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Abstract
Addiction is characterized by a profound intersubject (phenotypic) variability in the expression of addictive symptomatology
and propensity to relapse following treatment. However, laboratory investigations have primarily focused on common neural
substrates in addiction and have not yet been able to identify mechanisms that can account for the multifaceted phenotypic
behaviors reported in the literature. To fill this knowledge gap theoretically, here we simulated phenotypic variations in
addiction symptomology and responses to putative treatments, using both a neural model, based on cortico-striatal circuit
dynamics, and an algorithmic model of reinforcement learning (RL). These simulations rely on the widely accepted
assumption that both the ventral, model-based, goal-directed system and the dorsal, model-free, habitual system are
vulnerable to extra-physiologic dopamine reinforcements triggered by addictive rewards. We found that endophenotypic
differences in the balance between the two circuit or control systems resulted in an inverted-U shape in optimal choice
behavior. Specifically, greater unbalance led to a higher likelihood of developing addiction and more severe drug-taking
behaviors. Furthermore, endophenotypes with opposite asymmetrical biases among cortico-striatal circuits expressed
similar addiction behaviors, but responded differently to simulated treatments, suggesting personalized treatment devel-
opment could rely on endophenotypic rather than phenotypic differentiations. We propose our simulated results, confirmed
across neural and algorithmic levels of analysis, inform on a fundamental and, to date, neglected quantitative method to
characterize clinical heterogeneity in addiction.
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Introduction
Addiction is known to encompass a wide range of

individual behavioral differences (i.e., phenotypes) in de-
velopment, maintenance and severity of symptoms, and

treatment response (Everitt and Robbins, 2016). Previous
investigations into the mechanisms underlying this heter-
ogeneity of behaviors have identified two fundamental
neurocomputational alterations correlated with vulnerabil-
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Significance Statement

Addiction is known to encompass heterogeneity in its development, maintenance, and treatment response.
While previous work has mostly focused on the common mechanisms underlying vulnerabilities in addiction
at a group level, the neurocomputational causes for such intersubject variability in addition are not well
understood. To fill this knowledge gap, we combine a neural and a reinforcement learning (RL) model to
reveal that the balance between neural circuits or computational control modalities characterizes the
presence of behavioral phenotypes in addiction. The presence of converging effects, validated across
neural and algorithmic levels of analysis, informs on a quantitative method to characterize clinical hetero-
geneity and potentially helps future development of precision treatments.
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ity in the development and severity of addictive behaviors
(Garrison and Potenza, 2014; Jupp and Dalley, 2014;
Belin et al., 2016). These neural and computational inter-
subject differentiations (i.e., endophenotypes) include (1)
a dysregulation of D2 receptors in the striatum (Morgan
et al., 2002; Nader and Czoty, 2005; Dalley et al., 2007;
Flagel et al., 2014) and (2) an alteration of learning rates
within a reinforcement-learning framework (Gutkin et al.,
2006; Piray et al., 2010). However, these endophenotypic
differences are found across a wide spectrum of dis-
sociable phenotypes, so that the same neural or compu-
tational mechanism is used to account for separable
behavioral traits. For instance, different forms of striatal
D2 dysregulation are found in individuals differing in terms
of their impulsivity (Dalley et al., 2007; Volkow et al., 2007),
social dominance (Morgan et al., 2002; Gould et al., 2014),
motor reactivity or preference for novelty (Flagel et al.,
2010, 2014), or sensitivity to rewards (Belcher et al.,
2014). Each of these behavioral traits is separately corre-
lated with development of addiction, but they do not
necessarily coexist in the same individuals (cf. novelty
seeking and impulsivity: Ersche et al., 2010; Molander
et al., 2011; Belin and Deroche-Gamonet, 2012). This
mismatch between few known endophenotypic differ-
ences and a wide variety of multifaceted, dissociable,
behavioral phenotypes suggests there are yet unknown
neural and computational mechanisms that are responsi-
ble, alone or in interaction, for the reported behavioral
differentiations. Finally, investigations into intersubject
variability often emphasize the initial stage of addiction
development (but see Belin et al., 2008; Economidou
et al., 2009; Pelloux et al., 2015). Yet, individual differ-
ences also exist in treatment response, resulting in di-
verse relapse patterns among individuals showing similar
severity of symptoms. These differences have not been so
far addressed in previous neural or computational models.

Here, we propose a theoretical investigation into the
interaction between ventral and dorsal cortico-striatal cir-
cuits and the associated behavioral control modalities.
Several studies have emphasized that addiction is asso-
ciated with alterations of ventral and dorsal cortico-striatal
circuits, and of motivations and habits (Volkow and Mo-
rales, 2015; Everitt and Robbins, 2016; Koob and Volkow,
2016). However, the role played by the interaction between
the two neural circuits or between the two behavioral control
modalities in generating intersubject variability in addiction,
has been so far neglected. To investigate this interaction,
we use two models to simulate neural dynamics and

algorithmic (or normative) choice selections in a multiple-
choice task involving drug and non-drug rewards. Then
we test these models under different conditions of circuit
or control modality dominance (i.e., simulated endophe-
notypes). Consistently with previous models, we assume
addictive substances hijack the healthy reward prediction
error signal (Schultz et al., 1997) by triggering extra-
physiologic dopamine bursts (Nestler and Aghajanian,
1997; Koob and Volkow, 2016). These dopamine activities
signal the presence of an aberrant unexpected reward,
leading to the repetition of drug-related actions and es-
calation of consumption (Redish et al., 2008; Dayan,
2009). In our neural model, this process of reinforcement
learning (RL; Sutton and Barto, 1998) is mediated by
extra-physiologic changes in cortico-striatal connectivity
weights (Hyman et al., 2006; Haber, 2008; Koob and
Volkow, 2016). These changes in turn aberrantly affect
circuit gain and the stability of both ventral and dorsal
cortico-striatal circuits, disrupting their respective roles in
encoding and selecting goal-directed behaviors (Balleine,
2005; Balleine and O’Doherty, 2010; Gruber and McDon-
ald, 2012) and habitual responses (Yin et al., 2004; Bal-
leine and O’Doherty, 2010). A similar effect is assumed for
our algorithmic model, where overevaluation of drugs and
related RL affect the two control modalities, termed
model-based and model-free, that approximate ventral/
goal-oriented and dorsal/habitual implementations (Dolan
and Dayan, 2013; Voon et al., 2017). As a result, and
consistently with previous formulations of RL models of
addiction (Redish et al., 2008; Piray et al., 2010; Gillan
et al., 2016), both the planned evaluation of known action-
outcome contingencies, represented in an internal model
of the world, and the reactive immediate motor responses
are biased toward drug-related selections.

Based on these assumptions, our models show that
phenotypic differentiation in addiction development and
treatment response can emerge as a function of the in-
teraction between ventral and dorsal circuits or model-
based and model-free control modalities. Our simulated
results offer a proof-of-concept that this interaction is a
candidate independent neural and computational mech-
anism underlying addiction vulnerability, putatively char-
acterizing three different endophenotypes differing in the
likelihood to develop addiction, severity of symptoms and
treatment response. We suggest this neurocomputational
mechanism could interact with both previously described
D2 receptors dysregulation in the striatum (Dalley et al.,
2007; Flagel et al., 2014) and altered learning rates (Gutkin
et al., 2006; Piray et al., 2010) to generate the variety of
dissociable behavioral traits reported in literature as as-
sociated with addiction vulnerabilities.

Materials and Methods
In brief, we present two complementary models simu-

lating endophenotypic differences and their effects on
addiction development and treatment response. In the
models, intersubject differences are expressed in terms of
either neural circuit dominance (i.e., ventral or dorsal cir-
cuit) or control modality dominance (i.e., model-based or
model-free) in determining behavioral selections. The re-
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sulting phenotypes are tested in environments granting
free access to a simulated substance of addiction, as
usually implemented in laboratory studies. In particular,
we compare our simulated phenotypic variability with the
results described in a recent study investigating individual
differences in rats self-administrating the stimulants cocaine
or a designer drug, a dopamine- and mixed dopamine-
norepinephrine reuptake inhibitor, respectively (Gannon
et al., 2017). We selected this study because it highlights
how different drugs, dosages, and tasks result in different
ranges of phenotypic differentiation. For instance, an initial
acquisition phase, over a 10-d period, shows compulsive
behavior developed in up to 75% rats self-administering
cocaine and 87.5% of those exposed to the designer drug.
Furthermore, under a condition of fixed ratio (�5) schedule,
the study shows self-administration varied significantly
among subjects. A subset of rat population, termed high
responders, self-administered cocaine up to 60% more
times in comparison with a different subset, termed low
responders, depending on dosage (cf. Gannon et al.,
2017, and their Fig. 3). Importantly, the task setup chosen
for both of our proposed models involves the selection of
a drug reward over explicit non-drug-related alternatives;
in contrast, the chosen empirical study utilizes a time-out
responding paradigm, where the only explicit non-drug-
related behavior (a lever-press) is not rewarded. As for
most studies simulating addiction (Redish, 2004), we be-
lieve the choice to present our simulated agents with a
richer set of options (i.e., more than one) does not inval-
idate a parallel between simulated and real data. We
consider the simulated competing options as a proxy for
the many conflicting stimuli and associated behaviors that
animals have access to, even in the limited environment of
a standard operant conditioning chamber. Thus, our fo-
cus is on perturbing the balance between the dorsal/
model-free and the ventral/model-based systems, to
compare our simulated behavioral differentiations in the
escalation and compulsive selection of drug-related ac-
tions with the data reported in the chosen laboratory
study.

The two models comprise a neural mass model that has
been validated and described in the context of choice
behavior and dopaminergic modulation (Fiore et al., 2016,
2018; Hauser et al., 2016) and a normative or algorithmic
model based on standard RL schemes (Sutton and Barto,
1998). In the neural model, addiction and treatment re-
sponse are modeled through DA-dependent associative
plasticity in both ventral and dorsal circuits. In the RL
model, aberrant learning is modeled using a duplex of
model-based and model-free schemes that competed for
control over action selection. The model-based scheme
entails learning a model of the environment (in the form of
probability transition matrices among states) that is used
to compute value functions under the Bellman optimality
principle (Bellman, 1966). The equivalent model-free scheme
uses prediction error-based learning to directly acquire the
value of state action pairs. Both neural and RL models are
tested under four successive stages or phases: (1) before
exposure to the simulated drug (termed pre-drug); (2)
learning of addictive behavior (termed addiction); (3) sim-

ulated ideal therapeutic interventions (termed treatment)
that partially revert the learning of the previous phase;
and finally, (4) reinstated access to the simulated drug
following each treatment (termed relapse). The simulated
treatments are conceived to emphasize endophenotypic
response and relapse differentiation; and therefore, they
predominantly affect only one control system, targeting
either the goal-oriented/model-based or the habitual/
model-free. The former treatment is assumed to modify
only the internal model of the environment and related
selection of action-outcome contingencies performed in
the ventral circuit. The latter treatment represents a con-
dition in which the model of the world of the agent remains
mainly unaltered, but the acquired drug-related stimulus-
response associations are disrupted, thus preventing the
agent from exhibiting habitual responses (cf. Doll et al.,
2009).

The unique aspect of this complementary modeling
approach is that converging results from neural and algo-
rithmic models can validate each other, as process and
implementation theories (i.e., synaptic and dynamical
mechanisms) complement the normative principles for-
malized in the RL model.

Neural field model
Basic model architecture and parameterization

In cortico-striatal circuits, the signal processed in the
cortex is conveyed toward its respective area of the stria-
tum, processed in basal ganglia and finally relayed to the
same cortical area where it originated, via thalamus
(Haber, 2003; Draganski et al., 2008; Jahanshahi et al.,
2015). Thus, despite diverging in terms of the information
processed, e.g., sensorimotor or rewards and outcomes,
these circuits are characterized by similar computational
dynamics (Obeso et al., 2014). Temporal responses in
recurrent neural networks co-occur with state transitions
or input transformations that are often described in terms
of energy landscapes (Fig. 1A–C). If multiple inputs or
initial states generate transitions toward the same final
state, this is termed attractor state (Amit, 1989). In recur-
rent networks such as cortico-striatal circuits, learning
processes modulate the circuit gain, thereby affecting the
strength of the attractor states and the overall stability of
the system (Fiore et al., 2015, 2016; Hauser et al., 2016).

We simulate the temporal responses in cortico-striatal
circuits in a neural model (for illustrative representation of
the neural architecture, see Fig. 1D). This neural model
simulates mean-field activity (Deco et al., 2008) within
multiple channels of both dorsal and ventral cortico-
striatal loops. A continuous-time differential equation
simulates changes over time ��g� of the average action
potential �uj� of a pool of neurons (Eq. 1), and a positive
transfer function (Eq. 2) converts this action potential in
the final activation of the pool (yj). Finally, the plasticity of
the connections (wij) between cortex and striatum is char-
acterized by DA-dependent Hebbian learning, corrected
with a constant threshold (th) as defined in Equation 3.
The resulting rule strengthens the connections among all
active nodes in the cortex and those active in the striatum
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and weakens the connections among nodes showing
opposite activation status.

�gu̇j � �uj � bj � �� � �d� � wjiyi (1)

yj � �tanh �uj � ���� (2)

	wij � 
��yi � th���yj � th���d � th��� � ���th � yi��

�th � yj���d � th��� (3)

The input (�wjiyi), reaching each node in the neural
network is modulated by two coefficients � and �. These
regulate the ratio between the signal affected by the
presence of dopamine release d and the amount of signal
that is computed independent of dopamine release. For
most units, the values of the two coefficients are set to
� � 0 and � � 1, with the exception of the simulated
striatal units, where these parameters are set to �� �
1.4, � � 0.2�and �� � � 0.5, � � 0.6�, to simulate the

differential effect dopamine has, depending on the most
prevalent receptor type ( � 1 and � � 0 for D1 and D2
receptors, respectively). Due to the different effects the
dopamine receptors have on the activity of the simulated
neurons, the drug-induced dopamine-dependent Heb-
bian learning significantly affects D1-enriched units in the
striatum, while having negligible effects on D2-enriched
units (Gerfen and Surmeier, 2011; Volkow and Morales,
2015).

Simulating different addiction phenotypes and treatment
effects

Agents controlled by the neural model are immersed in
a simplified environment and can select among three
arbitrary actions or inactivity (cf. nonstationary three
armed bandit environment). The selection of the actions is
conducted in the circuit simulating the dorsal cortico-
striatal activity, and it is considered completed if the
neural activity of any of the units in the external layer of the
simulated cortex (Fig. 1D) is maintained for at least 2 s.

Figure 1. Illustrative representation of energy landscapes and neural architecture of the model. A–C, These representations of energy
landscapes are meant to illustrate differences in the temporal responses provided by neural systems. Depending on the energy
landscape, three arbitrary inputs (magenta dots) are transformed into different stable states (gray dots). Learning processes increase
or decrease the strength of the connections among nodes in a network, thereby altering its energy landscape and reshaping temporal
responses toward existing attractors. Attractors are defined as low-energy states (bottom of the basins) at the end point of the
temporal responses to multiple starting inputs. A, The landscape is characterized by multiple shallow attractors: these allow slow
temporal responses, transforming multiple inputs into multiple weakly stable states. Noise and changes in the incoming input easily
determine new responses toward different attractors. B, In this second illustrative configuration, steep and vast attractors characterize
the energy landscape, allowing quick state transitions toward two equilibrium points. This new configuration is able to resist noise and
minor changes in the incoming input, and, at the same time, allows a differentiation of inputs in two broad categories. C, Finally, the
third energy landscape illustrates the presence of a parasitic attractor, exemplifying the condition of addiction: all inputs fall now at
the bottom of a single steep basin. Under this condition, noise and changes in the incoming input determine temporal responses that
keep falling in the same attractor, therefore preventing the system from executing different behaviors. D, Neural architecture used to
simulate neural dynamics and behavior for the mean field neural model. The activity in the dorsal cortico-striatal circuit is responsible
for the motor output of the system (left circuit), while activity in the ventral cortico-striatal circuit is responsible for goal selections (right
circuit). The two systems bias each other via corticocortical connectivity and learning processes affect the weights of the connections
between the two cortical outputs and the striatum in their corresponding circuits. The components in the architecture are labeled as
follows: cortex (Cx), thalamus (Th), globus pallidus pars externa and interna (GPe and GPi), substantia nigra pars reticulata (SNr),
subthalamic nucleus (STN), and striatum (Str), divided into two areas enriched by either D1 or D2 dopamine receptors.
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Ventral and dorsal circuits interact, both ways, via corti-
cocortical connectivity. Therefore, the activity in the sim-
ulated ventral circuit biases action selection in the dorsal
circuit and the selection of actions in the dorsal circuit
biases the activity in the ventral circuit. To test our hy-
pothesis about the effect these reciprocal biases have on
choice behavior, we assumed corticocortical weights do
not vary over time and we tested eleven combinations for
the parameters determining their weights, as wji� [0.02–
0.2], [0.03–0.17], [0.03–0.15], [0.05–0.15], [0.07–0.13], or
[0.1–0.1] (and symmetrical). This spectrum of weights
describes the strength of the biases between the two
major circuits, thereby characterizing either a balanced
condition or a dominance of one of the two circuits. We
report the effects in terms of behavioral responses for
these putative endophenotypes and test each of these
with thirty noise seeds, random inputs and under four
stages, to allow within phenotype comparisons. The first
stage, “pre-drug,” represents an assessment of behavior
before any drug or reward is introduced, as the three
available inputs randomly change their value to determine
a nonstationary order of preferences. Under the second
stage, termed “addiction,” one action is associated with
the administration of a simulated addictive substance,
triggering DA phasic responses and associated Hebbian
learning in cortico-striatal connections of both ventral and
dorsal circuits. For the third stage, termed “treatment,” we
simulate the effects of deprivation coupled with one of
two hypothetical treatments targeting either the dorsal or
the ventral cortico-striatal circuits. The treatments are
simulated by reverting the learning process in either the
dorsal or the ventral cortico-striatal circuit, respec-
tively, representing an intervention that would block or
extinguish either the habitual drug-related response (an
ideal behavioral treatment) or the drug-related emo-
tional and value association (an ideal cognitive treat-
ment). The dorsal treatment brings back the pre-drug
configuration in the dorsal circuit and keeps the con-
figuration reached under the addiction stage for the
ventral circuit. The ventral treatment is achieved with
the opposite intervention. Finally, during the fourth
stage, termed “relapse,” we reintroduce access to the
simulated addictive substance, inducing relapse. For
this stage, relapse time is defined as the time required
to reinstate the configuration of cortico-striatal weights
found at the end of the addiction stage.

RL model
Basic model architecture and parameterization

In this model, we assume that the behavior of the agent
relies on a hybrid model (Daw et al., 2011) that learns and
computes the value of choices (actions, at) under each
condition (state, st). Value is defined as a quantity that
combines short and long-term expected rewards and
negative outcomes when a specific strategy of action is
followed (policy, �). It is formally defined as:

Q��stat� � r�stat� � E��
i



�ir�st�i, at�i � ��st�i���st, at�
(4)

In Equation 4, r�s, a� denotes the instantaneous reward
received when action a is performed in state s. � is a
discount factor, comprised between 0 and 1, which de-
fines the trade-off between immediate and long-term re-
wards. The value of a state given the policy is defined as
V��s� � max

a
Q��s, a�. For each environment, there is an

optimal policy �*�s�, which maximizes the value V�
*
�s� for

every state (Sutton and Barto, 1998).
The environment can be completely characterized

through the state transitions distributions p�st�1 �
s�st, at�, and the expected rewards E�r�s, a� � R�s, a�.
These two functions together represent a model of the
environment. Model-based behaviors compute Q��stat�
and the policy relying on such functions, at each state,
following the Bellman equation (Daw and Dayan, 2014):

Q�
�

�st,at��R�st,at��� �s �p�st�1�s�st,at�max
a

Q�
�

�s,a��
(5)

The model-based component learns the transition dis-
tributions and the expected rewards during the interaction
with the environment. Thus, differently from other hybrid
models (Daw et al., 2005; Keramati et al., 2011; Pezzulo
et al., 2013), the quality of Q value estimation at any given
moment depends on the experience the agent acquired
up to that point in time. To compute value estimation (
QMB), this bounded (Gershman et al., 2015) component
applies at each step the Bellman equation (Eq. 5) a limited
number of times �NPS � 50� to states sampled stochasti-
cally following a heuristic for efficient state update selec-
tion. The algorithm is an early-interrupted variation of the
Prioritized Sweeping algorithm (Moore and Atkeson,
1993) with stochastic state update selection. Crucially,
our model-based component does not accumulate the
variations of Q values over time, and restarts the compu-
tation after each step (desJardins et al., 1999). This choice
is meant to instate a plausible bounded rationality for our
model which can account for the cognitive costs and
ensuing limits of integrating old and new information
about the environment, while updating and extending a
complex plan to navigate it. This implementation is suit-
able for a bounded rational model-based component that
shows controlled stochasticity of deliberation perfor-
mances in nontrivial environments. This choice allows to
test the effects of the hypothesized endophenotypic dif-
ferentiation in an environment characterized by higher
degree of complexity in comparison with both the one
chosen for the neural model and those described in the
literature of RL models of addiction. In particular, we
consider drug consumption to be associated with com-
plex after-effects that make it difficult to predict the over-
all result of pursuing the related action course.

In comparison with other hybrid models such as Dyna
and Dyna2 (Sutton, 1990; Silver et al., 2016), the pro-
posed architecture does not share Q values between
model-based and model-free components, nor it requires
that the two processes share the same state representa-
tions. The two components separately represent their Q
values and integrate them in a later phase. This decou-
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pling is assumed to result in a more biologically plausible
agent (Daw and Dayan 2014), and it is essential for the
simulations of two separate treatments, essential require-
ment to establish a comparison with the behavior simu-
lated with the neural model. In contrast with previous work
using a hybrid Dyna-like architecture and prioritized
sweeping algorithm, where the sharing of the Q values
explained the appearance of model based drug oriented
behavior (Simon and Daw, 2012), in our simulations this
model based addiction emerges in independent model-
free and model based components. Thus, addiction be-
havior results from the joint effect of high reward (i.e., the
drug), a limited number of stochastically selected policy
updates and limited knowledge of the environment.

The model-free component has been implemented us-
ing the Q-Learning algorithm in tabular form (Watkins and
Dayan, 1992). Q-learning updates initial state value esti-
mations as follows:

QMF�st, at�new � QMF�st, at�old � ��t (6)

�t � R�st, at� � �maxa��QMF�st�1, a��� � QMF�st, at� (7)

where � is a learning factor comprised between 0 and 1.
Our hybrid model computes choice values in a fashion
that balances model-free (MF in the equations) and
model-based (MB in the equations) components depend-
ing on a parameter �. Six values (1, 0.8, 0.6, 0.4, 0.2, 0) are
used for this parameter to simulate different endopheno-
types, on a spectrum between purely model-based (�� 1)
and purely model-free (� � 0) RL.

To allow exploration, the action to execute is selected
randomly 10% of the times. This exploration factor is kept
constant to support adaptation to a changing environ-
ment (Singh et al., 2000) and to simulate the continuous
update of knowledge necessary to cope with ecological
environments. The remaining 90% of the times, actions
are determined by maximizing QMX(s,a) in a strategy de-
fined as �-greedy (� � 0.1). These values are produced by
combining the values computed by the model-based and
model-free components:

QMX�s, a� � �QMB�s, a� � �1 � ��QMF�s, a� (8)

The choice for a fixed balance between model-based
and model-free requires minimal assumptions on their
interaction and has been used in recent RL architectures
(Silver et al., 2016).

Simulating different addiction phenotypes and treatment
effects

In comparison with the simulations characterizing the
neural model, a more complex environment is in use for
the RL model to highlight how our endophenotypic differ-
entiations can also affect the likelihood to develop addic-
tion. This environment is characterized by a total of 20
states divided into four different types (Fig. 2): (1) healthy
rewards (i.e., normal rewards that are not directly associ-
ated with drugs); (2) neutral states (no reward or negative
outcome); (3) drug-related states, which give a high re-
ward but are followed by multiple (4) drug aftereffects,
characterized by small negative outcomes. Similar to the

neural model investigations, the agent deals with environ-
ment variations meant to simulate four phases of addic-
tion: initial pre-drug phase (f1); addiction (i.e., the drug
becomes accessible for the first time, f2); treatment (f3);
relapse (i.e., second drug exposures; f4). Under the initial
pre-drug phase (dinit � 50 steps), the agent does not
receive any reward or negative outcome by entering the
drug-related and aftereffects area, but a moderate reward
is assigned (Rg � 1) by accessing the healthy reward
state. Under the phases of addiction and post-treatment
addiction (dtpy � 1000 steps), the agent can also receive
a high reward, after accessing a drug-related state (Rd �
10). The drug state always leads to a series of randomized
state transitions among the aftereffects states (Ra � -1.2)
and simulates generic negative consequences associated
with addiction. The agent can occasionally leave this
aftereffect area of the environment (Fig. 2) to reach a
neutral state, at the price of a further negative outcome
(Ra � -4). Under the treatment phase (dtpy � 1000 steps),
the drug-related state results in a negative outcome (Rdt �
-1; Tables 1, 2, column f3), thus increasing the chances
the agent stops pursuing this state. To allow for a com-
parison with the results in the neural model, we simulate a
model-based and model-free treatment by manipulating
the learning factor of the nontreated control modality,
decreasing it: �Ctpy � 0.01 � �. Under the relapse phase,
we measure the simulated time required by the agents to
reach at least 95% of drug-related action preference as
recorded under the addiction phase, after the drug is
introduced again in the environment. This threshold is
used to measure the percentage of agents relapsing, as
well as the time required to complete the relapse, per
endophenotype.

Code accessibility
All models rely on custom code developed in MATLAB

(optimized for R2014b) that has been run successfully on
multiple OS (iOS, Linux and Windows) on different com-
puters and local servers. The code can be accessed at
any time from the repository ModelDB (http://modeldb.
yale.edu/239540). The downloadable archive file consists
of two folders (respectively, for the neural model and the
RL model), which include the entire source code required
to replicate the data reported in our Results section. Code
available as Extended Data Code File 1.

Results
Simulations from the neural field model

During all stages, the three stimuli randomly change
every few seconds, putatively representing a dynamic
fluctuation of values associated with perceived cues in
a nonstationary environment. This setup requires the
agents to rapidly adapt to these changes, transiently trig-
gering the motor response associated with the most valu-
able cue, to achieve optimal behavior. During the pre-drug
stage, dorsal and ventral circuits perform unbiased selec-
tions, collaborating in the generation of a near-optimal
sequence of motor selections. All eleven endophenotypes
show uniform distributions of action selections, comply-
ing with the random distribution of the inputs configura-
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tions (Fig. 3A). This control stage allows the simulated
network to generate transient temporal responses that
couple multiple initial states with multiple stable states, in
a transient winner-take-all or winner-less competition (Ra-
binovich et al., 2006; Afraimovich et al., 2008).

During the simulated addiction stage, one of the actions
is associated with drug administration (Fig. 3B, values
represented in blue). Substance use triggers phasic do-
pamine bursts, leading to Hebbian learning in cortico-
striatal connections of both dorsal and ventral circuits (Eq.
3). In recurrent networks, circuit gain increases as a direct
function of the weights of reentrant synapses (Amit, 1989).
A dopamine response triggered by healthy unexpected
rewards would create a bias toward the selection of the
reinforced motor response to a perceived cue (Cohen and
Frank, 2009; Grahn et al., 2009; Baldassarre et al., 2013).
However, drug consumption triggers extra-physiologic
dopamine-dependent learning, which in our model results
in aberrantly high circuit gain, compromising the ability of
all affected circuits to discriminate among different inputs
and produce temporal transitions toward multiple stable

states (cf. Fiore et al., 2014). The cortico-striatal circuits
become overstable and resistant to perturbation caused
by a change of input or by noise as they are dominated by
parasitic attractors (Hoffman and McGlashan, 2001; Fig.
1C). In the ventral cortico-striatal circuit, a parasitic at-
tractor sets and maintains the selection of drug-related
goals or outcomes, biasing the action-outcome assess-
ments required for planning. In the dorsal circuit, the same
process determines overstable selections of the rein-
forced motor behavior, generating reactive responses and
habits. Importantly, the learning process simulated in our
neural model leads to the generation of parasitic attrac-
tors in both circuits across all endophenotypes, as all
agents eventually reach a fixed threshold in cortico-
striatal neural plasticity. Despite the generation of a form
of compulsive drug seeking behavior across all endophe-
notypes, we observe significant differences in motor re-
sponse patterns as a function of the balance between
ventral and dorsal circuits. Specifically, the endopheno-
types characterized by unbalanced dorsal or ventral con-
trol (i.e., Fig. 3B, endophenotypes 1–3 and 9–11) express

Figure 2. Illustrative representation of the environment used for the RL model of addiction. The states are disposed in a linear
arrangement: on one extreme is a healthy reward state (1), on the opposite side a drug state (8) followed by twelve aftereffects states
(9–22). Healthy reward and drug states are separated by six neutral states (2–7). The agent can traverse between nearby neutral
states. From the two borders of the central segment of neutral states, an agent can enter the healthy reward state (from state 2),
securing a moderate reward (Rg � 1), or the drug state (from state 7), receiving an initial high reward (Rd � 10, during the phase of
addiction) and a series of sparse but temporally extended negative outcomes, characterizing the aftereffects states. The presence of
negative outcomes makes entering the drug and aftereffects area suboptimal during all experimental phases (see optimal policy in
Table 3). From both the goal state and the drug/aftereffects segment the agent is then returned to the middle of the neutral segment.
In this representation, we explicitly portray the transitions related to states 1 (healthy reward), 4 (neutral), and 15 and 20 (drug
aftereffects) for illustrative purposes. Line width represents related transition probability value. Line and text color represent the action
class (as, ag, aw, ad). Neutral states are navigable with actions as2-7, which are deterministic for adjacent state while have high chance
of failing for distant states. From the neutral states the agent can reach: (1) the healthy reward, if executing action ag when in state
2; and (2) the drug state (8) and aftereffects area (state 9–22), if executing action ad, when in state 7. From the healthy reward area,
the agent can issue again ag, receiving a reward of 1 and going back to the center of the neutral area, state 4. By entering the drug
area, the agent receives a reward of 10. Action results in the drug/aftereffect area are probabilistic: the agent can reach a nearby state
in the area or leave the area and reach the center of the neutral state. Leaving the drug/aftereffects area has a cost of -4, whereas
every other transition inside the area costs -1.2. For a full description of transitions and their probability distribution in the environment,
see Tables 1, 2, 4, 5).
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distributions of motor selections that are significantly
more compromised by drug-related aberrant rewards, in
comparison with balanced endophenotypes (i.e., Fig. 3B,
endophenotypes 5–7). The presence of identical learning
processes, and the associated attractor formation in both
ventral and dorsal circuits, ascribes all phenotypic differ-
ences univocally to the only remaining independent vari-
able, which controls corticocortical connectivity and
therefore the strength of the biases between circuits.
Unbalanced agents are characterized by more frequent
drug-related selections as actions leading to drug con-
sumption are selected more frequently than in balanced
endophenotypes, in a range between �3% and �45%.
This result identifies all phenotypes within the limits of
individual differentiation described in the study chosen for
behavioral comparison (Gannon et al., 2017).

Next, we investigate how the simulated endopheno-
types behave during the stages of treatment and relapse.
First, we measure the frequency of drug-related action
selections during the stages of addiction and treatment
(Fig. 4A,B). Both ventral (goal-oriented) and dorsal (habit-
ual) treatments effectively reduce the number of actions
associated with drug consumption, in comparison with
baseline addiction. However, the dorsal treatment is more
effective for dorsal-dominated endophenotypes and the
ventral treatment is more effective for ventral-dominated
endophenotypes. These endophenotype-specific treat-
ment effects are further confirmed by our analysis of

individual differences under the relapse stage (Fig. 4C,D):
dorsal treatments are more effective in elongating time to
relapse for dorsal-dominated endophenotypes, whereas
ventral treatments are more successful in delaying relapse
for ventral-dominated endophenotypes. This analysis
shows that simulated treatments focusing either on the
dorsal circuit (and therefore habitual responses) or the
ventral circuit (and therefore motivational responses) can
have substantially different effects, depending on the bal-
ance between dorsal and ventral circuits. Importantly,
these differences emerge only after the treatment is applied,
where a pre-treatment comparison between compulsive be-
haviors expressed by the opposite unbalanced endopheno-
types (i.e., ventral-dominant or dorsal-dominant) does not
show any significant difference in choice selections (Fig. 3B,
endophenotypes 1–3 and 9–11).

Simulations from the RL model
By simulating explicit negative outcomes associated

with drug consumption, the RL model allows to measure
the likelihood each agent has to develop addiction, as a
function of its endophenotype. In our analysis, addiction is
defined as a behavior leading to drug selections more
frequently than the healthy alternative reward, under the
addiction phase. The mean percentage of these addicted
agents (over 300 runs) was 43.05%, across endopheno-
types, which is consistent with the percentage of rats
developing compulsive self-administration of cocaine, as

Table 1. Environment transition probabilities across endophenotypes controlled by the RL model

Transition Description Probability for each phase
P (f1) P (f2) P (f3) P (f4)

P(s�i|s�i,a�as�i), i neutral state 1 1 1 1 From Neutral States
P(s�i�j|s�i,a�as�i�j),j��1/-1, i neutral
state, i�j neutral state

0.99 0.99 0.99 0.99

P(s�i|s�i,a�as�i�j) ,j��1/-1, i neutral state,
i�j neutral state

0.01 0.01 0.01 0.01

P(s�i�k|s�i,a�as�i�k),k!��1/-1, i neutral
state, i�k neutral state

0.0001 0.0001 0.0001 0.0001

P(s�i|s�i,a�as�i�k),k!��1/-1, i neutral
state, i�k neutral state

0.9999 0.9999 0.9999 0.9999

P(s�i|s�i,a�aw), i neutral state 1 1 1 1
P(s�1|s�2,a�ag) 1 1 1 1
P(s�i|s�i,a�ag), i!�2 neutral state 1 1 1 1
P(s�8|s�7,a�ad) 1 1 1 1
P(s�i|s�i,a�ad), i!�7 neutral state 1 1 1 1
P(s�i|s�i,a�ag), i drug/aft state 0.999 0.999 0.8 0.999 From Drug/aft States
P(s�4|s�i,a�ag), i drug/aft state 0.001 0.001 0.2 0.001
P(s�i|s�i,a�as��), i drug/aft state 0.999 0.999 0.8 0.999
P(s�4|s�i,a�as��), i drug/aft state 0.001 0.001 0.2 0.001
P(s�j|s�i,a�aw), i!�15 drug/aft state, j next or previous drug/aft state 0.4995 0.4995 0.4 4.995
P(s�4|s�i,a�aw), i!�15 drug/aft state 0.001 0.001 0.2 0.001
P(s�14/16|s�15,a�aw) 0.2 0.2 0.15 0.2
P(s�4|s�15,a�aw) 0.6 0.6 0.7 0.6
P(s�j|s�i,a�ad), i drug/aft state, j next drug/aft state 0.745 0.745 0.6 0.745
P(s�j|s�i,a�ad), i drug/aft state, j previous drug/aft state 0.245 0.245 0.2 0.245
P(s�4|s�i,a�ad), i drug/aft state 0.01 0.01 0.2 0.01
P(s�4|s�1,a�ag) 1 1 1 1 Goal
P(s�1|s�1,a�as��) 1 1 1 1
P(s�1|s�1,a�aw) 1 1 1 1
P(s�1|s�1,a�ad) 1 1 1 1

Changes during phases in italic.
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reported in the reference study (�40% over a period of 5
d; cf. Gannon et al., 2017). Importantly, when considering
endophenotype differentiation, the percentage varies sig-
nificantly: 60.3% for � � 0, 40.3% for � � 0.2, 30.1% for
� � 0.4, 36.7% for � � 0.6, 39.3% for � � 0.8, and 51.6%
for � � 1 (Fig. 5A,B). This phenotypic differentiation is
consistent with well-established data from animal models.
For instance, rat strains selectively bred for either high or
low voluntary running differ in the likelihood to develop
addiction when given free access to cocaine (respec-
tively, �35% and �60% of each strain develop addiction
over a period of 5 d; cf. Smethells et al., 2016). Free
access to substances of abuse does not necessarily lead
to compulsive behaviors (Piazza et al., 1989; Belin et al.,
2011), as addiction varies as a function of factors such as
exposure extent, amount of drug delivered, and associ-
ated negative effects (Pelloux et al., 2007; Jonkman et al.,
2012). Our simulations suggest that endophenotypes with
lower chances of addiction are characterized by balanced
control modalities. Note that an optimal agent, knowing
the environment structure and being able to compute the
long-term effects of drug, will never select drug states
(Table 3).

Finally, the simulations suggest that the hypothetical
treatment targeting model-free control is the most effec-
tive, reducing the likelihood to pursue drug-related behav-
iors for all endophenotypes (Fig. 5A). In contrast, the
model-based treatment appears to be less effective for all

endophenotypes, with the exception of the purely model-
based one (� � 1; Fig. 5B). Under the relapse phase, our
data confirm that the simulated treatments significantly
differ in their effectiveness across the proposed endophe-
notypes, also suggesting the treatment targeting model-
free control is the most successful in prolonging relapse
time (Fig. 5C,D). Relapse time after model-free treatment
is mostly similar to the time required to develop addiction
behavior before any treatment (Fig. 5C). At the opposite
side of the control spectrum, the model-based treatment
shows a positive effect only for the purely model-based
endophenotype. All remaining endophenotypes show re-
lapse times significantly shorter than those recorded for
the first development of addiction (�� 1; Fig. 5D).

Discussion
Individual differences in stress and anxiety responses

(Dilleen et al., 2012; Jimenez and Grant, 2017), social
dominance (Morgan et al., 2002; Covington and Miczek,
2005), aggressive temperament (McClintick and Grant,
2016), preference for saccharine (Carroll et al., 2002),
sensation or novelty seeking (Suto et al., 2001; Nadal
et al., 2002; Belin et al., 2011; Flagel et al., 2014), impul-
sivity (Perry and Carroll, 2008; Verdejo-García et al., 2008;
Dalley et al., 2011), and sensitivity to rewards (Belcher
et al., 2014) have all been found in both animal models
and clinical studies in humans to be associated with
addiction vulnerabilities, and in particular with the likeli-
hood to develop and maintain addiction, or to resist to

Table 2. Environment rewards across endophenotypes controlled by the RL model

Transition Description Probability for each phase
P (f1) P (f2) P (f3) P (f4)

T(s�i|s�i,a�as�i), i neutral state 0 0 0 0 From States
T(s�i�j|s�i,a�as�i�j), j��1/-1, i neutral
state, i�j neutral state

0 0 0 0

T(s�i|s�i,a�as�i�j), j��1/-1, i neutral state, i�j neutral state 0 0 0 0
T(s�i�k|s�i,a�as�i�k),k!��1/-1, i neutral
state, i�k neutral state

-0.3 -0.3 -0.3 -0.3

T(s�i|s�i,a�as�i�k),k!��1/-1, i neutral
state, i�k neutral state

0 0 0 0

T(s�i|s�i,a�aw), i neutral state 0 0 0 0
T(s�1|s�2,a�ag) 0 0 0 0
T(s�i|s�i,a�ag), i!�2 neutral state 0 0 0 0
T(s�8|s�7,a�ad) 0 10 -1 10
T(s�i|s�i,a�ad), i!�7 neutral state 0 0 0 0
T(s�i|s�i,a�ag), i drug/aft state -0.3 -1.2 -1.2 -1.2 From Drug/aft States
T(s�4|s�i,a�ag), i drug/aft state -4 -4 -4 -4
T(s�i|s�i,a�as��), i drug/aft state -0.3 -1.2 -1.2 -1.2
T(s�4|s�i,a�as��), i drug/aft state -4 -4 -4 -4
T(s�j|s�i,a�aw), i!�15 drug/aft state, j next or previous drug/aft state -0.3 -1.2 -1.2 -1.2
T(s�4|s�i,a�aw), i!�15 drug/aft state -4 -4 -4 -4
T(s�14/16|s�15,a�aw) -0.3 -1.2 -1.2 -1.2
T(s�4|s�15,a�aw) -4 -4 -4 -4
T(s�j|s�i,a�ad), i drug/aft state, j next drug/aft state -0.3 -1.2 -1.2 -1.2
T(s�j|s�i,a�ad), i drug/aft state, j previous drug/aft state -0.3 -1.2 -1.2 -1.2
T(s�4|s�i,a�ad), i drug/aft state -4 -4 -4 -4
T(s�4|s�1,a�ag) 1 1 1 1 Goal
T(s�1|s�1,a�as��) 0 0 0 0
T(s�1|s�1,a�aw) 0 0 0 0
T(s�1|s�1,a�ad) 0 0 0 0

Changes during phases in italic.
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treatment (Piazza et al., 1989; Belin et al., 2016; Everitt
and Robbins, 2016). However, investigations into the
mechanisms underlying this phenotypic differentiation in
addiction has so far revealed few neural or computational
candidates, which are found to be associated with diverse
and dissociable behavioral traits. An important example is
represented by the endophenotypic differentiation re-
ported in the expression and reactivity of striatal D2 do-
paminergic receptors, which is found to be negatively
correlated with the traits of impulsivity (Dalley et al., 2007),
social dominance (Morgan et al., 2002), and sensitivity to
rewards (Belcher et al., 2014) and nonlinearly correlated
with novelty preference (Flagel et al., 2014). The overlap of
this endophenotypic trait across multiple, noncoexisting,
phenotypes associated with addiction vulnerabilities sug-
gests other neural or computational mechanisms have yet
to be identified to allow accounting for the reported vari-
ety in behavioral traits.

Here, we have presented a neural field model, aug-
mented by an RL model, to expand on existing neuropsy-
chological and computational accounts of addiction. Our
models propose a theoretical investigation into the inter-
action among cortico-striatal circuits or behavioral control
modalities, and the effects this interaction has on addic-
tion development and treatment response. As described
in classic models (Redish, 2004, 2008; Dayan, 2009), we
have assumed that overevaluation of a drug leads to
aberrant dopamine release and associated overlearning in
multiple DA targets (Volkow and Morales, 2015; Koob and
Volkow, 2016). In the neural field model, this mechanism
results in the dysregulation of the circuit gain and asso-

ciated dynamics of both ventral and dorsal cortico-striatal
circuits (Fiore et al., 2014; Hauser et al., 2016). In the
integrated model-based and model-free RL model, se-
quential choice behavior is confounded by the presence
of a high immediate reward (drug state). This leads to
misrepresent the negative outcomes following drug con-
sumption, if their distribution across states and time is
sufficiently complex to escape the capabilities of the
agent to correctly represent the environment (Doll and
Daw, 2016; Sadacca et al., 2016). We found that both
models jointly indicate that the balance between neural
circuits or behavioral control modalities is a candidate
neurocomputational mechanism characterizing endophe-
notypes in addiction. The neural and RL models converge
in suggesting that individuals characterized by balanced
behavioral control between reward-seeking or planning
(ventral circuit/model-based) and reactive or habitual re-
sponses (dorsal circuit/model-free) would have a reduced
chance to develop addiction and decreased severity of
symptoms if developing addiction. We propose that this
neurocomputational mechanism may be interacting with
other known endophenotypic differentiations, such as al-
terations of D2 receptors in the striatum (Morgan et al.,
2002; Nader and Czoty, 2005; Dalley et al., 2007; Volkow
et al., 2007; Belcher et al., 2014; Flagel et al., 2014) or
differences in learning rates (Gutkin et al., 2006; Piray
et al., 2010), to generate the multifaceted behavioral traits
that have been reported in literature to be associated with
addiction vulnerabilities.

In our neural model, ventral and dorsal circuits are
mostly in phase in their selections under the pre-drug

Figure 3. Distribution of action selections across endophenotypes controlled by the neural model. Histograms show how the
distribution of simulated action selections changes depending on the endophenotype (11 variations in corticocortical connectivity
weights). Thirty random seeds/inputs are used per endophenotype, tested under two stages: pre-drug (A) and addiction (B). The three
colors represent the occurrence of selections of three arbitrary actions. Under the pre-drug stage, no reward is provided, and action
selections are triggered by random fluctuation in values of competing sensory inputs. The simulations show the agents adapt to the
changes in sensory stimuli and therefore exhibit a near-uniform distribution of action selections. Conversely, under the addiction
stage, the action represented in blue is associated with administration of the simulated drug, triggering DA-dependent Hebbian
learning in cortico-striatal connectivity, and consequently overselection. Under addiction, the differences among endophenotypes
clearly emerge in the selection frequency of the action leading to drug consumption. Asymmetric control (endophenotypes 1–3 and
9–11) leads to a stronger overselection in comparison with balanced control (endophenotypes 4–7), despite identical learning
processes and reward encoding.
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stage, exhibiting synchronous transient stability of neural
activity and enhancing the overall ability of the system to
adapt to changing stimuli (i.e., the two circuits adapt to
the input changes with a similar pace and synchronize in
their selection). Under the addiction stage, the two circuits
are mostly pulled toward the parasitic attractor state as-
sociated with drug consumption, and they occasionally
select the competing non-drug stimuli. If only one of the

two systems performs a selection outside of the attractor,
the difference in selection generates a dissonance or
interference. In neural endophenotypes characterized by
unbalanced control, this dissonance is solved by one
circuit taking the lead, so that both systems eventually
converge on the selection of the dominant circuit. These
dynamics result in limited opportunities to generate non-
drug-related responses to the external stimuli, as they can

Figure 4. Severity of addiction and relapse time across endophenotypes controlled by the neural model. Shaded error lines report
mean and standard error for 30 simulated agents across endophenotypes (11 variations in corticocortical connectivity weights). A, B,
Selections of actions leading to substance consumption, as a percentage of the overall number of action selections. In the first case
(A), we compare the values recorded during the addiction stage with those recorded during the stage of dorsal treatment jointly with
abstinence (i.e., drug-related actions do not trigger self-administration of a drug and the treatment targets the dorsal circuit). In the
second case (B), the comparison involves addiction and ventral treatment (treatment targeting the ventral circuit, during abstinence).
C, D, We compare the simulated time required by the 11 endophenotypes to reach an arbitrary threshold of cortico-striatal
connectivity during the stage of addiction and during the stage of relapse after either dorsal (C) or ventral (D) treatment. Within the
time of a simulation run, all simulated agents reached the addiction threshold. The two treatments are simulated by restoring either
the dorsal/motor (A–C) or the ventral/outcome circuit (B–D) to the configuration characterizing the pre-drug stage. The percentage of
the action selections shows the dorsal treatment is more effective in endophenotypes characterized by high dorsal dominance (A),
whereas the ventral treatment only has an effect in endophenotypes characterized by high ventral dominance (B). Similarly, dorsal and
ventral treatments result in long relapse times in endophenotypes characterized by high dorsal and high ventral dominance,
respectively; �, significant difference: p � .05.
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only be generated by the dominant circuit. Conversely, in
balanced control endophenotypes, if any of the two cir-
cuits ignores the drug-stimulus and selects a competing
option, the resulting dissonance can trigger a state tran-
sition pulling out the parasitic attractor states associated
with substance use. The endophenotypes in our simula-
tions vary only in the parameters regulating the balance

between circuits, as dopamine-driven learning processes
established between cortex and striatum (Eq. 3) do not
vary across endophenotypes, resulting in identical habit
formation and drug-related biases in the outcome repre-
sentations. Thus, our proposed phenotypic differentiation
does not interfere with the usual role ascribed to the
ventral and dorsal circuits as, respectively, implicated in

Figure 5. Likelihood to develop addiction and relapse time across endophenotypes controlled by the RL model. Shaded error lines
report mean and standard error for �100 simulated agents across six endophenotypes (differential balance between model-based
and model-free control modalities, � � [0, 0.2, 0.4, 0.6, 0.8, 1]). A, B, Percentage of agents developing addiction (i.e., drug-related
choices are more frequent than healthy reward-related choices), per endophenotype, under the addiction and treatment phases. In
the first case (A), the comparison involves data recorded during the phase of addiction and those recorded during the phase of
model-free treatment. In the second case (B), the comparison involves the phases of addiction and model-based treatment. C, D,
Illustration of the simulated time required by the six endophenotypes to reach 95% of action preference toward the drug state, in
comparison with action preference recorded during the phase of addiction (f2). In the first case (C), the comparison involves the
phases of addiction and relapse after model-free treatment, whereas in the second case (D), the comparison involves the phases of
addiction and relapse after model-based treatment. In terms of action selection ratio, the simulated results show both treatments have
a significant effect only on those phenotypes characterized by strong unbalance of control (A, B). In terms of relapse, the results show
the model-free treatment is on average more successful than the model-based one, as five endophenotypes show no significant
difference between the phases of addiction and post-treatment addiction (i.e., the time required to relapse is not significantly different
from the time required to develop addiction the first time). Each endophenotype, or parameter selection, was simulated 100 times
across the four phases (3050 steps per simulation). Results depend on the statics of the environment, but over similar environments,
the results were qualitatively similar; �, significant difference: p � .05.
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the initial reward-seeking phase in addiction (Belin and
Everitt, 2008; Willuhn et al., 2012) and the subsequent
consolidation of stimulus-response, habitual, association
(Everitt and Robbins, 2013, 2016). However, our simu-
lated dynamics show that, after addiction is developed,
systemic overstability can be reduced or further en-
hanced, depending on the corticocortical biases be-
tween cortico-striatal circuits. In turn, this modulation
of system stability can foster or further impair input
discrimination and motor response versatility, affecting
addiction symptomatology. As a result, our neural
model shows phenotypic variability emerging after the
presentation of the reward simulating the drug and
addiction is developed, in a gradient of overselection of
drug-related actions.

With the RL model, we investigate whether the balance
between model-based and model-free modalities would
also increase the robustness of the system against the
selection of drug states in a more complex environment
and in presence of explicit negative outcomes. Similar to
the neural model, a system with balanced control modal-

ities introduces more diversity in action selection during
exploration, reducing (yet not cancelling) the chances
of developing maladaptive reactive responses. This in-
creased diversity and overall reliability are likely to be
induced by a higher redundancy and diversification of the
system. While both components may fail, the causes of
failures are not necessarily correlated. The model-based
system can fail due to its sensitivity to cognitive resources
but it is more efficient in encoding previous experience
of the agent. On the other hand, the model-free com-
ponent is affected by limited exploration but it is reliable
in its selections, which are not affected by the availabil-
ity of cognitive resources. Consistent with the neural
model, differentiations in behaviors among endopheno-
types emerge in an inverted-U shape, where unbal-
anced control system are the most vulnerable to
developing addiction.

The phenomenon of relapse is more elusive and the two
models do not fully converge on this aspect. To investi-
gate this phenomenon, we have adapted the complexity
of real world treatments to the capabilities of our simu-
lated agents and environments, where we can easily
manipulate or extinguish consolidated memory, but we
cannot engage all other aspects commonly involved in
addiction treatment, such as cognitive or emotional func-
tions or developing new behavioral strategies to compete
with drug-related habits. Therefore, we implemented two
compartmentalized treatments that we consider as ideal
reference models that target only a single decision system
or circuit. These putatively represent treatments capable
of affecting only drug-related emotional/value or habitual/
motor associations. In the neural model, balanced dorsal
and ventral endophenotypes respond well to both types
of simulated treatments. For the unbalanced endopheno-
types, however, only the appropriate treatment, targeting
the dominant neural circuit, is effective. The simulations in
the RL model do not show the same symmetric effects for
the two treatments: the model-free treatment is effective
for most endophenotypes, whereas the model-based
treatment is mostly unsuccessful, with short relapse times
across all endophenotypes, but the purely model-based

Table 3. Optimal policy across endophenotypes controlled
by the RL model (2nd drug phase)

State number State type Action Q value
1 Goal ag 2.8967
2 Neutral ag 2.607
3 Neutral as�2 2.3439
4 Neutral as�3 2.1074
5 Neutral as�4 1.8948
6 Neutral as�5 1.7036
7 Neutral as�6 1.5317
8 Drug ad -10.1134
9 Drug-aftereffect ad -10.3781
10 Drug-aftereffect aw -10.4882
11 Drug-aftereffect aw -10.2809
12 Drug-aftereffect aw -9.7099
13 Drug-aftereffect aw -8.6469
14 Drug-aftereffect aw -6.8532
15 Drug-aftereffect aw -3.9265
16 Drug-aftereffect ad -5.2928
17 Drug-aftereffect ad -6.4251
18 Drug-aftereffect ad -7.3633
19 Drug-aftereffect ad -8.1408
20 Drug-aftereffect ad -8.7849
21 Drug-aftereffect ad -9.318
22 Drug-aftereffect ad -9.7575

Table 4. Agent model parameters across endophenotypes
controlled by the RL model

Name Description Value
� MF learning factor 0.05
� Discount factor 0.9
dMB MB decay factor 0.01
NPS MB number of updates 50
TMB Temperature for stochastic state update

selection
1

� Exploration factor 0.1
�Ctpy Cognitive treatment MF learning factor 0.0001,

0.0005,
0.001

Table 5. Environment parameters across endophenotypes
controlled by the RL model

Name Description Value
NT Number of states 22
NG Number goal states 1
ND Number drug/aftereffect states 15
Nn Number neutral states 6
Na Number of actions 9
S0 Starting state 4
Rp Punishment at the end of drug/aftereffect

consumption
-4

Rc Punishment in drug/aftereffect area -1.2
Rdd Reward at drug consumption (f2,f4) 10
Rdt Reward at drug consumption in treatment -1
Rg Reward when entering goal state 1
dinit Duration initial (no drug) phase 50
ddrug1 Duration first drug phase 1000
dtpy Duration treatment phase 1000
ddrug2 Duration second drug phase 600

Theory/New Concepts 13 of 16

July/August 2018, 5(4) e0151-18.2018 eNeuro.org



one. The latter result is possibly due to the learning pro-
cess characterizing the model-based component, which
is affected by conflicting information as drug use is asso-
ciated with both positive and negative outcomes, experi-
enced by the agent when entering the drug state under
different phases.

It is worth noting that habitual and goal-oriented behav-
iors have neural representations in the dorsal and ventral
cortico-striatal circuits, respectively, but they do not fully
overlap with model-based and model-free control modal-
ities in RL (Dolan and Dayan, 2013). Nonetheless, the
neural and RL models independently simulate choices
among competing options in addiction. Thus, we have
been able to test our hypothesis of endophenotypic dif-
ferentiation under two complementary levels in Marr’s
tri-level of analysis: the neural implementation and the
algorithmic level (Marr and Poggio, 1976). This multilevel
modeling approach has been often used in computational
psychiatry (Maia and Frank, 2011; Montague et al., 2012;
Adams et al., 2016; Hauser et al., 2016; Huys et al., 2016)
to highlight model convergence and associate specific
neural structure and dynamics with mathematical formal-
izations of optimal and suboptimal behavior in RL. The
convergence of neural and RL models on important
predictions also provides more confidence in the reli-
ability of the identified computational mechanisms un-
derlying addiction and the associated characterization
of endophenotypes. Specifically, both models indicate
individuals with unbalanced cortico-striatal activity or
control modality are at higher risk of developing addic-
tion and relapse after any treatment. Thus, independent
of phenotypic-specific treatments, our results suggest
that individuals with these traits would require a pro-
longed or more intense treatment, in comparison with
balanced endophenotypes. Finally, when considering
phenomena that are divergent across both models
(e.g., response across endophenotypes to our simu-
lated treatments), our findings still demonstrate that
important endophenotypic features might remain unde-
tected in terms of pre-treatment observable behavior.
The models showed that opposite unbalanced agents
resulted in similar addictive behaviors and vulnerabili-
ties, but diverged in treatment response, potentially
informing the development of precision interventions.
Further studies will be required to provide empirical
validation of our models. For example, computational
analysis of fMRI data can be used to test effective
connectivity among cortico-striatal circuits (Friston
et al., 2003), in conjunction with cognitive tasks target-
ing the model-based and model-free control systems.
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