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Abstract

This paper proposes a simulation-free estimation algorithm for vector autoregressions
(VARs) that allows fast approximate calculation of marginal parameter posterior
distributions. We apply the algorithm to derive analytical expressions for independent
VAR priors that admit a hierarchical representation and which would typically require
computationally intensive posterior simulation methods. The benefits of the new algorithm
are explored using three quantitative exercises. First, a Monte Carlo experiment illustrates
the accuracy and computational gains of the proposed estimation algorithm and priors.
Second, a forecasting exercise involving VARs estimated on macroeconomic data
demonstrates the ability of hierarchical shrinkage priors to find useful parsimonious
representations. We also show how our approach can be used for structural analysis and
that it can successfully replicate important features of news-driven business cycles
predicted by a large-scale theoretical model.
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1 Introduction

There is ample evidence that exploiting large information sets can be beneficial for

macroeconomic forecasting and structural analysis. While the early literature has established

this fact in univariate applications (Stock and Watson, 2002), a more recent literature applies

the same concept to multivariate vector autoregressions (VARs; see Banbura et al., 2010). Not

surprisingly, a large body of this VAR literature relies on Bayesian methods, exploiting prior

information as a way of achieving regularization and shrinkage. The early literature on vector

autoregressions has focused on subjectively tuned priors such as the Minnesota prior (Doan

et al., 1984; Litterman, 1979). In constrast, following advances in Bayesian computation, the

current econometric literature highlights the importance of hierarchical priors as a way of

eliciting the degree of prior informativeness objectively from the data.1 Examples of this

literature include Del Negro and Schorfheide (2004), who formulate a flexible procedure that

allows the data to dictate how much weight should be attributed to prior moments coming

from a general equilibrium model, and George et al. (2008), who propose a hierarchical prior

that in a Gibbs sampler setting allows to search for VAR restrictions in an automatic and

data-driven way.

Hierarchical shrinkage priors are structured using multiple layers of distributions, with

upper level prior hyperparameters being conditioned on lower level hyperparameters. That

way, very complex prior structures, such the famous Laplace prior that leads to the LASSO

estimator (Tibshirani, 1996), can be decomposed into a series of tractable conditional prior

distributions.2 At the same time, hierarchical shrinkage can be seamlessly combined with

independent priors, which have been shown to be important for VAR inference and forecasting.

Notwithstanding their excellent properties and empirical successes, the vast majority of

existing applications featuring hierarchical priors have been severely limited because of their

reliance on computationally intensive Markov Chain Monte Carlo (MCMC) methods. For

example, George et al. (2008) work with seven-variable models. In high-dimensions, when the

VAR parameters proliferate at a polynomial rate, such simulation-based methods become

1In the statistics and machine learning literature, hierarchical priors are referred to as “sparse Bayesian
learning” or “adaptive sparseness” priors, due to the fact that the informativeness of the prior is learned from the
data; see Tipping (2001) and Figueiredo (2003).

2This feature, in turn, makes very natural in models with hierarchical priors the use of the Gibbs sampler,
which is a technique for sampling from conditional posteriors.
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computationally cumbersome, if not infeasible. A notable exception is Giannone et al. (2015)

who, in order to estimate systems with more than 20 equations, rely on the natural conjugate

prior to obtain posterior estimates for the degree of informativeness of their prior. However,

their approach is restricted by the fact that the natural conjugate prior treats each VAR

equation symmetrically, and imposes that the prior covariances of the coefficients in any two

equations must be proportional to one another.3

In this paper we develop a new estimation algorithm for VARs under the proposed class of

independent hierarchical shrinkage priors. Unlike the existing MCMC-based methods, the

proposed approach is simulation-free and can be applied to models of very high dimensions.

Also, unlike the approximation methods that rely on the restrictive natural conjugate prior

(e.g., Banbura et al., 2010; Giannone et al., 2015), our suggested approach integrates

hierarchical shrinkage within an independent prior setting. We capitalize on the efficient

algorithm of van den Boom et al. (2015a) designed for a univariate regression, and further

develop it to address the complexities of high-dimensional VARs. In particular, we first rewrite

the VAR in its fully recursive form, which allows equation-by-equation estimation (Carriero

et al., 2017). Next, as in van den Boom et al. (2015a), estimation relies on a simple

transformation (“rotation”) of each VAR equation which allows to approximate the joint

posterior of the VAR coefficients as the product of a number of scalar marginal posterior

distributions. The algorithm, therefore, breaks the multivariate estimation problem into a

series of independent tasks each one involving a scalar parameter.4 Finally, we extend and

generalize the van den Boom et al. (2015a) algorithm, originally developed to implement

variable selection, to three popular cases of hierarchical priors, namely (i) Normal-Jeffreys

(Hobert and Casella, 1996), (ii) Spike-and-Slab (Mitchell and Beauchamp, 1988), and (iii)

Normal-Gamma (Griffin and Brown, 2010), and show how to obtain analytical posteriors for

the VAR coefficients and the elements of the VAR covariance matrix.

Using a Monte Carlo exercise, we find that our algorithm is as accurate as the comparable

simulation-based methods but at a fraction of their computing time. At the same time, the

3This means that if we want to impose money neutrality in the VAR by shrinking to zero the coefficient of
money in the equation for GDP, then the symmetry of the natural conjugate prior requires that the effect of
money is removed from all other VAR equations in the system, even if money could still be a potentially useful
predictor of, say, inflation.

4In the machine learning and graphical modeling literatures such procedures are known as variable elimination;
see Barber (2012).
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simulation-free nature of the algorithm means that there are no “convergence” or other similar

numerical issues. Having established the numerical accuracy of our proposed algorithm, we then

focus on two empirical exercises inspired by the recent literature on high-dimensional VARs. Our

first application is a macroeconomic forecasting exercise using large-dimensional VARs of up to

124 equations. Banbura et al. (2010), Carriero et al. (2012), Carriero et al. (2017) and Koop

et al. (2017) provide strong evidence that high-dimensional Bayesian VARs can consistently

outperform smaller models. We show that when combined with the three hierarchical priors we

focus on, our algorithm outperforms all competing methods in terms of forecast accuracy. Our

second exercise involves using the new algorithm to estimate impulse response functions from

an identified VAR. In particular, we simulate artificial time-series data from a large-scale DSGE

model and show that our shrinkage methods can be used to obtain empirical VAR impulse

response functions that follow closely the responses expected from the calibrated theoretical

model.

The remainder of the paper is organized as follows. Section 2 describes in detail the

estimation procedure we rely on to obtain analytical posteriors for the regression parameters in

the presence of non-conjugate priors. Next, Section 3 examines the properties of three popular

cases of hierarchical shrinkage priors and provides analytical derivations for the marginal

posteriors of the coefficients of interest. Section 4 extends the methods described in Section 2

and Section 3 to the VAR case. After that, Section 5 describes the Monte Carlo exercise, while

Section 6 is devoted to the macroeconomic forecasting application. Section 7 focuses on

extending our algorithm to estimate impulse response functions using artificial data obtained

from a large-scale DSGE model, and Section 8 offers some concluding remarks.

2 A new Bayesian estimation methodology

Before generalizing the estimation procedure to a VAR, our starting point is the following

univariate regression model as in van den Boom et al. (2015a,b)

y = Xβ + v, (1)

where y = (y1, ..., yT )′ is a T × 1 vector featuring our dependent variable, X = (X ′1, ...,X
′
T )
′

is

a T × k matrix involving T observations on k predetermined regressors, β is the corresponding
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k × 1 vector of regression coefficients, and v = (v1, ..., vT )′ ∼ N
(
0, σ2IT

)
. When k is large,

estimation of the high-dimensional posterior distribution p (β|y) involves very costly

operations (e.g. inversion of the high-dimensional matrix X), and quickly becomes

computationally demanding or even infeasible.

Following van den Boom et al. (2015a,b), we introduce an alternative approach to evaluate

the marginal posteriors {p (βj |y)}kj=1 without the need to compute a number of high-dimensional

integrals over the joint posterior distribution p (β|y). We then proceed by approximating the full

posterior p (β|y) using the product of all k marginal posteriors.5 Put simply, this approach works

by transforming a complex and often intractable k-dimensional posterior evaluation problem

into the product of k independent (and much simpler) estimation steps. We define the following

rotation for each of the k columns in X, one at a time

y∗j = q′jy, ỹj = W ′
jy, (2)

where j = 1, ..., k, qj = Xj/ ‖Xj‖ is a T × 1 unit vector in the direction of j-th column of X

and W j is an arbitrarily chosen T ×T −1 matrix, subject to the constraint W jW
′
j = IT −qjq′j .

Note that since the T×T orthogonal matrixQj =
[
qj ,W j

]
is of full rank, the suggested rotation

provides a one-to-one mapping between the original data y and the rotated data
(
y∗j , ỹ

′
j

)′
. We

show in Appendix A.1 that if we multiply both sides of (1) by Qj , after rearranging we obtain

the following observationally equivalent regressions

y∗j = ‖Xj‖βj+X∗(−j)β(−j) + v∗j ,

ỹj = X̃(−j)β(−j) + ṽj ,
(3)

where X∗(−j) = q′jX(−j) is a 1 × (k − 1) vector, v∗j = q′jv is a scalar, X̃(−j) = W ′
jX(−j) is a

(T − 1)× (k − 1) matrix, ṽj = W ′
jv is a (T − 1)× 1 vector, and X(−j) = X \Xj denotes the

k − 1 columns of X after its j-th column has been removed. Similarly, β(−j) = β \ βj denotes

the k − 1 elements of β after its j-th element has been removed. It also follows that the joint

likelihood of the rotated data
(
y∗j , ỹ

′
j

)′
can be represented as[

y∗j
ỹj

]∣∣∣∣β, σ2 ∼ N

([
‖Xj‖

0

]
βj +

[
X∗(−j)
X̃(−j)

]
β(−j), σ

2IT

)
, (4)

5This assumption implies posterior independence among coefficients, that is, p (β|y) ≡
∏
j p (βj |y). While

such independence assumption can be very helpful for prediction, in Section 7 we also show how to modify this
procedure in the context of a structural VAR in order to obtain the exact joint posterior.
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where, due to the orthogonality of Qj =
[
qj ,W j

]
, the variance of the rotated data is still σ2.

Most importantly, the rescaled regression in (3) separates the scalar y∗j , which depends on βj ,

from the remaining T − 1 observations ỹj , which are conditionally independent of the effect

of βj . At the same time, the form of the rescaled likelihood in (4) implies that y∗j and ỹj do

not share covariance terms, which ultimately means that we can treat (3) as two conditionally

separable regression models. Combined, these last two equations provide insights on how to

devise a simple two-step OLS procedure to estimate βj . First, regress ỹj on X̃(−j) to obtain

estimates for β(−j) and σ2, namely β̂(−j) and σ̂2. Next, condition on the regression variance σ̂2

and regress
(
y∗j −X∗(−j)β̂(−j)

)
on ‖Xj‖ to obtain an estimate for βj . Note that the estimates

that we obtain from this two-step procedure are numerically identical to the OLS estimates we

would recover if working with the original regression model in (1).6

We now exploit the form of the likelihood in (4), along with Bayes Theorem, to derive the

following expression for the marginal posterior distribution p (βj |y)

p (βj |y) = p
(
βj |y∗j , ỹj

)
=
p
(
βj , y

∗
j |ỹj

)
p
(
y∗j |ỹj

)
∝ p

(
y∗j |βj , ỹj

)
p (βj) ,

(5)

where we have used the fact that p
(
y∗j |ỹj

)
does not involve βj , meaning it is simply a normalizing

constant that can be removed, and also the result that ỹj does not convey any information about

βj , i.e. p
(
βj |ỹj

)
≡ p (βj). Equation (5) shows that, thanks to the rotation in (2), the marginal

posterior distribution of βj is proportional to the rotated conditional likelihood p
(
y∗j |βj , ỹj

)
and the prior p (βj).

7 While we postpone our discussion on the prior distribution until the next

section, it is of immediate interest to derive an expression for p
(
y∗j |βj , ỹj

)
, and this is where

we now turn our attention.

6This two-step approach is closely related to the traditional partitioned regression method (or “partial-time
regression”, using the terminology of Frisch and Waugh, 1933). There are however a number of important

differences, which ultimately lead us to a procedure where we can estimate β̂(−j) using T − 1 observations, and

estimate β̂j using a single observation. For additional details on the link with partitioned regression, see Appendix
A.2.

7One implicit assumption we will rely on throughout is that the elements of β need to be a-priori independent,
that is, p (β) =

∏k
j=1 p (βj). This is a standard assumption in Bayesian analysis using hierarchical or other priors

(e.g. Minnesota prior), since it is generally quite hard to objectively specify prior beliefs on the coefficients’
cross-correlations.
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Note that, from a Bayesian standpoint, the conditional likelihood function p
(
y∗j |βj , ỹj

)
can

be interpreted as the predictive distribution of the “out-of-sample” data y∗j given the “in-sample”

data ỹj , after the parameters β(−j) and σ2 have been integrated out. Using standard results

for Bayesian predictive analysis (Koop, 2003), we show in Appendix A.3 that under a natural

conjugate prior for (β(−j), σ
2) it follows that8

p
(
y∗j |βj , ỹj

)
= ‖Xj‖βj + t2d

(
µj , τ

2
j

)
≈ ‖Xj‖βj +N

(
µj , τ

2
j

)
,

(6)

where

µj = X∗(−j)β(−j), (7)

and

τ2
j =

ψ(−j)

d

(
1 +X∗(−j)V β(−j)X

∗′
(−j)

)
. (8)

The exact formulas for the posterior moments β(−j), V β(−j) , ψ(−j), and d are standard to derive,

and are also provided in Appendix A.3.

Two key remarks are in order. First, note that in equation (6) we have chosen to approximate

a Student-t predictive distribution using a Normal distribution. An immediate question is how

good an approximation this will be. Note that if σ2 is known, then the formulas are exact. In

other words, the rotated likelihood p
(
y∗j |βj , ỹj

)
is indeed Normal with the moments specified

above. When σ2 is unknown then the approximation can still be quite accurate, and the accuracy

will increases with the sample size.9 Second, equations (5) and (6) imply that it is now possible

to compute the marginal posterior for βj by solving a scalar linear regression model with normal

data and known variance, τ2
j . Most importantly, the fact that the variance of this regression is

known and fixed means that we can derive analytically the marginal posterior for βj even for

priors that would normally require time-consuming simulation methods. This is a key result that

we exploit in Section 3 to compute simulation-free marginal posteriors for a host of hierarchical

shrinkage priors.

8While there are many alternative prior choices available for obtaining estimates of (β(−j), σ
2), we have chosen

to rely on the natural conjugate prior because, among other things, it leads to proper posteriors for the regression
parameters even when the number of parameters (k − 1) is larger than the total number of observations (T − 1),
and at the same time leads to a closed-form expression for the conditional likelihood p

(
y∗j |βj , ỹj

)
.

9This is related to the fact that a Student-t distribution with a sufficient number of degrees of freedom -
typically 100 or more - converges to a Normal distribution.

7



The estimation steps resulting from the above analysis are summarized in Algorithm 1. While

exact expressions depend on the choice of prior distribution, p (βj), here we give an example of

how our algorithm would work with a generic prior.

Algorithm 1 Posterior estimation algorithm for a generic prior

for j = 1 to k
Step 1: Prepare rotation matrices
• Compute qj = Xj/ ‖Xj‖
• Generate W j from N (0, 1) and apply QR decomposition to impose orthonormality

of Qj =
[
qj ,W j

]
Step 2: Apply rotation
• Compute rotated data y∗j and ỹj , X

∗
(−j) and X̃(−j)

Step 3: Estimate auxiliary regression

• Regress ỹj on X̃(−j), obtain moments of p
(
β(−j)

∣∣∣σ2, ỹj

)
and p

(
σ2
∣∣ ỹj) analytically

• Derive moments of rotated likelihood, µj and τ2
j , analytically

Step 4: Estimate parameter of interest

• Given µj and τ2
j , regress

(
y∗j − µj

)
on ‖Xj‖

• Obtain moments of p (βj |y) analytically

end for

3 Hierarchical shrinkage priors

We now turn our focus to the prior for βj (j = 1, ..., k) in (5). While van den Boom et al.

(2015a) focus on the problem of variable selection, we extend and generalize their approach to

the following class of adaptive hierarchical priors for βj ,
10

βj |λ2
j ∼ N

(
0, λ2

jV βj

)
,

λ2
j ∼ G,

(9)

where V βj denotes the part of the prior scale parameter chosen by the researcher, while λ2
j

(or its square root, λj , depending on the specification) is a random variable with its own prior

distribution, G.11 Two observations are in order. First, the hierarchical form of the prior shows

that conditional on the idiosyncratic scale parameter λ2
j , the j-th regression coefficient βj has a

normal prior distribution. Combined with the approximation in (6), this is the key element that

10The assumption that the prior mean of βj is zero is without loss of generality. All the results that follow can
be trivially updated to allow for a non-zero prior mean.

11Alternatively, we could also refer to λ2
j as the local variance component. See for example Polson and Scott

(2010).
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will allow us to derive the posterior of βj without resorting to simulation methods. Second, while

the conditional prior for βj is normal, the marginal prior of βj , p (βj) =
∫
N
(

0, λ2
jV βj

)
dG
(
λ2
j

)
ought not to be and, depending on the choice of G, can result in very different shapes, with

possibly a large mass around zero and much heavier tails than a bell-shaped Normal prior, two

features that will impose shrinkage in the regression model.

Within the class of adaptive hierarchical priors, we focus on three special cases for G, which

in turn lead to three well-known Bayesian shrinkage estimators.

3.1 Normal-Jeffreys

The first choice of prior for λ2
j is a Jeffreys prior, i.e. p

(
λ2
j

)
∝ 1/λ2

j , which is fully uninformative

about λ2
j . Notice that this particular choice of prior for λ2

j leads to an improper marginal prior

for βj , i.e. p (βj) ∝ |βj |−1, a prior that is sharply peaked at zero and is similar to the popular

Laplace prior, and therefore favors sparsity in the regression model (see for example Tipping,

2001; Figueiredo, 2003).

Thanks to the approximation in (6) and the conditional normality of the prior, it is

straightforward to derive the marginal likelihood for y∗j analytically. This takes the form

p
(
y∗j
∣∣λ2

j , ỹj
)

=

∫
p
(
y∗j
∣∣βj , ỹj) p (βj |λ2

j

)
dβj

= N
(
y∗j
∣∣µj , ‖Xj‖2 λ2

jV βj + τ2
j

)
,

(10)

where N (z|a, b) denotes the probability of a random variable z evaluated at a Normal

distribution with mean a and variance b. Next, similar to the analysis of Giannone et al.

(2015), we can choose the optimal shrinkage intensity λ2
j in (9) by maximizing (10), i.e.

λ̂2
j = arg max

λ2
j

p
(
y∗j | λ2

j , ỹj
)
. (11)

We show in Appendix A.4 that the posterior estimate of λ2
j that maximizes the marginal

likelihood takes the form

λ̂2
j = max

0,

(
y∗j − µj

)2
− τ2

j

‖Xj‖2 V βj

 . (12)

Finally, plugging the optimal shrinkage intensity λ̂2
j into (9) leads to the marginal posterior

p
(
βj |λ̂2

j ,y
)
∼ N

(
βj , V βj

)
, (13)
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where both βj and V βj depend on λ̂2
j , and are given by

V βj =
τ2
j λ̂

2
jV βj

‖Xj‖2 λ̂2
jV βj + τ2

j

, βj =
‖Xj‖ λ̂2

jV βj

(
y∗j − µj

)
‖Xj‖2 λ̂2

jV βj + τ2
j

. (14)

Notice, to conclude, that both the maximization in (12) and the prior moments in (14) only

include scalar operations, so they are trivial to compute ∀j ∈ [1, k].

3.2 Normal-Gamma

The second prior specification we consider within the class of hierarchical priors in (9) is the

popular class of Normal-Gamma priors, studied in Griffin and Brown (2010) and extended

to the VAR case by Huber and Feldkircher (2017). This prior assumes that λ2
j ∼ G (c1, c2),

where c1 and c2 denote the shape and scale of the Gamma distribution G. To see the effect of

the hyperparameters c1 and c2 on the shape of the marginal prior for βj , the bottom panels

of Figure 1 plot the marginal distribution of βj for two different choices of c1 and c2. As a

benchmark to compare against, the top left panel of the figure plots the empirical distribution of

the non-hierarchical version of (9), where λ2
j = 1 is non-stochastic and V βj = 10.12 The bottom

left panel plots the marginal prior of βj when G is the Gamma density and the hyperparameters

are set to c1 = 1 and c2 = 2. As it can be seen from this panel, this choice of hyperparameters

generates a marginal prior for βj that, compared to the benchmark bell-shaped Normal prior in

the top left panel of the figure, shrinks towards zero at a much faster rate. Next, the bottom

right panel of the figure considers the case where c1 = 0.1, c2 = 2. This choice leads to a much

more intense shrinkage, with a clear spike around zero and tails that are significantly heavier

than a Normal density.13

We can proceed in an analogous manner as in the Normal-Jeffreys case, and choose the

12For a large prior variance this can be considered a locally uninformative prior, while for small values of V βj
it results in the ridge estimator.

13Notice that the Normal-Jeffreys prior is not plotted in this figure because it is an improper prior for λ2
j , and

leads to a marginal prior for βj that does not integrate to one (and, thus, cannot be represented graphically).
However, following Tipping (2001) we can think of the Normal-Jeffreys prior as a special case of a Normal-
Inverse Gamma (IG) mixture, with λ2

j ∼ IG (α1, α2) where α1, α2 → 0. The Normal-IG mixture is the typical
representation of the Student-t distribution, which is more peaked at zero compared to the Normal distribution.
Therefore, the shrinkage induced by a Normal-Jeffreys can be broadly thought of as the limit of a Student-t prior
with very large (infinite in practice) variance.
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optimal shrinkage intensity by maximizing the posterior of λ2
j ,

λ̂2
j = arg max

λ2
j

p
(
y∗j | λ2

j , ỹj
)
p
(
λ2
j

)
, (15)

which, after taking logs, leads to the following maximization

λ̂2
j = arg max

λ2
j

−1

2
ln
(
τ2
j + ‖Xj‖2λ2

jV βj

)
− 1

2

(
y∗j − µj

)2

τ2
j + ‖Xj‖2λ2

jV βj

+ (c1 − 1) lnλ2
j − c2λ

2
j

 .

(16)

Once again, this is a straightforward maximization over scalar quantities, hence trivial to

compute. Finally, plugging the optimal shrinkage intensity λ̂2
j into (9) leads to a marginal

posterior for βj with moments as in (14).

3.3 Spike-and-Slab

The third specification we consider for our hierarchical prior is the popular Spike-and-Slab

prior, and follows very closely the approach described in van den Boom et al. (2015a). While it

is possible to cast this prior in the hierarchical form of (9) (see for example Griffin and Brown,

2010, p. 175), we follow the literature and write this prior as an explicit mixture of distributions

βj |λj ∼ (1− λj) δ0 + λjN
(

0, V βj

)
,

λj ∼ Bernoulli (π0) ,
(17)

where δ0 is the Dirac delta function at zero, while λj is now a Bernoulli random variable with

mean π0 which, in turn, denotes the prior proportion of non-zero regressors in the model. As

noted by Griffin and Brown (2010), the Spike-and-Slab and Normal-Gamma priors can lead to

very similar forms of shrinkage. It is in fact possible to elicit the prior hyperparameters c1 and

c2 of the Normal-Gamma prior and the prior inclusion probability π0 of the Spike-and-Slab prior

in a way to similarly constrain most of the variation in the priors to a small set of regressors.

Figure 1 makes this point explicitly, where in the top right panel we show the marginal prior of

βj for the Spike-and-Slab case and π0 = 0.5 (as with the other three panels, we set V βj = 10).

As it can be seen, the Spike-and-Slab prior with π0 = 0.5 leads to a marginal prior for βj that

behaves very much like the Normal-Gamma case when c1 = 0.1 and c2 = 2 (bottom right panel),

placing a considerable mass at zero and featuring very heavy tails.
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It follows that the posterior of λj is of the same form, that is λj |y ∼ Bernoulli (π̂j), where

π̂j = p (λj = 1|y) =
p
(
y∗j

∣∣∣ λj = 1, ỹj

)
p (λj = 1)

p
(
y∗j

∣∣∣λj = 0, ỹj

)
p (λj = 0) + p

(
y∗j

∣∣∣λj = 1, ỹj

)
p (λj = 1)

(18)

where π̂j is the posterior probability of inclusion (PIP) of predictor j in the regression model

(not to be confused with a “p-value” or “significance level”). We show in Appendix A.5 that π̂j

simplifies to

π̂j =
N
(
y∗j

∣∣∣µj , τ2
j + ‖Xj‖2 V βj

)
π0

N
(
y∗j

∣∣∣µj , τ2
j

)
(1− π0) +N

(
y∗j

∣∣∣µj , τ2
j + ‖Xj‖2 V βj

)
π0

(19)

Finally, in this case the marginal posterior of βj is equal to

p (βj |y) =

∫
p (βj |λj ,y) p (λj |y) dλj

= p (λj = 0|y) p (βj |λj = 0,y) + p (λj = 1|y) p (βj |λj = 1,y)

= (1− π̂j)δ0 + π̂jN
(
βj , V βj

) (20)

where βj and V βj are again given by (14) in the special case when λ̂j = 1.

4 Application to BVAR estimation

Up to this point, we have focused our exposition on a univariate regression model. We now

extend the current setup to a dynamic, multivariate setting, with a particular focus on the

problem of estimating and forecasting with large-dimensional VARs. Consider the following

n-dimensional VAR(p) model,

yt = c+A1yt−1 + . . .+Apyt−p + εt, t = 1, ..., T, (21)

where yt is an n×1 vector of time series of interest, c is an n×1 vector of intercepts, A1, ...,Ap

are n× n matrices of coefficients on the lagged dependent variables, and εt ∼ N (0,Ω), with Ω

an n×n covariance matrix. We next rewrite the original VAR model in (21) in a recursive form,

which allows to estimate the VAR coefficients {c,a} and the elements of the covariance matrix

Ω one equation at a time. This, in turns, allows us to readily apply the estimation method we

presented in Section 2 to the VAR, by iterating recursively through a collection of univariate

regressions.14

14Following standard results in multivariate models, one can factorize the covariance matrix Ω into a diagonal
matrix of variance terms and a lower triangular matrix of covariance terms. This factorization allows the covariance
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From a computational perspective there are at least two ways one can re-write the

reduced-form VAR in (21) as a recursive system. For example, Koop et al. (2017) rely on a

recursive structural VAR representation. Here we use an alternative recursive form that is due

to Carriero et al. (2017). We begin by decomposing the VAR covariance matrix Ω in (21) as

Ω = Γ−1Σ
(
Γ−1

)′
, where

Γ−1 =


1 0 ... 0 0

γ2,1 1
. . .

...
...

...
. . .

. . . 0 0
γn−1,1 ... γn−1,n−2 1 0
γn,1 ... γn,n−2 γn,n−1 1

 , (22)

and Σ = diag
(
σ2

1, ..., σ
2
n

)
. Thanks to this decomposition, it becomes possible to rewrite the i-th

equation of the VAR (i = 1, ..., n) as15

yi,t = ci + ai,·Zt + γi,1σ1u1,t + ...+ γi,i−1σi−1ui−1,t + σiui,t, (23)

where ci is the scalar intercept, Zt =
[
y′t−1, ...,y

′
t−p
]′

is a np×1 vector containing all p lags of yt,

ai,· = [ai,1, ..., ai,np] denotes the corresponding vector of coefficients, u1,t, ..., ui−1,t and σ1, ..., σi−1

are the VAR structural residuals and standard deviations from all the previous i− 1 equations,

and γi,1, ..., γi,i−1 their associated coefficients. Next, let Xi,t = (Z ′t, σ1u1,t, ..., σi−1ui−1,t) and

rewrite (23) as

yi = Xiβi + vi, (24)

where yi = (yi,t, ..., yi,T )′, Xi =
(
X ′i,1, ...,X

′
i,T

)′
, βi = (ci,ai,·, γi,1, ..., γi,i−1)′, and

vi = (σiui,1, ..., σiui,T )′. With the i-th equation of the VAR now in the same form as (1), we

can straightforwardly apply the algorithm in Section 2 to the VAR, one equation at a time.

In particular, we will focus here on the generic βij , the j-th element of the vector βi (j =

1, ..., ki, while ki = np + i denotes the total number of coefficients in the i-th equation of the

VAR). As in Section 2 we rely on the natural conjugate prior for (β(i,−j), σ
2
i ) and follow the

approach described in equations (6)-(8) and Appendix A.3 to integrate them out and obtain

equation i’s rotated likelihood, p
(
y∗ij

∣∣∣βij , ỹij). However, instead of combining the use of the

terms to be treated as contemporaneous right-hand side predictors in each equation of the VAR and, because
of the imposed recursive ordering, allows to estimate the VAR equation-by-equation; see Hausman (1983) for an
early discussion of this approach.

15We provide additional details in Appendix A.6.
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natural conjugate prior with random projection methods as in van den Boom et al. (2015a,b),

we build on the successful approach of Banbura et al. (2010) and integrate out the effects of

these parameters using a natural conjugate prior with Minnesota-type moments.16 Similarly,

we can modify the hierarchical prior in (9) to work with the VAR i-th equation by re-writing it

as follows

βij |λ2
ij ∼ N

(
0, λ2

ijV βij

)
,

λ2
ij ∼ G.

(25)

One final point worth mentioning is that an added benefit of the procedure in (24)-(25) is that

we can now apply our hierarchical shrinkage priors also to the coefficients γi,1, ..., γi,i−1, thus,

explicitly providing shrinkage to the contemporaneous covariance elements in the VAR.

The outcome of this procedure is a flexible estimation method that provides closed-form

posterior inference for VAR parameters in high-dimensional settings. Compared to the existing

approaches in the literature, our method has the added benefit that it can work with both

independent and hierarchical priors while at the same time requiring very minimal prior tuning,

in this way allowing for individualized shrinkage on each VAR coefficient in a computationally

very efficient way. In contrast, the competing approaches that provide closed-form solutions for

the parameter posteriors either rely on the very restrictive natural conjugate prior (Banbura

et al., 2010; Giannone et al., 2015) or make some other strong assumptions.17 However, while

our procedure is both flexible and computationally efficient it is an approximation method, and

it imposes that all the elements of the vector β are a-posteriori uncorrelated. In the next two

sections, we will devote significant space to showing how this approximation does not harm

the forecasting performance of our method, and that the proposed procedure is at least as

accurate as its MCMC-based hierarchical counterparts but at a fraction of their computing

time. Furthermore, the a-posteriori independence leads to further computational benefits when

using Monte Carlo integration to calculate functions of the VAR coefficients, such as for example

16Following Banbura et al. (2010), we work with β(i,−j)|σ2
i ∼ N

(
β

(i,−j)
, σ2
i λ(i,−j)V β(i,−j)

)
, σ2

i ∼ IG
(
ψ
i
, di

)
,

and set the overall shrinkage intensity on the elements of β(i,−j) to λ(i,−j) = 0.1. We also considered as a
robustness check the possibility of optimizing λ(i,−j) as in Banbura et al. (2010), but found this to have no real
effects on our results. As for the prior on σ2

i , we opted for a non-informative prior, setting ψ
i

= 0.01 and di = 0.01.
17For example, Litterman (1979) does estimate a VAR with independent priors but at the cost of fixing the

covariance matrix to a first-step OLS estimate. Such an assumption underestimates parameter uncertainty in the
covariance matrix and, as a by-product, in the predictive densities.
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multi-step-ahead predictive densities. In this case, both MCMC and other analytical approaches

(Banbura et al., 2010) requires to draw multiple times from the high-dimensional parameter

posterior. In our case, the posterior independence leads to the possibility of breaking this

sampling problem into ki × n independent tasks, leading to further gains in computational

efficiency.

5 Monte Carlo analysis

In this section we evaluate numerically the new approach using simulated data. The purpose of

this exercise is manifold. First, we want to assess the numerical precision of the new estimation

method. We have already argued that if we apply OLS (equivalently, a diffuse, objective prior)

to the two-stage rotated regression in (3), we will obtain coefficients estimates that are identical

to those we would obtain from OLS applied to the original regression problem in (1). However, it

is important to evaluate whether the new estimation algorithm works well under a wide variety

of Bayesian priors that will lead to biased penalized estimators. Second, we want to establish

whether the three hierarchical priors introduced in Section 3 have good shrinkage properties

when applied to a VAR setting and a finite amount of data. While the properties of such priors

have been thoroughly examined and discussed in the literature, it is important to assess how

the approximations we have introduced affect their performance. Finally, we want to obtain a

measure of how well the proposed method fares against popular methods in recovering the true

VAR coefficients.

5.1 Setup of Monte Carlo experiment

In order to investigate the importance of shrinkage as a function of the VAR size, we consider

VARs of three different dimensions with n = 3, n = 7, and n = 20 endogenous variables. For

each VAR dimension, we generate 1,000 datasets with T = 150 observations each. In all three

cases, we set the number of lags to p = 2. The data generating process is that of a sparse

VAR, where we allow the sparsity pattern to be random. We first model the persistence of each

variable in the VAR by setting the first own lag coefficient to be in the range [0.4, 0.6], i.e.

A1 = diag (ρ1, ρ2, ..., ρn) , (26)
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where ρi ∼ U(0.4, 0.6), i = 1, ..., n. The coefficients on the subsequent own lags, (Al)i,i are then

generated according to the rule that (Al)i,i = (A1)i,i /l
2 (l = 2, ..., p), implying a geometric decay

in their magnitudes, with the more distant lags having a lesser impact.18 As for the coefficients

on the other lags, we set them according to the following rule:

(Al)i,j =

{
N
(
0, σ2

A

)
with prob ξA

0 with prob (1− ξA)
l = 1, ..., p, i 6= j, (27)

where ξA ∈ (0, 1) is the probability of obtaining a non-zero coefficient. We set σ2
A = 0.1 and

calibrate the inclusion probability according the the VAR size by setting ξA = 1/ (n− 1). This

means, for example, that in a seven-variable VAR only 1/6 of the coefficients are expected to

be non-zero. Next, we decompose the covariance matrix Ω as Ω = ΦΦ′ where

Φ =


1 0 ... 0

ϕ2,1 1
. . .

...
...

. . .
. . . 0

ϕn,1 ... ϕn,n−1 1

 , (28)

and generate the element of Φ according to the following rule

ϕi,j =

{
U (0, 1) with prob ξΦ
0 with prob 1− ξΦ

i > j. (29)

where we set ξΦ = 0.5.

Along with our proposed algorithm and the three priors described in Section 3

(Normal-Jeffreys; Normal-Gamma; Spike-and-Slab), we consider the following three

competing estimation methods: OLS (VAR); hierarchical Minnesota shrinkage as in Giannone

et al. (2015) (BVAR-GLP); stochastic search for VAR restrictions algorithm of George et al.

(2008) (SSVS). The BVAR-GLP approach relies on Minnesota-type moments, so due to the

fact that the generated VARs are all stationary we set the prior mean on the first own lag

coefficient to 0.9. For all the remaining coefficients, we set the prior mean to zero (see Kadiyala

and Karlsson, 1997, for a discussion of these choices). For consistency, we use the same prior

means in all the other Bayesian approaches, including ours (that is, we modify the hierarchical

prior in (25) to allow for a non-zero mean, which we denote with β
ij

). The remaining settings

18The relatively low value of ρi and the decay in the own lag coefficients is done to guarantee that all variables
in the VAR are stationary. In practice, in all cases we examine the roots of the generated VAR coefficients and
discard all simulated DGPs producing non-stationarity variables.
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for the BVAR-GLP algorithm are the default ones suggested by the authors.19 As for the

SSVS algorithm, we follow George et al. (2008) and set (using the authors’ notation) the prior

inclusion probabilities to pi = qij = 0.5, and the prior variances to R = Rj = I, τ0 = κ0 = 0.1

and τ1 = κ1 = 1. As for the remaining details of our approach, we set the prior variance in (25)

to V βj = 10. Also, in the Spike-and-Slab case we set the prior inclusion probability for all

predictors to π0 = 0.5, while in the Normal-Gamma case we set c1 = 0.1 and c2 = 2.20

5.2 Results

We begin by drawing attention to the estimated shrinkage intensity implied by our approach

under the three different priors we considered. The top panels of Figure 2 and Figure 3 plot the

empirical distribution of the average shrinkage intensity λ over the 1,000 Monte Carlo iterations

for the three VAR sizes and for the Normal-Jeffreys and Normal-Gamma cases, respectively.

In both figures, λ = 1
K

∑n
i=1

∑ki
j=1 λ̂ij , where K =

∑n
i=1 ki denotes the total number of VAR

coefficients, including the covariance terms in Φ. As one may expect, both in the case of the

Normal-Jeffreys and the Normal-Gamma prior, the average shrinkage intensity becomes smaller

as the VAR size increases, implying that more shrinkage is imposed in higher dimensions. This

is a desirable feature of shrinkage estimation in VARs, and in line with previous findings in the

literature; see Banbura et al. (2010) and their relevant discussion. This result is particularly

clear in the case of the Normal-Gamma prior, where the empirical distribution of λ becomes

more concentrated and informative as the VAR size increases.

A notable feature of our procedure is that it yields individualized shrinkage hyperparameters

for each VAR coefficient, including the elements of the covariance matrix Φ. It would then be

conceivable to expect that the VAR parameters which are equal to zero in the DGP should be

accompanied by, on average, lower λ̂ij ’s. In order to verify this claim, the bottom panels of

Figure 2 and Figure 3 plot the empirical distributions of the average shrinkage intensity λ, after

the individual λ̂ij ’s have been grouped according to whether the underlying VAR coefficients

are equal to zero or not in the DGP. As expected, for both priors we find that the average

19Following Giannone et al. (2015), we specify the natural conjugate prior with the Minnesota moments by
using a single shrinkage hyperparameter λ to control the overall tightness of the priors. We note however that in
principle it would be possible to elicit a different prior hyperparameter for each equation in the model without
foregoing the closed-form solution for the posteriors of all VAR parameters.

20In all cases, intercepts are left unrestricted using a diffuse prior. Note also that for both the SSVS algorithm
and our estimation algorithms, we allow for shrinkage estimation of the sparse covariance terms ϕi,j .
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shrinkage intensity of the zero VAR parameters (red bars) is significantly on the left of the

average shrinkage intensity corresponding to non-zero VAR coefficients (blue bars). Notably,

Figure 3 shows that for a large number Monte Carlo iterations, the average shrinkage intensity

associated with the zero VAR coefficients is exactly zero, meaning that the hierarchical Gamma

prior is capable of accurately flagging the irrelevant coefficients, shrinking all of them to zero.

This result is more pronounced for the n = 3 and n = 7 VAR sizes, implying that for the larger

n = 20 case, different values of the hyperparameters c1, c2 may be needed to achieve a similar

result.

Figure 4 plots the distribution of the average posterior inclusion probabilities (PIPs) for

the Spike-and-Slab prior, π = 1
K

∑n
i=1

∑ki
j=1 π̂ij . In this case, due to the fact that there is a

well-established alternative MCMC algorithm for VARs that relies on this prior, we contrast the

results of our Spike-and-Slab hierarchical prior with those from the SSVS approach of George

et al. (2008). In particular, the top panels of the figure plot the empirical distributions of π

estimated with the SSVS algorithm, while the bottom panels plot the empirical distribution

of π estimated using our algorithm and the Spike-and-Slab hierarchical prior. Once again,

we separately plot the average PIPs corresponding to VAR parameters that are equal to zero

(different from zero) in the DGP. As it can be seen from inspecting the figure, both algorithms

are quite accurate at flagging which VAR parameters should be zero (or not), with the empirical

distributions of the average PIPs from the zero VAR coefficients on the left of the corresponding

non-zero coefficients’ empirical distributions. Nevertheless, our algorithm performs visibly much

better than the SSVS, with the estimated distributions being closer to zero and one (in the case of

the SSVS algorithm, both distributions are close to 0.5 implying a decreased ability to determine

if a VAR parameter is zero or not).

We next look at the effectiveness of the various methods in recovering the parameters of the

true data generating process. To this end, for each of the approaches considered in this section,

we compute the Mean Absolute Deviation (MAD), defined as

MAD(r,s) =
1

K

n∑
i=1

ki∑
j=1

∣∣∣β(r)
ij − β̂

(r,s)
ij

∣∣∣ , (30)

where s denotes the method used (VAR, BVAR-GLP, SSVS, Normal-Jeffreys, Normal-Gamma,

Spike-and-Slab), r = 1, ..., 1, 000 keeps track of the MC simulations, K denotes the total number
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of lag coefficients in the VAR, β
(r)
ij is the true VAR coefficient from the r-th simulation, and β̂

(r,s)
ij

denotes the (posterior mean of the) corresponding estimate according to method s. Figure 5

shows the quartiles and median of the MAD statistic over all 1,000 Monte Carlo iterations, by

means of box plots. For n = 3 the various shrinkage methods do not appear to improve much

compared to OLS in recovering the true VAR parameters. However, as the VAR size increases,

OLS begins to work less well. On the other hand, our estimation algorithm combined with the

three hierarchical priors we introduced in Section 3 seems capable of accurately recovering the

true VAR parameters, performing better than SSVS and as well or better than the BVAR-GLP

method.

6 Macroeconomic forecasting

Combined with the simulation-free nature of our algorithm, the excellent properties of the

hierarchical priors we introduced in Section 3 make them a very natural choice for a large

dimensional VAR application. In this section, we investigate this claim empirically.

6.1 Data, models, and prior settings

We collect 124 quarterly variables for the US spanning the period 1959Q1 to 2015Q4.21 The

data, which are obtained from the Federal Reserve Economic Data (FRED) and are available

at https://fred.stlouisfed.org, cover a wide range of key macroeconomic variables that applied

economists monitor regularly, such as different measures of output, prices, interest and exchange

rates, and stock market performance. We provide a full list of the data and their transformations

in order to achieve stationarity in Appendix B. Out of the 124 series, we further distinguish

seven “variables of interest”, that is, key variables of interest which we will inspect very closely

in order to evaluate how well the different models perform. These variables are: real gross

domestic product (GDP), GDP deflator (GDPDEFL), and federal funds rate (FEDFUNDS),

total employment (PAYEMS), unemployment rate (UNRATE), consumer prices (CPIAUCSL),

and the 10-year rate on government securities (GS10).

We estimate VARs of three different sizes: Medium (the seven variables of interest plus

an additional 13), Large (variables in medium plus an additional 20), and X-large (all 124

21For the variables which are originally observed at the monthly frequency, we transform them into quarterly
series by computing the average of their monthly values within each quarter.
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series available), that is, we consider 20, 40 and 124-variable VARs. All VARs have a lag

length of p = 5. For each VAR size, we estimate a range of different models. In addition

to the three hierarchical priors estimated using our simulation-free method, which we denote

as N-J (Normal-Jeffreys), SNS (Spike-and-Slab), and N-G (Normal-Gamma), we consider six

established methods for dealing with VARs of possibly large dimensions. The first three methods

are based on the Minnesota prior with either optimal or pre-selected tuning of its shrinkage,

one allows for Bayesian variable selection and model averaging, and two methods rely on factor

shrinkage. In particular, we denote as BVAR-BGR the model of Banbura et al. (2010) who

optimize the Minnesota shrinkage hyperparameter using a grid, while we denote as BVAR-GLP

the model of Giannone et al. (2015) who introduce a hierarchical prior on the same Minnesota

shrinkage hyperparameter and derive its posterior update formula.22 The third method we

consider is a BVAR with independent priors and Minnesota moments, which we denote as BVAR-

IP. Compared to the previous two approaches, the BVAR-IP relies on non-conjugate priors and

therefore requires the use of a Gibbs sampler. In order to guarantee large computational gains,

we estimate this model using the algorithm of Carriero et al. (2017). Next, as a representative

of simulation-based hierarchical shrinkage models, we consider the stochastic restrictions search

algorithm of George et al. (2008), which we denote as SSVS. This algorithm is based on a

mixture shrinkage prior, similar to the Spike-and-Slab prior we introduced in Section 3. Finally,

we consider a dynamic factor model (denoted DFM), and a factor augmented VAR (denoted

FAVAR); see Stock and Watson (2002) and Bernanke et al. (2005).

For the sake of comparability, whenever possible, we use the same exact prior settings.

In particular, all Bayesian VAR models (including our three hierarchical prior and the SSVS

method) feature the same Minnesota-based prior moments, which we write as

β
ij

=

{
0.9 if own first lag
0 otherwise

, V βij =


1
l2ij

if own lags

ψ×σ̂2
i

l2ij×σ̂2
k

otherwise
, (31)

where i = 1, ..., n, j = 2, ..., np+1, σ̂2
i (σ̂2

k) is the OLS estimate of the variance of an AR(p) model

on yit (ykt), lij = bj/ic is the lag-length associated with the coefficient βij in the VAR, and ψ is

22Both the BVAR-BGR and BVAR-GLP approaches approximate inference using a natural conjugate prior
which, as explained in the Introduction, has the disadvantage of symmetry across VAR equations, but the big
advantage of leading to analytical expressions for the posterior moments of the VAR coefficients. Following the
norm in the empirical literature, we implement both approaches by using a single shrinkage hyperparameter λ to
control the overall tightness of the priors.
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a hyperparameter that allows coefficients of variable k showing up in VAR equation i (i 6= k) to

shrink differently than own coefficients (k denotes the variable that the βij coefficient belongs to,

i.e. k = j − n (lij − 1)).23,24 Next, note that in our implementation of the BVAR-BGR, BVAR-

GLP, and BVAR-IP models the shrinkage intensity is the same across all VAR coefficients i.e.,

using the notation in (25), λ2
ij = λ2. In contrast, the SSVS prior of George et al. (2008) and

our three hierarchical priors, N-J, SNS and N-G, do allow separate shrinkage intensities λ2
ij .

In particular, in the BVAR-BGR case we follow Banbura et al. (2010) and use a wide grid of

possible λ2 values. As for the BVAR-GLP case, the choice of the optimal shrinkage intensity

is fully automatic.25 Finally, when estimating the BVAR-IP model the overall prior tightness

needs to be chosen a priori by the user, so we follow the recommendation of Sims and Zha (1998)

and set λ2 = 0.22. The other shrinkage hyperparameter ψ is set in all models to be a function

of the VAR size, with ψ = 0.001 for the medium VAR, ψ = 0.0001 for the large VAR, and

ψ = 0.00001 for the X-large VAR (note that the BVAR-BGR and BVAR-GLP models require

ψ = 1). The remaining prior settings for the SSVS SNS, N-J, and N-G priors are: π0 = 0.1,

that is, our prior expectation is that only 10% of VAR coefficients are non-zero; c1 = 0.1, and

c1 = 2. As for the prior hyperparameters specific to the SSVS we also set, using notation from

George et al. (2008), τ0 = κ0 = 0.001 and τ1 = κ1 = 10. Finally, the DFM and FAVAR are

estimated using principal components of the factors and a non-informative prior. We use the

Bayesian information criterion (BIC) to select the optimal number of factors (minimum allowed

is 1 and maximum is b
√
nc, with n the VAR size) and the optimal number of lags (ranging from

one to five).

6.2 Measuring predictive accuracy

We use the first twenty five years of data, 1959:Q3–1984:Q4, to obtain initial parameter estimates

for all models, which are then used to predict outcomes from 1985:Q1 (h = 1) to 1985:Q4 (h = 4).

The next period, we include data for 1985:Q1 in the estimation sample, and use the resulting

23We denote with bxc the floor of x, i.e. the largest integer less than or equal to x.
24Both the intercepts and the elements of Γ−1 are left unrestricted with flat and uninformative priors, i.e.

β
ij

= 0 and V βij = 10, i = 1, ..., n, j = 1, np+ 2, ..., ki.
25The BVAR-GLP approach allows alternative prior variants, such as the sum-of-coefficients prior. We have

estimated a number of these variants and, with the exception of the sum-of-coefficients prior, by and large the
results do not change significantly. As expected with the stationary data we use, the sum-of-coefficients prior
does not work particularly well.
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estimates to predict the outcomes from 1985:Q2 to 1986:Q1. We proceed recursively in this

fashion until 2015:Q4, thus generating a time series of point and density forecasts for each

forecast horizon h, with h = 1, ..., 4.26

Next, for each of the seven key variables listed above we summarize the precision of the h-

step-ahead point forecasts for model i, relative to that from a seven-variable VAR(p) benchmark,

by means of the ratio of MSFEs:

MSFEijh =

∑t−h
τ=t e

2
i,j,τ+h∑t−h

τ=t e
2
bcmk,j,τ+h

, (32)

where the benchmark VAR(p) has flat prior and is estimated using OLS, p = 5, t and t denote

the start and end of the out-of-sample period, and e2
i,j,τ+h and e2

bcmk,j,τ+h are the squared

forecast errors of variable j at time τ and forecast horizon h associated with model i

(i ∈ {DFM,FAVAR,BVAR-BGR,BVAR-GLP,BVAR-IP,SSVS,N-J,SNS,N-G}) and the

benchmark VAR(p) model, respectively. The point forecasts used to compute the forecast

errors are obtained by averaging over the draws from the various models’ h-step-ahead

predictive densities. Values of MSFEijh below one suggest that model i produces more

accurate point forecasts than the VAR(p) benchmark for variable j and forecast horizon h.

We also assess the accuracy of the point forecasts of the various methods using the

multivariate loss function of Christoffersen and Diebold (1998). Specifically, we compute the

ratio between the multivariate weighted mean squared forecast error (WMSFE) of model i and

the WMSFE of the benchmark VAR(p) model as follows:

WMSFEih =

∑t−h
τ=t wei,τ+h∑t−h

τ=t webcmk,τ+h

, (33)

where wei,τ+h =
(
e′i,τ+h ×W × ei,τ+h

)
and webcmk,τ+h =

(
e′bcmk,τ+h ×W × ebcmk,τ+h

)
are time

τ + h weighted forecast errors of model i and the benchmark model, ei,τ+h and ebcmk,τ+h are

the (7× 1) vector of forecast errors for the key series we focus on, and W is a (7× 7) matrix of

weights. Following Carriero et al. (2011), we set the matrix W to be a diagonal matrix featuring

on the diagonal the inverse of the variances of the series to be forecast.

As for the quality of the density forecasts, we follow Geweke and Amisano (2010) and compute

the average log predictive likelihood differential between model i and the seven-variable VAR(p)

26Note that when h > 1, point forecasts are iterated and predictive simulation is used to produce the predictive
densities.
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benchmark,

ALPLijh =
1

t− t− h+ 1

t−h∑
τ=t

(LPLi,j,τ+h − LPLbcmk,j,τ+h) , (34)

where LPLi,j,τ+h (LPLbcmk,j,τ+h) denotes model i’s (benchmark’s) log predictive score of

variable j, computed at time τ + h, i.e., the log of the h-step-ahead predictive density

evaluated at the outcome. Positive values of ALPLijh indicate that for variable j and forecast

horizon h on average model i produces more accurate density forecasts than the benchmark

model.

Finally, in order to test the statistical significance of differences in point and density forecasts,

we consider pairwise tests of equal predictive accuracy (henceforth, EPA; Diebold and Mariano,

1995; West, 1996) in terms of MSFE, WMSFE, and ALPL. All EPA tests we conduct are based

on a two sided test with the null hypothesis being the seven-variable VAR(p) benchmark. We

use standard normal critical values. Based on simulation evidence in Clark and McCracken

(2013), when computing the variance estimator which enters the test statistic we rely on serial

correlation robust standard errors, and incorporate the finite sample correction due to Harvey

et al. (1997). In the tables, we use ***, ** and * to denote results which are significant at the

1%, 5% and 10% levels, respectively, in favor of the model listed at the top of each column.

6.3 Numerical accuracy of our proposed algorithm

Before we present the core of our results, we first compare the forecasts of our algorithm

against those obtained using similar MCMC-based hierarchical models. In particular, we

compare the performance of our Spike-and-Slab (SNS) approach to the MCMC-based variable

selection algorithm of Kuo and Mallick (1998) and Korobilis (2013b). We also look at the

relative performance of our Normal-Gamma (N-G) approach against the MCMC-based

hierarchical Student-t prior algorithm described in Tipping (2001) and Polson and Scott

(2010).27 We denote the VAR with variable selection prior as MCMC-SNS, and the VAR with

Student-t prior as MCMC-t.

27We estimate the BVAR with the Student-t shrinkage prior by using a mixture representation that places
an independent Normal prior on the VAR coefficients and an Inverse-Gamma prior on each of their prior
variances. As shown by Korobilis (2013a) in a univariate setting, the Normal-Inverse Gamma prior distribution
is conditionally conjugate and leads to the use of a standard Gibbs sampler scheme. As Huber and Feldkircher
(2017) show, a Normal-Gamma prior would instead require the use of a Metropolis-Hasting algorithm and much
larger computational needs, rendering estimation prohibitively costly with large-dimensional VARs.
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Table 1 shows, side to side, the relative forecast accuracy, as measured using the WMSFE

statistics, of the two MCMC-based hierarchical priors versus our N-G and SNS methods, across

all VAR sizes we considered. In particular, the first two columns of this table compare the

MCMC-t to our N-G prior, while the remaining two columns look at the comparison between

MCMC-SNS and our SNS prior.28 We begin by noting that due to the larger computational costs

imposed by the MCMC-based algorithms, we could not successfully complete the estimation of

the MCMC-SNS and MCMC-t methods in the X-large VAR case. In contrast, thanks to the

simulation-free nature of our algorithm, we were able to carry out inference and forecasting

using our two hierarchical prior variants for all VAR sizes. As for the relative accuracy of our

estimation algorithm, the WMSFE statistics in the Table show that the MCMC-t and our

N-G hierarchical prior provide almost identical results, thus, confirming that our simulation-free

approach is as accurate as its MCMC counterpart (at a fraction of the time). Regarding the two

SNS approaches, we find that, at least for the Medium VAR case, our SNS prior produces results

that are quite similar to those obtained using the MCMC-SNS algorithm. We also find that in

the case of the large VAR, our approach appears to perform substantially better (more than 10%

average improvement across all forecast horizons) than its MCMC counterpart. We attribute

this result to the potential numerical instabilities that can plague the MCMC-based variable

selection algorithms in high-dimensional settings. In fact, while both SNS algorithms require

multiple evaluations of conditional likelihoods, similar to those described in equation (18), the

MCMC-SNS algorithm will need to repeat such evaluations for each Monte Carlo iteration. In

large dimensions, evaluation of the exponential VAR likelihood can result in overflow/underflow

problems, and subsequent loss in numerical accuracy when computing the posterior inclusion

probabilities. In this case our simulation-free SNS algorithm will likely be more stable than its

MCMC analogue.

6.4 Forecasting results

Having established that our simulation-free hierarchical prior models are at least as precise as

their MCMC equivalents at a fraction of the computing time, we now proceed to compare the

performance of our methods to all the competing models we outlined in subsection 6.1. Table 2

28To perform this comparison, we have used identical prior moments throughout, or whenever this was not
possible we followed the default choices and the recommendations in Korobilis (2013a,b).
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provides a summary of the forecasting ability of each method by presenting its relative WMSFE

statistics. The table includes three panels, each one presenting results for a different VAR size,

with the rows focusing on the various forecast horizons and the columns zooming in on the

various methods we considered. We begin by noting that as it was the case with the analysis

we presented in Table 1, in the case of the X-large VAR we are only able to report results

for the seven models that do not rely on MCMC methods. In fact, despite our use of a High

Performance Computing Cluster, we found that both the BVAR-IP and SSVS methods did not

converge, either because of numerical instabilities or because the algorithm exceeded the total

available resources.29

Next, looking across all three VAR dimensions and all four forecast horizons, we find that

the hierarchical Spike-and-Slab (SNS) and Normal-Gamma (N-G) priors dominate all other

methods in terms of forecasting accuracy, attaining the lowest WMSFEs in 11 of the 12 cases

considered in the table. As we saw in Figure 1, these two priors are very closely related so

the numerical similarities of their WMSFEs do not come as a surprise. Interestingly, while

the forecasts from the improper Normal-Jeffreys (N-J) prior also tend to improve substantially

over the benchmark seven-variable VAR, it appears that the N-J approach always lags behind

our other two methods, especially as the forecast horizon increases. We attribute this result to

the fact that the N-J is an improper prior, leading to an improper (and unbounded) posterior

for the VAR parameters. Despite this, all our three hierarchical priors produce forecast gains

that across the board are quite substantial, approaching or even exceeding 40% improvements

in WMSFE terms over the benchmark seven-variable VAR for a number of horizons. Gains

relative to the alternative methods we considered are also in general quite large and significant,

with a rough average improvement of 15-20% over the vast majority of the competing methods.

The only exception to this rule is the BVAR-IP, which thanks to the use of the independent

prior can fit the data better and produce forecasts that are only slightly inferior to the ones we

obtain with our simulation-free method. However, it is worth pointing out that the BVAR-IP

is the only BVAR method we considered that requires manual intervention in the tuning of the

29In principle, it could be possible to improve the computational efficiency of the MCMC algorithms we
considered by splitting the MCMC chain into a number of parallel and shorter chains. However, there is really
no speed-up available for the burn-in stage of the MCMC algorithm, as each chain must complete the full burn-
in before generating draws that can be safely retained (see for example Geyer, 1992). While the severity of
this issue depends on how quickly the sampler converges to its ergodic posterior distribution, generally speaking
MCMC-based algorithms are incompatible with a fully-fledged parallelization.
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overall shrinkage intensity parameter λ. While in this particular setting the recommendation of

Sims and Zha (1998) of setting λ = 0.2 appears to work quite well, we have also found in our

experimentation that many other (reasonable) values of λ yields considerably inferior forecasts

for this method. The other drawback of the BVAR-IP method is that it relies on MCMC

techniques, and as we discussed above does not adapt well to very high dimensional VARs.

Tables 3 to 5 present evidence on the performance of the various models for the seven variables

of interest, relative to the benchmark seven-variable VAR. In particular, each table focuses on

one specific VAR size, zooming into the relative MSFE performance across the four forecast

horizons and the seven variables of interest. Starting with Table 3, we find that in the case of

the Medium VAR the BVAR-IP method is very competitive, especially at short horizons, while

our SNS and N-G methods appear to hold a slight hedge over the alternative methods for the

longer horizons. Table 4 show a similar pattern in the large VAR case, while in the X-large VAR,

as Table 5 indicates, our methods generate the best MSFEs in 16 of the 28 cases considered.

The DFM and FAVAR follow right behind, with the DFM being particularly successful for GDP

and the unemployment rate. Looking more specifically into the individual series, we find that

the forecasts for CPI inflation never seem to outperform the benchmark VAR (as indicated by

the Diebold-Mariano statistics), while in the case of the GDP deflator results for the various

methods we considered are far better. Also, when moving to the to the X-large VAR, we find

that GDP forecasts appear to dramatically improve for all horizons, and that the same holds to

a smaller degree for employment. In summary, we find that our methods do very well, and even

when they are not ranked first they tend to be very close to the best performing model(s).

Tables 6 to 8 repeat the same analysis by looking at the whole forecast distribution via the

use of average log predictive likelihoods (ALPLs). Results appear more mixed in this case, with

no single method emerging as a clear winner. Nevertheless, we find that our methods dominate

in many instances, without ever falling too much behind in any individual case. We make

three additional remarks. First, the BGR method seems to be performing extremely well for

some series (mainly GDP, FEDFUNDS, GDPDEFL), when in the case of its point forecasts it

wasn’t among the top performing methods. Additionally, of interest is the quality of the density

forecasts of CPI inflation for all methods other than the two relying on the natural conjugate

prior. Improvements over the benchmark unrestricted VAR appear quite substantial, suggesting
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that even though none of the available methods improved in terms of point forecasts, when it

comes to density forecasts the independent shrinkage priors are quite helpful. Finally, according

to the Diebold-Mariano tests, a large proportion of APLs for all variables and forecast horizons

become statistically significant. This fact provides further assurances that larger information

sets are useful in achieving sharper forecasts and controlling for forecast uncertainty.

7 Structural VARs and impulse response analysis

The excellent forecast performance of our methodology is in line with an expanding literature

in statistics that praises the use of hierarchical priors for providing successful regularized

estimation. As explained in Section 2, we have paired such priors with a fast approximate

procedure that provides as output a joint parameter posterior p (β|y) under the assumption

that all the elements of the vector β are a-posteriori uncorrelated. This approximation appears

to be quite satisfactory in the high-dimensional forecasting application we have considered,

where the final outcome of interest is simply a set of predictions for some economic variables of

interest.

In addition to forecasting, VARs are also used regularly to identify structural shocks and

assess the transmission mechanisms of the macro-economy through impulse response analysis

and historical decompositions. In these cases, the assumption of a-posteriori independence may

hinder the ability of the economist to provide reliable policy recommendations. In this section,

we present a simple modification of our algorithm that is better suited for structural analysis.

In order to demonstrate this procedure, we follow papers such as Giannone et al. (2015) and

generate 500 artificial datasets of T = 216 quarters from a large-scale dynamic stochastic general

equilibrium (DSGE) model. The model we use is an extension of Görtz and Tsoukalas (2017) and

Görtz et al. (2016), and focuses on sectoral total factor productivity (TFP) shocks and financial

frictions.30 Among all possible sectoral and aggregate variables that this model generates, we

focus only on the aggregate ones, to stay consistent with the bulk of the news shock literature.31

In particular, we follow Barsky and Sims (2011) and use TFP, real GDP, consumption, and hours

as our four variables of interest; in addition, to better identify news shocks, we include three

30More specifically, we generate the artificial data using the default parameter settings that Görtz et al. (2016)
use when financial frictions are present.

31See Beaudry and Portier (2013) for an excellent review of empirical studies on news and business cycles.
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additional series from the DSGE model, namely inflation, interest rate spread (the difference

between long-term and short-term interest rates), and equity prices.32 Finally, as the news

shocks are not directly observed in a VAR setting, we rely on the identification scheme of Forni

et al. (2014) to extract them.33

For each of the 500 datasets, we use the artificial data on the seven variables listed above to

estimate a VAR with flat priors and a hierarchical prior BVAR. In particular, to estimate the

latter model we rely on a simple two-stage procedure. In the first step of this procedure, we

use the estimation algorithm described in Section 4 along with the hierarchical Spike-and-Slab

prior to obtain posterior inclusion probabilities π̂ij for each of the VAR coefficients. Next, in

the second step, we insert the restrictions implied by the posterior inclusion probabilities in a

BVAR, which is estimated using an independent Normal-Wishart prior.34

Figure 6 plots the DSGE theoretical impulse responses to a productivity news shock, along

with the average across the 500 replications of the median impulse responses for the flat prior

(VAR) and our hierarchical prior (BVAR).35 In general, both the VAR and BVAR models seem

to capture fairly well the responses of output, consumption and hours. On the other hand,

news shock in the DSGE model are anticipated 12 quarters ahead, therefore the response of

TFP is zero for the first 12 periods. Such feature is generally harder to capture with a VAR or

BVAR. Nevertheless, the empirical responses of TFP of both models are still quite reasonable,

and in line with the VAR estimates reported elsewhere (Barsky and Sims, 2011). Next, Figure 7

provides a more accurate assessment of the differences in the estimated impulse responses. For

32Forni and Gambetti (2014) have shown that many of the smaller VARs considered in this literature are
non-fundamental, meaning that they will not recover news shocks correctly. On the other hand, Beaudry et al.
(2015) have argued that even non-fundamental VARs can correctly recover the responses of TFP to news shock.
Regardless of this, larger information sets are still needed in order to identify correctly the remaining responses
of interest to policy-makers, namely, output, consumption and hours.

33The identification scheme of Forni et al. (2014) relies on a combination of long and short-run restrictions on
TFP. The alternative identification schemes proposed in Barsky and Sims (2011) and Francis et al. (2014) produce
identical results.

34In particular, we start from (24) and rewrite the VAR in (21) in its SUR form. Using notation from Koop

and Korobilis (2010), we rewrite the reduced-form VAR in (21) as Y = X̃B + V where Y = (y′1, ...,y
′
n)
′

and

V = (v′1, ...,v
′
n)
′

are Tn×1 vectors, while X̃ is a Tn×K block-diagonal matrix obtained by stacking together the

T × ki matrices X̃1,...,X̃n that incorporate the constraints implied by the estimated PIPs in (19). The elements

in the generic matrix X̃i (i = 1, ..., n), in turn, are computed by multiplying each row of Xi by π̂i, the ki × 1

vector of PIPs estimated from the VAR’s i-th equation, i.e. X̃i,t = Xi,t ◦ π̂′i, where ◦ denotes the Hadamard
product, and t = 1, ..., T .

35Interestingly, the shape of the responses of output and consumption have a distinct double-hump shape. This
is the direct consequence of working with a model with financial frictions; see Figure 10 of Görtz et al. (2016) for
more details.
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each of the 500 replications, we compute the difference between the theoretical DSGE response

and the estimated VAR and BVAR median responses, across the seven variables and the 40

horizons. Then, for each variable and horizon, we take the average of the squared errors across

replications (MSE). Figure 7 plots the ratio between the MSE of the VAR with flat priors and

the MSE of the hierarchical BVAR. As it can be seen from the figure, for the vast majority of

periods the MSE ratios are higher than one, implying that the two-step BVAR procedure based

on the hierarchical Spike-and-Slab prior generates more accurate responses than the flat prior

VAR.

8 Conclusions

We have introduced a novel methodology for estimating BVARs, which features a number of

desirable properties including flexible priors, closed-form posterior moments, and large

computational efficiency. We exploited the flexibility of this novel approach to study

empirically the benefits of a wide class of hierarchical shrinkage priors that lead to

individualized adaptive shrinkage on the VAR coefficients. Thanks to the estimation method

we introduced, we are able to derive analytical expressions for the marginal posteriors implied

by three popular cases of hierarchical priors, namely Normal-Jeffreys, Spike-and-Slab, and

Normal-Gamma. Our approach works extremely well with BVARs of both medium and large

dimensions, delivering analytical approximations to the marginal posterior distributions of the

BVAR coefficients that are very accurate. In addition, our proposed algorithm for posterior

inference is multiple times faster than existing Bayesian VAR methods that rely on simulation

methods. We implement a thorough Monte Carlo analysis to quantify the benefits of our

approach, and find that it can recover very accurately the underlying VAR coefficients. We

also demonstrate, using an extensive forecasting application with VARs of up to 124 equations,

the benefits of our adaptive shrinkage procedure in preventing over-fitting of large VARs and

providing excellent forecasting performance. Finally, we demonstrate using a simulated

numerical example with artificial data extracted from a large structural macroeconomic model,

that our algorithm can be useful also in recovering structural impulse responses.
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Figures and Tables

Figure 1. Histograms of hierarhical priors

Top left panel: an example of a Normal prior for βj in one dimension, where βj ∼ N
(

0, V βj

)
, and V βj = 10. Top

right panel: an example of a Spike-and-Slab prior for βj in one dimension, where βj ∼ (1− λj) δ0 +λjN
(

0, V βj

)
,

λj ∼ Bernoulli (π0), and π0 = 0.5. Bottom panels: two examples of a hierarchical Normal/Gamma prior for βj
in one dimension, where the hyperparameter λ2

j has been integrated out, i.e. p (βj) =
∫
p
(
βj |λ2

j

)
p
(
λ2
j

)
dλ2

j , with

βj |λ2
j ∼ N

(
0, λ2

jV βj

)
and λ2

j ∼ G (c1, c2). In the bottom left panel, we set c1 = 1 c2 = 2, while in the bottom

right panel we have c1 = 0.1 c2 = 2.
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Figure 2. Monte Carlo simulation - Shrinkage intensity, Normal/Jeffreys prior

The top three panels plot the empirical distribution of the average estimated shrinkage intensity λ =
1
K

∑n
i=1

∑ki
j=1 λ̂ij for n = 3, n = 7, and n = 20-variable VAR(p), averaged over all VAR coefficients. K =

∑n
i=1 ki

denotes the total number of VAR coefficients, including the covariance terms in Φ, and ki = np + i. Results
are based on our adaptive shrinkage procedure and the Normal/Jeffreys prior. The bottom three panels plot
the average shrinkage intensity estimated by our adaptive procedure, broken down according to whether the
corresponding VAR coefficients in the simulated data are equal to zero (red bars) or not (blue bars). All empirical
distributions are obtained by simulating 1, 000 VAR(p) of sample size T = 150 and lag length p = 2. See Section 5
for additional details on the design of the Monte Carlo simulation.
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Figure 3. Monte Carlo simulation - Shrinkage intensity, Normal/Gamma prior

The top three panels plot the empirical distribution of the average estimated shrinkage intensity λ =
1
K

∑n
i=1

∑ki
j=1 λ̂ij for n = 3, n = 7, and n = 20-variable VAR(p), averaged over all VAR coefficients. K =

∑n
i=1 ki

denotes the total number of VAR coefficients, including the covariance terms in Φ, and ki = np + i. Results
are based on our adaptive shrinkage procedure and the Normal/Gamma prior. The bottom three panels plot
the average shrinkage intensity estimated by our adaptive procedure, broken down according to whether the
corresponding VAR coefficients in the simulated data are equal to zero (red bars) or not (blue bars). All empirical
distributions are obtained by simulating 1, 000 VAR(p) of sample size T = 150 and lag length p = 2. See Section 5
for additional details on the design of the Monte Carlo simulation.
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Figure 4. Monte Carlo simulation - Posterior Inclusion Probabilities (PIPs)

The top three panels of this figure plot the empirical distribution of the average posterior inclusion probability
(PIP) obtained using the George et al. (2008) SSVS approach for n = 3, n = 7, and n = 20-variable VAR(p), and
broken down according to whether the corresponding VAR coefficients in the simulated data are equal to zero (red
bars) or not (blue bars). The bottom three panels plot the analogous empirical distributions of the averaged PIPs
estimated using our adaptive shrinkage procedure with the Spike-and-Slab prior. All empirical distributions are
obtained by simulating 1, 000 VAR(p) of sample size T = 150 and lag length p = 2. See Section 5 for additional
details on the design of the Monte Carlo simulation.
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Figure 5. Monte Carlo simulation - Mean Absolute Deviations
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This figure reports box plots for the empirical distributions of the Mean Absolute Deviations (MAD), obtained
from estimating a VAR(p) with OLS, a BVAR using the Giannone et al. (2015) (BVAR-GLP), the George et al.
(2008) SSVS approach, and our adaptive shrinkage procedure with Normal/Jeffreys, Normal/Gamma, and Spike-
and-Slab priors. These empirical distributions are obtained by simulating 1, 000 VAR(p) of sample size T = 150
and lag length p = 2. For each of the approaches listed and each of the 1,000 simulations we compute the Mean
Absolute Deviation (MAD), defined as

MAD(r,s) =
1

K

n∑
i=1

ki∑
j=1

∣∣∣β(r)
ij − β̂

(r,s)
ij

∣∣∣ ,
where s denotes the method used, r = 1, ..., 1, 000 keeps track of the MC simulations, K =

∑n
i=1 ki denotes

the total number of lag coefficients in the VAR, β
(r)
ij is the true DGP coefficient from the r-th simulation, and

β̂
(r,s)
ij denotes the (posterior mean of the) corresponding estimate according to method s. Results are reported

separately for n = 3, n = 7, and n = 20-variable VARs.
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Figure 6. Impulse responses on simulated data
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This figure reports the impulse responses to a productivity news shock in the DSGE model used to generate the
data (solid line), and the median across Monte Carlo replications of the BVAR (dashed line) and the VAR (dotted
line) impulse responses.
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Figure 7. Ratio of MSE: VAR versus BVAR
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This figure reports the ratio of the MSE of the VAR over the MSE of the BVAR. Values larger than one indicate
that the MSE of the VAR is larger than that of the BVAR.
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Table 1. Out-of-sample point forecast performance of our hierarchical BVARs against equivalent
specifications estimated using MCMC: Multivariate results

Medium VAR

Forc. h MCMC-t N-G MCMC-SNS SNS

h=1 0.587*** 0.587*** 0.619*** 0.607***
h=2 0.650*** 0.647*** 0.664*** 0.657***
h=3 0.725*** 0.707*** 0.734*** 0.720***
h=4 0.741*** 0.715*** 0.744*** 0.736***

Large VAR

MCMC-t N-G MCMC-SNS SNS

h=1 0.579*** 0.583*** 0.838 0.606***
h=2 0.657*** 0.646*** 0.749** 0.635***
h=3 0.715*** 0.704*** 0.789** 0.694***
h=4 0.738*** 0.719*** 0.821** 0.710***

X-large VAR

MCMC-t N-G MCMC-SNS SNS

h=1 – 0.591*** – 0.621***
h=2 – 0.646*** – 0.651***
h=3 – 0.703*** – 0.705***
h=4 – 0.723*** – 0.722***

This table reports the ratio between the multivariate weighted mean squared forecast error (WMSFE) of model
i and the WMSFE of the benchmark seven-variable VAR(p) model, computed as

WMSFEih =

∑t−h
τ=t wei,τ+h∑t−h

τ=t webcmk,τ+h

,

where wei,τ+h =
(
e′i,τ+h ×W × ei,τ+h

)
and webcmk,τ+h =

(
e′bcmk,τ+h ×W × ebcmk,τ+h

)
denote the weighted

forecast errors of model i and the benchmark model at time τ + h, ei,τ+h and ebcmk,τ+h are the (N × 1) vector

of forecast errors, and W is an (N ×N) matrix of weights. Throughout the table, we focus on N = 7 and the

following series {PAYEMS, CPIAUCSL,FEDFUNDS, GDP, UNRATE, GDPDEFL, GS10} and set W to be a

diagonal matrix featuring on the diagonal the inverse of the variances of the series to be forecast. t and t denote

the start and end of the out-of-sample period, i ∈ {MCMC-t, MCMC-SNS, SNS, N-G}, and h = 1, ..., 4. All

forecasts are generated out-of-sample using recursive estimates of the models, with the out of sample period

starting in 1985:Q1 and ending in 2015:Q4. ∗ significance at the 10% level; ∗∗ significance at the 5% level; ∗∗∗

significance at the 1% level.
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Table 2. Out-of-sample point forecast performance: Multivariate results

Medium VAR

Forc. h DFM FAVAR BVAR-BGR BVAR-GLP BVAR-IP SSVS N-J SNS N-G

h=1 0.816* 0.723*** 0.816*** 0.775*** 0.592*** 0.876 0.624*** 0.607*** 0.587***
h=2 0.803** 0.699*** 0.901 0.913 0.643*** 0.754** 0.790*** 0.657*** 0.647***
h=3 0.811** 0.743*** 0.872* 0.890 0.719*** 0.799** 0.884 0.720*** 0.707***
h=4 0.781** 0.748*** 0.838** 0.851* 0.736*** 0.772** 0.895 0.736*** 0.715***

Large VAR

DFM FAVAR BVAR-BGR BVAR-GLP BVAR-IP SSVS N-J SNS N-G

h=1 0.781** 0.686*** 0.776*** 0.797** 0.589*** 0.691** 0.608*** 0.606*** 0.583***
h=2 0.805** 0.711*** 0.864* 0.900* 0.653*** 0.731** 0.694*** 0.635*** 0.646***
h=3 0.808*** 0.739*** 0.828** 0.860** 0.726*** 0.768*** 0.761*** 0.694*** 0.704***
h=4 0.796** 0.759*** 0.836** 0.849** 0.749*** 0.768** 0.775** 0.710*** 0.719***

X-large VAR

DFM FAVAR BVAR-BGR BVAR-GLP BVAR-IP SSVS N-J SNS N-G

h=1 0.790* 0.809** 0.716*** 0.918 – – 0.615*** 0.621*** 0.591***
h=2 0.767*** 0.782*** 0.803*** 0.846* – – 0.698*** 0.651*** 0.646***
h=3 0.726*** 0.742*** 0.764*** 0.836** – – 0.761*** 0.705*** 0.703***
h=4 0.739*** 0.771*** 0.769*** 0.866** – – 0.798** 0.722*** 0.723***

This table reports the ratio between the multivariate weighted mean squared forecast error (WMSFE) of model
i and the WMSFE of the benchmark seven-variable VAR(p) model, computed as

WMSFEih =

∑t−h
τ=t wei,τ+h∑t−h

τ=t webcmk,τ+h

,

where wei,τ+h =
(
e′i,τ+h ×W × ei,τ+h

)
and webcmk,τ+h =

(
e′bcmk,τ+h ×W × ebcmk,τ+h

)
denote the weighted

forecast errors of model i and the benchmark model at time τ + h, ei,τ+h and ebcmk,τ+h are the (N × 1)

vector of forecast errors, and W is an (N ×N) matrix of weights. Throughout the table, we focus on

N = 7 and the following series {PAYEMS, CPIAUCSL,FEDFUNDS, GDP, UNRATE, GDPDEFL, GS10}
and set W to be a diagonal matrix featuring on the diagonal the inverse of the variances

of the series to be forecast. t and t denote the start and end of the out-of-sample period,

i ∈ {DFM, FAVAR, BVAR-BGR, BVAR-GLP, BVAR-IP, SSVS, N-J, SNS, N-G}, and h = 1, ..., 4. All

forecasts are generated out-of-sample using recursive estimates of the models, with the out of sample period

starting in 1985:Q1 and ending in 2015:Q4. Bold numbers indicate the lowest WMSFE across all models for

any given VAR size - forecast horizon pair. ∗ significance at the 10% level; ∗∗ significance at the 5% level; ∗∗∗

significance at the 1% level.
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Table 3. Out-of-sample point forecast performance, Medium VAR

Variable DFM FAVAR BVAR-BGR BVAR-GLP BVAR-IP SSVS N-J SNS N-G

h = 1
PAYEMS 1.292 0.627** 0.706* 0.687** 0.548** 0.929 0.561* 0.485** 0.489**
CPIAUCSL 1.262 1.033 0.959 0.902 0.992 1.104 1.000 0.944 0.931
FEDFUNDS 0.452** 0.488*** 0.704** 0.700** 0.275** 0.329** 0.339*** 0.321** 0.283**
GDP 1.085 0.818* 0.859 0.788* 0.719** 1.571 0.706** 0.708** 0.741**
UNRATE 0.815 0.824 0.809 0.884 0.642* 1.622 0.763 0.655 0.646*
GDPDEFL 0.920 0.862 0.901 0.833* 0.821 1.004 0.763** 0.786* 0.770**
GS10 0.800* 0.775** 0.880 0.753*** 0.664*** 0.701*** 0.711*** 0.739** 0.687***

h = 2
PAYEMS 0.882 0.608** 0.855 0.851 0.536** 0.835 0.707 0.540** 0.478***
CPIAUCSL 1.031 0.997 0.983 1.011 0.934 0.957 1.056 0.971 0.967
FEDFUNDS 0.499*** 0.356*** 0.773** 0.847 0.380*** 0.390*** 0.554*** 0.381*** 0.375***
GDP 1.095 0.884 0.962 0.987 0.704** 1.024 0.853 0.718** 0.724**
UNRATE 0.794 0.743* 0.944 0.978 0.695** 0.913 0.943 0.754 0.699**
GDPDEFL 0.790** 0.924 0.934 0.824** 0.797** 0.815* 0.879 0.812* 0.824*
GS10 0.872 0.787** 0.997 0.961 0.786* 0.786** 0.857* 0.777** 0.791**

h = 3
PAYEMS 0.775 0.635** 0.847 0.862 0.617** 0.793 0.851 0.627** 0.534***
CPIAUCSL 0.962 0.945 0.994 1.017 0.945 0.941 1.042 0.974 0.962
FEDFUNDS 0.590*** 0.517*** 0.731** 0.785** 0.528*** 0.527*** 0.719 0.507*** 0.526***
GDP 0.991 0.861 0.901 0.939 0.730** 0.976 0.878 0.710*** 0.734**
UNRATE 0.711* 0.690** 0.834 0.850 0.699** 0.792 0.996 0.735* 0.679**
GDPDEFL 0.849 0.866 0.962 0.870 0.843 0.842 0.947 0.854 0.851
GS10 0.874 0.819** 0.938 0.968 0.837* 0.825** 0.894 0.830** 0.824**

h = 4
PAYEMS 0.740 0.644** 0.836 0.894 0.638** 0.732 0.893 0.691** 0.585**
CPIAUCSL 1.013 1.005 1.015 1.008 1.036 1.033 1.053 1.031 1.027
FEDFUNDS 0.475*** 0.476*** 0.616*** 0.577*** 0.455*** 0.457*** 0.624** 0.449*** 0.462***
GDP 1.031 0.920 0.885 0.958 0.863 0.998 0.945 0.773** 0.807**
UNRATE 0.705* 0.712** 0.864 0.918 0.698* 0.716 1.069 0.776* 0.692**
GDPDEFL 0.853** 0.849*** 0.894 0.854* 0.864** 0.841** 0.943 0.872* 0.857**
GS10 0.896 0.901 0.981 0.961 0.911 0.893 0.972 0.896 0.892

This table reports the ratio between the MSFE of model i and the MSFE of the benchmark VAR(p) for the
medium size VAR, computed as

MSFEijh =

∑t−h
τ=t e

2
i,j,τ+h∑t−h

τ=t e
2
bcmk,j,τ+h

,

where p = 5, e2
i,j,τ+h and e2

bcmk,j,τ+h are the squared forecast errors of variable j at time τ and forecast

horizon h generated by model i and the VAR(p) model, respectively. t and t denote the start and end

of the out-of-sample period, i ∈ {DFM, FAVAR, BVAR-BGR, BVAR-GLP, BVAR-IP, SSVS, N-J, SNS, N-G},
j ∈ {PAYEMS, CPIAUCSL,FEDFUNDS, GDP, UNRATE, GDPDEFL, GS10}, and h = 1, ..., 4. All forecasts

are generated out-of-sample using recursive estimates of the models, with the out of sample period starting in

1985:Q1 and ending in 2015:Q4. Bold numbers indicate the lowest MSFE across all models for a given variable-

forecast horizon pair. ∗ significance at the 10% level; ∗∗ significance at the 5% level; ∗∗∗ significance at the 1%

level.
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Table 4. Out-of-sample point forecast performance, Large VAR

Variable DFM FAVAR BVAR-BGR BVAR-GLP BVAR-IP SSVS N-J SNS N-G

h = 1
PAYEMS 1.032 0.536** 0.585** 0.531** 0.541** 0.709* 0.493** 0.463** 0.494**
CPIAUCSL 1.394 1.070 0.975 0.935 0.997 1.221 0.927 0.961 0.956
FEDFUNDS 0.390** 0.471*** 0.649** 0.606** 0.269** 0.313** 0.320** 0.341** 0.277**
GDP 1.169 0.834 0.792 0.802 0.713** 1.072 0.779* 0.693*** 0.744**
UNRATE 0.659 0.627 0.689 0.801 0.648* 0.692** 0.692 0.632** 0.627*
GDPDEFL 0.929 0.866 0.914 1.380 0.817 0.808 0.742** 0.777* 0.767**
GS10 0.700** 0.672*** 0.880 0.716*** 0.659*** 0.668*** 0.701*** 0.719** 0.666***

h = 2
PAYEMS 0.817 0.520** 0.681* 0.628** 0.546** 0.681 0.534** 0.451*** 0.465***
CPIAUCSL 1.080 1.041 0.957 1.001 0.932 0.984 0.971 0.952 0.986
FEDFUNDS 0.460*** 0.421*** 0.805* 0.917 0.390*** 0.389*** 0.424*** 0.375*** 0.368***
GDP 1.208 0.891 0.901 0.792** 0.720** 1.075 0.827 0.695*** 0.739**
UNRATE 0.715* 0.631** 0.743 0.807 0.699** 0.745* 0.783 0.673** 0.659**
GDPDEFL 0.805* 0.912 0.910 1.090 0.801** 0.802* 0.824** 0.814** 0.829
GS10 0.884 0.859 1.053 1.010 0.803* 0.786** 0.805* 0.796* 0.799*

h = 3
PAYEMS 0.794 0.600** 0.736 0.710* 0.618** 0.680 0.640** 0.530*** 0.534***
CPIAUCSL 0.954 0.948 0.995 1.061 0.944 0.937 1.012 0.966 0.968
FEDFUNDS 0.566*** 0.549*** 0.720*** 0.763* 0.507*** 0.532*** 0.506*** 0.510*** 0.517***
GDP 1.011 0.884 0.848* 0.821* 0.780** 0.945 0.832* 0.688*** 0.735**
UNRATE 0.697* 0.611** 0.753 0.800* 0.698** 0.708** 0.796 0.673** 0.657**
GDPDEFL 0.862 0.863 0.906 1.074 0.861 0.847 0.888 0.852 0.866
GS10 0.849* 0.824** 0.937 0.941 0.841 0.824** 0.837* 0.827** 0.823**

h = 4
PAYEMS 0.749 0.654* 0.827 0.843 0.665* 0.676* 0.699* 0.585** 0.578**
CPIAUCSL 1.016 1.014 1.025 1.035 1.031 1.022 1.050 1.040 1.023
FEDFUNDS 0.494*** 0.477*** 0.614*** 0.553*** 0.468*** 0.471*** 0.458*** 0.463*** 0.477***
GDP 1.052 1.015 0.878 0.905 0.867 1.007 0.907 0.761*** 0.822*
UNRATE 0.726 0.659** 0.876 0.950 0.718 0.704* 0.817 0.683* 0.685*
GDPDEFL 0.836** 0.829*** 0.875* 0.935 0.843** 0.838** 0.867** 0.850** 0.834**
GS10 0.918 0.901 0.974 0.988 0.938 0.903 0.925 0.906 0.901

This table reports the ratio between the MSFE of model i and the MSFE of the benchmark VAR(p) for the large
size VAR, computed as

MSFEijh =

∑t−h
τ=t e

2
i,j,τ+h∑t−h

τ=t e
2
bcmk,j,τ+h

,

where p = 5, e2
i,j,τ+h and e2

bcmk,j,τ+h are the squared forecast errors of variable j at time τ and forecast

horizon h generated by model i and the VAR(p) model, respectively. t and t denote the start and end

of the out-of-sample period, i ∈ {DFM, FAVAR, BVAR-BGR, BVAR-GLP, BVAR-IP, SSVS, N-J, SNS, N-G},
j ∈ {PAYEMS, CPIAUCSL,FEDFUNDS, GDP, UNRATE, GDPDEFL, GS10}, and h = 1, ..., 4. All forecasts

are generated out-of-sample using recursive estimates of the models, with the out of sample period starting in

1985:Q1 and ending in 2015:Q4. Bold numbers indicate the lowest MSFE across all models for a given variable-

forecast horizon pair. ∗ significance at the 10% level; ∗∗ significance at the 5% level; ∗∗∗ significance at the 1%

level.
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Table 5. Out-of-sample point forecast performance, X-large VAR

Variable DFM FAVAR BVAR-BGR BVAR-GLP N-J SNS N-G

h = 1
PAYEMS 0.456** 0.543** 0.473** 0.550** 0.574** 0.445** 0.496**
CPIAUCSL 1.482 1.019 0.902 2.037 0.945 0.958 0.953
FEDFUNDS 0.725 0.875 0.577*** 0.220*** 0.322** 0.351** 0.283**
GDP 0.590*** 0.674** 0.593*** 0.818 0.775** 0.781* 0.749**
UNRATE 0.474* 0.567* 0.602* 0.690 0.708* 0.642** 0.631*
GDPDEFL 1.038 0.957 1.039 2.381 0.757** 0.788* 0.803*
GS10 0.726** 0.757* 0.853 0.769* 0.686*** 0.701*** 0.664***

h = 2
PAYEMS 0.491** 0.584** 0.539** 0.552** 0.654* 0.444*** 0.476***
CPIAUCSL 1.123 1.035 0.978 1.550 0.973 0.957 0.962
FEDFUNDS 0.718** 0.697 0.733** 0.389*** 0.407*** 0.383*** 0.370***
GDP 0.615*** 0.728*** 0.708*** 0.698** 0.780* 0.800* 0.744**
UNRATE 0.559*** 0.672** 0.696** 0.717* 0.803 0.668** 0.664**
GDPDEFL 0.935 0.869 0.885 1.505 0.819** 0.785** 0.802*
GS10 0.994 0.987 1.129 1.167 0.832 0.812* 0.830

h = 3
PAYEMS 0.577** 0.705 0.589** 0.612** 0.715 0.497*** 0.534***
CPIAUCSL 0.969 0.964 1.008 1.174 1.002 0.985 0.973
FEDFUNDS 0.631*** 0.528*** 0.612*** 0.591*** 0.504*** 0.493*** 0.521***
GDP 0.664*** 0.775*** 0.729*** 0.747** 0.788** 0.792** 0.738**
UNRATE 0.616** 0.688** 0.660** 0.664** 0.817 0.635** 0.657**
GDPDEFL 0.887 0.866 0.924 1.403 0.861 0.874 0.845
GS10 0.899 0.848* 1.012 1.005 0.845* 0.836* 0.828**

h = 4
PAYEMS 0.684** 0.800 0.643** 0.645** 0.857 0.550** 0.580**
CPIAUCSL 1.037 1.029 1.059 1.561 1.070 1.038 1.028
FEDFUNDS 0.501*** 0.492*** 0.515*** 0.595*** 0.489*** 0.469*** 0.484***
GDP 0.725*** 0.833* 0.734*** 0.772*** 0.869 0.871 0.833*
UNRATE 0.702* 0.736* 0.751* 0.696* 0.784 0.643** 0.661*
GDPDEFL 0.880* 0.845** 0.948 1.206 0.882* 0.858** 0.845**
GS10 0.971 0.950 1.104 1.171 0.929 0.930 0.922

This table reports the ratio between the MSFE of model i and the MSFE of the benchmark VAR(p) for the
X-large size VAR, computed as

MSFEijh =

∑t−h
τ=t e

2
i,j,τ+h∑t−h

τ=t e
2
bcmk,j,τ+h

,

where p = 5, e2
i,j,τ+h and e2

bcmk,j,τ+h are the squared forecast errors of variable j at time τ and forecast

horizon h generated by model i and the VAR(p) model, respectively. t and t denote the start and

end of the out-of-sample period, i ∈ {DFM, FAVAR, BVAR-BGR, BVAR-GLP, SSVS, N-J, SNS, N-G}, j ∈
{PAYEMS, CPIAUCSL,FEDFUNDS, GDP, UNRATE, GDPDEFL, GS10}, and h = 1, ..., 4. All forecasts are

generated out-of-sample using recursive estimates of the models, with the out of sample period starting in 1985:Q1

and ending in 2015:Q4. Bold numbers indicate the lowest MSFE across all models for a given variable-forecast

horizon pair. ∗ significance at the 10% level; ∗∗ significance at the 5% level; ∗∗∗ significance at the 1% level.
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Table 6. Out-of-sample density forecast performance, Medium VAR

Variable DFM FAVAR BVAR-BGR BVAR-GLP BVAR-IP SSVS N-J SNS N-G

h = 1
PAYEMS -0.022 0.292 0.270* 0.144 0.336 0.119 0.396 0.400 0.355
CPIAUCSL 3.790 3.173 1.080 2.384 3.735 4.721 3.331 3.333 3.609
FEDFUNDS 0.598 0.576 0.411 0.281 0.582 0.516 0.677 0.595 0.583
GDP 0.051 0.117 0.188 0.240 0.200 -0.144 0.240 0.201 0.150
UNRATE 0.594 0.620 0.298 0.234 0.658 0.198 0.708 0.745 0.714
GDPDEFL -0.097 -0.021 0.032 0.054 -0.070 -0.094 0.042 -0.005 -0.005
GS10 0.278* 0.301* 0.237* 0.327** 0.340** 0.317** 0.353** 0.326** 0.339**

h = 2
PAYEMS 0.332 0.531 0.347 0.156 0.535 0.365 0.511 0.595* 0.591*
CPIAUCSL 1.252 0.955 -0.906 -0.946 0.902 0.857 0.363 0.394 1.047
FEDFUNDS 0.053 0.082 0.119*** 0.065 0.046 0.030 0.100** 0.109 0.053
GDP -0.126 0.006 -0.021 -0.122 0.023 -0.101 0.065 0.116 0.069
UNRATE 0.412 0.424 0.069 0.064 0.417 0.296 0.370 0.479 0.518
GDPDEFL 0.010 -0.021 0.024 0.078** -0.018 -0.006 0.015 0.015 -0.014
GS10 0.064 0.112 0.016 0.035 0.092 0.105 0.086 0.137* 0.134*

h = 3
PAYEMS 0.340 0.426* 0.026 -0.006 0.517 0.155 0.387 0.508 0.510
CPIAUCSL 1.421 1.355 -0.886 -0.288 0.878 1.368 0.801 0.513 1.478
FEDFUNDS -0.054 -0.023 0.102*** 0.066** -0.052 -0.052 0.002 0.012 -0.038
GDP -0.055 0.085 -0.074 -0.038 0.096 0.017 0.123 0.209** 0.161*
UNRATE 0.470 0.410 0.107 0.210 0.362 0.349 0.450 0.372 0.522
GDPDEFL -0.011 -0.001 0.021 0.053 -0.011 -0.005 0.011 0.005 -0.006
GS10 0.054 0.082 0.056 0.028 0.055 0.077 0.064 0.084 0.091

h = 4
PAYEMS 0.244 0.328 -0.428 -0.595 0.347 -0.067 0.246 0.356 0.374
CPIAUCSL 1.013 0.241 -0.845 -0.965 -0.012 0.589 0.456 0.288 0.345
FEDFUNDS 0.014 0.020 0.158*** 0.134*** 0.009 -0.005 0.042 0.066 0.012
GDP -0.008 0.075 -0.292 -0.033 0.078 0.042 0.036 0.199** 0.141*
UNRATE 0.651 0.732 -0.062 0.201 0.693 0.598 0.574 0.713 0.683
GDPDEFL -0.004 0.017 0.067** 0.086*** -0.017 0.008 0.021 0.027 -0.001
GS10 0.003 0.022 0.007 0.029 -0.020 0.021 0.019 0.038 0.043

This table reports the average log predictive likelihood (ALPL) differential between model i and the benchmark
VAR(p) for the medium VAR, computed as

ALPLijh =
1

t− t− h+ 1

t−h∑
τ=t

(LPLi,j,τ+h − LPLbcmk,j,τ+h) ,

where p = 5, while LPLi,j,τ+h and LPLbcmk,j,τ+h are the log predictive likelihoods of variable j at time

τ and forecast horizon h generated by model i and the VAR(p), respectively. t and t denote the start

and end of the out-of-sample period, i ∈ {DFM, BVAR-BGR, BVAR-GLP, BVAR-IP, SSVS, N-J, SNS, N-G},
j ∈ {PAYEMS, CPIAUCSL,FEDFUNDS, GDP, UNRATE, GDPDEFL, GS10}, and h = 1, ..., 4. All forecasts

are generated out-of-sample using recursive estimates of the models, with the out of sample period starting in

1985:Q1 and ending in 2015:Q4. Bold numbers indicate the highest ALPL across all models for a given variable-

forecast horizon pair. ∗ significance at the 10% level; ∗∗ significance at the 5% level; ∗∗∗ significance at the 1%

level.
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Table 7. Out-of-sample density forecast performance, Large VAR

Variable DFM FAVAR BVAR-BGR BVAR-GLP BVAR-IP SSVS N-J SNS N-G

h = 1
PAYEMS 0.526 0.856 0.759 0.830 0.770 0.658 0.897 0.844 0.790
CPIAUCSL 1.654 1.935 -0.031 -0.269 2.465 3.216 2.113* 2.565 2.439
FEDFUNDS 0.317 0.295 -0.107 0.044 0.251 0.225 0.327 0.262 0.269
GDP -0.072 0.082 0.195* 0.143 0.085 -0.035 0.137 0.150* 0.139
UNRATE 1.016 1.093 0.926 0.900 1.017 0.991 0.991 0.977 1.011
GDPDEFL -0.065 -0.006 0.045 -0.169 -0.050 -0.010 0.038 0.007 0.006
GS10 0.298** 0.325** 0.133 0.286** 0.275* 0.307** 0.312** 0.299** 0.317**

h = 2
PAYEMS 0.268 0.497* 0.124 0.382* 0.421 0.267 0.520* 0.495* 0.456
CPIAUCSL 0.588 0.758 -0.716 -1.438 1.037 1.506 -0.063 1.246 0.750
FEDFUNDS 0.058 0.077 0.076 -0.277 0.025 0.031 0.104 0.069 0.045
GDP -0.061 0.141 0.089 0.041 0.147 -0.010 0.190 0.240** 0.091
UNRATE 0.303 0.414 -0.070 0.123 0.281 0.218 0.214* 0.366* 0.354
GDPDEFL 0.025 -0.002 0.057 -0.133 -0.004 0.023 0.034 0.032 0.009
GS10 0.069 0.082 -0.052 -0.031 0.079 0.105 0.127* 0.116 0.141*

h = 3
PAYEMS 0.191 0.258* -0.204 -0.327 0.303* 0.231* 0.273* 0.342* 0.335
CPIAUCSL 2.944 2.522 -0.056 -0.946 1.612 2.810 1.139 1.629 2.032
FEDFUNDS -0.017 -0.018 0.158*** 0.085** -0.071 -0.034 0.046 0.010 -0.020
GDP 0.001 0.087 -0.045 -0.003 0.158 0.078 0.114* 0.197*** 0.179**
UNRATE 0.369 0.291 0.107 -0.017 0.308 0.332 0.047 0.260** 0.147
GDPDEFL -0.004 -0.012 0.064 -0.208 -0.035 0.002 0.003 0.008 -0.008
GS10 0.081 0.090 0.063 0.040 0.056 0.088 0.099** 0.105* 0.110*

h = 4
PAYEMS 0.359 0.341 -0.277 -0.525 0.345 0.282** 0.380* 0.471 0.389
CPIAUCSL 1.766 1.320 -0.231 -1.023 1.015 2.380 0.850 0.924 1.496
FEDFUNDS -0.005 0.020 0.193*** 0.134*** -0.027 -0.003 0.083** 0.043 0.019
GDP -0.017 -0.011 -0.130 -0.100 0.012 -0.042 -0.018 0.121** -0.028
UNRATE 0.483 0.452 -0.281 -0.209 0.473 0.517 -0.038 0.281* 0.292
GDPDEFL 0.018 0.003 0.071** -0.196 -0.018 0.006 0.030 0.011 0.002
GS10 -0.004 0.003 0.021 -0.006 -0.038 0.001 0.026 0.025 0.026

This table reports the average log predictive likelihood (ALPL) differential between model i and the benchmark
VAR(p) for the large VAR, computed as

ALPLijh =
1

t− t− h+ 1

t−h∑
τ=t

(LPLi,j,τ+h − LPLbcmk,j,τ+h) ,

where p = 5, while LPLi,j,τ+h and LPLbcmk,j,τ+h are the log predictive likelihoods of variable j at time τ

and forecast horizon h generated by model i and the VAR(p), respectively. t and t denote the start and end

of the out-of-sample period, i ∈ {DFM, FAVAR, BVAR-BGR, BVAR-GLP, BVAR-IP, SSVS, N-J, SNS, N-G},
j ∈ {PAYEMS, CPIAUCSL,FEDFUNDS, GDP, UNRATE, GDPDEFL, GS10}, and h = 1, ..., 4. All forecasts

are generated out-of-sample using recursive estimates of the models, with the out of sample period starting in

1985:Q1 and ending in 2015:Q4. Bold numbers indicate the highest ALPL across all models for a given variable-

forecast horizon pair. ∗ significance at the 10% level; ∗∗ significance at the 5% level; ∗∗∗ significance at the 1%

level.
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Table 8. Out-of-sample density forecast performance, X-large VAR

Variable DFM FAVAR BVAR-BGR BVAR-GLP N-J SNS N-G

h = 1
PAYEMS 0.573 0.571 0.641* 0.530* 0.555 0.615 0.531
CPIAUCSL 0.164 0.539 -4.509 -2.116 0.269 0.692* 0.105
FEDFUNDS 0.232 -0.352 -0.669 0.782* 0.503 0.442 0.450
GDP 0.273** 0.233** 0.282*** 0.069 0.054 0.173* 0.061
UNRATE 0.890 0.843 0.692 0.547 0.627 0.726 0.750
GDPDEFL -0.053 -0.012 -0.021 -0.526 0.059 0.040 0.020
GS10 0.181* 0.108 -0.405 0.086 0.203*** 0.187** 0.215***

h = 2
PAYEMS 0.272** 0.196* -0.255 -0.909 0.095 0.292*** 0.227**
CPIAUCSL -0.251 0.450 -3.534 -0.124 -0.355 -0.883 -0.862
FEDFUNDS 0.048 -0.009 -0.184 0.264*** 0.123 0.129* 0.107
GDP 0.159*** 0.024 -0.010 0.010 0.017 0.092* 0.038
UNRATE 0.417** 0.225** -0.627 0.244** 0.068 0.226*** 0.408*
GDPDEFL 0.034 0.053 0.093 -0.240 0.061** 0.080*** 0.070**
GS10 0.000 0.006 -0.536 -0.116 0.101* 0.084 0.090

h = 3
PAYEMS 0.254*** 0.139 -0.599 -0.932 -0.017 0.284** 0.250*
CPIAUCSL -0.559 0.367 -3.237 1.070 -0.927 -0.582 -0.157
FEDFUNDS 0.054** 0.071*** 0.353*** 0.164*** 0.082** 0.098*** 0.058**
GDP 0.196*** 0.137*** -0.260 0.099 0.067 0.099* 0.144***
UNRATE 0.193** 0.240** -1.018 0.052 -0.186 0.134 0.256***
GDPDEFL 0.051** 0.054* 0.117 -0.314 0.063** 0.059** 0.050
GS10 0.038 0.067** -0.053 0.007 0.094** 0.076** 0.073**

h = 4
PAYEMS 0.091 0.107 -1.145 -1.217 -0.250 0.222** 0.193*
CPIAUCSL 0.463 0.820 -2.714 1.267 0.273 0.264 0.227
FEDFUNDS 0.088*** 0.097*** 0.401*** 0.163*** 0.108*** 0.133*** 0.093***
GDP 0.165*** 0.047 0.034 0.041 -0.127 0.002 0.031
UNRATE 0.025 -0.046 -1.277 -0.234 -0.327 -0.131 0.190**
GDPDEFL 0.056*** 0.069*** 0.083 -0.342 0.056** 0.075*** 0.073***
GS10 0.011 0.025 -0.049 -0.050 0.066* 0.046 0.055**

This table reports the average log predictive likelihood (ALPL) differential between model i and the benchmark
VAR(p) for the XX-large VAR, computed as

ALPLijh =
1

t− t− h+ 1

t−h∑
τ=t

(LPLi,j,τ+h − LPLbcmk,j,τ+h) ,

where p = 5, while LPLi,j,τ+h and LPLbcmk,j,τ+h are the log predictive likelihoods of variable j at time

τ and forecast horizon h generated by model i and the VAR(p), respectively. t and t denote the start

and end of the out-of-sample period, i ∈ {DFM, FAVAR, BVAR-BGR, BVAR-GLP, N-J, SNS, N-G}, j ∈
{PAYEMS, CPIAUCSL,FEDFUNDS, GDP, UNRATE, GDPDEFL, GS10}, and h = 1, ..., 4. All forecasts are

generated out-of-sample using recursive estimates of the models, with the out of sample period starting in 1985:Q1

and ending in 2015:Q4. Bold numbers indicate the highest ALPL across all models for a given variable-forecast

horizon pair. ∗ significance at the 10% level; ∗∗ significance at the 5% level; ∗∗∗ significance at the 1% level.
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Appendix A Technical appendix

In this section, we provide detailed derivations and proofs of all the main results in the paper.

A.1 Derivation of the rotated regression and rotated likelihood

We begin by providing details on the derivation of the rotated regression in equation (3) and

the joint likelihood of the rotated data in (4). Start with the simple univariate linear regression

model in (1), which for convenience we report here

y = Xβ + v, (A.1)

Next, introduce the T × T full-rank rotation matrix Qj =
[
qj ,W j

]
where qj = Xj/ ‖Xj‖ and

W j is an arbitrarily chosen T × (T − 1) matrix subject to the constraint W jW
′
j = IT − qjq′j .

Next, rewrite (A.1) as

y = Xjβj +X(−j)β(−j) + v (A.2)

where X(−j) = X \Xj and β(−j) = β \ βj . Proceed by pre-multiplying both LHS and RHS of

(A.2) by Q′j , to obtain

Q′jy = Q′jXjβj +Q′jX(−j)β(−j) +Q′jv, (A.3)

or, using the fact that Qj =
[
qj ,W j

]
,[

q′j
W ′

j

]
y =

[
q′j
W ′

j

]
Xjβj +

[
q′j
W ′

j

]
X(−j)β(−j) +

[
q′j
W ′

j

]
v. (A.4)

Now using the definition of qj and the formulas for y∗j and ỹj in (2), we have that[
y∗j
ỹj

]
=

[ (
X ′jXj/ ‖Xj‖

)
W ′

jqj ‖Xj‖

]
βj +

[
q′jX(−j)
W ′

jX(−j)

]
β(−j) +

[
q′jv

W ′
jv

]
, (A.5)

Further simplifications lead to (3), i.e.[
y∗j
ỹj

]
=

[
‖Xj‖βj

0

]
+

[
X∗(−j)β(−j)

X̃(−j)β(−j)

]
+

[
v∗j
ṽj

]
, (A.6)

where we have exploited the following two results:

1.
(
X ′jXj/ ‖Xj‖

)
= ‖Xj‖. This is due to the fact that X ′jXj = ‖Xj‖2;
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2. By definition, W j and qj are orthogonal. They all are columns of the orthogonal matrix

Qj , so by construction W ′
jqj = 0.

Next, to go from (3) to (4), note that E
(
Q′jv

)
= 0 while var

(
Q′jv

)
= σ2Q′jQj = σ2IT

which, combined with (A.6), leads to the rotated likelihood in equation (4). �

A.2 Links with partitioned regression method

There are a number of similarities between the rotation we introduced in Section 2 and the

traditional partitioned regression (or “partial-time regression”, using the terminology of Frisch

and Waugh, 1933). Suppose, along the lines of our discussion in Section 2, that we are

interested in βj (j = 1, ..., k), the j-th element of a vector of coefficients β in a standard

homoskedastic multivariate regression model. The standard partitioned regression method

works by first defining the T × T matrix M j = IT −Xj

(
X ′jXj

)−1
X ′j . It is easy to show

using the algebra of partitioned matrices that β̂j , the OLS estimates of βj can be obtained as

the solution of

β̂j =
(
X ′jXj

)−1
X ′j

(
y −X(−j)β̂(−j)

)
(A.7)

where the sub-vector β̂(−j) is the solution of the following regression

β̂(−j) =
(
X†′(−j)X

†
(−j)

)−1
X†′(−j)y

† (A.8)

with X†(−j) = M jX(−j) and y† = M jy denoting the projections of X(−j) and y on a space

that is orthogonal to Xj .

The two-step approach behind the partitioned regression method in (A.7)-(A.8) is very closely

related to the two-step procedure implied by our proposed approach. However, there are some

important differences:

• The rotation implied the Qj matrix we rely on preserves homoskedasticity in the rotated

regression. In contrast, the rotation implied by the annihilator matrix M j in the

partitioned regression method transforms the original homoskedastic regression into a

heteroskedastic model in the rotated space. This can be easily seen by noting that β̂(−j)
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in (A.8) is the OLS solution to the following regression model36

y† = X†(−j)β(−j) + v†j v†j ∼ N
(
0, σ2M j

)
(A.9)

• The rotation implied by the matrix Qj we introduce allows to split the T ×1 vector y into

the scalar y∗j , which does depend on βj , and the remaining T −1 observations ỹj , which do

not depend on βj . Combined with the previous point (i.e., the homoskedasticity-preserving

rotation), this is what allows us to estimate β̂(−j) using T − 1 observations and β̂j using a

single observation. This, in turn, leads to the expression for the marginal posterior of βj

in equation (5), the expression for the rotated marginal likelihood in equation (6) and, as

a byproduct, the quality of its approximation and the low computational costs needed to

implement adaptive hierarchical priors in this setting.

A.3 Derivation of the rotated conditional likelihood

In this subsection, we provide details on the results in equations (6), (7), and (8). Start by

focusing on the top row of (4), and note that the conditional density p
(
y∗j |β, σ2

)
can be

decomposed as follows

y∗j = ‖Xj‖βj + y+
j (A.10)

where

y+
j |β(−j), σ

2 ∼ N
(
X∗(−j)β(−j), σ

2
)

(A.11)

Notice that the newly defined p
(
y+
j |β(−j), σ

2
)

can be interpreted as essentially the predictive

distribution associated with the auxiliary regression that is defined in the second row of (4).

This leads to the following result,

p
(
y∗j |βj , ỹj

)
= ‖Xj‖βj + p

(
y+
j |ỹj

)
= ‖Xj‖βj +

∫ ∫
p
(
y+
j |β(−j), σ

2, ỹj

)
p
(
β(−j), σ

2|ỹj
)
dβ(−j)dσ

2
(A.12)

The key to solving (A.12) is to compute the integral in the second row of the equation, which

in turn will depend on the prior distribution adopted for p
(
β(−j), σ

2
)

. As we discussed in

36This is due to the fact that M j is both symmetric and idempotent, leading to V ar
(
v†j

)
= V ar

(
M ′

jv
)

=

σ2M ′
jM j = σ2M j .
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Section 2, for computational tractability we chose to rely on the natural conjugate prior,

β(−j)|σ2 ∼ N
(
β

(−j), σ
2V β(−j)

)
σ2 ∼ IG

(
ψ, d

) (A.13)

It is straightforward to show that the posterior distribution p
(
β(−j), σ

2|ỹj
)

also belongs to the

Normal-Inverse-Gamma (NIG) family, and is given by

β(−j)|σ2, ỹj ∼ N
(
β(−j), σ

2V β(−j)

)
σ2|ỹj ∼ IG

(
ψ(−j), d

) (A.14)

where d = d+ (T − 1) /2,

V β(−j) =
(
V −1
β(−j)

+ X̃
′
(−j)X̃(−j)

)−1
, (A.15)

β(−j) = V β(−j)

(
V −1
β(−j)

β
(−j) + X̃

′
(−j)ỹj

)
, (A.16)

and

ψ(−j) = ψ +
1

2

(
ỹ′jỹj + β′

(−j)V
−1
β(−j)

β
(−j) − β

′
(−j)V

−1
β(−j)

β(−j)

)
. (A.17)

Armed with an analytical expression for the posterior p
(
β(−j), σ

2|ỹj
)

, we are now ready to

derive the rotated conditional likelihood:

p
(
y∗j |βj , ỹj

)
= ‖Xj‖βj +

∫ ∫
p
(
y+
j |β(−j), σ

2, ỹj

)
p
(
β(−j), σ

2|ỹj
)
dβ(−j)dσ

2

= ‖Xj‖βj +

∫ ∫
N
(
X∗(−j)β(−j), σ

2
)
×

×N
(
β(−j), σ

2V β(−j)

)
IG
(
ψ(−j), d

)
dβ(−j)dσ

2

= ‖Xj‖βj + t2d
(
µj , τ

2
j

)
≈ ‖Xj‖βj +N

(
µj , τ

2
j

)
(A.18)

where

µj = X∗(−j)β(−j) (A.19)

and

τ2
j =

ψ(−j)

d

(
1 +X∗(−j)V β(−j)X

∗′
(−j)

)
. (A.20)

This concludes the derivations of equations (6), (7), and (8). �
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A.4 Calculation of optimal shrinkage intensity under a Normal-Jeffreys prior

Start with the approximation in (6), which here we slightly rearrange to be

(
y∗j − µj

)
|βj , ỹj ∼ N

(
‖Xj‖βj , τ2

j

)
,

and write the Normal-Jeffreys prior as in (9)

βj |λ2
j ∼ N

(
0, λ2

jV βj

)
(A.21)

Next, the marginal likelihood p
(
y∗j − µj

∣∣∣λ2
j , ỹj

)
is given by

p
(
y∗j − µj

∣∣λ2
j , ỹj

)
=

∫
p
(
y∗j − µj

∣∣βj , ỹj) p (βj |λ2
j

)
dβj

= N
(
y∗j − µj

∣∣ ‖Xj‖2 λ2
jV βj + τ2

j

)
.

(A.22)

or, more explicitly,

p
(
y∗j − µj |λ2

j , ỹj
)

=
1

√
2π
√
τ2
j + ‖Xj‖2 λ2

jV βj

× exp

−
(
y∗j − µj

)2

2
(
τ2
j + ‖Xj‖2 λ2

jV βj

)


To find the λ2
j that maximizes p

(
y∗j − µj

)
|λ2
j , ỹj , take the log and only focus on the terms that

involve λ2
j :

ln p
(
y∗j − µj |λ2

j , ỹj
)
∝ −1

2
ln
(
τ2
j + ‖Xj‖2 λ2

jV βj

)
− 1

2

(
y∗j − µj

)2(
τ2
j + ‖Xj‖2 λ2

jV βj

)
Now taking the derivative with respect to λ2

j and setting it to zero

∂ ln p
(
y∗j − µj |λ2

j , ỹj

)
∂λ2

j

= −1

2

‖Xj‖2 V βj(
τ2
j + ‖Xj‖2 λ2

jV βj

) +
1

2

(
y∗j − µj

)2
‖Xj‖2 V βj(

τ2
j + ‖Xj‖2 λ2

jV βj

)2 = 0

leads to the solution in (12),

λ̂2
j = max

0,

(
y∗j − µj

)2
− τ2

j

‖Xj‖2 V βj

 . (A.23)

�
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A.5 Derivation of posterior probability of inclusion under a Spike-and-Slab
prior

Start with (18), which for convenience we rewrite here as

π̂j = p
(
λj = 1

∣∣ y∗j , ỹj) =
p
(
y∗j

∣∣∣ λj = 1, ỹj

)
p (λj = 1)

p
(
y∗j

∣∣∣λj = 0, ỹj

)
p (λj = 0) + p

(
y∗j

∣∣∣λj = 1, ỹj

)
p (λj = 1)

(A.24)

Next, notice that = p (λj = 1) = π0 and p (λj = 0) = 1 − π0. Furthermore, the approximation

in (6) along with the independence between βj and ỹj imply that

p
(
y∗j
∣∣ λj = 1, ỹj

)
≈
∫
p
(
y∗j
∣∣ βj , λj = 1, ỹj

)
p
(
βj |λj = 1, ỹj

)
dβj

≈
∫
p
(
y∗j
∣∣ βj , λj = 1, ỹj

)
p (βj |λj = 1) dβj

∼ N
(
y∗j
∣∣µj , τ2

j + ‖Xj‖2 V βj

) (A.25)

while, similarly,

p
(
y∗j
∣∣ λj = 0, ỹj

)
≈
∫
p
(
y∗j
∣∣ βj , λj = 0, ỹj

)
p
(
βj |λj = 0, ỹj

)
dβj

≈
∫
p
(
y∗j
∣∣ βj , λj = 0, ỹj

)
p (βj |λj = 0) dβj

∼ N
(
y∗j
∣∣µj , τ2

j

) (A.26)

Plugging (A.25) and (A.26) into (A.24) leads to (19). �

A.6 Triangularization of the VAR

Start from the n-dimensional VAR(p) model in (21), which for convenience we rewrite here

yt = c+A1yt−1 + . . .+Apyt−p + εt, t = 1, ..., T, (A.27)

where yt is an n×1 vector of time series of interest, c is an n×1 vector of intercepts, A1, ...,Ap

are n × n matrices of coefficients on the lagged dependent variables, and εt ∼ N (0,Ω), with

Ω an n × n covariance matrix. Next, following Carriero et al. (2017), decompose the VAR

covariance matrix Ω in (A.27) as Ω = Γ−1Σ
(
Γ−1

)′
, where

Γ−1 =


1 0 ... 0 0

γ2,1 1
. . .

...
...

...
. . .

. . . 0 0
γn−1,1 ... γn−1,n−2 1 0
γn,1 ... γn,n−2 γn,n−1 1

 , (A.28)
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and Σ = diag
(
σ2

1, ..., σ
2
n

)
. Under this decomposition the residuals of the original VAR(p) in

(A.27) can be written using the identity εt = Γ−1Σ1/2ut, with ut ∼ N (0, In), which implies

that the i-th row of this identity is

εi,t = γi,1σ1u1,t + ...+ γi,i−1σi−1ui−1,t + σiui,t. (A.29)

As a result, the VAR(p) in equation (A.27) admits the following triangular structure,

y1,t = c1 + a1,·Zt + σ1u1t,

y2,t = c2 + a2,·Zt + γ2,1σ1u1,t + σ2u2,t,

...

yn,t = cn + an,·Zt + γn,1σ1u1,t + ...+ γn,n−1σn−1un−1,t + σnun,t,

(A.30)

where ai,· = [ai,1, ..., ai,np] denotes the vector of coefficients in the i-th VAR equation, and

Zt =
[
y′t−1, ...,y

′
t−p
]′

. As noted by Carriero et al. (2017), the re-parametrization of the VAR(p)

in (A.30) allows for estimation of the system recursively, equation-by-equation.37 For example,

consider the generic equation i, which we rewrite as

yi,t = ci + ai,·Zt + γi,1σ1u1,t + ...+ γi,i−1σi−1ui−1,t + σiui,t, (A.31)

Provided that all previous i−1 equations have been already estimated, all terms on the right hand

side of (A.31) involving the previous equation error terms can be replaced by their estimated

counterparts. As a result, the full posterior for the VAR parameters
{
c,a,Γ−1,Σ

}
can now be

obtained recursively, one equation at a time.

37It is important to note that the triangularization in (A.30) produces the same posteriors for the coefficients
that would be obtained by drawing the coefficients of all the equations simultaneously, and it does so regardless
of the ordering in which the variables are entered in the VAR. However, it is worth to keep in mind that models
where the priors are affected by the ordering will of course have posteriors which are also affected by such ordering.
For example, if one were to elicit priors for Γ−1 and Σ separately, the implied prior for Ω will change when the
ordering of the equations in the VAR changes. As a result, different orderings of the variables in the VAR will lead
to different prior specifications for Ω and potentially different joint posteriors of the BVAR parameters {c,a,Ω}.
As noted by Primiceri (2005), this problem will likely be less severe in the case as it is here in which the elements
of the covariance matrix in Γ−1 do not vary with time, because the likelihood will quickly dominate the prior as
the sample size increases. On this point, see also the estimation algorithms of Smith and Kohn (2002) and George
et al. (2008) and discussions therein.

56



Appendix B Data and transformations

Table B.1. List of series

No Tcode† Medium Large X-large FRED Description
1 5 X X X RPI Real Personal Income
2 5 X X X W875RX1 RPI ex. Transfers
3 5 X X X DPCERA3M086SBEA Real PCE
4 5 X X X CMRMTSPLx Real M& T Sales
5 5 X X X RETAILx Retail and Food Services Sales
6 5 X X INDPRO IP Index
7 5 X IPFPNSS IP: Final Products and Supplies
8 5 X IPFINAL IP: Final Products
9 5 X IPCONGD IP: Consumer Goods
10 5 X IPDCONGD IP: Durable Consumer Goods
11 5 X IPNCONGD IP: Nondurable Consumer Goods
12 5 X IPBUSEQ IP: Business Equipment
13 5 X IPMAT IP: Materials
14 5 X IPDMAT IP: Durable Materials
15 5 X IPNMAT IP: Nondurable Materials
16 5 X IPMANSICS IP: Manufacturing
17 5 X IPB51222S IP: Residential Utilities
18 5 X IPFUELS IP: Fuels
19 2 X CUMFNS Capacity Utilization: Manufacturing
20 2 X X HWI Help-Wanted Index for US
21 2 X X HWIURATIO Help Wanted to Unemployed ratio
22 5 X X CLF16OV Civilian Labor Force
23 5 X CE16OV Civilian Employment
24 2 X X X UNRATE Civilian Unemployment Rate
25 2 X UEMPMEAN Average Duration of Unemployment
26 5 X UEMPLT5 Civilians Unemployed ≤ 5 Weeks
27 5 X UEMP5TO14 Civilians Unemployed 5-14 Weeks
28 5 X UEMP15OV Civilians Unemployed > 15 Weeks
29 5 X UEMP15T26 Civilians Unemployed 15-26 Weeks
30 5 X UEMP27OV Civilians Unemployed > 27 Weeks
31 5 X CLAIMSx Initial Claims
32 5 X X X PAYEMS All Employees: Total nonfarm
33 5 X USGOOD All Employees: Goods-Producing
34 5 X CES1021000001 All Employees: Mining and Logging
35 5 X USCONS All Employees: Construction
36 5 X MANEMP All Employees: Manufacturing
37 5 X DMANEMP All Employees: Durable goods
38 5 X NDMANEMP All Employees: Nondurable goods
39 5 X SRVPRD All Employees: Service Industries
40 5 X USTPU All Employees: TT&U
41 5 X USWTRADE All Employees: Wholesale Trade
42 5 X USTRADE All Employees: Retail Trade
43 5 X USFIRE All Employees: Financial Activities
44 5 X USGOVT All Employees: Government
45 5 X X CES0600000007 Hours: Goods-Producing
46 2 X AWOTMAN Overtime Hours: Manufacturing
47 5 X AWHMAN Hours: Manufacturing
48 5 X HOUST Starts: Total
49 5 X HOUSTNE Starts: Northeast
50 5 X HOUSTMW Starts: Midwest
51 5 X HOUSTS Starts: South
52 5 X HOUSTW Starts: West
53 5 X AMDMNOx Orders: Durable Goods
54 5 X AMDMUOx Unfilled Orders: Durable Goods
55 5 X BUSINVx Total Business Inventories
56 2 X ISRATIOx Inventories to Sales Ratio
57 5 X X M1SL M1 Money Stock
58 5 X X M2SL M2 Money Stock
59 5 X X M2REAL Real M2 Money Stock
60 5 X X X BUSLOANS Commercial and Industrial Loans
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Table B.1 (continued)

61 5 X REALLN Real Estate Loans
62 5 X X X NONREVSL Total Nonrevolving Credit
63 2 X X X CONSPI Credit to PI ratio
64 5 X X S&P 500 S&P 500
65 5 X X S&P: indust S&P Industrial
66 2 X X S&P div yield S&P Divident yield
67 5 X X S&P PE ratio S&P Price/Earnings ratio
68 2 X X X FEDFUNDS Effective Federal Funds Rate
69 2 X X X CP3M 3-Month AA Comm. Paper Rate
70 2 X X TB3MS 3-Month T-bill
71 2 X X TB6MS 6-Month T-bill
72 2 X X GS1 1-Year T-bond
73 2 X X GS5 5-Year T-bond
74 2 X X X GS10 10-Year T-bond
75 2 X X AAA Aaa Corporate Bond Yield
76 2 X X BAA Baa Corporate Bond Yield
77 1 X COMPAPFF CP - FFR spread
78 1 X TB3SMFFM 3 Mo. - FFR spread
79 1 X TB6SMFFM 6 Mo. - FFR spread
80 1 X T1YFFM 1 yr. - FFR spread
81 1 X T5YFFM 5 yr. - FFR spread
82 1 X T10YFFM 10 yr. - FFR spread
83 1 X AAAFFM Aaa - FFR spread
84 1 X BAAFFM Baa - FFR spread
85 5 X X X EXSZUS Switzerland / U.S. FX Rate
86 5 X X X EXJPUS Japan / U.S. FX Rate
87 5 X X X EXUSUK U.S. / U.K. FX Rate
88 5 X X X EXCAUS Canada / U.S. FX Rate
89 5 X WPSFD49107 PPI: Final demand less energy
90 5 X WPSFD49501 PPI: Personal cons
91 5 X WPSID61 PPI: Processed goods
92 5 X WPSID62 PPI: Unprocessed goods
93 5 X X OILPRICEx Crude Oil Prices: WTI
94 5 X PPICMM PPI: Commodities
95 6 X X X CPIAUCSL CPI: All Items
96 5 X CPIAPPSL CPI: Apparel
97 5 X CPITRNSL CPI: Transportation
98 5 X CPIMEDSL CPI: Medical Care
99 5 X CUSR0000SAC CPI: Commodities
100 5 X CUUR0000SAD CPI: Durables
101 5 X CUSR0000SAS CPI: Services
102 5 X CPIULFSL CPI: All Items Less Food
103 5 X CUUR0000SA0L2 CPI: All items less shelter
104 5 X CUSR0000SA0L5 CPI: All items less medical care
105 5 X PCEPI PCE: Chain-type Price Index
106 5 X DDURRG3M086SBEA PCE: Durable goods
107 5 X DNDGRG3M086SBEA PCE: Nondurable goods
108 5 X DSERRG3M086SBEA PCE: Services
109 5 X CES0600000008 Ave. Hourly Earnings: Goods
110 5 X CES2000000008 Ave. Hourly Earnings: Construction
111 5 X CES3000000008 Ave. Hourly Earnings: Manufacturing
112 5 X MZMSL MZM Money Stock
113 5 X DTCOLNVHFNM Consumer Motor Vehicle Loans
114 5 X DTCTHFNM Total Consumer Loans and Leases
115 5 X X INVEST Securities in Bank Credit
116 5 X X X GDP Real Gross Domestic Product
117 5 X PCDG PCE: Durable Goods
118 5 X PCESV PCE: Services
119 5 X PCND PCE: Nondurable Goods
120 5 X FPI Fixed Private Investment
121 5 X PRFI Private Residential Fixed Investment
122 5 X GCEC1 Government Cons Expenditures Gross Inv
123 6 X X X GDPDEFL GDP deflator
124 5 X PCEDEFL PCE deflator
† Transformation code: 1 - levels; 2 - first differences; 5 - first differences of logarithms; 6 - second differences of logarithms
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