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Abstract

In this thesis, we investigate analytically and numerically bifurcations of localized

solutions in discrete systems, i.e., the discrete Swift-Hohenberg, an optical cavity

equation, and the discrete Allen-Cahn equation, which have infinitely multiplicity

called homoclinic snaking.

First, we study the discrete Swift-Hohenberg equation with cubic and quintic non-

linearity, obtained from discretizing the spatial derivatives of the Swift-Hohenberg

equation using central finite differences. We investigate the discretization effect on

the bifurcation behavior, where we identify three regions of the coupling parameter,

i.e., strong, weak, and intermediate coupling. In the intermediate coupling region,

multiple Maxwell points can occur for the periodic solutions and may cause

irregular snaking and isolas. Theoretical analysis for the snaking and stability of

the corresponding solutions is provided in the weak coupling region.

Next, we study time-independent solutions of an optical cavity equation with

saturable nonlinearity. When the nonlinearity is of Kerr-type (i.e., cubic), one

obtains the discrete version of Lugiato-Lefever equation. The equation admits

uniform and localized solutions. Localized solutions can be formed by combining

two different uniform states, which can develop a snaking structure in their bi-

furcation diagram when a control parameter is varied, i.e., homoclinic snaking.

b-shaped isolas may also occur when the background of localized states disappear

at a certain bifurcation parameter value. The semi-analytical approximation is also

proposed to determine the stability of the corresponding solutions.

Finally, we present a study on time-independent solutions of the two-dimensional

discrete Allen-Cahn equation with cubic and quintic nonlinearity. Three different

types of lattices are considered, i.e., square, honeycomb, and triangular lattices.

Localized solutions of discrete Allen-Cahn equation also can be formed by com-
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bining two different uniform states. We introduce an active-cell approximation,

which is extended from the one-active site approximation in one-dimensional case

for a weakly coupled system.
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Chapter 1

Introduction

1.1 What is pattern formation?

Patterns are distinguishable regularities of structure in the natural world [4, 5].

The pattern or organised complexity of structure needs not appear from something

complicated, but it could be originated by simple physical laws. In general, there

is no mathematical precise definition of patterns. One can say that patterns are

related to repetition of similar structures and typically extended in space or time.

1.2 History

Research on patterns has a long history and goes back to ancient times with the

study of geometry [15]. In the following, we will only name several figures from

the 19th and 20th centuries and briefly discuss their results, that we find to be

relevant to our study.

In 1873, Belgian physicist Joseph Plateau developed a minimal surface concept,

namely a surface that locally minimizes its area from examining soap film (thin

layers of liquid that are enveloped by air) [75].

1



2 Introduction

Between 1899-1904, German biologist and artist Ernst Haeckel illustrated

hundreds of various organisms and emphasised their symmetry in Kunstformen

der Natur (Art Forms in Nature) to support Darwinian theory [49, 50].

German psychologist Adolf Zeising claimed that the golden ratio appeared in

the arrangement of branches along stems of plans and veins in leaves. Then he

extended his study to the proportion of chemical compounds, geometry of crystals,

skeleton of animals, and branching of veins and nerves. From these phenomena,

he saw that the golden ratio is [72] :

“the universal law in which contained the basic-principle of all the form of

beauty and completeness in the realm of nature and art, and which permeates,

as a paramount spiritual ideal, all structures, forms and proportions, whether

cosmic or individual, organic or inorganic, acoustic or optical; which finds its

fullest realization, however, in the human form. 1”

American photographer Wilson Bentley is the first known photographer of

snowflakes. In 1885, he took the first micrograph of snowflakes and snowcrystals,

see Fig. 1.1. He poetically described snowflakes as “tiny miracles of beauty” and

snow crystals as “ice flowers” [12].

Figure 1.1. The first known micrograph of snowcrystals and snowflakes by Bentley [12].

English computer scientist, mathematician, cryptanalyst, and theoretical bi-

ologist Alan Turing analyzed the pattern creation in living organisms, called

morphogenesis. In 1952, he suggested a system of chemical reactions modelled by a

reaction-diffusion process of two catalysts in partial differential equations [89].

1Translated from Padovan [72], p.306
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4 Introduction

Hungarian theoretical biologist Aristid Lindenmayer developed the L-system

(Lindenmayer system), which is a parallel rewriting system and a type of formal

grammar to illustrate the behavior of plant cells and to model plant developments.

L-system could be used to illustrate the plants growth in style of fractal [63].

1.3 Types of pattern

Fractals

Fractals are used to explain naturally occurring objects. Expanding symmetry is

when similar patterns increase in the small scale. Thus, it is called self-similar

pattern if the replication is the same in every scale [13]. Fractal-like patterns

in natures exhibit self-similarity, such as Romanesco broccoli, river networks,

lightning bolt, snowflakes, etc.

Spirals

Spiral is a curve which emerges from a point, moving further away and revolving

around the point. In physics, spirals are the lowest energy configuration which

originates spontaneously from self-organizing processes in dynamical systems.

In chemistry, spiral is generated by a reaction-diffusion process which involves

activation and inhibition [39]. Examples of spirals patterns in nature can be seen

in phyllotaxis plants, snail shells, sunflower, bighorn sheep, etc.

Flow and meanders

Pattern in nature may appear from flow, when a laminar (smooth) flow starts to

break up because its velocity becomes larger than its viscosity [91]. Furthermore,

these flows may form meander, i.e., when the fluid flows start to create a vortex

which forms a positive feed back loop and accelerates erosion [93].
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Waves and dunes

In physics, waves are disturbances that transfer energy through matters (air or

water) or space and making their mediums oscillate as they pass by [45]. Dunes

are created when wind passes over sand and forms ripple patterns in the large

body of sand, i.e., sand in the dessert.

Bubbles and foam

Soap bubble is a very thin film of water soap enveloping air that forms an empty

sphere with a surface that appears to gradually change colour (iridescence). Foams

are mass bubbles that bond and form a structure, for example Spumellaria which

has foam-like structure, see Fig. 1.2(g). Foams consist of soap films satisfying

Plateau’s laws [75].

Tessellations

Tessellation of flat surface is tiling of a plane using one or more geometric shapes

by repeating the tiles, i.e., honeycomb, halite crystals, snakefruit scales, etc. By

using mathematics, tessellations can be universalized to higher dimensions and

complex geometries.

Cracks

Cracks are linear opening, which is formed in a material to reduce stress on the

surface. It is also associated with the material elasticity. Hence, crack patterns in

materials are indicator of the material’s elasticity [82].
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Spots and stripes

Spots and stripes commonly appear on animals, such as zebra, leopard, anglerfish,

etc. for the purpose of camouflage [5]. This pattern helps them increase their

chances to survive and preserve their species. The next function of patterns in

animals skin is signalling and warning, for instance in ladybird and coral snake

[92]. They will be avoided by their predators because of their bold colour. In

particular, spots and stripes can also be explained by a reaction-diffusion system

(morphogenesis) [89].

(a) Romanesco broccoli
2

(b) Lichtenberg figure 3 (c) Phyllotaxis of spiral
aloe 4

(d) Spiral of sunflower
seed 5

(e) Oxbow lake create
meander pattern 6

(f) Sand ripples on the
dessert 7

(g) Cube-shaped crys-
tals of halite 8

(h) Natural tessellation
honeycomb 9

(i) Overlapping scales
of snakefruit 10

(j) Cracks patten on
dried sewage 11

(k) Zebra stripes 12 (l) Leopard spots 13

Figure 1.3. Types of pattern in nature.
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2Brassica oleracea var. botrytis by Coyau. Image downloaded from Wikimedia Common on April
2018.

3High voltage dielectric breakdown within a block of plexiglas creates a beautiful fractal pattern
called a Lichtenberg Figure by Bert Hickman. Image downloaded from Wikimedia Common on
April 2018.

4Aloe polyphylla Schönland ex Pillans by J. Brew. Image downloaded from Wikimedia Common
on April 2018.

5Close up of Helianthus annuus by Michael Schönitzer. Image downloaded from Wikimedia
Common on April 2018.

6Oxbow lake, Yamal Peninsula, Russia by Katorisi. Image downloaded from Wikimedia
Common on April 2018.

7In the Mojave desert, near Kelso, California by Murray Foubister. Image downloaded from
Wikimedia Common on April 2018.

8Specimen-grade example of salt in its native crystallized form by Rob Lavinsky. Image
downloaded from Wikimedia Common on April 2018.

9Bee on his alvear by Giuliagi. Image downloaded from Wikimedia Common on April 2018.
10Salak or snakefruit by Takeaway. Image downloaded from Wikimedia Common on April 2018.
11Desiccation cracks in dried sludge of a sewage plant by Hannes Grobe. Image downloaded

from Wikimedia Common on April 2018.
12Grevy’s zebra striping pattern by Nojhan. Image downloaded from Wikimedia Common on

April 2018.
13Common Leopard is also known as Panthera pardus was taken at Padmaja Naidu Himalayan

Zoological Park by Riabonny. Image downloaded from Wikimedia Common on April 2018.

https://commons.wikimedia.org/wiki/File:Chou_romanesco_04.jpg
https://commons.wikimedia.org/wiki/File:Square_Lichtenberg_Figure.jpg
https://goo.gl/oPUei6
https://commons.wikimedia.org/wiki/File:Close_up_Helianthus_annuus.jpg
https://commons.wikimedia.org/wiki/File:Close_up_Helianthus_annuus.jpg
https://commons.wikimedia.org/wiki/File:Oxbow_lake,Yamal_Peninsula,Russia.JPG
https://commons.wikimedia.org/wiki/File:Oxbow_lake,Yamal_Peninsula,Russia.JPG
https://commons.wikimedia.org/wiki/File:In_the_Mojave_desert,_near_Kelso,_California_-_a_visit_to_the_Kelso_dunes_-_sand_ripples_(13843366605).jpg
https://commons.wikimedia.org/wiki/File:Halite-283225.jpg
https://commons.wikimedia.org/wiki/File:Bee_on_his_alvear.jpg
https://commons.wikimedia.org/wiki/File:Luk_sala_3.jpg
https://commons.wikimedia.org/wiki/File:Desiccation-cracks_hg_sharpened.jpg
https://commons.wikimedia.org/wiki/File:Grevy%27s_zebra_stripes.jpg
https://commons.wikimedia.org/wiki/File:A_leopard_craving_to_walk_free_in_the_wild.jpg
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1.4 The Swift-Hohenberg equation

The Swift-Hohenberg equation is seen as a prototypical pattern forming system

since it has the simplest finite-wavelength pattern forming instability [31]. In 1977,

Swift and Hohenberg developed the model for Rayleigh-Bernard instability in roll

waves [85]. We write the Swift-Hohenberg equation in the form [21]

∂u
∂t
= ru−

(
∂2

∂x2 +q2
c

)2

u+b3u3
− b5u5, (1.1)

where r is the control parameter and qc = 1, b3 = 2, b5 = 1. The equation has two

symmetries, i.e., invariant under u→−u and x→−x. In the presence of periodic

boundary conditions with period L, the equation possesses a Lyapunov functional

F, which we refer to as an energy, given by [21]

F(u) =
∫ L

0
J (u)dx

=

∫ L

0

−1
2

ru2+
1
2

[(
∂2

∂x2 +q2
c

)
u
]2

−
1
4

b3u4+
1
6

b5u6

dx,
(1.2)

such that

ut = −
δF
δu
. (1.3)

It follows that along any trajectory the energy decreases to a (local) minimum in

time, i.e.,
dF
dt
= −

∫ L

0
(∂tu)2 dx ≤ 0. (1.4)

In particular, no Hopf bifurcations are possible and (at fixed x) all time dependence

ultimately dies out [18–21]. The variational derivative F satisfies

δF
δu
=
∂J
∂u
−

d
dx
∂J
∂ux

. (1.5)



1.4 The Swift-Hohenberg equation 9

Equation (1.1) is a fourth order PDE in x which, in appropriate coordinates, obeys

Hamilton’s equations, i.e., [21]

H = −
1
2

(
r−q4

c

)
u2+q2

c

(
∂u
∂x

)2

−
1
2

(
∂2u
∂x2

)2

+
∂u
∂x
∂3u
∂x3 −

1
4

b3u4+
1
6

b5u6. (1.6)

Localized states correspond to orbits of this system that are homoclinic (i.e., a path

in phase space connecting an equilibrium to itself, that lies in the intersection of

the stable and unstable manifolds) to the zero solution u = 0. Such orbits must lie

in the surface H = 0 [16, 17, 21].

(a) (b)

(c)

Figure 1.4. (a) The uniform solution u0 and u± as a function of r. Labelled bifurcations are
r0 = 0, r1 = 0, r2 = 1, r≃ = 0.04289. The thick lines indicate stability. (b) Bifurcation diagrams

are showing the norm N ≡
(
L−1

c

∫ Lc

0 u2dx
) 1

2
of pattern states uP with wave length Lc as a

function of r. The location of saddle-node is r3 ≃ −0.8991. (c) Energy F of the uniform and
periodic branches as a function of r. The Maxwell point rM1 = −0.6752. Reprinted from
Burke et al.[21].
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The linear stability of the stationary solution us(x) of period L can be determined

by writing

u(x, t) = us(x)+ϵũ(x)eλt. (1.7)

By substituting (1.7) into (1.1) and linearizing around ϵ = 0, we obtain the

eigenvalue problem

λũ(x) =Lũ(x), (1.8)

where

L := r−
(
∂2

∂x2 +q2
c

)2

+3b3u2
s (x)−5b5u4

s (x), (1.9)

which is the linear differential operator.

The Swift-Hohenberg equation (1.1) has the uniform solution given by

0 = (r−qc)u+b3u3
− b5u5, (1.10)

that can be solved to yield

u0 = 0, u± =
( 1
b5

[
b3±

√
b2

3+4b5
(
r− q2

c

)]) 1
2
, (1.11)

and are shown in Fig. 1.4(a) [21].To determine the stability of the uniform solutions,

one has ũ(x) = eikx, where k is the wave number of the perturbation, from which

we obtain the dispersion relation

λ(k) = r−q4
c − k4+2k2q2

c +3b3u2
−5b5u4. (1.12)

The uniform solution u0 changes stability with respect to spatially periodic

perturbations with wave length Lc = 2π/qc and creates a branch of periodic

solution/pattern state uP, which bifurcates from r0. We also can obtain the saddle-
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node bifurcation in the uniform solution at point r1. The details of the stability

changes in the uniform solutions are depicted in Fig. 1.4(a).

The branch of the spatially periodic solution is computed by using numerical

continuation [37]. The results are summarized in Fig. 1.4(b). We have Maxwell

point rM1, which is when the periodic solution has the same energy with the

zero state u0. We have Maxwell point rM1, which has zero wave velocity and a

stationary front exists, at which the trivial and patterned solutions are equally

energetically favoured and stationary fronts connecting the two states can exist

[35]. Note that we have bistability between the periodic solution uP and uniform

solution u0 in the interval r3 < r < r0.

Figure 1.5. Bifurcation diagrams are showing the branches of the localized solutions
around r0. The smaller panels show localized solutions for four different phase-shifts. The
amplitude that we obtained from (1.18) is also shown. Reprinted from Burke et al.[21].

Localized solutions also bifurcate around r0. This state can be obtained by

performing an asymptotic expansion analysis, see Burke et al. [21]. Defining the

small parameter ϵ, write r = −ϵ2µ2, µ2 > 0, and looking for stationary solutions

from (1.1) in the form

u(x) = ϵ
(
A(X)eiqcx+ c.c.

)
+O(ϵ2). (1.13)
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where X ≡ ϵx is a large scale over which the amplitude of the pattern changes.

Thus, we have

4q2
c AXX = µ2A−3b3A|A|2+O(ϵ). (1.14)

Since b3 > 0, the bifurcation at the origin is subcritical. The simplest nontrivial

solution is

A(X) =
( µ2

3b3

) 1
2

eiφ+O(ϵ), (1.15)

corresponding to spatially periodic states with period Lc near r0. Thus, we have

uP(x) = 2
(
−r
b3

) 1
2

cos
(
qcx+φ

)
+O(r). (1.16)

The other solution can be found, which corresponds to the localized solution with

A→ 0 as X→±∞, to be

A(X) =
(

2µ2

3b3

) 1
2

sech
(

X
√
µ2

2qc

)
eiφ+O(ϵ), (1.17)

which yields

ul(x) = 2
(
−2r
3b3

)1/2
sech

(
x
√

r
2qc

)
cos

(
qcx+φ

)
+O(r). (1.18)

The spontaneous pattern formation also can be studied around the onset of

instability by performing asymptotic expansion analysis, see Dean et al. [35]. By

defining small parameter 0 < ϵ≪ 1 and writing X = ϵ2x, T = ϵ4t, where the two

spatial variables x and X are treated as independent in the subsequent expansion,

we look for solutions in the form

u(x, t) =U(x,X,T). (1.19)
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We need to balance of nonlinear terms and slow-scale derivatives. The parameters

are then scaled as r = ϵ4r4, b3 = ϵ2s2. We also set qc = 1 and b5 = 1 to make the

analysis is simpler. We are interested in the bistability given by a subcritical

pattern-forming bifurcation, so choose b3 > 0. Equation (1.1) becomes

ϵ4∂U
∂T
= ϵ4r4U−

(
1+

∂2

∂x2 +2ϵ2 ∂2

∂x∂X
+ϵ4 ∂

2

∂X2

)
U+ϵ4s2U3

−ϵ4U5. (1.20)

A formal asymptotic analysis may now be carried out by expanding U in powers

of ϵ2 as

U(x,X,T) =
N−1∑
n=0

ϵ2nUn(x,X,T)+RN(x,X,T). (1.21)

We truncated the expansion, retaining only those terms up to O(ϵ2N−2).

The leading-order solution to Eq. (1.20) is

U0(x,X,T) = A0(X,T)eix+ Ā0(X,T)e−ix, (1.22)

where the bar denotes the complex conjugate. The pattern thus consists of slowly

modulated spatial oscillations. The envelope A0 is then determined by a solvability

condition arising at O(ϵ4), in the form of the Ginzburg-Landau equation

∂A0

∂T
= r4A0+4

∂2A0

∂X2 +3s2|A0|
2A0−10|A0|

4A0. (1.23)

A steady solution in the form of a front connecting the zero and non-zero states

can be found at

r4 = rMa := −
27

160
s2

2, (1.24)

given by

A0(X,T) = A f (X)eiφ, (1.25)
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where

A f (X) =
( 3
10

)1/4 √
µ

1+ eµX , (1.26)

with φ an arbitrary real constant and µ =
√
−rMa. Thus, ϵ4rMa provides a first

approximation to the Maxwell point rM1, see Fig. 1.4. We can consider Eq. (1.26) as

a travelling wave with zero wavespeed. In fact, a stationary front solution to Eq.

(1.23) can only exist at r4 = rMa. For r4 > rMa, the equivalent solutions is a travelling

wave in which the non-zero solution is more “dominant" than the zero solution,

while for r4 < rMa the converse occurs.

(a) (b)

(c)

Figure 1.6. (a), (b) Bifurcation diagrams of the uniform and periodic solutions, showing
two homoclinic snaking. The pinning regime (shaded) is in between rP1 ≃ −0.7126 and
rP2 ≃ −0.6267. The two snaking solutions are connected by secondary branches of localized
but asymmetric solutions. Thick lines indicate the stable solutions. The dashed line
represents the location of the Maxwell point rM1 between the uniform and the periodic
solutions. (b) Closeup showing the ‘rungs’ connecting the snaking branches. (c) Sample
profiles ul(x) at the saddle-nodes in panel (b). Reprinted from Burke et al. [21].
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Figure 1.7. The pinning regimes (shaded) of the heteroclinic to the trivial u0 state. This
region located between rP1 and rP2 is created in a codimension-2 bifurcation at (r,b3) ≃ (0,0).
Dashed lines correspond to the Maxwell points. Reprinted from Burke et al. [21].

Figure 1.5 shows the bifurcation diagrams and their localized solutions around

r0, which are obtained from the asymptotic analysis (1.18). It is also shown that the

localized solution has two phase-shifts, with φ = 0, φ = π, φ = π/2, and φ = 3π/2,

where φ = 0 and φ = π are antisymmetric with respect to each other and also for

φ = π/2 and φ = 3π/2.

By using (1.18) as our initial condition and performing numerical continuation

as a function of r for equation (1.1) in each branches, we will obtain the snaking-like

structure in the bifurcation diagram as shown in Fig. 1.6. The results show that the

snaking is present in the pinning region, which is bounded by the saddle-node

bifurcations. As the norm increases, the periodic state invades the background

(trivial) state, namely u0. In the pinning region, the localized solution has infinite

multiplicity due to the unbounded domain.

Figure 1.7 shows the existence of the heteroclinic connection, which is a path in

phase space which connects two different equilibrium points, to the trivial state

u0. The heteroclinic connection appears when b3 is being varied which is around

b3 ≃ 3.521. Above these values, the snaking collapses and become straight line,

which is the Maxwell point. The Maxwell point is when uniform state u+ and
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trivial states u0 have the same energy, i.e.,

rM2 = q4
c −

3b2
3

16b5
.

1.5 Discrete optical cavity equation

The study of homoclinic snaking of localized structures also emerged in the field

of optics, particularly in optical cavities. An optical cavity, resonating cavity

or optical resonator is an arrangement of mirrors that forms a standing wave

cavity resonator for light waves. Optical cavities are a major component of lasers,

surrounding the gain medium and providing feedback of the laser light. Light

confined in the cavity reflects multiple times producing standing waves. Cavity

solitons are self-localized states of light appearing in the transverse plane of a

cavity as bright spots sitting on a dark background. Experimentally, they can be

characterized by the following properties: (1) self-localized states, independent of

the system boundaries whose shape and size is fixed by the system parameters

and do not depend on the excitation that gave birth to them; (2) existing in several

(ideally arbitrary) transverse locations of the cavity and can be independently

manipulated (written, erased, ); (3) can be “moved” or set into motion [7]. Yulin

et al. [96, 97] reported the existence of homoclinic snaking in discrete model for

optical cavity with an imposed periodic structure and saturable nonlinearity. The

model of the discrete optical cavity equation is given by

i
∂An

∂t
+δAn+α

|An|
2

1+ |An|2
+ c (An+1+An−1−2An) = Peiqn, −∞ < n <∞, (1.27)

which is a one-dimensional lattice equation for a complex field An ∈ C.

This study generalises the earlier research on optical cavity equation, which

has been conducted by Egorov et al. [40, 43, 74]. The variable An corresponds



1.5 Discrete optical cavity equation 17

Figure 1.8. Sketch of a periodic optical structure composed of identical resonators pumped
by coherent light, which is described by equation (1.27). Reprinted from Yulin et al. [97].

to the amplitude of the magnetic field inside the nth identical resonator in a

one-dimensional array. The parameter c ≥ 0 indicates the coefficient of coupling

between the neighboring oscillators. The limit c→ 0 corresponds to the anti-

continuum limit where the oscillators are independent of each other and c→∞

represents the continuum limit. The parameter Re(δ) represents detuning of the

pump frequency from the resonant frequency of the oscillators. The parameter α

corresponds to strength of the Kerr effect of intensity-dependent refractive index,

where the physical realistic effect of the saturation for large intensity has been

included. One has defocusing (Re(α) < 0), purely dissipative (Re(α) = 0), and

focusing (Re(α) > 0) nonlinearity. The parameter P represents the amplitude of an

applied optical pump field whose phase is a function in space with period 2π/q.

In the case where q = 0, where there is no phase gradient of the pump [97, 98].

The whole qualitative description of the snaking bifurcation that found in

equation (1.27) is presented in Table 1.1. Examples for all of the cases are depicted

in Figs. 1.9–1.15.

Figure 1.9 shows a bifurcation diagram of stationary solutions, i.e., uniform

and localized solutions for α = 10 and δ = −9.2 as a function of pump field P. It

shows that the bifurcation diagram has stable and unstable bright solitons.
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Parameters Description Example
α c Re(δ) Im(δ)

> 0 →∞ −α < δ < 0 0 bright solitons Fig. 1.9& multipulses

> 0 →∞ −α < Re(δ) < 0 > 0

thin snakes

Fig. 1.10
of bright and
grey solitons
for large
enough Im(δ)

> 0 finite −α < Re(δ) < 0 > 0
wide snakes

Fig. 1.11of bright and
grey solitons

> 0 finite or→∞ −
9α
8
< Re(δ) < 0 ≥ 0

snakes
Fig. 1.12of bright and

grey solitons

< 0 →∞ 0 < Re(δ) <
9α
8

0 topological Fig. 1.13solitons

< 0 finite or→∞ 0 < Re(δ) <
9α
8

> 0
wide snakes

Fig. 1.14of bright and
grey solitons

imag. →∞ Re(δ) < 0 > 0
wide and thin

Fig. 1.15snakes of bright
and grey solitons

Table 1.1: Qualitative description of kinds of snaking bifurcation curves found in equation
(1.27). The limit c→∞ represents the continuum limit, whereas finite c corresponds to a
discrete lattice. Reprinted from Yulin et al. [97].

Figure 1.9. Bifurcation diagram for α = 10 and δ = −9.2 and its corresponding solution
profiles at P = 1. The blue and red solid lines indicate stable and unstable homoclinic
solution, respectively. The green solid and dashed lines indicate stable and unstable
uniform solution, respectively. Reprinted from Yulin et al. [97].

Figure 1.10 shows a bifurcation diagram of stationary solutions for α = 10,

δ =−9.2+1i, and c = 12 as a function of pump field P. It shows that a snake appears

when δ is complex. We have thin snake of bright and grey solitons when Im(δ) is

large enough. For the sake of convenience, we show the snakes in the figures by
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Figure 1.10. Bifurcation diagram for α = 10, δ = −9.2+1i, and c = 12 and its corresponding
solution profiles at points c1, c2, c3, d1, d2, and d3. The thinner solid green and dashed
cyan lines show the stable and unstable uniform solutions, respectively. The solid blue and
dashed red lines correspond to stable and unstable bright solitons, respectively, whereas
dashed magenta lines correspond to the grey soliton, which is always unstable. Reprinted
from Yulin et al. [97].

the norm [97, 98]

M =
∑

n
(|An−A∞|) . (1.28)

Figure 1.11 shows a bifurcation diagram of stationary solutions for α = 10 and

c = 0.5 with δ = −9.2+1i and δ = −9.2+0.7i as a function of pump field P. It shows

that a wide snake of bright and grey solitons appear when we consider small c

coupling.

Figure 1.12 shows a bifurcation diagram of stationary solutions for α = 10

δ = −10.3, and c = 25 as a function of pump field P. It shows that a snake of bright

and grey solitons appear in this parameter values.

Figure 1.13 shows a bifurcation diagram of stationary solutions for α = 10

δ = −10.3, and c = 25 as a function of pump field P. It shows that the snake of

topological solitons (grey solitons for P> 0) appears which can never be temporally

stable.
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(a)

(b)

Figure 1.11. (a) Similiar to the bright solitons in Fig. 1.10 but in the discrete case with
c = 0.5. (b) Similiar to panel (a) but δ = −9.2+0.7i. Solid lines (blue and cyan) indicate
stable parts of the bifurcation diagrams and dashed lines (red and magenta) represent
unstable parts. Reprinted from Yulin et al. [97].

Figure 1.12. Similiar to the Fig. 1.9 but forα= 10, δ=−10.3, and c= 25 and its corresponding
solutions at points 1 and 2 for P = 3.8 and 4, respectively. Reprinted from Yulin et al. [97].
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Figure 1.13. Bifurcation diagrams for the “topological” onsite conservative solitons (grey
solitons for P > 0) as a function of the pump P for δ = 9.2, α = −10, and c = 15. The thick
blue line corresponds to the solitons, and the thin green line shows the uniform solutions,
with dashed line representing instability. Reprinted from Yulin et al. [97].

(a)

Figure 1.14. Bifurcation diagrams of bright (red line) and grey (blue line) onsite solitons
as the pump P varies for δ = 4+1i, α = −10, and c = 1. Reprinted from Yulin et al. [97].

Figure 1.14 shows a bifurcation diagram of stationary solutions for δ = 4+1i,

α = −10, and c = 1 as a function of pump field P. It shows that a snake of bright

and grey solitons appear in this parameter value.

Figure 1.15. Similar to Fig. 1.14 but for δ = 1.05+17i, α = −16i, and c = 15. Reprinted from
Yulin et al. [97].
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Figure 1.15 shows a bifurcation diagram of stationary solutions for δ= 1.05+17i,

α = −16i, and c = 15 as a function of pump field P. We have wide snakes of bright

and grey solitons when c is large enough and thin snakes when c is small.

1.6 Discrete Allen-Cahn equation

Homoclinic snaking in 1D and 2D Allen-Cahn equation with cubic-quintic nonlin-

earity was conducted by Taylor and Dawes [86]. They investigated the snaking

and isolas mechanism in the system.

One-dimensional lattice

Taylor and Dawes [86] considered the following equation on the integer latticeZ :

u̇n = µun+C (un+1+un−1−2un)+2u3
n−u5

n, (1.29)

where un is a scalar variable for each lattice site, C is the strength of linear coupling

between adjecent sites, and −1 < µ < 0 is the bifurcation parameter. The addition

of a time derivative term is to indicate the (in)stability of the equilibrium states.

One can write equation (1.29) as u̇n = −∂F/∂un, where F is a Lyapunov functional,

which we refer to as an energy, given by

F =
∑

n
−

1
2
µu2

n+
1
2

C (un+1−un)2
−

1
2

u4
n+

1
6

u6
n. (1.30)

Thus Ḟ ≤ 0, so that every solution of equation (1.29) flows down gradients of the

potential toward an equilibrium solution and every stable equilibrium states is

local minimum of the potential. No periodic dynamics or complex dynamics are

therefore possible [86].
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Equation (1.29) has five uniform states, i.e., one trivial or zero state un = 0 and

four uniform states un =±u±, where u± = 1±
√

1+µ. The zero state un = 0 is linearly

stable for µ < 0 and unstable for µ > 0. The lower uniform state u− =
√

1−
√

1+µ

exists in −1 < µ < 0 and is always unstable. Meanwhile, the upper uniform state

u+ =
√

1+
√

1+µ exists in µ > −1 and is always stable. One also has saddle-node

bifurcations at µ = −1.

Each node potential for the uniform state un = u∗ is given by F(u∗) = −1
2µu2

∗ −

1
4u4
∗ +

1
6u∗. Thus the system acts to minimize the total potential. The zero state

has zero potential and the upper state u+ depends only on µ. By considering

the double root of F(u) = 0, one find that the upper state u+ has zero potential at

µ = µmx = −3/4, i.e., Maxwell point. When µ > µmx the upper state is energetically

more favourable and when µ < µmx the zero state is energetically more favourable.

By using numerical continuation program AUTO [38] and using periodic and

Figure 1.16. Left bifurcation diagram in one dimension for an array of N = 8 nodes with
periodic boundary condition and C = 0.2. Thick and thin black lines represent stable and
unstable solutions, respectively. The thin blue horizontal lines are asymmetric “ladder”
solutions. Right bifurcation diagram with Neumann boundary condition. The red curves
are isolas, and the blue curves terminate at branch points on the black snaking curve.
Reprinted from Taylor and Dawes [86].

Neumann boundary condition, Taylor and Dawes obtained bifurcation diagrams

in Fig. 1.16. The result resembles the homoclinic snaking for the Swift-Hohenberg

equation in a finite domain with branches of the localized solutions bifurcating

from the uniform solution around µ ≈ −0.07 and turning around in a succession of
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fold bifurcations to form two intertwined snakes of the localized structures, one of

site-centred and one of bond-centred solutions, before reconnecting to the uniform

branch at µ = −0.98.

Figure 1.17 shows the solution profiles in the right hand saddle-node bifurcation

points for periodic boundary conditions. The upper three solutions are site-centred

and hence are reflection symmetry about the lattice point n = 4. The lower three

plots are bond-centred and are reflections-symmetric about midpoint between

n = 4 and 5.

Figure 1.17. Equilibrium solution profiles of equation (1.29) on 1D lattices with N = 8
using periodic boundary condition taking C = 0.2. Profiles correspond to the right hand
saddle-node bifurcation points of Fig. 1.16. Reprinted from Taylor and Dawes [86].

Isola solutions also may appear in the bifurcation diagrams by changing from

the periodic boundary condition into Neumann boundary condition as shown

in Fig. 1.16, which appear due to the attachment and detachment process. The

pinning region for 1-cell, 2-cell, and 3-cell localized solution is depicted in Fig. 1.18.

The front solution is indicated by the blue curves which extend up to C = 1: on

an infinite lattice the edges of the snaking regime asymptote to these curves as

the width of the localized state increases. The vertical dashed line is the Maxwell

point µ = −3/4. The result is for N = 100.
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Figure 1.18. Region of existence of localized states in the (µ,C) plane; 1-cell localized
states (red, peak at C ≈ 0.33), 2-cell (green, peak at C ≈ 0.55), and 3-cell (magenta, peak at
C ≈= 0.7). Reprinted from Taylor and Dawes [86].

Two-dimensional lattice

The two dimensional interpretation of equation (1.29) has two nearest-neighbor

difference operators, i.e.,

∆+un,m ≡ un+1,m+un−1,m+un,m+1+un,m+1−4un,m,

∆×un,m ≡ un+1,m+1+un−1,m−1+un−1,m+1+un+1,m+1−4un,m.
(1.31)

Thus, the 2D discrete Allen-Cahn equation is given by

u̇n,m = µun,m+C+∆+un,m+C×∆×un,m+2u3
n,m−u5

n,m, (1.32)

where there are two coupling parameters C+ and C×, the coefficients of all nearest-

neighbor coupling. In [86], Taylor and Dawes only consider C× = 0, periodic

boundary condition, and bond-centred solution to simplify the discussion. They

also introduced the scaled version of the L2 norm to plot the bifurcation diagram,

which is given by

M =

 ∑
n,m u2

n,m

1+
√

1+µ


1
2

. (1.33)
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Figure 1.19. Three typical localized solutions to equation (1.32) with C+ = 0.1, C× = 0,
and µ = −0.6. Three solutions are respectively site-centred, bond-centred, and hybrid.
Reprinted from Taylor and Dawes [86].

As in the 1D case, by performing numerical continuation in AUTO, using

periodic boundary condition, and using bond-centred solution in Fig. 1.19 as an

initial condition, one can obtain the snaking solution as shown in Fig. 1.20. The

first thirty encountered saddle-node bifurcations from Fig. 1.20 is shown in Fig.

1.21.

Figure 1.20. Bifurcation diagram of the bond-centred solutions of equation (1.32) with
C+ = 0.2 and C× = 0. The switchbacks occur near M2 = 36, 64, 100, and 144. Solid black lines
indicate the Maxwell point µ = −3/4. Red horizontal dashed lines at µ ≈ −0.56076 indicates
the asymptotic location of saddle-node bifurcations on the 1D snake with coupling strength
C=C++2C×, far up the 1D snake. Blue horizontal dashed lines at µ≈−0.68309 indicate the
asymptotic location of saddle-node bifurcations on the 1D snake with coupling strength
C = 2C++C×. Thin and thick lines indicate unstable and stable solutions, respectively.
Reprinted from Taylor and Dawes [86].

The evolution of bond-centred localised states as we move up the snaking

curve is shown in Fig. 1.21. Starting from indicated point (a) in which four cells

are close to “upper state" u+ and the rest are near zero state u0, new “upper" state

u+ cells are added to the solution profile starting in the center of the faces, and
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then progressing outwards towards the corners until the profile is square, at which

point the sequence repeats itself [86].

Figure 1.21. The first 30 bond-centred localized states encountered at saddle-node bifur-
cation points corresponding to local maxima of µ, moving along the snaking curve with
M increasing, for fixed C+ = 0.2. Labels (a)-(f) correspond to the labelled saddle-node
bifrucations on the snake indicated in Fig. 1.20. Reprinted from Taylor and Dawes [86].
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1.7 Numerical continuation

In this thesis, we seek for time-independent solutions by using a Newton-Raphson

method to obtain their bifurcation diagrams.

Consider the equation

G(u,λ) = 0, u, G(·, ·) ∈Rn, λ ∈R. (1.34)

Let

x ≡ (u,λ). (1.35)

Then Eq. (1.34) can be written as

G(x) = 0, G :Rn+1
→Rn. (1.36)

Suppose we have a solution x0 = (u0,λ0) of G(x) = 0. x0 is called a regular

solution if

Rank(Gx(x0)) = n.

In this case, the Implicit Function Theorem guarantees the existence of solution

u(λ) near λ0 and natural parameter continuation as a simple adaptation of the

iterative solver to a parametrized problem can be employed to find a solution

curve, i.e., the solution at λ0 is used as the initial guess for the solution at (λ0+∆λ)

with ∆λ sufficiently small.

However, as the bifurcation parameter λ is being varied, there can be turning

points. At the special points, the corresponding solutions are no longer regular,

i.e., the Jacobian has at least a zero eigenvalue. We use a pseudo-arclength method

to continue the computations past them and avoid the zero eigenvalue in Jacobian

matrix of the system [57].
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The method is based on the observation that the "ideal" parameterization

of a curve is arclength. Pseudo-arclength is an approximation of the arclength

in the tangent space of the curve. The resulting modified natural continuation

method makes a step in pseudo-arclength (rather than λ). In nontechnical terms,

we consider λ as a variable, instead of a parameter, in which case we need to

append an additional equation to Eq. (1.36). There are several choices of the extra

constraint [57]. One possibility that we employ in our computations is

θ ||u−u0||
2+ (1−θ) ||λ−λ0||

2
−ds = 0, (1.37)

where 0 ≤ θ ≤ 1 is a weighting parameter and ds is the "distance" between x0 and

the new solution we seek x.

Algorithm 1 shows the general idea to construct bifurcation diagrams by using

pseudo-archlength method.
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Algorithm 1 Pseudo-archlength

Input: MaxIter is number of iteration, θ is weighting parameter, ds is step size, u0
is initial condition at point λ(1), and λ(2) is initial point for the second iteration.

Output: (u(1),u(2),u(3), . . . ,u( j)) are set of solutions from Eq. 1.34 at corresponding
bifurcation parameters (λ(1),λ(2),λ(3), . . . ,λ( j)), where j ≤MaxIter.
for i = 1 to MaxIter do

if i = 1 then
We solve G(u(1),λ(1)) = 0 with u0 as initial condition at point λ(1).

else if i = 2 then
We solve G(u(2),λ(2)) = 0 with u0 as initial condition at point λ(2).

else
We solve

G(u(i),λ(i)) = 0,
θ ||u(i)

−u(i−1)
||

2+ (1−θ) ||λ(i)
−λ(i−1)

||
2
−ds = 0,

where
u(i) = 2u(i−1)

−u(i−2),
λ(i) = 2λ(i−1)

−λ(i−2),

with (u(i−1),λ(i−1)) as initial condition.
end if
if Stopping criteria is achieved then

Stop
end if

end for

1.8 Overview of thesis

The aim of this thesis is to study the existence and behavior of the homoclinic

snaking and the stability of localized solutions in several discrete systems.

In Chapter 2, we consider the discrete Swift-Hohenberg equation by discretizing

the spatial derivative using central finite difference and introduce discretization pa-

rameter h. We note several interesting properties, such as multiple Maxwell points,

snaking-like structures in the periodic solution, and complicated switchbacks in

bifurcation diagrams of the localized solution. We also perform an asymptotic

expansion to analyze the solution around the bifurcation point. Moreover, we also

approximate the pinning region in the weakly coupled condition.
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In Chapter 3, we study the discrete optical cavity equation with saturable

nonlinearity. Therein, we study homoclinic snaking, linear stability, and pinning

region of localized solutions. We calculate the pinning region by varying the

coupling strength, linear, and nonlinear parameters. The appearance of the b-

shaped isola from the detachment process around the turning point in the snaking

bifurcation is also being discussed. We also analyze and approximate the pinning

region using a one-active site approximation.

In Chapter 4, we study the 2D discrete Allen-Cahn equation with cubic and

quintic nonlinearity. The main difference with previous study by Taylor and

Dawes [86] is that we consider three lattice types in 2D system, namely, square,

honeycomb, and triangular lattice domains. Furthermore, we use active cell

approximations to analyze and approximate the existing saddle-node bifurcations

for all of the lattice types where good agreement is obtained.

Finally, Chapter 5 summarises our work carried out in this thesis and concludes

with suggestions for future research.



Chapter 2

Homoclinic snaking in the discrete

Swift-Hohenberg equation

2.1 Introduction

Homoclinic snaking in nonlinear dynamical systems is a snaking structure of

the bifurcation curve for spatially localized states, which are homoclinic orbits

in the phase space, in a parameter plane between a control parameter against,

e.g., the norm of the states [94]. A standard model for pattern formation and

the commonly studied equation for homoclinic snaking is the Swift-Hohenberg

equation with cubic and quintic nonlinearity [26, 33, 58], that models a physical

problem of fluid having thermal fluctuation near Rayleigh-Bernard instability

[1, 85]. The snaking structure has (possibly infinitely) many turning points, i.e.,

saddle-node bifurcations, forming the boundaries of the snaking region [58]. In

spatially continuous systems, the localized structures can appear as a result of

bistability between a uniform state and a periodic state around the uniform state

itself. Generally, the two states are connected by a front which can drift in one

direction. However, at a specific parameter value known as Maxwell point, the

front has no preference between the two states which occurs when they have

32
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the same energy [16, 53]. Combining two fronts back to back forms a localized

state that can make a snaking structure in its bifurcation curve. The phenomenon

has been studied theoretically in, e.g., [10] that predicts the presence of snakes

and ladders, [17, 60] that analyze localized periodic patterns using multiple scale

expansions, [19–21] that provide thorough numerical continuations of homoclinic

snaking in the Swift-Hohenberg equation, and [28] that studies localized patterns

as particle-type solutions (see also [33] for a short review of coherent structure

emergence based on localized structures). Homoclinic snaking has been observed

experimentally in, e.g., spatially extended nonlinear dissipative systems [26],

vertical-cavity semiconductor optical amplifiers [6], nematic liquid crystal layers

with a spatially modulated input beam [51], and magnetic fluids [65].

Homoclinic snaking in continuous systems was first described in [11, 76] to

be caused by a pinning effect, by which the front locks to the pattern, resulting in

a finite range of parameter values around the Maxwell point where a stationary

localized solution can exist. The interval in which a snaking occurs is also

therefore referred to as the pinning region that has been studied numerically in,

e.g., [19–21, 79, 94]. In general, the pinning effect cannot be described by multiple

asymptotics [76], i.e., the length of the pinning region is exponentially small in a

parameter which is related to the pattern amplitude. The approximation of the

pinning region was provided by Kozyreff and Chapman [23, 60] and Dean et al.

[35] using a beyond-all-order asymptotics and by Susanto and Matthews [68, 84]

using variational methods.

Homoclinic snaking is also observed in spatially discrete systems, such as in

the discrete bistable nonlinear Schrödinger equation [22, 24, 25], which leads to

a subcritical Allen-Cahn equation [86], optical cavity solitons [97, 98], discrete

systems with a weakly broken pitchfork bifurcation [27], and in patterns on

networks appearing due to Turing instabilities [70]. If in the continuous case the
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front locking is due to pattern formation, in the discrete systems it is due to the

imposed lattice. The pinning region in this case was approximated analytically by

Matthews and Susanto [68] and Dean et al. [34].

Note that in all the aforementioned references, homoclinic snaking is studied

either in continuous systems or discrete ones that no longer admit snaking in the

continuum limit. The transition of snaking structures from the discrete to the

continuous limit is unfortunately rather lacking, which is particularly important

because, e.g., when solving a continuous equation numerically, unavoidably

one actually solves its discrete approximation. It is then necessary to recognize

features that appear due to the discretization. Here, we provide a comprehensive

study on the subject. We consider the discrete cubic-quintic Swift-Hohenberg

equation, obtained from discretizing the spatial derivatives of the (continuous)

Swift-Hohenberg equation with central finite differences. To our best knowledge,

previous works on the discrete equation are only Peletier and Rodríguez [73, 78],

who studied pattern formations in the system with a few sites only, and Collet [29]

that views the system as a discrete-time lattice map and analyzes the instability of

homogeneous stationary solutions.

Here, we report interesting and different properties that are not shared by

the continuum counterpart, such as multiple Maxwell points, i.e., parameter

values with periodic solutions having zero energies, bifurcation curves of periodic

solutions exhibiting a snaking behavior, and localized states with complicated

bifurcation diagrams. In general, we characterize three different regions of the

discretization parameter, wherein the discrete Swift-Hohenberg equation behaves

either similarly or differently from the continuum limit. Moreover, we provide

theoretical analysis of the snaking and the pinning region in the uncoupled limit,

i.e., weak coupling region, through formal perturbation expansions, which is

generally applicable to any strongly discrete system.
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The chapter is outlined as follows. The spatially discrete Swift-Hohenberg

equation is discussed in Sec. 2.2. In the section, we also study the stability of the

uniform solutions. We discuss periodic solutions in Sec. 2.3. Section 2.5 is on

localized solutions and their asymptotic expressions that are obtained through

multiple scale expansions. The width of the pinning region for varying parameters

is also discussed in the section. We then derive this width asymptotically in the

uncoupled limit in Sec. 2.6, which is then compared with computational results,

where good agreement is obtained. Conclusions are in Sec. 2.7.

2.2 Governing equation and uniform solutions

The cubic-quintic Swift-Hohenberg equation is given by [17]

∂u
∂t
= ru−

(
1+

∂2

∂x2

)2

u+b3u3
− b5u5, (2.1)

where u = u(x, t) is a scalar function defined on the real line, r is a real bifurcation

parameter (control or stress parameter) [1], and b3 and b5 are nonlinearity coeffi-

cients. Equation (2.1) is invariant under x→−x and u→−u. We take parameter

b5 = 1 [1, 21].

The discrete Swift-Hohenberg equation is obtained from (2.1) by discretizing

the spatial derivatives using central finite difference

dun

dt
= (r−1)un−

2
h2∆2un−

1
h4
∆4un+b3u3

n− b5u5
n, (2.2)

where ∆2un = un+1−2un+un−1, ∆4un = un+2−4un+1+6un−4un−1+un−2, and h is

the discretization parameter. In the results presented below, mostly we take b3 = 2.

However, we also consider different values of the parameter.
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In this work, we study the time-independent solution of Eq. (2.2), i.e.,

dun

dt
= 0. (2.3)

Equation (2.1) can be written as dun
dt = −P δE

δun
, where the Lyapunov function E,

referred to as the energy function of the system, is given by

E =
1
P

P∑
n=1

{
−

1
2

(r−1)un
2
−

1
2

(
(un+1−un)2+ (un−un−1)2

h2

)
+

1
2

(un−1−2un+un+1)2

h4

−
1
4

b3un
4+

1
6

b5un
6
}
,

(2.4)

and P is the period of the solution, i.e., un+P = un.

The discrete Swift-Hohenberg equation has the same uniform solution un =U j

as the continuum limit studied in [21], which is given by

0 = (r−1)U j+b3U3
j −b5U5

j , (2.5)

that can be solved to yield

U0 = 0, U+ =
[ 1
2b5

(
b3±

√
b2

3+4b5 (r−1)
)] 1

2
, (2.6)

and its mirror symmetric U− = −U+. The bifurcation diagram of the uniform

solutions is shown in Fig. 2.1. The two branches of U+ collide at

r1 = 1−
b2

3

4b5

and U+ with the minus sign bifurcates from U0 at r2 = 1.

To determine the linear stability of a solution ũn, we write

un = ũn+ϵeλtûn. (2.7)
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After substituting the ansatz into equation (2.2) and linearizing it about ϵ = 0, we

obtain the linear equation

λûn =Lûn, (2.8)

where

L := r−1−
2
h2∆2−

1
h4
∆4+3b3ũ2

n−5b5ũ4
n

and the spectrum λ defines the stability of the solution ũn. A solution is said to

be stable when all λ ≤ 0 and unstable when ∃λ > 0. The spectrum of the linear

differential operator L on the infinite dimensional space is the set of all complex

numbers λ such that (L−λ) either has no inverse or is unbounded. In general,

the spectrum of the linear operator will consist of a continuous spectrum and a

discrete spectrum (eigenvalue) [54].
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Figure 2.1. The existence curve of the uniform solutions of the governing equation (2.2).
Blue solid and red dashed lines indicate, respectively, stable and unstable solutions.

For the uniform solution ũn =U j, j = 0,+,−, one has ûn = eikhn, where k is the

wavenumber of the perturbation, from which we obtain the dispersion relation

λ (k) = r−1+3b3U j
2
−5b5U j

4
−4

(
cos(kh)−1

h2

)(
1+

cos(kh)−1
h2

)
. (2.9)
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The continuous spectrum is the interval of values that can be attained by λ for

all k ∈R. The point r0, i.e., j = 0 in (4.13), corresponds to the condition when the

maximum of the function touches the horizontal axis, which is attained at the

wave number

k =
1
h

(
π±arccos

(1
2

h2
−1

))
, (2.10)

for h < 2 and

k = ±
(
π
h

)
, (2.11)

for h ≥ 2. The numbers are important in the study of bifurcating periodic solutions

and localized solutions below. They will be the wave numbers of the carrier wave

of the localized solutions.

2.2.1 Stability for h < 2

By substituting Eq. (2.10) into (4.13) and considering j = 0 and λ (k) = 0, we obtain

that U0 changes stability at

r0 = 0. (2.12)

Using the same procedure for U+, we obtain that it changes stability at

r+ =
5
4
−

b3

8b5

(
b3+

√
b2

3+4b5

)
. (2.13)

Equations (2.12) and (2.13) indicate that the stability of U0 and U+ does not depend

on the discretization parameter for h < 2. The stability of the uniform solutions

is depicted in Fig. 2.1(a), which is the same as the continuous Swift-Hohenberg

equation [21].
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2.2.2 Stability for h ≥ 2

Following the same steps as the case of h < 2, we obtain that for h ≥ 2 the stability

change for U0 and U+ occurs, respectively, at

r0 =1−
8
h2 +

16
h4
, (2.14)

r+ =
(
1+

2
h2 −

4
h4

)
−

b3

8b5

(
b3+

1
h2

√
h4 b2

3+32b5
(
h2−2

))
. (2.15)

The stability of the uniform solutions now depends on h.

Figure 2.1(b) shows the bifurcation diagram of the uniform solutions for h = 3.

The point r0 at which U0 changes its stability is shifted to the right. In the limit

h→∞, the stability of U0 changes at r0 = 1. The stability of U+ also changes as a

function of h. We can see that r+ is getting closer to r1 as h increases and in the

limit when h→∞, the stability of U+ changes at r+ = r1 = 0.

One main difference between the uniform solutions of the continuous and

the discrete equations is that in the strongly discrete case (h > 2), one can have a

bistability between U0 and U+, i.e., when r0 > r+.

2.3 Periodic solutions

The discrete Swift-Hohenberg equation also admits periodic solutions that bifurcate

from the uniform solution U0 at r = r0. We can obtain an approximation to the

bifurcating periodic solution by writing

uP,n =U0+ ε̂ cos(khn) , (2.16)

with ε̂ small and k given by (2.10) or (2.11). Note that for the continuous function

f (x) = cos(kx), its period is easily given by P = 2π/k. For the discrete function
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Figure 2.2. The relation between the discretization parameter h and the period P for h ≤ 2
and two values of m, i.e., m = 5 and m = 14.

fn = cos(khn), the period is calculated differently [71], i.e., it is periodic with period

P ∈Z+ if ∃m ∈Z+ that does not have any factor in common with P, such that

P =
2πm
kh

. (2.17)

The solution (2.16) is therefore periodic only if there are integers m and P with

no common factors that satisfy (2.17). For h < 2, using (2.10) the plot of (2.17) is

shown in Fig. 2.2 , relating the discretization parameter h and the period P for

several values of m. Note that not every h < 2 will yield periodic solutions. There

are values of the parameter that correspond to almost-periodic (i.e., quasi-periodic)

functions. However, the study of these quasi-periodic solutions is beyond the

scope of the present chapter and is addressed for future work. For h ≥ 2, (2.17)

with (2.11) implies that all the bifurcating periodic solutions have period P = 2.

Substituting Eq. (2.16) into the energy function (2.4) and finding the minimum

of E, i.e.,
∂E
∂ε̂
= 0,
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yield an approximate amplitude ε̂ of the periodic solutions about U0, that is given

by

ε̂(r) =

b3− (4rb5+b2
3)

1
2

2b5


1
2

(2.18)

for h < 2 and

ε̂(r) =

h2b3−
[(

b5 (4r−1)+b2
3

)
h4+32b5

(
h2
−2

)] 1
2

2b5


1
2

(2.19)

for h≥ 2. One can also perform asymptotic analysis using multiple scale expansions

to obtain the bifurcating periodic solution. This is presented in Section 2.4 [see

(2.34)].

We solve Eq. (2.3) numerically using a Newton-Raphson method with periodic

boundary conditions and using (2.16) and (2.18) or (2.19) as an initial guess in our

numerics. Note that, herein, we take the computational number of sites N to be a

multiple of P. We use a pseudo-arclength method to continue the computations

past limit points [81]. We present the bifurcation diagram in the (r, ||u||) plane with

||u|| =

 1
N

N∑
n=1

u2
n


1
2

. (2.20)

After a periodic solution is found, we determine its stability by solving the

eigenvalue problem (2.8), where ũn is now a periodic solution, i.e., ũn = uP,n. At the

same time, we also seek for its Maxwell points rM1, i.e., points where the periodic

state uP,n and the zero solution U0 have the same energy (E[uP,n] = E[U0] = 0).

In the next subsections, we divide the parameter interval into three regions,

i.e., h < 1, 1 ≤ h < 2, and h ≥ 2. The main reason is the qualitative features of the

solutions in each region, which are distinguishably different.
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2.3.1 Periodic solutions for h < 1
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Figure 2.3. Periodic solutions for h = 0.5176 and 0.7167 for r = 1.

Figure 2.3 shows the profile of two periodic solutions for h = 0.5176 and 0.7167

which correspond to P = 12,m = 1 and P = 60,m = 7, i.e., the second solution has a

period of five times larger than the first. We choose these two values of h that are

representative to the case h < 1.

Figures 2.4(a) and 2.4(b) show the bifurcation diagram and the stability of the

periodic solutions for the two values of h above. The diagrams are similar to those

of the continuous Swift-Hohenberg equation [21]. However, the discretization

causes the appearance of an additional branch and possibly a Maxwell point. Note

that in the continuous case, periodic solutions only have one upper branch and

one Maxwell point [19, 20]. In panel (a), we also plot the analytical approximation

(2.16) and (2.34), that is obtained using multiple scale asymptotics, showing good

agreement.

Figures 2.4(c) and 2.4(d) show the energy function of the periodic solutions

for the two values of h above. Both panels show similar plots to those of the
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Figure 2.4. (a), (b) Bifurcation diagrams of periodic solutions for (a) h = 0.5176 and (b)
h = 0.7167. (c), (d) The energy function of the periodic solutions. (e), (f) Eigenvalues of the
periodic solutions. The magenta and green lines correspond to periodic solutions along
the main and extra bifurcation curves, respectively. Black thin lines in (e) and (f) indicate
non-critical eigenvalues of the periodic solutions. Solid and dashed lines correspond to
stability and instability, respectively. Circles indicate Maxwell points. The dashed-dotted
cyan and black lines in panel (a) are amplitudes (2.16) and (2.34), respectively.
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continuous Swift-Hohenberg equation. The energy curves of the periodic solution

E[uP] cross the horizontal axis at Maxwell points. In panel (c) the points are at

rM1 = −0.6755 (stable) and rM1 = −0.6754 (unstable), while in panel (b) the (stable)

Maxwell point is at rM1 = −0.6762. The free energy curves of the two upper

branches are indistinguishably close to each other.

Figures 2.4(e) and 2.4(f) show the spectrum of the periodic solutions along the

two branches. Green and magenta lines indicate the critical eigenvalues of the

periodic solutions along the primary and secondary upper branch.

We also considered several other values of the discretization parameter h. The

main difference between the continuous and the weakly discrete case is indeed

the presence of an extra branch of periodic solutions that may also contain an

additional Maxwell point. We conjecture that the splitting point where the primary

and the secondary upper branches emerge moves to r→∞ as h→ 0, even though

it may not increase uniformly. Note that in Fig. 2.4(a) the value of h is smaller than

that in Fig. 2.4(b), but the branching point of the former occurs at a smaller value

of r than that of the latter. Additionally there can be changes of the stability of the

periodic solutions along the upper branches.

2.3.2 Periodic solutions for 1 ≤ h < 2

Figures 2.5(a) and 2.5(b) show the bifurcation diagrams of several periodic solutions

for two values of h in the interval 1 ≤ h < 2. The diagrams show snaking behavior

with multiple Maxwell points along the stable and unstable branches, which was

not seen in the previous case h < 1 (including the continuous case).

Figures 2.5(c) and 2.5(d) show the corresponding solutions at the points

indicated in Fig. 2.5(b). At the beginning, the solution looks like localized states

separated by a finite distance. As the norm increases, it gradually delocalizes

and forms long stretches of periodic oscillations enclosed by fronts as shown in
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Fig. 2.5(d). Both cases of localization and delocalization are equivalent to a single

localized state in a finite domain. This explains the slanted snaking diagrams

observed in Fig. 2.5 (see also Fig. 2.6 that will be discussed later) [59]. When the

solution becomes completely oscillating, the existence curve stops snaking.
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Figure 2.5. (a), (b) The bifurcation diagram of periodic solutions for two values of h with
1 ≤ h < 2. (c), (d) Solution profiles for h = 1.9754 at several values of r, indicated in (b).

Comparing the panels in 2.5(a) and 2.5(b), one can note that the complexity

of the snaking in the bifurcation curves does not depend on the discretization

parameter h. To study how the bifurcation curve in one of the panels changes

into the other, one would normally vary the parameter h. However, in the present

numerical setup it may not be possible because we fix the number of sites following

the periodicity of the solution, which depends on h. To be consistent, if we were
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Figure 2.6. The appearance of additional Maxwell points as we vary parameter b3 for
h = 1.3383, m = 7, and P = 30.

to vary the parameter we would also need to change the number of grid points,

which can be non trivial to do. In the infinite domain, the change may be related

to the attachment or detachment of some parts of the bifurcation curves.

The presence of multiple Maxwell points due to the vanishing of the energy

function of the periodic solutions seems to be related to the snaking. To understand

the appearance of the additional Maxwell points, it is easier to study them through

varying b3 than h, which is shown in Fig. 2.6. The existence curve that initially

only has two Maxwell points are seen to have four Maxwell points in Fig. 2.6(b)

as b3 increases. Such an addition occurs from the tip of a turning point, i.e., a

saddle-node bifurcation.

2.3.3 Periodic solutions for h ≥ 2

Figure 2.7 shows the bifurcation diagram of two periodic solutions for h ≥ 2. Note

that in this case, the wave number is always π as given in (2.11) and hence P = 2.

The parameter only causes the bifurcation point r0 to shift to the right. As h→∞,

the bifurcation diagram will be equivalent to that of the uniform solution, see

Fig. 2.1.
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Figure 2.7. Bifurcation diagram of the periodic solutions for h ≥ 2.

We can obtain the Maxwell point rM1 exactly by equaling the energy of the zero

and the periodic solutions (2.3) and (2.19) to yield

rM1 = 1−
8
h2 +

16
h4
−

3b2
3

16b5
. (2.21)

2.4 Asymptotic expansion of localized solutions

Defining new variables [95]

X = ϵn, T = ϵ2t, r = ϵ2r1+ r0,

and writing

un(t) = ϵeiψF (X,τ,T)+ϵ2G0 (X,τ,T)+ϵ2eiψG1 (X,τ,T)+ϵ2e2iψG2 (X,τ,T)

+ϵ3H0 (X,τ,T)+ϵ3eiψH1 (X,τ,T)+ . . .+ c.c.,
(2.22)
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where ψ = khn with k being the wavenumber of the carrier wave (2.10), (2.11), and

c.c. denotes the complex conjugation, we obtain

un± j(t) = ϵeiψn± j

[
F± jϵ

∂F
∂X
+

(
jϵ
)2 1

2
∂2F
∂X2 ± . . .

]
+ϵ2

[
G0± jϵ

∂G0

∂X
+

(
jϵ
)2 1

2
∂2G0

∂X2 ± . . .

]
+ϵ2eiψn± j

[
G1± jϵ

∂G1

∂X
+

(
jϵ
)2 1

2
∂2G1

∂X2 ± . . .

]
+ . . .+ c.c.

(2.23)

and
d
dt
=
∂
∂t
+ϵ2 ∂

∂T
. (2.24)

Next, we substitute Eqs. (2.22) and (2.23) into the discrete Swift-Hohenberg

equation (2.2) and equate the coefficients of each harmonic in ψ at each order of ϵ.

At O
(
ϵeiψ

)
, we have

[
1− r0+4

(
cos(kh)−1

h2

) (
1+

cos(kh)−1
h2

)]
F = 0. (2.25)

Because F cannot be zero, its coefficient must vanish, which is satisfied for k and r0

given by Eqs. (2.10) and (2.12), or (2.11) and (2.14), respectively.

At O
(
ϵ2eiψ

)
, we obtain

[
4 isin(kh)

h4

(
2(cos(kh)−1)+h2

)]
= 0. (2.26)

At O
(
ϵ3eiψ

)
, we obtain

FT = AG1X+CFXX+3b3FF2+ r1F−
[
1− r0+4

(
cos(kh)−1

h2

)(
1+

cos(kh)−1
h2

)]
H1,

(2.27)

where

A = −

[
4 isin(kh)

h4

(
2(cos(kh)−1)+h2

)]
C = −2

cos(kh)
(
h2
−2

)
+2cos(2kh)

h4

 . (2.28)
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By using (2.25) and (2.26), we can eliminate the coefficient of H1 and obtain

Ginzburg-Landau equation for F

FT = CFXX+3b3|F|2F+ r1F. (2.29)

Because we focus on the time-independent system FT = 0, we have

CFXX+3b3|F|2F+ r1F = 0, (2.30)

where

C = −

(
h2
−4

)
h2 (2.31)

and

C =
2
(
h2
−4

)
h4

(2.32)

for h ≤ 2 and h > 2, respectively.

The uniform solution of equation (2.30) is

F(X) =
(
−

r1

3b3

) 1
2

eiφ, (2.33)

corresponding to spatially periodic states with period P near r = 0

uP,n = 2
(

(r0− r)
3b3

) 1
2

cos
(
khn+φ

)
+O(r− r0).

Localized states satisfying F→ 0 as X→±∞ are given by

F(X) =
(
−

2r1

3b3

) 1
2

sech

X
(r1

C

) 1
2
eiφ, (2.34)

that using (2.22) lead to the solution (2.35).
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2.5 Localized solutions

In the continuum limit h→ 0, there are localized solutions bifurcating from r0 [21].

In the following, we study the effect of the dicretization to such solutions.

As derived in Section 2.4, localized solutions of the discrete Swift-Hohenberg

equation bifurcating from r0 are given asymptotically at the leading order by

ul,n =

√
2(r0− r)

3b3
sech

hn
(

(r− r0)
C

) 1
2
× cos

(
khn+φ

)
+O(r− r0). (2.35)

Note that the parameter φ is the phase of the pattern within the sech envelope,

which within this asymptotics remains arbitrary. In the continuum limit h→ 0, the

phase-shift is φ = 0 or π/2 [21], which can only be determined using exponential

asymptotics [23, 60, 68, 84]. Here, aside from the locking between the sech envelope

and the underlying wave train, for h> 0 there is also the possibility for the envelope

to be locked with the spatial discretization. However, this will be beyond the scope

of this chapter and in the following we will only consider the phase pertaining to

the continuous limit above.

2.5.1 Snaking regions: r vs. h

By using Eq. (2.35) as our initial guess for the numerics, we obtain the existence

curve of localized solutions. Figure 2.8 shows the bifurcation diagram of the

localized solutions that form the snaking behavior for the phase-shift φ = 0 and

π/2 for a value of h < 1. The vertical axis is the solution norm [see (2.20)]. We also

show the corresponding solutions in the same figures.

One can note that the bifurcation diagram is similar to that of the continuous

Swift-Hohenberg equation [21]. However, we note one difference where up in
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Figure 2.8. (a) Bifurcation diagram of the localized solution for h = 0.71674 with m = 7, P =
60. (b), (c) Profiles of localized solutions next to the bifurcation point r0. The dashed curves
in panel (b), (c) correspond to the envelope given by (2.35).
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the snaking diagram, we obtain intervals of norm where both solutions are all

unstable.

r
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h

0

2

4

6
r
M1

r
M2

r
α,β

Figure 2.9. The pinning region as a function of h indicated by the gray area. The Maxwell
points are also denoted. rM2 is defined in (2.36). rα and rβ are analytical approximations
derived in Sec. 2.6.

At present we may conclude that the discretization parameter h only effects

slightly to the snaking behavior. However, in the following we will show that the

range of parameter 1 ≤ h < 2 is particularly peculiar as there are detachments of

snaking structures.

In Fig. 2.9 we plot the pinning region, which is bounded by left and right

turning points of the snaking curve, for varying h. We obtain smooth boundaries

in the regions h < 1 and h ≥ 2, while there are jumps and pikes of pinning region

boundaries in the region 1 ≤ h < 2. Analyzing the snaking profiles around the

jump or spiking points closely, we obtain that they correspond to the detachment

of a snaking profile from the main branch as depicted in Fig. 2.10.

Figure 2.10(a) shows the bifurcation diagram before the jump, showing a

complex snaking. Right after the jump, we obtain a much simpler snaking

structure as shown in Fig. 2.10(b). The change of the bifurcation diagram in panel
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Figure 2.10. The homoclinic snaking (a) before and (b) after a jump in Fig. 2.9.

r
-8 -6 -4 -2 0

h

0
0.9357

2

4

6

8

10
r
M1

r
M2

r
α,β

Figure 2.11. The same as in Fig. 2.9 for b3 = 5.5. The horizontal dotted line indicates a
sample value of h that will be considered further later (see Fig. 2.12) for having three types
of localized solutions.

(a) to that in panel (b) is due to the detachment of a snaking structure (not shown

here) from the main branch, which is the general scenario of the jumps and pikes

observed in Fig. 2.9.

Overall we say from Fig. 2.9 that for h < 1, the influence of the discretization

from the fourth derivative term is more dominant than the second derivative

one, while for h ≥ 2 it is the opposite. For the intermediate interval 1 ≤ h < 2,
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Figure 2.12. Three different snaking diagrams (a)-(c) and their localized solutions (d) and
(e) that were obtained for h = 0.9357 with φ = 0 and b3 = 5.5. The three diagrams share the
same portion of curve between r0 and point (ii). In the continuum limit h→ 0, only the
bifurcation diagrams in (a) and (b) were reported in [19].
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the influence of the discretization from the second and the fourth derivatives is

relatively the same that yields non-trivial bifurcation curves.

In Fig. 2.9, we depict Maxwell points defined previously as the points when

the energy of the periodic solutions vanishes. It is particularly interesting to note

that there are many Maxwell points in the region 1 ≤ h < 2, especially when h→ 2.

Additionally, we also plot rM2 as vertical dashed line, that is defined as the point

when the energies of U+ and U0 are equal, i.e., E[U+]−E[U0] = 0. The point can be

calculated easily as

rM2 = 1−
3b2

3

16b5
, (2.36)

which is exactly the same as that of the continuum limit [21]. This special point

will also be relevant later on when we consider the effect of varying b3.

In the continuous case, it was shown that the pinning region enlarges with

increasing b3 and above a critical b3 ≈ 3.521 there is no snaking formed any more

[21]. The snaking simply just collapses into a vertical line. This happens when the

right boundary of the snaking region touches the special point (2.36). In Fig. 2.11

we plot the pinning region for varying discretization parameter h with b3 = 5.5.

One can observe that for small h indeed there is no snaking. However, when h is

large enough, a snaking behavior is obtained again.

For this value of b3, we also still see jumps and pikes along the pinning region

boundaries. In this case we even observe a more complicated structure than that

in Fig. 2.10, where the snaking involves three different branches. One example is

for h ∼ 0.9357. We show in Fig. 2.12 the different branches and their corresponding

solutions.

The three bifurcation diagrams in Figs. 2.12(a), 2.12(b), and 2.12(c) share the

same portion of curves from the bifurcation point r0 until point (ii). Point (ii) is

a bifurcation point, from which emanates the three different branches. In Figs.
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Figure 2.13. The pinning regions indicated by the gray area for three different values of h
representing the region (a) h ≤ 1, (b) 1 ≤ h < 2, and (c) h ≥ 2. See the text for the definition
of rM1, rM2, rα, and rβ.
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2.12(d) and 2.12(e) we show the corresponding solution profiles for each branch at

the indicated points in Figs. 2.12(a), 2.12(b), and 2.12(c).

For h < 0.9357, the solutions are similar to those in Fig. 2.12(d), i.e., branch

in Fig. 2.12(a). For h ≈ 0.9357, the solutions in Figs. 2.12(d) and 2.12(e) coexist.

In particular, localized solutions such as those shown in Fig. 2.12(e) are the ones

that give a complicated bifurcation diagram that experiences detachment and

attachment processes for 0.9357 ≤ h < 2.

Solutions in Figs. 2.12(d) and 2.12(e) can be seen to rather have a flat plateau

around U+, from which one obtains their relation to the special point rM2 [19].

In the continuum limit h→ 0, the reported diagram was only that shown in

Figs. 2.12(a) and 2.12(b) [19].

Here, we would like to study further the effect of the parameter b3 on the

snaking in the discrete system. We now fix h and vary b3 instead.

Figure 2.13(a) shows the pinning region for h < 1 represented by h = 0.51764.

The region behaves quite similarly as the continuous Swift-Hohenberg equation

[19]. Maxwell point is always inside the snaking region. Beyond b3 = 3.521, the

solution stops snaking and follows the point rM2 [21].

Figure 2.13(b) shows the pinning region for 1 ≤ h < 2, which is represented

by h = 1.3383. The discretization causes the presence of multiple Maxwell points

appearing inside the pinning region. What is notable is the result that unlike the

previous case for h < 1, here the pinning region does not feel the presence of the

special point rM2.

Figure 2.13(c) shows the pinning region for h ≥ 2, which is represented by h = 5.

The result shows that there is only one Maxwell point (2.21). Note that rM1 and

rM2 converge to the same point when h→∞. The point rM2 does not affect the

pinning region just like in the previous case when 1 ≤ h < 2.
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Figure 2.14. The bifurcation diagram of localized solutions for h = 5 and their correspond-
ing profiles at the points indicated by the letters in (a).

2.6 Analytical approximation

It is important to note that when h≫ 1, the discrete system is actually weakly

coupled. Figure 2.14 shows the bifurcation diagram of localized solutions for h = 5

and the corresponding solutions. The panels show the fact that as we vary r along

the branch, there is basically only one node that is active and varies following
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the variation of the parameter r, while the other points are either in the periodic

solution part or in the region of the uniform zero solution.

From (2.2), we can assume that up in the snaking diagram only five nodes are

involved in the dynamics, i.e.,

un−2 = 0, un−1 = 0, un = υ, un+1 = ±ε̂, and un+2 = ∓ε̂. (2.37)

Here, ε̂ is the approximate amplitude of the periodic solution given by (2.19)

and υ is the active node. Substituting (2.37) into the time-independent discrete

Swift-Hohenberg equation (2.2) will yield a fifth order polynomial for the variable

υ

P5 (υ) = −b5υ
5+ b3υ

3+
(
r−1+

4
h2 −

6
h4

)
υ∓

2ε̂
h2 ±

5ε̂
h4
= 0. (2.38)

We call (2.38) a one-active site approximation. Without loss of generality, we

can consider one sign only from the plus-minuses in the polynomial because of its

symmetry. We plot in Fig. 2.15 the polynomial (2.38) for h = 5.
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Figure 2.15. One-active site polynomial for h = 5. υα and υβ represents the left and the
right pinning boundary. υst represents the stable site of the lower solution. υun represents
the unstable site of the solution. υex represents the stable site of the upper solution.
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In general, the function will have five real roots. Three of them are related to

the snaking as they can disappear in a saddle-node bifurcation with varying r. The

roots are indicated in Fig. 2.15. The boundaries of the pinning region can then

immediately be recognized as the condition when the local minimum at υ = υα or

the local maximum at υ = υβ touches the horizontal axis. To be precise, υα and υβ

correspond to the left and right boundaries of the pinning region, respectively.

It is rather straightforward to obtain that

υα,β =
1

10b5h

(
10b5

(
3b3h2

±

(
h4

(
20b5 (r− r0)+9b2

3

)
−80h2b5+200b5

) 1
2

)) 1
2

=
1
√

10b5

(
3b3±

(
20b5 (r− r0)+9b2

3

) 1
2

)
+O

(1
h

)
. (2.39)

The boundaries of the pinning region are then given by

rα,β ≈ r̂α,β−
2
h2

2+

√
5b3+5

√
4b5

(
r̂α,β−1

)
+b2

3√
3b3+

√
20b5

(
r̂α,β−1

)
+9b2

3

 , (2.40)

with

r̂α = 1−
b2

3

4b5
, r̂β = 1 (2.41)

Comparisons between the numerical results and the approximations above

are shown in Figs. 2.9, 2.11, and 2.13(c), where we can see that in general the

approximation rα,β gives good results particularly for the left boundary.
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Figure 2.16. Comparisons of the roots of (2.38) that are related to snaking obtained
numerically (solid lines) and the approximations (2.42), (2.43), and (2.44) (dashed lines).
Here, h = 5.

We can also asymptotically obtain the three particular roots to be given by

υst ≈
ε̂
(
2h2
−5

)
h4 (r− r0)−4h2+10

, (2.42)

υun = υβ−

√√√√ (
r− rβ

)
10υ2

βb5−3b3
+O

(
r− rβ

)
, (2.43)

υex = υα+

√
(r− rα)

10υ2
αb5−3b3

+O (r− rα) . (2.44)

Comparisons between the numerically computed roots of (2.38) relevant to

snaking and the approximations (2.42), (2.43), and (2.44) are shown in Fig. 2.16.

We compare in Fig. 2.17(a), 2.17(c), and 2.17(e) the numerical results obtained

from the solution of the full system and the approximations (2.37) using roots of

the one-active site polynomial (2.38). One can see that the approximations are

good.

Next, we will show that the one-active site approximation can also be used to

approximate the critical eigenvalue of localized solutions in the pinning region.
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Figure 2.17. (a), (c), and (e) Comparisons between the numerically obtained localized
solutions of the discrete Swift-Hohenberg equation (2.2) and the one-active site approxima-
tion (2.37) for h = 5. (b), (d), and (f) The corresponding spectrum of the localized solutions
in the top panels that are computed numerically and the eigenvalue (2.46) approximating
the critical spectrum.
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This is obtained from realising that the dynamics of the active site will satisfy the

equation υt = P5(υ). It is then immediate that the eigenvalue will be given by the

linear eigenvalue problem

λυ =
d

dυ
P5(υ)

∣∣∣∣∣
υ=υst,un,ex

υ, (2.45)

i.e.,

λst,un,ex(r) = −5b5υ
4
st,un,ex+3b3υ

2
st,un,ex+

(
r−1+

4
h2 −

6
h4

)
. (2.46)

Figures 2.17(b), 2.17(d), and 2.17(f) show numerically computed spectrum of the

profiles in Figs. 2.17(a), 2.17(c), and 2.17(e) and our approximation (2.46), where

rather excellent agreement is obtained.

2.7 Conclusion

We have considered a discrete Swift-Hohenberg equation that is obtained from

discretizing the spatial derivatives of the continuous one. We have studied time-

independent solutions, namely, uniform, periodic, and localized solutions and

their (in)stabilities, from which we concluded that in terms of the discretization

parameter h, the equation can be distinguished into three different regions, i.e.,

0 < h < 1, 1 ≤ h < 2, and h ≥ 2. In the first interval, the uniform, the periodic and

the localized solutions of the discrete Swift-Hohenberg equation have similar

properties with the continuous case. As a direct consequence, our study indicates

that to solve the (continuous) Swift-Hohenberg equation numerically using finite

central differences, it can be sufficient to use relatively large h < 1.

As the discretization parameter becomes larger, features different from the

continuous counterpart may emerge, such as instability of localized solutions for

both phase φ = 0 and π/2 for the same parameter values, extra bifurcation curves
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for the periodic and localized solutions, and multiple Maxwell points. Moreover,

one may also obtain a snaking structure in the bifurcation diagram of periodic

solutions, that does not exist in the continuous limit, as well as complicated snaking

structures for localized solutions.

Analytical approximations have been developed for the periodic and the

localized solutions. The periodic solution amplitudes have been determined using

variational methods, while the localized solutions have been approximated using

asymptotic analysis.

The boundaries of the pinning region, i.e., of the homoclinic snaking that is

associated with the localized solutions, have been studied numerically as well as

analytically by developing a one-active site approximation. We have shown that

the approximation can also be used to approximate the critical eigenvalue of a

localized solution. Comparisons of the analytical results and the numerics show

good agreement.
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Figure 2.18. Time dynamics of the unstable solution shown in Fig. 2.14(b), that corresponds
to point b in Fig. 2.14(a). The symmetric solution evolves into an antisymmetric one, which
corresponds to a point on the stable branch right above point b.
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In this work, we mainly only considered time-independent solutions, where

we determined their local (in)stability from computing the spectrum of their

corresponding linear differential operator. The typical time evolution of the

unstable solutions, which is rather related to global dynamics, is depicted in Fig.

2.18, where an unstable solution would settle into a stable neighboring one.

Discussing time-dependent solutions, it is interesting to study the effect of

parametric time-periodic forcing [46] to the snaking behavior in discrete systems,

which is addressed for future work. The mechanism for snaking or non-snaking

in discrete systems (in the continuous case, it is discussed in [2]) is also proposed

to be studied in the future.



Chapter 3

Homoclinic snaking of discrete

solitons in saturable optical cavities

3.1 Introduction

Recently, there has been a great interest in the study of localized patterns in

nonlinear systems with rich multiplicity now known as homoclinic snaking [10, 18–

21, 32, 33, 60, 66, 67]. While homoclinic snaking mostly has been studied in spatially

continuous systems, it also occurs in spatially discrete models [25, 61, 74, 86, 96, 97].

In general, localized states are formed by combining back to back of two

different states, which can be spatially periodic and uniform states or two different

uniform states, and may occur because of the presence of bistability regime between

the states. Homoclinic snaking appears as a bifurcation parameter is being varied.

Along the existence diagram, new “rolls” in spatially continuous systems or new

“sites” in weakly coupled equations are added at both fronts (i.e., Pomeau fronts)

[19, 60, 76].

In nonlinear optics, homoclinic snaking has been observed experimentally

in, e.g., driven optical systems [44], in 2D vertical-cavity surface-emitting lasers

66
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(VCSELs) [88], vertical-cavity semiconductor optical amplifier [6], a spatially forced

system [51], and liquid crystal light-valve [14].

The parameter interval where homoclinic snaking exists is called a pinning

region and has been studied analytically and numerically for continuum and

anti-continuum cases [19–21, 23, 35, 61, 68, 79, 84, 94]. Within this region, localized

states have possibly infinitely many distinct stable solutions [97, 98] around the

Maxwell point [76], which is a parameter value where the two states of localized

solutions have the same energy [16, 53]. Pomeau recognized the snaking structure

to be caused by a beyond-all-orders phenomenon [76].

In this work, we consider a discrete Ginzburg-Landau-type equation with

saturable nonlinearity, which is a common mathematical model to study optical

cavities [96–98]. Considering the same type of equations, but with a cubic

nonlinearity, will result in the discrete Lugiato-Lefever equation [42, 43, 74].

The equation models light propagation in an array of weakly coupled optical

waveguides [40, 41, 43]. The saturation creates families of both bright and gray

solitons exhibiting multistability as they develop internal shelves in the pinning

region for either zero or finite losses [98]. Previous numerical works also include

homoclinic snaking and infinite multistability of stationary patterns [97] and the

appearance of isolas via symmetry breaking [96]. However, homoclinic snaking in

the equation has yet to be explored analytically.

The aim of the present chapter is to provide a detailed analysis of uniform and

localized states of the equation and their bifurcation diagrams forming homoclinic

snaking. We study the formation of isolas of b-shaped from a homoclinic snaking

reported previously in [96]. Moreover, we present a semianalytical approximation

to the width of the pinning region using a one-active site assumption. Even though

the current work considers optical cavities with saturable nonlinearity, our results

can be straightforwardly extended to cubic nonlinearity as well.
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The chapter is organized as follows. The spatially discrete governing equation

is discussed in Section 3.2. In the section, we also study uniform solutions and

their linear stability. We discuss localized solutions, homoclinic snaking, and

the formation of b-shaped isolas in Section 3.3. We approximate the width of

the pinning region analytically using a one-active site method in Section 3.4. We

also compare the result with numerical computations in the section, where good

agreement is obtained provided that the arrays are weakly coupled. Conclusions

are in Section 3.6.

3.2 Mathematical Model

In this study, we consider the one-dimensional lattice equation for a complex field

An ∈ C, n ∈Z:

i∂tAn+δAn+
α|An|

2

1+ |An|2
An+ c∆An = P, (3.1)

where ∆An = An+1+An−1−2An. An represents the amplitude of the nth identical

optical resonator in a one-dimensional array [97], c ≥ 0 denotes the strength

of the nearest-neighbour coupling between oscillators. P is the amplitude of

an applied optical pump field (real-valued and independent of n), which is

our control/bifurcation parameter. Re(δ) = δr represents detuning of the pump

frequency from the resonant frequency of the oscillators. Re(α) indicates the

strength of Kerr effect of the intensity-dependent refractive index. Im(δ) = δi and

Im(α) are linear and nonlinear loss terms, respectively. Using the results of [97],

here we focus on two cases of parameter values, which yield rich dynamics and

represent the general snaking behaviours in the discrete optical cavities, i.e.,

• Case 1 : δ = −9.2+ i and α = 10,

• Case 2 : δ = 4+ i and α = −10.
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We consider the time-independent solution of equation (3.1), i.e.,

δAn+
α|An|

2

1+ |An|2
An+ c∆An = P, (3.2)

Once a solution An = Ãn = x̃n+ i ỹn is obtained, its linear stability is then determined

by writing

xn = x̃n+ϵx̂neλt, yn = ỹn+ϵŷneλt. (3.3)

Substituting (3.3) into (3.1), linearizing about ϵ = 0 and splitting the real and

imaginary part of the resulting equations, we obtain the linear eigenvalue problem

λ

 x̂n

ŷn

 =L
 x̂n

ŷn

 , (3.4)

where

L =

 −δi−m11 −δr− c∆−m12

δr+ c∆−m21 −δi−m22

 (3.5)

is the linear differential operator of Eq. (3.1) and

m11 =
2αx̃n ỹn(

1+ x̃2
n+ ỹ2

n

)2 , m12 =
α
[(

x̃2
n+ ỹ2

n

)2
+

(
3ỹ2

n+ x̃2
n

)]
(
1+ x̃2

n+ ỹ2
n

)2 ,

m21 =
−α

[(
x̃2

n+ ỹ2
n

)2
+

(
3x̃2

n+ ỹ2
n

)]
(
1+ x̃2

n+ ỹ2
n

)2 , m22 =
−2αx̃n ỹn(

1+ x̃2
n+ ỹ2

n

)2 .

(3.6)

A solution is said to be stable when Re(λ) < 0 for all the eigenvalues and unstable

otherwise.
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3.2.1 Uniform solutions

Equation (3.1) has uniform solutions (homogeneous states) An(t) = A satisfying

Fu (A) = δA+
α |A|2

1+ |A|2
A−P = 0. (3.7)

Figure 3.1 shows the nullclines of the real and imaginary parts of Fu (3.7) for

several values of P. As intersections between the blue and red curves represent

uniform solutions of (3.7), we obtain that depending on P, we can have one or three

solutions. The interval of P for three roots is bounded by turning points, where

two roots coalesce. We present in Figs. 3.1(c) and 3.1(d) the roots as a function of P.

To determine the linear stability of the uniform solutions, one has x̂n = aeikn, ŷn =

beikn, where k is the wave number of the perturbation, from which we obtain the

dispersion relation

λ(k) = −δi−
1
2

(m11+m22)±
1
2

√

Γ, (3.8)

where

Γ = −8cos(k)c [2cos(k) (c+m12−m21−4c+2δr)]−4(δr−m21) (m12+δr)

−8c (2c−2δr−m12+m21)+ (m11−m22)2 .

A uniform solution is said to be stable when λ(k)<0 for ∀k ∈R and unstable when

∃k such that λ(k) > 0. The maximum of the spectrum (3.8) is attained at

k = ±


π , c < cP

arccos


4c−m12+m21−2δr

4c

 , c ≥ cP

(3.9)
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where

cP =
1
8

(m12−m22−2δr) ,

which is a parameter threshold for the stability change point of the uniform

solution, see Fig. 3.2.

Figures 3.3(a) and 3.3(c) show the bifurcation diagrams of the uniform solutions

for case 1. The point P1 where the uniform solution changes its (in)stability is

shifted to the right or to the left, which depends on the value of c. For c< cP (weakly

coupled), P1 is shifted to the left approaching the turning point as c decreases.

Moreover, when c = 0 (uncoupled), P1 is at the left turning point. The eigenvalue

(3.8) that determines the linear stability is a function of c for c < cP. On the other

hand, P1 is independent of c for c ≥ cP (strongly coupled).

The same mechanism also occurs for case 2 with the (in)stability change at

point P0, see Figs. 3.3(b), 3.3(d), and 3.2(a). In case 2, P0 is shifted to the right when

c is getting smaller and it is shifted to the left when c is getting larger. Note that,

for both cases, we have bistability of uniform solutions for P1 ≤ P ≤ P0.

3.3 Localized solutions and Snaking

Discrete optical cavity equation (3.1) admits localized solutions, namely onsite and

intersite solutions that bifurcate from the uniform solutions at point P0. Localized

solution is formed by combining two stable uniform states, i.e., “upper” and

“lower” branches, back to back.

3.3.1 Snaking

By applying numerical continuation for varying P, one can obtain the bifurcation

diagrams for onsite and intersite solutions as shown in Fig. 3.4.
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Figure 3.3. Bifurcation diagrams of the uniform solutions and their linear stability. The
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there is a stability shift past the turning points as c increases.
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Figure 3.5. Plot of the onsite and intersite solution profiles on the bifurcation diagram in
Figs. 3.4(a) and 3.4(c) and their spectrum in the complex plane. (a)-(b) and (c)-(d) depict
onsite and intersite solutions, respectively.

We also introduce the “norm”, i.e.,

M =
∑

n

(
|An−A∞|2

)
, (3.10)

which we refer to as the mass of the soliton [96, 97]. By plotting the bifurcation

diagrams in Figs. 3.4(a) and 3.4(b) in terms of the soliton mass instead, homoclinic

snaking for onsite and intersite solutions are clearly seen in Figs. 3.4(c) and 3.4(d).

Figure 3.5 shows onsite and intersite localized solutions of the diagram in Fig.

3.4(c) for several values of P. As the bifurcation parameter P is being varied, the

norm M will increase. The “upper" state of the localized solution will invade the

“lower" state. Figure 3.6 shows the bifurcation diagrams of snaking for varying c for
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Figure 3.6. Bifurcation diagrams of case 1 for varying c.

case 1. One can see that the pinning region is getting wider as the coupling strength

c decreases (weakly discrete). On the contrary, we do not have any snaking as

c→∞. Furthermore, onsite and intersite solutions merge in the continuum limit.

3.3.2 b-shaped isolas

One interesting phenomenon from the snaking in optical cavities equation is that

when the pinning region expands as c decreases, at some point one will reach a

regime where the background (uniform state) of the localized state ceases to exist.

This phenomenon causes attachment or detachment process around the saddle-

node bifurcations in the snaking branches. As an impact of this phenomenon,

b-shaped isolas will be formed when we vary the control parameter, i.e., P. Figure

3.7 shows the formation mechanism of the b-shaped isolas present in case 1 as c is

being varied. One can see that, the b-shaped isolas are formed around c ≈ 0.39 for

case 1.

3.4 Pinning regions analysis

In this section, we analyze and discuss the pinning region and its approximation

for case 1 and 2 when we vary the coupling strength c.
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Figure 3.7. The occurence of b-shaped isolas for case 1 (onsite solutions) when c is being
varied.



78 Homoclinic snaking of discrete solitons in saturable optical cavities

3.4.1 Pinning region

It is important to note that pinning regions are bounded by turning points. Hence,

the boundaries of the pinning regions can be computed from solving the extended

system [48] 
∂tAn

Lϕ

||ϕ||

 =


0

0

1

 , (3.11)

where ϕ is an eigenvector of the Jacobian L, that corresponds to the largest

eigenvalue being zero. By using Eq. (3.11), one can compute the left and right

pinning regions without calculating the whole snaking. However, it needs a good

initial condition to obtain the turning points, which is the boundary of the pinning

region. Note that in the anti-continuum limit, the turning points of the uniform

solutions also satisfy the extended system in Eq. (3.11).

Figures 3.8 and 3.9 show the pinning regions for case 1 and 2. Herein, we only

simulate the pinning regions for varying c.

Figure 3.8(a) shows the pinning region when we vary c for case 1. One can see

that the pinning region increases when c decreases. At c ≈ 0.39, the right boundary

of the pinning region reaches the right saddle point of the uniform solutions, i.e.,

the b-shaped isolas are formed. On the contrary, the pinning region shrinks when

c is getting larger as the onsite and intersite solutions become the same in the

continuum limit.

Figure 3.9 shows the pinning region when we vary c for case 2. The main

difference with case 1 is that there is no formation of b-shaped isolas.
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3.4.2 One-active site

One can see that when we vary P, there is effectively only one node that is “active”

at the fronts between the two states of the uniform solutions as shown in Fig. 3.5.

By using the assumption that only three nodes involve in the dynamics as we vary

P, write [61, 83]

An−1 = u1, An = υ, and An+1 = u2, (3.12)

where u1 and u2 are uniform states (background states) on the upper and lower

branch of Fig. 3.3 and υ is the active node. By substituting (3.12) into the time
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independent solutions of Eq. (3.2), we obtain

Fa(υ) := δυ+
α|υ|2

1+ |υ|2
υ+ c (u1+u2−2υ)−P = 0. (3.13)

For the assumption to be valid, the solutions should be “discrete” enough, i.e.,

weakly coupled. In general, Eq. (3.13) can have one or three real solutions which

is related to snaking. Two of the roots will disappear in a saddle-node bifurcation,

which will correspond to a pinning region boundary. In Fig. 3.10, we show the

one-active site function for case 1 and 2. The three roots are indicated in Fig. 3.10.

The pinning region boundary is the condition when O and X or O and △merge.

To be precise, the coalescence of points O and X or O and △ corresponds to the

left and right boundaries of the pinning regions, respectively. The mechanism for

collisions is the same as that for the uniform solutions in Figs. 3.1(a) and 3.1(b).

Figures 3.8 and 3.9 show the comparison between the numerical results from

(3.2) and the one-active site approximation (3.13).

Figure 3.8(a) shows that the one-active site approximation is good for small

c. One can see, the solution profile for large c has more than one-active node on

the “upper” state, see Fig. 3.8(b). In this case, the one-active site assumption is no

longer valid.

The comparison between the numerical results and the one-active approxi-

mation for case 2 are shown in Fig. 3.9. The inset in Fig. 3.9 indicates the most

important trait of the comparison. The simulation results show that the one-active

site approximation gives better results for small c. Additionally, the one-active site

approximation will also give better results if the pinning boundary is relatively far

from the turning point of the uniform solution. One also can say that a one-active

site approximation gives a good result when “upper” and “lower” states from

the localized solutions are relatively flat (uniform) or weakly coupled and only

one-active node connects them.
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Next, the critical eigenvalue of localized solutions in the pinning region can

also be approximated by our one-active site approximation. This could be obtained

by considering the dynamics of Eq. (3.13), i.e.,

−iυt = Fa (υ) . (3.14)

Let υ̃ = υ̃R+ i υ̃I is a solution of the one-active site function (3.13). Linearising (3.14)

around υ̃, by writing υ = υ̃+ ϵ (υr+ iυi)eλt for small |ϵ| will yield the eigenvalue

problem

λ

 υr

υi

 =
 s11 s12

s21 s22


 υr

υr

 , (3.15)

where

s11 = −δi−m11 (υ̃R, υ̃I) , s12 = −δr−2c−m12 (υ̃R, υ̃I) ,

s21 = δr+2c−m21 (υ̃R, υ̃I) , s22 = −δi−m22 (υ̃R, υ̃I) ,

m11, m12, m21, and m22 are giving in (3.6). We can simply obtain the eigenvalues

λ (P) =
1
2

(
s11+ s22±

√
(s11− s22)2+4s12s21

)
. (3.16)

The inset in Fig. 3.11 shows the numerically computed spectrum of the localized

solutions and our approximations, where a good comparison is obtained. However,

our approximation of critical eigenvalues do not coincide with the numerical results

when the critical eigenvalues are from the background states, rather than from the

front of the localized solution, as we can see in the insets (i) and (iii) in Fig. 3.11.

Generally, the one-active site approximation is a good approximator to determine

the stability of a localized solution in weakly coupled systems.



3.5 Pinning regions for varying Re(δ) and Im(δ) 83

3.5 Pinning regions for varying Re(δ) and Im(δ)

Figure 3.12 shows the pinning regions and their solution profiles (case 1 only) for

varying Im(δ) and Re(δ). It also shows the comparison between the numerical

results from Eq. (3.2) and the one-active site approximation (3.13).

Figure 3.12(a) shows a comparison of the pinning region for varying Im(δ).

Herein, c is taken to be small, which is c = 0.1, because the one-active site approxi-

mation is good for a weak coupling condition. As we can see, the one-active site

approximation gives good agreement for large Im(δ). The approximation starts

to get farther away from the numerics at Im(δ) ≈ 0.5 as we decrease Im(δ). The

approximation fails because the “upper” state from the localized solution starts to

form a “non-uniform” state, see Fig. 3.12(c).

Figure 3.12(b) shows a comparison of the pinning region for varying Re(δ). As

one can see, the one-active site approximation gives good agreement for smaller

Re(δ). The approximation starts to have a significant difference at Re(δ) ≈ −8 as we

increase Re(δ). This occurs because the “upper” state starts to form a “non-uniform”

state when Re(δ) increases as shown in Fig. 3.12(d).

For case 2, the comparison between the numerical results and the one-active

approximation for varying Im(δ) and Re(δ) are shown in Figs. 3.12(e) and 3.12(f),

respectively.

To sum up, the simulation results show that the one-active site approximation

gives good agreement for small c, large Im(δ), and small Re(δ). One also can

say that it gives a good result when the “upper” and “lower” states of localized

solutions are relatively uniform, weakly coupled, and only have one front that

connects them.
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Figure 3.12. Panels (a), (b), (e), and (f) are the same as Figs. 3.8(a) and 3.9, but varying
Re(δ) and Im(δ). Panels (b), (d) are solution profiles for different values of Im(δ) and Re(δ),
respectively.
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3.6 Conclusions

We have presented the study of time-independent solutions of the discrete optical

cavities in saturable nonlinearity and their stability. We found that bifurcations

of localized states from the uniform state can depend on the coupling strength

between the arrays. The stability and turning points of the uniform solutions can

be determined semianalytically. By using numerical continuation, we computed

the pinning regions of localized solutions, within which the bifurcation diagrams

form snaking structures when a parameter is being varied. Numerical simulations

also showed the appearance of b-shaped isolas in the bifurcation diagrams.

A one-active site approximation to analyze and approximate the pinning

region boundary has been proposed. We also showed that it can give a good

approximation for localized solutions and the critical eigenvalues, especially for

weakly coupled systems.

Applications of the one-active site approximation in higher dimensional systems

will be reported elsewhere.



Chapter 4

Snakes in square, honeycomb and

triangular lattices

4.1 Introduction

In recent years, a great deal of interest has been focussed on the study of homoclinic

snaking [94] appearing in pattern formations in nonlinear systems, such as those

in the Swift-Hohenberg equations [19–21], cellular buckling [53], neuronal model

[3, 62], and optical systems [44, 96–98], leading to a rather complete understanding

of their properties and mechanism of formation in the lower dimension. Homoclinic

snaking has also been observed in different experiments, e.g., in magnetic fluids [65],

liquid crystals [14, 51], shell bucklings [87], optical cavities [88], and semiconductor

optical systems [6]. Generally, localized solutions may be present due to the

existence of bistability regimes between homogeneous and periodic states or

between homogeneous states themselves. We can obtain a localized state when

we combine back to back two different states, which are connected by fronts [76].

Higher dimensional snaking has been studied as well [2, 66, 90]. Using the

planar Swift-Hohenberg equation, several numerical observations show exotic

solutions, such as stripes, localized spots and hexagon patches [30, 52, 66, 79]

86
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and localized radial solutions [64, 69]. Localized square patterns have also been

observed in the same equation with an additional nonlinear gradient term [80].

Planar neuronal models also exhibit similar exotic solutions [77]. Patchwork quilt

state, i.e., regular triangles, [47] is foreseen in bistable systems with the symmetry

u→ −u. Snaking involving various superpatterns [36, 55] is also anticipated.

Snaking of localized structures called convectons in three-dimensional doubly

diffusive convections has also been studied [8, 9].

All in all, details of the snaking behavior are rather more involved in higher

dimensional case, such as overlapping pinning regions, complications that involve

Maxwell points, and growing patterns by nucleating individual structure which

break and recover the basic symmetry of the state [66]. Even a good qualitative

picture of those behaviors is still an open problem [58].

This chapter provides a further step towards understanding the problem.

However, rather than considering spatially continuous systems, we study a

discrete one as it may provide a better control over, e.g., the patterns of localized

states that may appear by determining the lattice types. In this work, we consider

square, honeycomb, and triangular lattices. Our main finding is that the complexity

and width of the snaking diagrams depend on the number of “fronts” admitted by

the lattice patterns.

Homoclinic snaking is also observed in spatially discrete systems [24, 25, 61].

While in continuous systems snaking is caused by pinning between fronts and

the underlying oscillatory states, in discrete setups it is due to the pinning of

fronts and the imposed lattices, i.e., in continous equations homoclinic snaking

occurs when localized states add “rolls” at the fronts, in discrete systems they

add “cell”. Homoclinic snaking in two-dimensional discrete systems has also been

numerically studied in [24, 86], where it was shown that bifurcation diagrams of
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localized solutions can exhibit a complicated behavior, which is not clearly well

understood yet.

In this work, we consider a two-dimensional discrete Allen-Cahn equation

with cubic and quintic nonlinearity [86]. The equation can be considered to come

from the two-dimensional discrete nonlinear Schrödinger equation

iψ̇n+ c∆ψn+2|ψn|
2ψn− |ψn|

4ψn = 0, (4.1)

where ψn(t) is an array of complex field and ∆ is a Laplacian operator of the nearest

neighbour differences. By substituting ψn(t) = une−iµt, where un is real stationary

field into equation (4.1), we obtain

µun+ c∆un+2u3
n−u5

n = 0, (4.2)

which is the time-independent discrete Allen-Cahn equation. In this chapter, we

study homoclinic snaking boundaries of the system when the coupling between

lattices is weak. In particular, we consider three different types of lattices, i.e.,

square, honeycomb, and triangular, which to our best knowledge have not been

studied in the context of homoclinic snaking. Another main result is that we

classify all the relevant structures causing saddle-node bifurcations that form the

boundaries of the pinning regions.

The chapter is constructed as follows. The two-dimensional discrete Allen-

Cahn equation is discussed in Section 4.2. We also discuss uniform states and

their stability in the section. In Section 4.3, localized states and their homoclinic

snaking for square, honeycomb, and triangular lattices are being discussed and

calculated. In Section 4.4, we discuss active-cell approximations of the saddle-node

bifurcations and details of the snaking structures reported in Section 4.3. Section

4.5 is our conclusions.
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4.2 Mathematical model and uniform state

In this study, we consider the two-dimensional (2D) discrete Allen-Cahn equation,

which is given by

u̇n,m = µun,m+2u3
n,m−u5

n,m+ c�∆�un,m, (4.3)

where un,m is a real stationary field defined on 2D integer lattice, µ is a real

bifurcation parameter, c� is the coupling strength of the nearest-cell, and ∆� is a

discrete Laplacian operator on the 2D integer lattices Z2. We consider three lattice

types, namely,

• Square lattice :

c�∆�un,m = c+∆+un,m

= c+
(
un+1,m+un−1,m+un,m+1+un,m−1−4un,m

)
,

(4.4)

• Honeycomb lattice :

c�∆�un,m = c�∆�±un,m

= c�
(
un+1,m+un−1,m+un,m±1−3un,m

)
,

(4.5)

where∆�+ and∆�− correspond to the case when n+m is even or odd, respectively,

• Triangular lattice :

c�∆�un,m = cB∆Bun,m

= cB
(
un+1,m+un−1,m+un,m+1+un,m−1+un−1,m+1+un+1,m−1

−6un,m
)
.

(4.6)

In Fig. 4.1, we transform honeycomb and triangular lattices into square domain, i.e.,

brick and slanted-triangular lattices for the purpose of computation and plotting.

In particular, we study the time-independent solution of equation (4.3), i.e.,

u̇n,m = 0. (4.7)
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Honeycomb Brick

(a)

Triangular Slanted-triangular

(b)

Figure 4.1. Honeycomb and triangular lattices. We transform the lattices into brick and
slanted-triangular ones for the sake of computations and plotting in this chapter.

To determine the linear stability of a solution ũn,m, we write

un,m = ũn,m+ϵeλtûn,m. (4.8)

By substituting (4.8) into (4.3) and linearizing around ϵ = 0, we obtain the linear

equation

λûn,m =Lûn,m, (4.9)

where

L = µ+6ũ2
n,m−5ũ4

n,m+ c�∆�. (4.10)

A uniform solution is said to be stable when all λ ≤ 0 and unstable when ∃λ > 0.
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Figure 4.2. Uniform solution of the discrete Allen-Cahn equation. The blue solid and red
dashed lines indicate stable and unstable solutions, respectively.

The 2D discrete Allen-Cahn equation (4.3) exhibits the same uniform solution

as the one-dimensional case that has been studied by Taylor and Dawes in [86],

which is given by

0 = µUs+2U3
s −U5

s , (4.11)

that can be solved to yield

U0 = 0 and U2
1,2 = 1±

√
1+µ. (4.12)

We plot the solutions for varying µ in Fig. 4.2. To determine the linear stability of

the uniform solutions ũn,m =Us, where s = 0,1,2, one has ûn,m = ei(kn+lm), where k

and l are the wave number of the perturbations in the n and m directions, from

which we obtain for the square and triangular lattices the dispersion relation

λ(k, l) = µ+6U2
s −5U4

s +γ
�(k, l), � = +,B, (4.13)

where

γ+(k, l) = 2c+ (cos(k)+ cos(l)−2) ,

γB(k, l) = 2cB (cos(k− l)+ cos(k)+ cos(l)−3) ,
(4.14)
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respectively. As for the honeycomb lattice, we need to rewrite equation (4.3) into

ψ̇n,m = µψn,m+2ψ3
n,m−ψ

5
n,m+ c�

(
ϕn,m+ϕn,m−1+ϕn−1,m−3ψn,m

)
,

ϕ̇n,m = µϕn,m+2ϕ3
n,m−ϕ

5
n,m+ c�

(
ψn,m+ψn,m+1+ψn+1,m−3ϕn,m

)
.

(4.15)

The perturbation ansatz in this case would be

 ψn,m

ϕn,m

 =Us+

 ψ̂n,m

ϕ̂n,m

ϵeλt. (4.16)

By substituting (4.16) into (4.15) and linearizing around ϵ = 0, we obtain the

eigenvalue problem

λ

 ψ̂n,m

ϕ̂n,m

 =
 µ+6U2

s −5U4
s −3c� c�ξ−(k, l)

c�ξ+(k, l) µ+6U2
s −5U4

s −3c�


 ψ̂n,m

ϕ̂n,m

 , (4.17)

where

ξ±(k, l) = 1+ cos(k)+ cos(l)± i (sin(k)+ sin(l)) . (4.18)

Hence, we have the dispersion relation for the honeycomb lattice, i.e.,

λ(k, l) = µ+6U2
s −5U4

s −3c�
± c�

√
2(cos(k− l)+ cos(k)+ cos(l))+3. (4.19)

The points µs, s = 0,1 is Fig. 4.2 denote the stability change of Us. They

correspond to a condition when the maximum of the dispersion relation (4.13) and

(4.19) touch the k, l plane, which is attained at k = l = 0 for all of the lattice types.

One can note that we have bistability interval µ ∈
[
µ1,µ0

]
for the uniform solutions,

see Fig. 4.2. Furthermore, the bifurcation diagram and the stability of the uniform

solution in Fig. 4.2 is the same as those in the one-dimensional model [24, 86].
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Figure 4.3. Structures of fundamental localized solutions for c+ = c� = cB = 0.05 and
µ = −0.6.

4.3 Localized solution and snaking

The discrete Allen-Cahn equation (4.3) admits localized solutions that bifurcate

from the uniform solution U0 at point µ0. We are particularly interested in
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fundamental localized solutions, i.e., site-centred and bond-centred solutions,

which are the counter-part of onsite and intersite solutions in the one-dimensional

case. They are formed by two bistable states from the uniform solutions, i.e., the

non-zero state U1 as the “upper” state and zero state U0 as the “background" state.
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Figure 4.4. Panels (a) and (b) show bifurcation diagrams for square lattice. The solid and
dashed lines around turning points of the snaking curves are the approximation of “lower”
and “upper” saddle-node bifurcations, respectively. The green, black, magenta, and brown
line colors correspond to saddle-node bifurcations from our active-cell approximations of
type 1, 2, 3, and 4.

In 2D case, site-centred solution is a solution profile with odd number exited

sites as shown in Figs. 4.3(a), and 4.3(c), and 4.3(e). On the other hand, bond-

centred states are solutions with the excited sites bonding with other sites and

forming the simplest polygon. Examples of bond-centred solutions are shown in
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Figure 4.5. Top-view of localized solution profiles in square lattice that correspond to
points in Fig. 4.4(a).

Figs. 4.3(b), 4.3(e), and, 4.3(f). Herein, we use 20×20 lattice domain and periodic

boundary conditions for all of the lattice types.

By using site-centred and bond-centred solutions in Fig. 4.3 as initial guess

and performing numerical continuation for varying µ, one will obtain bifurcation

diagrams of the localized solutions that shows a snaking structure, see Figs. 4.4 -

4.9. Here, we use a scaled version of the L2 norm or “mass” norm [86]

M =

∑
n,m

u2
n,m

1+
√

1+µ


1
2

. (4.20)

The snaking structures in the bifurcation diagrams exist at certain region

called pinning region [76]. In 1D case, we have one pinning region, which in the

limit M→∞ is bounded by two saddle-node bifurcations [24, 86]. In 2D case,

saddle-node bifurcations may occur at several values of bifurcation parameter due

to the presence of multiple types of saddle-node bifurcations, as we will show

below. One can define that in 2D case, the pinning region is formed by the largest

distance between the upper and lower saddle-node bifurcations. The snaking

structure in the bifurcation diagrams may also give complicated snaking and
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Figure 4.6. The same as figure 4.4 for honeycomb lattice. The green, black, and magenta
line colors correspond to our active-cell approximations of type 1, 2, and 3.

isolas structures [86]. In the next section, we will discuss the site-centred and

bond-centred localized states and their snaking structures in square, honeycomb,

and triangular lattices.

4.3.1 Square lattice

Figure 4.4 shows bifurcation diagrams for square lattice at c+ = 0.05 and 0.15. As

we can see, the saddle-node bifurcations occur at several bifurcation parameters µ.

Moreover, the distance between the “upper” and “lower” saddle-node bifurcations

are getting smaller when the coupling strength c+ increases. In the continuum
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Figure 4.7. Top-view solution profiles in honeycomb lattice that correspond to points in
Fig. 4.6(a).

limit c+→∞, the site-centred and bond-centred solutions merge as the snaking

disappears, which also occurs in the 1D case.

Figures 4.5 shows several top-view (2D projection) of the solution profiles at

the saddle-node bifurcations for c+ = 0.05, which correspond to the bifurcation

diagrams in Fig. 4.4. One can see that, as the norm M increases, the “upper” state

invades “lower” state of the localized solution. In the 1D case, the mechanism

of “upper” state invading “lower” state occurs around the fronts and it has two

directions. In the square lattice, the front states clearly have four directions as one

can deduce from the Laplacian operator ∆+.

4.3.2 Honeycomb lattice

Figure 4.6 shows bifurcation diagrams for honeycomb lattice at c� = 0.05 and 0.15.

In general, the properties of the snaking in the bifurcation diagrams are the same

as square lattice. However, at the same value of coupling strength, it has larger

pinning regions compared to the square lattice. It happens because the Laplacian
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Figure 4.8. The same as Figs. 4.4 and 4.6 for triangular lattice. The green, black, magenta,
brown, and cyan line colors correspond to our active-cell approximations of type 1, 2, 3, 4,
and 5.

operator ∆� for the honeycomb lattice has fewer front, i.e., three fronts, than the

square lattice that connect the “upper” and “lower” states.

Figure 4.7 shows several top-view of the solution profiles at the saddle-node

bifurcations for c� = 0.05, which correspond to the snaking bifurcations in Fig.

4.6(a). The localized solution behavior also has the same mechanism as that in the

square lattice, where the “upper” state invades the “lower” state as the norm M

increases.
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Figure 4.9. Top-view solution profiles in triangluar lattice that correspond to points in
Fig. 4.8(a).

4.3.3 Triangular lattice

Figure 4.8 shows bifurcation diagrams for triangular lattice at cB = 0.03 and 0.1.

The main difference between the square, honeycomb and triangular lattices is that

the triangular lattice has relatively the smallest pinning region at the same value

of coupling strength. It happens because the triangular lattice has six fronts in

the Laplacian operator ∆B. Several top-view solution profiles at the saddle-node

bifurcations are shown in Fig. 4.9 for cB = 0.03, which correspond to bifurcation

diagrams in Fig. 4.8(a).

In summary, the number of cells that involve in the Laplacian operator deter-

mines the 2D lattice front direction. One can say that the width of the pinning

region is inversely proportional to the number of fronts, which is not the same as

in the 1D case.
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Square lattice
Type a b

1 1 4
2 2 4
3 1 3
4 1 2

Honeycomb lattice
Type a b

1 1 3
2 2 3
3 1 2

Triangular lattice
Type a b

1 1 4
2 2 5
3 2 5
4 2 6
5 2 4

Table 4.1: List of coefficients in the active-cell approximations for all lattices.

4.4 Saddle-node bifurcation analysis

In general, when the coupling strength is quite small (weakly coupled), the solution

consists of only three states, i.e., “upper” state U1, “lower” state U0, and front

(active-cell). By using the assumption, we can assume that there are only three

states that involve in the dynamics. Hence, we can re-write equation (4.3) into a

simple ordinary differential equation [61]

ẋ = F(x) = µx+2x3
−x5+Z(x), (4.21)

where

Z(x) = c� (aU1−bx) , (4.22)

and x is the front. The coefficients a and b are determined by the type of lattice and

the number of “upper" state U1, “lower" state U0, and active-cell at the front. The

list of coefficients a and b are shown in Table 4.1 for the square, honeycomb, and

triangular lattices. In general, F(x) can have five real roots. Note that only two

of them are related to the snaking as they correspond to the “upper” and “lower”

saddle-node bifurcations. One can recognise that a saddle-node bifurcation is

a condition when F(x) at the local minimum x = xα and local maximum x = xβ

vanishes, which correspond to the “lower” and “upper” saddle-node bifurcations,
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Figure 4.10. Active-cell function type 1 for square lattice at c+ = 0.05. xα and xβ indicate
as lower and upper saddle-node bifurcations. xst and xun represent the stable and unstable
cell solution.

respectively. It is quite straightforward to obtain that

xα,β =
(3
5
±

1
5

√
9+5

(
µ− c�b

)) 1
2
. (4.23)

We found that there are several types of saddle-node bifurcations in the snaking

diagrams. By identifying the types of saddle-node bifurcations, we can apply

the active-cell approximation to the solution profiles. In particular, we have four,

three, and five types of saddle-node bifurcations for the square, honeycomb, and

triangular lattices, which are classified by the numbers and positions of the “upper”

state U1, “lower” state U0, and active-cell in their solution profiles, see Figs. 4.11,

4.12, and 4.13. One also can say that the active-cell approximation is a rotation

invariant at their center or axes. The approximations for all of the saddle-node

bifurcation results are shown in Figs. 4.4, 4.6, and 4.8.
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4.4.1 Square lattice

Figure 4.4(a) shows several types of saddle-node bifurcations and their approx-

imations for the square lattice at c+ = 0.05. In general, there are four types of

saddle-node bifurcations for the square lattice, see Fig. 4.11.

Type 1

(a) Z(x) = c+ (U1−4x)

Type 2

(b) Z(x) = c+ (2U1−4x)

Type 3

(c) Z(x) = c+ (U1−3x)

Type 4

(d) Z(x) = c+ (U1−2x)

U0

Active-cell

U1

Figure 4.11. Types of active-cell approximations for square lattice.

The bifurcations at points (a) and (b), (c) and (d), (f) and (g), and (e) are belong

to type 1, 2, 3, and 4, respectively. The saddle-node bifurcations of type 1 and 3

only appear in site-centred and bond-centred solutions. Meanwhile, type 2 and 4

may appear in both site-centred and bond-centred solutions. The approximations

for all of the types give good agreement for the “lower” and “upper” saddle-node

bifurcations. Note that type 2 and 4 mostly appear in the large value of norm M.

Figure 4.4(b) shows the approximation results of the saddle-node bifurcations

for square lattice at c+ = 0.15. By comparing between c+ = 0.05 and 0.15, one can see

that the active-cell approximations give better results at smaller coupling strength.

As we can see, the active-cell approximations fail to approximate points (h), (i), (j),

and (k). These happen because the solution fronts that do not satisfy the active-cell
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approximation assumption. As the coupling is getting larger, one will have more

cells with different amplitudes around the fronts that are also excited.

4.4.2 Honeycomb lattice

Figure 4.6(a) shows several types of saddle-node bifurcations and their approxi-

mations for the honeycomb lattice at c� = 0.05. In general, there are three types of

saddle-node bifurcations for the honeycomb lattice, see Fig. 4.12.

Type 1

(a) Z(x) = c� (U1−3x)

Type 2

(b) Z(x) = c� (2U1−3x)

Type 3

(c) Z(x) = c� (U1−2x)

Figure 4.12. Types of active-cell approximations for honeycomb lattice.

The bifurcations at points (a) and (b), (c) and (d), and (f) and (g) are belong to

type 1, 2, and 3, respectively. All of the types of saddle-node bifurcations appear in

site-centred and bond-centred solutions. Generally, the approximation for all of the

types give good agreement for the “lower” and “upper” saddle-node bifurcations.

Figure 4.6(b) shows the approximation results of the saddle-node bifurcations

for honeycomb lattice at c� = 0.15. By comparing between c� = 0.05 and 0.15, one

can see that the active-cell approximations give better results at smaller coupling

strength. As we can see, the active-cell approximations fail to approximate points

(g), (h), (i), and (j). These also happen due to the solution fronts that do not satisfy

the active-cell approximation assumption. As the coupling is getting larger, one

will have more cells with different amplitudes around the fronts that are also

excited, which also happen in square lattice.
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4.4.3 Triangular lattice

Figure 4.8(a) shows several types of saddle-node bifurcations and their approxi-

mations for the triangular lattice at cB = 0.03. In general, there are five types of

saddle-node bifurcations for the triangular lattice, see Fig. 4.13.

Type 1

(a) Z(x) = cB (U1−4x)

Type 2

(b) Z(x) = cB (3U1−6x)

Type 3

(c) Z(x) = cB (2U1−5x)

Type 4

(d) Z(x) = cB (2U1−6x)

Type 5

(e) Z(x) = cB (2U1−4x)

Figure 4.13. Types of active-cell approximations for triangular lattice.

The bifurcations at points (a), (d) and (f), (b) and (c), (e), and (g) are belong

to type 1, 2, 3, 4, and 5, respectively. All of the types of saddle-node bifurcations

appear in site-centred and bond-centred solutions. In general, the approximation

for all of the types give good agreement for the “lower” and “upper” saddle-node

bifurcations. Note that type 4 and 5 only appear in the “lower” and “upper”

saddle-node bifurcations, respectively.

Figure 4.8(b) shows the approximation results of the saddle-node bifurcations

for triangular lattice at cB = 0.1. By comparing between cB = 0.03 and 0.1, one can

see that the active-cell approximations also give better results at smaller coupling

strength. As we can see, the active-cell approximations fail to approximate points

(h), (j), (k), (k), (l), and (n). These also happen due to the solution fronts do not
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Figure 4.14. Plot of the localized states, their corresponding numerical eigenvalues, and
critical one obtained the active-cell approximation indicated in Figs. 4.4(a), 4.4(b), 4.6(a),
4.6(b), 4.8(a), and 4.8(b) for stable and unstable site-centered solutions for all of the lattice
types.

satisfy the active-cell approximation assumption. As the coupling is getting larger,

one will have more cells with different amplitudes around the fronts that are also

excited, which also happens in square and honeycomb lattices.

All in all, at a relatively small coupling strength, the active-cell approximation

is a good approximator, especially when we have a fewer number of fronts in the

Laplacian operator. Thus, at the same coupling strength, honeycomb lattice gives
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the best result because it has three fronts while square and triangular lattices have

four and six fronts, respectively. Note that the first saddle-node bifurcation that

appear right after the branching points of localized solutions for all of the lattice

types cannot be approximated by our method because the solutions are rather

close to the continuum limit.

4.4.4 Eigenvalue approximation

The active-cell approximation also can to be used to approximate the critical

eigenvalue of the equation (4.3) for all of the lattice domains. By considering our

assumption in equation (4.21), it is straightforward that from the linearization, one

can obtain the eigenvalue problem

λx =
d

dx
F(x)

∣∣∣∣∣
x=xst,un

x, (4.24)

i.e., λ is given by

λ(µ) = µ+6x2
st,un−5x4

st,un+
∂Z(xst,un)
∂xst,un

. (4.25)

Our approximation of the critical eigenvalue at points (1)-(6) indicated in Figs.

4.4(a), 4.6(a), and 4.8(a) is shown in Fig. 4.14, where good results are obtained

when the coupling is weak.

4.5 Conclusions

We have considered two-dimensional discrete Allen-Cahn equation with cubic and

quintic nonlinearities in the domain of square, honeycomb, and triangular lattices.

We have studied numerically and analytically the time-independent solutions, i.e.,

uniform and localized states and their stabilities.
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Our numerical results show that the snaking structures from the localized states

for all of the lattice structures can have many types of saddle-node bifurcations.

Herein, we propose an active-cell approximation to estimate the saddle-node

bifurcations. The results show that our assumption gives good agreement for

weakly-coupled system, i.e., small coupling strength and fewer exited cells around

the fronts of a localized solution. Moreover, we also showed that our approximation

can be used to approximate the critical eigenvalue of localized states.

The idea of the work here may be extended to spatially continuous systems,

where the “lattice types" can be imposed by introducing spatial heterogeneity

through periodic-in-space linear potentials (see, e.g, [56] for a 1D problem that

exhibits similar behaviors with a discrete setup [61]).



Chapter 5

Conclusions

In this thesis, we have studied bifurcations of localized solutions and their stability

in several discrete systems, namely, the discrete Swift-Hohenberg equation, the

discrete optical cavity equation with saturable nonlinearity, and 2D discrete Allen-

Cahn equation with cubic and quintic nonlinearity on square, honeycomb and

triangular lattices. Let us now summarize the work and the main results obtained

in Chapters 2-4 and also point out several problems that would be interesting as

future works.

5.1 Summary

In Chapter 1, we presented background information of pattern formations and

a general review of the past research on homoclinic snaking in continuous and

discrete systems, i.e., the Swift-Hohenberg equation, a discrete optical cavity

equation and the discrete Allen-Cahn equation. We also presented a numerical

continuation method, which is widely used in this thesis to obtain the bifurcation

curves.

In Chapter 2, we considered the discrete Swift-Hohenberg equation with cubic

and quintic nonlinearity, obtained from discretizing the spatial derivatives of the

108
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Swift-Hohenberg equation using central finite differences. We investigated the

discretization effect on the bifurcation behavior. There are three regions of the

parameter intervals (i.e., h < 1 (strong coupling), 1 ≤ h < 2 (intermediate), h ≥ 2

(weak coupling)) wherein the discrete Swift-Hohenberg equation behaves either

similarly or differently from the continuum limit. When 1≤ h≤ 2, multiple Maxwell

points can occur for the periodic solutions and may cause irregular snaking and

isolas. The offset stability of the uniform solution and the pinning region are

shifting for large discretization h > 2. Numerical continuation was used to obtain

and analyze localized and periodic solutions for each case. Theoretical analysis for

the snaking and stability of the corresponding solutions have been provided in the

anti-continuum (uncoupled) limit.

From our studies above, we obtained that the amplitudes of periodic solution

can be determined by using variational methods. Localised solutions can be

approximated by using asymptotic analysis.

We also developed a one-active site approximation to determine and approxi-

mate the pinning region of localized solutions from the homoclinic snaking. The

results showed that the approximation can also be used to approximate the critical

eigenvalue of localized solutions. Comparisons of the analytical results and the

numerics showed good agreement.

In Chapter 3, we studied time-independent solutions of an optical cavity

equation with saturable nonlinearity. Localized solutions can be formed by

combining two different uniform states. Homoclinic snaking from the localized

solutions can be obtained by varying the bifurcation parameter P. The forming

mechanism of b-shaped isolas was also discussed, which is when the background

of localized states disappear at a certain bifurcation parameter value. Herein, we

also used a one-active site approximation to analyse homoclinic snaking when the
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system is weakly coupled. Numerical simulations showed good agreement with

the approximation for the pinning region and the critical eigenvalue.

In Chapter 4, we presented the study of time-independent solutions and their

linear stabilities of the two-dimensional discrete Allen-Cahn equation with cubic

and quintic nonlinearity. Three different types of lattices are considered, i.e.

square, honeycomb, and triangular lattices. Herein, we extended the idea of a one-

active site approximation into an active-cell approximation for two-dimensional

systems. Again, numerical simulations showed that the approximation gives good

agreement for all of the lattice types for weakly coupled system.

5.2 Future work

In this section, we note several problems that could be interestingly proposed as

a future work. One possible problem is to study the effect of parametric time-

periodic forcing to the snaking structure [46] and the mechanism for snaking or

non snaking [2] for the discrete planar Swift-Hohenberg equation as we mentioned

in Chapter 2. We can also consider quadratic and cubic nonlinearity for the discrete

Swift-Hohenberg equation. Another problem that we could consider is including

fractional derivatives to the Swift-Hohenberg or Allen-Cahn systems and analyze

the effect to homoclinic snaking structures. Moreover, we also could pursue the

one-active site or active-cell approximations on three-dimensional problem.
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