Goudarzi, Shidrokh and Haslina Hassan, Wan and Abdalla Hashim, Aisha-Hassan and Soleymani, Seyed Ahmad and Anisi, Mohammad Hossein and Zakaria, Omar M (2016) A Novel RSSI Prediction Using Imperialist Competition Algorithm (ICA), Radial Basis Function (RBF) and Firefly Algorithm (FFA) in Wireless Networks. PLoS ONE, 11 (7). e0151355-e0151355. DOI https://doi.org/10.1371/journal.pone.0151355
Goudarzi, Shidrokh and Haslina Hassan, Wan and Abdalla Hashim, Aisha-Hassan and Soleymani, Seyed Ahmad and Anisi, Mohammad Hossein and Zakaria, Omar M (2016) A Novel RSSI Prediction Using Imperialist Competition Algorithm (ICA), Radial Basis Function (RBF) and Firefly Algorithm (FFA) in Wireless Networks. PLoS ONE, 11 (7). e0151355-e0151355. DOI https://doi.org/10.1371/journal.pone.0151355
Goudarzi, Shidrokh and Haslina Hassan, Wan and Abdalla Hashim, Aisha-Hassan and Soleymani, Seyed Ahmad and Anisi, Mohammad Hossein and Zakaria, Omar M (2016) A Novel RSSI Prediction Using Imperialist Competition Algorithm (ICA), Radial Basis Function (RBF) and Firefly Algorithm (FFA) in Wireless Networks. PLoS ONE, 11 (7). e0151355-e0151355. DOI https://doi.org/10.1371/journal.pone.0151355
Abstract
This study aims to design a vertical handover prediction method to minimize unnecessary handovers for a mobile node (MN) during the vertical handover process. This relies on a novel method for the prediction of a received signal strength indicator (RSSI) referred to as IRBF-FFA, which is designed by utilizing the imperialist competition algorithm (ICA) to train the radial basis function (RBF), and by hybridizing with the firefly algorithm (FFA) to predict the optimal solution. The prediction accuracy of the proposed IRBF–FFA model was validated by comparing it to support vector machines (SVMs) and multilayer perceptron (MLP) models. In order to assess the model’s performance, we measured the coefficient of determination (R2), correlation coefficient (r), root mean square error (RMSE) and mean absolute percentage error (MAPE). The achieved results indicate that the IRBF–FFA model provides more precise predictions compared to different ANNs, namely, support vector machines (SVMs) and multilayer perceptron (MLP). The performance of the proposed model is analyzed through simulated and real-time RSSI measurements. The results also suggest that the IRBF–FFA model can be applied as an efficient technique for the accurate prediction of vertical handover.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | Algorithms; Models, Theoretical; Wireless Technology; Support Vector Machine; Neural Networks, Computer |
Subjects: | Q Science > QA Mathematics > QA75 Electronic computers. Computer science |
Divisions: | Faculty of Science and Health Faculty of Science and Health > Computer Science and Electronic Engineering, School of |
SWORD Depositor: | Unnamed user with email elements@essex.ac.uk |
Depositing User: | Unnamed user with email elements@essex.ac.uk |
Date Deposited: | 09 Nov 2018 09:39 |
Last Modified: | 30 Oct 2024 16:43 |
URI: | http://repository.essex.ac.uk/id/eprint/23390 |
Available files
Filename: A Novel RSSI Prediction Using Imperialist Competition Algorithm (ICA), Radial Basis Function (RBF) and Firefly Algorithm (FFA) in Wireless Networks.pdf
Licence: Creative Commons: Attribution 3.0