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Abstract: We consider a modified version of the spin-flip model (SFM) that describes optically
pumped quantum dot (QD) spin-polarized vertical-cavity surface-emitting lasers (VCSELs).
Maps showing different dynamical regions and those consisting of various key bifurcations
are constructed by direct numerical simulations and a numerical path continuation technique,
respectively. A comparison between them clarifies the physical mechanism that governs the
underlying dynamics as well as routes to chaos in QD spin-VCSELs. Detailed numerical
simulations illustrate the role played by the capture rate from wetting layer (WL) to QD ground
state, the gain parameter, and the amplitude-phase coupling. By tuning the aforementioned key
parameters in turn we show how the dynamical regions evolve as a function of the intensity
and polarization of the optical pump, as well as in the plane of the spin relaxation rate and
linear birefringence rate, which is of importance in the design of spin lasers promising potential
applications. By increasing the capture rate from WL to QD our simulation accurately describes
the transition from the QD spin-VCSEL to the quantum well case, in agreement with a previous
mathematical derivation, and thus validates the modified SFM equations.
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1. Introduction

Instabilities and nonlinear dynamics in semiconductor lasers, driven by external perturbations,
have received considerable attention [1–3], due to their potential applications in chaos-based
communications [4, 5], random-number generation [6,7], chaotic lidar [8], microwave generation
[9], reservoir computing [10], and compressive sensing [11]. In recent years, studies of nonlinear
dynamics and/or its applications have spread over a wide variety of novel laser structures,
including mid-infrared quantum cascade lasers [12], mutually-coupled nanolasers [13], free-
running quantum-dot (QD) vertical-cavity surface-emitting lasers (VCSELs) [14], solitary
quantum-well (QW) VCSELs with anisotropic strain [15], and photonic crystal Fano lasers [16].
An in-depth understanding of instabilities and nonlinear dynamics is crucial both for uncovering
the dominant physical mechanisms from a fundamental point of view, and for locating specific
dynamical regimes in the parameter space optimized for the above-mentioned applications.
Among many other visualization techniques available to laser dynamics [17–25], bifurcation
analysis serves as an efficient means to trace the stability boundaries and clarify the richness of
the dynamical behavior, and thus has been widely used in the literature (see [26] and references
therein).
Unlike most conventional laser systems, spin-polarized VCSELs can yield various forms of

instabilities and even allow for the appearance of chaos [27], without the need of any external
perturbation feedback or injection scheme. Early studies of spin-VCSELs have mainly been
concerned with continuous wave (cw) operation [28–39], in which interest has centered on
superior properties such as threshold reduction and the ease of spin control of the lasing output,
compared with their conventional counterparts. Moreover, spin-VCSELs offer faster polarization
dynamics oscillating at a frequency mainly determined by the amount of birefringence in the
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cavity [40–42] and, in a very recent report, it has been demonstrated that direct modulation
frequencies far beyond 100 GHz can be expected through polarization modulation in these
lasers [43]. Interest in spin-VCSELs includes the use of either magnetic contacts for electrical
injection [34] or carrier generation via optical pumping using circularly polarized light [35],
and their implementation with either QW [30,31,35] or QD [32,34,44,45] materials. In order
to realize their potential gains an understanding of the role of the key parameters is of vital
importance. For example, in spin-VCSELs increasing the birefringence in the cavity can lead to
the enhancement of frequencies of polarization oscillations [41], e.g., by applying mechanical
strain to the VCSEL structure. In contrast, strong birefringence is undesirable for a high degree
of circular polarization [29, 46]. In the case of QW spin-VCSELs, understanding instabilities and
complicated dynamical behavior has been a topic of intense research. This motivates research on
the characterization of dynamics using various approaches, including asymptotic analysis [36],
the calculation of the largest Lyapunov exponent (LLE) [27], and bifurcation analysis combining
direct numerical simulations and path numerical continuation [47]. In particular, the latter method
has provided a full picture of various dynamics accessible to QW spin-VCSELs, and uncovered
rich bifurcation scenarios leading to chaos as well as certain auxiliary phenomenon [47], e.g.,
hysteresis. Surprisingly, little is known about the dynamical instabilities and principal bifurcations
that guide the system operation in the case of QD spin-VCSELs. Only limited knowledge of
instabilities and effects of some key parameters on the dynamics of QD spin-VCSELs has been
provided in a single publication from our group [48], where the LLE method is used as a gauge
for the dynamic behavior.

Although at first sight the issue of clarifying various dynamics and their parameter dependence
in QD spin-VCSELs might appear to be settled by using the LLE method [48], a closer inspection
of the underlying bifurcations unveils the physics governing the dynamics and the important
role played by some key parameters in the modified version of the well-known spin-flip model
(SFM). For example, bifurcation analysis allows for the identification of the dominant bifurcations
occurring at the boundaries of two adjacent dynamical regimes in the parameter space, and
the evolution of cw, oscillatory behavior (including period-one (P1), period-two (P2), and even
higher periodic states), quasiperiodicity, and chaos as a control/device parameter is varied [26]
In this paper, we carry out a systematic study on the bifurcations in QD spin-VCSELs described
by a modified version of the SFM equations. Specifically, direct numerical simulations and path
numerical continuation methods identify the bifurcations which allow us to provide insight into
the physics underlying the various dynamics. High-resolution bifurcation diagrams reveal the
role played by some key parameters in each dynamical region mentioned above. Additionally, our
method allows us to map out the transition from the QD case to the QW case, further validating
the modified SFM equations used throughout this study.

2. Simulation model

We investigate amodel system for an optically pumped spin-polarizedVCSEL that incorporatesQD
gain regions. Based on a QD spin-VCSEL model developed by Adams and Alexandropoulos [48]
we use a modified version of the well-known spin-flip model which has been used to study
instabilities as well as a form of polarization switching [38], i.e. the sign of the output ellipticity
could switch from being the same as that of the ellipticity of the pump, to being of the opposite
sign, which successfully reproduces the experimental observations of a 1300nm QD spin vertical
external-cavity surface-emitting laser operating at room temperature [32]. The dynamical variables
are the normalized conduction band carrier concentrations (n) with subscripts WL (wetting
layer) and QD (quantum dot ground state), and superscripts + (spin-down) and − (spin-up), and
complex electric fields E+ (E− ) representing right (left) circular polarization (RCP and LCP).
Thus, the set of rate equations for the QD spin-VCSEL is given by [37, 38, 48, 49]
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dE±
dt
= κ

(
n±QD − 1

)
(1 + iα) E± −

(
γa + iγp

)
E∓, (1)

dn±WL

dt
= η±γn + h

γn
2
− γon±WL

[
h − n±QD

2h

]
∓ γj

(
n+WL − n−WL

)
, (2)

dn±QD

dt
= γo

n±WL

h

(
h − n±QD

)
− γn

(
h + n±QD

)
∓ γj

(
n+QD − n−QD

)
− 2γnn±QD

���E±���2 . (3)

Here, we assume that spin relaxation of carriers within the WL and the QD occurs at the same
rate γj , the carrier capture rate from WL to QD is denoted by γo, and the polarized fields are
coupled by the birefringence rate γp and also by the dichroism (gain anisotropy) γa. To simplify
the calculation but still maintain the accuracy, some further assumptions have been made [48,49]:
recombination of carriers in the WL is neglected since it is assumed that capture into the ground
state of the QD is the dominant process; effects of excited states in the QD are not included (but
note that excited states have been included in a development of the model by Qasaimeh [50]), nor
are escape of carriers from the QD back to theWL; Pauli blocking of carriers pumped into the WL
is neglected, but the blocking effect of capture into the QD is included. The other parameters are
the photon decay rate κ, the linewidth enhancement factor α, the right (left) circularly polarized
component of the pump η+ (η− ) , the recombination rate of carriers from the QD ground state
γn, and the normalized gain coefficient as h = vgΓaNDτp, where vg is the group velocity, Γ is
the optical confinement factor, a is the differential gain, ND is the density of dots per volume and
τp = (2κ)−1 is the photon lifetime.
The ordinary differential equations given by Eqs. (1)-(3) were numerically integrated with

a fourth-order Runge-Kutta method with constant time-step size ∆t = 1 ps. The results are
mainly presented in the plane of the pump intensity η (= η+ + η−) and pump polarization P
(= (η+ − η−) /(η+ + η−)). In addition to direct numerical simulations, we carried out a numerical
path continuation study and identified the key bifurcations and also mapped them in the (η,P)
plane, where the standard continuation package AUTO was used [51]. Due to the symmetric
properties present in the system, one has to perform a variable transformation and obtain reduced
coordinate equations before using the continuation package AUTO. Following the method
introduced in [47], we defined two new variables as

Ω =

���E+���2 − ���E−���2 , (4)

Q = E−E
∗
+. (5)

Rewriting the complex variable Q by using the real/imaginary decomposition Q = QR + iQI ,
Eq. (1) becomes

dΩ
dt
= κ

(
n+QD + n−QD − 2

)
Ω + κ

(
n+QD − n−QD

) √
Ω2 + 4 |Q |2 + 4γpQI, (6)

dQR

dt
= κ

(
n+QD − 1

)
(QR + αQI ) + κ

(
n−QD − 1

)
(QR − αQI ) − γa

√
Ω2 + 4 |Q |2, (7)

dQI

dt
= κ

(
n+QD − 1

)
(QI − αQR) + κ

(
n−QD − 1

)
(QI + αQR) − γpΩ. (8)

Equations (2), (3), (6)-(8) can be implemented and numerically solved in the continuation
package AUTO, which allows tracking of the stable or unstable steady-state and periodic solutions
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and detection of various bifurcations. It is worth noting that |E+ |2 and |E− |2 in Eq. (3) can be
written as 0.5(Ω +

√
Ω2 + 4|Q |2) and 0.5(−Ω +

√
Ω2 + 4|Q |2), respectively.

Unless specified otherwise, all the numerical simulations were performed with a basic set of
parameters which are similar to those already been used in previous works [37, 48]: κ = 250
ns−1, α = 3, h = 1.1995, γo = 400 ns−1, γj = 10 ns−1, γp = 20 ns−1, γa = 0 ns−1, and γn = 1
ns−1. We would like to point out that, since the results computed from RCP and LCP components
are exactly the same, only those for the RCP component are presented.

3. Results and discussion

Before studying the various bifurcations, we first discuss how a QD spin-VCSEL loses stability
from cw operation as one control parameter is varied. Since we consider optical excitation as the
means of spin injection, there exist two fully controllable parameters, i.e., pump intensity η and
pump polarization P. Following the method presented earlier, we carried out a stability analysis
of the steady-state solutions of Eqs. (1)-(3). It has been demonstrated that the modified SFM
allows the existence of two types of equilibrium, i.e. in-phase and out-of-phase, depending on the
phase difference according to the “continuation” of 0 or π [37].
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Fig. 1. (a) The eigenvalues λ of the in-phase solution in the complex plane as P increases
from 0 to 1, with the trajectory direction of the critical eigenvalues λ indicated by the arrows.
(b) The real parts of the critical eigenvalues λ for the in-phase (with positive slope) and
out-of-phase (negative slope) solution as a function of P. In both panels, η = 1.5.

Figure 1(a) shows the eigenvalues λ responsible for the in-phase solution in the complex
plane for η = 1.5. They were calculated from the coefficient matrix in Eq. (9) presented in [37]
when the pump polarization is gradually changed from linear (P = 0) to right circular (P = 1).
From this figure we can observe a strong P dependence of the stability of the in-phase solution.
Increasing P leads to destabilize the in-phase solution as the real parts of the pair of eigenvalues
become positive (indicated by arrows). This also implies that the in-phase solution is destabilizing
through a supercritical Hopf bifurcation as a pair of complex conjugate eigenvalues crosses the
complex plane imaginary axis. The results for the eigenvalues λ of the out-of-phase solution in
the complex plane are not shown, but it is worth noting that the effect of P on the out-of-phase
solution is stabilizing it, opposite to the in-phase case. This can be confirmed by comparing
the evolution of the critical eigenvalue in both cases, as shown in Fig. 1(b). It is clear that the
in-phase solution and the out-of-phase solution are stable in region I and region III, respectively,
whereas in region II both solutions are unstable, probably giving rise to oscillatory behavior
and even chaos. Hence, crossing the boundary between regions I and II or regions II and III
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indicates that the system undergoes a supercritical Hopf bifurcation, which forms the instability
threshold. That is, at the critical value of the control parameter, the stationary solutions would
destabilize to time-periodic or more complicated dynamics. A bifurcation diagram obtained from
direct numerical simulations allows us to see more clearly the instability threshold and further
bifurcation scenarios leading to complicated dynamics.
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Fig. 2. Bifurcation diagram with η as the control parameter calculated for (a) P = 1, (b)
P = 0.6, (c) P = 0.4, and (d) P = 0.1. In all panels, the extrema (maxima and minima) of
the intensity time series are shown as dots. Other parameters are the same as those given at
the end of section 2.

Some representative examples of one-parameter bifurcation diagrams are shown in Fig. 2,
where successive extrema (maxima and minima) of the laser intensity as a function of η are
plotted for different values of P. In all cases, the system becomes unstable through a Hopf
bifurcation, representing the instability threshold, and yields periodic oscillations or even more
complicated intensity waveforms if further bifurcations continue. These confirm the results in
Fig. 1 which correspond to the time-independent prediction. Some other important features
should be emphasized. For large P, roughly P ≥ 0.4 shown in Figs. 2(a)-2(c), the system output
is dominated by the out-of-phase stationary solution before crossing the instability threshold ,
while for small P, the system operates in the cw determined by the in-phase stationary solution
instead [see Fig. 2(d) for P = 0.1]. Actually, these have also been predicted in Fig. 1. In Figs.
2(b) and 2(c), our laser exhibits period-doubling dynamics in the first part of increasing η and
especially in Fig. 2(c), a common period-doubling route to chaos is clearly observed. In contrast,
the laser may become chaotic through the break-up of a torus, resembling a quasiperiodic route
to chaos, as shown in Fig. 2(d). It is interesting to find that the QD spin-VCSELs allow for these
two bifurcation scenarios leading to chaos, which have also been identified in the case of QW
spin-VCSELs [47].
For the results considered so far only one control parameter was varied. We next examine

the instability threshold of the system in the (η,P) plane. This is important since it provides
information about the boundary between stability and instability in the parameter space. To this
end, we used the continuation package AUTO, with which bifurcations can be detected and
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followed in parameter space. As indicated in [48], two important parameters are the capture rate
fromWL to QD ground state γo and the gain parameter h, which are specific to QD spin-VCSELs.
For this reason it is of interest to check the dependence of the instability threshold on these two
parameters.

In Fig. 3 we show the two-parameter continuation of the Hopf bifurcations H1 (arising from the
out-of-phase solution) and H2 (from the in-phase solution). From this figure we observe that two
instability boundaries in the (η,P) plane. To the right of the H1 boundary we see the time-periodic
or even more complicated dynamics, to the left cw operation. A similar result is seen with the
H2 boundary. This figure also shows that the value of both parameters plays an important role
in the instability threshold. More specifically, increasing γo or h greatly shrinks the size of the
instability region, even though the upper limit (H1) and lower limit (H2) move oppositely as
indicated by arrows as the parameter is increased. In fact, some preliminary evidence for the
suppression of the region of instability through increasing one of these two parameters was seen
using the LLE method [48], but here bifurcation analysis provides further insight into the physics
underlying the shrinkage.
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Fig. 3. Bifurcation diagrams for the Hopf bifurcation (instability threshold) in the (η,P)
plane. In (a), three values of γo are considered: γo = 400 ns−1, 600 ns−1, and 1000 ns−1,
and h = 1.1995. In (b), three values of h are considered: h = 1.1995, 2 and 4, and γo = 400
ns−1. In both panels, the upper limit (H1) occurs on the branch of the out-of-phase solution,
while the lower limit (H2) stems from the in-phase solution. Other parameters are the same
as those given at the end of section 2.

In addition to the Hopf bifurcation which accounts for the instability threshold, we now
consider further bifurcations including period-doubling, saddle node of limit cycle and torus,
which are of particular importance for finding the locations of more complex dynamics and
chaos. Figures 4(a) and 4(b) display two-parameter bifurcation diagrams in the (η,P) plane for
wetting layer capture rates γo = 400 ns−1 and 600 ns−1, respectively. Only bifurcations forming
the backbone of the underlying dynamics are shown to keep the figure simple. In particular, a
web of curves for Hopf (H), period-doubling (PD1,PD2), torus (TR), and saddle-node of limit
cycles (LPC) is illustrated in these figures. Here PD1 and PD2 denote two successive period
doublings of a limit cycle of basic period. Higher period-doubling curves are not followed since
PD2 curves already provide adequate information on locating chaos [47]. However, they should
lie inside each other (i.e. similar to the relation between PD1 and PD2) and accumulate according
to Feigenbaum’s universal scaling law [26], and their discussion is beyond the scope of this
work. The comparison of Figs. 4(a) and 4(b) shows that the overall structure of the bifurcation
remains unchanged despite the fact that the region allowing oscillatory excitation shrinks in
size, bifurcation curves shift slightly, and differ slightly in their appearance as the capture rate

Vol. 26, No. 11 | 28 May 2018 | OPTICS EXPRESS 14643 



is increased. This situation holds for a wide range of γo , but the detailed discussion about the
range is not the main focus of the current article.
Two-parameter bifurcation diagrams can also be obtained with the aid of direct numerical

simulations of the rate equations. Specifically, the different dynamical regimes are identified from
the extrema (maxima and minima) of the intensity time traces, in which cw, P1, P2, and complex
dynamics are identified as a constant intensity, two intensity extrema, four intensity extrema, and
even more extrema, respectively. Following the definition in [47], the cw, P1, and P2 are marked
in purple, blue, and cyan, respectively, while other colors are used to represent complicated
dynamics including chaos where the number of extrema exceeds 4 and gradually increases using
green to yellow, red, and dark red. In Figs. 4(c) and 4(d) we present such bifurcation maps for
γo = 400 ns−1 and 600 ns−1 in the parameter space consistent with that in Figs. 4(a) and 4(b).
A comparison between Figs. 4(c) and 4(d) indicates that the complicated dynamical region is
greatly expanded, but only limited to that confined by the P2 region. That means that increasing
the capture rate is indeed beneficial to have a wider region of complex dynamics and chaos.
Furthermore, comparison with Figs. 4(a) and 4(b) shows that the current bifurcation analysis
uncovers various boundaries of complex dynamical regions, including higher period-doubling
curves, torus curves, as well as curves representing saddle-node of limit cycles. This kind of
information cannot be extracted by using the LLE method [48]. In addition, our two-parameter
bifurcation diagrams also unveil different bifurcation routes to chaos, depending on from which
side the maps are entered. For instance, it is possible to encounter quasiperiodic oscillations and
then chaos by crossing the maps from left to right at low values of P, roughly P ≤ 0.1; otherwise,
bifurcation scenarios are associated with a period-doubling route to chaos.
It should be note that in Figs. 4(c) and 4(d), the number of intensity extrema was used to

distinguish different dynamic regions; however, a large value of this measure does not necessarily
indicate chaotic emission. For this reason, we employ the 0-1 test for chaos to separate chaotic
emission from nonchaotic emission [52]. This calculation is fast and easy to implement and
interpret, giving a result of 1 for chaos and 0 for other dynamics. The results of this 0-1 test are
illustrated in Figs. 4(e) and 4(f), corresponding to γo = 400 ns−1 and 600 ns−1, respectively.
Comparison with mapping results in Figs. 4(c) and 4(d) shows that the regions of complicated
dynamics identified via our bifurcation analysis overlap with those obtained from the 0-1 test for
chaos, indicating that our method to calculate high-resolution bifurcation diagrams provides a
very precise prediction of chaos. This also coincides with the LLE calculation. For this reason, in
what follows we rely solely on the high-resolution bifurcation maps consisting of the directly
simulated dynamical regions to address the influence of key parameters on the dynamics.
Next we investigate whether the transition from QD to QW occurs as we approach the limit

when the capture of carriers from the WL to GS is instantaneous, i.e., γo → ∞, which was
predicted by taking the limit of the QD SFM equations, but was not attempted by estimation of
the LLE [48]. In order to investigate the existence of such possible transition numerically, we
increased the capture rate γo to 7000 ns−1, an order of magnitude larger than expected values.
The resulting bifurcation diagram is illustrated in Fig. 5(a). When compared to Figs. 4(c) and
4(d), one can see that the upper limit of the oscillatory region is remarkably compressed and the
P2 region (cyan) greatly shrinks; however, the regions corresponding to more complex dynamics
and chaos are dramatically expanded and finally merge together, clearly different than the case
for smaller capture rates, where separate islands of complex dynamical regions were seen. Fig.
5(b) shows the bifurcation diagram obtained from the SFM of the QW spin-VCSELs and using
the same parameters as in Fig. 5(a), except for the ‘effective’ spin relaxation rate γs = γn + 2γj
as defined in [53]. Not surprisingly, the two bifurcation diagrams are in excellent agreement with
each other, both for the various dynamical regions and the bifurcation boundaries. Thus result
shown in Fig. 5 suggest that given suitable parameters our bifurcation analysis permits a detailed
comparison between the SFM for the QD spin-VCSEL and that for the QW case.
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Fig. 4. Bifurcation diagrams obtained by using the package AUTO and (c,d) obtained from
direct numerical simulations and represented in colors in the (η,P) plane. (e,f) maps obtained
by using the 0-1 test for chaos. Left: γo = 400 ns−1; right: γo = 600 ns−1. In (c,d), purple
stands for cw, blue for P1, cyan for P2, and other colors for complicated dynamics. In (e,f),
red for chaos, and others for nonchaotic states. Other parameters are the same as those given
at the end of section 2.

As becomes evident from Fig. 2, the stability properties of the QD spin-VCSEL also strongly
depend on the important gain parameter h. Furthermore, Fig. 4 in [48] indicates that increasing h
results in the enhancement of chaotic region and the whole unstable region contracts. However, it
remains unclear what would take place at relatively high values of h. To this end, we generate
two-parameter bifurcation diagrams using a wider range of h values. For illustrative purposes,
the results for two different but fixed values of h are shown in Fig. 6. A comparison between
Fig. 6(a) (h = 2) and Fig. 4(c) (h = 1.1995) shows that chaos is indeed enhanced to some
extent with increasing h, consistent with the observation based on the LLE method. As h further
increases, roughly above 4, the boundaries (bifurcations) and the underlying dynamics in each
region in the parameter space remain unchanged, independent of the exact value of h. One
example is displayed in Fig. 6(b), where h = 10. The parameter h combines the key fundamental
quantities determining laser threshold, namely the maximum optical gain per unit length if all QD
ground states were occupied, ΓaND , and the photon lifetime, τp . The normalization of the carrier
densities includes h in such a way that h > 1 is required for lasing when the QD ground states
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Fig. 5. Bifurcation diagrams obtained from direct numerical simulations and represented in
colors in the (η,P) plane for (a) the QD spin-VCSEL with γo = 7000 ns−1 and (b) the QW
spin-VCSEL. Other parameters are the same as those given at the end of section 2 and color
codes are the same as in Fig. 4.

Fig. 6. Bifurcation diagrams obtained from direct numerical simulations and represented in
colors in the (η,P) plane for (a) h = 2 and (b) 10. Other parameters are the same as those
given at the end of section 2 and color codes are the same as in Fig. 4.

are populated by capture of carriers from the wetting layer. This condition would be ensured
by suitable cavity and material design, but beyond this there is freedom to increase h if this is
beneficial for other design considerations. Thus h can be used as a guide to the resultant nonlinear
dynamic behavior, to identify the narrow design range over which some engineering control of
the stability characteristics is possible, or for large h to specify the fixed regions of dynamics.
The two parameters just described are specific to the QD spin-VCSEL. In a broader context,

it is of interest to study the influence of other parameters that are also present in conventional
VCSELs on the lasing dynamics using high-resolution bifurcation diagrams. For illustrative
purposes, we now focus on two other important parameters in the SFM, viz. the spin relaxation
rate γj and the birefringence rate γp . Figures 7(a)-7(c) present the results in the (γj ,γP) plane for
three different values of P with η = 3. For large P (P = 1), cw emission and P1 oscillations are
only seen in the (γj ,γP) plane using the basic set of parameters we have chosen [see Fig. 7(a)].
As P is reduced (P = 0.6), a small portion of regions corresponding to P2 and higher-periodic
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Fig. 7. Bifurcation diagrams obtained from direct numerical simulations and represented in
colors in the (γj ,γp) plane for (a-c) h = 1.1995 and (d-f) 2, where (a,d) P = 1, (b,e) 0.6,
and (c,f) 0.2. In all panels η = 3. Other parameters are the same as those given at the end of
section 2 and color codes are the same as in Fig. 4.

oscillations or other irregular dynamics arises [see Fig. 7(b)]. For even smaller values of P, e.g.
P = 0.2, the system allows for complicated dynamics and chaos as evidenced from the bifurcation
diagram shown in Fig. 7(c). In all cases, the oscillatory region resembles the letter L, so we call
this L-shaped region. As can be seen from the figure, the L-shaped region is confined by the
Hopf bifurcation boundaries and, is shifted to the left of the bifurcation map (the location of
smaller γj) as P is decreased. A closer inspection of these results indicates that smaller values of
γj , γP , and P are desirable to find more complicated dynamics in the QD spin-VCSEL. Taking
into account the generality of these findings, we considered the case of a slightly higher gain
parameter h = 2 and the corresponding results are shown in Figs. 7(d)-7(f). Similarly, we see
the appearance of the L-shaped region, its tunability versus P, and the existence of complicated
dynamics on basis of small values of γj , γP , and P. These results suggest that this is a generic
feature of the lasing dynamics in the QD spin-VCSEL.
Finally, we consider another important parameter, i.e., the linewidth enhancement factor α,

accounting for the amplitude-phase coupling, which has been widely studied in various laser
configurations in the literature [26, 54–56]. We use our same basic set of parameters in Fig. 8(a),
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Fig. 8. Bifurcation diagrams obtained from direct numerical simulations and represented in
colors in the (η,P) plane for (a-c) h = 1.1995 and (d-f) 2, where (a,d) α = 4, (b,e) 2, and
(c,f) 1. Other parameters are the same as those given at the end of section 2 and color codes
are the same as in Fig. 4.

except for a slightly larger linewidth enhancement factor (α = 4). We find P2 and other irregular
dynamics are enhanced and their regions are greatly expanded when compared to Fig. 4(c) for
α = 3. This is an expected feature since increasing α enhances amplitude-phase coupling effects,
which is a driving force for complicated dynamics. In contrast as the linewidth enhancement
factor is slightly reduced (α = 2), the whole instability region is suppressed to some extent,
and notably the regions of P2 and more complex dynamics dramatically shrink in size; see Fig.
8(b). For an even smaller value (α = 1), the whole oscillatory region bounded by two Hopf
bifurcation curves shrinks remarkably, as shown in Fig. 8(c). We would like to point out that
when α = 0 the laser operates in cw emission in the whole parameter space for the parameter
values considered (not shown here). For the same purpose as in Fig. 7, we here also considered
the case of h = 2. The results are depicted in Figs. 8(d)-8(f). Once again, with the help of the
high-resolution bifurcation diagrams, we clearly see that increasing α leads to the enhancement
of complicated dynamical regions, while decreasing α tends to stabilize the output emission in
the QD spin-VCSEL.
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4. Conclusion

In conclusion, we have analyzed dynamical properties of the QD spin-VCSEL, which is described
by a modified version of the well-known SFM. To the best of our knowledge, we have presented
the first demonstration of various bifurcation structures in this specific laser system, which is
essentially important for gaining insight into the physics from the fundamental point of view as
well as finding specified dynamical regions supporting various potential applications. In particular,
we have combined the direct numerical simulations and path numerical continuation methods and
mapped out the dynamical regimes including cw, periodic and chaos mainly in the pump intensity
and polarization space as well as in the plane of the spin relaxation rate and the birefringence rate.
In particular we highlight and discuss the influence of key parameters of the dynamic behavior
of spin VCSELs, including the capture rate from the WL to the QD, the gain parameter, the
spin relaxation rate, the birefringence rate, and the linewidth enhancement factor. Moreover, our
bifurcation analysis has also allowed for the comparison between the QW and QD case, where
a smooth transition from the QD case to the QW case was clearly observed by choosing the
limiting case when the capture of carriers from the WL to the QD becomes instantaneous. As
such, compared to our previous report using an LLE calculation [48], the current study provides
a more comprehensive understanding of the rich dynamics, the bifurcations, and their parameter
dependence in the QD spin-VCSEL. Moreover, as QD technology matures it reveals the potential
via the additional degrees of freedom in QD VCSELs for controlling the dynamic characteristics.

Funding

Engineering and Physical Sciences Research Council (Grant No. EP/M024237/1).

Vol. 26, No. 11 | 28 May 2018 | OPTICS EXPRESS 14649 




