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Abstract 

Patent thickets have been identified by various citations-based techniques, such as Graevenitz et 

al (2011) and Clarkson (2005).  An alternative direct measurement is based on expert opinion.  

We use natural language processing techniques to measure pairwise semantic similarity of 

patents identified as thicket members by experts to create a semantic network.  We compare the 

semantic similarity scores for patents in different expert-identified thickets: those within the 

same thicket, those in different thickets, and those not in thickets. We show that patents within 

the same thicket are significantly more semantically similar than other pairs of patents. We then 

present a statistical model to assess the probability of a newly added patent belonging to a thicket 

based on semantic networks as well as other measures from the existing thicket literature (the 

triples of Graevenitz and Clarkson’s density ratio).  We conclude that combining information 

from semantic distance with other sources can be helpful to isolate the patents prospectively that 

are likely to be members of thickets.   
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1. Introduction 

Measurement of patent thickets is an important issue within the intellectual property field.  

Fragmentation of claims ownership dispersed in patent space has been used to measure the 

existence of patent thickets. Measurement has been based on qualitative methods such as 

interviews with executives on patenting strategies (Hall and Ziedonis (2001)) or on examination 

of citations to prior art and its fragmentation as measured by a Herfindahl concentration index 

(Ziedonis (2004), Galasso and Schankerman (2010)). Clarkson (2005) and Clarkson and De 

Korte (2006) suggest calculating measures based on network density of citations.  Graevenitz et 

al (2011) suggests identification of critical references and calculating the density of “triples”, 

which are specific networks of these references.  

 

The citation based methods propose measures that return a proxy for overlap in a given 

patenting space.  Graevenitz et al (2011) recognise the need to show external validity of these 

proxies, and do so by noting the match between occurrence of triples and the complexity of the 

technology, identified by Cohen et al (2000) in surveys of managers.     

 

An alternative means of external validation is to return to the qualitative methods that were 

present early in the literature, however, by surveying field experts.  This can be used to create a 

thicket measure to compare to citations-based measures.  Advances in natural language 

processing techniques facilitate this work, as they can be used to capture formally the networks 

created by expert classification of patents.  This is the exercise we undertake here.  We also 

combine the different thicket measures in a statistical model to predict thicket membership based 

on the pool of past patent characteristics.      

 

A difficulty of such an exercise is to give the experts sufficient guidance to detect what the 

researcher means by a “patent thicket”.  Here, the literature gives mixed signals.  Patent thickets 

have been referred to variously as “blocking patents”, “patent floods”, or “patent clusters” in 

(IPO, 2011). In a recent review of the literature, Egan and Teece (2015) enumerate the many 
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different definitions that have been used, each definition associated with one or more of seven 

distinct policy concerns.   

 

One common definition of a patent thicket, taken as a starting point in the Egan and Teece 

paper and corresponding to four of the seven policy concerns is “an overlapping set of patent 

rights requiring that a company must hack its way through in order to actually commercialize 

new technology” (Shapiro, 2001). A popular citations based measure of Graevenitz et al. (2011) 

is based on a slightly broader view that “the combination of complex technology and high 

volume patenting creates patent thickets, which can be defined as dense webs of overlapping 

patent rights.”  The definition we provide to our experts is closely related to both.   

 

Indeed, patenting at high volumes appears to be occurring:  according to the World 

Intellectual Property Organization (WIPO) there was respectively a 9.2%, 9% and 4.5% year-on-

year increase in the number of patent applications in 2012, 2013, and 2014.  The total number of 

new patent applications in 2015 was 2.6 million (see WIPO, 2013, 2014, 2015).  To the extent 

that these patents do not represent completely new areas of work, overlapping or even conflicting 

claims may rise with this increase in total applications (Barnett, 2014).  If in addition there is a 

“lack of resources and misaligned incentives at patent offices dealing with a flood of patents” 

(Hall et al., 2013), then a contributing factor in generating thickets may be low quality drafting.  

Indeed, Hall and co-authors note that the critical references that form the basis of the Graevenitz 

et al (2011) exist precisely to allow patent examiners to redraw claims so that the underlying 

wording in the claims points to less patent overlap. An alternative approach departing from the 

same starting point  is that, as the patent overlap derives from the wording in the claims, it 

should be traceable to those words via semantic analysis.   

 

The view that claim writing may be behind thickets has been noted by others, who question 

the quality of patent documents.  Holman (2006) proposes that junk patents, which arise when 

patents are granted too broad claims, may contribute to thickets by creating patent interferences 

via extending their scope beyond the underlying innovation. The problem could be alleviated if 



4 

patent offices examined the patent claims more thoroughly but this requires more effort and 

scarce resources. Indeed, patent examiners spend very little time reviewing each application. 

According to Lemley (2001), overall time spent per application is about eighteen hours spread 

over the months of a patent granting process. He concludes that an automated method of 

comparing claims of a patent or an application against the pre-existing set of patents would 

increase significantly the efficiency of the patent thickets screening process.  We will return to 

this point below
1
.  Indeed, while some might be tempted to rely on litigation or the patent fee 

structure to weed out low quality patents, a recent paper by Schankerman and Schuett (2018) 

casts doubt on this view.  This makes efficient screening more pressing.   

  

Semantic analysis of patents has already used in a few papers in the patent literature. A study 

by Preschitschek et al. (2013) studied semantic similarities in text of chosen USPTO patents and 

showed predictive power of semantic analysis for technology convergence.  Yoon and Park 

(2004) was one of the first pieces of work where a network of keywords found in patents 

belonging to  a technology field was used. Gerken and Moehrle (2012) used semantic analysis 

for detecting the novelty of innovations. Recently, Bergeaud et al. (2017) presented a method for 

classifying patent technologies with an automated model for analysing semantic contents of 

patent abstracts.  Khun and Thompson (2017) analysed the word-count of the patents’ first claim 

in order to assess patent scope.  Our study adds to these but focuses on patent thicket 

measurement. 

 

Document similarity can be measured in a wide variety of ways (Harispe, Ranwez, Janaqi, & 

Montmain, 2015). Many of the most common rely on document metadata to infer content and 

                                                           
1
 Consistent with the interpretation that thickets results from low quality patent review, Lemley and Shapiro 

(2005) note that “when patents are granted covering technologies that were already known or were obvious, the 

resulting patents could cause social costs without offsetting benefits”; however, they also propose a more strategic 

interpretation, noting that patent thickets result when, “companies fil[e] numerous patent applications on related 

components that are integrated into a single functional product”.   This can create the opportunity for royalty 

requests or for outright blocking of technology development, as proposed by Heller and Eisenberg (1998).   
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perform similarity comparisons. In the context of patents this is often done by categorizing 

inventions according to their technical classification (e.g. USPC or IPC) and treating inventions 

of the same category as similar (see e.g., Fleming, 2001). However, these metadata-oriented 

approaches essentially gloss over intra-category variation between documents and as such 

provide only coarse measures of document similarity. 

 

To achieve more precise similarity measures, one must look to the contents of documents and 

compare them to one another. This can be done very simply by using a relatively straightforward 

“bag-of-words” approach (see e.g., Lang, 1995) that treats each document as the set of the words 

it uses, or alternately the somewhat more nuanced TF-IDF approach, which weights words based 

on both their importance to the document and their frequency within the entire corpus being 

analysed (Salton & McGill, 1986). These relatively simple text comparison methods are, 

however, hampered by their inability to detect latent similarities between documents that might 

contain content on a similar area, but use a somewhat different vocabulary to discuss it. 

 

More sophisticated natural language processing techniques address many of the weaknesses 

of these comparatively simple document comparison methods. Latent Semantic Analysis (LSA)
2
 

is a well-established method to detect latent similarities between texts and compress them to a 

common set of dimensions that can then be compared to one another (Deerwester, Dumais, 

Landauer, Furnas, & Harshman, 1990; Landauer, Foltz, & Laham, 1998). LSA takes account of 

word co-occurrence to detect latent similarities in the way vocabularies are used (e.g. the fact 

that “car” and “automobile” appear in similar contexts) and as such, the resulting reduced-

dimensional vector representation of the documents can be used to more accurately identify 

similar or dissimilar documents.  

 

To the best of our knowledge ours is a first attempt to use the semantic distance between 

patent documents to identify patent thickets. We calculate pair-wise patent semantic distance, 

creating a semantic patent network, where links between patents are weighted by the semantic 

                                                           
2
 More information on LSA can be found in appendix – Latent Semantic Analysis 
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distance. In order to form a more accurate picture, we use the full body text of patents including 

claims, rather than focusing solely on keywords or abstracts. We hypothesize that the 

overlapping rights indicative of patent thickets will result in semantic similarity between patents 

that occupy the same thicket. To test this hypothesis we benchmark semantic similarity measures 

against a set of expert identified patent thickets, which we implicitly take as accurate measures 

that we are attempting to replicate by our semantic analysis.  

 

Apart from an identification of a group of patents as a patent thicket, the relationship of 

patents within the group is important as well. A standard list of possible relationship types would 

include blocking, complementary, independent, or substitute patents (Clarkson, 2005). While the 

Hall and Ziedonis (2001) and Ziedonis (2004) methods focus on general blocking relationships, 

Clarkson (2005) looks instead at substitutes, which he argues can also generate hold-up. The 

method presented in this paper, based on semantic networks could potentially cover either 

substitutes or complements, although our treatment is linked more to the former. The method is 

also directly linked to the Shapiro (2001) definition of patent thickets via our instructions to our 

experts on thicket identification. Being a contents-based method we derive linkages directly from 

overlapping content of claims rather than via citations.  Our work includes a measure of 

fragmentation, which is also used to proxy the portion of patent thickets reflecting hold-up rather 

than defensive patenting concerns in some work (Noel and Schankerman, 2006, Galasso and 

Schankerman, 2010).  We have a separate measure for the thicket itself, however, with 

fragmentation added alongside our semantic indicator.   

 

We find that, indeed, patents belonging to the same expert-identified thicket are closer 

semantically than other combinations of patents: in other words, semantic distance varies with 

the membership of any pair of patents in different thickets, or membership in a thicket while the 

other patent is not a member of a thicket, or whether neither belongs to a thicket.  Patents within 

the same thicket tend to be semantically similar.  Moreover, the average semantic distance 

between these combinations of thicket membership differ in a statistically significant way from 

one another. Finally, we find that the semantic distance between patents in discrete technological 
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areas is shorter than it is for complex technologies, which accords with the intuition that in 

complex technologies patent thickets may cover a wider range of patent claims. 

 

Our findings suggest the possibility of creating quantitative semi-automated methods for 

preliminary patent thicket screening in the same vein as the critical references discussed by Hall 

et al (2013), based on semantic distance to the extent that it captures the evaluation an expert 

would make. An advantage of such a method is that it is quick and can be done prospectively: 

there is no need to wait for patents to accumulate to determine if a patent is likely to be a thicket 

member and the identity of that thicket.  We propose such a statistical model, which provides a 

certain probability that a given patent belongs to a thicket and test it, showing that semantic 

distance can be informative of expert opinion, whereas triples and weighted average patent 

citation density are broadly indicative but not as closely tied.  This may be due to the definition 

of patents used in the expert instructions: our point is that expert opinion can be represented by 

semantic analysis, and this can be used to represent the thicket definition that is selected.  If the 

resulting thickets differ from the patents flagged by other methods, it may indicate that those 

methods correspond to a different definition.  Whether that alternative definition is better or 

worse for the purposes of the analysis is an issue we do not address.  As pointed out by Egan and 

Teece (2015), the appropriate definition will depend on the policy question that is posed.     

 

In the remaining part of the paper, section 2 introduces the methodology used, section 3 

presents the results, section 4 contains results on an overlap between patent thickets, triples 

(Graevenitz et al., 2011), and weighted average patent network density (Clarkson, 2005), section 

5 introduces an analytical model for thicket recognition based on semantic networks and section 

6 concludes.  

2. Methodology 

We use data from the USPTO on 12,312 patents from 58 patent groups (subclasses within the 

USPC classification scheme), sampled as for the end of February 2015. The dataset contains the 

full text and bibliographic data of the patents, including data on the filing company, application 

and granting dates and the number of claims. 
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We selected a group of 8 subject matter experts and asked them to review patents in the 58 

patent groups under study. The experts were assigned to patent groups relevant to their fields of 

expertise. They were each asked to review patents within their field and identify those belonging 

to patent thickets. More precisely, these thicket identifiers were experts in the fields of electrical 

systems, chemical engineering, material engineering, electricity: measuring and testing, 

electrolytic coating, nanostructures, dentistry, drugs, medical chemistry, surgery, image 

processing.  

 

To ensure they were working with similar definitions of what constitutes a patent thicket, we 

defined patent thickets for them using a modification of the Shapiro (2001) definition: “Patent 

thickets are dense webs of overlapping intellectual property rights owned by one or more 

different companies (patent owners), which create a potential high cost in commercializing a 

new technology, and this cost is difficult to assess upfront”.  We incorporated the additional 

words based on feedback on confusions that could arise from using the shorter original 

definition.  We do allow for the patents to be associated with a single firm, so that defensive as 

well as hold up reasons for thicket generation can potentially be taken into account.  Hence, we 

allow for the full scope of issues that Egan and Teece flag as being evoked by this definition.   

 

Upon completing their review of the patents within each of their technical areas, the subject 

matter experts identified 307 patent thickets containing 2732 patents. In our sample the density 

of patent thickets (defined as the percentage of patents belonging to thickets from the full sample 

of patents) is 22%, on average each thicket contains 8.9 patents.  

 

With this expert-identified set of patent thickets in hand, we then set out to attempt to measure 

the semantic distance between patents identified as thicketed and non-thicketed patents. In order 

to determine the distance between patents, we first performed a latent semantic analysis (LSA) of 

the entire corpus
3
 of granted utility patents issued from 1976 until late 2014. This LSA was 

                                                           
3
 First, extremely common and uncommon terms were removed from each documents term vector. Any term 
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performed by extracting the text from each patent’s abstract, description, and claims fields. 

These fields were combined, and then standard natural language processing transformations were 

made across all of the term vectors within the corpus.  The resulting re-weighted term vectors 

were used to compute a 500-dimension LSA model. 

 

With the model computed, each document is then assigned a 500-dimension vector 

representing its composition of topics within the entire patent semantic space. We then use these 

vectors to compute the pairwise cosine distance between patents of interest, the most commonly-

used measure for distance within vector space models (Turney & Pantel, 2010). Patents with a 

low score are proximate to one another within the patent topic space suggesting they contain text 

describing similar technical content, while patents with high distance scores have less in 

common with one another. 

 

We calculate scores for each patent pair within the 58 patent groups
4
 and then compare the 

average distances for four different sets of the pairs using  Welch's unequal variances t-test test 

for mean equality
5
 (Welch, 1951). Pairs were divided in four sets

6
: I) Same thicket – where both 

patents belong to the same thicket; II) Different thickets - where both patents belong to a thicket 

but not the same one; III) Thicket/no thicket – where only one of the patents belongs to a thicket; 

IV) No thicket – where none of the patents belong to a thicket. 

3. Results 

3.1. Semantic distance between patents is the shortest in the same thicket  

Our primary finding is that the average distance between pairs of patents belonging to the 

same thicket is statistically different from other sets of pairs, and the result is strongly 

significant. This suggests that the semantic content of within-thicket patent pairs is more similar 

                                                                                                                                                                                           

appearing fewer than 5 times across the entire corpus was dropped, as was any term appearing in over 50% of all 

documents. We then performed a TF-IDF transformation on the resulting term vectors, so that particularly important 

terms would be more heavily-weighted while less important terms would be more lightly-weighted. 
4
 There were overall more than 3.7 million patent pairs 

5
 It is a version of a Student-t test.  It is more robust when samples have unequal variances and sizes. 

6
 We use “set” to describe groups of pairs of patents – depending whether patents belongs to a thicket or not; we use 

"patent group", when we mention the USPTO patent classification. 
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than pairs of patents that do not inhabit the same thicket, and that this difference is detectable 

using natural language processing techniques. 

 

We demonstrate this in Figure 2, showing the details of the calculated average semantic 

distance and the size of the sample. The figure presents average semantic distance between pairs 

of patents in each of the sets (as defined in section 2), calculated as the average of the distances 

in each of the 58 patent groups, weighted by the number of patents. We have calculated the 

significance of differences using the linear OLS regression model with errors clustering. The 

base scenario is set I  (same thickets).  Dummies are used for the remaining sets.  We have 

clustered errors by patents (the same patent can belong to more than one pair). All the 

coefficients are significant at a high level – more than 99.999%. We have also tested the 

regression with clustering of errors by patent groups (58 clusters) and the results hold with a 

similar significance level (the lowest being 99.997%).  

 

Figure 1 shows confidence intervals with significance level of 95%.  

Figure 1. Weighted average distance between patents in orange bars (errors clustered by 

patent), with confidence intervals illustrated by black bars (α=95%) 

 

 Set (IV) 

No thicket 

Set (III) 

Thicket/ No thicket 

Set (II) 

Different thickets 

Set (I) 

Same thicket 

Average distance 0.558 0.560 0.552 0.439 

Standard error 0.0054215 0.0050359 0.0051052 0.0052137 

No of pairs in the 

sample 
2 425 272 1 100 243 162 910 30 420 
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Source: Own calculations 

Table 1. Results of the test for mean equality of semantic distance: the percentage of the 

patent groups (out of 58), for which the hypothesis of equality is rejected for a given 

significance level (p-value).  

I – IV 

(Same 

thicket and 

No thicket) 

I – III 

(Same 

thicket and 

Thicket/No 

thicket) 

I – II 

(Same 

thicket and 

Different 

thickets) 

II – III 

(Different 

thickets and 

Thicket/No 

thicket) 

II – IV 

(Different 

thickets and 

No thicket) 

III – IV 

(Thicket/No 

thicket and 

No thicket) 

p-value 

63.8% 60.3% 55.2% 36.2% 48.3% 48.3% <=0.0001 

70.7% 62.1% 56.9% 43.1% 58.6% 53.4% <=0.001 

72.4% 70.7% 63.8% 53.4% 60.3% 56.9% <=0.01 

82.8% 77.6% 69.0% 63.8% 70.7% 70.7% <=0.05 

13.8% 19.0% 19.0% 24.1% 17.2% 29.3% >0.05 

3.4% 3.4% 12.1% 12.1% 12.1% 0.0% 
Test not 

possible 

Note: The grey cells contain cases, where test was not passed with more than 95% significance or it was not possible to perform because there 

were not enough thickets in the group. Bold columns show results for the differences of mean semantic distance between “same thicket” and 

other sets.  

Source: Own calculations 

While figure 2 strongly suggests that patents identified to be in the same thicket are 

semantically more similar, we additionally confirm that these differences are statistically 

significant by testing for the mean equality between sets of pairs of patents using the Welch test. 

We perform this test on six different combinations starting with mean equality test between set I 

and set II, (i.e. between pairs of patents belonging to the same thicket and pairs of patents 

belonging to different thickets), and then for each combination of sets I-IV. The same six tests 

were repeated for each of the 58 patent groups. 

 

Table 1 presents these results, showing the percentage of the groups for which the Welch test 

confirmed the statistical significance of the difference between means with various p-value 

thresholds. We use 95% significance level as a cut-off value for the test. In some cases, where 

there was only one or no thicket in a patent group, it was not possible to conduct the test.  

 

These tests confirm that the average semantic distance between patents in set I —when both 

patents are from the same thicket—is significantly lower than for other sets. Depending on the 
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setup, from the 58 patent groups, 82.8% (when testing for difference between averages in sets I 

and IV, i.e. patents belonging to the same thicket and patent outside any thicket) to 69% (I-II, i.e. 

patents from the same thicket compared with patents from different thicket) of groups have 

passed the test for difference in average semantic distance with 95% significance. What is more, 

the results are strong, as 63.8% to 55.2% of the results were significant with more than 

99.9999% significance. 

 

The differences in average semantic distances between other sets are also evident. However, 

the difference is least significant for the sets II – III, that is between different thickets and 

thicket/no thicket sets. There were 36.2% of groups with non-significant results of Welch test or 

where test was not possible. Also there were only 36.2% of groups significant at the level of 

99.9999% or more, compared to 48.3% for differences between sets II-IV and III-IV. 

Nevertheless, tests show that for the majority of groups, all four sets are distinguishable. 

 

Figure 2 presents two charts showing differences in average semantic distances for different 

patent groups (blue dots) with 95% confidence intervals.  The sets with the strongest and the 

weakest differences were selected for the graph
7
. The first chart shows the difference between 

“same thicket” and “no thicket” sets, the second “different thickets” and “thicket/no thicket”. As 

shown in the table above, the first case exhibits larger differences in average semantic distance 

than the second case. It also shows that there are also groups where the semantic distance in set I 

(“same thicket”) is not the shortest (in total there are six groups where this is a case), but the 

general tendency for set I to have the shortest semantic distance is clearly visible. 

Figure 2. Average semantic distances (blue dots) between chosen sets with confidence 

intervals (black bars). Where the confidence interval overlaps with 0, the result is 

statistically insignificant (at 95%). 

                                                           
7
 The remaining charts for the four tests are included in the appendix. 
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Source: Own calculations 

 

 

 

Finally, comparing semantic distances between different sets of patents involves multiple 

comparisons, because the average semantic distance for one set needs to be compared with the 
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results for three other sets.  Therefore, to confirm the above results, we perform the tests using a 

Bonferroni correction, which is one of the methods to compensate for multiple comparisons. In 

this context, the Bonferroni correction requires that in order to reach 95% statistical significance 

of the difference, each of the three tests for the equality of mean semantic distances between 

pairs of sets must have the  p-value lower than  0.05/3 = 0.01667, i.e. be significant at 98.333% 

level. 

 

When the Bonferroni correction is taken into account, the semantic distance in set I, “Same 

thicket”, remains significant at 95% level in 37 patent groups; set II “Different thickets” in 26 

groups; set III “Thicket/No thicket” in 21 groups and set IV “No thicket” in 26 groups. For each 

set the total number of groups for which all three tests could be performed was 51, so, expressed 

in percent: set I – difference is significant in 72,5% of groups; set II – 51%; set III – 41,2%; set 

IV – 51%. When interpreting the results with a Bonferroni correction it is important to remember 

that this correction creates a more conservative test, lowering the probability of returning false 

positives.  

 

The main finding from this analysis is that patents belonging to the same thicket as identified 

by our experts are semantically more similar to one another than patents that belong to two 

different thickets.  Furthermore, when two patents belong to different thickets the distance 

between them is greater, but also much closer to that observed to the case when there is no 

thicket or just one of the patents belong to a thicket.  Shapiro’s (2001) definition of patent 

thickets as “dense webs of overlapping intellectual property rights” might lead one to expect 

patents within the same patent thicket to share semantic similarity so it is perhaps unsurprising 

that overlapping IP rights corresponds with detectable semantic similarity. As the results show 

that semantic similarity is a good proxy for expert identification, however, it suggests that we 

can use semantic similarity to identify potential patent thickets, taking expert opinion as 

reflecting a valid definition of a thicket.  We explore this further in section 4, but for the 

remainder of section 3 we further explore the characteristics of our semantic groupings.   
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3.2. The semantic distance effect is greater in discrete than in complex technology areas 

In addition to comparing the semantic distance between patents in and outside thickets, we 

can also explore how the distance measure relates to the complexity of the technology field in 

question. To do so we first divide technology areas in accordance with the discrete and complex 

technology definitions presented in Cohen et al. (2000) and used by Graevenitz et al. (2011). The 

main difference between a complex and a discrete technology lies in how many separate 

patentable elements are implicated in market ready products. Where there are few elements, the 

technology is assessed as discrete.  On the other hand, products requiring many unique 

patentable elements are considered complex. The list of patent groups and their membership in 

complex or discrete technology type can be found in the appendix.   

 

We find that the average semantic distance we observe between patents in the same thicket 

(set I) is shorter when those patents are in discrete technology areas and longer in complex ones. 

Furthermore, the difference between set I and other sets is much greater in discrete cases than it 

is in complex ones. Figure 3 depicts these differences in bar graphs, with standard errors below 

and extremely small confidence intervals. Interestingly, patents that do not belong to thickets 

have a larger average semantic difference in discrete technologies than in complex technologies, 

perhaps reflecting the wider ranging nature of claims in complex technologies, as we mentioned 

above. 
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Figure 3. Weighted average distance between patents for discrete and complex technologies 

Standard 
error 

Set (IV) 
No thicket 

Set (III) 
Thicket/ No 
thicket 

Set (II) 
Different 
thickets 

Set (I) 
Same thicket 

 
 

 
 

Discrete 0.000062 0.000071 0.000214 0.000855 

Complex 0.000048 0.000058 0.000167 0.000839 

 
 
Source: Own calculations; Note: Confidence intervals are so small that we don’t show them on the graph 
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Table 2 shows the percentage of the groups where the differences between average semantic 

distances of sets are statistically significant and confirms that analysing discrete and complex 

technologies separately does not change the overall conclusions from the full sample presented 

in Table 1. The overall tendency, however, is that there is a higher percentage of groups with 

statistically significant differences at 95% for complex than for the discrete areas, with an 

exception of difference between set I and set II (i.e. same versus different thickets). This may be 

explained by the smaller average number of patents per group in discrete technologies. 

 

Table 2. Results of the test for mean equality for discrete and complex areas: the percentage 

of the patent groups (out of 58), for which the hypothesis of equality is rejected with a given 

significance level (p-value).  

I – IV 

(Same 

thicket and 

No thicket) 

I – III 

(Same 

thicket and 

Thicket/No 

thicket) 

I – II 

(Same 

thicket and 

Different 

thickets) 

II – III 

(Different 

thickets and 

Thicket/No 

thicket) 

II – IV 

(Different 

thickets and 

No thicket) 

III – IV 

(Thicket/No 

thicket and 

No thicket) 

p-value 

Discrete 

68,8% 65,6% 56,3% 37,5% 46,9% 40,6% <=0.0001 

71,9% 65,6% 59,4% 43,8% 56,3% 46,9% <=0.001 

71,9% 68,8% 62,5% 50,0% 56,3% 50,0% <=0.01 

78,1% 75,0% 71,9% 62,5% 62,5% 62,5% <=0.05 

15,6% 18,8% 9,4% 18,8% 18,8% 37,5% >0.05 

6,3% 6,3% 18,8% 18,8% 18,8% 0,0% Test not possible 

Complex 

57,7% 53,8% 53,8% 34,6% 50,0% 57,7% <=0.0001 

69,2% 57,7% 53,8% 42,3% 61,5% 61,5% <=0.001 

73,1% 73,1% 65,4% 57,7% 65,4% 65,4% <=0.01 

88,5% 80,8% 65,4% 65,4% 80,8% 80,8% <=0.05 

11,5% 19,2% 30,8% 30,8% 15,4% 19,2% >0.05 

0,0% 0,0% 3,8% 3,8% 3,8% 0,0% Test not possible 

Note: The grey cells contain cases, where test was not passed with more than 95% significance or it was not possible to perform, because there 

were enough thickets in the group. Bold columns show results for the differences of mean semantic distance between “same thicket” and other 

sets. 

Source: Own calculations; 
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The above results suggest that semantic distance as an indicator of potential patent thickets is 

likely to be more powerful when assessing discrete rather than complex technologies. Equally, 

knowing whether the underlying technology area tends to be complex or discrete can aid in 

calibrating the method: if the difference in semantic distance between those patents sharing 

membership in a thicket and those outside the thicket is smaller for complex technologies, it will 

be more difficult to distinguish between what is, and what is not in the thicket using semantic 

methodology. Given the fact that complex technology areas tend to have a greater number of 

patents within the technology class, and that these patents are more semantically similar, this 

would lead one to expect more detected thicketing in complex areas, all else equal. This supports 

the findings of Graevenitz et al. (2011), who detect more thickets in complex technologies than 

in discrete ones. Furthermore, the greater semantic distance within thickets in complex 

technology areas suggests that patents which belong to thickets in these areas are more diverse, 

i.e. these thickets are also more complex, covering a larger variety of rights. 

3.3 The above results hold if we control for experts 

As we have used expert opinion as our base, we repeat our analysis controlling for the identity 

of each expert so as to see if there are any outliers in behaviour.  The control for expert identity 

is both interesting in itself and a way for us to be sure that errors in individual judgement were 

not driving our overall results.  We find that our results still hold: accordingly, Table 3 below 

breaks down the tests by expert. 

 

There is no difference in the main conclusions presented in previous subsections: for each 

expert the average semantic distance for patents in the same thicket is the shortest; the results for 

most of the groups are statistically significant; and for the majority of the groups the average 

semantic distance for patents in different thickets is also statistically significant, apart from 

expert C, who assessed only one group. 
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Table 3. Results of the tests for difference of mean semantic distance between sets, given as 

percentage of the groups where the difference was significant at 95%, by expert. Number of 

groups assigned to an expert and mean semantic distance between patents in each set are 

shown for each expert, listed in the left column. 

Expert 
No. 

groups 
(1) (2) (3) (4) (5) (6) Set I Set II Set III Set IV 

A 2 100% 100% 50.0% 100% 100% 100% 0.535 0.593 0.574 0.551 

B 2 100% 100% 100% 100% 100% 100% 0.166 0.499 0.505 0.525 

C 1 100% 100% 100% 0% 0% 100% 0.042 0.572 0.581 0.571 

D 13 69.2% 61.5% 61.5% 69.2% 69.2% 69.2% 0.288 0.622 0.626 0.574 

E 3 100% 66.7% 66.7% 100% 100% 100% 0.155 0.660 0.598 0.468 

F 8 100% 87.5% 62.5% 62.5% 87.5% 75.0% 0.625 0.694 0.680 0.642 

G 9 77.8% 77.8% 55.6% 44.4% 66.7% 77.8% 0.422 0.603 0.598 0.626 

H 20 80.0% 80.0% 80.0% 60.0% 60.0% 55.0% 0.387 0.540 0.541 0.527 

Note: Bold columns show results for the differences of mean semantic distance between “same thicket” and other sets. Grey column is average 

semantic distance within “same thicket”. (1):  I – IV (Same thicket and No thicket); (2): I – III (Same thicket and Thicket/No thicket); (3): I – II 

(Same thicket and Different thickets); (4): II – III (Different thickets and Thicket/No thicket); (5): II – IV: (Different thickets and No thicket); (6): III 

– IV (Thicket/No thicket and No thicket). 

Source: Own calculations; 

 

4. Comparison of an expert-based method of patent thicket recognition, triples and 
network density 

In this section we compare the sample of USPTO patents examined by experts against two 

thicket measures described in literature – triples introduced in Graevenitz et al. (2011) and 

weighted average patent network density presented in Clarkson (2005). 

 

The Graevenitz et al. (2011) “triples” patent thicket identification method has recently 

attracted significant attention. Triples are triads of firms’ portfolios of critical patents within a 

technology group, where there are bilateral citations between the portfolios of three different 

firms. This corresponds to the idea that, where there are overlapping portfolios of three firms, the 

negotiation process between them or with another entity is costly in terms of resources. The idea 

of triples, used as a proxy measure for patent thicket density, has been used recently to 

investigate competition (Graevenitz et al., 2013), new entries into technological areas (Hall et al., 

2015) and  patent opposition (Harhoff et al., 2016).   
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We compare the results obtained with the triples method with the expert-based method of 

patent thicket identification by comparing the share of patents that experts identify as belonging 

to thickets with the share of patents that belong to triples within given technology groups. We 

reproduce the triples thicket identification method on patents granted by the EPO
8
 and map 

these, where possible, with patents from our USPTO sample, using the PATSTAT database. 

Triples are calculated in the OST-INPI/FhG-ISI technology areas in order to keep the 

comparability with the original Graevenitz et al. (2011) paper and because the measure requires 

broad samples. Subsequently, we compare patents that belong to triples with patents that were 

identified as belonging to thickets by field experts. When interpreting the results one must 

remember that triples are calculated on much larger sample of patents than the sample our 

experts examined.  Furthermore, the triples methodology places much more prominence on 

fragmentation of rights than the definition that we provided to the experts.   

 

The comparison shows that only 3.7% percent of patents in expert-identified thickets belong 

to the triples. This is barely higher than the baseline 3.2% thicket membership we observe when 

we look at all of the patents, from our USPTO sample that were mapped to EPO patents. This 

small increase in the percentage of patents that belong to triples, when moving from the whole 

sample to patents that our experts identified as within thickets, suggests that the triples 

methodology and the experts identified very distinct groups of patents. The left pane of Figure 4 

bolsters this point by examining individual technology areas and plotting the share of patents in 

expert-identified thickets against the share of patents belonging to triples identified using the 

Graevenitz et al. (2011) method. A simple regression run on the data shows little overlap 

between the two with R
2
=0.0485. 

The above results do not mean that the triples method is not good as a proxy for identifying 

density of thickets in a technology area at the aggregate level, but it does suggest that it may not 

closely agree with expert judgement on existence of thickets amongst specific patents and given 

the definition we provided to the experts.  The two have identified quite different sets.  At the 

                                                           
8
 Triples may be calculated only on the EPO database as they require cited patents to be assessed whether they 

constitute a critical innovation. 
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same time, the USPTO sample we used was small, so our findings should be expanded with 

other expert-based analyses, ideally using a larger sample of patent groups and drawing on the 

EPO dataset, which would not require mapping to USPTO data.     

Figure 4. Green dots indicate share of patents belonging to thickets vs share of patents 

belonging to triples in different technologies (left panel) or vs Clarkson’s (2005) adjusted 

densities in various patent groups (right panel). Discrete technology areas are coloured on 

the left pane. 

        

Note: Three outliers were removed from the chart on the left due to very small number of patents in our USPTO sample. Out of 58 USPTO patent 

groups two were removed from the chart on the right, because of no internal citations 

The labels on the left panel indicate the technology area OST-INPI/FhG-ISI technology nomenclature (OECD, 1994). 22 – Environment; 12- 

Pharmaceuticals/Cosmetics; 15 - Petrol Chem./Materials Chem; 17- Materials; 18- Chemical Engineering; 3 - Telecommunications; 4 - IT; 7- 

Analysis/Measurement/Control Technology; 8 - Medical Technology 

Source: Own calculations 

Weighted average patent network density (Clarkson, 2005) is a measure calculated as a 

proportion of directed (in or out) citations in patent networks to all possible (in or out) citations, 

with the network defined on a patent group. Clarkson (2005) suggests that where the density is 

higher than the surrounding set of patents a patent thicket can be identified. The measure is based 

on an idea that patents in a potential patent thicket should cite one another more densely than 

patents not belonging to the thicket. This set-up results in higher density values for substitutes, 

than for complementary patents even though both types could potentially result in the sort of 

hold-up that has been associated with thicket “problems”. For example, the author presents 

calculations for two patent pools MPEG-3 (a video compression technology) and PRK (a 

medical technology) and obtains results 0.029 and 0.203 respectively. The MPEG-3 technology 
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is a pool of complementary patents essential to a standard, while PRK contains rather substitute 

patents, describing similar approach to the same technology
9
.  

  

In order to compare Clarkson’s density with our expert-based method we have calculated  

Clarkson’s measure
10

 on the groups from USPTO classifications. The right pane on Figure 4 

plots the network density measure against the share of patents in expert-identified thickets. 

Similarly to the triples the simple regression shows little overlap between the two measures, with 

R
2
=0.0367. In order to account for different number of patents within groups we have estimated 

an OLS regression with dummy variables for small groups and an outlier with density of 13%. 

None of the coefficients was significant, nor was the F-test of the regression model. The 

robustness of the above findings was checked by calculating the Clarkson’s measure on 

respective patent classes and on the OST-INPI/FhG-ISI technology areas.  In none of the cases 

can the share of patents belonging to the expert-identified thickets be related to the Clarkson 

density in a statistically significant manner. 

 

Our findings suggest that the expert judgement, derived from a standard thicket definition and  

well correlated with the semantic similarity of the whole body of the patent texts, is not well 

correlated with two citation based measures at the individual patent level.  This suggests that 

semantic similarity may be a useful tool in identifying patent thickets, albeit not necessarily 

those identified by citation measures.  This may simply make Egan and Teece’s point more 

formally: there may be a number of concepts corresponding to thickets and, as not all reflect the 

same concerns, not all have the same features.       

5. A semantic network model for thickets recognition 

A way to incorporate the divergence of these methods as well as their value is to  propose a 

logit model based on the network of pairwise semantic distances and drawing from information 

                                                           
9
 Régibeau et al. (2012) indicate that Clarkson density is a noisy measure, its value depending strongly on how 

broadly the patent network, i.e. technology, is defined.  

 
10

 We use the weighted average patent network density described by formula (6) in Clarkson (2005). 
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contained in other methods, specifically triples and Clarkson’s weighted average patent network 

density. The model is aimed at explaining the newly added patent’s probability of membership in 

an existing thicket within a given patent group. The result returned by the model could, for 

example, serve as a prompt indicating whether a patent or patent application overlaps existing 

patents heavily. 

 

The model has been estimated on an “in-sample” dataset and tested on  “out-of-sample” data. 

The quality of the model has been assessed on the out-of-sample portion of the data, for which 

we have forecasted the theoretical probability of being in a thicket given specific characteristics 

of a patent application in question. Year 2001 was chosen a break point between in-sample and 

out-of-sample portions of the data
11

.  More precisely, the estimation sample consists of patent 

applications from years 1976-2000 (5,482 patents of which 1,088 are in thickets), while the 

testing sample contains patents from the period 2001-2010 (3.089 patents of which 467 belong to 

thickets). 

  

The logit regression model was estimated using the generalized linear model and its 

implementation in R. The results of the estimation are presented in Table 4, where the dependent 

variable is the membership of a patent in a thicket
12

. The independent variables of interest were: 

minimal semantic distance – distance to the most similar earlier patent; Clarkson’s ratio for a 

group (at the moment of filing); the triples ratio for a group, in other words, the share of patents 

belonging to triples (at the moment of filing) where triples are identified using Graevenitz et al’s 

(2011) method translated to our dataset.  We also include controls for the number of backward 

citations; number of claims; number of patent groups to which a patent under consideration 

belongs to (a measure of interdisciplinary character of a patent); thicket ratio for a group – share 

of the patents belonging to thickets in a group of application (at the moment of filing); ; complex 

group dummy variable – group from complex or discrete technology area; HHI calculated for 

                                                           
11

 The rule for selecting the break year was that it must be a first year which for which there was at least 60% of 

patents in sample and 70% of patents in the thickets in the estimation dataset. 
12

 In both estimation and test samples the earliest patents in thickets were not counted as “in a thicket”, because  

the model takes into account time-varying structure of patents groups, so the first patent does not belong to any 

thicket at the moment of its filing. 
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patents for a given group (at the moment of filling, based on filing dates of eventually successful 

patents); number of prior (eventually successful)
13

 prior fillings by assignee
14

; total number of 

applications and of patents granted in a given group at the moment of, respectively, filing or 

granting a given patent; dummies for class (or group) of patent and the application year. 

 

Compared to model (1), the first four models listed in Table 4, models (2)-(5), differ from the 

first model by one variable (or one group of dummies) only. Respectively, these additions are:  

dummies for class of patents (2), thicket ratio (3), Clarkson’s ratio (4) or triples ratio (5).  Model 

(6)  is a model with dummies for patent groups instead of various group-specific variables.  

Model (7)  consists of patent-specific variables only.  Model (8)  is the same as model (1) but 

without  semantic distance. Model (9) is the same as (1) but with no year dummies.  Model (10) 

is a simplified version of (9) without information on number of prior applications and grants in a 

given patent group. 

 

 

Table 4. Estimates for different logit models (1-10) of the probability of the membership in 

an existing thicket for a new patent application 

                                                           
13

 Patents for which we did not have date on assignee where omitted while calculating the HHI index. 
14

 Based on known assignees for the patents included in our sample.  We have made an effort to match names 

containing obvious typos and differences in abbreviations or other conventions.  R package by van der Loo, M 

(2014) was utilised.   

Dependent variable: 
 

 
Belonging to a thicket (at the moment of applying) 

 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

 
  

Semantic 

distance 

-3.425
***

 -3.240
***

 -3.837
***

 -3.418
***

 -3.425
***

 -3.870
***

 -3.348
***

 
 

-3.434
***

 -3.425
***

 

(0.294) (0.290) (0.288) (0.294) (0.294) (0.319) (0.270) 
 

(0.291) (0.287) 

         
  

Number of 

backward 

citations 

0.071
***

 0.075
***

 0.081
***

 0.072
***

 0.071
***

 0.077
***

 0.046
***

 0.097
***

 0.067
***

 0.048
***

 

(0.014) (0.014) (0.014) (0.014) (0.014) (0.014) (0.012) (0.015) (0.014) (0.013) 

         
  

Number of 

claims 

0.002 0.001 0.005
*
 0.002 0.002 0.0002 0.008

***
 0.001 0.001 -0.001 

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.002) (0.003) (0.003) (0.003) 

         
  

Number of 0.646
***

 0.706
***

 0.482
***

 0.652
***

 0.647
***

 0.562
*
 0.575

***
 0.709

***
 0.617

***
 0.691

***
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Source: Own calculations 

Analysis of the results suggests several conclusions.  

 

groups (0.144) (0.140) (0.141) (0.144) (0.144) (0.299) (0.131) (0.142) (0.142) (0.141) 

         
  

Thicket 

ratio for a 

group (%) 

4.216
***

 5.442
***

 
 

4.218
***

 4.219
***

 
  

4.484
***

 4.291
***

 4.582
***

 

(0.300) (0.271) 
 

(0.300) (0.300) 
  

(0.293) (0.295) (0.293) 

         
  

Clarkson 

ratio for a 

group 

1.237 1.677 1.037 
 

1.211 
  

0.890 0.593 1.571 

(1.210) (1.297) (0.990) 
 

(1.213) 
  

(1.204) (1.252) (1.191) 

         
  

Complex 

group 

2.351 0.095 3.216 2.272 2.337 
  

1.417 2.247 1.800 

(3.371) (0.090) (3.059) (3.327) (3.365) 
  

(3.246) (3.328) (3.395) 

         
  

Triples 

ratio 

0.916 -5.562
***

 1.007 0.772 
   

0.992 -1.534 -3.556 

(2.321) (1.936) (2.125) (2.318) 
   

(2.264) (2.255) (2.217) 
           

HHI for 

group 

-1.436
***

 -1.991
***

 0.363 -1.374
**

 -1.495
***

   -1.991
***

 -0.900
*
 -0.496 

(0.546) (0.536) (0.392) (0.540) (0.528)   (0.538) (0.489) (0.480) 
           

Prior appls 

of assignee 

0.014
***

 0.012
***

 0.016
***

 0.013
***

 0.014
***

 0.012
***

 0.014
***

 0.018
***

 0.014
***

 0.011
***

 

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) 

         
  

Prior appls 

in the 

group 

0.003
**

 0.003
**

 0.002
**

 0.003
**

 0.003
**

   0.004
***

 0.002
*
  

(0.001) (0.001) (0.001) (0.001) (0.001)   (0.001) (0.001)  

          

Prior 

patents in 

the group 

-0.004
***

 -0.004
***

 -0.004
***

 -0.004
***

 -0.004
***

   -0.004
***

 -0.004
***

  

(0.001) (0.001) (0.001) (0.001) (0.001)   (0.001) (0.001)  

Class 

dummies 
yes no yes yes yes no no yes yes yes 

Group 

dummies 
no no no no no yes no no no no 

Year 

dummies 
yes yes yes yes yes yes yes yes no no 

 
  

Observations 5,482 5,482 5,482 5,482 5,482 5,482 5,482 5,482 5,482 5,482 

Log 

Likelihood 

-

2,149.8

47 

-

2,201.67

5 

-

2,267.57

0 

-

2,150.34

6 

-

2,149.92

5 

-

2,103.82

6 

-

2,527.22

3 

-

2,224.48

8 

-

2,184.41

3 

-

2,207.12

3 

Akaike Inf. 

Crit. 

4,391.6

95 

4,477.35

0 

4,625.14

0 

4,390.69

1 

4,389.85

0 

4,375.65

3 

5,114.44

5 

4,538.97

6 

4,412.82

5 

4,454.24

6 
 

  

Note: 
*
p

**
p

***
p<0.01 
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First, the models suggest that applications belonging to groups that, at a given moment in 

time, tend to include patents belonging to thickets, are substantially more likely to be in a thicket 

as well.  This suggests both that thickets are, to some extent, a characteristic of a patent group 

and that a larger pool of thicket patents breeds a higher likelihood that further work will impinge 

on those existing thickets.   

 

Second, the closer (semantically) is the patent application to an earlier most similar patent, the 

greater the probability that it will belong to a thicket.  This is similar to our earlier discussion: 

semantic distance predicts the evaluation of our experts well.   

 

Third, patents belonging to many technology groups are part of a thicket with a higher 

probability.  Complexity is unlikely to underlie this, as the relation holds when we control for 

complexity
15

.  A similar relationship can be found for the number of backward citations. The 

positive correlation with backwards citations suggests that crowding in a group is associated with 

thicket emergence.   

 

Fourth, the number of claims in a patent application is not particularly relevant to the 

probability of the patent belonging to a thicket once one allows for various group characteristics, 

even if one does not control for semantic distance. Indeed, without group descriptors, the claims 

variable picks up the group effects that are captured by other group descriptors in the other 

equations.    

 

Fifth, Clarkson’s density ratio, and the triples ratio do not carry significance in most cases.    

Furthermore, the negative coefficient on triples indicates that the presence of existing triples in 

the group actually are negatively correlated with further thicket membership.  As a high triples 

ratio indicates a relatively well defined set of patent holders, this may reduce the complexity of 

                                                           
15

 One could speculate why this would occur, but more thorough investigation would be required to support any 

specific interpretation.  The result is intriguing, however, in the light of Noel and Schankerman’s (2006) model of 

enforcement costs related to the points of conflict in a patent.  While this may be related to fragmentation, as in 

their work, it could also possibly be related to large applicability, which could be indicated by membership in a 

large number of groups.     
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the patent examiner’s as well as the assignee’s task and so translate into higher quality patents 

overall.    

 

Sixth, concentration of patent ownership (measured by HHI) lowers the probability of 

occurrence of a new thicket (or to increase of size of the preexisting one) when the historic 

propensity of a group to include thickets is controlled for. Hence fragmentation at the group 

patent level is positively related to the prediction that a patent will fall in a thicket, as suggested 

by previous studies, mentioned above.  Furthermore, the magnitude of the coefficient suggests a 

relatively strong effect.  

 

Seventh, there is a greater chance that a thicket will be created (or joined by a further patent) 

when the assignee has filed for a greater number of patents in the past. This suggests the 

possibility of defensive or strategic patenting driving some of the results, but is not definitive: 

the result could also suggest that patents resulting from a single research trajectory, as might be 

pursued by a single researcher, are more likely to interfere with each other because the 

underlying subject matter will tend to overlap.  Hence, for a given quality of review more patents 

that overlap would tend to occur in such a trajectory.   

 

Finally, the opposite signs of the total number of prior filings and prior positive decisions in a 

given group suggest, taken together, that: a) patents that were granted after longer deliberation 

(sufficiently for the number of patents granted to be greater than the patents filed for before the 

examined patent), had a lower probability of belonging to a thicket, while the ones that were 

granted relatively quickly had a greater probability of being in a thicket.  This last result is 

particularly intriguing, as it could be interpreted as suggesting that there may be a link between 

the quality of patent review and the likelihood of thicket membership.  It is not definitive, 

however, as this quick review could also be associated with the familiarity of the patent 

examiner with the technology.  Hence, learning effects could also be driving this result without 

any link to lower quality.    
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To facilitate interpretation, the odds ratio for thicket membership has been estimated for 

model (9), and is presented in Table 5. For continuous variables the incremental step of one 

standard deviation has been chosen to evaluate the change in odds due to a change in a given 

variable, for example we can see from the table below that an increase in semantic distance by 

one standard deviation would lead to a fall in odds of a patent belonging to  a thicket by 42%.  

Table 5. Estimates of odds ratios for model (9). 

Variable Odds ratio 
CI low 

(2.5 %) 

CI high 

(97.5 %) 
Incremental step 

Semantic distance 0.579 0.528 0.634 0.159 

Number of backward citations 1.198 1.114 1.291 2.683 

Number of claims 1.016 0.942 1.094 13.979 

Number of groups 1.156 1.082 1.233 0.234 

Thicket ratio for a group (in %) 2.183 1.968 2.429 0.182 

Clarkson ratio for a group 1.020 0.935 1.103 0.033 

Complex group (average) 9.463 0.042 2,269,290.0 1 

Triples incidence in group 0.963 0.862 1.074 0.025 

HHI 0.906 0.813 1.003 0.110 

Prior applications of assignee 1.142 1.060 1.228 9.477 

Prior applications in the group 1.494 0.981 2.328 190.862 

Prior patents in the group 0.470 0.299 0.717 192.733 

Class 23 1.152 0.762 1.751 1 

Class 324 0.013 0 3.245 1 

Class 327 0.027 0 6.148 1 

Class 348 0.201 0 49.457 1 

Class 424 0.890 0.630 1.265 1 

Class 433 0.175 0 38.821 1 

Class 436 0.120 0 26.743 1 

Class 604 2.845 0.690 12.489 1 

Class 977 0.119 0 26.057 1 

 

Note: Incremental step is equal to standard deviation of variable or 1 for dummies and ‘complex group’ (which is a dummy variable averaged 

over all the groups for a given patent – in almost all cases it is either 0 or 1). 

Source: Own calculations 

 

To assess the performance of the model we consider two ratios: (1) a "false positive" ratio - 

which shows how many patents would be unnecessarily identified, i.e. how many patents flagged 

by the model as thickets are actually not in a thicket; (2) a “false negative” ratio – which shows 

how many patents in thickets would be wrongly omitted, i.e. how many patents flagged by 
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the model as not in a thicket, actually belong to a thicket. The “false positive” ratio can be 

regarded as an indicator of type I error, whereas the “false negative” ratio of type II error. The 

magnitude of the ratio will depend on a theoretical probability threshold of the assessment “not 

in a thicket” or “in a thicket” as an outcome of the model. We call this probability a critical value 

and present ratios for a range of critical values in Figure 6, below.   Another way to see the 

exercise depicted in this figure is that we ask: for a given tolerance level, which model produces 

the fewest false positives and negatives?  For example, if one were to apply this model to 

checking whether a patent should be reviewed for quality (ie, for perhaps contributing to a 

thicket) Figure 6 suggests that when the critical value is 0.1, around 15% of patents that are 

indeed members of thickets are wrongly classified as those that are not and 40% of patents that 

indeed do not belong to a thicket would be classified as belonging to one (which means that 60% 

of these could be subject to a quick-check only).  Setting a critical value at 0.2 would change the 

values to be over 35% and around 20% respectively. The chart for the baseline model is 

presented in Figure 5, while the remaining charts can be found in the appendix.  

 

In this part, model (9) has been chosen as a baseline model due to the fact that year dummies 

are not useful for forecasting. For the sake of comparison, results for models (2)-(8) without 

yearly dummies and model (10) are presented in table 6 and in appendix D as well. 
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Figure 5. False positive/negative ratios as functions of the critical value for the baseline 

model (9). 

 
Source: Own calculations 

Note: The lines are not smooth as they are derived from the tests on out-of-sample datasets. 
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Table 6. Relationship between a given value of the “false negative” ratio (type II error) and 

“false positive” (type I error) for different logit models 

Type II 

error 
Type I error 

 baseline 

modeI 

(9) 

model 

w/o class 

dummies 

(2’) 

model  

w/o  

thicket 

ratio (3’) 

model 

w/o 

Clarkson 

ratio (4’) 

model 

w/o 

triplets 

ratio (5’) 

model 

with 

group 

dummies 

(6’) 

model 

w/o 

group 

specific 

variables 

(7’) 

model 

w/o 

semantic 

distance 

(8’) 

model 

w/o 

total 

patent 

numbers 

(10) 

0.05 0.603 0.666 0.605 0.603 0.600 0.839 0.934 0.622 0.587 

0.10 0.510 0.483 0.535 0.511 0.519 0.527 0.850 0.514 0.516 

0.15 0.443 0.365 0.469 0.440 0.452 0.442 0.751 0.431 0.419 

0.20 0.358 0.321 0.424 0.355 0.362 0.337 0.656 0.375 0.347 

0.38 0.200 0.182 0.232 0.200 0.200 0.191 0.447 0.241 0.191 

0.44 0.149 0.142 0.190 0.151 0.149 0.166 0.354 0.178 0.148 

0.52 0.101 0.107 0.155 0.100 0.099 0.119 0.261 0.116 0.112 

0.67 0.052 0.047 0.094 0.053 0.052 0.061 0.146 0.069 0.047 

Source: Own calculations. Models x’ correspond to models x from table 4 without the year dummies. 
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Table 6 summarises the performance of all the models. The table lists the share of the patents 

wrongly omitted from thickets that actually belong to a thicket (type II error) corresponding to 

the illustrated share of patents that don’t belong to a thicket but are wrongly identified as doing 

so (type I error). Clearly, lack of inclusion of data on the patent groups significantly worsens the 

predictive power (7’ vs 9) in the sense that the type I error increases strongly for a given type II 

error.  Omission of the thicket ratio worsens results substantially (3’ and 8’ vs 9), while omission 

of historic group thicket information worsens performance less (or, one could argue, enhances it; 

9 vs 10). Similarly, impact of omission of the class dummies is substantial but inconsistent (2’ vs 

9). Omission of the Clarkson ration and Triplets reduces performance inconsistently (4’ and 5’ vs 

9). What is also interesting using (time-static) group dummies usually does not work better than 

using (dynamic) group-specific variables (6’ vs 9). 

 

 

 

6. Conclusions 

If we assume that the legal definition of thickets as “an overlapping set of patent rights” is 

necessarily reflected in the body of the patent’s text, then semantic distance should be able to 

identify this feature.  Accordingly, we calculate a semantic distance for pairs of patents based on 

the content similarity between the patent document text, creating thus a semantic network. We 

then use these distance scores to determine whether patents identified by a group of experts as 

belonging to thickets using a standard definition are semantically more similar to one another 

than other patents by comparing the mean semantic distance for patents in and outside thickets. 

Our key conclusion is that patents belonging to the same thicket as identified by our experts are 

closer semantically than other pairs of patents. This result is clearly dependent upon the 

definition provided to the experts and is a costly method of detection; however, semantic 

distance appears to be a good way of proxying the view that would be obtained by a careful 

reading of the patent document.  Given the availability of computing power and natural language 
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processing tools, the performance of the proxy compared to expert view creates an interesting 

possible alternative to expert opinion.   

 

Our semantic measure also allows us to check on whether existing citation-based methods of 

identification also perform well to proxy expert view, as represented by semantic distance.  

Accordingly, we compare this content based method to two citations-based methods for 

identifying patent thicket membership as proxies for expert opinion, finding that the semantic 

method correlates more closely than the citations methods with the expert views.  This does not 

indicate that either method is “wrong”: they may measure different things.  The expert views are 

based on interpretation of a standard thicket definition and so may measure effects that are not 

the focus of the citation-based methods.  In particular the definition would tend to include 

patents obtained for defensive reasons much more than the citation based methods.   

 

We then combine the various measures into a single model of thicket identification, and 

evaluate its performance in terms of its identification of false positives (membership of a thicket 

where this is not actually the case) and false negatives (lack of membership, when membership 

in the thicket actually is the case).   We identify a model that performs relatively well and that 

also combines several measures of thickets, including citation based measures and controls for 

fragmentation, all of which have figured prominently in the thicket literature and all of which 

find some support within the model.  Crowding and technology group complexity also play a 

role in the likelihood that a patent will belong to a thicket and enter into the specification.   

 

We view our work as contributing to patent thicket measurement on several levels.  First, 

external validity of citations based measures has not been investigated thoroughly, although it 

has been mentioned as an issue.  We have taken such a further step in this investigation.   

 

We have also illustrated the value of semantic analysis in capturing expert views on this topic.  

Shorter semantic distance does appear to identify thickets well in the sense of capturing this 

view.  We also find that the semantic distance between patents belonging to thickets in discrete 
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technology areas is shorter than for those in complex areas, which confirms the intuition that 

patents in complex technologies cover a more diverse set of rights. It also suggests that it is 

easier for thickets to arise in complex technology areas, where there are more patents and those 

patents are more semantically similar, confirming the findings of Graevenitz et al. (2011). These 

findings hold when controlling for the experts used to identify patent thickets and are thus not 

influenced by a single expert whose expertise was misjudged.  

 

We find also that there is no significant overlap between individual patents indicated by 

experts as belonging to a thicket and patents belonging to triples (methodology from Graevenitz 

et al., 2011). Similarly, patent network density measure introduced by Clarkson (2005), shows 

no significant relation to the share of individual patents in these thickets.  At the same time, we 

show that these alternative measures can be combined to create a quantitative model that 

identifies patent thickets.  Such a model can provide a support for those interested in identifying 

patent thickets prospectively as a means of anticipating thicket-based strategic issues that may 

arise later.  This  includes identification at early stages where the text of the patent is still being 

drafted, as discussed with an emphasis on measurement by Hall et al., 2013 and examined by 

Gallini (2017) in the light of the theory of innovation incentives in the presence of cumulative 

innovation. We examine a logit model, which assesses the probability that a newly added patent 

would form a thicket. The model shows that the semantic distance combined with other 

information can be helpful in assessing a newly filed application. Important conclusions also 

include the fact that a key indicator of a patent belonging to a thicket is the previous density of 

thickets within a patent group. Fragmentation also is an indicator of thicket formation, which has 

been emphasised by the literature.   

 

Our method exploits expert opinion to identify thickets.  This is not as precise as methods that 

have use data sets based on court cases.  We have, then, sacrificed some ex post information 

confirming thicket membership in exchange for dataset size in some sense.  While we investigate 

individual expert error as a source of our results and find that it is not, we should emphasise that 

what we aim for is not a tool enabling infallible recognition of patent thickets, but a method for 
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delineating a set of patents which with high probability are members of a thicket.  Indeed, it 

would be interesting to repeat the approach used above with a broader group of experts and 

technology areas. It would also be interesting to perform similar analyses on EPO data or data 

from other patent offices. 
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8. Appendix – Latent Semantic Analysis 

We use latent semantic analysis (LSA) (Deerwester, Dumais, Landauer, Furnas, & Harshman, 

1990; Landauer, Foltz, & Laham, 1998) to measure the semantic distance between the patents in 

our dataset. One of the primary advantages of the LSA technique is that it enables the detection 

of “latent” similarities. That is, it does not require documents to use precisely the same 

terminology to detect similarities between them. Provided they co-occur with a similar terms, 

different words related to the same topic will both lead a document to have a higher weight on 

the same topic. For instance, if one patent uses the term “car” while another opts for 

“automobile” LSA can detect that these are related terms, and thus treat them similarly.  

We use the entire corpus of patents published by the USPTO between 1976 and 2015 to 

calculate our LSA model. These documents were downloaded from the public data dumps made 

available by the USPTO. We then take the full text of each granted patent - comprising the 

abstract, the description, and the claims - and use that as the terms representing each document. 

LSA takes as its starting point a document-term matrix, that is then transformed using SVD. We 

begin the creation of our matrix by generating a term-document matrix with a row for each 

granted patent (our input documents), a column for each unique term (i.e. word) used across the 

corpus. The matrix values are frequency of that term within each row’s relevant patent 

document. Because very common and very rare words provide little in the way of insight we 

remove all the words from a common set of stop words (Rijsbergen, 1979), as well as terms from 

the corpus that occur in more than 50% of all documents or fewer than 5 of the documents. This 

remove both very common words like ‘the’ or ‘claim’ or ‘and’ as well as highly unusual terms 

that are often typos or spelling errors.  

Once these low-information terms have been removed from the matrix, we then subject the 

corpus to a term frequency–inverse document frequency (tf-idf) transformation to further 

improve the semantic signal (Salton & McGill, 1986). We use a standard tf-idf transformation 

which multiplies the term’s frequency in the given document by the logarithmically-scaled 

inverse document frequency—that is the number of documents in the corpus divided by the 

number of documents the term appears in. A high tf-idf score for a particular term demonstrates 

that it occurs frequently within the given document, but rarely across the corpus, suggesting that 
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it provides a strong signal as to the document’s topical focus. Essentially, this re-weights terms 

based on the degree of insight they provide into a document’s topics. The resulting document/tf-

idf matrix is used as the input matrix for our LSA model.  

Once the input matrix has been assembled, we use the Gensim Python library to perform the 

dimensional reduction (Řehůřek & Sojka, 2010). Gensim takes the input matrix and performs a 

rank-reduced singular value decomposition on it, creating in the process a term-concept matrix, a 

singular values matrix, and a k dimensional document-concept matrix. The document-concept 

matrix is the output of primary interest when attempting to determine the similarity of documents 

within the corpus. The literature on determining the appropriate value of k generally 

recommends a value between 300–500 (Bradford, 2008) for larger sets of documents. Because 

our corpus of documents is quite large—approximately 5.5 million granted patents—and because 

patents cover a wide-variety of technical areas, we opt for 500 dimensions. The result is a 500 

dimension vector for each patent, representing its semantic content as “weights” within each of 

the 500 topics generated by the LSA process.  

Once the term-document matrix has been computed, we can use vector-space distance 

measures to measure how distant documents are from one another in the reduced-dimensional 

space. We use the commonly-used cosine distance (Landauer, Laham, & Foltz, 1998) to 

calculate pairwise distance for the patents in our study. Patents with a high cosine distance have 

concept vectors with dissimilar weightings, demonstrating that they cover unrelated technical 

topics. On the other hand, patents that have low cosine distance have similar concept vector 

weightings, suggesting that they are more similar.  

If we imagine that technical knowledge exists as a multidimensional space with some types of 

knowledge being “closer” together while others are more distantly-related, the entire process can 

be conceptualized using a spatial metaphor. For instance, the knowledge required to build an axe 

is quite similar to the knowledge required to build a hammer, and they are thus closer to one 

another in technical space. On the other hand, the knowledge required to build an axe is very 

dissimilar from the knowledge required to develop a complex tax minimization strategy and they 

are thus distant from one another in technical space. The LSA process essentially locates each of 

the patents in our corpus within a 500-dimensional technical space, while the cosine distance 
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calculation measures how closely (or distantly) related the information within each patent 

document is.  

 

9. Appendix B 

 Table 7. Names of USPC groups used in the analysis.  

Class / 

group 
Name 

Classific

ation 

327/129 Converting input frequency to output current or voltage. Generating sinusoidal output Complex 

23/295R Chemistry: physical processes. Crystallization Discrete 

23/302A Chemistry: physical processes. Crystallization. Alkali method and ammonium 

compounds. Ammonium compounds 

Discrete 

23/303 Chemistry: physical processes. Crystallization. Alkali method and ammonium 

compounds. Common salt 

Discrete 

23/305A Chemistry: physical processes. Crystallization. Heavy metal or aluminum 

compounds. Aluminum compounds 

Discrete 

23/305R Chemistry: physical processes. Crystallization. Heavy metal or aluminum compounds Discrete 

23/306 Chemistry: physical processes. Concentration of liquids in liquids Discrete 

23/307 Chemistry: physical processes. Concentration of liquids in liquids. With direct 

heating 

Discrete 

23/313R Chemistry: physical processes. Agglomerating Discrete 

8/115.51 Bleaching and dyeing. Chemical modification of textiles or fibers or products thereof Discrete 

8/400 Bleaching and dyeing. Measuring, testing or inspecting dye process Discrete 

8/401 Bleaching and dyeing. Using enzymes, dye process, composition, or product of 

dyeing 

Discrete 

8/438 Bleaching and dyeing. Process of extracting or purifying of natural dye Discrete 

8/493 Bleaching and dyeing. Overal diemnsional modification or stabilization. 

Modification of molecular structure of substrate by chemical means 

Discrete 

324/509 Electricity: measuring and testing. Fault detecting in electric circuits and of electric 

components of ground fault indication 

Complex 

324/512 Electricity: measuring and testing. Fault detecting in electric circuits and of electric 

components for fault location 

Complex 

324/525 Electricity: measuring and testing. Fault detecting in electric circuits and of electric 

components for fault location by resistance or impedance measuring 

Complex 

205/251 Electrolytic coating (process, composition and method of preparing composition). 

Depositing predominantly alloy coating. Gold is predominant constituent. Including 

arsenic, indium or thallium. 

Discrete 

205/564 Electrolytic coating (process, composition and method of preparing composition). 

Preparing single metal. Gallium, germanium, indium, vanadium or molybdenum 

produced. 

Discrete 

977/778 Nanostructure. Within specified host or matrix material (e.g., nanocomposite films, 

etc.) 

Complex 

977/810 Nanostructure. Of specified metal or metal alloy composition Complex 

977/881 Manufacture, treatment or detection of nanostructure. With arrangement, process, or 

apparatus for testing. With arrangement, process, or apparatus for testing 

Complex 

977/903 Specified use of nanostructure. For conversion, containment, or destruction of 

hazardous material 

Complex 
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977/904 Specified use of nanostructure. For medical, immunological, body treatment, or 

diagnosis 

Complex 

977/963 Specified use of nanostructure. For medical, immunological, body treatment, or 

diagnosis. Specially adapted for travel through blood circulatory system 

Complex 

433/1 Dentistry. Veterinary dentistry Complex 

433/133 Dentistry. Apparatus. Having motor or means to transmit motion from motor to tool. 

Hand-held tool or handpiece. Contra angled handpiece 

Complex 

433/167 Dentistry. Prosthodontics Complex 

433/196 Dentistry. Prosthodontics. Orienting or positioning teeth Complex 

433/2 Dentistry. Orthodontics Complex 

433/215 Dentistry. Method or material for testing, treating, restoring, or removing natural 

teeth 

Complex 

433/229 Dentistry. Miscellaneous Complex 

433/81 Dentistry. Apparatus. Having intra-oral dispensing means. Endodontic Complex 

433/86 Dentistry. Apparatus. Having intra-oral dispensing means. Endodontic. Ultrasonic 

tool 

Complex 

424/114 Drug, bio-affecting and body treating compositions. Plural fermentates of different 

origin 

Discrete 

424/195.16 Drug, bio-affecting and body treating compositions. Extract or material containing or 

obtained from a unicellular fungus as active ingredient 

Discrete 

424/78.01 Drug, bio-affecting and body treating compositions. Digestive system regulator 

containing solid synthetic organic polymer 

Discrete 

424/78.02 Drug, bio-affecting and body treating compositions. Topical body preparation 

containing solid synthetic organic polymer 

Discrete 

424/78.08 Drug, bio-affecting and body treating compositions. Solid synthetic organic polymer Discrete 

424/780 Drug, bio-affecting and body treating compositions. Extract or material containing or 

obtained from a micro-organism as active ingredient 

Discrete 

424/800 Drug, bio-affecting and body treating compositions. Antibody or fragment thereof 

whose amino acid sequence is disclosed in whole or in part 

Discrete 

424/801 Drug, bio-affecting and body treating compositions. Involving antibody or fragment 

thereof produced by recombinant dna technology 

Discrete 

424/802 Drug, bio-affecting and body treating compositions. Antibody or antigen-binding 

fragment thereof that binds gram-positive bacteria 

Discrete 

424/803 Drug, bio-affecting and body treating compositions. Antibody or antigen-binding 

fragment thereof that binds gram-negative bacteria 

Discrete 

424/804 Drug, bio-affecting and body treating compositions. Involving IGG3, IGG4, IGA, or 

IGY 

Discrete 

424/805 Drug, bio-affecting and body treating compositions. Involving IGE or IGD Discrete 

424/806 Drug, bio-affecting and body treating compositions. Involving IGM Discrete 

424/807 Drug, bio-affecting and body treating compositions. Involving IGM. Monoclonal Discrete 

424/808 Drug, bio-affecting and body treating compositions. Involving IGM. Human Discrete 

424/94.1 Drug, bio-affecting and body treating compositions. Enzyme or coenzyme containing Discrete 

436/510 Chemistry: analytical and immunological testing. Immunochemical pregnancy 

determination 

Complex 

436/512 Chemistry: analytical and immunological testing. Involving antibody fragments Complex 

436/536 Chemistry: analytical and immunological testing. Involving immune complex formed 

in liquid phase 

Complex 

604/890.1 Surgery. Controlled release therapeutic device or system Discrete 

348/67 Television. Improving the 3D impression of a displayed stereoscopic image Complex 

382/107 Image analysis. Applications. Motion or velocity measuring Complex 
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327/142 Converting input frequency to output current or voltage. Synchronizing. Reset (e.g., 

initializing, starting, stopping, etc.) 

Complex 

327/143 Converting input frequency to output current or voltage. Synchronizing. Reset (e.g., 

initializing, starting, stopping, etc.). Responsive to power supply 

Complex 

 

Table 8. Survey questions for the field experts 

Question Range of answers 

Does given patent belong to a patent thicket? Yes/No 

To which patent thicket within a patent group it 

belongs to?  

Name of a thicket (like ‘thicket_A’, ‘thicket_B’) 

What is the innovation level of the patent? Choice of one of the five innovativeness levels: 

Very high, High, Average, Low, Very low  

 

 



45 

Figure 6. Average semantic distance between chosen sets with confidence intervals. Where 

the confidence interval overlaps with 0 line, the result is statistically insignificant (1-

α=95%). 
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10. Appendix D 

Omitting class dummies seems to make the predictive power a bit better when comparing to 

the baseline model: 

Figure 7. False positive/negative ratios as functions of the critical value for the baseline 

model without class dummies (2’). 

 
Source: Own calculations 

 

While to opposite is true for the model that omits group- and time- specific patents-in-thickets 

to patents ratio: 
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Figure 8. False positive/negative ratios as functions of the critical value for the model 

without thicket ratio (3’). 

 
Source: Own calculations 

 

Omitting Clarkson ratio does not seem to matter much as well: 
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Figure 9. False positive/negative ratios as functions of the critical value for the model 

without Clarkson ratio (4’). 

 

Source: Own calculations 

As well as the ratio describing incidence of triplets in the group: 
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Figure 10. False positive/negative ratios as functions of the critical value for the model 

without triplets ratio (5’). 

 
Source: Own calculations 

Replacing all group-specific with time-constant group dummies does not seem to improve the 

model much (or worsen it): 
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Figure 11. False positive/negative ratios as functions of the critical value for the model with 

group dummies (6’). 

 
Source: Own calculations 

Furthermore, using only patent-specific variables (discarding group characteristic/dummies) 

mean that the model is not very useful: 
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Figure 12. False positive/negative ratios as functions of the critical value for the model 

without group-specific variables (7'). 

 
Source: Own calculations 

Discarding semantic distance seems to worsen the model marginally: 
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Figure 13. False positive/negative ratios as functions of the critical value for the model 

without semantic distance (8’). 

 
Source: Own calculations 

 

Omission of historic data on number of fillings and awarded patents has a negligible effect: 
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Figure 14. False positive/negative ratios as functions of the critical value for the model 

without historic data on number of fillings or granted patents (10). 

 
Source: Own calculations 
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11. Appendix C 

Table 9. Estimates for different logit models (1-10) of the probability of the membership in 

an existing thicket for a new patent application - full version. 

Dependent variable: 
 

 
Belonging to a thicket (at the moment of applying) 

 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

 
  

Semantic 

distance 

-

3.425*** 

-

3.240**

* 

-

3.837**

* 

-

3.418**

* 

-

3.425**

* 

-

3.870*** 

-

3.348**

* 
 

-

3.434**

* 

-

3.425**

* 

(0.294) (0.290) (0.288) (0.294) (0.294) (0.319) (0.270) 
 

(0.291) (0.287) 

         
  

Number of 

backward 

citations 

0.071*** 
0.075**

* 

0.081**

* 

0.072**

* 

0.071**

* 
0.077*** 

0.046**

* 
0.097*** 

0.067**

* 

0.048**

* 

(0.014) (0.014) (0.014) (0.014) (0.014) (0.014) (0.012) (0.015) (0.014) (0.013) 

         
  

Number of 

claims 

0.002 0.001 0.005* 0.002 0.002 0.0002 
0.008**

* 
0.001 0.001 -0.001 

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.002) (0.003) (0.003) (0.003) 

         
  

Number of 

groups 

0.646*** 
0.706**

* 

0.482**

* 

0.652**

* 

0.647**

* 
0.562* 

0.575**

* 
0.709*** 

0.617**

* 

0.691**

* 

(0.144) (0.140) (0.141) (0.144) (0.144) (0.299) (0.131) (0.142) (0.142) (0.141) 

         
  

Thicket 

ratio for a 

group (%) 

4.216*** 
5.442**

*  

4.218**

* 

4.219**

*   
4.484*** 

4.291**

* 

4.582**

* 

(0.300) (0.271) 
 

(0.300) (0.300) 
  

(0.293) (0.295) (0.293) 

         
  

Clarkson 

ratio for a 

group 

1.237 1.677 1.037 
 

1.211 
  

0.890 0.593 1.571 

(1.210) (1.297) (0.990) 
 

(1.213) 
  

(1.204) (1.252) (1.191) 

         
  

Complex 

group 

2.351 0.095 3.216 2.272 2.337 
  

1.417 2.247 1.800 

(3.371) (0.090) (3.059) (3.327) (3.365) 
  

(3.246) (3.328) (3.395) 

         
  

Triples 

ratio 

0.916 

-

5.562**

* 

1.007 0.772 
   

0.992 -1.534 -3.556 

(2.321) (1.936) (2.125) (2.318) 
   

(2.264) (2.255) (2.217) 

           

HHI for 

group 

-

1.436*** 

-

1.991**

* 

0.363 -1.374** 

-

1.495**

* 

  
-

1.991*** 
-0.900* -0.496 
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(0.546) (0.536) (0.392) (0.540) (0.528)   (0.538) (0.489) (0.480) 

           

Prior appls 

of assignee 

0.014*** 
0.012**

* 

0.016**

* 

0.013**

* 

0.014**

* 
0.012*** 

0.014**

* 
0.018*** 

0.014**

* 

0.011**

* 

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) 

Prior appls 

in the 

group 

0.003** 0.003** 0.002** 0.003** 0.003**   0.004*** 0.002*  

(0.001) (0.001) (0.001) (0.001) (0.001)   (0.001) (0.001)  

Prior 

patents in 

the group 

-

0.004*** 

-

0.004**

* 

-

0.004**

* 

-

0.004**

* 

-

0.004**

* 

  
-

0.004*** 

-

0.004**

* 

 

(0.001) (0.001) (0.001) (0.001) (0.001)   (0.001) (0.001)  

Class 23 
-0.108  -0.330 -0.135 -0.128   -0.246 0.142 0.092 

(0.223)  (0.207) (0.221) (0.217)   (0.216) (0.212) (0.212) 

Class 324 
-4.535  -6.680

**
 -4.481 -4.546   -3.806 -4.334 -3.862 

(3.412)  (3.104) (3.369) (3.406)   (3.289) (3.369) (3.435) 

Class 327 
-3.944  -5.937

*
 -3.878 -3.923   -2.945 -3.610 -3.202 

(3.372)  (3.059) (3.328) (3.365)   (3.246) (3.327) (3.395) 

Class 348 
-1.352  -0.436 -1.325 -1.358   -1.107 -1.606 -1.361 

(3.406)  (3.100) (3.363) (3.400)   (3.280) (3.363) (3.430) 

Class 424 
-0.196  -0.043 -0.231 -0.199   -0.081 -0.117 -0.264 

(0.178)  (0.164) (0.174) (0.177)   (0.173) (0.178) (0.177) 

Class 433 
-1.943  -2.876 -1.879 -1.956   -1.156 -1.744 -1.521 

(3.360)  (3.049) (3.316) (3.354)   (3.235) (3.316) (3.384) 

Class 436 
-2.630  -3.477 -2.563 -2.631   -1.645 -2.118 -2.191 

(3.364)  (3.052) (3.319) (3.357)   (3.238) (3.317) (3.386) 

Class 604 
1.129  0.507 1.133 1.112   1.485

**
 1.045 1.071 

(0.714)  (0.573) (0.701) (0.712)   (0.630) (0.739) (0.763) 

Class 977 
-2.131  -2.702 -2.085 -2.101   -1.495 -2.124 -1.655 

(3.350)  (3.038) (3.306) (3.343)   (3.225) (3.307) (3.375) 

Group 

23/302A 

     -16.329     

     (1,091.683     
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) 

Group 

23/303 

     0.216     

     (0.512)     

Group 

23/305A 

     0.008     

     (0.382)     

Group 

23/305R 

     -0.781     

     (0.849)     

Group 

23/306 

     0.063     

     (0.859)     

Group 

23/307 

     -0.021     

     (0.934)     

Group 

23/313R 

     -0.309     

     (0.317)     

Group 

324/509 

     -16.055     

     (279.642)     

Group 

324/512 

     -15.231     

     (424.771)     

Group 

324/525 

     -1.617
**

     

     (0.642)     

Group 

327/129 

     -2.530
***

     

     (0.760)     

Group 

327/142 

     -1.745
***

     

     (0.460)     

Group 

327/143 

     -2.722
***

     

     (0.421)     

Group 

348/67 

     3.187
***

     

     (0.633)     
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Group 

424/114 

     1.250
***

     

     (0.310)     

Group 

424/195.16 

     -2.482
**

     

     (1.074)     

Group 

424/78.01 

     0.073     

     (0.389)     

Group 

424/78.02 

     -0.105     

     (0.284)     

Group 

424/78.08 

     0.820
***

     

     (0.278)     

Group 

424/780 

     1.067
**

     

     (0.439)     

Group 

424/800 

     0.409     

     (1.051)     

Group 

424/801 

     -0.572     

     (1.023)     

Group 

424/802 

     3.088
**

     

     (1.439)     

Group 

424/803 

     -0.752     

     (1.381)     

Group 

424/804 

     -0.232     

     (0.743)     

Group 

424/805 

     -0.247     

     (0.609)     

Group 

424/806 

     -0.615     

     (0.831)     

Group      -0.249     
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424/807      (0.659)     

Group 

424/808 

     -1.712     

     (1.503)     

Group 

424/94.1 

     -0.443     

     (0.289)     

Group 

433/1 

     0.642     

     (0.530)     

Group 

433/133 

     1.333
***

     

     (0.427)     

Group 

433/167 

     -0.660     

     (0.502)     

Group 

433/196 

     0.174     

     (0.892)     

Group 

433/2 

     0.456     

     (0.483)     

Group 

433/215 

     0.294     

     (0.270)     

Group 

433/229 

     -0.232     

     (0.333)     

Group 

433/81 

     2.985
***

     

     (0.375)     

Group 

433/86 

     -0.384     

     (0.563)     

Group 

436/510 

     1.258
*
     

     (0.735)     

Group 

436/512 

     -0.127     

     (0.437)     
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Group 

436/536 

     -0.392     

     (0.266)     

Group 

604/890.1 

     1.040
*
     

     (0.612)     

Group 

8/115.51 

     -2.114
***

     

     (0.581)     

Group 

8/400 

     0.562     

     (0.441)     

Group 

8/401 

     2.210
***

     

     (0.351)     

Group 

8/438 

     -1.364     

     (0.861)     

Group 

8/493 

     0.112     

     (0.604)     

Group 

977/778 

     2.319
***

     

     (0.708)     

Group 

977/810 

     1.661     

     (1.037)     

Group 

977/881 

     1.093
***

     

     (0.343)     

Group 

977/903 

     2.006
*
     

     (1.166)     

Group 

977/904 

     0.596     

     (0.433)     

Group 

977/963 

     -13.966     

     
(1,723.1

67) 
    

Year -0.104 -0.067 -0.401 -0.082 -0.101 -0.210 -0.289 -0.258   
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applied 

1977 
(0.432) (0.440) (0.405) (0.431) (0.432) (0.434) (0.386) (0.415)   

Year 

applied 

1978 

0.038 0.057 -0.159 0.047 0.040 -0.103 -0.166 0.065   

(0.409) (0.418) (0.375) (0.409) (0.409) (0.408) (0.352) (0.392)   

Year 

applied 

1979 

0.247 0.223 0.038 0.263 0.249 0.057 -0.143 0.192   

(0.397) (0.400) (0.369) (0.397) (0.397) (0.399) (0.345) (0.383)   

Year 

applied 

1980 

0.321 0.351 0.222 0.345 0.324 0.394 0.109 0.267   

(0.400) (0.403) (0.370) (0.399) (0.400) (0.407) (0.345) (0.386)   

Year 

applied 

1981 

-0.423 -0.441 -0.391 -0.398 -0.416 -0.515 -0.347 -0.434   

(0.399) (0.406) (0.369) (0.399) (0.399) (0.403) (0.347) (0.385)   

Year 

applied 

1982 

-0.692
*
 -0.661 -0.830

**
 -0.668 -0.683

*
 -0.733

*
 -0.877

**
 -0.795

**
   

(0.410) (0.413) (0.385) (0.409) (0.409) (0.413) (0.366) (0.398)   

Year 

applied 

1983 

-0.926
**

 -0.775
*
 -1.123

***
 -0.905

**
 -0.918

**
 -0.982

**
 

-

1.037
***

 
-0.933

**
   

(0.401) (0.406) (0.380) (0.401) (0.401) (0.407) (0.363) (0.389)   

Year 

applied 

1984 

0.354 0.520 -0.006 0.379 0.363 0.176 -0.067 0.224   

(0.381) (0.383) (0.359) (0.381) (0.381) (0.386) (0.339) (0.371)   

Year 

applied 

1985 

-0.472 -0.268 -0.840
**

 -0.443 -0.465 -0.577 -0.776
**

 -0.525   

(0.387) (0.389) (0.369) (0.386) (0.387) (0.394) (0.350) (0.377)   

Year 

applied 

1986 

-0.714
*
 -0.462 -1.105

***
 -0.686

*
 -0.704

*
 -0.878

**
 

-

1.100
***

 
-0.782

**
   

(0.399) (0.398) (0.382) (0.398) (0.398) (0.403) (0.357) (0.388)   

Year 

applied 

1987 

-0.160 0.075 -0.609
*
 -0.130 -0.154 -0.253 -0.666

**
 -0.254   

(0.375) (0.373) (0.357) (0.374) (0.375) (0.380) (0.333) (0.365)   

Year 

applied 

1988 

-1.168
***

 -0.911
**

 -1.509
***

 -1.140
***

 -1.159
***

 -1.404
***

 
-

1.495
***

 
-1.233

***
   

(0.405) (0.404) (0.387) (0.404) (0.405) (0.416) (0.365) (0.397)   

Year 

applied 

1989 

-0.477 -0.171 -0.883
**

 -0.451 -0.470 -0.606 
-

0.845
***

 
-0.573   

(0.370) (0.368) (0.350) (0.369) (0.370) (0.371) (0.328) (0.359)   
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Year 

applied 

1990 

-0.481 -0.164 -0.897
**

 -0.450 -0.473 -0.747
**

 
-

0.862
***

 
-0.627

*
   

(0.371) (0.366) (0.352) (0.370) (0.370) (0.371) (0.326) (0.361)   

Year 

applied 

1991 

-0.315 -0.002 -0.673
**

 -0.284 -0.306 -0.588
*
 -0.662

**
 -0.383   

(0.356) (0.350) (0.336) (0.355) (0.356) (0.357) (0.310) (0.346)   

Year 

applied 

1992 

-0.281 0.024 -0.614
*
 -0.249 -0.272 -0.573 -0.716

**
 -0.398   

(0.358) (0.350) (0.339) (0.356) (0.357) (0.356) (0.309) (0.348)   

Year 

applied 

1993 

-1.006
***

 -0.657
*
 -1.407

***
 -0.972

***
 -0.996

***
 -1.363

***
 

-

1.409
***

 
-1.116

***
   

(0.374) (0.364) (0.354) (0.372) (0.373) (0.370) (0.324) (0.365)   

Year 

applied 

1994 

-0.603
*
 -0.248 -1.069

***
 -0.566 -0.590 -1.092

***
 

-

1.271
***

 
-0.673

*
   

(0.363) (0.353) (0.343) (0.361) (0.362) (0.357) (0.309) (0.354)   

Year 

applied 

1995 

-0.512 -0.143 -0.969
***

 -0.466 -0.497 -1.076
***

 
-

1.144
***

 
-0.549   

(0.358) (0.347) (0.338) (0.355) (0.356) (0.347) (0.300) (0.348)   

Year 

applied 

1996 

-0.842
**

 -0.375 -1.289
***

 -0.799
**

 -0.825
**

 -1.272
***

 
-

1.346
***

 
-0.868

**
   

(0.371) (0.355) (0.349) (0.368) (0.368) (0.358) (0.308) (0.360)   

Year 

applied 

1997 

-1.047
***

 -0.636
*
 -1.476

***
 -1.004

***
 -1.029

***
 -1.677

***
 

-

1.718
***

 
-1.156

***
   

(0.376) (0.361) (0.356) (0.373) (0.373) (0.363) (0.313) (0.366)   

Year 

applied 

1998 

-0.795
**

 -0.333 -1.213
***

 -0.753
**

 -0.777
**

 -1.430
***

 
-

1.439
***

 
-0.827

**
   

(0.373) (0.354) (0.352) (0.370) (0.370) (0.356) (0.304) (0.362)   

Year 

applied 

1999 

-0.953
**

 -0.461 -1.429
***

 -0.908
**

 -0.935
**

 -1.651
***

 
-

1.582
***

 
-1.068

***
   

(0.379) (0.359) (0.360) (0.376) (0.376) (0.359) (0.308) (0.370)   

Year 

applied 

2000 

-0.801
**

 -0.328 -1.334
***

 -0.755
**

 -0.785
**

 -1.514
***

 
-

1.540
***

 
-0.949

**
   

(0.379) (0.356) (0.358) (0.376) (0.377) (0.356) (0.304) (0.369)   

Constant 
-1.927

***
 -2.691

***
 -0.043 -1.916

***
 -1.907

***
 -0.410 -0.576

*
 -2.745

***
 -2.467

***
 -2.726

***
 

(0.416) (0.365) (0.369) (0.416) (0.413) (0.373) (0.308) (0.399) (0.271) (0.268) 

Observatio

ns 
5,482 5,482 5,482 5,482 5,482 5,482 5,482 5,482 5,482 5,482 
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Log 

Likelihood 

-

2,149.84

7 

-

2,201.67

5 

-

2,267.57

0 

-

2,150.34

6 

-

2,149.92

5 

-

2,103.82

6 

-

2,527.22

3 

-

2,224.48

8 

-

2,184.41

3 

-

2,207.12

3 

Akaike Inf. 

Crit. 

4,391.69

5 

4,477.35

0 

4,625.14

0 

4,390.69

1 

4,389.85

0 

4,375.65

3 

5,114.44

5 

4,538.97

6 

4,412.82

5 

4,454.24

6 

 
    

Note: 

*p**p*

**p<0.

01 

  

     
  

  
  

     
  

  
  

     
  

 
  

  


