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ABSTRACT Meeting application requirements under a tight power budget is of a primary importance to
enable connected health internet of things applications. This paper considers using sparse representation
and well-defined inequality indexes drawn from the theory of inequality to distinguish ventricular ectopic
beats (VEBs) from non-VEBs. Our approach involves designing a separate dictionary for each arrhythmia
class using a set of labeled trainingQRS complexes. Sparse representation, based on the designed dictionaries
of each new test QRS complex is then calculated. Following this, its class is predicted using the winner-
takes-all principle by selecting the class with the highest inequality index. The experiments showed
promising results ranging between 80% and 100% for the detection of VEBs considering the patient-specific
approach, 80% using cross validation and 70% on unseen data using independent sets for training and
testing, respectively. An efficient hardware implementation of the alternating direction method of multipliers
algorithm is also presented. The results show that the proposed hardware implementation can classify a QRS
complex in 69.3 ms that use only 0.934 W energy.

INDEX TERMS Inequality indexes, dictionary learning, ADMM, arrhythmia, classification, connected
health, QRS.

I. INTRODUCTION
Driven by demographic changes, especially the growing age-
ing population and the prevalence of chronic diseases, exist-
ing healthcare systems are shifting from hospital-centred to
connected health models. Real-time health monitoring using
wearable devices outside the clinical setting represents one
of the cornerstones in these new models and has been attract-
ing considerable attention from both academia and industry
in recent years [1]. Typically, the sensed data is sent via
a short-range low-power wireless communication protocol
to a battery powered internet of things (IoT) edge device
equipped with routable connectivity. Its automatic analysis is
then performed either locally on an edge device located in the
vicinity of the patient or in the cloud [2]. The former approach
is preferred to avoid big data issues such as latency related to
cloud computing [3].

Among the most crucial vital signs in wearable devices,
electrocardiogram (ECG) is a non-invasive diagnostic and
prognostic tool to evaluate the status of the heart [4].
It reflects abnormal cardiac activities in both electrical gen-
eration and conduction at different levels in the heart as
deviations from the normal intervals and waveforms mor-
phologies. The term arrhythmia is used to refer to these
deviations. Over the years, a large amount of research
has been dedicated to developing accurate algorithms for
automated arrhythmia classification. In particular, different
approaches for feature extraction have been reported in the
literature.

Heuristic descriptors such as ECG morphology and heart-
beat intervals are among the commonly used features [5]–[7].
Other methods include signal modelling techniques whereby
the model parameters serve as features [8]–[11]. In addition,
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many statistical parameters have been considered as features
including high order statistics and correlation and Shannon
entropies [12]–[14].

Researchers have also examined the use of a large number
of classifiers for arrhythmia classification. These include,
linear discriminant analysis (LDA) [5], [6], neural networks
(NN) [15], [16], self-organising maps [9], support vector
machine (SVM) [17], active learning [18] and combination
of different classifiers [19], [20].

However, despite their good accuracy, most of the afore-
mentioned approaches are more suitable for offline applica-
tions due to their high computational costs [21]. The need to
reduce the power consumption and to extend the battery life
time for long-term health monitoring is driving the develop-
ment of a new class of power-aware signal processing and
classification techniques [21], [22].

Sparse representation (SR) has emerged in recent years
as a powerful tool for efficient data processing. It attempts
to exploit the compressibility of the true signal in a trans-
form domain by solving a sparsity seeking optimisation
(`1-Regularised Least Squares) or a greedy algorithm. Clas-
sifiers based on SR have been attracting growing interest
from the research community and have shown to provide
state-of-the-art performances across many applications. Two
basic formulations are usually adopted in the literature, recon-
structive and discriminative approaches [23]. In the recon-
structive approach, class specific dictionaries (specifying
transforms) are learned using labelled data. Each testing
signal is then assigned to a particular class either based on the
best reconstruction error or based on the best actual/penalised
cost function. The latter approach takes into account both
the reconstruction error and the sparsity of the signal repre-
sentation. Discriminative formulations use augmented objec-
tive functions with a discrimination term that enforces the
intra-classes discrimination in the projection subspace. These
approaches, however, come with the intensive computational
complexity of the sparse representations at test time which is
a major obstacle that hinders their applicability in large-scale
problems, or in applications with limited power supply [24].
The phase of dictionary learning is usually performed offline,
and energy consumption is not of primary concern. Real-time
detection of events of interest, however, should be performed
in real-time at minimum power.

In this paper, we propose the use of two inequality mea-
sures drawn from the theory of inequality, namely the Gini
and the Pietra indexes as alternative measures of sparsity for
effective and simple arrhythmia classification. These indexes
are quasi-convex, their values are independent of the size of
the data vector, they are scale-invariant, they are independent
of the total energy of the signal, and they depend on the energy
concentration in a small number of coefficients [25]–[27].

We are looking for simplicity in the sense that these indexes
allow an online implementation based on accumulators.
Furthermore, we use a decomposition technique that sig-
nificantly reduces the processing time as well as the com-
plexity of the `1-regularised least squares (LS) optimisation

problem based on the alternating direction methods of multi-
pliers (ADMM) algorithm.

An efficient hardware implementation of the algorithm is
also presented. Particularly, energy cost and real-time recon-
struction on a parallel hardware implementation of the pro-
posed approaches running on a Zynq System-on-Chip (SoC)
device are investigated.

The paper is organised as follows: Section II (a) formulates
the sparse dictionary learning and sparse representation prob-
lem. The K-SVD and the alternating directionmethod of mul-
tipliers (ADMM) are presented in Sections II (b) and II (c),
respectively. A fast method of the ridge regression updates
of the ADMM is presented in Section II (d). The
Lorenz curve and the inequality indexes are discussed in
Section II (e) while the proposed classification algo-
rithm and data pre-processing are respectively described in
Section II (f ) and Section II (g). A hardware implemen-
tation of the ADMM algorithm is presented in section III.
Classification results are presented in Section IV, in which we
evaluate and discuss three classification scenarios. Section V
concludes the paper and highlights some perspectives of
future work.

II. METHODOLOGY
A. SPARSE DATA REPRESENTATION
Let x ∈ RN be a vector of observations. A sparse representa-
tion of x consists of approximating it using a weighed sum of
a few dictionary atoms d i ∈RN such that:

x = Dw, (1)

where D = [d1, d2, . . . , dK ] ∈ RN×K is an over-complete
dictionary and w ∈ RK is a sparse vector. The dictionary D
can be either predetermined or learned from a given training
set of the observed data X = [x1, x2, . . . , xN ].
The latter approach seeks to learn a dictionary D and the

corresponding sparse representationW = [w1,w2, . . . ,wK ].
This process can be expressed as an optimisation problem
with respect to D,W and the learning scalar parameter λ > 0
such that [28], [29]:{
Wopt ,Dopt

}
= argminW,D

1
2
‖X − DW‖22 + λ ‖W‖p

p ∈ {0, 1} (2)

A practical iterative approach often used to solve (2) involves:
1) Keep D fixed and solve for W , and 2) Keep W fixed and
find D.

For the case p = 1 and for a fixed dictionary D, the above
optimisation leads to the convex `1 regularised least squares
problem (3).

Wopt = argminW
1
2
‖X − DW‖22 + λ ‖W‖1 (3)

Iterative methods such as least angle regression (LARS),
(ADMM), or linear programming can be used to find a solu-
tion of (3) [30], [31].
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For a given sparse representationW , dictionary learning is
generally performed using the K-SVDAlgorithm 1 described
below [28].

B. THE K-SVD ALGORITHM
In general, the K-SVD algorithm alternate between two steps.
The first is considered as a generalisation of the famous
K-means clustering algorithm where the input vector is rep-
resented as a linear combination of the dictionary atoms
(codewords in the case of K-means). The second step updates
sequentially the dictionary atoms and the sparse representa-
tions while in K-means only the dictionary is updated. The
following algorithm results:

Algorithm 1 The K-SVD Algorithm

Data: {xi}Ni=1, number of iterations: L
Initialise the dictionary D0 with columns normalised.
For J = 1 to number of iterations (L)
1. Find the sparse representation {wi}Ni=1 for each {xi}

N
i=1

using appropriate algorithm.
2. For each atom dk (k = 1, . . .K ) in the dictionary Dj−1

(obtained from the previous iteration)
a) Define the set rk of training samples that use this

atom

rk = {i|1 ≤ i ≥ N ,wi(k) 6= 0}

b) Compute the residual error matrix Ek

Ek = X −
∑
j 6=k

d jwTj

Form a restricted matrix ERk from columns with
indices rk and apply SVD to it:

ERk = USVT

c) Update the atom dk to be the first column of U
and update the coefficient vector wRk to be the first
column of V weighted by the largest singular value
S(1, 1).

3. Set J = J + 1.

C. THE ADMM-LASSO ALGORITHM
ADMM is a general optimisation technique that gives a
flexible framework to solve a variety of convex optimisa-
tion problems including the LASSO problem. In particular,
ADMM introduces an auxiliary variable z to split the LASSO
objective terms into two parts, a decoupled `2 – loss objec-
tive function of w and a coupled `1 – consensus constraint
function of z to obtain [30]:

Minimise
1
2
‖x− Dw‖22 + λ ‖z‖1

Subject to w− z = 0 (4)

The augmented Lagrangian for the optimisation problem (4)
takes the form:

Lρ (w, z,u) =
1
2
‖x− Dw‖22 + λ ‖z‖1 + ρu

T (w− z)

+ ρ/2 ‖w− z‖22 (5)

where ρ > 0 is a penalty parameter and ρu is the dual
variable.

The ADMM algorithm consists of the three main recur-
sive steps: First, the augmented Lagrangian (5) is min-
imised with respect to: w(k+1)

:= argminw Lρ
(
w, z(k),µ(k)

)
.

Second, it is minimised with respect to: z(k+1) :=

argminz Lρ
(
w(k+1), z,µ(k)

)
. Finally, the dual variable is

updated via a simple linear update [30].
The first minimisation step updates w and takes the form

of a ridge regression (Tikhonov-regularised least squares)
problem. This later has the explicit solution:

w(k+1) = argmin
w

Lρ
(
w, z(k),µ(k)

)
=

(
DTD+ ρI

)−1 (
DTx+ ρ

(
z(k) − µ(k)

))
(6)

The second minimisation step results in an efficient soft
thresholding update for z:

z(k+1) = argmin
z

Lρ
(
w(k+1), z,µ(k)

)
= Tλ/ρ(w(k+1) + µ(k)) (7)

Tλ/ρ(·) is the term-by-term soft thresholding operator such
that:

Tλ/ρ(v)[n] =


v [n]− λ/ρ, v [n] > λ/ρ

0, |v [n]| ≤ λ/ρ

v [n]+ λ/ρ, v [n] < −λ/ρ

Or equivalently:

Sλ/ρ (v) [n] = sign (v [n]) ∗max(v [n]− λ/ρ, 0)

Finally, the update of the dual variable u can be expressed
explicitly as:

u(k+1) = u(k) + w(k+1)
− z(k+1) (8)

It is worth noting that in the case of a wide matrix D
(RN×K ), the Sherman-Morrison-Woodbury inversion for-
mula can be used to substitute

(
DTD+ ρI

)−1
by a smaller

matrix (I + 1
ρ
DDT )

−1
. In addition, updating the penalty

parameter ρ at each iteration can improve the convergence
and reduce its dependency on the initial guess ρ0.

D. EFFICIENT IMPLEMENTATION OF w–UPDATE
In practice, the first step (updating w) represents a compu-
tational bottleneck especially for large matrices, which call
for computationally more efficient methods to solve these
systems of equations. In our implementation, we used a
decomposition technique that exploits the special structure of
the matrix

(
DTD+ ρI

)
to update its inverse [32].
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In particular, applying the eigenvalues decomposition to
DTD gives:

DTD = U6UT (9)

where U is the orthogonal eigenvector matrix of DTD, while
6 is the real valued diagonal positive semidefinite matrix of
its eigenvalues σi, and T denotes the transpose operation.
It is easy, using some basic linear algebra, to show that the

matrices DTD and
(
DTD+ ρI

)
have the same eigenvectors

and that the eigenvalues of the later matrix are simply:6+ρI .
Therefore:(

DTD+ ρkI
)−1
= UT(6 + ρkI)

−1U (10)

The eigenvectors (matrix U) and the eigenvalues (diagonal
matrix 6) are pre-computed offline and the inverse update(
DTD+ ρkI

)−1
can be calculated quickly. In particular, the

inverse of the diagonal matrix (6 + ρkI) is the reciprocals
of its diagonal entries. One of the main advantages of using
this approach is that it does not need to calculate inverse of
the matrix within the learning iterations, which significantly
reduce the processing time as well as the complexity of the
implementation. The parameter ρk is updated in accordance
to the rule described in [30]. In addition, the speed of the
algorithm is further improved by exploiting the parallelism
of the matrix-vector multiplication as well as the vector oper-
ations. Moreover, the vector matrix multiplication DTx in
equation (6) is calculated only once at the outset.

E. PARAMETERISED-LORENZ CURVE AND
INEQUALITY MEASURES
In this section, we introduce two popular inequality measures
drawn from the theory of income distribution, namely the
Pietra (PI) and the Gini (GI) indexes.

The standard definitions of these inequality measures are
not valid for vectors with negative entries; therefore, absolute
values are used when applied as sparsity measures.

FIGURE 1. Lorenz curve.

Let w be a vector with its entries arranged in a descend-
ing order such that: w = [w{1},w{2}, . . . ,w{K }]. The
parameterised-Lorenz curve shown in Fig. 1 is an increasing
convex graphical representation of the cumulative sum ofw{j}

normalised by the `1 norm of w given by [27]:

3

(
i
K

)
=

1
‖w‖1

i∑
j=1

∣∣w{j}∣∣ , for i = 0, . . . ,K (11)

The GI is defined as the ratio of the area between the
45◦ line and Ap (w) and the area beneath the 45◦ line. This
is mathematically expressed as:

GI (w) =
B

Ap (w)+ B
= 2B = 1− 2Ap (w) (12)

GI takes values between 0 (the least sparse scenario where
all the elements of w are equal) and 1 (the most sparse
scenario where all the signal energy is concentrated in one
coefficient). In addition, the Gini index is quasi-convex in
|w {j}|, its value is independent of the size of the vector, and
it is scale-invariant and independent of the total energy of the
signal.

The PI, also known as the Relative Mean Devia-
tion (RMD), is a quasiconvex function of w defined as the
maximum vertical deviation between the equality line joining
(0, 0) to (1, 1) and the Lorenz curve. In mathematical terms,
the un-normalised PI can be expressed as one half of the
relative mean deviation:

P (w) =
∑K

i=1 |wi − w̄|
2w̄

(13)

F. CLASSIFICATION ALGORITHM
The main idea is that a relatively high value of the GI/PI
index of a sparse represented signal will be associated with
the dictionary learned from data belonging the same class.
The maximum index is then used to predict the correct class
of a test data set. The structure of the proposed classification
algorithm consists of the following steps:
Step 1: Learn q-dictionaries (D1,D2, . . . ,Dq) (q is the

number of classes) by solving (2). Each dictionary is learned
using the training data belonging to a specific class.
Step 2: Find q different sparse vectors (w1,w2, . . . ,wq) of

each new test signal, xt , by solving (3) for each dictionary Di
(i = 1, 2, . . . q).
Step 3: Use the GI/PI index to predict xt class label such

that:

Class label (xt ) = argmax (ψ(wi)) i = 1, 2, . . . q,

where ψ : RN
→ R is the Gini or Pietra index.

G. DATA COLLECTION AND PRE-PROCESSING
To evaluate the effectiveness of the proposed approach,
validation was carried out using the MIT-BIH Arrhythmia
Database. The data is bandpass filtered at 1-100 Hz and
sampled at 360 Hz to facilitate the elimination of the power
line interference using notch-filter. All the heartbeats in the
database were manually annotated and made available for the
users. In addition, fiducial point times are provided to locate
the R-peaks [33].
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A second-order notch-filter and two cascaded median fil-
ters of lengths 108 (0.3fs) and 216 (0.6fs) samples were
used to remove power line interference and baseline wander
from the ECG signal. The first median filter aimed at remov-
ing the QRS complexes and the P-waves from the ECG, while
the second filter was employed to remove the T waves. The
output of the second filter is subtracted from the original ECG
signal to obtain a corrected baseline ECG.

The Association for the Advancement of Medical Instru-
mentation (AAMI) recommendation emphasises the discrim-
ination of Ventricular Ectopic Beats (VEBs) from the other
three classes namely, Normal beats (N), Supraventricular
Ectopic Beats (SVEBs) and Fusion beats (F), [34]. Each
of the aforementioned categories contains different types of
arrhythmias as summarised in Table 1.

TABLE 1. Arrhythmia categories.

FIGURE 2. Exemplary waveforms of the two classes of QRS complexes
taken from record 106.

The exemplary data in Fig. 2, taken from record 106, shows
the within the class variability of the VEB class.

III. HARDWARE IMPLEMENTATION
The Zedboard is used for hardware implementation, which
contains two subsystems: Programmable Logic (PL) and

Processing Systems (PS). Both PL and PS are integrated into
a Xilinx Zynq-7000 XC7Z020 SoC [35].

The sparsifying matrices or dictionaries Di were first
learned using ECG QRS complexes training data in
MATLAB simulation environment and its right singular vec-
tors and singular values are stored in a set of data files.

The ADMM algorithm is first implemented in C++, and
then synthesised and translated into a hardware description
language (HDL). A set of pragma directives are used to opti-
mise the codes for hardware implementation, where the over-
all goal of the optimisation is to achieve the high throughput
architecture with minimal usage of hardware recourses [36].

Since arrays are implemented as block random access
memory (block-RAM) which has a maximum of two
data ports. This limits the throughput of a read/write
(or load/store) intensive algorithm. However, the band-
width can be improved by splitting the array (a single
block-RAM resource) into multiple smaller arrays (multiple
block-RAMs), which effectively increases the number of
ports. Therefore, the array U [N ][N ] is partitioned into f
small arrays in both dimensions, where each array has a size
of N /f × N/f (#pragma HLS ARRAY_PARTITION block
factor=f). Fig. 3 shows the partitioned arrays.

FIGURE 3. Partitioned arrays.

The proposed implementation uses 32-bit floating point
arithmetic. C/Resistor–Transistor Logic (RTL) simulation is
performed before exporting the RTL as a Vivado’s IP core.
The pre-synthesis resource report is used for design resource
exploration and performance estimation. The RTL is exported
as IP core to be synthesised and implemented in Vivado
(v2016.3). The proposed algorithm is implemented on a
Xilinx Zynq-7000 XC7Z020 all programmable SoC.

The solution is then exported as an IP core connected
with AXI4-Stream interface to the accelerated coherency port
(ACP) on AP SoC PS. The connection is made through a
direct memory access (DMA) core in the PL subsystem.
SDSoC (v2016.3) is used to interface the AP SoC PL hard-
ware, the peripheral, the DMA engine, an AXI timer as
well as other data mover logics. The SDSoC is also used to
design the AP SoC PS software to manage the peripherals and
loading the testing data from the external SD card, as shown
in Fig. 4.

Fig. 5 (a) and Fig. 5 (b) represent the results of sparse rep-
resentation and reconstruction of an abnormal QRS complex
extracted from record 106 in the database.
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FIGURE 4. Implementation overview.

FIGURE 5. (a) Original and reconstructed QRS complex from record 106,
(b) Sparse representation.

IV. PERFORMANCE EVALUATION
A. HARDWARE IMPLEMENTATION RESULTS
This subsection begins by reporting the Field-programmable
Gate Array (FPGA) hardware resources usage. Subsequently,
the software implementation (on CPU) and the hardware
implementation of the proposed algorithm are compared.
Finally, the comparison of the proposed solution with existing
hardware-based implementations is provided.

TABLE 2. FPGA resource utilisation.

The resource utilisation of the proposed implementation is
shown in Table 2.

We propose five HW implementations, presented and
named from factor= 1, 2, 4, 8, 16 in Table 2, where the factor

value decides howmany small arrays will be partitioned from
the original array. The required hardware resources are also
presented (look-up-table (LUT), flip-flop (FF), BRAM_18K
and DSP48E blocks). The number of elements and ratio
compared to available resources are given. All configurations
have been set at 100 MHz.

The first implementation (factor= 1) does not include any
synthesis directive for array partition for all the arrays in the
top function. It has the least resources usage compared to
other implementations. As a result of this, the loops cannot be
fully pipelined or unrolled due to the limitation of thememory
ports. Therefore, the processing time is the highest one. Along
with the increase of the value of factor, the resource usage is
increased dramatically, especially the usages of LUT and FF.
This is due to that the increase of the number of arrays
and multiplier/adders needed in the pipelines. The processing
time is reduced along with the increased usage of pipeline
and parallelism in the implementations, once it reaches its
optimal, the downtrend speed is slowed.

As it can be seen from Table 2, since all the arrays in the
loops have been partitioned with different factors, the usage
of BRAMs and DSPs is dominant due to the duplications
of the arrays and multiplications. The usage of FF and LUT
is increased significantly when the partition factor is greater
than 4. In addition, the DATAFLOW pragma has been used
to pipeline the operation blocks; a ping-pong buffer has been
placed between every two operation blocks to maintain the
data rate. Therefore, additional memory blocks are added to
the design. The major benefit of doing this is to make the
functions or loops at the top level operate in parallel and
improve the overall throughput of the design. Fig. 4 shows
the PL implementation results of resources utilisation and
processing time with different optimisation pragmas.

Compared to the average processing time per iteration
using PC software implementation, the hardware implemen-
tation of the proposed approach has been reduced from
1649 us to 693 us which makes it twice faster. On average,
the algorithm converges in 100 iterations.

TABLE 3. Estimation of power consumption.

The details of estimated power consumption of the
hardware implementation of the proposed algorithm are
summarised in Table 3. Compared to the Processing
System 7 (PS7), the custom logic blocks consume only small
portions of the total power consumption due to the efficient
usage of the on-chip resources. To partition the arrays, more
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TABLE 4. Performance of the proposed classification algorithm.

FIGURE 6. Implementation results and timing of the hardware IP.

logic and memory blocks are used, which is reflected in the
energy utilisation results of signals and BRAMs, Fig. 6. The
total on-chip power consumption estimations for implement-
ing the classifier is 0.934 W out of 2.593 W.

B. CLASSIFICATION PERFORMANCES
To assess the merits of the proposed algorithm, we per-
formed the classification using all the records containing
VEBs beats from the MIT-BIH database [14] using three
classification scenarios. In the first scenario, we randomly
selected 100 QRS complexes from each subject, represent-
ing each category for training and the remaining beats for
testing using 10 runs experiments (we used patient-specific
approach). We used a window of 61 samples centred at the
R-peak to extract the QRS complexes. In the second sce-
nario, we randomly selected 1200 QRS complexes from each
category from a pool of data containing all the records to
learn the dictionaries. The remaining heartbeats are used for
testing. In the last scenario, the database is split into two inde-
pendent datasets. The first dataset is composed of patients’
records with identification numbers 106,116,119 and 208.
The second data set is composed of patient’s records 201,
203, 207, 215 and 232. The first dataset was used to learn
the dictionaries while the second was held for testing.

Fig.7 is a graphical representation of the Lorenz curve of a
VEB test QRS complex (Category 2) in the transform (sparse)
domain.

FIGURE 7. Lorenz curves: (a) Test QRS complex for Category 2.

The good separation capability of the GI and the PI indexes
between the VEB class and the other arrhythmia classes is
evident in this test data. To be more specific, the black Lorenz
curve represents the sparse representation of the VEB QRS
complex calculated using a dictionary learned from VEB
data (D2). Meanwhile, the red Lorenz curve represents its
sparse representation using a dictionary learned from data
belonging to the other classes (D1).
The details of the distribution of heartbeats in each record

are summarised in Table 4. The first column represents the
identification number of the patients in the dataset. The sub-
sequent two columns provide the number of beats in each
category. The last columns provide the binary classification
results of VEB (V) against the other classes (N, S and F) in
terms of accuracy for the training and test sets respectively.

It is clear from the results that the selection of the training
and the test sets plays a key role in the performances of
the classifier. In the first scenario, the proposed algorithms
(Gini based/Pietra based) achieved very good classification
accuracies, though little ECG data was used for training. The
relatively low classification accuracy of record 203 records
compared to other records due to the morphological and
temporal similarities between QRS belonging to the two cat-
egories of arrhythmias, the relatively small number of beats
used for training (6.74 % of the total number of beats) and the
large variation in the morphology of PVC beats.

The relatively low classification accuracy of record
203 records compared to other records due to the morpho-
logical and temporal similarities between QRS belonging to
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the two categories of arrhythmias, the relatively small number
of beats used for training (6.74 % of the total number of
beats) and the large variation in the morphology of PVC
beats.

As expected, the achieved accuracies with the second sce-
nario, widely used in the literature, were above 80% on the
test set which is lower than the first scenario. The last scenario
is the most challenging. The performances are comparable
with those of more complex approaches such as linear dis-
criminant classifier [5], SVM [7], weighted SVM [7] and
hierarchical SVM [17] which achieved overall accuracies in
the range of 80%. It is worth noting that the execution time
of the Pietra and Gini indexes is neglected compared to the
execution time of the ADMM algorithm.

V. CONCLUSION
This paper presented an efficient algorithm for arrhythmia
classification. The results were very encouraging as they
are comparable to many state-of-the-art algorithms. The
strength of the method comes from the well-definiteness
(Quasi-convexity) of the used indexes and their simplicity of
implementation. The use of matrix decomposition technique
that exploits the special structure of symmetric matrices facil-
itated the hardware implementation of the ADMM algorithm.
The validation was carried out on the MIT-BIH Arrhythmia
Database using learned specifying matrices. Our implemen-
tation is suitable for low-power real-time applications and
can be extended to several other sparse based classification
problems.
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