
appearing

in them, have been derived in subsection 2.3.3. Therefore, we can write using Eq (2.136)

we get

C1
k = −

(yk−2, zk−3)

(yk−3, zk−4)
. (2.145)

The rest of the coefficents can be written explicitly as follow;

a11 = (yk−3, zk−4), a13 = (yk−2, zk−3), a21 = (yk−2, zk−4), a22 = a11, a23 = (yk−1, zk−3), a24 = a13,

a31 = (yk−1, zk−4), a32 = a21, a33 = (yk, zk−3), a34 = a23, a35 = a13, a41 = (yk, zk−4), a42 = a31,

a43 = (yk+1, zk−3), a44 = a33, a45 = a23, a51 = (yk+1, zk−4), a52 = a41, a53 = (yk+2, zk−3),

a54 = a43, a55 = a33,

Using these relations we get

b1 = −(yk−1, zk−3)−C1
k
(yk−2, zk−4) = −a23−C1

k
a21, b2 = −(yk, zk−3)−C1

k
(yk−1, zk−4) = −a33−C1

k
a31,

b3 = −(yk+1, zk−3)−C1
k
(yk, zk−4) = −a43−C1

k
a41, b4 = −(yk+2, zk−3)−C1

k
(yk+1, zk−4) = −a53−C1

k
a51,

b5 = −c(1)(xk+2P(1)

k−3
) − C1

k
c(1)(xk+1P(1)

k−4
) = −s − C1

k
t

where s = (yk+3, zk−3) and t = (yk+2, zk−4) If ∆k = 0, then there is ghost-breakdown, [12, 18].

For k ≥ 4, all above formulae are valid. This means that we have to find z1, z2 and z3 by

alternative ways. Since zk = P(1)

k
r0,, therefore, we can write using (1.16), we get

z1 = Ar0 −
c2

c1
r0. (2.146)

Again from (1.16), we have

z2 = A2r0 − µAr0 + νr0, (2.147)

where µ = c1c4−c2c3

ρ
, ν =

c2c4−c2
3

ρ
with ρ = c1c3 − c2

2.

Similarly we have

z3 = A3r0 − η
′A2r0 + µ

′Ar0 − ν
′r0. (2.148)
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where
η′ =

c1(c3c6 − c4c5) − c2(c2c6 − c3c5) + c4(c2c4 − c2
3)

ρ′
,

µ′ =
c1(c4c6 − c2

5) − c3(c2c6 − c3c5) + c4(c2c5 − c4c3)

ρ′
,

ν′ =
c2(c4c6 − c2

5
) − c3(c3c6 − c4c5) + c4(c3c5 − c2

4
)

ρ′
.

with ρ′ = c1(c3c5 − c2
4
) − c2(c2c5 − c3c4) + c3(c2c4 − c2

3
).

We finally have the following algorithm after gathering together all these formulae.

Algorithm 2 Lanczos-type Algorithm based on relations A22/B19

Input: A an n × n matrix, b an n-vector.
Output: the approximations solution, xk, norm of the residual, ‖rk‖.
Initializations: Choose x0 and y, such that y , 0 and the tolerance ε to 1.0E − 13.

Set r0 = b − Ax0; y0 = y; z0 = r0.
Compute:

c0, c1, c2, c3, c4 and c5; as in (1.23b).
r1, x1, r2, x2, r3 and x3 as in (2.138), (2.139) and (2.140).
z1, z2, and z3, as in (2.146), (2.147) and (2.148).
y1, y2, y3, y4 with yk = ATyk−1.
k = 3;

While ‖rk‖ > ε do
yk+2 = ATyk+1.
Ak, as in (2.24),
Bk, Ck, Dk, Gk, and Hk, as in (2.32);
Fk as in (2.143).

rk = rK−3 + Ak

{

(A3 + BkA
2 + CkA)rk−3 + (FkA

3 + GkA
2 +HkA)zk−4

}

,

xk = xk−3 − Ak

{

(A2 + BkA + Ck)rk−3 + (FkA
2 +Gk)A +Hk)zk−4

}

.

C1
k
, as in (2.145);

D1
k
, E1

k
, G1

k
, H1

k
, and I1

k
as in (2.119).

zk = (C1
k
A2 +D1

k
A + E1

k
)zk−4 + (A3 +G1

k
A2 +H1

k
A + I1

k
)zk−3.

k = k + 1,
EndWhile
Obtain the approximate solution as well as the residual norm;
sollast = xk,
normlast = ‖rk‖.
Stop.
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2.4.3 Lanczos-type Algorithm Based on A22/B21

The relation A22 of this algorithm have already been derived in subsection 2.4.2. From Eqs

(2.141) and (2.142) we have


























rk(x) = rk−3 + Ak

{

(A3 + BkA
2 + CkA)rk−3 + (FkA

3 + GkA
2 +HkA)zk−4(x)

}

,

xk = xk−3 − Ak

{

(A2 + BkA + Ck)rk−3 + (FkA
2 +GkA +Hk)zk−4

}

.

(2.149)

Equations (2.149) define a Lanczos-type algorithm. Now, we have to find the expressions

of the coefficients Ak, Bk, Ck, Dk, Fk, Gk, and Hk appearing in them, have been derived in

subsection 2.4.2. Since all previous formulae are valid for k ≥ 4, therefore we need r1, r2,

r3, x1, x2 and x3, which are necessary to evaluate (2.149) recursively, which are given as in

equations (2.138), (2.139) and (2.140).

From relation B21 of subsection 2.3.5, the Eq (2.133), after replacing x by A.

Since zk = P(1)

k
(A)r0 we have

zk = (B1
kA2rk−3 + C1

kArk−3 +D1
krk−3 +A3zk−3 + F1

kA2zk−3 + G1
kAzk−3 +H1

kzk−3). (2.150)

Now, we have to find the expressions of the coefficients B1
k
, C1

k
, D1

k
, F1

k
, G1

k
, and H1

k
appearing

in them, have been derived in subsection 2.3.5. Therefore, we can write using Eq (2.136)

we get

B1
k = −

(yk−2, zk−3)

(yk−3, rk−3)
. (2.151)

The rest of the coefficents can be written explicitly as follow;

a11 = (yk−3, rk−3), a13 = (yk−2, zk−3), a21 = (yk−2, rk−3), a22 = a11, a23 = (yk−1, zk−3), a24 = a13,

a31 = (yk−1, rk−3), a32 = a21, a33 = (yk, zk−3), a34 = (yk−1, zk−3), a35 = a13, a41 = (yk, rk−3),

a42 = a31, a43 = (yk+1, zk−3), a44 = a33, a45 = a23, a51 = (yk+1, rk−3), a52 = a41, a53 = (yk+2, zk−3),

a54 = a43, a55 = a33
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Using these relations we get

b1 = −(yk−1, zk−3) − B1
k
(yk−2, rk−3) = −a23 − B1

k
a21, b2 = −(yk, zk−3) − B1

k
(yk−1, rk−3) = −a33 − B1

k
a31

b3 = −(yk+1, zk−3) − B1
k
(yk, rk−3) = −a43 − B1

k
a41, b4 = −(yk+2, zk−3) − B1

k
(yk+1, rk−3) = −a53 − B1

k
a51

b5 = −(yk+3, zk−3) − B1
k
(yk+2, rk−3) = −s′ − B1

k
t′,

where s′ = (yk+3, zk−3) and t′ = (yk+2, rk−3).

If ∆k = 0, then there is ghost-breakdown, [12, 18]. For k ≥ 3, all above formulae are valid.

This means that we have to find z1, z2 and z3 by alternative ways as in subsection 2.4.2.

Which can be computed by equations (2.146), (2.147) and (2.18).

We finally have the following algorithm after gathering together all these formulae.

Algorithm 3 Lanczos-type Algorithm based on relations A22/B21

Input: A an n × n matrix, b an n-vector.
Output: the approximations solution, xk, norm of the residual, ‖rk‖.
Initializations: Choose x0 and y, such that y , 0 and the tolerance ε to 1.0E − 13.

Set r0 = b − Ax0; y0 = y; z0 = r0.
Compute:

c0, c1, c2, c3, c4 and c5; as in (1.23b),
r1, x1, r2, x2, r3 and x3 as in (2.138), (2.139) and (2.140),
z1, z2, and z3, as in (2.146), (2.147) and (2.148),
y1, y2, y3, y4 with yk = ATyk−1.
k = 3,

While ‖rk‖ > ε do
yk+2 = ATyk+1,
Ak, as in (2.24), Bk, Ck, Dk, Gk, and Hk, as in (2.32) and Fk as in (2.143),

rk = rk−3 + Ak

{

(A3 + BkA
2 + CkA)rk−3 + (FkA

3 + GkA
2 +HkA)zk−4

}

,

xk = xk−3 − Ak

{

(A2 + BkA + Ck)rk−3 + (FkA
2 +Gk)A +Hk)zk−4

}

.

B1
k
, as in (2.151) and C1

k
, D1

k
, F1

k
, G1

k
, and H1

k
, as in (2.132),

zk = (B′
k
A2 + C′

k
A +D′

k
)rk−3 + (A3 + F′

k
A2 + G′

k
A +H′

k
)zk−3.

k = k + 1,
EndWhile
Obtain the approximate solution as well as the residual norm;
sollast = xk,
normlast = ‖rk‖.
Stop.
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2.4.4 Lanczos-type Algorithm Based on A25/B19

From relation A25 of subsection 2.2.6, Eq (2.70), after replacing x by A. Since rk = Pk(A)r0,

we have

rk(x) = rk−3 + (BkA
2 + CkA)rk−3 + (EkA

3 + FkA
2 + GkA)zk−3. (2.152)

Using rk = b −Axk, we get

xk = xk−3 − (BkA + CkI)rk−3 − (EkA
2 + FkA +Gk)zk−3. (2.153)

Eqs (2.152) and (2.153) define a Lanczos-type algorithm. Now, we have to find the ex-

pressions of the coefficients Bk, Ck, Ek, Fk, and Gk appearing in them, have been derived in

subsection 2.2.6.

The rest of the coefficient can be written explicitly as follow:

a11 = (yk−3, rk−3), a13 = (yk−2, zk−3),

a21 = (yk−2, rk−3), a22 = a11, a23 = (yk−1, zk−3), a24 = a13,

a31 = (yk−1, rk−3), a32 = a21, a33 = (yk, zk−3), a34 = a23, a35 = a24,

a41 = (yk, rk−3), a42 = a31, a43 = (yk+1, zk−3), a44 = a33, a45 = a34,

a51 = (yk+1, rk−3), a52 = a41, a53 = (yk+2, zk−3), a54 = a43, a55 = a44,

Using these relations we get

b3 = −(yk−3, rk−3) = −a11,

b4 = −(yk−2, rk−3) = −a21,

b5 = −(yk−1, rk−3) = −a31,

Since all previous formulae are valid for k ≥ 3, therefor we need r1, r2, x1, and x2, which are

necessary to evaluate (2.152) and (2.153) recursively, which are given as in Eqs (2.138) and

(2.139).
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From relation B19 of subsection 2.4.2, we have

zk = (C1
kA2 +D1

kA + E1
k)Zk−4 + (A3 + G1

kA2 +H1
kA + I1

k )zk−3. (2.154)

Note that the coefficients of (2.154) are already derived in subsection 2.4.2. We finally have

the following algorithm after gathering together all these formulae.

Algorithm 4 Lanczos-type Algorithm based on relations A25/B19

Input: A an n × n matrix, b an n-vector.
Output: the approximations solution, xk, norm of the residual, ‖rk‖.
Initializations: Choose x0 and y, such that y , 0 and the tolerance ε to 1.0E − 13.

Set r0 = b − Ax0; y0 = y; z0 = r0.
Compute:

c0, c1, c2, c3, c4 and c5; as in (1.23b).
r1, x1, r2, x2, r3 and x3 as in (2.138), (2.139) and (2.140).
z1, z2, and z3, as in (2.146), (2.147) and (2.148).
y1, y2, y3, y4 with yk = ATyk−1.
k = 3,

While ‖rk‖ > ε do
yk+2 = ATyk+1.
Bk, Ck, Ek, Fk, and Gk, as in (2.69).
rk = rk−3 + (BkA

2 + CkA)rk−3 + (EkA
3 + FkA

2 +GkA)zk−3,
xk = xk−3 − (BkA + Ck)rk−3 − (EkA

2 + FkA + Gk)zk−3.
C1

k
, as in (2.145);

D1
k
, E1

k
, G1

k
, H1

k
and I1

k
, as in (2.119),

zk = (C′
k
A2 +D′

k
A + E′

k
)zk−4 + (A3 + G′

k
A2 +H′

k
A + I′

k
)zk−3.

k = k + 1,
EndWhile
Obtain the approximate solution as well as the residual norm;
sollast = xk,
normlast = ‖rk‖.
Stop.

2.4.5 Lanczos-type Algorithm Based on A25/B21

From equations (2.152) and (2.153) of subsection 2.4.4, we have


























rk = rk−3 + (BkA
2 + CkA)rk−3 + (EkA

3 + FkA
2 + GkA)zk−3.,

xk = xk−3 − (BkA + CkI)rk−3 − (EkA
2 + FkA + Gk)zk−3.

(2.155)
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With all coefficients involved have been derived in subsection 2.4.4.

The equation (2.150) of subsection 2.4.3, we have

zk = (BkA
2rk−3 + CkArk−3 +Dkrk−3 + A3zk−3 + FkA

2zk−3 +GkAzk−3 +Hkzk−3),

with all coefficients involved already derived in subsection 2.4.3. We finally have the

following algorithm after gathering together all these formulae.

Algorithm 5 Lanczos-type Algorithm based on relations A25/B21

Input: A an n × n matrix, b an n-vector.
Output: the approximations solution, xk, norm of the residual, ‖rk‖.
Initializations: Choose x0 and y, such that y , 0 and the tolerance ε to 1.0E − 13.

Set r0 = b − Ax0; y0 = y; z0 = r0.
Compute:

c0, c1, c2, c3, c4 and c5 as in (1.23b),
r1, x1, r2, x2, r3 and x3 as in (2.138), (2.139) and (2.140),
z1, z2, and z3, as in (2.146), (2.147) and (2.148),
y1, y2, y3, y4 with yk = ATyk−1.
k = 3.

While ‖rk‖ > ε do
yk+2 = ATyk+1,
Bk, Ck, Ek, Fk, and Gk as in (2.69),
rk = rk−3 + (BkA

2 + CkA)rk−3 + (EkA
3 + FkA

2 +GkA)zk−3,
xk = xk−3 − (BkA + Ck)rk−3 − (EkA

2 + FkA + Gk)zk−3.
B1

k
, as in (2.151);

C1
k
, D1

k
, F1

k
, G1

k
, and H1

k
, as in (2.132),

zk = (B′
k
A2 + C′

k
A +D′

k
)rk−3 + (A3 + F′

k
A2 + G′

k
A +H′

k
)zk−3.

k = k + 1,
EndWhile
Obtain the approximate solution as well as the residual norm;
sollast = xk,
normlast = ‖rk‖.
Stop.

2.4.6 Lanczos-type Algorithm Based on A28/B19

From relation A28 of subsection 2.2.9, the equation (2.96), after replacing x by A. Since

rk = Pk(A)r0, we have

rk(x) = rk−2 + Ak{A
2rk−2 + BkArk−2 + EkA

2zk−3 + FkAzk−3}. (2.156)
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Using rk = b −Axk, we get

xk = xk−2 −Ak

{

Ark−2 + Bkrk−2 + EkAzk−3 + Fkzk−3

}

. (2.157)

Equations (2.156) and (2.157) define a Lanczos-type algorithm. Now, we have to find the

expressions of the coefficients Ak, Bk, Ck, Ek and Fk, appearing in them, have been derived

in subsection (2.2.9). Therefore, we can write using equation (2.136) we get

Ek = −
(yk−2, rk−2)

(yk−2, zk−3)
. (2.158)

The rest of the coefficient can be written explicitly as follow:

a11 = (yk−2, rk−2), a13 = (yk−2, zk−3),

a21 = (yk−1, rk−2), a22 = a11, a23 = (yk−1, zk−3),

a31 = (yk, rk−2), a32 = a21, a33 = (yk,Zk−3)

Using these relations we get

b1 = −a21 − Eka23,

b2 = −a31 − Eka33,

b3 = −s − tEk, where s = (yk+1, rk−2) and t = (yk+1, zk−3).

Equations (2.156) and (2.157) are valid for k ≥ 3. We need r1, x1, r2 and x2, which can be

evaluated by equations (2.138) and (2.139).

Eq (2.144), from relation B19 of subsection 2.4.2, we have

zk = (C1
kA2 +D1

kA + E1
k)Zk−4 + (A3 + G1

kA2 +H1
kA + I1

k )zk−3. (2.159)

Now, we have to find the expressions of the coefficients C1
k
, D1

k
, E1

k
, G1

k
, H1

k
and I1

k
appearing

in them, have already been derived in subsection 2.4.2. We finally have the following

algorithm after gathering together all these formulae.
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Algorithm 6 Lanczos-type Algorithm based on relations A28/B19

Input: A an n × n matrix, b an n-vector.
Output: the approximations solution, xk, norm of the residual, ‖rk‖.
Initializations: Choose x0 and y, such that y , 0 and the tolerance ε to 1.0E − 13.

Set r0 = b − Ax0; y0 = y; z0 = r0;
Compute:

c0, c1, c2, c3, c4 and c5; as in (1.23b),
r1, x1, r2, x2, r3 and x3 as in (2.138), (2.139) and (2.140),
z1, z2, and z3, as in (2.146), (2.147) and (2.148),
y1, y2, y3, y4 with yk = ATyk−1.
k = 3.

While ‖rk‖ > ε do
yk+2 = ATyk+1,
Ak, Ek, Bk, Ck, and Fk, as in (2.89), (2.158) and (2.95) respectively,
rk = rk−2 + Ak{A

2rk−2 + BkArk−2 + EkA
2zk−3 + FkAzk−3},

xk = xk−2 − Ak{Ark−2 + Bkrk−2 + EkAzk−3 + Fkzk−3}.
C1

k
, as in (2.145);

D1
k
, E1

k
, G1

k
, H1

k
, and I1

k
, as in (2.119),

zk = (C′
k
A2 +D′

k
A + E′

k
)zk−4 + (A3 + G′

k
A2 +H′

k
A + I′

k
)zk−3.

k = k + 1.
EndWhile
Obtain the approximate solution as well as the residual norm;
sollast = xk,
normlast = ‖rk‖.
Stop.

2.4.7 Lanczos-type Algorithm Based on A28/B21

From equations (2.156) and (2.157) of subsection 2.4.6, we have


























rk = rk−2 + Ak{A
2rk−2 + BkArk−2 + EkA

2zk−3 + FkAzk−3},

xk = xk−2 − Ak

{

Ark−2 + Bkrk−2 + EkAzk−3 + Fkzk−3

}

.

(2.160)

with all coefficients involved being already derived in subsection 2.4.6.

From Eq 2.150, of subsection 2.4.3, we have

zk = (B1
kA2rk−3 + C1

kArk−3 +D1
krk−3 +A3zk−3 + F1

kA2zk−3 + G1
kAzk−3 +H1

kzk−3), (2.161)
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with all coefficients involved having been derived in subsection 2.4.3. We finally have the

following algorithm after gathering together all these formulae.

Algorithm 7 Lanczos-type Algorithm based on relations A28/B21

Input: A an n × n matrix, b an n-vector.
Output: the approximations solution, xk, norm of the residual, ‖rk‖.
Initializations: Choose x0 and y, such that y , 0 and the tolerance ε to 1.0E − 13.

Set r0 = b − Ax0; y0 = y; z0 = r0.
Compute:

c0, c1, c2, c3, c4 and c5; as in (1.23b),
r1, x1, r2, x2, r3 and x3 as in (2.138), (2.139) and (2.140),
z1, z2, and z3, as in (2.146), (2.147) and (2.148),
y1, y2, y3, y4 with yk = ATyk−1.
k = 3.

While ‖rk‖ > ε do
yk+2 = ATyk+1,
Ak, Ek, Bk, Ck, and Fk, as in (2.89), (2.158) and (2.95) respectively,
rk = rk−2 + Ak{A

2rk−2 + BkArk−2 + EkA
2zk−3 + FkAzk−3},

xk = xk−2 − Ak{Ark−2 + Bkrk−2 + EkAzk−3 + Fkzk−3}.
B1

k
, as in (2.151);

C1
k
, D1

k
, F1

k
, G1

k
, and H1

k
, as in (2.132)

zk = (B′
k
A2 + C′

k
A +D′

k
)rk−3 + (A3 + F′

k
A2 + G′

k
A +H′

k
)zk−3.

k = k + 1.
EndWhile
Obtain the approximate solution as well as the residual norm.
sollast = xk,
normlast = ‖rk‖.
Stop.

2.5 Numerical results of A20, A22/B19, A22/B21 and A28/B19

We have solved different small size problems [4, 33]. These algorithms are coded out

in Matlab R2014b and run on a PC under the Microsoft Windows 7 Enterprise, with

16.00GB RAM, and processor Intel(R) Core(TM) i5-3570 CPU 3.40GHz. Experimental

results obtained on the test problem Ax = b with A refer to the Baheux-typ problems [4]

as below are recorded in the following table. The stoping criteria is the norm of residual
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‖rk‖ = eps = 1.0E − 13

A =


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
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−I B −I
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... −I B −I
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




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





and α = −1 + δ, β = −1 − δ. The parameter δ takes the value 0 and thus the matrix A is

symmetric and the problem is easy to solve because the region is a regular mesh. While

for all other values of δ the matrix A becomes non-symmetric and the problem is relatively

harder to solve as the region is not regular mesh. The right hand side b is taken to be

b = AX, where X = (1, 1, ...1)T, is the solution of the system. The dimension of B is 10.

The computational results obtained with algorithms A20, A22/B21, A25/B19 and A28/B19 are

recorded in Table 2.1.

Table 2.1: Results of A20, A22/B21, A25/B19 and A28/B19, on Baheux-type problems when δ = 0

Dim of Prob
A20 A22/B21 A25/B19 A28/B19

n1 × n2 = n ‖rk‖ sec ‖rk‖ sec ‖rk‖ t(sec) ‖rk‖ sec
10 1.9828e-14 1.2818E-02 1.5104E-14 4.4420E-03 5.0861E-14 7.4318E-03 3.8274E-14 6.29054E-03
20 NaN 2.5648E-14 5.8613E-03 4.0278E-14 2.1781E-03 8.9743E-14 7.5220E-04
50 NaN NaN NaN NaN

100 NaN NaN NaN NaN
500 NaN NaN NaN NaN

1000 NaN NaN NaN NaN

The experimental results which are recorded in the Table 2.1 show that algorithms

A22/B21, A25/B21 and A28/B19 solved the problems with up to dimension 20. These algo-

rithms failed for n ≥ 30. The reason is obvious, it is due to a division by zero that can not be

avoided when computing the coefficients of those recurrence relations based on Pk(x) and
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P(1)

k
(x). Some of the scalar products in the denominator are as small as E-14, which causes

the breakdown of these Lanczos-type of algorithms and the algorithms have generally to be

stopped. Equivalently, in the recursive computation of FOPs, a breakdown can be caused

by the non-existence of some coefficients of the FOPs involved in the recurrence relations.

Restarting is used to avoid the problem. This strategy either stops the Lancozs-type algo-

rithm pre-emptively and restarts it with some iterate or waits until the breakdown occurs

and then restarts from the last iterate found. Various Krylov subspaces are considered for

the algorithm to start working. The existing algorithms A4, and A12 are considered the

most robust Lanczos-type algorithms according to [4, 33]. Therefore, we have compared

our new algorithms A20 with these on the standard problems considered in [3, 33]. These

breakdowns are mainly of two types:

1. Since all algorithms of this type are based on recurrence relationships between FOPs

Pk(x), these polynomials involve the computation of some scalar products appearing

as denominators and numerators of the coefficients of the recursive relationships,

with some of the denominators becoming smaller than 1.000E − 14 which causes a

breakdown in these algorithms and the algorithms have to be stopped.

2. The breakdown is due to the non-existence of some polynomials Pk(x).

2.6 Restarting Lanczos-type Algorithm based on relation A20

The solution is obtained via restarting algorithm A20 as given in Algorithm 8. Utilizing reg-

ular intervals, the algorithm is restarted using the current iterate. The restarting procedure

can be described follows.
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Algorithm 8 Restarting Lanczos-type Algorithm based on relation A20

Run Algorithm 1 for a fixed number of iterations k or until it halts and obtain the
approximate solution sollast = xk as well as the residual norm normlast = ‖rk‖.
While ‖rk‖ > ε do

initialize it with the current iterate of the algorithm run,
x = sollast,
y = b − Ax.
Run Algorithm 1 for a fixed number of iterations k

EndWhile
Obtain the optimal solution as well as the optimal residual norm as follows
soloptimal = xk

normoptimal = ‖rk‖.
Stop.

2.6.1 Numerical results

The results obtained with Algorithm 8, restarting algorithm A20 on Baheux-type problems

of different dimensions, for different values of δ = 0 [3, 4] are presented in Table 2.2.

Table 2.2: Results of A20, A4 and A12 on Baheux-type problems when δ = 0

Dim of Prob
A20 A4 A12

n1 × n2 = n cycles ‖rk‖ sec cycles ‖rk‖ sec cycles ‖rk‖ sec
10 1 1.9828E-14 5.5432E-01 1 3.7525E-14 3.6798E-01 1 2.2493E-14 3.8486E-01
50 3 6.2988E-14 5.9230E-01 2 2.7427E-14 5.0729E-01 2 9.8576E-15 4.6922E-01

100 3 3.8627E-14 1.4741E+00 2 4.5148E-14 5.7386E-01 3 6.2923E-14 6.4445E-01
500 10 9.6832E-14 4.8584E+00 11 9.2011E-14 7.7663E-01 10 8.6145E-14 8.2438E-01

1000 11 7.8684E-14 2.8250E+01 11 8.3822E-14 1.2431E+00 10 8.2999E-14 1.5196E+00
2000 11 7.5277E-14 2.2839E+02 10 8.5165E-14 2.0823E+00 12 9.2854E-14 3.4794E+00
3000 11 9.9051E-14 5.5966E+02 10 8.8804E-14 3.5308E+00 11 8.5873E-14 6.0836E+00
4000 11 8.9856E-14 1.3869E+03 10 9.3931E-14 5.5072E+00 10 8.2973E-14 1.2737E+01
5000 11 9.1068E-14 2.3177E+03 10 9.6259E-14 7.7054E+00 13 8.8102E-14 8.5873E+01

The Lanczos algorithm based on A20 involves higher degree FOPs, which means that

many coefficients have to be estimated compared to A4 and A12 for instance in A20, A12 and

A4, 7 , 5 and 3 are the number of coefficients respectively. This means error accumulation,

loss of orthogonality and ultimately breakdown are likely to occur. For this reason only

low dimensional problems can be solved without a remedial approach.
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2.7 Summary

This chapter looked at new recurrence relations between FOP’s in a systematic fashion

where some of the relations might lead to new Lanczos-type algorithms. The expression of

their coefficients have also been derived. The recurrence relations investigated here were

not studied before. It was observed that relations A21, A23, A24, A26, A27 B17, B18, and B20

do not exist, while, relations A23, A24, and A27 do exist but could not be used for deriving

Lanczos-type algorithms. Relations A20, A22, A25, A28, B19, and B21 exist and were found

suitable for the implementation of new Lanczos-type algorithms. Relation A20 alone led

to a new Lanczos-type algorithm while the other relations can make new Lanczos-type

algorithms when combined in Ai/B j manner. Possible combinations are:

A22/B19, A22/B21,

A25/B19, A25/B21,

A28/B19, A28/B21.

All the algorithms mentioned above need Pk(x) for the derivation of rk and P(1)

k
(x) for zk

except A20. Algorithms A20, A4 and A12 are tested on some problems of small size. The

results of Algorithm A20 have been compared on problems of various sizes with algorithms

A4 and A12 Lanczos-type algorithms.



Chapter 3

New Recurrence Relations for the

Different Choice of Unit Polynomials

Ui(x)

3.1 Introduction

In this chapter we derive new recurrence relationships between the adjacent orthogonal

polynomials for the different choices of unit polynomial Ui(x) = Pi(x) and Ui(x) = P(1)

i
(x),

that can be used in the derivation of new Lanczos-type algorithms [33].

3.2 Formula Ai when Ui(x) = Pi(x)

Consider the formulae of type Ai for the choice of Ui(x) = Pi(x), which have not been

considered before [33]. These formulae will be used in combination with formulae B j to

derive new Lanczos-type algorithms.

67
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3.2.1 Formula A13new

Consider the following recurrence relationship for k ≥ 3,

Pk(x) = Ak

{

(x2 + Bkx + Ck)Pk−2 + (Dkx
3 + Ekx

2 + Fkx +Gk)P
(1)

k−3

}

, (3.1)

where Pk(x), Pk−2(x) and P(1)

k−3
(x) are polynomials of degree k, k−2 and k−3 respectively. The

constant coefficients Ak, Bk, Ck, Dk, Ek,Fk and Gk are determined by Pk(0) = 1 and imposing

the orthogonality condition (2.1) with respect to the linear function c. Since Pk(0) = 1, ∀ k,

then for x = 0, equation (3.1) becomes

Ak{Ck +GkP
(1)

k−3
} = 1. (3.2)

After multiplying equation (3.1) by Ui a polynomial of exact degree i and applying linear

functional c on both sides it becomes

c(UiPk) = Ak

{

c(x2UiPk−2) + Bkc(xUiPk−2) + Ckc(UiPk−2) +Dkc(x3UiP
(1)

k−3
) + Ekc(x2UiP

(1)

k−3
)

+ Fkc(xUiP
(1)

k−3
) + Gkc(UiP

(1)

k−3
)
}

. (3.3)

Consequently, by applying (2.1), we have the relation for i = 0, 1, ..., k − 1.

c(x2UiPk−2) + Bkc(xUiPk−2) + Ckc(UiPk−2) +Dkc(x3UiP
(1)

k−3
) + Ekc(x2UiP

(1)

k−3
)

+Fkc(xUiP
(1)

k−3
) + Gkc(UiP

(1)

k−3
) = 0.

c(x2UiPk−2) + Bkc(xUiPk−2) + Ckc(UiPk−2) +Dkc
(1)(x2UiP

(1)

k−3
) + Ekc

(1)(xUiP
(1)

k−3
)

+Fkc
(1)(UiP

(1)

k−3
) + Gkc(UiP

(1)

k−3
) = 0. (3.4)

For i = 0, equation (3.4) becomes Gkc(U0P(1)

k−3
) = 0, since

c(U0P(1)

k−3
) , 0 ⇒ Gk = 0.

Therefore, from (3.2) we have

Ak =
1

Ck
.
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The orthogonality condition is always true for i = 0, 1, 2, ......, k− 6.

For i = k − 5, equation (3.4) gives

Dkc
(1)(x2Uk−5P(1)

k−3
) = 0.

⇒ c(1)(x2Uk−5P(1)

k−3
) , 0, Dk = 0. (3.5)

For i = k − 4, equation (3.4) gives

c(x2Uk−4Pk−2) + Ekc
(1)(xUk−4P(1)

k−3
) = 0,

Ek = −
c(x2Uk−4Pk−2)

c(x2Uk−4P(1)

k−3
)
. (3.6)

For i = k − 3, equation (3.4) gives

Bkc(xUk−3Pk−2) + Fkc
(1)(Uk−3P(1)

k−3
) = −c(x2Uk−3Pk−2) − Ekc

(1)(xUk−3P(1)

k−3
) (3.7)

For i = k − 2, equation (3.4) gives

Bkc(xUk−2Pk−2) + Ckc(Uk−2Pk−2) + Fkc
(1)(Uk−2P(1)

k−3
) = −c(x2Uk−2Pk−2) − Ekc

(1)(xUk−2P(1)

k−3
). (3.8)

For i = k − 1, and equation (3.4) gives

Bkc(xUk−1Pk−2) + Ckc(Uk−1Pk−2) + Fkc
(1)(Uk−1P(1)

k−3
) = −c(x2Uk−1Pk−2) − Ekc

(1)(xUk−1P(1)

k−3
). (3.9)

Equations (3.7), (3.8) and (3.9) can be written as

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
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

























a11Bk + a13Fk = b1,

a21Bk + a22Ck + a23Fk = b2,

a31Bk + a32Ck + a33Fk = b3.

(3.10)

Where a11, a13, a21, a22, a23, a31, a32, a33, are the coefficients of Bk, Ck, and Fk. Suppose b1, b2,

and b3 are the corresponding right hand side terms of these equations.










































b1 = −c(x2Uk−3Pk−2) − Ekc(x2Uk−3P(1)

k−3
),

b2 = −c(x2Uk−2Pk−2) − Ekc(x2Uk−2P(1)

k−3
),

b3 = −c(x2Uk−1Pk−2) − Ekc(x2Uk−1P(1)

k−3
).

(3.11)
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If ∆k represents the determinant of the coefficients matrix of (3.10) then we have

∆k = a11(a22a33 − a23a32) + a13(a21a32 − a31a22). (3.12)

If ∆k , 0, then

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


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



















































Bk =
1
∆k
{b1(a22a33 − a23a32) + a13(b2a32 − b3a22)},

Ck =
b2−a21Bk−Fka23

a22
,

Fk =
b1−a11Bk

a13
,

Ak =
1

Ck
.

(3.13)

Since, Dk = Gk = 0, relation A13new becomes

Pk(x) = Ak

{

(x2 + Bkx + Ck)Pk−2(x) + (Ekx
2 + Fkx)P(1)

k−3
(x)
}

. (3.14)

Therefore A13new can lead to a Lanczps-type algorithm.

3.2.2 Formula A16new

Consider the following recurrence relationship for k ≥ 2,

Pk(x) = (Akx
2 + Bkx + Ck)Pk−2 + (Dkx

2 + Ekx + Fk)P
(1)

k−2
, (3.15)

where Pk(x), Pk−2(x) and P(1)

k−2
(x) are polynomials of degree k, k − 2 and k − 2 respectively.

The constant coefficients Ak, Bk, Ck, Dk, Ek,and Fk are determined by Pk(0) = 1 and imposing

the orthogonality condition (2.1) with respect to the linear function c. Since Pk(0) = 1, ∀ k,

then for x = 0, equation (3.15) becomes

Ck + FkP
(1)

k−2
= 1. (3.16)

After multiplying by Ui a polynomial of exact degree i and applying linear functional c on

both sides it becomes

c(UiPk) = Akc(x2UiPk−2) + Bkc(xUiPk−2) + Ckc(UiPk−2) +Dkc(x2UiP
(1)

k−2
)

+Ekc(xUiP
(1)

k−2
) + Fkc(UiP

(1)

k−2
). (3.17)
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Consequently, by applying (2.1), we have the relation for i = 0, 1, ..., k − 1,

Akc(x2UiPk−2) + Bkc(xUiPk−2) + Ckc(UiPk−2) +Dkc(x2UiP
(1)

k−2
) + Ekc(xUiP

(1)

k−2
)

+Fkc(UiP
(1)

k−2
) = 0,

Akc(x2UiPk−2) + Bkc(xUiPk−2) + Ckc(UiPk−2) +Dkc
(1)(xUiP

(1)

k−2
) + Ekc

(1)(UiP
(1)

k−2
)

+Fkc(UiP
(1)

k−2
) = 0. (3.18)

For i = 0, Eq (3.18) becomes Fkc(U0P(1)

k−2
) = 0. Since c(U0P(1)

k−2
) , 0 ⇒ Fk = 0, therefore, from

(3.16) we have

Ck = 1.

The orthogonality condition is always true for i = 0, 1, 2, ......, k− 5.

For i = k − 4, equation (3.18) gives

Akc(x2Uk−4Pk−2) = 0 ⇒ c(1)(x2Uk−4P(1)

k−3
) , 0, Ak = 0.

For i = k − 3, equation (3.18) gives

Bkc(xUk−3Pk−2) +Dkc
(1)(xUk−3P(1)

k−2
) = 0. (3.19)

For i = k − 2, equation (3.18) gives

Bkc(xUk−2Pk−2) +Dkc
(1)(xUk−2P(1)

k−2
+ Ekc

(1)(Uk−2P(1)

k−2
) = −c(Uk−2Pk−2). (3.20)

For i = k − 1, equation (3.18) gives

Bkc(xUk−1Pk−2) +Dkc
(1)(xUk−1P(1)

k−2
) + Ekc

(1)(Uk−1P(1)

k−2
) = −c(Uk−1Pk−2). (3.21)

Equations (3.19), (3.20) and (3.21) can be written as










































a11Bk + a12Dk = 0,

a21Bk + a22Dk + a23Ek = b2,

a31Bk + a32Dk + a33Ek = b3.

(3.22)
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Where a11, a12, a21, a22, a23, a31, a32, a33, are the coefficients of Bk, Dk, and Ek. Suppose b1, b2,

and b3 are the corresponding right hand side terms of these equations.










































b1 = 0,

b2 = −c(Uk−2Pk−2),

b3 = −c(Uk−1Pk−2).

(3.23)

If ∆k represents the determinant of the coefficients matrix of (3.22) then we have

∆k = a11(a22a33 − a23a32) − a12(a21a33 − a31a23).

If ∆k , 0, then










































Bk =
a12(b3a23−b2a33)

∆k
,

Dk = −
a11Bk

a12
,

Ek =
b2−a21Bk−Dka22

a23
.

(3.24)

Since, Ak = Fk = 0, relation A16new becomes

Pk(x) = (Bkx + 1)Pk−2(x) + (Dkx
2 + Ekx)P(1)

k−2
(x). (3.25)

Therefore, A16new can lead to a Lanczos-type algorithm.

3.2.3 Formula A19new

Consider the following recurrence relationship for k ≥ 2,

Pk(x) = (Akx
2 + Bkx + Ck)P

(1)

k−2
+ (Dkx + Ek)Pk−1, (3.26)

where Pk(x), P(1)

k−2
(x) and Pk−1(x) are polynomials of degree k, k − 2 and k − 1 respectively.

The constant coefficients Ak, Bk, Ck, Dk, and Ek, are determined by Pk(0) = 1 and imposing

the orthogonality condition (2.1) with respect to the linear function c. Since Pk(0) = 1, ∀ k,

then for x = 0, equation (3.26) becomes

CkP
(1)

k−2
+ Ek = 1. (3.27)
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After multiplying equation (3.26) by Ui a polynomial of exact degree i and applying linear

functional c on both sides it becomes

c(UiPk) = Akc(x2UiP
(1)

k−2
) + Bkc(xUiP

(1)

k−2
) + Ckc(UiP

(1)

k−2
) +Dkc(xUiPk−1) + Ekc(UiPk−1).

Consequently, by applying (2.1), we have the relation for i = 0, 1, ..., k − 1

Akc(x2UiP
(1)

k−2
) + Bkc(xUiP

(1)

k−2
) + Ckc(UiP

(1)

k−2
) +Dkc(xUiPk−1) + Ekc(UiPk−1) = 0,

Akc
(1)(xUiP

(1)

k−2
) + Bkc

(1)(UiP
(1)

k−2
) + Ckc(UiP

(1)

k−2
) +Dkc(xUiPk−1) + Ekc(UiPk−1) = 0. (3.28)

Equation (3.28) is always true i = 0, 1, 2, ..., k− 4. For i = 0, equation (3.28) becomes

Ckc(U0P(1)

k−2
) = 0, ⇒ c(U0P(1)

k−2
) , 0 ⇒ Ck = 0.

Therefore, from (3.27) we have Ek = 1.

For i = k − 3, equation (3.28) gives

Akc
(1)(xUk−3P(1)

k−2
) = 0 ⇒ c(1)(xUk−3P(1)

k−3
) , 0, ⇒ Ak = 0.

For i = k − 2, equation (3.28) gives

Bkc
(1)(Uk−2P(1)

k−2
) +Dkc(xUk−2Pk−1) = 0. (3.29)

For i = k − 1, equation (3.28) gives

Bkc
(1)(Uk−1P(1)

k−2
) +Dkc(xUk−1Pk−1) + Ekc(Uk−1Pk−1) = 0

∵ Ek = 1, therefore

Bkc
(1)(Uk−1P(1)

k−2
) +Dkc(xUk−1Pk−1) = −c(Uk−1Pk−1). (3.30)

Equations (3.29) and (3.30) can be written as


























a11Bk + a12Dk = 0,

a21Bk + a22Dk = b2.

(3.31)
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Where a11, a12, a21, and a22, are the coefficients of Bk, and Dk. Suppose b2, is the corresponding

right hand side term of these equations.

b2 = −c(Uk−1Pk−1). (3.32)

If ∆k represents the determinant of the coefficients matrix of (3.31) then we have

∆k = a11a22 − a12a21.

If ∆k , 0, then


























Bk = −
a12b2

∆k
,

Dk =
a11b2

∆k
.

(3.33)

Since, Ak = Ck = 0, relation A19new becomes

Pk(x) = BkxP(1)

k−2
(x) + (Dkx + I)Pk−1(x). (3.34)

Therefore, Anew19 can lead to a Lanczos-type algorithm.

3.3 Formula B j when Ui(x) = Pi(x)

Now we consider the formulae of type B j for the choice of Ui(x) = Pi(x), which have not

been considered before [33]. These formulae will be used in combination with formulae Ai

to derive new Lanczos-type algorithms.

3.3.1 Formula B13new

Consider the following recurrence relationship for k ≥ 3,

P(1)

k
= (A1

kx3 + B1
kx2 + C1

kx +D1
k)P(1)

k−3
+ (E1

kx2 + F1
kx + G1

k)P(1)

k−2
, (3.35)

where P(1)

k
, P(1)

k−2
and P(1)

k−3
are polynomials of degree k, k − 2 and k − 3 respectively. The

constant coefficients A1
k
, B1

k
, C1

k
, D1

k
, E1

k
, F1

k
and G1

k
are to be determined by imposing the

orthogonality condition (2.2) with respect to the linear function c(1).
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Multiplying equation (3.35) by Ui a polynomial of exact degree i and applying linear

functional c(1) on both sides it becomes

c(1)(UiP
(1)

k
) = A1

kc(1)(x3UiP
(1)

k−3
) + B1

kc(1)(x2UiP
(1)

k−3
) + C1

kc(1)(xUiP
(1)

k−3
) +D1

kc(1)(UiP
(1)

k−3
) +

E1
kc(1)(x2UiP

(1)

k−2
) + F1

kc(1)(xUiP
(1)

k−2
) + G1

kc(1)(UiP
(1)

k−2
).

Consequently, by applying (2.2), we have the relation for i = 0, 1, ..., k − 1.

A1
kc(1)(x3UiP

(1)

k−3
) + B1

kc(1)(x2UiP
(1)

k−3
) + C1

kc(1)(xUiP
(1)

k−3
) +D1

kc(1)(UiP
(1)

k−3
) +

E1
kc(1)(x2UiP

(1)

k−2
) + F1

kc(1)(xUiP
(1)

k−2
) +G1

kc(1)(UiP
(1)

k−2
) = 0 (3.36)

The orthogonality condition is always true for i = 0, 1, 2, ......, k− 7.

For i = k − 6, equation (3.36) gives

A1
kc(1)(x3Uk−6P(1)

k−3
) = 0 ⇒ c(1)(x3Uk−6P(1)

k−3
) , 0, A1

k = 0.

For i = k − 5, equation (3.36) gives

B1
kc(1)(x2Uk−5P(1)

k−3
) = 0 ⇒ c(1)(x2Uk−5P(1)

k−3
) , 0, B1

k = 0.

For i = k − 4, equation (3.36) gives

C1
kc(1)(xUk−4P(1)

k−3
) + E1

kc(1)(x(2)Uk−4P(1)

k−2
) = 0.

Since P(1)

k
is a monic polynomial of degree k, therefore, Ek = 1.

C1
kc(1)(xUk−4P(1)

k−3
) + c(1)(x2Uk−4P(1)

k−2
) = 0,

C1
k = −

c(x3Uk−4P(1)

k−2
)

c(x2Uk−4P(1)

k−3
)
. (3.37)

For i = k − 3, equation (3.36) gives

D1
kc(1)(Uk−3P(1)

k−3
) + F1

kc(1)(xUk−3P(1)

k−2
) = −c(1)(x2Uk−3P(1)

k−2
) − C1

kc(1)(xUk−3P(1)

k−3
). (3.38)

For i = k − 2, equation (3.36) gives
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D1
kc(1)(Uk−2P(1)

k−3
) + F1

kc(1)(xUk−2P(1)

k−2
) + G1

kc(1)(Uk−2P(1)

k−2
) = −c(1)(x2Uk−2P(1)

k−2
) − C1

kc(1)(xUk−2P(1)

k−3
).

(3.39)

For i = k − 1, and equation (3.36) gives

D1
kc(1)(Uk−1P(1)

k−3
) + F1

kc(1)(xUk−1P(1)

k−2
) + G1

kc(1)(Uk−1P(1)

k−2
) = −c(1)(x2Uk−1P(1)

k−2
) − C1

kc(1)(xUk−1P(1)

k−3
).

(3.40)

Equations (3.38), (3.39) and (3.40) can be written as










































a
′

11
D1

k
+ a

′

12
F1

k
= b

′

1
,

a
′

21
D1

k
+ a

′

22F1
k
+ a

′

23G1
k
= b

′

2,

a
′

31
D1

k
+ a

′

32F1
k
+ a

′

33G1
k
= b

′

3.

(3.41)

Where a
′

11
, a
′

12
, a
′

21
, a
′

22, a
′

23, a
′

31
, a
′

32, a
′

33, are the coefficients of D1
k
, F1

k
, and G1

k
. Suppose b

′

1
, b
′

2,

and b
′

3 are the corresponding right hand side terms of these equations.










































b
′

1
= −c(1)(x2Uk−3P(1)

k−2
) − C1

k
c(1)(xUk−3P(1)

k−3
),

b
′

2 = −c(1)(x2Uk−2P(1)

k−2
) − C1

k
c(1)(xUk−2P(1)

k−3
),

b
′

3 = −c(1)(x2Uk−1P(1)

k−2
) − C1

k
c(1)(xUk−1P(1)

k−3
).

(3.42)

If ∆k represents the determinant of the coefficients matrix of (3.41) then we have

∆k = a
′

11(a
′

22a
′

33 − a
′

23a
′

32) − a
′

12(a
′

21a
′

33 − a
′

31a
′

23), (3.43)

If ∆k , 0, then










































D1
k
= 1
∆k
{b
′

1
(a
′

22a
′

33 − a
′

23a
′

32) − a
′

12
(b
′

2a
′

33 − b
′

3a
′

23)},

F1
k
=

b
′

1
−a
′

11
D1

k

a
′

12

,

G1
k
=

b
′

2−a
′

21
D1

k
−F1

k
a
′

22

a
′

23

.

(3.44)

Since, A1
k
= B1

k
= 0 and E1

k
= 1, relation B13new becomes

P(1)

k
(x) = (C1

kx +D1
k)P(1)

k−3
(x) + (x2 + F1

kx + G1
k)P(1)

k−2
(x). (3.45)

Therefore, B13new can lead to a Lanczos-type algorithm.
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3.3.2 Formula B15new

Consider the following recurrence relationship for k ≥ 2,

P(1)

k
(x) = (A1

kx2 + B1
kx + C1

k)Pk−2 + (D1
kx2 + E1

kx + F1
k)P(1)

k−2
, (3.46)

where P(1)

k
(x), Pk−2(x) and P(1)

k−2
(x) are polynomials of degree k, k − 2 and k − 2 respectively.

The constant coefficients A1
k
, B1

k
, C1

k
, D1

k
, E1

k
, and F1

k
are to be determined by imposing the

orthogonality condition (2.2) with respect to the linear function c(1). After multiplying

equation (3.46) by Ui a polynomial of exact degree i and applying linear functional c(1) on

both sides it becomes

c(1)(UiPk) = A1
kc(1)(x2UiPk−2) + B1

kc(1)(xUiPk−2) + C1
kc(1)(UiPk−2) +D1

kc(1)(x2UiP
(1)

k−2
)

+E1
kc(1)(xUiP

(1)

k−2
) + F1

kc(1)(UiP
(1)

k−2
). (3.47)

Consequently, by applying (2.2), we have the relation for i = 0, 1, ..., k − 1.

A1
kc(x3UiPk−2)+B1

kc(x2UiPk−2)+C1
kc(xUiPk−2)+D1

kc(1)(x2UiP
(1)

k−2
)+E1

kc(1)(xUiP
(1)

k−2
)+F1

kc(1)(UiP
(1)

k−2
) = 0

(3.48)

The orthogonality condition is always true for i = 0, 1, 2, ......, k − 6. For i = k − 5, equation

(3.48) gives

A1
kc(x3Uk−4Pk−2) = 0 ⇒ c(x3Uk−4P(1)

k−3
) , 0, A1

k = 0.

Since P(1)

k
is monic, D1

k
= 1. For i = k − 4, equation (3.48) gives

B1
kc(x2Uk−4Pk−2) +D1

kc(1)(x2Uk−4P(1)

k−2
) = 0,

B1
k = −

c(x3Uk−4P(1)

k−2
)

c(x2Uk−4Pk−2)
. (3.49)

For i = k − 3, equation (3.48) gives

C1
kc(xUk−3Pk−2) + E1

kc(1)(xUk−3P(1)

k−2
) = −c(1)(x2Uk−3P(1)

k−2
) − B1

kc(xUk−3Pk−2). (3.50)
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For i = k − 2, equation (3.48) gives

C1
kc(xUk−2Pk−2) + E1

kc(1)(xUk−2P(1)

k−2
) + F1

kc(1)(Uk−2P(1)

k−2
) = −c(1)(x2Uk−2P(1)

k−2
) − B1

kc(x2Uk−2Pk−2).

(3.51)

For i = k − 1, equation (3.48) gives

C1
kc(xUk−1Pk−2) + E1

kc(1)(xUk−1P(1)

k−2
) + F1

kc(1)(Uk−1P(1)

k−2
) = −c(1)(x2Uk−1P(1)

k−2
) − B1

kc(x2Uk−1Pk−2).

(3.52)
Equations (3.50), (3.51) and (3.52) can be written as











































a
′

11
C1

k
+ a

′

12
E1

k
= b

′

1
,

a
′

21
C1

k
+ a

′

22E1
k
+ a

′

23F1
k
= b

′

2,

a
′

31
C1

k
+ a

′

32E1
k
+ a

′

33F1
k
= b

′

3.

(3.53)

Where a
′

11
, a
′

12
, a
′

21
, a
′

22, a
′

23, a
′

31
, a
′

32, a
′

33, are the coefficients of C1
k
, E1

k
, and F1

k
. Suppose b

′

1
, b
′

2,

and b
′

3 are the corresponding right hand side terms of these equations.










































b
′

1
= −c(x3Uk−3P(1)

k−2
) − B1

k
c(xUk−3Pk−2),

b
′

2 = −c(x3Uk−2P(1)

k−2
) − B1

k
c(x2Uk−2Pk−2),

b
′

3 = −c(x3Uk−1P(1)

k−2
) − B1

k
c(x2Uk−1Pk−2).

(3.54)

If ∆1
k

represents the determinant of the coefficients matrix of (3.53) then we have

∆1
k = a

′

11(a
′

22a
′

33 − a
′

23a
′

32) − a
′

12(a
′

21a
′

33 − a
′

31a
′

23).

If ∆k , 0, then










































C1
k
=

b
′

1
(a
′

22
a
′

33
−a
′

23
a
′

32
)−a
′

12
(b
′

2
a
′

33
−b
′

3
a
′

23
)

∆1
k

,

E1
k
=

b
′

1
−C1

k
a
′

11

a
′

12

,

F1
k
=

b
′

2
−a
′

21
C1

k
−E1

k
a
′

22

a
′

23

.

(3.55)

Since, A1
k
= 0 and D1

k
= 1, relation B15new becomes

P(1)

k
(x) = (B1

kx + C1
k)Pk−2(x) + (x2 + E1

kx + F1
k)P(1)

k−2
(x). (3.56)

This means B15new can lead to the implementation of a Lanczos-type algorithm.
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3.3.3 Formula B16new

Consider the following recurrence relationship for k ≥ 2,

P(1)

k
(x) = (A1

kx2 + B1
kx + C1

k)P(1)

k−2
+ (D1

kx + E1
k)Pk−1, (3.57)

where P(1)

k
(x), P(1)

k−2
(x) and Pk−1(x) are polynomials of degree k, k − 2 and k − 1 respectively.

The constant coefficients A1
k
, B1

k
, C1

k
, D1

k
, and E1

k
, are to be determined by imposing the

orthogonality condition (2.2) with respect to the linear function c(1). After multiplying

(3.57) by Ui a polynomial of exact degree i and applying linear functional c(1) on both sides

it becomes

c(1)(UiP
(1)

k
) = A1

kc(1)(x2UiP
(1)

k−2
)+B1

kc(1)(xUiP
(1)

k−2
)+C1

kc(1)(UiP
(1)

k−2
)+D1

kc(1)(xUiPk−1)+E1
kc(1)(UiPk−1).

(3.58)

Consequently, by applying (2.2), we have the relation for i = 0, 1, ..., k − 1

A1
kc(1)(x2UiP

(1)

k−2
) + B1

kc(1)(xUiP
(1)

k−2
) + C1

kc(1)(UiP
(1)

k−2
) +D1

kc(1)(xUiPk−1) + E1
kc(1)(UiPk−1) = 0,

A1
kc(1)(x2UiP

(1)

k−2
) + B1

kc(1)(xUiP
(1)

k−2
) + C1

kc(1)(UiP
(1)

k−2
) +D1

kc(x2UiPk−1) + E1
kc(xUiPk−1) = 0. (3.59)

Equation (3.59) is always true i = 0, 1, 2, ..., k− 5.

For i = k − 4, equation (3.59) gives

A1
kc(1)(x2Uk−4P(1)

k−2
) = 0 ⇒ c(1)(x2Uk−4P(1)

k−2
) , 0, A1

k = 0.

Since P(1)

k
(x) is monic, therefore D1

k
ak−1 = 1,⇒ D1

k
= 1

ak−1

For i = k − 3, equation (3.59) gives

B1
kc(1)(xUk−3P(1)

k−2
) +D1

kc(1)(xUk−3Pk−1) = 0,⇒ B1
k = −

D1
k
c(1)(xUk−3Pk−1)

c(1)(xUk−3P(1)

k−2
)
.

For i = k − 2, equation (3.59) gives

C1
kc(xUk−2P(1)

k−2
) + E1

kc(xUk−2Pk−1) = −B1
kc(x2Uk−2P(1)

k−2
) −D1

kc(x2Uk−2Pk−1). (3.60)
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For i = k − 1, equation (3.59) gives

C1
kc(xUk−1P(1)

k−2
) + E1

kc(xUk−1Pk−1) = −B1
kc(x2Uk−1P(1)

k−2
) −D1

kc(x2Uk−1Pk−1). (3.61)

Equations (3.60) and (3.61) can be written as


























a
′

11
C1

k
+ a

′

12
E1

k
= b

′

1
,

a
′

21
C1

k
+ a

′

22E1
k
= b

′

2

(3.62)

Where a
′

11
, a
′

12
, a
′

21
, and a

′

22, are the coefficients of C1
k
, and E1

k
, and suppose b

′

1
, and b

′

2 are the

corresponding right hand side terms of these equations.


























b
′

1
= −B1

k
c(x2Uk−2P(1)

k−2
) −D1

k
c(x2Uk−2Pk−1),

b
′

2 = −B1
k
c(x2Uk−1P(1)

k−2
) −D1

k
c(x2Uk−1Pk−1).

(3.63)

If ∆k represents the determinant of the coefficients matrix of (3.62) then we have

∆k = a
′

11a
′

22 − a
′

12a
′

21.

If ∆k , 0, then






























































D1
k
= 1

ak−1
,

B1
k
= −

D1
k
c(x2Pk−3Pk−1)

c(x2Pk−3P
(1)

k−2
)
,

C1
k
=

b
′

1
a
′

22
−b
′

2
a
′

12

∆k
,

E1
k
=

b
′

2a
′

11
−b
′

1
a
′

12

∆k
.

(3.64)

Since, A1
k
= 0, relation B16new becomes

P(1)

k
(x) = (B1

kx + C1
k)P(1)

k−2
(x) + (D1

kx + E1
k)Pk−1(x). (3.65)

This means B16new can lead to the implementation of a Lanczos-type algorithm.

3.4 Lanczos-type Algorithms for the Choice of Ui(x) = Pi(x)

In this chapter, we have derived new FOPs based recurrence formulae. Now we derive

Lanczos-type algorithm which are based on these formulae. If we write rk = Pk(x)r0,

rk = b − Axk and zk = P(1)

k
(x)r0, the formulae Ai provide expressions for rk and xk, and the
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formulae B j help to find zk, recursively.

3.4.1 A16new/B15new Based Lanczos-type Algorithm

From relation A16new of subsection 3.2.2, the equation (3.25), after replacing x by A. Since

rk = Pk(A)r0, we have


























rk = rk−2 + BkArk−2 +DkA
2zk−2 + EkAzk−2,

r̃k = r̃k−2 + BkA
T r̃k−2 +Dk(A

T)2z̃k−2 + EkA
Tz̃k−2.

(3.66)

Using rk = b −Axk, we get

xk = xk−2 − Bkrk−2 −DkAzk−2 − Ekzk−2. (3.67)

The equations (3.66) and (3.67) with all coefficients involved have been derived as (3.24)

in subsection 3.2.2, are valid for k ≥ 2. We have to calculate r1 and x1 differently as in

equations (2.138).

If we set,


























rk = Pkr0, r̃k = Pk(A
T)y,

zk = P(1)

k
(A)r0, z̃k = P(1)

k
(AT)z̃0.

(3.68)

Now, for Ui(x) = Pi(x). Therefore, the rest of the coefficients can be written explicitly as

follow;

a11 = (r̃k−3,Ark−2), a12 = (r̃k−3,A
2zk−2), a21 = (r̃k−2,Ark−2), a22 = (r̃k−2,A

2zk−2),

a23 = (r̃k−2,Azk−2), a31 = (r̃k−2,Ark−1), a32 = (r̃k−1,A
2zk−2), a33 = (r̃k−1,Azk−2).

b1 = 0, b2 = −(r̃k−2, rk−2), b3 = −c(Pk−1Pk−2) = 0.

From formula B15new of subsection 3.3.2, equation (3.56), after replacing x by A. Since

zk = P(1)

k
(A)r0, we have



























zk = BkArk−2 + Ckrk−2 + A2zk−2 + EkAzk−2 + Fkzk−2,

z̃k = BkA
T r̃k−2 + Ckr̃k−2 + (AT)2z̃k−2 + EkA

Tz̃k−2 + Fkz̃k−2.

(3.69)
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The equations (3.69) with all coefficients involved have been derived as (3.49) and (3.55) in

subsection 3.3.2, are valid for k ≥ 2.

Now, for Ui(x) = Pi(x), if we set, rk = Pk(A)r0, r̃k = Pk(A
T)y, and zk = P(1)

k
(A)r0

a
′

11
= (r̃k−3,Ark−2), a

′

12
= (r̃k−3,A

2zk−2), a
′

21
= (r̃k−2,Ark−2), a

′

22 = (r̃k−2,A
2zk−2),

a
′

23 = (r̃k−2,Azk−2), a
′

31
= (r̃k−2,Ark−1), a32 = (r̃k−1,A

2zk−2), a
′

33 = (r̃k−1,Azk−2).

b1 = −(r̃k−3,A
3zk−2) − Bk+1(r̃k−3,A

2rk−2), b2 = −(r̃k−2,A
3zk−2) − Bk+1(r̃k−2,A

2rk−2),

b3 = −(r̃k−1,A
3zk−2) − Bk+1(r̃k−1,A

2rk−2).

After gathering together all these formulae, we finally have the Lanczos algorithm based

on A16new and B15new.

3.4.2 A16new/B16new Based Lanczos-type Algorithm

From equations (3.66), and (3.67), we have










































rk = rk−2 + BkArk−2 +DkA
2zk−2 + EkAzk−2,

r̃k = r̃k−2 + BkA
T r̃k−2 +Dk(A

T)2z̃k−2 + EkA
Tz̃k−2,

xk = xk−2 − Bkrk−2 −DkAzk−2 − Ekzk−2.

(3.70)

The equations (3.70) with all coefficients involved have been derived as (3.24) in subsection

3.2.2, are valid for k ≥ 2. We have to calculate r1 and x1 differently as in equations (2.138).

From formula B16new of subsection 3.3.3, equation (3.65), after replacing x by A. Since

zk = P(1)

k
(A)r0, we have



























zk = BkAzk−2 + Ckzk−2 +DkArk−1 + Ekrk−1.

z̃k = BkA
Tz̃k−2 + Ckz̃k−2 +DkA

Tr̃k−1 + Ekr̃k−1.

(3.71)

The equations (3.71) with all coefficients involved have been derived as (3.64) in subsection

3.3.3, are valid for k ≥ 2. Therefore, we need to find z1 as in Eq (2.146). Since D1
k
= 1

ak−1
is

defined by Pk−1 = ak−1xk−1 + ak−2xk−2 + ... + 1,, and ak = Dak−1, ak−1 = Dk−1kk−2,
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therefore, D1
k
=

D1
k−1

Dk−1
.

Now, for Ui(x) = Pi(x), using Eq (3.68) the rest of the coefficients can be written explicitly

as follows;

a
′

11
= (r̃k−2,Azk−2), a

′

12
= (r̃k−2,Ark−1), a

′

21
= (r̃k−1,Azk−2), a

′

22 = (r̃k−1,Ark−1)

b
′

1
= −Bk(r̃k−2,A

2zk−2) −Dk(r̃k−2,A
2rk−1), b

′

2 = −Bk(r̃k−1,A
2zk−2) −Dk(r̃k−1,A

2rk−1)

After gathering together all these formulae, we finally have the Lanczos algorithm based

on A16new and B16new.

3.4.3 A19new/B15new Based Lanczos-type Algorithm

From formula A19new of subsection 3.2.3, the equation (3.34), after replacing x by A. Since

rk = Pk(A)r0, we have


























rk = rk−1 +DkArk−1 + BkAzk−2,

r̃k = r̃k−1 +DkA
Tr̃k−1 + BkA

Tz̃k−2.

(3.72)

Using rk = b −Axk, we get
xk = xk−1 − Bkzk−2 −Dkrk−1. (3.73)

The equations (3.72) and (3.73) with all coefficients involved having been derived as (3.33)

in subsection 3.2.3, are valid for k ≥ 2. However, we have to calculate r1, x1 differently as

in (2.138) and r̃1 from equations (2.138) we have

r̃1 = r̃0 −
c0

c1

ATr̃0. (3.74)

Now, for Ui(x) = Pi(x), using Eq (3.68) the rest of the coefficients can be written explicitly

as follow;

a11 = (r̃k−2,Azk−2), a12 = (r̃k−2,Ark−1), a21 = (r̃k−1,Azk−2), a22 = (r̃k−1,Ark−1)

b1 = 0, b2 = −(r̃k−1, rk−1).
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From equation (3.68) in subsection (3.4.1), we have for B15new,


























zk = B1
k
Ark−2 + C1

k
rk−2 + A2zk−2 + E1

k
Azk−2 + F1

k
zk−2.

z̃k = B1
k
ATr̃k−2 + C1

k
r̃k−2 + (AT)2z̃k−2 + E1

k
ATz̃k−2 + F1

k
z̃k−2.

(3.75)

The equations (3.75) with all coefficients involved already derived as (3.49) and (3.55) in

subsection 3.3.2, are valid for k ≥ 2. Therefore, we need to find z1, and z̃1 by alternative

ways as in (2.146), (2.147) and (2.148) of subsection 2.4.2.










































z̃1 = Az̃0 −
c2

c1
z̃0,

z̃2 = A2z̃0 − µAz̃0 + νz̃0,

z̃3 = A3z̃0 − η
′A2z̃0 + µ

′Az̃0 − ν
′z̃0.

(3.76)

We finally have Algorithm 9, after gathering together all these formulae.

Algorithm 9 Lanczos-type Algorithm based on relations A19new/B15new

Input: A an n × n matrix, b an n-vector.
Output: the approximations solution, xk, norm of the residual, ‖rk‖.
Initializations: Choose x0 and y, such that y , 0 and the tolerance ε to 1.0E − 13.

Set r0 = b −Ax0, y0 = y, z0 = r0, z̃0 = y, r̃0 = y.
Compute:

c0 and c1, as in (1.23b),
r1, x1, as in (2.138), r̃1, as in (3.74)
z1, as in (2.146), z̃1, z̃2, z̃3 as in (3.76)
k = 2;

While ‖rk‖ > ε do
Bk, Dk as in subsection (3.33),
rk = rk−1 +DkArk−1 + BkAzk−1,
r̃k = r̃k−1 +DkA

′r̃k−1 + BkA
′z̃k−1,

xk = xk−1 −Dkrk−1 − BkAzk−2.
B′

k
, as in (3.49),

C′
k
, E′

k
, F′

k
, as in (3.55),

zk = B′
k
Ark−2 + C′

k
rk−2 + A2zk−2 + E′

k
Azk−2 + F′

k
zk−2,

z̃k = B′
k
A′r̃k−2 + C′

k
r̃k−2 +A′2z̃k−2 + E′

k
A′z̃k−2 + F′

k
z̃k−2.

k = k + 1.
EndWhile
Obtain the approximate solution as well as the residual norm.
sollast = xk,
normlast = ‖rk‖.
Stop.
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3.4.4 A19new/B16new Based Lanczos-type Algorithm

From equation (3.72), and (3.73) in subsection 3.4.3, we have for A19new










































rk = rk−1 +DkArk−1 + BkAzk−2,

r̃k = r̃k−1 +DkA
Tr̃k−1 + BkA

Tz̃k−2,

xk = xk−1 − Bkzk−2 −Dkrk−1.

(3.77)

The Eqs (3.77) with all coefficients involved already derived as Eq (3.33) in subsection 3.2.3,

are valid for k ≥ 2. We have to calculate r1 and x1 differently as Eq (2.138). From Eqs (3.71)

in subsection 3.4.2, we have


























zk = B1
k
Azk−2 + C1

k
zk−2 +D1

k
Ark−1 + E1

k
rk−1,

z̃k = B1
k
ATz̃k−2 + C1

k
z̃k−2 +D1

k
ATr̃k−1 + E1

k
r̃k−1.

(3.78)

Similarly, Eqs (3.78) with all coefficients involved already derived in subsection 3.3.3, are

valid for k ≥ 2. Therefore, we only need to find z1, as Eq (2.146) and z̃1 as Eq (3.76)

3.4.5 Numerical Results of A19new/B15new

The algorithms are coded in Matlab R2014b and run on a PC under Microsoft Windows

7 Enterprise, with 16.00GB RAM, and processor Intel(R) Core(TM) i5-3570 CPU 3.40GHz.

Experimental results are recorded in the Table 3.1 for different size problems ranging from

10 to 5000 of Baheux-type problems [3, 33]. Experimental results on instances of problem

Ax = b with A refer in section 2.5 are recorded in the following Table 3.1. The stoping

criterion is the norm of residual ‖rk‖ = tol = 1.0000E − 13.
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Algorithm 10 Restarting Lanczos-type Algorithm based on relations A19new/B15new

Run Algorithm 9 for a fixed number of iterations k or until it halts;
Obtain the solution sollast = xk as well as the residual norm normlast = ‖rk‖.
While ‖rk‖ > ε do

initialize it with the current iterate of the algorithm run,
x = sollast,
y = b − Ax.
Run Algorithm 9 for a fixed number of iterations k

EndWhile
Obtain the optimal solution as well as the optimal residual norm as follows
soloptimal = xk

normoptimal = ‖rk‖.
Stop.

Table 3.1: Results of Algorithm 9 and Algorithm 10 on Baheux-type problems for δ = 0

Dim of Prob
Algorithm 9 Algorithm 10

n1 × n2 = n ‖rk‖ sec ‖rk‖ sec
10 1.5145E-16 9.8426E-01 1.5145E-16 9.6844E-01
50 1.5310E-14 8.8283E-01 1.5310E-14 9.1245E-01

100 7.0504E-15 9.8697E-01 7.0504E-15 9.3030E-01
200 NaN 8.1359E-14 1.3221E+00
500 NaN 9.3504E-14 1.0537E+01
1000 NaN 9.1007E-14 7.9361E+01
5000 NaN 8.6604E-14 7.5275E+03

10000 NaN 8.5147E-14 5.2613E+04

Table 3.1 lists the results obtained from computations with Algorithm 9 (A19/B15)new,

and its restart version Algorithm 10. It is clear from the results that the Lanczos-type

algorithm suffers from breakdown. It is due to a division by zero that can not be avoided

when computing the coefficients of those recurrence relations based on Pk(x) and P(1)

k
(x).

The coefficients of different recurrence relations between orthogonal polynomials consist

of ratios of scalar products. Some of the scalar products in the denominator are as small

as E-14, which causes the breakdown and the algorithms have to be stopped. Secondly,
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causes of breakdown may be due to the non-existence of some of the FOPs involved in the

recurrence relations. Restarting is used to avoid the problem. This strategy either stops

the Lancozs-type algorithm pre-emptively and restarts it with some iterate or waits until

breakdown occurs and then restarts from the last iterate found.

3.5 Summary

The focus of this chapter was on obtaining the recurrence relations between FOPs taking

into consideration the common family of auxiliary polynomials Ui(x). This relation for

Ui(x) = xi [33] is then explained concisely. Following this, the expressions for the coefficients

of this polynomial are derived for a new choice of Ui(x) = Pi(x). The relations Ai/B j [33] are

also recalled for the same choice of the auxiliary polynomials Ui(x) = Pi(x) or Ui(x) = P(1)

i
(x).

It should be noted that these Lanczos-type of algorithms suffers from breakdown. This

issue is going to be addressed in the next chapter.



Chapter 4

Monitoring breakdown issue in

Lanczos-type algorithms

4.1 Introduction

Because every algorithms relies on different recurrence relations between different FOPs, it

is difficult to generate a test for monitoring the components that cause breakdown which

is valid for all Lanczos-type algorithms. Every algorithm, therefore will have its own test.

This is the best one can do at the moment. It is worth noting that for a given Lanczos-type

algorithm the test works well and prevent the algorithm from breaking down.

4.2 Recalling some existing Lanczos-type algorithms

We revisit some established Lanczos-type algorithms such as A12 [33], Orthores, Orthodir

and Orthomin as mentioned in [4].

88
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4.2.1 Lanczos-type algorithm based on relation A12

Consider the recurrence relationship for k ≥ 3,

Pk(x) = Ak

{

(x2 + Bkx + Ck)Pk−2 + (Dkx
3 + Ekx

2 + Fkx +Gk)Pk−3

}

, (4.1)

where Pk(x), Pk−2(x) and Pk−3(x) are polynomials of degree k, k − 2 and k − 3 respectively.

The constant coefficients Ak, Bk, Ck, Dk, Ek,Fk, and Gk are determined by the normalization

condition Pk(0) = 1 and imposing the orthogonality condition (2.1). For the detailed

derivation, the identification of the coefficients and the algorithm itself, please refer to [33].

From the above we immediately obtain

Pk(x) = Ak

{

(x2 + Bkx + Ck)Pk−2 + (Fkx + Gk)Pk−3

}

. (4.2)

Their coefficients are estimated as Dk = 0 and Ek = 0. If ∆k , 0, then

Bk =
b1(a22a33 − a32a23) + a13(b2a32 − b3a22)

∆k

, (4.3)

where ∆k = a11(a22a33 − a32a23) + a13(a21a32 − a31a22),

Fk = −
c(xk−2Pk−2)

c(xk−3Pk−3)
.


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Gk =
b1−a11Bk

a13
,

Ck =
b2−a21Bk−a23Gk

a22
,

Ak =
1

Ck+Gk
.

(4.4)

Since rk = Pk(A)r0, the equation (4.2), after replacing x by A and using rk = b−Axk, we get


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

rk = Ak

{

(A2 + BkA + Ck)rk−2 + (FkA + Gk)rk−3

}

,

xk = Ak

{

Ckxk−2 + Gkxk−3 − (Ark−2 + Bkrk−2 + Fk)rk−3

}

.

(4.5)

Equations (4.5) define a Lanczos-type algorithm. Now, we have to find the expressions of

the coefficients Ak, Bk, Ck, Fk, and Gk appearing in them. We know that Therefore, we can
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write using Eq (2.136) we get

Fk = −
(yk−2, rk−2)

(yk−3, rk−3)
. (4.6)

The rest of the coefficients can be written explicitly as follows:

a11 = (yk−2, rk−2), a12 = 0, a13 = (yk−3, rk−3),

a21 = (yk−1, rk−2), a22 = a11, a23 = (yk−2, rk−3),

a31 = (yk, rk−2), a32 = a21, a33 = (yk−1, rk−3),

b1 = −a21 − Fka23, b2 = −a31 − Fka33, b3 = −s − Fkt,

where s = (yk+1, rk−2), t = (yk, rk−3)

We finally have the following algorithm after gathering all these formulae [33].

Algorithm 11 Lanczos-type Algorithm based on relation A12

Input: A an n × n matrix, b an n-vector.
Output: the approximations solution, xk, norm of the residual, ‖rk‖.
Initializations: Choose x0 and y, such that y , 0 and the tolerance ε to 1E − 13.

Set r0 = b − Ax0; y0 = y;
Compute:

c0, c1, c2, c3; as in (1.23b)
r1, and x1, as in (2.138), [33]
r2 and x2 and (2.139), [33]
k = 2;

While ‖rk‖ > ε do
yk+1 = ATyk;
Bk as in (4.3),
Ak, Ck, and Gk, as in (4.4),
Fk as in (4.6).
rk and xk as in (4.5).
k = k + 1;

EndWhile
Obtain the approximate solution as well as the residual norm.
sollast = xk;
normlast = ‖rk‖;
Stop.
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4.2.2 Lanczos-type Algorithm Based on Relation A4

Algorithm A4 is well-known as the Orthores algorithm [4]. Let us now consider the

recurrence relation on which it is based. It written can be as

Pk(x) = Ak

{

(x + Bk)Pk−1 + (Ckx
2 +Dkx + Ek)Pk−2

}

, (4.7)

where Pk(x), Pk−1(x) and Pk−2(x) are polynomials of degree k, k−1 and k−2 respectively. The

constant coefficients Ak, Bk, Ck, Dk, and Ek, are determined by the normalization condition

Pk(0) = 1 and imposing the orthogonality condition (2.1). For the detailed derivation, the

identification of the coefficients and the algorithm itself, please refer to [4].

From the above we immediately obtain

Pk(x) = Ak

{

(x + Bkx)Pk−1 + EkPk−2

}

. (4.8)

Their coefficients are estimated as Ck = 0 and Dk = 0,

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Ek = −
c(xk−1Pk−1)

c(xk−2Pk−2)
,

Bk =
−c(xkPk−1)−Ekc(xk−1Pk−2)

c(xk−1Pk−1)
,

Ak =
1

Bk+Ek
.

(4.9)

Since rk = Pk(A)r0, the equation (4.8), after replacing x by A and using rk = b − Axk, we get

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rk = Ak

{

(Ark−1 + Bkrk−1 + Ekrk−2

}

,

xk = Ak

{

Bkxk−1 + Ekxk−2 − rk−1)
}

.

(4.10)

Equations (4.10) define a Lanczos-type algorithm. Now, we have to find the expressions of

the coefficients Ak, Bk, and Ek appearing in them. Therefore, we can write using Eq (2.136)

we get
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
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Ek = −
(yk−1 ,rk−1)

(yk−2 ,rk−2)
,

Bk =
−(yk,rk−1)−Ek(yk−1,rk−2)

(yk−1 ,rk−1)
,

Ak =
1

Bk+Ek
.

(4.11)

After gathering all these formulae, thus, we finally obtain the following algorithm also

known as A4/Orthores [4]

Algorithm 12 Lanczos-type Algorithm based on relation A4

Input: A an n × n matrix, b an n-vector.
Output: the approximations solution, xk, norm of the residual, ‖rk‖.
Initializations: Choose x0 and y, such that y , 0 and the tolerance ε to 1E − 13.

Set r0 = b − Ax0; y0 = y;
Compute:

r1, x1, as in (2.138) [33];
k = 0;

While ‖rk‖ > ε do
yk+1 = ATyk;
Ak, Bk and Ek, for k ≥ 1, and E1 = 0 as in (4.11)
rk and xk as in (4.10)
k = k + 1;

EndWhile
Obtain the approximate solution as well as the residual norm.
sollast = xk;
normlast = ‖rk‖;
Stop.

4.2.3 Lanczos-type Algorithm Based on Relations A8/B10

This kind combination is known as the Orthomin algorithm [4]. The algorithm A8/B10 is

based on recurrence relations A8 and B10 [4].

4.2.3.1 Formula A8

The formula A8 is obtained by calculating recursively the family of orthogonal polynomial

Pk from P(1)

k−1
and Pk−1. Consider the relation below

Pk(x) = (Akx + Bk)P
(1)

k−1
+ (Ckx +Dk)Pk−1. (4.12)
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The constant coefficients Ak, Bk, Ck, and Dk, are determined by the normalization condition

Pk(0) = 1 and imposing the orthogonality condition (2.1). For the detailed derivation, the

identification of the coefficients and the algorithm itself, please refer to [4].

From the above we immediately obtain

Pk(x) = AkxP(1)

k−1
+ Pk−1. (4.13)

Their coefficients are estimated as Bk = 0, Ck = 0, Dk = 1, and

Ak = −
c(xk−1Pk−1)

c(xkP(1)

k−1
)
. (4.14)

Since rk = Pk(A)r0, the equation (4.14), after replacing x by A and using rk = b−Axk, we get

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rk = rk−1 +Akzk−1,

xk = xk−1 − Akzk−1.

(4.15)

with zk defined in Eq (4.20)

Equations (4.15) define a Lanczos-type algorithm. Now, we have to find the expression of

the coefficients Ak, appearing in them. Therefore, we can write using Eq (2.136) we get

Ak = −
(yk−1, rk−1)

(yk−1,Azk−1)
, (4.16)

4.2.3.2 Formula B10

Consider the relation

P(1)

k
(x) = (A1

kx + B1
k)P(1)

k−1
+ C1

kPk, (4.17)

The constant coefficients A1
k
, B1

k
, and C1

k
, are determined by imposing the orthogonality

condition (2.2). For the detailed derivation, the identification of the coefficients and the

algorithm itself, please refer to [4].

From the above we immediately obtain

P(1)

k
(x) = B1

kP(1)

k−1
+ C1

kPk. (4.18)
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Their coefficients are estimated as A1
k
= 0, with C1

k
= 1

ak
and ak being the coefficient of xk in

Pk(x) = akx
k + ... + 1, we have, ak = AkC

1
k−1

ak−1 = Ak.

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B1
k
= −

C1
k
c(xkPk)

c(xkP
(1)
k−1

)
,

C1
k
= 1

Ak
.

(4.19)

Since zk = P(1)

k
(A)r0, the equation (4.19), after replacing x by A, we get

zk = B1
kzk−1 + C1

krk, (4.20)

Now, we have to find the expression of the coefficients B1
k
, and C1

k
appearing in them.

Therefore, we can write using Eq (2.136) we get
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

B1
k
= −

C1
k
(yk,rk)

(yk−1 ,Azk−1)
,

C1
k
= 1

Ak
.

(4.21)

Thus we finally obtain algorithm A8/B10 [4]

Algorithm 13 Lanczos-type Algorithm based on relations A8/B10

Input: A an n × n matrix, b an n-vector.
Output: the approximations solution, xk, norm of the residual, ‖rk‖.
Initializations: Choose x0 and y, such that y , 0 and the tolerance ε to 1E − 13.

Set r0 = b − Ax0; y0 = y, z0 = r0;
Compute:

y1 = ATy0; A1 as in (4.16);
k = 0;

While ‖rk‖ > ε do
yk = ATyk−1;
Ak, as in (4.16);
B1

k
, C1

k
as in (4.21);

rk, xk as in (4.15);
zk as in (4.20);
k = k + 1;

EndWhile
Obtain the approximate solution as well as the residual norm.
sollast = xk;
normlast = ‖rk‖;
Stop.
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4.2.4 Lanczos-type Algorithm Based on Relations A8/B6

The implementation of this combination is known as the Orthodir algorithm [4]. The

algorithm is based on recurrence relations A8 and B6 [4].

4.2.4.1 Formula B6

Consider the relation below

P(1)

k
(x) = (A1

kx2 + B1
kx + C1

k)P(1)

k−2
+ (D1

kx + E1
k)P(1)

k−1
. (4.22)

The constant coefficients A1
k
, B1

k
, C1

k
, D1

k
and E1

k
are determined by imposing the orthogonality

condition (2.1). For the detailed derivation, the identification of the coefficients and the

algorithm itself, please refer to [4].

From the above we immediately obtain

P(1)

k
(x) = C1

kP(1)

k−2
+ (x + E1

k)P(1)

k−1
, (4.23)

Their coefficients are estimated as A1
k
= 0, Bk = 0, D1

k
= 1 and


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C1
k
= −

c(xkP
(1)

k−1
)

c(xk−1P
(1)

k−2
)
,

E1
k
= −

−c(xk+1P
(1)

k−1
)−C1

k
c(xkP

(1)

k−2
)

c(xkP
(1)

k−1
)

.

(4.24)

Since zk = P(1)

k
(A)r0, the equation (4.23), after replacing x by A, we get

zk = C1
kzk−2 + E1

kzk−1 +Azk−1, (4.25)

Now, we have to find the expression of the coefficients C1
k
, and E1

k
appearing in them.

Therefore, we can write using Eq (2.136) we get with

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C1
k
= −

(yk,zk−1)

(yk−1 ,zk−2)
,

E1
k
= −

−(yk,Azk−1)−C1
k
(yk,zk−2)

(yk,zk−1)
.

(4.26)

Let us now design an algorithm which combines A8 and B6 for the computation of the

residuals rk, the corresponding vectors xk from A8 of section 4.2.3.1, and zk, from B6 of
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section 4.2.4.1. Thus we finally obtain the following algorithm A8/B6 [4].

Algorithm 14 Lanczos-type Algorithm based on relations A8/B6

Input: A an n × n matrix, b an n-vector.
Output: the approximations solution, xk, norm of the residual, ‖rk‖.
Initializations: Choose x0 and y, and the tolerance ε to 1.0E − 13.

Set r0 = b − Ax0; y0 = y, z0 = r0;
Compute:

r1, x1, as in (2.138), z1 as in (2.146);
k = 0;

While ‖rk‖ > ε do
yk = ATyk−1;
Ak, as in (4.16) and C1

k+1
, E1

k+1
as in (4.26) respectively;

rk, xk as in (4.15) and zk as in (4.25) respectively;
k = k + 1;

EndWhile
Obtain the approximate solution as well as the residual norm.
sollast = xk;
normlast = ‖rk‖;
Stop.

4.3 Numerical Results

The experimental results which are recorded in Table 4.1 show that algorithms A4, A12,

A8/B6 and A8/B10 solved the problem up to dimension 20. These algorithms failed for

n ≥ 30 and above. The reason is that the Lanczos-type algorithms breaks down. Since

all algorithms of this type are based on recurrence relationships between FOPs Pk(x) and

P(1)

k
(x), the polynomials involve the computation of some scalar products appearing as

denominators and numerators of the coefficients of the recursive relationships. Some

of the denominators becomes smaller than 1.0E − 14 which causes breakdown in these

algorithms and they have to be stopped. The breakdown is also due to the non-existence of

some polynomials Pk(x). This breakdown issue will be discussed and addressed in Section

4.4.
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Table 4.1: Results of Lanczos-type algorithms on Baheux-type problems for δ = 0

Dim of Prob A4 A12 A8/B6 A8/B10

n1 × n2 = n ‖rk‖ t(sec) ‖rk‖ t(sec) ‖ rk ‖ t(sec) ‖ rk ‖ t(sec)
10 3.7525E-14 9.0644E-01 2.2493E-14 8.0559E-01 6.4731E-16 9.0150E-01 3.8369E-14 8.0912E-01
20 5.2880E-14 1.0880E+00 8.6013E-14 1.4494E+00 4.2156E-14 8.7512E-01 1.4607E-14 9.5158E-01
30 NaN NaN NaN NaN

100 NaN NaN NaN NaN

4.4 Pre-emptive restarting approach to Lanczos-type

algorithms

The causes of breakdown in the most common Lanczos-type algorithms can be found by

monitoring the components of the coefficients that blow up prior to breakdown. Our aim

is to investigate the behaviour of the coefficients involved in the recurrence relations and

the parameters of the offending coefficents/denominators of the Lanczos algorithm under

consideration. When any of these offending denominators/coefficents goes to zero/NaN

the Lanczos algorithm fails. The NaN situation arises due to overflow or underflow of the

coefficients involved [39, 46, 47]. After careful monitoring, the coefficients which cause the

breakdown will be identified. A possible remedy to avoid this problem could be to design

a test/rule by which the Lanczos algorithm can be stopped before breakdown. This is

referred to as the break statement. The test might be based on choosing a threshold value ǫ,

for instance, for that parameter in the coefficients which caused breakdown. After deciding

on the threshold, restarting/switching with a pre-emption approach can be implemented.

Algorithm 15 Monitoring Lanczos-type Algorithms

Description:

1: Choose Lanczos-type algorithms based on {A4, A12, A8/B6, A8/B10}

2: Monitor coefficients and denominators:
3: Design a test/rule. The test might be based on choosing a threshold value ǫ, for instance,

for that parameter in the coefficients which caused breakdown:
4: Obtain the approximate solution as well as the residual norm.
5: Stop.
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4.4.1 Monitoring Lanczos-type Algorithm based on relation A12

As an example, the behaviour of coefficients used in Algorithm A12 has been investigated

for δ = 0, 0.2, 5 and 8. First, consider the case of δ = 0. It can be seen in Table 4.2

that the problem of breakdown is caused by the coefficient Ak+1 whose values for various

dimensions are given in column 8 of the table. The corresponding dimensions are given in

the first column of the table and range from 100 to 90000. The coefficient values in column

8 are actually the additive combination of columns 5 and 7. Both column 5 and column 7

seem to have blown up (showing NaN) when column 8 is NaN. Therefore, it is important

to concentrate on each of column 5 and column 7 to see which of their building component

is the culprit. To this end, all the coefficients Ak, Bk, Ck, Fk, Gk and ∆k, can be written in

terms of ai j, i = 1, 2, 3; j = 1, 2, 3 and see which of them causes the breakdown. There will

be a compound term in the expression of the coefficients or cluster of ai j which blows up

(i.e. goes to NaN or∞). While monitoring the A12 algorithm, it turns out that breakdown

is caused by a11 and a13. As shown in Table 4.3, the behaviour of these coefficients is

monitored by trying various values starting from the highest possible value of 1.0E + 103

and 1.0E + 102 for a11 and a13, respectively, and reach the final default values at which the

algorithm does not breakdown for the size of the problem ranging from 100 to 90000. The

observed default values are 1.0E + 80 and 1.0E + 80 for a11 and a13, respectively.

As has been mentioned above, the A12 algorithm is also investigated for systems gen-

erated through discretisation of an integral operator for values δ= 0.2, 5 and 8 as done for

δ = 0, for δ = 0.2, shown in Table A.1. The behaviour of the culprit coefficients is monitored

by trying various values starting from the highest possible value of 1.0E+103 and 1.0E+102
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for a11 and a13, respectively as shown in Table A.4. The final default values for which the

algorithm does not breakdown are ultimately reached. The observed default values are

1.0E + 90 and 1.0E + 90 for a11 and a13, respectively. For δ = 5 as shown in Table A.2, the

observed default values are 1.0E + 90 and 1.0E + 90 for a11 and a13, respectively, with the

starting highest values the same as those for for δ = 0.2 as shown in Table A.5. Similarly, for

δ = 8 the behaviour of coefficients as shown in Table A.3, and the observed default values

are 1.0E + 95 and 1.0E + 95 for a11 and a13, respectively, with the starting highest possible

values of 1.000E + 104 and 1.000E + 101 for a11 and a13, respectively, as shown in Table A.6.

The numerical evidence for the above scenario are recorded in Tables 4.2-A.6. Similar tables

Table 4.2: Behaviour of coefficients of A12 on Baheux-type problems when δ = 0.

Col.1 Col.2 Col.3 Col.4 Col.5 Col.6 Col.7 Col.8
Dim. of A k ∆k Bk Ck Fk Gk Ak

100 148 Inf NaN NaN -4.8175E-01 NaN NaN
500 140 Inf NaN NaN -2.1018E+01 NaN NaN
1000 138 -1.6699E+307 -Inf NaN -2.3393E+01 Inf NaN
5000 139 6.9121E+307 NaN NaN 1.1891E+01 NaN NaN
10000 139 NaN NaN NaN 7.9101E+00 NaN NaN
15000 137 -4.9561E+303 7.6200E+00 Inf 0.0000E+00 7.4146E+00 0.0000E+00
20000 135 -1.5143E+306 -Inf Inf 5.4000E+01 -Inf NaN
30000 138 Inf NaN NaN 3.1908E+00 NaN NaN
40000 139 NaN NaN NaN -5.6457E+02 NaN NaN
50000 122 3.3211E+263 1.1387E+02 NaN 0.0000E+00 8.0000E+01 NaN
60000 138 -Inf NaN NaN 1.2075E-01 NaN NaN
70000 138 -Inf NaN NaN 4.7600E+02 NaN NaN
80000 139 Inf NaN NaN 7.8443E+00 NaN NaN
90000 139 1.1064e+308 -Inf NaN 3.0815E+00 -Inf NaN

are generated for different instances of the problem. These can be seen as Tables A.1-A.3,

subsection A.2.1 of Appendix A. The purpose of these tables is to show that monitoring

by coefficients helps to avoid breakdown. As these tables show, as soon as any of the

entries in a row hits infinity or is Not a Number (Inf or NaN), the Lanczos-type algorithm

breaks down. Note that, while Table 4.2 shows the values of compound coefficient such
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Table 4.3: Behaviour of the parameters of the offending coefficients of A12 on Baheux-type problems when
δ = 0.

Col.1 Col.2 Col.3 Col.4 Col.5 Col.6 Col.7 Col.8
Dim. of A k a11 a13 a21 a23 a31 a33

100 148 1.1549E+102 2.3972E+102 2.7997E+101 3.7936E+103 -3.3596E+102 1.3998E+104
500 140 5.9603E+101 2.8357E+100 1.1013E+104 1.1516E+102 1.7730E+105 5.5652E+103
1000 138 1.8548E+102 7.9288E+100 3.5810E+103 1.5792E+102 6.1768E+104 2.2485E+103
5000 139 -2.6553E+102 2.2330E+101 -5.5792E+103 3.5762E+102 -9.2291E+104 6.3973E+103
10000 139 -6.1593E+102 7.7866E+101 -2.1502E+104 1.1339E+103 -3.8344E+105 1.8982E+104
15000 137 0.0000E+00 -4.4839E+100 3.3246E+101 -6.3430E+101 2.1698E+102 -9.4839E+102
20000 135 -2.9528E+101 5.4681E+99 -7.1917E+102 -1.6536E+102 -1.4320E+104 -5.8233E+103
30000 138 1.8285E+102 -5.7306E+101 3.9895E+103 -1.0271E+103 7.5983E+104 -1.5482E+104
40000 139 -6.9152E+103 -1.2249E+101 -2.1726E+105 -3.2196E+102 -4.2609E+106 -1.4558E+103
50000 122 0.0000E+00 3.7299E+86 -2.9839E+88 3.7797E+88 3.7399E+89 8.0765E+89
60000 138 3.4996E+100 -2.8981E+101 -2.9257E+103 -1.2144E+103 -8.0295E+104 -2.7647E+104
70000 138 -1.2494E+103 2.6247E+100 -2.2341E+104 1.2074E+102 -3.5254E+105 2.0158E+103
80000 139 -3.5258E+102 4.4948E+101 -6.4533E+103 1.5258E+103 -1.1305E+105 3.8209E+104
90000 139 -1.8198E+102 5.9056E+101 -2.6457E+103 8.2591E+102 -3.2924E+104 1.3550E+104

as ∆k, Ak, Bk, Ck, Fk and Gk, Table 4.3 involves the particular parameters of the compound

coefficient which is responsible for the breakdown. Therefore, it is potentially cheaper to

check for breakdown in Table 4.3 than in Table 4.2. Similar tables for different instance

can be found in Tables A.4-A.6, Subsection A.2.1 of Appendix A. After gathering all these,

thus, we finally obtain the following algorithm

Algorithm 16 Monitoring Lanczos-type Algorithms based on relation A12

Input: A an n × n matrix, b an n-vector.
Output: the approximations solution, xk, norm of the residual, ‖rk‖.
Initializations: Choose x0 and y, such that y , 0 and the tolerance ε to 1E − 13.

Set r0 = b − Ax0; y0 = y;
Compute:

r1, x1, r2 and x2 as in (2.138) and (2.139), [33]
k = 2;

While ‖rk‖ > ε
yk+1 = ATyk;
Bk as in (4.3)
Ak, Ck, and Gk, as in (4.4),
Fk as in (4.6);
rk and xk as in (4.5)
/∗Monitor coefficients and denominators: Ak, Bk, Ck, Fk, Gk, a11, a13.∗/
/∗ Design a test/rule. The test might be based on choosing a threshold value ǫ,
for instance, for that parameter in the coefficients which caused breakdown. ∗/
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Algorithm 16 Lanczos-type Algorithm based on relations A12 (continued)

If (|a11| ≤ 1.0E − 25);

display(’Check zero ......’);

break;

End;

If ( |a11| ≥ ωi and |a13| ≥ ωi )

display(’Check Yes ......’);

break;

End;

whereωi = 1.0E + 80, 1.0E + 90, 1.0E + 90, 1.0E + 95
for different δi = 0, 0.2, 5, 8, when i = 1, 2, 3, 4 respectively;
k = k + 1;

EndWhile
Obtain the approximate solution as well as the residual norm;
sollast = xk;
normlast = ‖rk‖;
Stop.

4.4.2 Monitoring Lanczos-type Algorithm based on relation A4 (Orthores)

Similarly to monitoring A12, the behaviour of coefficients used in Algorithm A4 has also

been investigated for δ= 0, 0.2, 5 and 8. Here also, the behaviour of coefficients for δ = 0

are considered first. It can be seen in Table 4.4 that the problem of breakdown is caused by

the coefficient Bk+1 whose values for various dimensions of the test problems are given in

column 4 of the table. The corresponding dimensions are given in the first column of the

table that range from 100 to 90000. The coefficient values in column 4 seem to have blown

up showing ±∞ or NaN. Therefore it becomes important to concentrate on Bk as a good

term to observe in order to detect breakdown. Moreover, when Bk takes ±∞, ak is always

0. Therefore, one can design a test in two parts, one on ak and the other on ck. To this end,

all the coefficients Ak, Bk and Ek can be written in terms of ak, bk, ck and dk to see which
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cluster of these causes the breakdown. Like in A12 algorithm, there will be a compound

term in the expression of the coefficients or cluster of these which blows up (i.e. goes to

NaN or∞). The components that cause the breakdown are ak and ck. As shown in Table 4.5,

the behaviour of these coefficients is monitored by trying various values starting from the

highest possible value of 1.0E+ 292 and 1.0E+ 287 for ak and ck, respectively, and reach the

final default values at which the algorithm does not breakdown for the size of the problem

ranging from 100 to 90000. The observed default values are 1.0E + 124 and 1.0E + 125 for

ak and ck, respectively.

Furthermore, the A4 algorithm is also investigated for discretisation values δ= 0.2, 5 and

8. Similar to δ = 0, for δ = 0.2, as shown in Table A.7 the behaviour of the culprit coefficients

is monitored by trying various values starting from the highest possible value of 1.0E+ 291

and 1.0E + 262 for ak and ck, as shown in Table A.10, respectively, and reaching the final

default values at which the algorithm does not breakdown for the size of the problem

ranging from 100 to 90000. The observed default values are 1.0E + 118 and 1.0E + 119 for

ak and ck, respectively. In a similar fashion, the behaviour of the coefficients for the value

of δ = 5 are shown in Table A.8. The observed default values are 1.0E + 275 and 1.0E + 277

for ak and ck, respectively, with the starting highest values being 1.0E + 293 and 1.0E + 291

as show in Table A.11. Similarly, for δ = 8 the observed default values are 1.0E + 277 and

1.0E + 278 for ak and ck, respectively, with the starting highest values are 1.0E + 295 and

1.0E + 295 as shown in Table A.12. The numerical evidence for the above scenario relating

to algorithm A4 are recorded in Tables 4.4-A.12

Similar tables are generated for different instances of the problem. These can be seen

as Tables A.7-A.9, subsection A.2.2 of Appendix A. The purpose of these tables is to show
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Table 4.4: Behaviour of coefficients of A4 on Baheux-type problems when δ = 0.

Col.1 Col.2 Col.3 Col.4 Col.5
Dim. of A k Ak Bk Ek

100 358 NaN NaN -3.1373E+00
500 352 NaN NaN 1.8452E+01

1000 352 NaN NaN 4.6160E-01
5000 352 NaN NaN 6.9004E+02

10000 182 0.0000E+00 Inf 0.0000E+00
15000 257 0.0000E+00 -Inf 0.0000E+00
20000 237 0.0000E+00 -Inf 0.0000E+00
30000 311 NaN NaN 0.0000E+00
40000 319 0.0000E+00 Inf 0.0000E+00
50000 227 0.0000E+00 -Inf 0.0000E+00
60000 352 NaN NaN 1.4815E+01
70000 147 0.0000E+00 Inf 0.0000E+00
80000 345 0.0000E+00 Inf 0.0000E+00
90000 352 NaN NaN 1.6602E+01

that monitoring by coefficients helps to avoid breakdown. As these tables show, as soon

as any of the entries in a row hits infinity or is Not a Number (Inf or NaN), the Lanczos-

type algorithm breaks down. Note that, while Table 4.4 shows the values of compound

Table 4.5: Behaviour of the parameters of the offending coefficients of A4 on Baheux-type problems when
δ = 0

Col.1 Col.2 Col.3 Col.4 Col.5 Col.6
Dim. of A k ak bk ck dk

100 358 2.2305E+285 7.1098E+284 NaN 3.9406E+285
500 352 2.2297E+292 -1.2084E+291 NaN 3.4070E+292

1000 352 -8.6946E+289 1.8836E+290 NaN 1.8598E+291
5000 352 -5.5848E+291 8.0935E+288 NaN 1.1405E+290

10000 182 0.0000E+00 -2.1331E+141 -3.2391E+141 -3.5654E+142
15000 257 0.0000E+00 8.5280E+205 8.8290E+206 1.3845E+207
20000 237 0.0000E+00 -1.4141E+187 2.0885E+188 4.7862E+188
30000 311 0.0000E+00 1.1914E+253 0.0000E+00 -1.4663E+253
40000 319 0.0000E+00 -3.5363E+260 -1.3530E+262 -1.7835E+261
50000 227 0.0000E+00 -1.0455E+180 2.3341E+180 -1.3162E+181
60000 352 1.2182E+290 -8.2226E+288 NaN 4.3854E+289
70000 147 0.0000E+00 -3.5815E+109 -8.8305E+110 -9.4646E+110
80000 345 0.0000E+00 -5.4950E+284 -1.9034E+287 -5.9202E+285
90000 352 1.6811E+290 -1.0126E+289 NaN 2.0709E+290
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coefficient such as Ak, Bk, and Ek, Table 4.5 involves the particular parameters of the

compound coefficient which is responsible for the breakdown. Therefore, it is potentially

cheaper to check for breakdown in Table 4.5 than in Table 4.4. Similar tables for different

instance can be found in Tables A.10-A.12, Subsection A.2.2 of Appendix A. After gathering

all these, thus, we finally obtain the following algorithm

Algorithm 17 Monitoring Lanczos-type Algorithm based on relation A4

Input: A an n × n matrix, b an n-vector.
Output: the approximations solution, xk, norm of the residual, ‖rk‖.
Initializations: Choose x0 and y, and the tolerance ε to 1E − 13.

Set r0 = b − Ax0; y0 = y;
Compute:

r1, x1, as in (2.138) [33];
k = 0;

While ‖rk‖ > ε
yk = ATyk−1;
Ak, Bk and Ek, for k ≥ 1, and E1 = 0 as in (4.11);
rk and xk as in (4.10)
/∗Monitor Denominators: Ak, Bk, Ek, ak, ck.∗/
/∗ Design a test/rule. The test might be based on choosing a threshold value ǫ,
for instance, for that parameter in the coefficients which caused breakdown. ∗/

If (|ak| ≤ 1.0E − 25);

display(’Check zero ......’);

break;

End;

If (|ak| ≥ αi and |ck| ≥ βi)

display(’Check Yes ......’);

break;

End;

where αi = 1.0E + 124, 1.0E + 118, 1.0E + 275, 1.0E + 277;
where βi = 1.0E + 125, 1.0E + 119, 1.0E + 277, 1.0E + 278;
when i = 1, 2, 3, 4, for different δi = 0, 0.2, 5, 8; respectively;
k = k + 1;

EndWhile
Obtain the approximate solution as well as the residual norm;
sollast = xk;
normlast = ‖rk‖;
Stop.
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4.4.3 Monitoring Lanczos-type Algorithm based on relations A8/B6

Here also, the behaviour of the coefficients used in Algorithm A8/B6 have been investigated

for δ= 0, 0.2, 5 and 8. The behaviour for δ = 0 is considered first. It can be seen in Table

4.6 that the problem of breakdown is caused by the coefficient E1
k

whose values for various

dimension are given in column 5 of the table. The corresponding dimensions are given in

the first column of the table that range from 100 to 90000. The coefficient values in column

5 seem to have blown up showing NaN. Therefore it becomes important to concentrate on

E1
k

as a good term to observe in order to detect breakdown. To this end, all the coefficients

Ak, C1
k

and E1
k
, can be written in terms of ak, bk and ck to see which cluster of these causes

the breakdown. Like in A4 and A12 algorithms, there is a term in the expression of the

coefficients which blows up (i.e. goes to NaN or zero). The components that cause the

breakdown are bk. As shown in Table 4.7, the behaviour of these coefficients is monitored

by trying various values starting from the highest possible value of 1.0E + 295 for bk, and

reach the final default values at which the algorithm does not breakdown for the size of

the problem ranging from 100 to 90000. The observed default values are 1.0E + 90 for bk.

Furthermore, the A8/B6 algorithm is also investigated for discretisation values δ= 0.2, 5

and 8. Similarly to δ = 0, for δ = 0.2, as shown in Table A.13, the behaviour of the culprit

coefficients is monitored by trying various values starting from the highest possible value

of 1.0E + 294 for bk, as shown in Table A.16, and reaching the final default values at which

the algorithm does not breakdown for the size of the problem ranging from 100 to 90000.

The observed default values are 1.0E+ 130 for bk. In a similar fashion, the behaviour of the

coefficients is monitored for the value of δ = 5 shown in Table A.14. The observed default



4.4. Pre-emptive restarting approach to Lanczos-type algorithms 106

values are 1.0E+280 for bk, with the starting highest value 1.0E+294 as show in Table A.17.

Similarly, the behaviour of coefficients for δ = 8 are shown in Table A.15. The observed

default values are 1.0E + 290 for bk, with the starting highest value being 1.0E + 294 as

shown in Table A.18. The numerical evidence for the above scenario relating to algorithm

A8/B6 are recorded in Tables 4.6-A.18

Table 4.6: Behaviour of coefficients of A8/B6 on Baheux-type problems when δ = 0.

Col.1 Col.2 Col.3 Col.4 Col.5

Dim. of A k Ak C1
k

E1
k

100 45 NaN NaN NaN
500 176 NaN NaN NaN
1000 174 NaN NaN NaN
5000 174 NaN NaN NaN

10000 176 NaN NaN NaN
15000 174 NaN NaN NaN
20000 174 NaN NaN NaN
30000 168 NaN NaN NaN
40000 174 NaN NaN NaN
50000 133 NaN NaN NaN
60000 129 NaN NaN NaN
70000 171 NaN NaN NaN
80000 170 NaN NaN NaN
90000 177 NaN NaN NaN

Similar tables are generated for different instances of the problem. These can be seen as

Tables A.13-A.15, subsection A.2.3 of Appendix A. The purpose of these tables is to show

that monitoring by coefficients helps to avoid breakdown. As these tables show, as soon as

any of the entries in a row hits infinity or is Not a Number (Inf or NaN), the Lanczos-type

algorithm breaks down.

Note that, while Table 4.6 shows the values of compound coefficient such as Ak, C1
k
,

and E1
k
, Table 4.7 involves the particular parameters of the compound coefficient which is

responsible for the breakdown. Therefore, it is potentially cheaper to check for breakdown
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Table 4.7: Behaviour of the parameters of the offending coefficients of A8/B6 on Baheux-type problems when
δ = 0

Col.1 Col.2 Col.3 Col.4 Col.5 Col.6 Col.7
Dim. of A k ak bk ck fk ek

100 45 5.0320E+13 NaN -4.3429E+40 -4.4917E+41 NaN
500 176 2.1279E+144 NaN 2.2442E+292 1.1997E+293 NaN

1000 174 7.0826E+141 NaN NaN -3.7561E+294 NaN
5000 174 2.7973E+142 NaN NaN 1.7832E+294 NaN
10000 176 -2.0730E+143 NaN NaN NaN NaN
15000 174 7.7219E+138 NaN NaN -5.9177E+294 NaN
20000 174 -8.2407E+141 NaN NaN NaN NaN
30000 168 1.8353E+136 NaN NaN 1.9360E+294 NaN
40000 174 3.4297E+142 NaN -5.4886E+292 -4.3877E+293 NaN
50000 133 -7.7943E+104 NaN 3.5244E+222 2.2999E+223 NaN
60000 129 NaN NaN -4.0132E+205 5.1369E+207 NaN
70000 171 -2.2328E+140 NaN NaN NaN NaN
80000 170 6.0473E+137 NaN NaN -7.5842E+293 NaN
90000 177 -6.2923E+144 NaN NaN NaN NaN

in Table 4.7 than in Table 4.6. Similar tables for different instance can be found in Tables

A.16-A.18, subsection A.2.3 of Appendix A. After gathering all these, thus, we finally obtain

the following algorithm

Algorithm 18 Monitoring Lanczos-type Algorithm based on relation A8/B6

Input: A an n × n matrix, b an n-vector.
Output: the approximations solution, xk, norm of the residual, ‖rk‖.
Initializations: Choose x0 and y, and the tolerance ε to 1E − 13.

Set r0 = b − Ax0; y0 = y, z0 = r0;
Compute:

r1, x1, as in (2.138);
z1 as in (2.146);
k = 0;

While ‖rk‖ > ε
yk = ATyk−1

Ak, as in (4.16);
rk, xk as in (4.15);
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Algorithm 18 A8/B6 based algorithm(continued)

C1
k
, E1

k
as in (4.26);

zk as in (4.25);
/∗Monitor Denominators: Ak, C1

k
, E1

k
, bk, ck. ∗/

/∗ Design a test/rule. The test might be based on choosing a threshold value ǫ,
for instance, for that parameter in the coefficients which caused breakdown. ∗/

If (|bk| ≤ 1.0E − 25 or |ck| ≤ 1.0E − 25);

display(’Check zero ......’);

break;

End;

If (|bk| ≥ αi)

display(’Check Yes ......’);

break;

End;

where αi = 1.0E + 90, 1.0E + 130 when i = 1, 2, for δi = 0, 0.2 respectively;

If (|bk| ≥ βi)

display(’Check Yes ......’);

break;

End;

where βi = 1.0E + 280, 1.0E + 290, when i = 1, 2, for δi = 5, 8 respectively;
k = k + 1;

EndWhile
Obtain the approximate solution as well as the residual norm;
sollast = xk;
normlast = ‖rk‖;
Stop.

4.4.4 Monitoring Lanczos-type Algorithm based on relations A8/B10

Here also, the behaviour of coefficients for δ = 0 is considered first. It can be seen in Table

4.8 that the problem of breakdown is caused by the coefficient B1
k

whose values for various

dimension are given in column 5 of the table. The corresponding dimensions are given in

the first column of the table that range from 100 to 90000. The coefficient values in column
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5 seem to have blown up showing NaN. Therefore, we should concentrate on B1
k

as a good

term to observe in order to detect breakdown. To this end, all the coefficients Ak, C1
k

and B1
k

can be written in terms of ak, bk and ck to see which cluster of these causes the breakdown.

Like A8/B6 algorithm, there will be a term in the expression of the coefficients which blows

up (i.e. goes to NaN). The components that cause the breakdown are bk. As shown in Table

4.9, the behaviour of these coefficients is monitored by trying various values starting from

the highest possible value of 1.0000E+292 for bk, and reach the final default values at which

the algorithm does not breakdown for the size of the problem ranging from 100 to 90000.

The observed default values are 1.0000E + 130 for bk.

Furthermore, the A8/B10 algorithm is also investigated for discretisation values δ= 0.2,

5 and 8. Similarly to δ = 0, for δ = 0.2, and as shown in Table A.19, the behaviour of the

culprit coefficients is monitored by trying various values starting from the highest possible

value of 1.000E + 293 for bk, as shown in Table A.22, and reach the final default values

at which the algorithm does not breakdown for the size of the problem ranging from 100

to 90000. The observed default values are 1.0000E + 150 for bk. In a similar fashion, the

behaviour of the coefficients for the value of δ = 5 is shown in Table A.20. The observed

default values are 1.0000E + 280 for bk, with the starting highest values 1.000E + 295 as

show in Table A.23. Similarly, the behaviour of coefficients for δ = 8 is shown in Table

A.21. The observed default values being 1.000E+270 for bk, with the starting highest values

are 1.000E + 296 as shown in Table A.24. The numerical evidence for the above scenario

relating to algorithm A8/B10 are recorded in Tables 4.8-A.24.

Similar tables are generated for different instances of the problem. These can be seen as

Tables A.19-A.21, subsection A.2.4 of Appendix A. The purpose of these tables is to show
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Table 4.8: Behaviour of the parameters of the offending coefficients of A8/B10 on Baheux-type problems when
δ = 0

Col.1 Col.2 Col.3 Col.4 Col.5
Dim. of A k Ak C1

k
B1

k

100 171 NaN NaN NaN
500 182 NaN NaN NaN

1000 184 NaN NaN NaN
5000 183 NaN NaN NaN

10000 183 NaN NaN NaN
15000 143 Inf 0.0000E+00 NaN
20000 117 NaN NaN NaN
30000 124 -Inf 0.0000E+00 NaN
40000 183 -Inf 0.0000E+00 NaN
50000 184 NaN NaN NaN
60000 180 NaN NaN NaN
70000 184 NaN NaN NaN
80000 183 NaN NaN NaN
90000 177 NaN NaN NaN

that monitoring by coefficients helps to avoid breakdown. As these tables show, as soon as

any of the entries in a row hits infinity or is Not a Number (Inf or NaN), the Lanczos-type

algorithm breaks down.

Table 4.9: Behaviour of the parameters of the offending coefficients of A8/B10 on Baheux-type problems when
δ = 0

Col.1 Col.2 Col.3 Col.4 Col.5
Dim. of A k ak bk ck

100 171 -2.9969E+148 NaN NaN
500 182 -9.5213E+146 NaN NaN

1000 184 -8.0820E+142 NaN NaN
5000 183 1.2419E+144 NaN NaN

10000 183 2.4934E+149 NaN NaN
15000 143 -9.2885E+111 0.0000E+00 NaN
20000 117 -1.0017E+84 NaN NaN
30000 124 7.7153E+91 0.0000E+00 NaN
40000 183 1.1238E+146 0.0000E+00 NaN
50000 184 -1.5609E+146 NaN NaN
60000 180 4.7634E+139 NaN NaN
70000 184 -2.8970E+147 NaN NaN
80000 183 -1.5784E+148 NaN NaN
90000 177 7.6215E+141 NaN NaN
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Note that, while Table 4.8 shows the values of compound coefficient such as Ak, B1
k
,

and C1
k
, Table 4.9 involves the particular parameters of the compound coefficient which is

responsible for the breakdown. Therefore, it is potentially cheaper to check for breakdown

in Table 4.9 than in Table 4.8. Similar tables for different instance can be found in Tables

A.22-A.24, subsection A.2.4 of Appendix A. After gathering all these, thus, we finally obtain

the following algorithm

Algorithm 19 Monitoring Lanczos-type Algorithm based on relation A8/B10

Input: A an n × n matrix, b an n-vector.
Output: the approximations solution, xk, norm of the residual, ‖rk‖.
Initializations: Choose x0 and y, and the tolerance ε to 1E − 13.

Set r0 = b −Ax0; y0 = y, z0 = r0;
Compute:

y1 = ATy0; A1 as in (4.16);
k = 0;

While ‖rk‖ > ε do
yk = ATyk−1;
Ak, as in (4.16) and C1

k
, B1

k
as in(4.21) respectively;

rk, xk as in (4.15) and zk as in (4.20) respectively
/∗Monitor Denominators: Ak, B1

k
, C1

k
, ak, bk. ∗/

/∗ Design a test/rule. The test might be based on choosing a threshold value ǫ,
for instance, for that parameter in the coefficients which caused breakdown. ∗/

If (|ak| ≤ 1E − 25 or |bk| ≤ 1E − 25);

display(’Check Z1 ......’);

break;

End;

If (|bk| ≥ αi)

display(’Check Y1 ......’);

break;

End;

where αi = 1E + 130, 1.0E + 150, 1E + 280;
when i = 1, 2, 3, for δ = 0, 0.2, 5 respectively;
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Algorithm 19 A8/B10 based algorithm(continued)

If (|bk| ≤ 1.0E − 25);

display(’Check Z2 ......’);

break;

End;

If (|bk| ≥ 1E + 270);

display(’Check Y2 ......’);

break;

End;

for δ = 8;
k = k + 1;

EndWhile
Obtain the approximate solution as well as the residual norm;
sollast = xk;
normlast = ‖rk‖;
Stop.

4.4.5 Can a test be based on the number of iteration.?

By looking at the column of k in Table 4.10, it is obvious k changes little with the change in

dimension of the matrix except in few cases. It is , therefore, possible to design a restarting

test based on k. however, at least up to dimension 180000, about 30% of cases will be

missed. A test that also includes the value of Ak may remedy this shortcoming such a test

may be as

Test:

maxval=300;

If (k ≥ maxval) or (Ak == 0) Then

Restart;

EndIf
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Table 4.10: Behaviour of the parameters of the offending coefficients of A8/B10 on Baheux-type problems
when δ = 0

Col.1 Col.2 Col.3 Col.4 Col.5
Dim. of A k Ak Bk Ek

100 110 0.0000E+00 -Inf 0.0000E+00
500 300 0.0000E+00 Inf 0.0000E+00

1000 354 NaN NaN 2.7707E+01
5000 347 0.0000E+00 -Inf 0.0000E+00

10000 217 0.0000E+00 Inf 0.0000E+00
20000 354 NaN NaN -1.2788E+02
30000 354 NaN NaN 2.2656e-01
40000 354 NaN NaN -5.5784E+01
50000 198 0.0000E+00 Inf 0.0000E+00
60000 354 NaN NaN -2.1109E+00
70000 326 0.0000E+00 Inf 0.0000E+00
80000 354 NaN NaN -1.0170E+01
90000 182 0.0000E+00 -Inf 0.0000E+00

100000 113 0.0000E+00 Inf 0.0000E+00
110000 354 NaN NaN -1.3942E+01
120000 354 NaN NaN -1.3913E+00
130000 354 NaN NaN -5.5625E+00
140000 354 NaN NaN -2.2225E+01
150000 354 NaN NaN -5.3333E+00
160000 354 NaN NaN -3.4702E+00
170000 354 NaN NaN -1.3091E+01
180000 151 0.0000E+00 -Inf 0.0000E+00

4.5 Restarting Strategies

In these strategies, the idea is either to stop the Lancozs-type algorithm pre-emptively

and restart it with some iterate or wait until breakdown occurs and then restart from

the last iterate found. It is reasonable to restart from the point immediately before the

breakdown occurred if one can detect it. Otherwise, one may consider restarting strategy

after breakdown has happened [36]. Different strategies, ST1, ST2 and ST3, can be used

for restarting various algorithms as already explained in Section 1.8.1.
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4.5.1 ST2 Implementation

ST2 takes as input a given algorithm from a prespecified list. Here, these algorithms are

the ones already listed above, i.e. A4, A12, A8/B6, and A8/B10. Depending on whether the

algorithms are of the Ai-type (i.e. Lanczos-type algorithm based on a single recurrence

relation) or Ai/B j-type (i.e. Lanczos-type algorithm based on two recurrence relations),

initialisation has to be done differently; Ai-type requires x0, r0 = b − Ax and y0 = y, and

Ai/B j-type requires x0, r0 = b−Ax and y0 = y, as well as z0 = r0. The general ST2 algorithm

can be described, therefore, as follows.

Algorithm 20 Restarting Algorithm Based on Monitoring

Choose restarting strategy ST2.
{Step 1}
Start with Monitoring Lanczos-type algorithms from prespecified list
{Alg : 16, Alg : 17, Alg : 18, Alg : 19}.
{Step 2}
Run chosen Monitoring Lanczos-type algorithm until it halts;
Obtain the solution sollast = xk as well as the residual norm normlast = ‖rk‖.
While ‖rk‖ > ε do

Initialize it with the current iterate of the algorithm run;
x = sollast,
y = b −Ax.
Run chosen Monitoring algorithm;

EndWhile
Obtain the optimal solution as well as the optimal residual norm as follows
soloptimal = xk

normoptimal = ‖rk‖.
Stop.

4.6 Restarting Algorithm 17

The solution is obtained via restarting the Algorithm 17 as given in Algorithm 20. Utilizing

regular intervals, the algorithm is restarted using the current iterate.
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4.6.1 Numerical Results

The results obtained with Algorithm 12 and Algorithm 20, on Baheux-type problems of

different dimensions, for different values of δ [3, 4], are presented in Tables 4.11-4.14.

Table 4.11: Results of Algorithm 12 and Algorithm 20 on Baheux-type problems when δ = 0

Algorithm 12 Algorithm 20
Prob. size Total-numit Cycles Residual Norm Elapsed time

n1 × n2 = n ‖rk‖ t(sec)
∑

k ‖rk‖ t(sec)
100 NaN 185 2 4.9751E-14 7.0910E-01
500 NaN 906 6 9.7847E-14 1.1169E+00

1000 NaN 964 6 9.1003E-14 1.5922E+00
5000 NaN 1011 6 9.3487E-14 3.6608E+01
10000 NaN 1085 7 9.9417E-14 7.4854E+01
20000 NaN 988 6 9.9324E-14 6.9171E+02
30000 NaN 1089 7 9.9248E-14 3.4193E+03
40000 NaN 1082 7 7.5591E-14 2.5580E+03
50000 NaN 1257 8 8.1885E-14 2.9318E+03
60000 NaN 1303 8 8.4811E-14 7.2413E+03
70000 NaN 1128 7 8.7667E-14 7.3412E+03
80000 NaN 1120 7 9.9146E-14 6.5786E+03
90000 NaN 1072 7 9.0707E-14 5.0874E+03

Table 4.12: Results of Algorithm 12 and Algorithm 20 on Baheux-type problems when δ = 0.2

Algorithm 12 Algorithm 20
Prob. size Total-numit Cycles Residual Norm Elapsed time

n1 × n2 = n ‖rk‖ t(sec)
∑

k ‖rk‖ t(sec)
100 NaN 356 3 3.4466E-14 9.0114E-01
500 NaN 862 6 8.6592E-14 1.1456E+00

1000 NaN 1355 8 8.1958E-14 2.2509E+00
5000 NaN 898 6 9.4303E-14 2.9377E+01
10000 NaN 883 6 8.9325E-14 1.7968E+02
20000 NaN 972 6 8.3356E-14 3.9526E+02
30000 NaN 1038 7 8.1079E-14 1.3205E+03
40000 NaN 1220 8 8.9458E-14 3.3931E+03
50000 NaN 1069 7 7.5661E-14 3.6229E+03
60000 NaN 1051 7 9.1927E-14 4.7638E+03
70000 NaN 904 6 8.2881E-14 6.3346E+03
80000 NaN 1065 7 7.2007E-14 5.3332E+03
90000 NaN 949 7 8.7481E-14 4.4072E+03
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Table 4.13: Results of Algorithm 12 and Algorithm 20 on Baheux-type problems when δ = 5

Algorithm 12 Algorithm 20
Prob. size Total-numit Cycles Residual Norm Elapsed time

n1 × n2 = n ‖rk‖ t(sec)
∑

k ‖rk‖ t(sec)
100 NaN 1610 6 8.7093E-14 1.5935E+00
500 NaN 1582 6 8.0338E-14 6.2823E+00

1000 NaN 1370 5 9.7527E-14 1.3913E+01
5000 NaN 1302 5 7.1808E-14 9.1577E+01
10000 NaN 1739 6 8.5618E-14 3.8901E+02
20000 NaN 1153 4 9.3103E-14 1.4575E+03
30000 NaN 1846 7 7.3421E-14 2.6401E+03
40000 NaN 1442 5 8.2381E-14 2.2795E+03
50000 NaN 1093 4 9.0785E-14 4.9594E+03
60000 NaN 1438 5 9.1695E-14 6.8288E+03
70000 NaN 2623 9 9.9138E-14 7.6795E+03
80000 NaN 1110 4 9.8909E-14 5.2076E+03
90000 NaN 1445 5 9.5266E-14 8.4268E+03

Table 4.14: Results of Algorithm 12 and Algorithm 20 on Baheux-type problems when δ = 8

Algorithm 12 Algorithm 20
Prob. size Total-numit Cycles Residual Norm Elapsed time

n1 × n2 = n ‖rk‖ t(sec)
∑

k ‖rk‖ t(sec)
100 NaN 1520 7 9.9093E-14 2.1651E+00
500 NaN 2045 9 7.7985E-14 2.3571E+00

1000 NaN 1489 6 9.1843E-14 3.2646E+01
5000 NaN 2258 9 9.9646E-14 8.7535E+01
10000 NaN 2379 10 8.1828E-14 3.3375E+02
20000 NaN 1419 6 9.5256E-14 6.1979E+03
30000 NaN 2735 11 9.9598E-14 2.4927E+03
40000 NaN 2462 10 9.1988E-14 3.8832E+03
50000 NaN 2658 11 9.6892E-14 3.5659E+03
60000 NaN 5637 22 9.7572E-14 2.4112E+04
70000 NaN 2024 8 8.1102E-14 7.5391E+03
80000 NaN 4308 17 9.4350E-14 1.6636E+04
90000 NaN 3812 15 7.5429E-14 1.7716E+04

4.7 Restarting Algorithm 16

The solution is obtained via restarting Algorithm 16 as given in Algorithm 20. Utilizing

regular intervals, the algorithm is restarted using the current iterate.
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4.7.1 Numerical Results

The results obtained with Algorithm 11, and Algorithm 20 described above, on Baheux-

type problems of different dimensions, for different values of δ [3,4], are presented in Tables

4.15-4.18.

Table 4.15: Results of Algorithm 11 and Algorithm 20 on Baheux-type problems when δ = 0

Algorithm 11 Algorithm 20
Prob. size Total-numit Cycles Residual Norm Elapsed time

n1 × n2 = n ‖rk‖ t(sec)
∑

k ‖rk‖ t(sec)
100 NaN 149 2 5.4429E-14 7.5120E-01
500 NaN 916 8 9.8779E-14 1.8921E+00

1000 NaN 783 7 7.8942E-14 1.8649E+00
5000 NaN 1046 9 9.6411E-14 6.2534E+01
10000 NaN 924 8 8.6591E-14 1.2378E+02
20000 NaN 1036 9 9.0168E-14 1.2158E+03
30000 NaN 1046 9 6.2128E-14 1.7086E+03
40000 NaN 1368 11 8.5319E-14 2.9172E+03
50000 NaN 1180 10 8.8686E-14 5.6647E+03
60000 NaN 1056 9 9.6952E-14 7.0835E+03
70000 NaN 1013 8 9.9118E-14 9.3068E+03
80000 NaN 919 8 9.7447E-14 6.9428E+03
90000 NaN 936 8 9.3677E-14 8.8362E+03

Table 4.16: Results of Algorithm 11 and Algorithm 20 on Baheux-type problems when δ = 0.2

Algorithm 11 Algorithm 20
Prob. size Total-numit Cycles Residual Norm Elapsed time

n1 × n2 = n ‖rk‖ t(sec)
∑

k ‖rk‖ t(sec)
100 NaN 352 4 8.4201E-14 9.3534E-01
500 NaN 743 6 8.2836E-14 1.6902E+00

1000 NaN 737 6 9.6689E-14 2.8613E+00
5000 NaN 1159 9 8.7238E-14 4.1919E+01
10000 NaN 884 7 9.3045E-14 1.2608E+02
20000 NaN 853 7 9.3119E-14 7.3278E+02
30000 NaN 1053 8 8.6376E-14 2.0646E+03
40000 NaN 812 7 7.7838E-14 2.9067E+03
50000 NaN 867 7 7.8088E-14 3.8596E+03
60000 NaN 995 8 9.7165E-14 8.0922E+03
70000 NaN 868 7 9.1179E-14 8.8500E+03
80000 NaN 966 7 9.4984E-14 9.5485E+03
90000 NaN 905 7 8.4068E-14 1.1762E+04
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Table 4.17: Results of Algorithm 11 and Algorithm 20 on Baheux-type problems when δ = 5

Algorithm 11 Algorithm 20
Prob. size Total-numit Cycles Residual Norm Elapsed time

n1 × n2 = n ‖rk‖ t(sec)
∑

k ‖rk‖ t(sec)
100 NaN 802 8 7.3557E-14 1.0901E+00
500 NaN 717 7 7.4404E-14 1.5427E+00

1000 NaN 895 9 7.7603E-14 1.9029E+00
5000 NaN 1027 10 8.8162E-14 7.0547E+01
10000 NaN 2576 23 6.6752E-14 9.0615E+02
20000 NaN 1842 17 5.0440E-14 1.9670E+03
30000 NaN 1568 14 7.8304E-14 2.1650E+03
40000 NaN 6878 59 8.3005E-14 1.6076E+04
50000 NaN 1505 14 8.3499E-14 6.1923E+03
60000 NaN 2180 20 9.6363E-14 1.2218E+04
70000 NaN 3007 27 6.6189E-14 2.8736E+04
80000 NaN 1059 10 7.0086E-14 1.1031E+04
90000 NaN 1990 18 9.4227E-14 2.0319E+04

Table 4.18: Results of Algorithm 11 and Algorithm 20 on Baheux-type problems when δ = 8

Algorithm 11 Algorithm 20
Prob. size Total-numit Cycles Residual Norm Elapsed time

n1 × n2 = n ‖rk‖ t(sec)
∑

k ‖rk‖ t(sec)
100 NaN 1036 11 9.7360E-14 1.3808E+00
500 NaN 1139 12 9.8301E-14 1.5955E+00

1000 NaN 1273 13 9.4397E-14 3.7262E+00
5000 NaN 1607 16 8.6392E-14 1.0017E+02
10000 NaN 1991 20 7.6799E-14 5.9519E+02
20000 NaN 3216 31 8.7604E-14 3.0332E+03
30000 NaN 7017 66 4.2110E-14 1.2230E+04
40000 NaN 6411 61 6.3927E-14 1.9988E+04
50000 NaN 9148 86 6.9372E-14 2.5205E+04
60000 NaN 1350 14 7.6603E-14 9.4175E+03
70000 NaN 12687 119 7.8368E-14 1.0022E+05
80000 NaN 1463 15 9.5044E-14 1.4259E+04
90000 NaN 1684 17 9.9384E-14 1.7534E+04

4.8 Restarting Algorithm 18

The solution is obtained via restarting Algorithm 18 as given in Algorithm 20. Utilizing

regular intervals, the algorithm is restarted using the current iterate.
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4.8.1 Numerical Results

The results obtained with Algorithm 14 and its restarting version Algorithm 20, on Baheux-

type problems of different dimensions, for different values of δ [3,4], are presented in Tables

4.19-4.22.

Table 4.19: Results of Algorithm 14 and Algorithm 20 on Baheux-type problems when δ = 0

Algorithm 14 Algorithm 20
Prob. size Total-numit Cycles Residual Norm Elapsed time

n1 × n2 = n ‖rk‖ t(sec)
∑

k ‖rk‖ t(sec)
100 NaN 57 2 6.1115E-14 6.2013E-01
500 NaN 529 9 9.8912E-14 5.3377E+00

1000 NaN 1060 15 8.5325E-14 2.8432E+00
5000 NaN 611 9 9.0619E-14 1.5942E+01
10000 NaN 612 9 8.7698E-14 6.3695E+01
20000 NaN 916 13 9.6487E-14 3.2046E+02
30000 NaN 763 11 9.7053E-14 4.6949E+02
40000 NaN 922 13 9.7491E-14 1.2360E+03
50000 NaN 766 11 8.7656E-14 1.2205E+03
60000 NaN 679 10 8.7424E-14 1.5603E+03
70000 NaN 633 9 9.0205E-14 1.8936E+03
80000 NaN 706 10 9.8981E-14 2.7773E+03
90000 NaN 830 12 8.4513E-14 4.3607E+03

Table 4.20: Results of Algorithm 14 and Algorithm 20 on Baheux-type problems when δ = 0.2

Algorithm 14 Algorithm 20
Prob. size Total-numit Cycles Residual Norm Elapsed time

n1 × n2 = n ‖rk‖ t(sec)
∑

k ‖rk‖ t(sec)
100 NaN 689 8 7.7436E-14 8.4320E-01
500 NaN 1463 16 5.9065E-14 1.5156E+00

1000 NaN 1359 15 7.9484E-14 2.4188E+00
5000 NaN 1717 19 9.7027E-14 7.6450E+01
10000 NaN 1256 14 8.6415E-14 2.1527E+02
20000 NaN 897 10 5.8727E-14 4.2976E+02
30000 NaN 1634 18 9.6493E-14 1.7039E+03
40000 NaN 1155 13 8.3941E-14 2.5913E+03
50000 NaN 1564 17 7.4461E-14 3.9558E+03
60000 NaN 1249 14 8.6231E-14 4.7694E+03
70000 NaN 1207 14 7.7883E-14 5.7245E+03
80000 NaN 1896 21 7.9999E-14 8.5143E+03
90000 NaN 2231 24 9.2184E-14 1.4880E+04
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Table 4.21: Results of Algorithm 14 and Algorithm 20 on Baheux-type problems when δ = 5

Algorithm 14 Algorithm 20
Prob. size Total-numit Cycles Residual Norm Elapsed time

n1 × n2 = n ‖rk‖ t(sec)
∑

k ‖rk‖ t(sec)
100 NaN 686 5 9.0831E-14 8.3733E-01
500 NaN 777 6 9.0251E-14 1.7225E+00

1000 NaN 1065 8 5.6323E-14 3.8374E+00
5000 NaN 1081 8 6.4990E-14 4.8549E+01
10000 NaN 1360 10 8.6696E-14 2.1502E+02
20000 NaN 1509 11 5.7739E-14 7.5752E+02
30000 NaN 1518 11 7.5207E-14 1.6380E+03
40000 NaN 1370 10 7.2925E-14 2.8792E+03
50000 NaN 1246 9 6.8686E-14 3.5663E+03
60000 NaN 1068 8 5.5732E-14 4.5924E+03
70000 NaN 1374 10 8.4638E-14 6.2884E+03
80000 NaN 1221 9 7.0494E-14 6.2962E+03
90000 NaN 1373 10 9.0335E-14 6.3175E+03

Table 4.22: Results of Algorithm 14 and Algorithm 20 on Baheux-type problems when δ = 8

Algorithm 14 Algorithm 20
Prob. size Total-numit Cycles Residual Norm Elapsed time

n1 × n2 = n ‖rk‖ t(sec)
∑

k ‖rk‖ t(sec)
100 NaN 827 7 8.7952E-14 9.5710E-01
500 NaN 961 8 5.5997E-14 1.9370E+00

1000 NaN 1083 9 9.5325E-14 1.9542E+00
5000 NaN 1217 10 9.5816E-14 3.4618E+01
10000 NaN 1227 10 9.8573E-14 1.1067E+02
20000 NaN 1487 12 7.3681E-14 5.3876E+02
30000 NaN 1363 11 4.6276E-14 1.0301E+03
40000 NaN 1247 10 9.0025E-14 1.5393E+03
50000 NaN 1616 13 9.1182E-14 3.2238E+03
60000 NaN 1224 10 4.9347E-14 3.7250E+03
70000 NaN 1359 11 7.1960E-14 4.0946E+03
80000 NaN 1617 13 9.0161E-14 5.9952E+03
90000 NaN 1362 11 5.8420E-14 6.4207E+03

4.9 Restarting Algorithm 19

The solution is obtained via restarting Algorithm 19 as given in Algorithm 20. Utilizing

regular intervals, the algorithm is restarted using the current iterate.
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4.9.1 Numerical results

The results obtained with Algorithm 13 and its restarting version Algorithm 20, on Baheux-

type problems of different dimensions, for different values of δ [3,4], are presented in Tables

4.23-4.26.

Table 4.23: Results of Algorithm 13 and Algorithm 20 on Baheux-type problems when δ = 0

Algorithm 13 Algorithm 20
Prob. size Total-numit Cycles Residual Norm Elapsed time

n1 × n2 = n ‖rk‖ t(sec)
∑

k ‖rk‖ t(sec)
100 NaN 665 7 9.3606E-14 8.9790E-01
500 NaN 3776 40 8.8988E-14 5.1838E+00

1000 NaN 5343 57 9.3373E-14 2.5808E+01
5000 NaN 4173 44 9.3051E-14 4.6781E+02
10000 NaN 3027 33 9.1131E-14 1.1683E+03
20000 NaN 1256 14 8.7733E-14 1.9221E+03
30000 NaN 1186 13 7.9795E-14 4.0962E+03
40000 NaN 2269 26 9.5148E-14 1.2473E+04
50000 NaN 2107 23 9.9344E-14 1.8289E+03
60000 NaN 2751 29 9.5721E-14 2.8230E+04
70000 NaN 4505 49 9.1219E-14 6.4745E+04
80000 NaN 1925 21 8.9973E-14 3.7393E+04
90000 NaN 2448 27 9.0799E-14 5.8112E+04

Table 4.24: Results of Algorithm 13 and Algorithm 20 on Baheux-type problems when δ = 0.2

Algorithm 13 Algorithm 20
Prob. size Total-numit Cycles Residual Norm Elapsed time

n1 × n2 = n ‖rk‖ t(sec)
∑

k ‖rk‖ t(sec)
100 NaN 885 9 9.3360E-14 9.8385E-01
500 NaN 4965 47 9.6024E-14 1.3427E+01

1000 NaN 2517 25 8.2166E-14 1.9866E+01
5000 NaN 991 10 8.7901E-14 1.2460E+02
10000 NaN 1865 19 9.9181E-14 8.3228E+02
20000 NaN 1463 15 9.5309E-14 2.4773E+03
30000 NaN 2593 26 7.9825E-14 1.0237E+04
40000 NaN 2211 21 8.9642E-14 1.4145E+04
50000 NaN 1521 15 8.1724E-14 1.1617E+04
60000 NaN 1299 13 9.9193E-14 1.6511E+04
70000 NaN 2784 27 8.4839E-14 4.0159E+04
80000 NaN 2181 21 8.9733E-14 4.2025E+04
90000 NaN 912 9 8.7492E-14 2.3436E+04
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Table 4.25: Results of Algorithm 13 and Algorithm 20 on Baheux-type problems when δ = 5

Algorithm 13 Algorithm 20
Prob. size Total-numit Cycles Residual Norm Elapsed time

n1 × n2 = n ‖rk‖ t(sec)
∑

k ‖rk‖ t(sec)
100 NaN 633 5 7.5452E-14 8.0537E-01
500 NaN 953 7 8.8992E-14 1.9199E+00

1000 NaN 1218 9 8.5448E-14 9.9276E+00
5000 NaN 1379 10 6.4556E-14 1.6484E+01
10000 NaN 1377 10 6.5695E-14 6.7022E+02
20000 NaN 1510 11 8.0851E-14 2.7845E+03
30000 NaN 1507 11 9.0990E-14 6.0153E+03
40000 NaN 1806 13 7.9073E-14 1.2243E+04
50000 NaN 2093 15 9.2173E-14 1.9044E+04
60000 NaN 2572 18 9.5965E-14 2.9860E+04
70000 NaN 1814 13 4.4036E-14 3.2972E+04
80000 NaN 1800 13 5.1310E-14 4.9652E+04
90000 NaN 1840 13 3.2006E-14 4.3166E+04

Table 4.26: Results of Algorithm 13 and Algorithm 20 on Baheux-type problems when δ = 8

Algorithm 13 Algorithm 20

Prob. size Total-numit 1 Cycles2 Residual Norm Elapsed time
n1 × n2 = n ‖rk‖ t(sec)

∑

k ‖rk‖ t(sec)
100 NaN 817 7 9.2905E-14 8.4382E-01
500 NaN 1035 9 8.1199E-14 2.7530E+00

1000 NaN 1144 10 8.3085E-14 5.4307E+00
5000 NaN 1758 15 9.1337E-14 1.9199E+02
10000 NaN 1408 12 6.6426E-14 5.4412E+02
20000 NaN 1267 11 8.4975E-14 1.5009E+03
30000 NaN 1777 15 8.6743E-14 4.9905E+03
40000 NaN 1773 15 9.5829E-14 8.518E+03
50000 NaN 1654 14 6.6637E-14 1.5988E+04
60000 NaN 1643 14 5.2675E-14 2.3131E+04
70000 NaN 1533 13 7.9407E-14 2.5631E+04
80000 NaN 1395 12 7.0229E-14 2.7149E+04
90000 NaN 1711 14 8.0416E-14 4.1674E+04

1 add all the number of iteration during each cycle
2 A cycle is a number of iterations carried out in a restart or a switch.
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4.10 Comments

These tests and tables prove that it is possible to have a more targeted number of cycles

(switches/ restarts) and their lengths. To illustrate, consider a similar test in Maharani [55]

shows that our approach leads to a more efficient and robust Lanczos-type algorithm

implementation.

4.11 Summary

The restarting strategies ST2 and ST3 used in this work are successful in handling the

breakdown in Lanczos-type algorithms. This is supported by strong numerical evidence.

They successfully solved problems with dimensions up to 90000 whereas individual al-

gorithms with no restarting facility could only solve problems with dimensions ≤ 30.

Moreover, the cost involved in such preemptive restarting is not very high. Monitoring

the coefficients that can approach zero, has a cost which is similar to that of a test of the

form ”if |MonitorDenom value| ≤ tolerance-then stop”. Many such tests could be done by

using various tolerance levels. It impact on the overall computing time has not been mea-

sured in this thesis. Favourable results hint to restarting as a useful approach to handling

breakdown while solving SLE’s by Lanczos-type algorithms. The idea not only differs from

existing strategies for handling breakdowns, [12,15,18], but it is also simple to understand

and use. Further extensive testing needs to be done on both large real and randomly

generated problems to get a complete picture of the behavior and cost of the restarting

approach in comparison to state-of-the-art Lanczos-type algorithms.



Chapter 5

Switching between Lanczos-type

algorithms to avoid breakdown

This chapter is devoted to the switching strategy to avoid the issue of breakdown in

Lanczos-type algorithms that arises due to the non-existence of some coefficients of the re-

currence relations that provide a base for the algorithms. The non-existence of coefficients

for Lanczos-type algorithm on a specific iterate of the recurrence relations does not, neces-

sarily, cause the problem for another Lanczos-type algorithm, based on different recurrence

relations. It, thus, follows that one might switch to other algorithms to avoid breakdown.

This allows to carry on in a Krylov space having a different basis. It, therefore, could be

concluded that switching might be considered as a potential remedy for the breakdown

issues [33].

5.1 Switching Algorithm

A set of Lanczos-type algorithms can be switched from one algorithm to another using

strategies ST1, ST2 or ST3 as given in Section 1.8.1. Note that in the last cycle, if the chosen

algorithm is the same as the one running in the first cycle, then it is a case of restarting.

124
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Otherwise, it is switching.

Algorithm 21 Switching Algorithm Based on Monitoring

{Step 1}
Choose a strategy ST2.
Start with Monitoring Lanczos-type algorithms from prespecified list
{Alg : 16, Alg : 17, Alg : 18, Alg : 19}.
{Step 2}
Run algorithm until it halts;
If solution is obtained Then

Stop;
Else

Switch to another algorithm;
Initialize it with current iterate of the algorithm running in the last cycle;
x = sollast;
y = b − Ax;
go to Step 2;

EndIf
Obtain the optimal solution as well as the optimal residual norm as follows
soloptimal = xk

normoptimal = ‖rk‖.
Stop.

5.2 Switching between Algorithm 16 and Algorithm 17

Algorithm 21, starts with either Algorithm 16 or Algorithm 17. Then it is halted before

breakdown, and switching to the other is carried out.

5.2.1 Numerical Results

The switching procedure between Algorithms 16 and Algorithm 17 has been implemented

in Matlab and applied to Baheux-type problems of different dimensions, for different values

of δ = 0, 0.2, 5 and 8. These problems have been described in [3, 4]. The dimension of the

coefficient matrix A is n = n1 × n2, where n1 is the number of block matrices in A and n2 is

the dimension of the matrix B which is fixed to 10. The results obtained with Algorithm

11, Algorithm 12 and the switching Algorithm 21, are presented in Tables 5.1-5.4.
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Table 5.1: Results of Algorithm 11, Algorithm 12 and Algorithm 21 on Baheux-type problems when δ = 0

Algorithm 11 Algorithm 12 Algorithm 21
Prob. size Total-numit Cycles Residual Norm Elapsed time
n1 × n2 = n ‖rk‖ ‖rk‖

∑

k ‖ rk ‖ sec
100 NaN NaN 142 2 6.4799E-14 1.0229E+00
500 NaN NaN 858 6 9.9621E-14 1.3673E+00

1000 NaN NaN 926 7 8.3930E-14 1.5031E+00
5000 NaN NaN 1011 6 9.3487E-14 3.0330E+01

10000 NaN NaN 1064 8 9.2032E-14 1.3467E+02
20000 NaN NaN 1009 7 9.1714E-14 3.7645E+02
30000 NaN NaN 1131 8 9.5415E-14 8.7870E+02
40000 NaN NaN 1181 8 9.8820E-14 1.5565E+03
50000 NaN NaN 1312 9 9.9651E-14 2.6257E+03
60000 NaN NaN 972 7 9.4797E-14 2.3296E+03
70000 NaN NaN 1146 8 8.0121E-14 3.9998E+03
80000 NaN NaN 1071 8 8.0435E-14 5.7842E+03
90000 NaN NaN 1072 7 9.0707E-14 4.6034E+03

Table 5.2: Results of Algorithm 11, Algorithm 12 and Algorithm 21 on Baheux-type problems when δ = 0.2

Algorithm 11 Algorithm 12 Algorithm 21
Prob. size Total-numit Cycles Residual Norm Elapsed time
n1 × n2 = n ‖rk‖ ‖rk‖

∑

k ‖ rk ‖ sec
100 NaN NaN 409 3 7.2018E-14 1.7407E+00
500 NaN NaN 1015 7 6.3987E-14 1.1266E+00

1000 NaN NaN 1087 8 8.2681E-14 2.0396E+00
5000 NaN NaN 886 7 9.3962E-14 2.4518E+01

10000 NaN NaN 913 7 9.3596E-14 8.1512E+01
20000 NaN NaN 1236 8 8.6842E-14 7.7655E+02
30000 NaN NaN 1160 8 9.2112E-14 1.1766E+03
40000 NaN NaN 1588 10 8.4260E-14 2.7420E+03
50000 NaN NaN 938 7 9.5880E-14 2.6978E+03
60000 NaN NaN 1017 7 9.6912E-14 2.8531E+03
70000 NaN NaN 949 7 9.6283E-14 3.5907E+03
80000 NaN NaN 1041 7 9.5650E-14 6.0355E+03
90000 NaN NaN 818 6 8.3997E-14 5.0977E+03
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Table 5.3: Results of Algorithm 11, Algorithm 12 and Algorithm 21 on Baheux-type problems when δ = 5

Algorithm 11 Algorithm 12 Algorithm 21
Prob. size Total-numit Cycles Residual Norm Elapsed time
n1 × n2 = n ‖rk‖ ‖rk‖

∑

k ‖ rk ‖ sec
100 NaN NaN 661 5 6.6466E-14 1.4785E+00
500 NaN NaN 1161 8 7.5564E-14 3.3436E+00

1000 NaN NaN 1182 6 5.5675E-14 2.8682E+00
5000 NaN NaN 1141 6 8.8864E-14 4.1462E+01

10000 NaN NaN 972 5 8.6003E-14 1.2266E+02
20000 NaN NaN 1577 9 8.7003E-14 8.5757E+02
30000 NaN NaN 1339 6 9.5774E-14 1.0993E+03
40000 NaN NaN 1971 10 4.6795E-14 2.6667E+03
50000 NaN NaN 923 4 7.0378E-14 3.1699E+03
60000 NaN NaN 1693 8 9.6513E-14 7.2279E+03
70000 NaN NaN 2074 8 9.1983E-14 9.2871E+03
80000 NaN NaN 3250 17 9.6659E-14 1.6062E+04
90000 NaN NaN 5744 26 8.3977E-14 3.1191E+04

Table 5.4: Results of Algorithm 11, Algorithm 12 and Algorithm 21 on Baheux-type problems when δ = 8

Algorithm 11 Algorithm 12 Algorithm 21
Prob. size Total-numit Cycles Residual Norm Elapsed time
n1 × n2 = n ‖rk‖ ‖rk‖

∑

k ‖ rk ‖ sec
100 NaN NaN 1128 7 8.1255E-14 2.3917E+00
500 NaN NaN 1178 8 9.8984E-14 3.0222E+00

1000 NaN NaN 1359 8 8.8030E-14 7.9943E+00
5000 NaN NaN 1298 9 7.7964E-14 8.0938E+01

10000 NaN NaN 1855 10 9.9435E-14 3.8959E+02
20000 NaN NaN 1700 9 7.2781E-14 1.0799E+03
30000 NaN NaN 1442 9 6.8522E-14 2.0707E+03
40000 NaN NaN 2248 12 9.9335E-14 3.9593E+03
50000 NaN NaN 2254 15 9.6901E-14 8.6370E+03
60000 NaN NaN 2405 15 6.6847E-14 8.7347E+03
70000 NaN NaN 1752 13 8.6180E-14 7.9854E+03
80000 NaN NaN 1361 8 9.3185E-14 6.6251E+03
90000 NaN NaN 1894 10 9.7444E-14 1.0476E+04

5.3 Switching between Algorithm 17 and Algorithm 18

Algorithm 21 is started with either Algorithm 17 or Algorithm 18. The started algorithm

after breakdown is switched to either of the two Algorithm 17 or Algorithm 18 chosen

randomly.
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5.3.1 Numerical Results

The results obtained with Algorithm 12, Algorithm 14 and the switching Algorithm 21 on

Baheux-type problems of different dimensions, for different values of δ are shown in Tables

5.5-5.8.

Table 5.5: Results of Algorithm 12, Algorithm 14 and Algorithm 21 on Baheux-type problems when δ = 0

Algorithm 12 Algorithm 14 Algorithm 21
Prob. size Total-numit Cycles Residual Norm Elapsed time
n1 × n2 = n ‖rk‖ ‖rk‖

∑

k ‖ rk ‖ sec
100 NaN NaN 185 2 4.9961E-14 3.4382E+00
500 NaN NaN 911 6 9.0453E-14 2.9074E+00

1000 NaN NaN 874 7 7.2280E-14 2.8669E+00
5000 NaN NaN 858 8 9.6192E-14 2.1875E+01

10000 NaN NaN 1119 9 9.5648E-14 1.2321E+02
20000 NaN NaN 1420 10 8.1789E-14 5.3626E+02
30000 NaN NaN 997 9 9.0673E-14 7.8963E+02
40000 NaN NaN 1038 9 8.8592E-14 1.4397E+03
50000 NaN NaN 841 8 9.6474E-14 2.0097E+03
60000 NaN NaN 911 9 8.3200E-14 2.3240E+03
70000 NaN NaN 981 9 8.7603E-14 3.6608E+03
80000 NaN NaN 983 7 7.4715E-14 3.7517E+03
90000 NaN NaN 890 7 8.8803E-14 4.0620E+03

Table 5.6: Results of Algorithm 12, Algorithm 14 and Algorithm 21 on Baheux-type problems when δ = 0.2

Algorithm 12 Algorithm 14 Algorithm 21
Prob. size Total-numit Cycles Residual Norm Elapsed time
n1 × n2 = n ‖rk‖ ‖rk‖

∑

k ‖ rk ‖ sec
100 NaN NaN 356 3 3.3645E-14 1.2079E+00
500 NaN NaN 783 6 7.1319E-14 1.7391E+00

1000 NaN NaN 896 7 8.7500E-14 2.8320E+00
5000 NaN NaN 995 9 5.8100E-14 4.5240E+01

10000 NaN NaN 693 7 8.3533E-14 7.8762E+01
20000 NaN NaN 906 8 9.9500E-14 3.8528E+02
30000 NaN NaN 975 8 7.7623E-14 1.3711E+03
40000 NaN NaN 1152 8 9.8596E-14 1.2034E+03
50000 NaN NaN 1181 10 9.3551E-14 1.8797E+03
60000 NaN NaN 1351 11 8.6233E-14 2.9447E+03
70000 NaN NaN 1071 9 7.2445E-14 5.1275E+03
80000 NaN NaN 891 7 8.8917E-14 4.8429E+03
90000 NaN NaN 1074 8 9.2474E-14 4.7860E+03
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Table 5.7: Results of Algorithm 12, Algorithm 14 and Algorithm 21 on Baheux-type problems when δ = 5

Algorithm 12 Algorithm 14 Algorithm 21
Prob. size Total-numit Cycles Residual Norm Elapsed time
n1 × n2 = n ‖rk‖ ‖rk‖

∑

k ‖ rk ‖ sec
100 NaN NaN 658 5 8.7404E-14 1.2224E+00
500 NaN NaN 1109 5 9.1274E-14 1.5485E+00

1000 NaN NaN 1194 6 9.5098E-14 2.5360E+00
5000 NaN NaN 1264 5 9.9088E-14 3.9120E+01

10000 NaN NaN 1368 7 4.2928E-14 1.2078E+02
20000 NaN NaN 1153 4 9.3103E-14 5.4273E+02
30000 NaN NaN 1479 7 8.9283E-14 1.3146E+03
40000 NaN NaN 1906 7 9.3332E-14 3.9116E+03
50000 NaN NaN 1072 6 7.3005E-14 2.7799E+03
60000 NaN NaN 1056 5 9.8609E-14 2.7222E+03
70000 NaN NaN 1469 7 5.9755E-14 5.9907E+03
80000 NaN NaN 1050 5 9.8520E-14 5.0974E+03
90000 NaN NaN 1376 6 9.2455E-14 6.1762E+03

Table 5.8: Results of Algorithm 12, Algorithm 14 and Algorithm 21 on Baheux-type problems when δ = 8

Algorithm 12 Algorithm 14 Algorithm 21
Prob. size Total-numit Cycles Residual Norm Elapsed time
n1 × n2 = n ‖rk‖ ‖rk‖

∑

k ‖ rk ‖ sec
100 NaN NaN 1011 6 9.0275E-14 1.4645E+00
500 NaN NaN 1374 7 9.2989E-14 1.5570E+00

1000 NaN NaN 1179 7 8.5810E-14 1.5081E+00
5000 NaN NaN 1223 8 9.5828E-14 4.9891E+01

10000 NaN NaN 1425 8 9.8665E-14 9.7959E+01
20000 NaN NaN 1723 8 8.2101E-14 6.9990E+02
30000 NaN NaN 1542 8 7.5286E-14 1.4793E+03
40000 NaN NaN 1591 9 8.4668E-14 3.8185E+03
50000 NaN NaN 1684 11 8.2775E-14 4.3103E+03
60000 NaN NaN 1566 8 5.3064E-14 4.0704E+03
70000 NaN NaN 1810 9 7.6455E-14 4.5509E+03
80000 NaN NaN 1898 10 7.9890E-14 8.6573E+03
90000 NaN NaN 1490 9 7.7909E-14 7.1199E+03

5.4 Switching between Algorithm 17 and Algorithm 19

Algorithm 21 is started with either Algorithm 17 or Algorithm 19, i.e. one of the algorithms

run and halted before breakdown and then the switch to either of them chosen randomly

is carried out.
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5.4.1 Numerical Results

The results obtained with Algorithm 12, Algorithm 13 and the switching Algorithm 21 on

Baheux-type problems of different dimensions, for different values of δ are shown in Tables

5.9-5.12.

Table 5.9: Results of Algorithm 12, Algorithm 13 and Algorithm 21 on Baheux-type problems when δ = 0

Algorithm 12 Algorithm 13 Algorithm 21
Prob. size Total-numit Cycles Residual Norm Elapsed time
n1 × n2 = n ‖rk‖ t(sec) ‖rk‖ t(sec)

∑

k ‖ rk ‖ t(sec)
100 NaN NaN 185 2 4.9751E-14 7.4636E-01
500 NaN NaN 822 6 6.2396E-14 3.7712E+00

1000 NaN NaN 1223 9 9.2338E-14 2.3264E+01
5000 NaN NaN 1026 9 9.8010E-14 5.1871E+01

10000 NaN NaN 1089 8 9.5115E-14 2.0564E+02
20000 NaN NaN 938 8 9.9848E-14 1.5493E+03
30000 NaN NaN 1448 11 9.5437E-14 3.5232E+03
40000 NaN NaN 1330 10 9.5103E-14 6.3850E+03
50000 NaN NaN 1099 8 7.0693E-14 4.7826E+03
60000 NaN NaN 1091 9 7.9640E-14 7.6655E+03
70000 NaN NaN 1537 11 6.9828E-14 9.5479E+03
80000 NaN NaN 1123 9 9.3465E-14 1.0452E+04
90000 NaN NaN 1187 8 8.2007E-14 6.9342E+03

Table 5.10: Results of Algorithm 12, Algorithm 13 and Algorithm 21 on Baheux-type problems when
δ = 0.2

ALgorithm 12 Algorithm 13 Algorithm 21
Prob. size Total-numit Cycles Residual Norm Elapsed time
n1 × n2 = n ‖rk‖ t(sec) ‖rk‖ t(sec)

∑

k ‖ rk ‖ t(sec)
100 NaN NaN 350 3 9.5666E-14 9.11144E-01
500 NaN NaN 956 7 8.8636E-14 2.6458E+00

1000 NaN NaN 1144 8 9.6769E-14 3.6110E+00
5000 NaN NaN 883 8 7.7114E-14 9.8678E+01

10000 NaN NaN 1256 10 7.3386E-14 3.1896E+02
20000 NaN NaN 1225 9 9.3186E-14 8.6909E+02
30000 NaN NaN 1322 10 6.1560E-14 2.2937E+03
40000 NaN NaN 1741 13 7.4743E-14 4.0836E+03
50000 NaN NaN 1287 10 9.7009E-14 5.7353E+03
60000 NaN NaN 913 6 9.2335E-14 4.0548E+03
70000 NaN NaN 1108 10 9.2116E-14 9.5479E+04
80000 NaN NaN 1183 9 9.4617E-14 1.1760E+04
90000 NaN NaN 922 7 9.7095E-14 7.1983E+03
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Table 5.11: Results of Algorithm 12, ALgorithm 13 and Algorithm 21 on Baheux-type problems when δ = 5

Algorithm 12 Algorithm 13 Algorithm 21
Prob. size Total-numit Cycles Residual Norm Elapsed time

n1 × n2 = n ‖rk‖ t(sec) ‖rk‖ t(sec)
∑

k ‖ rk ‖ t(sec)
100 NaN NaN 917 5 6.4851E-14 1.3184E+00
500 NaN NaN 1045 5 7.6471E-14 1.8536E+00

1000 NaN NaN 1188 5 7.6335E-14 2.8236E+00
5000 NaN NaN 1483 8 8.6355E-14 1.6630E+02
10000 NaN NaN 1368 8 9.7689E-14 5.3811E+02
20000 NaN NaN 1626 8 4.9152E-14 1.4922E+03
30000 NaN NaN 1786 8 9.7725E-14 2.5536E+03
40000 NaN NaN 1351 7 7.9681E-14 4.5328E+03
50000 NaN NaN 1836 8 9.6394E-14 8.1866E+03
60000 NaN NaN 1055 5 7.3147E-14 4.6252E+03
70000 NaN NaN 3073 12 9.0090E-14 2.2036E+04
80000 NaN NaN 2405 12 7.0835E-14 2.3165E+04
90000 NaN NaN 1379 7 9.0026E-14 1.5754E+04

Table 5.12: Results of Algorithm 12, Algorithm 13 and Algorithm 21 on Baheux-type problems when δ = 8

Algorithm 12 Algorithm 13 Algorithm 21
Prob. size Total-numit Cycles Residual Norm Elapsed time

n1 × n2 = n ‖rk‖ t(sec) ‖rk‖ t(sec)
∑

k ‖ rk ‖ t(sec)
100 NaN NaN 1034 6 9.8010E-14 1.9315E+00
500 NaN NaN 1043 7 7.7366E-14 3.9604E+00

1000 NaN NaN 1031 7 9.0470E-14 5.5949E+00
5000 NaN NaN 1415 8 9.4337E-14 9.4651E+01
10000 NaN NaN 1298 8 5.0643E-14 4.0015E+02
20000 NaN NaN 1504 9 9.9206E-14 1.8766E+03
30000 NaN NaN 1911 11 3.0963E-14 3.2570E+03
40000 NaN NaN 2043 11 7.2050E-14 4.9437E+03
50000 NaN NaN 2716 14 9.9222E-14 1.1118E+04
60000 NaN NaN 2844 14 5.9696E-14 1.7674E+04
70000 NaN NaN 1571 9 7.4233E-14 1.1866E+04
80000 NaN NaN 1781 10 3.5099E-14 1.3797E+04
90000 NaN NaN 2291 13 7.1423E-14 2.7015E+04

5.5 Switching between Algorithm 16 and Algorithm 18

Here the Algorithm 21 is initially started with either Algorithm 16 or Algorithm 18, and

after executing few iterations, it is halted before breakdown and then the switch to either

of them chosen randomly is carried out.
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5.5.1 Numerical Results

The results obtained with Algorithm 11, Algorithm 14 and the switching Algorithm 21 on

Baheux-type problems of different dimensions, for different values of δ are shown in Tables

5.13-5.16.

Table 5.13: Results of Algorithm 11, Algorithm 14 and Algorithm 21 on Baheux-type problems when δ = 0

Algorithm 11 Algorithm 14 Algorithm 21
Prob. size Total-numit Cycles Residual Norm Elapsed time

n1 × n2 = n ‖rk‖ t(sec) ‖rk‖ t(sec)
∑

k ‖ rk ‖ t(sec)
100 NaN NaN 149 2 5.4429E-14 9.9340E-01
500 NaN NaN 727 7 8.4056E-14 3.9006E+00

1000 NaN NaN 639 8 9.8752E-14 3.6964E+00
5000 NaN NaN 615 8 8.5117E-14 7.8303E+01
10000 NaN NaN 836 9 9.0758E-14 2.6847E+02
20000 NaN NaN 927 10 9.1009E-14 8.4619E+02
30000 NaN NaN 1005 10 8.6259E-14 2.2710E+03
40000 NaN NaN 1111 11 7.5053E-14 3.5692E+03
50000 NaN NaN 1022 11 9.5679E-14 5.3113E+03
60000 NaN NaN 1042 11 9.0590E-14 9.1684E+03
70000 NaN NaN 692 8 8.7268E-14 5.3840E+03
80000 NaN NaN 750 8 9.4198E-14 8.7096E+03
90000 NaN NaN 763 8 8.8979E-14 5.6749E+03

Table 5.14: Results of Algorithm 11, ALgorithm 14 and Algorithm 21 on Baheux-type problems when
δ = 0.2

ALgorithm 11 Algorithm 14 Algorithm 21
Prob. size Total-numit Cycles Residual Norm Elapsed time

n1 × n2 = n ‖rk‖ t(sec) ‖rk‖ t(sec)
∑

k ‖ rk ‖ t(sec)
100 NaN NaN 326 3 6.8559E-14 2.0174E+00
500 NaN NaN 822 8 8.6396E-14 8.0691E+00

1000 NaN NaN 812 7 9.3881E-14 2.0436E+01
5000 NaN NaN 1002 10 4.9914E-14 1.1611E+02
10000 NaN NaN 1018 9 9.1225E-14 4.5456E+02
20000 NaN NaN 964 9 8.2257E-14 1.4541E+03
30000 NaN NaN 1086 10 4.9708E-14 3.3183E+03
40000 NaN NaN 1085 10 7.1491E-14 2.9397E+03
50000 NaN NaN 1148 10 7.8168E-14 4.4537E+03
60000 NaN NaN 1339 13 8.3200E-14 2.3240E+03
70000 NaN NaN 1017 9 8.1649E-14 5.8636E+03
80000 NaN NaN 1231 11 8.3876E-14 8.4180E+03
90000 NaN NaN 844 8 9.5212E-14 5.7511E+03
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Table 5.15: Results of Algorithm 11, Algorithm 14 and Algorithm 21 on Baheux-type problems when δ = 5

Algorithm 11 Algorithm 14 Algorithm 21
Prob. size Total-numit Cycles Residual Norm Elapsed time

n1 × n2 = n ‖rk‖ t(sec) ‖rk‖ t(sec)
∑

k ‖ rk ‖ t(sec)
100 NaN NaN 807 7 8.9095E-14 1.9904E+00
500 NaN NaN 763 7 7.8831E-14 3.2541E+00

1000 NaN NaN 995 8 5.1753E-14 2.7976E+00
5000 NaN NaN 1132 9 9.1870E-14 8.2868E+01
10000 NaN NaN 1120 9 6.3418E-14 2.6316E+02
20000 NaN NaN 975 9 6.4810E-14 4.3373E+02
30000 NaN NaN 1145 10 7.8598E-14 2.1784E+03
40000 NaN NaN 1180 9 6.6699E-14 3.1753E+03
50000 NaN NaN 1200 10 8.1069E-14 5.7859E+03
60000 NaN NaN 980 9 7.3003E-14 5.9071E+03
70000 NaN NaN 1239 10 4.9754E-14 8.5466E+03
80000 NaN NaN 1226 10 5.0487E-14 9.8900E+03
90000 NaN NaN 1044 9 6.9211E-14 7.6570E+03

Table 5.16: Results of Algorithm 11, Algorithm 14 and Algorithm 21 on Baheux-type problems when δ = 8

Algorithm 11 Algorithm 14 Algorithm 21
Prob. size Total-numit Cycles Residual Norm Elapsed time

n1 × n2 = n ‖rk‖ t(sec) ‖rk‖ t(sec)
∑

k ‖ rk ‖ t(sec)
100 NaN NaN 641 6 8.6998E-14 1.2136E+00
500 NaN NaN 906 8 8.5903E-14 2.1504E+00

1000 NaN NaN 936 8 8.7768E-14 1.6959E+00
5000 NaN NaN 1019 9 8.7385E-14 3.9265E+01
10000 NaN NaN 1128 10 8.0363E-14 3.0057E+02
20000 NaN NaN 1114 10 5.8076E-14 8.9572E+02
30000 NaN NaN 1162 11 9.2923E-14 2.7459E+03
40000 NaN NaN 1195 11 5.5494E-14 2.5727E+03
50000 NaN NaN 1520 13 7.4189E-14 4.8640E+03
60000 NaN NaN 1056 10 9.7923E-14 6.4514E+03
70000 NaN NaN 1331 13 5.4630E-14 9.4084E+03
80000 NaN NaN 1285 11 6.1049E-14 8.7633E+03
90000 NaN NaN 1113 11 9.5249E-14 8.4065E+03

5.6 Switching between Algorithm 16 and Algorithm 19

Algorithm 21 is started with either Algorithm 16 or Algorithm 19, i.e. one of the algorithms

run and halted before breakdown and then the switch to either of them chosen randomly

is carried out.
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5.6.1 Numerical Results

The results obtained with Algorithm 11, Algorithm 13 and the switching Algorithm 21 on

Baheux-type problems of different dimensions, for different values of δ are shown in Tables

5.17-5.20.

Table 5.17: Results of Algorithm 11, Algorithm 13 and Algorithm 21 on Baheux-type problems when δ = 0

Algorithm 11 Algorithm 13 Algorithm 21
Prob. size Total-numit Cycles Residual Norm Elapsed time

n1 × n2 = n ‖rk‖ t(sec) ‖rk‖ t(sec)
∑

k ‖ rk ‖ t(sec)
100 NaN NaN 143 2 6.2489E-14 1.2875E+00
500 NaN NaN 845 8 8.7395E-14 6.0516E+00

1000 NaN NaN 1151 11 9.0760E-14 1.5740E+01
5000 NaN NaN 1328 13 9.1996E-14 1.7189E+02
10000 NaN NaN 850 8 9.9440E-14 3.3005E+02
20000 NaN NaN 1156 10 9.3026E-14 1.3018E+03
30000 NaN NaN 1313 11 8.9071E-14 5.9207E+03
40000 NaN NaN 952 9 7.4415E-14 5.2736E+03
50000 NaN NaN 2028 19 9.6995E-14 1.1173E+04
60000 NaN NaN 1454 13 9.5329E-14 1.3430E+04
70000 NaN NaN 1360 12 7.2751E-14 1.0816E+04
80000 NaN NaN 1312 12 9.9669E-14 1.3736E+04
90000 NaN NaN 885 8 9.5321E-14 9.9720E+03

Table 5.18: Results of Algorithm 11, Algorithm 13 and Algorithm 21 on Baheux-type problems when
δ = 0.2

Algorithm 11 Algorithm 13 Algorithm 21
Prob. size Total-numit Cycles Residual Norm Elapsed time

n1 × n2 = n ‖rk‖ t(sec) ‖rk‖ t(sec)
∑

k ‖ rk ‖ t(sec)
100 NaN NaN 361 4 8.4116E-14 1.4017E+00
500 NaN NaN 1196 11 8.2264E-14 9.9396E+00

1000 NaN NaN 753 7 8.1432E-14 1.2279E+01
5000 NaN NaN 957 9 8.3569E-14 1.8631E+02
10000 NaN NaN 1013 10 6.3348E-14 8.1048E+02
20000 NaN NaN 765 7 6.7564E-14 1.6621E+03
30000 NaN NaN 1121 10 7.9328E-14 4.0938E+03
40000 NaN NaN 1273 10 9.8905E-14 4.1029E+03
50000 NaN NaN 926 8 8.4312E-14 5.1431E+03
60000 NaN NaN 1716 14 5.4933E-14 1.2862E+04
70000 NaN NaN 1132 10 8.2734E-14 9.4392E+03
80000 NaN NaN 1770 16 8.2071E-14 2.3258E+04
90000 NaN NaN 1291 12 8.2316E-14 2.3370E+04
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Table 5.19: Results of Algorithm 11, Algorithm 13 and Algorithm 21 on Baheux-type problems when δ = 5

Algorithm 11 Algorithm 13 Algorithm 21
Prob. size Total-numit Cycles Residual Norm Elapsed time

n1 × n2 = n ‖rk‖ t(sec) ‖rk‖ t(sec)
∑

k ‖ rk ‖ t(sec)
100 NaN NaN 657 5 6.1731E-14 1.0476E+00
500 NaN NaN 962 7 9.4535E-14 2.9009E+00

1000 NaN NaN 960 8 7.9350E-14 3.5007E+00
5000 NaN NaN 906 8 7.2284E-14 6.1979E+01
10000 NaN NaN 1001 9 7.8009E-14 2.2937E+02
20000 NaN NaN 1160 10 8.4021E-14 8.8056E+02
30000 NaN NaN 1254 11 6.1894E-14 2.1647E+03
40000 NaN NaN 1141 10 6.9793E-14 2.7633E+03
50000 NaN NaN 1047 9 6.8905E-14 6.3576E+03
60000 NaN NaN 1144 10 9.8689E-14 8.4959E+03
70000 NaN NaN 1091 9 8.5125E-14 1.2639E+04
80000 NaN NaN 1233 10 3.7479E-14 1.9849E+04
90000 NaN NaN 915 8 6.8924E-14 1.5634E+04

Table 5.20: Results of Algorithm 11, Algorithm 13 and Algorithm 21 on Baheux-type problems when δ = 8

Algorithm 11 Algorithm 13 Algorithm 21
Prob. size Total-numit Cycles Residual Norm Elapsed time

n1 × n2 = n ‖rk‖ t(sec) ‖rk‖ t(sec)
∑

k ‖ rk ‖ t(sec)
100 NaN NaN 896 8 9.0693E-14 2.1977E+00
500 NaN NaN 925 9 8.7449E-14 2.7038E+00

1000 NaN NaN 899 9 5.4287E-14 4.2063E+00
5000 NaN NaN 906 9 9.9703E-14 7.8573E+01
10000 NaN NaN 882 9 9.7803E-14 1.8528E+02
20000 NaN NaN 1134 11 9.8800E-14 1.2316E+03
30000 NaN NaN 1067 10 8.1048E-14 3.3113E+03
40000 NaN NaN 1066 10 8.3712E-14 5.2839E+03
50000 NaN NaN 1322 12 5.7524E-14 7.2849E+03
60000 NaN NaN 902 9 9.5416E-14 6.3544E+03
70000 NaN NaN 1178 11 4.7848E-14 1.3715E+04
80000 NaN NaN 1218 11 9.0713E-14 1.7708E+04
90000 NaN NaN 989 10 6.1215E-14 1.5162E+04

5.7 Switching between Algorithm 18 and Algorithm 19

Here the Algorithm 21 is initially started with either Algorithm 18 or Algorithm 19, and

after executing few iterations, it is halted before breakdown and then the switch to either

of them chosen randomly is carried out.
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5.7.1 Numerical Results

The results obtained with Algorithm 13, Algorithm 14 and the switching Algorithm 21 on

Baheux-type problems of different dimensions, for different values of δ are shown in Tables

5.21-5.24.

Table 5.21: Results of Algorithm 13, Algorithm 14 and Algorithm 21 on Baheux-type problems when δ = 0

Algorithm 13 Algorithm 14 Algorithm 21
Prob. size Total-numit Cycles Residual Norm Elapsed time

n1 × n2 = n ‖rk‖ t(sec) ‖rk‖ t(sec)
∑

k ‖ rk ‖ t(sec)
100 NaN NaN 277 4 7.1133E-14 1.2136E+00
500 NaN NaN 655 9 7.0303E-14 2.3065E+00

1000 NaN NaN 794 10 7.7291E-14 2.4763E+00
5000 NaN NaN 676 9 8.8608E-14 4.9447E+01
10000 NaN NaN 670 9 9.0541E-14 9.3519E+01
20000 NaN NaN 1120 13 9.4046E-14 1.0936E+03
30000 NaN NaN 1003 12 7.4658E-14 2.0624E+03
40000 NaN NaN 1230 14 9.9142E-14 5.0916E+03
50000 NaN NaN 791 11 9.9051E-14 2.4449E+03
60000 NaN NaN 1104 14 8.0392E-14 7.0366E+03
70000 NaN NaN 939 12 7.0694E-14 9.0725E+03
80000 NaN NaN 1220 15 9.3741E-14 1.5110E+04
90000 NaN NaN 1015 13 7.3478E-14 1.4508E+04

Table 5.22: Results of Algorithm 13, Algorithm 14 and Algorithm 21 on Baheux-type problems when
δ = 0.2

Algorithm 13 Algorithm 14 Algorithm 21
Prob. size Total-numit Cycles Residual Norm Elapsed time

n1 × n2 = n ‖rk‖ t(sec) ‖rk‖ t(sec)
∑

k ‖ rk ‖ t(sec)
100 NaN NaN 413 5 7.6390E-14 1.1341E+00
500 NaN NaN 1044 11 5.8548E-14 1.7227E+00

1000 NaN NaN 1248 13 9.5118E-14 4.6651E+00
5000 NaN NaN 1295 14 8.5197E-14 6.1776E+01
10000 NaN NaN 1252 13 8.6696E-14 3.0083E+02
20000 NaN NaN 1000 11 8.2636E-14 4.5507E+02
30000 NaN NaN 1115 12 9.7625E-14 1.6191E+03
40000 NaN NaN 881 9 9.6819E-14 2.2483E+03
50000 NaN NaN 1200 13 9.4498E-14 4.4876E+03
60000 NaN NaN 1211 13 7.1510E-14 6.4184E+03
70000 NaN NaN 1110 12 9.4697E-14 8.3229E+03
80000 NaN NaN 1029 11 6.7186E-14 1.0473E+04
90000 NaN NaN 1144 12 8.2802E-14 1.6649E+04
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Table 5.23: Results of Algorithm 13, Algorithm 14 and Algorithm 21 on Baheux-type problems when δ = 5

Algorithm 13 Algorithm 14 Algorithm 21
Prob. size Total-numit Cycles Residual Norm Elapsed time

n1 × n2 = n ‖rk‖ t(sec) ‖rk‖ t(sec)
∑

k ‖ rk ‖ t(sec)
100 NaN NaN 642 5 7.3332E-14 1.2698E+00
500 NaN NaN 783 6 9.9579E-14 1.3623E+00

1000 NaN NaN 1085 8 9.2735E-14 2.7276E+00
5000 NaN NaN 1209 9 9.2111E-14 6.0750E+01
10000 NaN NaN 1205 9 8.8425E-14 1.4547E+02
20000 NaN NaN 1368 10 6.8308E-14 9.1618E+02
30000 NaN NaN 1517 11 7.7128E-14 3.1839E+03
40000 NaN NaN 1941 14 8.6248E-14 7.8021E+03
50000 NaN NaN 1372 10 8.7284E-14 6.7612E+03
60000 NaN NaN 1523 11 3.8548E-14 9.5253E+03
70000 NaN NaN 1369 10 6.3259E-14 1.1009E+04
80000 NaN NaN 1521 11 8.8217E-14 1.2977E+04
90000 NaN NaN 1662 12 6.5920E-14 2.3064E+04

Table 5.24: Results of Algorithm 13, Algorithm 14 and Algorithm 21 on Baheux-type problems when δ = 8

Algorithm 13 Algorithm 14 Algorithm 21
Prob. size Total-numit Cycles Residual Norm Elapsed time

n1 × n2 = n ‖rk‖ t(sec) ‖rk‖ t(sec)
∑

k ‖ rk ‖ t(sec)
100 NaN NaN 693 6 7.7736E-14 1.2808E+00
500 NaN NaN 937 8 9.2642E-14 1.7363E+00

1000 NaN NaN 1066 9 7.9663E-14 4.2646E+00
5000 NaN NaN 1208 10 7.2772E-14 7.6251E+01
10000 NaN NaN 1195 10 6.7539E-14 2.8151E+02
20000 NaN NaN 1195 10 8.8780E-14 1.4111E+03
30000 NaN NaN 1557 13 7.5170E-14 3.6014E+03
40000 NaN NaN 1457 12 3.7015E-14 5.2550E+03
50000 NaN NaN 1567 13 9.0659E-14 8.1525E+03
60000 NaN NaN 1690 14 6.6446E-14 1.3709E+04
70000 NaN NaN 1448 12 7.2670E-14 1.1283E+04
80000 NaN NaN 1317 11 7.8829E-14 1.3046E+04
90000 NaN NaN 1341 11 8.1043E-14 1.3359E+04

5.8 Comparison between restarting and switching strategies

It can be observed from the results that the proposed switching algorithms are faster than

the restarting ones especially when the problems are of high dimensions. As can be seen

in Tables 5.25-5.28, these algorithms appear to have the same performance in terms of

accuracy.
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5.8.1 Comparing Algorithm 20 with Algorithm 21, based on A4 and A12

The results obtained from Algorithm 20, which run separately for Algorithm 17 and Al-

gorithm 16, are based on relation A4 and A12 respectively, are compared with the result

of Algorithm 21. The Algorithm 21 is a switching algorithm between Algorithm 17 and

Algorithm 16. Numerical results for different values of δ = 0 and δ = 0.2 are recorded in

the following Tables 5.25-5.26.

Table 5.25: A comparison of the restarting algorithms, Algorithm 17 and Algorithm 16 against the switching
algorithm, Algorithm 21 on a Baheux-type problems of different sizes when δ = 0

Dim of Prob Algorithm 17 Algorithm 16 Algorithm 21
n1 × n2 = n ‖rk‖ t(sec) ‖rk‖ t(sec) ‖rk‖ t(sec)

100 4.9751E-14 7.0910E-01 5.4429E-14 7.5120E-01 6.4799E-14 1.0229E+00
500 9.7847E-14 1.9640E+00 9.8779E-14 1.8921E+00 9.9621E-14 1.3673E+00
1000 9.1003E-14 4.7824E+00 7.8942E-14 1.8649E+00 8.3930E-14 1.5031E+00
5000 9.3487E-14 3.6608E+01 9.6411E-14 6.2534E+01 9.3487E-14 3.0330E+01

10000 9.9417E-14 1.5808E+02 8.6591E-14 1.2378E+02 9.2032E-14 1.3467E+02
20000 9.9324E-14 6.9171E+02 9.0168E-14 1.2158E+03 8.8114E-14 3.7645E+02
30000 9.9248E-14 3.4193E+03 6.2128E-14 1.7086E+03 9.5415E-14 8.7870E+02
40000 7.5591E-14 2.5580E+03 8.5319E-14 2.9172E+03 9.8820E-14 1.5565E+03
50000 8.1885E-14 2.9318E+03 8.8686E-14 5.6647E+03 9.9651E-14 2.6257E+03
60000 8.4811E-14 7.2413E+03 9.6952E-14 7.0835E+03 9.4797E-14 2.3296E+03
70000 8.7667E-14 7.3412E+03 9.9118E-14 9.3068E+03 8.0121E-14 3.9998E+03
80000 9.9146E-14 6.5786E+03 9.7447E-14 6.9428E+03 8.0435E-14 5.7842E+03
90000 9.0707E-14 5.0874E+03 9.3677E-14 8.8362E+03 6.3203E-14 4.8621E+03

Table 5.26: A comparison of the restarting algorithms, Algorithm 17 and Algorithm 16 against the switching
algorithm, Algorithm 21 on a Baheux-type problems of different sizes, when δ = 0.2

Dim of Prob Algorithm 17 Algorithm 16 Algorithm 21
n1 × n2 = n ‖rk‖ sec ‖rk‖ sec ‖rk‖ sec

100 3.4466E-14 9.0114E-01 8.4201E-14 9.3534E-01 7.2018E-14 1.7407E+00
500 8.6592E-14 1.1456E+00 8.2836E-14 1.6902E+00 6.3987E-14 1.1266E+00
1000 8.1958E-14 2.2509E+00 9.6689E-14 2.8613E+00 8.2681E-14 2.0396E+00
5000 9.4303E-14 2.9377E+01 8.7238E-14 4.1919E+01 9.3962E-14 2.4518E+01

10000 8.9325E-14 1.7968E+02 9.3045E-14 1.2608E+02 9.3596E-14 8.1512E+01
20000 8.3356E-14 3.9526E+02 9.3119E-14 7.3278E+02 8.6842E-14 7.7655E+02
30000 8.1079E-14 1.3205E+03 8.6376E-14 2.0646E+03 9.2112E-14 1.1766E+03
40000 8.9458E-14 3.3931E+03 7.7838E-14 2.9067E+03 8.4260E-14 2.7420E+03
50000 7.5661E-14 3.6229E+03 7.8088E-14 3.8596E+03 9.5880E-14 2.6978E+03
60000 9.1927E-14 4.7638E+03 9.7165E-14 8.0922E+03 9.6912E-14 2.8531E+03
70000 8.2881E-14 6.3346E+03 9.1179E-14 8.8500E+03 9.6283E-14 3.5907E+03
80000 7.2007E-14 5.3332E+03 9.4984E-14 9.5485E+03 9.5650E-14 6.0355E+03
90000 8.7481E-14 4.4072E+03 8.4068E-14 1.1762E+04 8.3997E-14 5.0977E+03
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5.8.2 Comparing Algorithm 20 with Algorithm 21 based on A8/B6 and

A8/B10

Now, we compare the results from Algorithm 20 which run separately Algorithm 18 and

Algorithm 19, are based on relations A8/B6 and A8/B10 respectively, against the Algorithm

21 which switches between Algorithms 18 and 19. Numerical results for different values

of δ = 0 and δ = 0.2 are recorded in the following Tables 5.27-5.28.

Table 5.27: A comparison of the restarting algorithms, Algorithm 18 and Algorithm 19 against the switching
algorithm, Algorithm 21 on a Baheux-type problems of different sizes, when δ = 0

Dim of Prob Algorithm 18 Algorithm 19 Algorithm 21
n1 × n2 = n ‖rk‖ sec ‖rk‖ sec ‖rk‖ sec

100 6.1115E-14 6.2013E-01 9.3606E-14 8.9790E-01 7.1133E-14 1.2136E+00
500 9.8912E-14 5.3377E+00 8.8988E-14 5.1838E+00 7.0303E-14 2.3065E+00
1000 8.5325E-14 2.8432E+00 9.3373E-14 2.5808E+01 6.3383E-14 2.4763E+00
5000 9.0619E-14 1.4516E+01 9.3051E-14 4.6781E+02 8.8608E-14 4.0568E+01

10000 8.7698E-14 6.3695E+01 9.1131E-14 1.1683E+03 9.9832E-14 1.4636E+02
20000 9.6487E-14 3.2046E+02 8.7733E-14 1.9221E+03 9.4046E-14 1.0936E+03
30000 9.7053E-14 4.6949E+02 7.9795E-14 4.0962E+03 7.4658E-14 2.0624E+03
40000 9.7491E-14 9.9272E+02 9.5148E-14 1.2473E+04 9.9142E-14 5.0916E+03
50000 8.7656E-14 1.2205E+03 9.9344E-14 1.8289E+03 5.5027E-14 6.0572E+03
60000 8.7424E-14 1.5603E+03 9.5721E-14 2.8230E+04 8.0392E-14 7.0366E+03
70000 9.0205E-14 1.8936E+03 9.1219E-14 6.4745E+04 7.0694E-14 9.0725E+03
80000 9.8981E-14 2.7773E+03 8.9973E-14 3.7393E+04 9.3741E-14 1.5110E+04
90000 8.4513E-14 4.3607E+03 9.0799E-14 5.8112E+04 7.3478E-14 1.4508E+04

Table 5.28: A comparison of the restarting algorithms, Algorithm 18 and Algorithm 19 against the switching
algorithm, Algorithm 21 on a Baheux-type problems of different sizes, when δ = 0.2

Dim of Prob Algorithm 18 Algorithm 19 Algorithm 21
n1 × n2 = n ‖rk‖ sec ‖rk‖ sec ‖rk‖ sec

100 7.7436E-14 8.4320E-01 9.3360E-14 9.8385E-01 7.6390E-14 1.1341E+00
500 5.9065E-14 1.5156E+00 9.6024E-14 1.3427E+01 5.8548E-14 1.7227E+00
1000 7.9484E-14 2.4188E+00 8.2166E-14 1.9866E+01 9.5118E-14 4.6651E+00
5000 9.7027E-14 7.6450E+01 8.7901E-14 1.2460E+02 8.5197E-14 6.1776E+01

10000 8.6415E-14 2.1527E+02 9.9181E-14 8.3228E+02 8.6696E-14 3.0083E+02
20000 5.8727E-14 4.2976E+02 9.5309E-14 2.4773E+03 8.2636E-14 4.5507E+02
30000 9.6493E-14 1.7039E+03 7.9825E-14 1.0237E+04 9.7625E-14 1.6191E+03
40000 8.3941E-14 2.5913E+03 8.9642E-14 1.4145E+04 9.6819E-14 2.2483E+03
50000 7.4461E-14 3.9558E+03 8.1724E-14 1.1617E+04 9.4498E-14 4.4876E+03
60000 8.6231E-14 4.7694E+03 9.9193E-14 1.6511E+04 7.1510E-14 6.4184E+03
70000 7.7883E-14 5.7245E+03 8.4839E-14 4.0159E+04 9.4697E-14 8.3229E+03
80000 7.9999E-14 8.5143E+03 8.9733E-14 4.2025E+04 6.7186E-14 1.0473E+04
90000 9.2184E-14 1.4880E+04 8.7492E-14 2.3436E+04 8.2802E-14 1.6649E+04
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5.9 Summary

Algorithms A4, A12, A8/B6 and A8/B10 are implemented to solve various problems of the

type given in Sections 4.6, 4.7, 4.8 and 4.9, respectively, with different dimensions ranging

from 100 to 90000. The results from these algorithms are compared with those from the

switching algorithms, i.e. Algorithms 19 to 24 on the same problems. The results reveal

that A4, A12, A8/B6 and A8/B10 are not as robust as the switching algorithms. Individual

algorithms customarily solved problems with dimension n ≤ 20 achieving poor accuracy.

On the contrary, the switching algorithms solved these problems with a higher accuracy.

This argument is supported by strong numerical evidence in favour of switching. It is

obvious from the results obtained that switching is an effective strategy to handle the issue

of breakdown in Lanczos-type algorithms. It is evident to say that switching strategies

can be recommended for efficiency enhancement of the Lanczos-type algorithms along

with their robustness. These strategies are also attractive for their simplicity and ease of

implementation.



Chapter 6

Conclusion and Further Work

This thesis focuses on some iterative methods for solving linear systems of equations

(SLEs). These methods are commonly known as Lanczos-type algorithms. Although these

algorithms are known for their efficiency, they suffer from a major problem which is that of

premature breakdown. This breakdown usually occurs well before convergence to a good

approximate solution. This is due to the loss of orthogonality of the Formal Orthogonal

Polynomials (FOPs) on which these algorithms are based, due to non-existence of FOPs,

accumulation of errors or numerical difficulties while estimating their coefficients. The

numerical difficulties in estimating the coefficients occur when these involve denominators

which become zero during the computational process.

A number of attempts have been made to deal with the breakdown issue in Lanczos-type

algorithms. Some of these attempts provided the foundation for look-ahead algorithms

and look-around algorithms [11,18,19,32,40]. Some have led to jumping over non-existing

FOPs [23], whereas others have inspired restarting from different points for desirable

results in Krylov subspaces [35]. Some of the strategies have considered switching between
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algorithms to provide a remedy to the breakdown and continue the process until achieving

convergence [36]. It has been established that restarting and switching strategies are better

than others in terms of robustness [35,36]. However, these strategies have not been applied

to problems with large sizes. This work considers substantially larger instances of SLEs

than those reported in the available literature. Our results on the whole support our

hypothesis on switching and restarting.

In chapter 4, we have advocated the restarting of algorithms before they broke down.

A test to detect the forthcoming breakdown is described. It relies on some parameters

including the iteration number.

After explaining thoroughly the breakdown issue and some of the existing strategies

to handle the breakdown of the Lanczos-type algorithm, a search has also been made to

find algorithms that are more robust to the issue of breakdown. This is done by extending

the degree of FOPs used in Lanczos-type algorithms. The extended degrees FOPs based

algorithms are compared with the existing ones that are based on low degree FOPs. It has,

however, been observed that the Lanczos-type algorithms based on high degree FOPs are

computationally more expensive than the others. Moreover they face a breakdown issue

due to error accumulation at a higher speed than the others.

Furthermore, other variants of Lanczos-type algorithms involving ordinary polynomial

and monic polynomial have also been derived instead of standard auxiliary polynomial

as used in some previous works by other researchers hinted to in Chapter 3 of the thesis.

Further exploration of these algorithms might help in providing more insight into the

matter.

The components of those coefficients with the denominators that blow up prior to
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breakdown are regularly monitored. We have suggested a stopping test based on the value

of those components that become less than a specified threshold. This test helps to stop the

algorithms preemptively just before breakdown. This allows the algorithms to run for a

maximum number of iterations unlike the conventional methods where the algorithms are

run for a pre-decided number of iterations. The results given in this thesis have revealed

that by utilising the maximum number of iterations, robustness can be achieved. This

test is incorporated in both the restarting and switching strategies. The results show that

these approaches are good competitors in terms of both their robustness and efficiency

in comparison to other conventional methods. Some convergence analysis carried out on

well known algorithm is included as appendix A.

6.1 Further research work

The generalisation of switching to a whole library of Lanczos-type algorithms may prove

very beneficial since it is difficult to match a given Lanczos-type algorithm to a given

problem. Here we have considered two-way switching between two distinct algorithms.

A worthwhile investigation might be a k-way switching or switching between k distinct

algorithms. Non-Lanczos-type algorithms might also be considered for this purpose.

This could be done by considering any number of algorithms which are suitable for

solving SLEs and switch between them as soon as the current algorithm threatens to break-

down. While hitting on a good algorithm, switching away from it to another algorithm

may be counter-productive. It is, therefore, also worthwhile to investigate a combination of

switching and restarting. Here, restarting is equivalent to switching to the same algorithm.

This can happen when the current algorithm is very appropriate for the SLE instance being

solved. “Appropriateness” may be characterised by the number of iterations the algorithm
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takes before monitoring shows that it is going to breakdown. There is also the analysis of

all these approaches in terms of robustness and efficiency.
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Appendix A

Basic and Auxiliary Results

A.1 Convergence Analysis of Iterative Methods

In general, consider an iterative solution of an n × n system of linear equation Ax = b as

xm+1 = Bxm + c, (A.1.1)

xm+1 = xm +M−1rm (A.1.2)

where rm = b−Axm denotes the residual vector at step m, the matrix B is called an iteration

matrix B = M−1N, while c = M−1b.

Suppose the sequence
{

xm

}∞

m=0
has to converges to the exact solution x. Since the error

has the form

em+1 = Bem,

by induction on m, we obtain

em = Bme0, (A.1.3)

where e0 is the initial error. Taking the norm on both sides, then

‖em‖ = ‖B
me0‖ ⇒ ‖em‖ ≤ ‖B

m‖‖e0‖ = ‖B‖
m‖e0‖.

If ‖B‖ < 1, then ‖B‖m → 0 as m→∞ and hence, xm → x as m→∞ [26, 70]. [2]

To carry out the convergence analysis of Lanczos/Orthodir and Lanczos/Orthomin algo-

rithms, we follow the same procedure for CG method given in [1, 61].
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A.1.1 Convergence analysis of Lanczos/Orthodir

Lanczos/Orthodir algorithm is also called algorithm A8/B6 in C. Baheux [4]. Using the

three-term recurrence relationship we obtain the following expression for the residual and

the next solution [3, 4].

rm+1 = rm + Am+1Azm (A.1.4)

xm+1 = xm − Am+1zm (A.1.5)

Since zm = P(1)
m (A)r0, now subtracting x(∗) on both sides of (4.5)

em+1 = em − Am+1zm,



















































































em = em−1 − Amzm−1

em−1 = em−2 − Am−1zm−2

em−2 = em−3 − Am−2zm−3

...

e3 = e2 −A3z2

e2 = e1 −A2z1

e1 = e0 −A1z0

em+1 = e0 − A1z0 − A2z1 −A3z2 − ... − Am+1zm

em+1 = e0 −

m
∑

i=0

Ai+1zi

‖xm+1 − x∗‖ ≤ ‖x0 − x∗‖ +

m
∑

i=0

|Ai+1|‖zi‖

‖xm+1 − x∗‖ ≤ ‖x0 − x∗‖ + |Am+1|‖zm‖. (A.1.6)

Now consider the second part of the equation (A.1.6) on the right hand side

‖zm‖ = ‖P
(1)
m (A)r0‖

‖zm‖ ≤ ‖P
(1)
m (A)‖‖r0‖,

‖xm+1 − x∗‖ ≤ ‖x0 − x∗‖ + |Am+1|‖P
(1)
m (A)‖‖r0‖.

‖.‖ is induced norm. Since A is symmetric positive definite, there exists an orthogonal

matrix V such that A = VΛV−1 with Λ = diag(λ1, λ2, ..., λm), i.e. λi ∈ ρ(A), where ρ(A) in
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known as the spectral radius of A. Let λ be any eigenvalue of matrix A. We also assume

that the initial guess is chosen such that it is close to the true solution, so that ‖r0‖ ≤ ǫ2, for

some ǫ2 > 0, we obtain the following result as

‖zm‖ ≤ ǫ2‖Pm(A)‖ = ǫ2‖VPm(Λ)V−1‖

‖zm‖ ≤ ǫ2‖V‖‖Pm(Λ)‖‖V−1‖

≤ ǫ2κ(V) max
λǫρ(A)

|λ|

where κ(V) is the condition number of matrix V, and its value is less than 1. Since matrix

V is a well conditioned. Since λ is any eigenvalue of matrix A. Therefore equation (A.1.6)

becomes

‖xm+1 − x∗‖ ≤ ǫ1 + |Ai+1|ǫ2κ(V) max
λǫρ(A)

|λ| = ǫ1 + ǫ3κ(V) max
λǫρ(A)

|λ|

‖xm+1 − x∗‖ ≤ ǫ.

By following the same approach of section (4.1.1) for the convergence of Lanczos/Orthomin

algorithm which is also called algorithm A8/B10 in C. Baheux [4].

A.2 Tables for Monitoring Lanczos-type algorithm

Chapter 4

A.2.1 Monitoring Lanczos-type Algorithm based on relation A12

Table A.1: Behaviour of coefficients of A12, on Baheux-type problems, when δ = 0.2

Col.1 Col.2 Col.3 Col.4 Col.5 Col.6 Col.7 Col.8
Dim. of A k ∆k+1 Bk+1 Ck+1 Fk+1 Gk+1 Ak+1

100 143 Inf NaN NaN -4.0667E+01 NaN NaN
500 138 -Inf NaN NaN -1.2363E+00 NaN NaN

1000 138 Inf NaN NaN -1.0483E+02 NaN NaN
5000 137 Inf NaN NaN 3.1365E+01 NaN NaN
10000 136 NaN NaN NaN 9.5220E+01 NaN NaN
15000 137 -1.8339E+307 Inf NaN -5.0930E+01 -Inf NaN
20000 137 NaN NaN NaN -1.0087E+01 NaN NaN
30000 138 1.4730E+308 NaN NaN -3.2086E-01 NaN NaN
40000 137 NaN NaN NaN 3.1354E+01 NaN NaN
50000 137 NaN NaN NaN -8.4727E+01 NaN NaN
60000 137 -Inf NaN NaN -6.8333E+00 NaN NaN
70000 137 2.1116E+307 NaN NaN -3.6980E+01 NaN NaN
80000 137 7.0578E+307 Inf NaN -5.9747E+00 -Inf NaN
90000 98 -6.1147E+203 2.8390E+01 NaN 0.0000E+00 5.2821E+01 NaN
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Table A.2: Behaviour of coefficients of A12, on Baheux-type problems, when δ = 5

Col.1 Col.2 Col.3 Col.4 Col.5 Col.6 Col.7 Col.8
Dim. of A k ∆k+1 Bk+1 Ck+1 Fk+1 Gk+1 Ak+1

100 110 NaN NaN NaN -1.3579E+01 NaN NaN
500 110 NaN NaN NaN -1.8447E+00 NaN NaN
1000 110 NaN NaN NaN 1.4353E+01 NaN NaN
5000 110 1.0052E+307 NaN NaN -4.7945E-01 NaN NaN
10000 109 NaN NaN NaN -1.5253E+01 NaN NaN
15000 108 NaN NaN NaN -3.6764E+00 NaN NaN
20000 109 5.1738E+306 -Inf NaN 1.3255E+01 -Inf NaN
30000 111 NaN NaN NaN -3.6698E+00 NaN NaN
40000 110 NaN NaN NaN -4.9091E+01 NaN NaN
50000 108 -7.9368E+306 NaN NaN -3.1271E-02 NaN NaN
60000 108 5.2744E+306 NaN NaN 3.3261E-01 NaN NaN
70000 107 NaN NaN NaN -1.0807E+01 NaN NaN
80000 110 -Inf NaN NaN 8.1210E+01 NaN NaN
90000 109 6.6387E+306 NaN NaN 7.6687E+00 NaN NaN

Table A.3: Behaviour of coefficients of A12, on Baheux-type problems, when δ = 8

Col.1 Col.2 Col.3 Col.4 Col.5 Col.6 Col.7 Col.8
Dim. of A k ∆k+1 Bk+1 Ck+1 Fk+1 Gk+1 Ak+1

100 94 -Inf NaN NaN 9.4810E+00 NaN NaN
500 95 -1.2204E+308 NaN NaN 1.7348E+00 NaN NaN
1000 95 NaN NaN NaN -4.6667E+03 NaN NaN
5000 94 NaN NaN NaN -1.7000E+01 NaN NaN
10000 94 NaN NaN NaN 1.0163E+01 NaN NaN
15000 94 2.3441E+307 NaN NaN -2.5800E-01 NaN NaN
20000 95 NaN NaN NaN 1.1804E+02 NaN NaN
30000 94 NaN NaN NaN 5.5824E+00 NaN NaN
40000 93 NaN NaN NaN -1.7267E+01 NaN NaN
50000 93 1.6658E+306 NaN NaN -4.6611E+01 NaN NaN
60000 95 NaN NaN NaN -4.9448E+01 NaN NaN
70000 94 -4.4610E+306 NaN NaN -6.0524E+01 NaN NaN
80000 94 2.1993E+307 -Inf NaN 2.9010E-01 -Inf NaN
90000 94 NaN NaN NaN -5.5529E+01 NaN NaN
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Table A.4: Behaviour of the parameters of the offending coefficients of A12, on Baheux-type problems, when
δ = 0.2

Col.1 Col.2 Col.3 Col.4 Col.5 Col.6 Col.7 Col.8
Dim. of A k a11 a13 a21 a23 a31 a33

100 143 1.2809E+103 3.1496E+101 1.4446E+104 4.4095E+102 1.5141E+105 5.1234E+103
500 138 2.7570E+102 2.2300E+102 3.6055E+103 3.4234E+103 6.6905E+104 4.6900E+104
1000 138 1.2209E+103 1.1647E+101 2.3236E+104 -1.7673E+102 3.7150E+105 -1.3911E+103
5000 137 -6.6159E+102 2.1093E+101 -8.6313E+103 4.6233E+102 -1.1268E+105 6.6409E+103
10000 136 5.1234E+103 -5.3806E+101 1.0482E+105 -9.9214E+102 1.8966E+106 -1.7246E+104
15000 137 1.9773E+102 3.8824E+100 4.2275E+103 6.2118E+101 7.6935E+104 5.9493E+102
20000 137 2.0298E+102 2.0123E+101 6.3133E+103 4.4095E+102 1.2375E+105 6.2713E+103
30000 138 5.2494E+101 1.6361E+102 9.6589E+102 4.3465E+103 4.9274E+103 9.3397E+104
40000 137 -2.7157E+103 8.6615E+101 -7.8951E+104 1.9528E+103 -1.6314E+106 2.9845E+104
50000 137 -4.0770E+102 -4.8120E+100 -1.3746E+104 -4.4182E+101 -2.7762E+105 7.5941E+102
60000 137 -2.3316E+102 -3.4121E+101 -4.9834E+103 -6.9292E+102 -9.8381E+104 -1.8828E+104
70000 137 1.9816E+102 5.3588E+100 5.8653E+103 1.0849E+102 9.9165E+104 1.7358E+103
80000 137 2.0648E+102 3.4559E+101 4.2835E+103 9.5889E+102 7.6039E+104 1.9402E+104
90000 98 0.0000E+00 -6.0291E+66 3.1846E+68 -1.8725E+68 8.4924E+68 -3.5486E+69

Table A.5: Behaviour of the parameters of the offending coefficients of A12, on Baheux-type problems, when
δ = 5

Col.1 Col.2 Col.3 Col.4 Col.5 Col.6 Col.7 Col.8
Dim. of A k a11 a13 a21 a23 a31 a33

100 110 -1.8058E+103 -1.3298E+102 -1.1423E+104 2.9537E+103 8.7798E+104 4.4795E+104
500 110 -4.2549E+101 -2.3065E+101 -4.2090E+103 -1.6387E+103 -1.3707E+105 -4.2877E+104
1000 110 -2.6130E+102 1.8205E+101 -1.1263E+104 6.3211E+102 -9.2258E+104 4.5549E+103
5000 110 7.6554E+100 1.5967E+101 -3.8758E+102 8.9371E+102 -3.5219E+104 1.1899E+104
10000 109 2.2400E+102 1.4685E+101 8.0224E+103 5.6136E+102 6.8793E+104 6.8894E+103
15000 108 -1.9601E+102 -5.3314E+101 -7.2652E+103 -1.5652E+103 -3.3624E+104 -6.3133E+103
20000 109 -2.6466E+101 1.9967E+100 -2.1838E+103 9.4325E+100 -4.7791E+104 -1.8238E+103
30000 111 1.3239E+102 3.6076E+101 4.2144E+103 1.6207E+103 2.7656E+104 2.4866E+104
40000 110 -1.2697E+103 -2.5864E+101 -3.1937E+104 -1.2567E+103 2.2310E+105 -1.0233E+104
50000 108 -7.6622E+100 -2.4503E+102 -3.8456E+102 -1.6995E+103 -6.5245E+103 1.8808E+105
60000 108 -1.3012E+101 3.9120E+101 -7.6146E+102 1.1948E+103 -1.1666E+104 2.1676E+103
70000 107 -5.5172E+102 -5.1050E+101 -3.7042E+104 -2.1840E+103 -7.3643E+105 -2.5000E+104
80000 110 2.9225E+102 -3.5987E+100 6.4165E+103 -1.5732E+102 -1.0956E+105 -1.5510E+103
90000 109 6.1251E+101 -7.9871E+100 2.4999E+103 -9.1752E+101 3.2900E+104 7.0396E+103
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Table A.6: Behaviour of the parameters of the offending coefficients of A12, on Baheux-type problems, when
δ = 8

Col.1 Col.2 Col.3 Col.4 Col.5 Col.6 Col.7 Col.8
Dim. of A k a11 a13 a21 a23 a31 a33

100 94 1.1237E+102 -1.1852E+101 4.2013E+103 -1.6186E+102 -1.5183E+104 6.3063E+103
500 95 4.2745E+100 -2.4639E+100 -6.7927E+103 -1.8185E+102 -2.8377E+105 -4.7253E+103
1000 95 7.0922E+104 1.5198E+101 2.6040E+106 4.2108E+102 -9.4050E+107 -1.9920E+104
5000 94 -1.9247E+102 -1.1322E+101 -1.1271E+104 -3.7679E+102 3.1619E+103 1.3544E+104
10000 94 -2.3044E+102 2.2675E+101 -8.2123E+103 1.2106E+103 2.7346E+105 -1.2306E+104
15000 94 7.5894E+100 2.9416E+101 -5.2758E+102 1.2425E+103 -5.0619E+104 -1.7760E+104
20000 95 -2.6689E+103 2.2610E+101 -1.0952E+105 6.4725E+102 1.1355E+106 -2.9162E+104
30000 94 1.6055E+102 -2.8761E+101 2.8006E+103 -1.1438E+103 -3.7849E+105 2.2882E+104
40000 93 -2.7785E+102 -1.6091E+101 -1.5526E+104 -7.1012E+102 7.3789E+104 7.0175E+103
50000 93 1.1782E+102 2.5278E+100 6.7784E+103 1.7612E+102 2.3443E+104 2.3887E+103
60000 95 1.1910E+103 2.4086E+101 6.4289E+104 1.7077E+103 -4.3989E+105 1.1068E+104
70000 94 -8.7863E+101 -1.4517E+100 -2.9185E+103 -8.6296E+101 9.1446E+104 -3.3167E+102
80000 94 -1.7167E+101 5.9176E+101 -1.5722E+101 9.1937E+102 4.3609E+104 -7.4905E+104
90000 94 3.4012E+102 6.1252E+100 6.4194E+103 3.7219E+102 -5.7647E+105 -9.6716E+103

A.2.2 Monitoring Lanczos-type Algorithm based on relation A4

Table A.7: Behaviour of coefficients of A4, on Baheux-type problems, when δ = 0.2.

Col.1 Col.2 Col.3 Col.4 Col.5
Dim. of A k Ak+1 Bk+1 Ek+1

100 353 NaN NaN 1.1163E+01
500 348 NaN NaN 1.3478E+01
1000 348 NaN NaN -4.7831E-01
5000 348 NaN NaN -1.3990E+01

10000 348 NaN NaN -6.1613E+00
15000 348 NaN NaN -2.1622E-01
20000 348 NaN NaN 1.3158E+00
30000 348 NaN NaN 1.3723E+00
40000 313 0.0000E+00 -Inf 0.0000E+00
50000 348 NaN NaN -4.1474E+00
60000 337 NaN NaN NaN
70000 233 0.0000E+00 -Inf 0.0000E+00
80000 348 NaN NaN -3.4657E-01
90000 348 NaN NaN -1.2987E-01
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Table A.8: Behaviour of coefficients of A4, on Baheux-type problems, when δ = 5.

Col.1 Col.2 Col.3 Col.4 Col.5
Dim. of A k Ak+1 Bk+1 Ek+1

100 298 NaN NaN -2.2381E+00
500 297 NaN NaN -1.8365E+00

1000 297 NaN NaN -5.2904E+00
5000 297 NaN NaN 1.6413E+00

10000 297 NaN NaN -4.6932E+00
15000 295 NaN NaN -4.9449E+00
20000 296 NaN NaN 5.3936E+01
30000 296 NaN NaN 1.0081E+01
40000 297 NaN NaN NaN
50000 297 NaN NaN -3.0275E+00
60000 297 NaN NaN -1.0351E+01
70000 292 NaN NaN 2.0430E+02
80000 297 NaN NaN -2.2461E+00
90000 297 NaN NaN 6.4000E+01

Table A.9: Behaviour of coefficients of A4, on Baheux-type problems, when δ = 8.

Col.1 Col.2 Col.3 Col.4 Col.5
Dim. of A k Ak+1 Bk+1 Ek+1

100 256 NaN NaN 8.0417E+00
500 256 NaN NaN 2.9273E+01

1000 256 NaN NaN 4.8840E+00
5000 256 NaN NaN 7.1727E+00

10000 256 NaN NaN 5.1344E-01
15000 256 NaN NaN -1.1850E+00
20000 256 NaN NaN -5.4779E+01
30000 256 NaN NaN 1.0123E+02
40000 256 NaN NaN 2.6048E+01
50000 255 NaN NaN -3.0734E+01
60000 256 NaN NaN 3.2115E+00
70000 254 NaN NaN -1.9930E+02
80000 256 NaN NaN 1.4115E+02
90000 256 NaN NaN 3.4716E+00
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Table A.10: Behaviour of the parameters of the offending coefficients of A4, on Baheux-type problems, when
δ = 0.2

Col.1 Col.2 Col.3 Col.4 Col.5 Col.6
Dim. of A k ak bk ck dk

100 353 4.5681E+288 -4.0923E+287 NaN -3.8068E+287
500 348 -2.0998E+290 1.5579E+289 NaN -6.8065E+289
1000 348 2.7531E+290 5.7558E+290 NaN 7.4211E+291
5000 348 -4.6238E+291 -3.3050E+290 NaN -1.5672E+291

10000 348 -5.8167E+289 -9.4408E+288 NaN -1.6932E+290
15000 348 6.0908E+287 2.8170E+288 NaN 4.8727E+289
20000 348 -9.7453E+290 7.4064E+290 NaN 6.5878E+291
30000 348 4.2940E+290 -3.1292E+290 NaN -4.8617E+291
40000 313 0.0000E+00 2.2141E+261 1.3776E+262 2.2879E+262
50000 348 3.8397E+291 9.2580E+290 NaN 1.6128E+292
60000 337 NaN 4.5380E+279 NaN 3.6304E+280
70000 233 0.0000E+00 3.1953E+186 1.4794E+188 -5.4389E+185
80000 348 -2.9236E+290 -8.4358E+290 NaN -7.6598E+291
90000 348 -6.0908E+288 -4.6899E+289 NaN -4.5316E+290

Table A.11: Behaviour of the parameters of the offending coefficients of A4, on Baheux-type problems, when
δ = 5

Col.1 Col.2 Col.3 Col.4 Col.5 Col.6
Dim. of A k ak bk ck dk

100 298 9.1606E+290 4.0930E+290 NaN 6.4514E+291
500 297 4.5647E+292 2.4856E+292 NaN 2.2671E+293

1000 297 -5.2231E+291 -9.8728E+290 NaN -1.1289E+291
5000 297 -1.1806E+292 7.1935E+291 NaN 2.1548E+293

10000 297 5.3596E+289 1.1420E+289 NaN 1.4984E+290
15000 295 -9.2375E+292 -1.8681E+292 NaN -2.3580E+292
20000 296 3.7422E+293 -6.9383E+291 NaN 6.2455E+291
30000 296 -8.4809E+292 8.4130E+291 NaN -7.4832E+291
40000 297 NaN 3.7111E+292 NaN 5.9874E+293
50000 297 1.1261E+289 3.7195E+288 NaN 9.2564E+289
60000 297 1.5247E+290 1.4729E+289 NaN 1.6116E+290
70000 292 -6.9981E+292 3.4253E+290 NaN -8.9949E+292
80000 297 -9.9810E+291 -4.4437E+291 NaN -4.3663E+292
90000 297 -2.9933E+293 4.6770E+291 NaN -1.6961E+293
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Table A.12: Behaviour of the parameters of the offending coefficients of A4, on Baheux-type problems, when
δ = 8

Col.1 Col.2 Col.3 Col.4 Col.5 Col.6
Dim. of A k ak bk ck dk

100 256 -1.5047E+292 1.8711E+291 NaN 6.3345E+291
500 256 -6.6790E+293 2.2816E+292 NaN 1.0601E+294

1000 256 1.3191E+293 -2.7009E+292 NaN 1.0367E+293
5000 256 3.2712E+292 -4.5607E+291 NaN -1.1118E+293

10000 256 1.0976E+294 -2.1377E+294 NaN -3.6692E+295
15000 256 2.2040E+293 1.8600E+293 NaN 5.2107E+294
20000 256 -6.1681E+293 -1.1260E+292 NaN -2.4514E+293
30000 256 4.9756E+293 -4.9152E+291 NaN -6.9766E+292
40000 256 -6.9928E+294 2.6846E+293 NaN -7.6346E+293
50000 255 -1.9062E+295 -6.2023E+293 NaN -1.9187E+295
60000 256 1.0319E+293 -3.2132E+292 NaN -5.0331E+293
70000 254 7.7573E+293 3.8923E+291 NaN -6.2404E+291
80000 256 -7.2403E+295 5.1294E+293 NaN -1.3574E+295
90000 256 1.4881E+294 -4.2866E+293 NaN -7.3728E+294

A.2.3 Monitoring Lanczos-type Algorithm based on relation A8/B6

Table A.13: Behaviour of coefficients of A8/B6, on Baheux-type problems, when δ = 0.2.

Col.1 Col.2 Col.3 Col.4 Col.5
Dim. of A k Ak+1 Ck+1 Ek+1

100 131 NaN NaN NaN
500 171 NaN NaN NaN
1000 171 NaN NaN NaN
5000 170 NaN NaN NaN

10000 172 NaN NaN NaN
15000 167 NaN NaN NaN
20000 174 NaN NaN NaN
30000 172 NaN NaN NaN
40000 174 NaN NaN NaN
50000 173 NaN NaN NaN
60000 169 NaN NaN NaN
70000 175 NaN NaN NaN
80000 172 NaN NaN NaN
90000 170 NaN NaN NaN
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Table A.14: Behaviour of coefficients of A8/B6, on Baheux-type problems, when δ = 5.

Col.1 Col.2 Col.3 Col.4 Col.5
Dim. of A k Ak+1 Ck+1 Ek+1

100 152 NaN NaN NaN
500 153 NaN NaN NaN
1000 150 NaN NaN NaN
5000 152 NaN NaN NaN

10000 151 NaN NaN NaN
15000 152 NaN NaN NaN
20000 152 NaN NaN NaN
30000 152 NaN NaN NaN
40000 151 NaN NaN NaN
50000 151 NaN NaN NaN
60000 152 NaN NaN NaN
70000 152 NaN NaN NaN
80000 151 NaN NaN NaN
90000 152 NaN NaN NaN

Table A.15: Behaviour of coefficients of A8/B6, on Baheux-type problems, when δ = 8.

Col.1 Col.2 Col.3 Col.4 Col.5
Dim. of A k Ak+1 Ck+1 Ek+1

100 134 NaN NaN NaN
500 132 NaN NaN NaN
1000 131 NaN NaN NaN
5000 131 NaN NaN NaN

10000 131 NaN NaN NaN
15000 131 NaN NaN NaN
20000 130 NaN NaN NaN
30000 131 NaN NaN NaN
40000 131 NaN NaN NaN
50000 131 NaN NaN NaN
60000 131 NaN NaN NaN
70000 132 NaN NaN NaN
80000 131 NaN NaN NaN
90000 131 NaN NaN NaN
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Table A.16: Behaviour of the parameters of the offending coefficients of A8/B6, on Baheux-type problems,
when δ = 0.2

Col.1 Col.2 Col.3 Col.4 Col.5 Col.6 Col.7
Dim. of A k ak bk ck fk ek

100 131 1.3670E+98 NaN -7.1434E+207 -4.1336E+208 NaN
500 171 -2.9678E+140 NaN NaN NaN NaN

1000 171 8.8225E+140 NaN -1.8901E+292 7.5446E+292 NaN
5000 170 1.4692E+141 NaN -5.4262E+292 -8.7330E+293 NaN

10000 172 5.4184E+140 NaN NaN NaN NaN
15000 167 2.5975E+140 NaN 1.2349E+293 -1.5281E+293 NaN
20000 174 2.1493E+143 NaN NaN NaN NaN
30000 172 -3.4297E+142 NaN -3.3524E+291 -2.2901E+292 NaN
40000 174 1.6889E+144 NaN NaN NaN NaN
50000 173 -5.0909E+140 NaN -5.9875E+292 -1.1227E+293 NaN
60000 169 -5.4728E+139 NaN NaN NaN NaN
70000 175 -1.0496E+138 NaN -2.4948E+292 7.4766E+292 NaN
80000 172 -1.5667E+140 NaN NaN NaN NaN
90000 170 2.7628E+141 NaN NaN NaN NaN

Table A.17: Behaviour of the parameters of the offending coefficients of A8/B6, on Baheux-type problems,
when δ = 5

Col.1 Col.2 Col.3 Col.4 Col.5 Col.6 Col.7
Dim. of A k ak bk ck fk ek

100 152 -4.9063E+141 NaN -3.6447E+291 -5.2391E+292 NaN
500 153 -2.5626E+147 NaN 3.0950E+296 NaN NaN

1000 150 1.8401E+144 NaN -1.9097E+292 -2.4271E+294 NaN
5000 152 1.2775E+144 NaN -5.6837E+293 -1.5076E+295 NaN

10000 151 5.2808E+142 NaN 3.6867E+295 NaN NaN
15000 152 -1.6898E+145 NaN 1.2253E+294 4.1257E+295 NaN
20000 152 -3.3016E+145 NaN -2.0971E+294 -9.3010E+295 NaN
30000 152 -1.0967E+143 NaN -2.3205E+294 -6.2173E+295 NaN
40000 151 -7.9640E+144 NaN 9.5420E+293 5.3354E+295 NaN
50000 151 7.0552E+144 NaN -5.0305E+293 -2.4010E+295 NaN
60000 152 1.4548E+145 NaN -9.6633E+294 NaN NaN
70000 152 -1.5788E+143 NaN 1.3788E+296 NaN NaN
80000 151 2.3020E+145 NaN 8.7519E+292 1.0234E+295 NaN
90000 152 -6.9211E+144 NaN -1.3999E+294 -4.8148E+295 NaN
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Table A.18: Behaviour of the parameters of the offending coefficients of A8/B6, on Baheux-type problems,
when δ = 8

Col.1 Col.2 Col.3 Col.4 Col.5 Col.6 Col.7
Dim. of A k ak bk ck fk ek

100 134 -9.0009E+143 NaN -2.4032E+292 2.6741E+293 NaN
500 132 -2.2024E+146 NaN 4.3841E+295 NaN NaN

1000 131 -5.7515E+144 NaN 3.1145E+294 NaN NaN
5000 131 1.6022E+147 NaN 4.6646E+292 6.2334E+295 NaN

10000 131 -2.3100E+145 NaN 1.2057E+294 4.1242E+295 NaN
15000 131 -6.0925E+145 NaN -3.4951E+294 2.4083E+294 NaN
20000 130 -3.4270E+144 NaN 2.7443E+295 1.0791E+297 NaN
30000 131 -3.7728E+146 NaN -7.5069E+293 -5.8624E+295 NaN
40000 131 4.2808E+144 NaN -3.5174E+296 -1.7240E+298 NaN
50000 131 3.5555E+146 NaN 2.6283E+294 3.2205E+296 NaN
60000 131 -2.0559E+147 NaN -4.1755E+293 3.6314E+294 NaN
70000 132 -1.3088E+147 NaN -9.0732E+296 NaN NaN
80000 131 -5.1805E+145 NaN -2.7581E+295 -1.4887E+297 NaN
90000 131 9.6768E+145 NaN 4.8522E+295 NaN NaN

A.2.4 Monitoring Lanczos-type Algorithm based on relation A8/B10

Table A.19: Behaviour of the parameters of the offending coefficients of A8/B10, on Baheux-type problems,
when δ = 0.2

Col.1 Col.2 Col.3 Col.4 Col.5
Dim. of A k Ak Ck Bk

100 178 NaN NaN NaN
500 183 NaN NaN NaN

1000 178 NaN NaN NaN
5000 182 NaN NaN NaN

10000 176 Inf 0.0000E+00 NaN
15000 181 NaN NaN NaN
20000 181 NaN NaN NaN
30000 181 NaN NaN NaN
40000 184 NaN NaN NaN
50000 181 NaN NaN NaN
60000 120 Inf 0.0000E+00 NaN
70000 176 NaN NaN NaN
80000 172 Inf 0.0000E+00 NaN
90000 183 NaN NaN NaN
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Table A.20: Behaviour of the parameters of the offending coefficients of A8/B10, on Baheux-type problems,
when δ = 5

Col.1 Col.2 Col.3 Col.4 Col.5
Dim. of A k Ak Ck Bk

100 158 NaN NaN NaN
500 155 NaN NaN NaN
1000 154 NaN NaN NaN
5000 153 NaN NaN NaN

10000 153 NaN NaN NaN
15000 153 NaN NaN NaN
20000 153 NaN NaN NaN
30000 153 NaN NaN NaN
40000 153 NaN NaN NaN
50000 152 NaN NaN NaN
60000 153 NaN NaN NaN
70000 153 NaN NaN NaN
80000 153 NaN NaN NaN
90000 153 NaN NaN NaN

Table A.21: Behaviour of the parameters of the offending coefficients of A8/B10, on Baheux-type problems,
when δ = 8

Col.1 Col.2 Col.3 Col.4 Col.5
Dim. of A k Ak Ck Bk

100 135 NaN NaN NaN
500 133 NaN NaN NaN
1000 133 NaN NaN NaN
5000 132 NaN NaN NaN

10000 132 NaN NaN NaN
15000 132 NaN NaN NaN
20000 132 NaN NaN NaN
30000 133 NaN NaN NaN
40000 132 NaN NaN NaN
50000 131 NaN NaN NaN
60000 132 NaN NaN NaN
70000 132 NaN NaN NaN
80000 132 NaN NaN NaN
90000 132 NaN NaN NaN
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Table A.22: Behaviour of the parameters of the offending coefficients of A8/B10, on Baheux-type problems,
when δ = 0.2

Col.1 Col.2 Col.3 Col.4 Col.5
Dim. of A k ak bk ck

100 178 1.5104E+138 NaN NaN
500 183 -2.3401E+145 NaN NaN

1000 178 5.6782E+147 NaN NaN
5000 182 -6.8952E+146 NaN NaN

10000 176 -4.5252E+141 0.0000E+00 NaN
15000 181 2.7971E+148 NaN NaN
20000 181 -2.5773E+148 NaN NaN
30000 181 -7.2924E+147 NaN NaN
40000 184 2.9969E+146 NaN NaN
50000 181 -2.4662E+147 NaN NaN
60000 120 -5.9679E+88 0.0000E+00 NaN
70000 176 -2.6050E+138 NaN NaN
80000 172 -1.4973E+137 0.0000E+00 NaN
90000 183 6.2435E+144 NaN NaN

Table A.23: Behaviour of the parameters of the offending coefficients of A8/B10, on Baheux-type problems,
when δ = 5

Col.1 Col.2 Col.3 Col.4 Col.5
Dim. of A k ak bk ck

100 158 -9.9506E+144 NaN NaN
500 155 3.2130E+146 NaN NaN

1000 154 -3.3970E+147 NaN NaN
5000 153 1.6221E+145 NaN NaN

10000 153 4.1643E+145 NaN NaN
15000 153 -5.9692E+147 NaN NaN
20000 153 -4.9588E+144 NaN NaN
30000 153 1.9475E+146 NaN NaN
40000 153 -2.0946E+147 NaN NaN
50000 152 6.0330E+146 NaN NaN
60000 153 -2.3041E+148 NaN NaN
70000 153 9.0311E+144 NaN NaN
80000 153 1.4389E+147 NaN NaN
90000 153 2.8325E+145 NaN NaN
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Table A.24: Behaviour of the parameters of the offending coefficients of A8/B10, on Baheux-type problems,
when δ = 8

Col.1 Col.2 Col.3 Col.4 Col.5
Dim. of A k ak bk ck

100 135 2.3650E+148 NaN NaN
500 133 2.4457E+146 NaN NaN

1000 133 -5.6127E+146 NaN NaN
5000 132 7.3507E+146 NaN NaN

10000 132 2.5989E+147 NaN NaN
15000 132 -1.6577E+147 NaN NaN
20000 132 4.4906E+147 NaN NaN
30000 133 -9.2673E+146 NaN NaN
40000 132 -6.5140E+144 NaN NaN
50000 131 1.0568E+145 NaN NaN
60000 132 6.2999E+147 NaN NaN
70000 132 -3.1328E+147 NaN NaN
80000 132 -9.5886E+147 NaN NaN
90000 132 -6.8746E+146 NaN NaN
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