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ARTICLE INFO ABSTRACT

Article history: Industrial Internet of Things (IIoT) , 'a~ an ir portant role in increasing productivity
and efficiency in heterogeneous v. -eless n~tv (ks. However, different domains such as
industrial wireless scenarios, small . 'l domains and vehicular ad hoc networks
(VANET) require an efficie’ © machine :arning/intelligent algorithm to process the
vertical handover decision that ca. mair .ain mobile terminals (MTs) in the preferable

Keywords: networks for a sufficient durau. ~ of time. The preferred quality of service parameters
Industrial Internet of Things, can be differentiated from =1+~ ~«  MTs. Hence, in this paper, the problem with the
Vertical Handover, vertical handoff (VHO) u. “ision is articulated as the process of the Markov decision
Markov decision process, aimed to maximize the anticip. ~d total rewards as well as to minimize the handoffs’
Heterogeneous Wireless Networks average count. A rev ‘ras » .. on is designed to evaluate the QoS at the point of when

the connections take | ' e, as that is where the policy decision for a stationary
deterministic he .« ~ff ca. be established. The proposed hybrid model merges the
biogeography-basc.' op. “ization (BBO) with the Markov decision process (MDP). The
MDP is uti’~=d to es blish the radio access technology (RAT) selection’s probability
that behaves a. ~n mput to the BBO process. Therefore, the BBO determines the best
RAT using the dec. ribed multi-point algorithm in the heterogeneous network. The
numeri~~' findings display the superiority of this paper’s proposed schemes in
comy arison V. th other available algorithms. The findings shown that the MDP-BBO
alge *hm is 2 le to outperform other algorithms in terms of number of handoffs,
F .ndwia.  av .dlability, and decision delays. Our algorithm displayed better expected
otal ewards as well as a reduced average account of handoffs compared to current
apr oachr .. Simulation results obtained from Monte-Carlo experiments prove validity of
the | ~or ssed model.

1. Introduction

Heterogeneous wireless networ.. aat are used for seamless mobility often face prominent problems in the industrial
internet of things (IIoT), a ¢, stem in . ™ich different networks and technologies are working together. This is because there
are different factors that -, ould sign‘ficantly affect the various technologies used for accessing the network, such as the
optimized handovers or ve. "~ .l har fovers. Some of these factors are congestion, load, strength of the signals, bandwidth,
connection stability, b~ iy litc -, well as other factors that are temporal and spatial. A mobile user in a heterogeneous
wireless network mig it have . carry out the handovers over various network domains to sustain the connection of data and
QoS. The VHO proct s can be :ategorized into 3 stages consisting of the information gathering handover, decision-making
of the handoff, and the ¢. ~~~.on of the handoff. The information that is acquired is utilized to identify the present and most
suitable networ] , for spr ~ific applications in the following stage which is known as the stage of handover decision-making.

* Correspondn * .uthor. School of Computer Science and Electronic Engineering, University of Essex, Colchester, CO4 3SQ, United Kingdom.
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The industrial IoT is an emerging application of IoT technologies in several situations such as av omation, intelligence
controls, smart buildings, intelligent transportations, and smart grids [1, 2]. Without the creatic . € an infrastructural
network, the adoption of industrial IoT solutions will be impossible. It is important to consider specific 1o~ ~haracteristics
while adapting these techniques for wireless IoT networks. One of the important feature: . IoT networks is the
collaboration among heterogeneous IoT devices. With rapid improvement in digita’ elec ronics and wireless
communications, the application areas of the Internet of Things (IoT) have increased significan.” - (t now supports a wide
range of applications including industrial automation, intelligent transportations, medical «. 1 eHe.*h care services [3].
Low-weight efficient communication between sensing devices and interoperability bet—een . erent communications
mechanisms are the critical problems faced by the IoT.

Several challenges are present in the wireless multi-hop networks [4—7] as well as 1. ! ¢ decision stage of the vertical
handover while the handover procedure is going on. At certain times, the terminal is  _idly 1.. ving in its path. Thus in this
type of robust scenarios, the algorithm that supports the VHO decision stage must .Iso be ¢ ick and offer solutions as close
to real-time as possible. In fact, in the future, mobility and ubiquitous network acc >ss are tl : main drivers for the Internet.
However, the existing algorithms for decision making use many parameters - e loading-point mathematical
measurements, and several parameters for the QoS or the discovered ne work- -hich are available during terminal
movement. The high computations are in contrary to the low response time, *sr _1ally in low performance processors that
are found within most mobile devices. Thus, there is a need to desig  an effici-.at algorithm capable of performing
intelligent decision-making and dynamic adaptation to different situations in . »roper time frame due to rapid changes in
the wireless environment.

Existing algorithms for the vertical handover decision such as t..><e tn. “.clude computational intelligence methods
were proposed in recent studies [8—13]. Wilson et al. [14] reported that ce.. n algorithms are based on multiple criteria [15,
16] which need assistance from artificial intelligence mechanisr:  ..vivwny fuzzy logic [17], neural networks, as well as
algorithms that genetically suffered from problems of modularity an. “~alability. These were not able to easily manage the
increasing number of RATs as well as the criteria for heterog -~ wire.ess networks. This type of algorithms engage the
entire input of the various RATs simultaneously to a single fuz. *lo ,ic piock, which resulted in problems of modularity and
scalability when RATS or functions of membership were increas 4 given the tremendous rise of the amount of inference
rules [14].

In addition, [18] suggested a mobile node (MN) pr~diction <heme that was mobile. In particular, they first utilized the
probability as well as the process of the Dempster—Sha.” ~ to piedict the tendency of the following destination for mobile
network users that are arbitrary according to the habits of the sers, such as locations that were often visited. Next, at every
junction of the road, the chain process of the sec~=d-order Markov was applied to predict the tendency of the following
road transition segment, based on the route . the ¢. ginal trip to that particular junction of the road as well as the
destination direction. The proposed scheme - ~s assess d based on actual mobility traces and the simulation’s findings
showed that this proposed method outperfor ied ou. * ¢ nventional methods.

In this research, the Markov models ar user to aralyze the systems according to the real life system of actual behavior,
which results in trustworthiness as well as - st-eff ctive estimation for the prediction of performance and mobile system
optimization. In this work, we pror ,sed an « _orithm for decision making on vertical handoff for networks that are
wireless and heterogeneous, and ur 2o “MDP as a strong technique for making decisions in developing an adaptable
algorithm. This issue is articulated as a pro. “ss of the Markov decision that is integrated with the BBO. A link reward
function is proposed to model thr pro verties of the QoS. In addition, a cost function for the signaling overhead as well as
the processing load during the sccur ence of the vertical handoff is proposed. Moreover, the mobile QoS relates to the
packet loss, delay in the VHO anu ' = cost of signaling. The total cost for signaling is highly dependent on the information
as well as the information - athering 1. :thod. Hence, an analytical model which involves the metrics that describes the
handoff as well as the cost f sig .alins, packet loss, and the VHO delay is presented to assess performance.

The proposed techniane for = .ynamic handoff is based on the Markov decision process and is used to improve the
network’s performanc: as inspred by [19]. It assists in finding the overall cost function. Furthermore, Markov models are
analytical methodolog es for tl : analysis of such systems based on actual real life system behaviors, leading to both
credible and cost-effec.’ e an .oximations for performance prediction and optimization of mobile systems. Hence, the
Markov process i- uulized 1n the performance modeling of wireless and mobile communication systems.

This study pr¢ "ents a ve tical handover decision algorithm based on two main schemes, namely the BBO [20-22] as well
as the MDP [23]. "™~ = ycess of the Markov decision formulates the problem. The Markov chain method is preferable
when develc ... _ *he cost model. The QoS optimal values can also be established in the wireless networks by utilizing the
Markov proce. = t+ minimize the cost function. Thus, this study’s objective is to propose a novel optimized algorithm with
the benefit of tw » current approaches that address the requirements stated above. The novelty of our approach lies in the
hybridization of Murkov decision process and biogeography-based optimization algorithm.



There are recent relevant cases that can be adopted by our proposed hybrid model. The cases w .h utility potential can
be categorized into four main classes namely industrial wireless scenarios, vehicular ad hoc netv .- (VANET), wireless
backhaul for small cell domains and unmanned aerial vehicles (UAV) deployment scenarios for disaste. management. In
industrial scenarios, the manufacturing cells and factories with multiple access points are servir . ... “ltiple mobile robots. In
these cases, mobile communications need to conduct vertical handovers to use robust links with ow latency and higher
mobility among multiple access points. Also, vehicular networks require seamless mobility « ~ 2ns because coverage is
often incomplete with very short communication which needs high-speed transmission ove heterc,_2neous networks that
have different access technologies. Even though the backhaul is point-to-point, it requi=~< a ve. ‘~al handover to use the
parallel radio links with low latency for 5G and the Internet-of-things (IoT). The usac : of "* Vs in disaster management
has some networking-related research challenges such as handover among the UAV A " andover consists of replicating
the exact operational state in each UAV such as forwarding tables, packets in the bu.. . and data fusion rules which
increases messaging between the UAVs. Such limitations have motivated us to reate intelugent algorithms that prevent
slow and high computing linked to direct search methods thus lowering the - me of c« nputation. Motivated by these
observations, we have proposed an efficient algorithm to perform intelligent deci. ~n-mal .ng during the vertical handover
process. Since the importance of high latency, packet loss and signaling .ust proviems during handover process are
undeniable, the lack of an effective vertical handover decision (VHD) a' jorit* .a, ‘hich could select the most optimal
access network for handover, is sensible. The complexity of calculating the 1.. ..y par meters in VHD algorithms is another
problem. Moreover, it has been shown that the use of adaptive behavior 1.~ not . _.a fully investigated. Moreover, a well-
established algorithm for a VHD algorithm is critically required that would bou. ~reate a hybrid VHD algorithm which uses
forms of intelligence for making decisions via the utilization of mixeu “euristic schniques and be able to robustly adapt to
the various conditions when the need arises given the dynamic chan, ~< tha. " = p occurring in the wireless environment.

Compared with existing efforts, our main contributions can }  ,u.uuuanced as follows: a) we use MDP to establish the
radio access technology (RAT) selection’s probability; b) we use u. BBO to determine the best RAT using the described
multi-point algorithm in the heterogeneous network; c) we ~=<truct a simulation to evaluate our proposed method, and
results show that our method can outperform mobile 1 mi-ai vHO effectively in the heterogeneous network.
Improvements in connectivity through our novel design=d moc ( serve users with a high level quality of service across
different conditions. The proposed model can suppor. u.™erern. range of applications such as transportation safety
applications, voice and data connections applications, conve saticaal and streaming applications. The primary objective of
Intelligent Transportation System (ITS) is to provide -... *» uman lives and improve the efficiency of the transportation
system. To achieve this goal, ITS converges remote sens.. ~ and communication technologies. Moreover, demand for voice,
data and multimedia servces, while moving in car, increase the importance of broadband wireless systems in ITS.

The rest of the paper is organized as fol' sws. The related work is carried out in Section 2. Section 3 describes the
network model and Section 4 formulates the p.. ~lem ¢ the VHO as the Markov decision process. Section 5 describes the
process of biogeography based on optin zation a. " presents the designed solution. Section 6 discusses the proposed
scheme and the results obtained are expe .nder’ in this section. Finally, Section 7 will present the conclusion.

2. Related work

In most of the existing studies, a wireless . "ironment is limited to a notebook or a mobile phone used over a pedestrian
mobility scenario or a model wi .1 1. v mobility levels. In addition, many of these studies assess the VHO by just utilizing
two technologies namely the ¥ iFi - 1d the UMTS, and only a few studies have even taken into consideration more than
three technologies [24]. In the pa. tecade, vehicular communication has been enhanced to include communication devices
of short and long distance', the GP>, as well as vehicle sensing systems. The capabilities of communication utilize an
extremely robust vehiculz env’.onm nt [25]. Using GPS information to enhance the process of handover and the selection
of network within the paran..” ‘v of . single wireless network has also been widely studied [26-28].

Existing algorithr 5 in [271 take into account the service charges, information on received signal strength indicator
(RSSI) and user prc erences. As opposed to the conventional RSSI based algorithm, the algorithm that is proposed
significantly improves ‘he o comes for users and the network due to the proposed fuzzy-based handover techniques.
Furthermore, a f.zzy-based algorithm greatly lowers the number of handovers in comparison to a SAW-based algorithm.
This algorithm is able t. switch between GSM, WiFi, UMTS, and WiMAX. Nevertheless, this algorithm has several
disadvantages c. “sed by .ts high execution duration that could cause high handover latency. In addition, interface engine
inputs could be becu.ue more accurate by utilizing artificial intelligence approaches, such as the neural network. The
research ex. 'uder ... effects of other environmentally linked determinants and findings in order to examine the mobile
parameters ot “ . QoS including the delays in handover as well as packet loss.



Given the emergence of new wireless technologies over the last decade, certain researches [?.] have attempted to
address the issue of VHO over various types of wireless technologies including WiFi, UMTS, _.™ ZigBee, wircless
broadband, RFID, multimedia broadcast/multicast service, digital video broadcasting and low Eaith orbi. ‘T.EO) satellite
[31]. Wang et al. [32] proposed a VHO approach, which utilizes certain factors including the ... -ate, RSS, the trend of
movement, and the bit error rate (BER) that enables the selection of the best-suited network alc 1g wi a the parameter of the
prioritized decisions. The decision tree is utilized in this approach according to the selected pai. ~ ster at each node of the
decision-making process, where it could stop or continue at that point accordingly. Morec ~=r, thi. approach takes into
consideration the underlying connecting technology including IEEE 802.11p, 3G, or WiM * ¥,

Cross layer handover strategies can be projected to offer services that are seamlr ;s foo mc™ Ile terminals within the
heterogeneous networks that are wireless [33-35]. By intending to lower the delay peric * - aring handovers, the link layer
ought to activate the handover protocols of the 3 layers in a timely manner. Th* oula . ~able them to complete the
handover processes before the present wireless link terminates. Due to the restrictc { power f computing within the mobile
terminal as well as a bigger rate of packet loss in the vertical handover [36], a r. 'vel mec anism for triggering based on
gray predictions was proposed. First, the duration needed to perform the hardove. = projected. Second, the time to
trigger a Link Going_Down was identified based on the convex optimiz don * »ry, where both the signal strength
received from the presently linked network as well as the targeted access net .ork /as taken into account. Simulation
findings proved that the mechanism could achieve more accurate predictic »s [30] usi- g the similar prediction method [37].
Besides that, the rate of packet loss could be controlled to 5% where the movu._ speed of the terminal was 5m/s or less.

In [38], Nadembega et al. proposed a novel dynamic access networs ~lection ilgorithm which was capable of adapting
to prevailing network conditions. Their algorithm was a dual sta_~ estu. ".on process where network selection was
performed using the sequential Bayesian estimation which relied on tu. dynamic QoS parameters that were estimated
through bootstrap approximation. Simulations demonstrated .. cuccuveness of the proposed algorithm which
outperformed static optimization approaches in a highly efficient . anner. However, this algorithm suffers from high
computation times. Moreover, according to Ong et al. [39" “-~ netwock selection problem in heterogeneous wireless
networks with incomplete information was formulated as a Bay 'sia- gaine. Every user has to decide on an optimal network
selection based on only partial information about the pref~rence. >f other users. The dynamics of network selection were
applied using the Bayesian best response dynamics a1 ogre_ated best response dynamics. The Bayesian Nash
equilibrium was considered to be the solution of this game, ana .here was a one-to-one mapping between the Bayesian
Nash equilibrium and the equilibrium distribution of . - «__"»~ te dynamics. The other dynamics of the network selection
were applied using the maximization scoring function [4V, Jesigning an algorithm and protocol that takes into account the
QoS parameters when the end user is receiving IPTV [41] ana scheming depending on the requirements of the IPTV client
[42]. Also, other proven algorithm types for ..c « -ision phase included multiple criteria decision-making (MCDM)
algorithms, such as simple additive weighting (SAW) . 1d technique for order preference by similarity to ideal solution
(TOPSIS) [43]. There have been evaluations on. e we «ings of the proposed scheme against the TOPSIS [44] and grey
relational analysis (GRA) [45] decision-ma’ .ng moac.

Researchers in [46] developed an « ~ori’.um v aich could reduce computing time by preventing large and slow
computing due to direct search technic .es. 1. > se ection of an optimal wireless network to set the link required a metric,
one that could relay the quality level f the network that was available within a fixed duration. The network quality was
measured using certain weights all- catea ~ the quality of service parameter based on user preferences. The function of
fitness (F) was responsible for pro-“ding this measure as inputted in the phase for VHO decision making. Some of the
algorithms in this research incl .ded he SA that was based on an adaptive method and GA which was based on an
evolutionary method. The SEF1. * is 4 heuristic proposition derived from the SEFI based on the Simulated Annealing (SA)
algorithm. The algorithm for SA w. iustigated from the process of cooling metal, which includes searching for a final
minimum energy structure After going through several stages, the final structure which has a more cooled structure is
achieved. Researchers in  *6] .ntros aced an algorithm using the Genetic Algorithms (GAs) to get a higher level of
performance compared to the “=F SA. They managed to work through certain limitations including the generation of
numbers, the emergenr - of the stop factor, overflow of limits for search space, stagnation in the optimized solution, etc. In
the end, the Genetic / 'gorithms had the best performance in terms of computing time and precision even when compared
against the better perfoi. ~ing a' jorithms.

The above rel .ced wor s show important results of comparison of artificial intelligence mechanisms as initial finding of
this research. Ba ed on co aparison, hybrid approach reduces network selection time and improves mobile QoS. Ongoing
research is requirc ' to ' aild novel hybrid approach that is able to provide optimal outcomes but without too much
complicatior . ““h a certain level of intelligent and adaptive characteristics to manage uncertainties and to meet the robust
mobile enviro. me it.



In conclusion, based on the literature review, the hybrid VHD algorithm utilizes certain fo' as of intelligence for
decision-making and it is able to robustly adapt to situations regularly due to the necessary dynam’ . " 2nges in the wireless
environment. In the next section, we mainly describe the network models involved in network seiection « -ing the vertical
handover process in heterogeneous wireless networks.

3. Network model

Wireless heterogamous networks consist of different types of networks such as “reless ~ersonal area (WPAN)
networks, wireless wide area (WWAN) networks, as well as Wireless Local Area (WL N) r -. orks. The various networks
in this situation that are using both 3GPP (HSPA, EDGE, LTE, UMTS) as well as . ~n-" GPP (WiFi, WiMax) standards
must be inter-linked optimally in order to ensure the Quality of Service provided to the . ~ers. This research offers three
settings that define handover signaling to achieve integrated WiMAX, WiFi, as v ell as I"™M'L'S networks. The first setting
demonstrates the signaling in which the MT is found in the overlapping area ¢ \d is ablc to select a connectivity that is
better, hence utilizing the ABC concept. Fig. 1. reveals the MT in the overlappin,_ area * stween WiFi and WiMAX. The
next setting denotes the signaling for a user who is obliged to implement the ' andover since the present connectivity will be
lost as it is moving into a tunnel or a subway, as shown in Fig. 1. through t . W".vIA T movement to the UMTS. The third
setting demonstrates the signaling whereby the MT is found in the overlaopi., area » «d is able to select a connectivity that
is better, utilizing the concept of ABC. Fig. 1. reveals the MT in the overlap, g a.ca between UMTS and WiFi.
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e, .. Hr erogeneous wireless networks.

There are two factors that shoul” - taken into consideration when making a decision on the handoff. Firstly, the MT
should aim to maximize using a h.gh bau. vidth with a low network access cost while reducing the amount of handovers
that are not needed. This would | ~vent the degradation of the QoS of the present communication as well as prevent
overloading the network with s’ ;nali' 2 traffic.

All mobile connectivity woui.. ‘adergo a certain amount of vertical handoffs within its lifetime connectivity. It is
assumed that the mobile te mine! rece.ves information from the networks that are located within regular receiving ranges.
The information that is dver .sed rom the networks could engage with usable bandwidth with a delay time that is
acceptable, which the IETF . ner” srmance metrics process is able to estimate. At each point in time, the terminal for the
mobile establishes wh uicr the co.nectivity should utilize the network that has been presently chosen or if it should route to
some other network with a igher level of performance with reduced cost and a guarantee of a higher QoS. The
connectivity re-routir,_ involv s a complicated and challenging process, which would in turn cause the signaling load as
well as the proce~ ~.g to oo up. Therefore, a tradeoff occurs between the connection’s QoS and the signaling load as well
as the processir ; [47].

4. A Markov decrs. ~ .rocess used for the VHO decision problem

The subsequc °t sections will describe the methods used to design the decision problem of the vertical handoff as the
process of a Ma %ov decision [48]. A decision model using the Markov process has certain main elements. These include



the decision epoch, state, action, transition probabilities, and the rewards. The MT establishes the co .rse of action when it
has passed the particular time duration. As the MT velocity has physical property constraints anc .. future speed is not
influenced by past speeds, this study has adopted the Gauss-markov model suggested by [49] to define the ~obility model.
Shadow fading as well as the mobility of the MT might result in signal attenuation in a wireles' «.. ironment. The RSS is
described in dBm in discrete time [50]:

RSS[t] = Py — L — 10nlog(d) + N[t] (1)

Where t represents the discrete time index, Py represents the power transmission of AT, L r. r=esents the pass loss that is
fixed, n represents the pass loss factor, d represents the distance in the WLAN’s MT a‘ well .s the AP, and N|[t] represents
the fading of the shadow. The MT is able to interact with the present network when tu. value of the RSS is above the
threshold. The average RSS is defined as shown in the following:

Yot RSS [t — i]
Sav

Where S, represents the average size of the window in the slope estimatioi ar . R [t represents the changing rate of the

RSS. The threshold for handoff is a significant parameter that directly ffects the performance of the network. As the

threshold value of the handoff is fixed and not able to adapt to the network co. ‘itions that vary according to time, we have
designed the relationship between the velocity of the MT and the threshold value « f the handoff as:

RSS = 2

7
TH[t+1]=TH+w><7t ©)

Where TH represents the basic threshold for the handoff, w represents .= adjusting weight that is linked to the present state
of the network, V; represents the present MT velocity while . _~~<ents the original velocity. The sampling size of the
window is considered when calculating the RSS average value 'nc changes based on the mobility of the MT by using the

. D Dy | . . .
equation Sg,, and S; as S, = l#J and §; =2 I#J in [6]. .. ana " represents the window’s average and the window’s
J J

slope distance, respectively. The probabilities of the transition ~te uescribed in Table 1.
The conditional probabilities of Pygpile input/output ' * - * >pend on the decision approach. In line with [51], these
probabilities are also defined as:

Probile input/output [t+1] = P(SN |PN) [t +1]P, Ll )

Where Pgy|Ppy[t] represents MT’s probability o1 “nkir s to the chosen network at the t instant as it is related to the past
network at the t-1 time instant. The amoun’ of h~adot.., represented by Ny, has an effect on the flow of the signaling, and
it is the sum total of the Mobile’s input s wr.l as ,utput. Thus, Ny, is represented by the instant probability of Mobile
input and output as per Equation (4). Tk> equ. -ion “or Ny, is:

v tmax

E{NHO} =E {Z NMobile input/outout } = ya (PMobile input/output [t]) (5)
t=1

Where t,,,, represents the time insta’ ¢ as the MT reaches the edge, and it is represented by the velocity of the MT and the

present network’s coverage. Nyioby,. ~out/output epresents the expected numbers of Nyopile input/output-

T = {1,2,...,N} seque’ ce d" monstrates the moments of successful decision making time. N, which is the random
variable, represents the du. “ior «aker ror the connection to terminate. The terminal that is mobile has to establish decisions
at each point of time for the cu. ~ec .on to utilize the network that is presently selected or it would face re-routing to other
networks.

M represents the s m of nc .works that are collocated. The 4 action set = {1,2,---, M} as well as the ¥; random
variable represents *he ac.” = _clected during the decision epoch t. The terminal that is mobile selects an action according
to the present str ¢ of in/ >tmation as represented by S. In every s € S state, the state information involves the network’s
number of ident fication ¢ the address to which the terminal that is mobile is presently linked to the bandwidth that is
available, the aver._~ de! .y and the probabilities of packet loss offered by all the available networks collocated in the area.

The rande n A, ..~ .ble represents the state at which the t decision epoch is made. The present state is represented with
an s while the « > on that is selected is represented by a. Thus, the probability of the transition function for state at the next



s'state is represented with a P [s'| s, a]. This can be identified as @ Markovian function as it relie solely on the present
state as well as action.

The function for the rate of transition at f (X;,Y;) represents the QoS that is offered by the ~=twork that is selected to
connect at intervals of (¢, t + 1). Function of cost, which is ¢ (X, Y,) represents load for signa’.ng a well as the processing
that occurs during the time when the connectivity moves from one network to the other. I{ “he r ynnection maintains the
utilization of a similar network over the duration of the intervals, (¢, t + 1), thus ¢ (X;, Y;) ~7oula . equivalent to zero. It is
defined as follows for easy interpretation: r ( X, Yy) =f( X, Ye) - ¢ (Xg, Yy).

The decision rules offer the process of choosing the actions at every state of partic .lar ¢ = ‘~ion epochs. Decision rules
that are Markovian in nature are functions of &;: S — A, as it identifies the action cl. ice - hile the system possesses the s
state at the decision epoch of t. The policy of T = (84, 8,, ..., 8y) represents the sequence 1. *he decision rule that is utilized
at all the decision epochs.

Table 1 Transition probabilities.

Parameter Description
Pyiri[t] MT’s probability of connecting with the Wi-Fi at the t time instant
Pywimax|t] MT’s probability of connecting with the WiMax at the ¢ time instant.

P, | Py [t] MT’s probability of connecting with the WiMax at the t tir~e instw.. = oive . that it is associated with the Wi-Fi at t — 1 time
WiMAX | WiFi

instant.
Pwirdlt +1] Pyiril Pwimax[t + 1IP[t] + (1 = Pwimax|Pu. 1o = 11)rwirilt]
Pyimax[t + 11 Pwimax|Pwirilt + 1IP[t] + (1 — PwirilPwimax|t - 11)Pwimax[t]
Pyimax|t] MT’s probability of connecting with the WiMax at ..t tir . 1uo.ant.
P rg[t] MT’s probability of connecting with the LTE 2 ™e t tim. ‘nstant.

P | P, [t] MT’s probability of connecting with the LTE at t. t tin.e instant given that it is associated with the WiMAX at t — 1 time
LTE|" WIMAX

instant.

Pyimax[t +1] Pywimax|Prrelt + 11P[t] + (1 — Prglbw . ax[t + 1D Pwimax|t]

Prrglt +1] Prrg|Pwimax [t + 1IP[t] + 7« — 4| max|Pirelt + 1D Pire(t]

Prre(t] MT’s probability of connecting v. * the LTE t the ¢ time instant.

Pyiri [t] MT’s probability of connect’ .g with the v, -Fi at the t time instant.

PWiFil Pire [t] MT’S probability of conne “n¢ with * ¢ Wi-Fi at the t time instant given that it is associated with the LTE at t — 1 time
nstant.

Prrelt +1] Prrg|Pyipilt + 7 1P L+ (1 — Py | Prrgt + 1) Prrg[t]

Pyipi[t + 1] Pyipi| Prelt 2 " WP[E] + (L — Prrg|Pwipi[t + 1D Pyipi[€]

If v™(s) denotes the total rewa. ~ that is expected of the first decision epoch up until the conclusion of this connectivity
while the 7 policy is utilize . with the .. itial s state, the following is expected:

N 1]
Ey {f ool | (6)

t=

v (s) = EY

Where ET represents 1.~ exn< _tation in terms of policy 7 and the initial s state and Ey represents the expectation in terms
of random N var aoie. It should be noted that a different policy m and the initial s state would change the selected a action.
It could also le d to difi rent probability functions for state transitions at P [S'|s, a]for utilization in the anticipated EY.
The N random v. -iable r presenting the termination point of the connectivity is presumed to have a geometric distribution
with a mear of 1/ (1-.. It can be written as follows based on [52]:



v (s) = EFI(e: [{Z A, m}H ™

t=1
Where A is inferred as the model’s discount factorat0 < A < 1.

The state space of S is described as follows in the proposed decision algorithm for vertica' hana. *

S={12,..,M}x Bt x D x P x TH! x BER' X C! X Sec' X J' X B> X D* X P2 X T (. BER- X C? x §? ®)
X J?2 X ..x BM x DM x PM x BER™ x €M x SM x M

Where M is the quantity of available networks that are collocated and B™, D™, P™  ThH RER™,C™, S™and J™ are
the set of bandwidths, packet loss, delay, throughput, cost of bit error rate, securit , and jit ~r that are available from the m
network (m = 1,2, ..., M), accordingly. Given the present s state as well as the . >lected a iction, the function of the link
rewardf (s, a) is described as follows:

f(s,a) = wfy(s,a) + 0fq(s,a) + 0f, (5,0) + ©fin(s,a) + 0fpe(s, @) + w,. 2, a) 4 wfi(s,a) + wfj(s,a) ©

Where w represents the factor of weight and 0 < w < 1, a suitable weight “actor represents every parameter in the
significance of the vertical handoff decision. Based on Equation [9], f,\. 2) reprr sents the function for bandwidth whereas
fq(s, a)represents the function of delay, f,(s, a) represents the func.. ot . "t loss, fix(s, a) represents the function of
throughput, f.(s, a) represents the function of monetary cost, f;(s, @) repi. =nts the function of security, f;(s, @) represents
the function of jitter, and fp. (S, a) represents the function  o.. wviur rate. The following is utilized for every
QoS parameter:

1, 0< QoS < "0
foos(s,a) = (UQOS_QOSa)/(UQoS - LQOS)' Loos <Q 7 <Ug s (10)
0, QOSa = UQ(,.

Where the constants Ly,s and Ug,s represent the minu. "o~ 1l as the maximum e QoS rate needed by the connectivity.
The reward function r (s, @) of the two continuous handoft .. ~ision epochs that are vertical can be described as follows:

r(s,a) = f(s,a) —c(s,a) an

The total cost function is given by,

c(s,a) =wy g(s,a) + w,V(s,a) (12)
and the factors of weighting fulfill v ;+w, 1. The g(s, a) function for signaling cost is represented in the following:

S Ci a i+a
s,a) = S 13
(s a) {0, i=a (13)
Where SC; , represents the witching cost (involving the signaling load as well as the re-routing operations) from the
present i network to the ne’  a n” «wor’ . Furthermore,

V= 17min/ max — Vmin, if i#a, Vmin <V < Umax
v(s,a) = {1, ifi# a,V = Vpgy (14)
0, Others

Where v,,;,and © 4, are e minimum and maximum velocity threshold, accordingly. A bigger velocity will lead to more
call droppings ‘hile the¢ process of vertical handoff is going on. Lastly, due to the present state, S = [i, by,
dy,py,thy,bey, cq,50 7L by, Ay, D thyy, bey, ¢y, secy, jy] as well as the chosen action a, the probability function of
the followin_ ... -vould be:



§" = 1, b}, di, i thy, bef, i, Sech, i, ., biy, i, Db, thiy, bely, ci, sech, jis) (15)
is given by
M
pi5'ls,a] = 4| | P DD i, i, oS b o P U b oS ] ¥ = 6
m=1
0, L, Fa

The issue of the decision with the VHO is defined as a Markov decision. Rewards *.at ar app.opriate as well as flexible
with the functions of cost are determined to embody the trade-off among the resow. > of the network utilized by the
connectivity (the QoS-based bandwidth that is available, packet loss, delay, bit erre ..te, as v. 51l as throughput) besides the
processing load that takes place and the network signaling when executing the /HO. T. * goal of the formulation of the
Markov decision is in maximizing every connection’s anticipated total reward. T. is kind ¢ "problem with the optimization
is defined as:

v(s) = {r(s, a) + Z AP [s'| s a] v(s’)} )

a€A SES

Where v(s) stands for the anticipated reward, a stands for the set v-ith tn. ot .tial action (such as the network to utilize),
r(s,a) stands for the function of reward, and P [s'| s,a] stands foi ‘he state transition probability in various access
technologies. Moreover, v771(s) [17] stands for the anticipated =~~=* ==+ 1):

max
vT*i(s) = {r(s, a) + z AP [s'| s,a] v(s’)} (18)
acA SeS

The norm function contains several definitions. The noi.1 1. *~tion in this study can be described with v = max |v(s)|
for s € S. According to the IEEE 802.21 standard "'31. a tc 'minal that is mobile and establishes this proposed decision
algorithm for vertical handoff can regularly gain infori.. “tion avout the networks that are collocated in its receiving path by
utilizing the present network interface. The provided info.. “ation by the MIIS from the MIHF is utilized to project the
parameters of the linked reward functions as see~ in Equation (11) as well as the cost function as in Equation (12). The
information regarding the bandwidth available and the verage network delay is calculated through standardized processes
for performance metrics of the Internet servic 2s descri ed by the Internet Engineering Task Force IP Performance Metrics
Working Group [53]. The processes are rzvelo, 1 ¢, that they could be introduced by the network operators to offer
precise as well as non-biased quantitativ - me surements with this type of metrics. The standardized metrics’ examples
include connectivity, packet loss and de! . v riatic 1 of packet delay, as well as linked capacity of bandwidth.

Thus, a framework is proposed I .re to in.. rate the vertical handoffs with the preferences of the user. Firstly, we
categorize B™ ,and D™, P™, and T’ *-, ~nd BER™ from the network m as QoS parameters that are network-based as well
as parameters that are user-based, such as ™e cost of access and security. A screening phase is invoked if the mobile
terminal discovers itself in the v'cu. 'y of the collocated coverage area due to information gathered from the IEEE 802.21
MIIS. This phase is able to fil’ .r net vorks that are not appropriate for carrying out vertical handoff according to the user-
based QoS parameters. Only the . -~ ropriate candidate networks would be taken into consideration for the vertical handoff
decision.

A list of current and . “ur avai’ ible point of attachments (PoAs) was retrieved and locally stored to be used by the
decision-making branch This '~t- yase contains information about the present neighborhoods in the units on board. The
MIIS PoA informatic . databs e offers information including the ID of the network, the ID of the PoA, location, coverage,
monetary cost per M 3, the ot >red nominal rate of data, achieved rate of data by the most current users and bandwidth
offered.

Every input n the r. ‘ghborhood’s database keeps the properties for every PoA in the neighborhood and the PoA’s
beneficial time f covera e. The beneficial time of coverage is the time spent by the mobile in the area of cell coverage
with the ability . ~2i~ the peak rate of data from that particular cell. This time could differ based on certain factors
including v .. ~~ the itinerary crosses the area of coverage in a tangent or if there is an overlap in the area of coverage on
the itinerary . »uf .. In addition, the beneficial time for coverage could also differ because of the fluctuations in the QoS at
the cells edge . “at is linked to faulty wireless signals including fading and path loss. The cost function module will be
utilized to measw = the border cell of the QoS, which assures that the QoS is up to a certain distance along the route.
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When approaching the end, the vertical handoff decision is based on the MDP optimal policy VT+ (s) which takes into
consideration the QoS parameters that are network-based such as B™and,D™,P™, TH™ and BF « °~ Fig. 2. shows the
integrated process of BBO with MDP to determine the best RAT using the described multi-point « ~orithm in the
heterogeneous networks.

The MDP-BBO algorithm utilizes real-time dynamic information because information ch. ~oes rapidly and is updated
constantly. This real-time dynamic information is retrieved from network and mobile sides For rc. ' time applications, the
integrity of information is more important. By extensions in MIH, the MDP-BBO algorithn. ~~cesses critical real-time
parameters used when selecting the target network to hand off the MN. This research » .oy 'ses au evolution of the MIH
with the capability to store, process and manage real-time dynamic information obtai .ed f* sm _ sth the network and the
terminal side entities.

As the MDP-BBO algorithm is established in the serving point of service (PoS , 1t is easier to use in real applications.
The PoS decides the target of the handover based on the available resource sta 1s at can idate networks. The network,
according to this study, initiates the process of handover by signaling to the MN w. ~n a hr dover is deemed necessary. In
this case, the policy function of the network selection remains in the network ...e network utilizes the MIH_Net HO_***
set along with the commands from the MIH N2N HO_*** to initiate f1e b- .do er. The network can utilize these
commands for querying the currently used resources list from the MN; the se. ..ce net /ork is able to reserve the necessary
resources at the candidates target network while the network is able to con.. 2nd ... mobile node to perform the handover

Context P of
Networkis ki Ko Neighboring  ...uin IEEE 802.21
Initialization Initialization Initialization BASED IS
Maintenance Maintenance Maintenance —
activities activities activities No
i i i
] ] ] Best Network
Determine Determine Determine Selected
transition transition i transition
pr pr v probability
T T T
] ] |
¥ ¥ ¥ I
Markov process: Markov process: Markowv pro:ess:l
Determine the Determine the ... | Determine the
ilability ilabitity ilabitity |
i i l
| ——Overall cost Wireless Network 1———
Determine overall cost of each access n.  ork [——0Overall cost Wireless Network 2—«]
[———~0verall cost Wireless Network n——=

to a particular network.

Fig. ~ I ybrid model of BBO with MDP to select the best network

5. Proposed Biogeography 2 ed C stimization

This section discusse, the d ‘ails of the MDP-BBO algorithm. Biogeography refers to the study of geographical
distribution of species ver geol gical time frames. There is extensive literature on biological subjects. In 2008, Simon [20]
first utilized the bioseog. ~h+ .nalogy to the concept of engineering optimization and introduced the BBO approach. This
is a method baser on a pcnulation that works with a set of candidate solutions across generations. It examines the combined
big solution spac s using & stochastic method as used by most other evolutionary algorithms [54-56].

It copies the spev. ’ _eographic distribution to present the problem and the solution to candidates in the search location
by utilizing "« ., ‘~< mutation and migration process to re-distribute the solution instances over the search location in
search of the s 1 .ions that are almost globally optimal. BBO as it is or in differing form has been examined in different
combinations an ' constrained/unconstrained optimization challenges [57] involving such as the Traveling Salesman
Problem [58-59], classification of satellite images [60], as well as sensor selection [20] among others. Nevertheless, since
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2012, research using BBO as a technique for choosing genes for data analysis of micro-array gene ¢ .pression has not been
reported.

This study attempts to examine the BBO for selection and categorization of genes. There is »» ecosystew1 or population
in the BBO that possesses certain island habitats. Every habitat contains the index of habitat - uitat lity that is the same as
the fitness function and relies on most of the island’s traits or attributes. When a value is gi ~n t every trait, habitat H’s
HSI is this value’s function. These variables that collectively characterize the suitabili*v ot .. ~ habitat formulate the
‘suitability index variables’ (SIVs).

Therefore, in terms of the issues related to the gene selection, a habitat’s SIVs (solu’ on ¢ - *idate) are the chosen subset
of the genes derived from the grouping of the entire genes. Therefore, the ecosy. m ., a randomized group of gene
candidate subsets. A proper solution is analogous to a proper HSI and vice versa. Prover s tions of HSI are likely to share
the SIVs with weak solutions of HSI. This type of sharing, which is known as mi cation, is governed by the habitats’ rates
of immigration and emigration. This model has been purposefully maintained to = e uncom, 'icated as it follows the original
simple linear migration model.

The BBO algorithm [20, 61] contains two main stages, namely mig’ ition -~ well as mutation. A mechanism for
mutation in the proposed MDP-BBO is engaged to improve the capability o. in* _stige ing in the search location. A detailed
algorithm for the BBO can be retrieved from [20]. The subsequent sub-s: ~tions rene ¢ the proposed algorithm of the MDP-
BBO for optimization of the weight coefficients when choosing the best RA1 "~ heterogeneous networks.

In general, studies normally apply different ideas to generate a fea. ™le solu’ on by managing the quantity of diversity.
The process of mutation in the BBO improves the population dive.. *v. v .* _uld be realized that the rate of the mutation
changes the SIV of the habitat in a randomized approach according to the “ate of mutation. In addition, the rate of mutation
is inversely in proportion to the species count probability. Th¢ e, w a fundamental BBO, if a solution is chosen for
mutation, it will be replaced using a random method to develop a n.  set of solution. Thus, this randomized mutation has
an effect on the investigation of the basic BBO capability. T' -=~cess o' mutation is modified to enhance the investigating
ability of the BBO as detailed in Section 3 in order to refin. the hapitat and to reach an optimal solution using a better
method. For the BBO algorithm, a short introduction is pr~videa, ‘hen, the operation is explained with a pseudo code.

The species selection (Ps) probability changes from one . ne.” ¢ time to another as shown in Equation (16) in this paper.
Changes are not performed in the migration potion r* the prc ~osed MDP-BBO algorithm to sustain the ability to exploit.
The modification performed in the mutation section w.™ the wIDP improved the capability for investigation. Therefore,
the proposed MDP-BBO leads to a balanced investigation ai.. * the ability to exploit the algorithm. The proposed MDP-BBO
algorithm’s pseudo code is presented in Table ? The proposed MDP-BBO algorithm is used in this study to perform the
optimization of weight in an algorithm with 7 .ulti-po. °t decision making and to choose the best RAT for the considered
networks that are heterogeneous, where E an. ' represe .t the maximum rates of emigration as well as immigration, which
are normally fixed at 1. Individual rates of immig. *ic 1 as well as emigration (4 and p, accordingly) are measured using a
similar formula as the simple linear mode’” sugs zsted by [20].

In the MDP-BBO algorithm, the species _ ogra nic distribution of genes was mapped to determine the solution to the
problem. The position of each gene epresents possible solution to the optimization problem and the habitats’ rates of
immigration and emigration corres’ on. - to the quality (cost) of the associated solution. Therefore, the deployment of the
wireless networks in the sensed area (eacn . >lution of the deployment problem) refers to a habitat in the algorithm. The
quality of the network, for exar .pic ‘he total coverage area, corresponds to the cost value (habitat’ rate) of the solution.
Table 3 shows the basic concer .s of " [DP-BBO.

T .ble 3. Mapping table for the proposed MDP-BBO algorithm

" Cor .ept Refers to
Availav.e network Available Habitats
Cost 1 Wlue of network Habitats’ rates of immigration and emigration
Set {mobile nodes Group of gene candidate
Best network Best Habitat
Juality of network Quality of island habitats

The pro, hsec aiporithm is applied over the multi-point decision making (MDP) module to optimize the weight
coefficients, s. “.at the best network is selected. The conventional biogeography based optimization consisted of major two
steps namely mu, vation and mutation. In traditional BBO, mutation is a varying operator that randomly changes the values
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at one or more search positions of the selected species. We proposed a new mutation mechanism b sed on MDP process
which is employed to increase the exploration ability in search space. In our proposed model no ¢’ . ~ees are made in the
migration part so as to maintain the exploitation ability.

Table 2. Pseudo code for the proposed MDP-BBO algorithm

Function MDP — BBO ()

Initialize_randomly(population)

Calculate_fitnesSS()// ......co.uuiinii et e e e, by Eq. (12)
Sort_asc_best_to_worst(population)
Count_Probability(for all Habitat)
If termination criteria is not achieved then
arrElistim[] < Save the best H's
Map suitability of H index(HSI)for al Habii
Perform Migration
Perform MUutQtion // .................ocooiiiiiiiiiiiiiiiiiiiiiid i by Eq. (16)
Calculate_fitness()
Sort_asc_best_to_worst(population)
Update best solution ever found
End if
Best Cost = Choose(Best Costs)
End

Standard Pseudo Code for Migration

For i=1 to NP do
Select H; with probability based n A;
If H;isselected Then
For j=1 tc NP do
Selec’ H; w. ' nrobability based on y;
If ", selected Then
andomly selecta SIV(s) from H;
Copy them SIV(s) in H;

Er iif
F «d for
End if
End for

Standard Pseudo Code for Tutation

For i=1 to NP .
Use A; ai 1u; to con. ute the probability P;
Select S1 " H;(j) wi i probability < P;
If H;(j) is.. -.ed Then
n | "H;(j) witharandomly generated SIV
End it
End for
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6. Results and discussion

We utilized MATLAB and OMNET++ to evaluate network performance. We utilized M .TLA 3 ++ to implement all
algorithms in the pre-processing steps. OMNET++ is a well-designed, component-based. mo.. ar and open-architecture
simulation environment with strong GUI support and an embeddable simulation kernel. G.. ™NET+ . is a general-purpose
simulator capable of simulating any system composed of devices interacting with # ™ othc. Although the original
implementation did not offer a great variety of protocols, it did provide a hierarchics . nes -~ ~rchitecture which enabled
developers to model and modify all layers of the protocol stack accurately. The simt. ~tio’ s were made in the OMNET++
simulator using the network address translation (NAT) add-on. Notice that the OMNET+. "™NET module, by default, does
not provide make-before-break handover mechanisms but rather break-before-m «e. Therefore, modifications were made
to the NAT module, such as support for network-side 802.21 entities and contr | of the 1 1k layer access technologies to
obtain seamless handovers. A cross-layer module was implemented in OMNeT- - with NAT functionality to provide a
seamless handover. It contributed to the INET framework of OMNeT++ by unplementing the NAT operation in network
layers with an update mechanism achieved through a cross layer module.

Tables 4 and 5 show the parameters of the Markov-VHO. The average “me for 4- _ision epochs that are continuous is set
at 15 s. The unit for bandwidth is 16 kb/s, the unit for jitter is 2.5 ms, and the it for traffic is 0.5 erl. The highest as well
as the lowest velocities are 5 units and 1 unit respectively as suggeste * by [62-6: ]. The cellular area is 3 times bigger than
the WLAN while the MTs’ special density in the cellular network i< 8 ti.. ~< b’ _ger than the WLAN. Rates of peak data in
the Wimax are DL: 75 Mbps UL: 25 Mbps and in the LTE DL: 100 to . 4.6 Mbps UL: 50 to 86.4 Mbps. The algorithm for
the Markov-VHO that is proposed in this study is evaluated with ~*-~= -~ :mes in terms of average number of handoffs,
available bandwidth, etc. Figures 4 to 10 show the performance o1 .= network during the handoffs. The average time of the
continuous decision epoch is 15 s. The unit of bandwidth is 16 kb/s, ti.. unit of jitter is 2.5 ms and the unit of traffic is 0.5
erl. The highest as well as the lowest velocities are 5 units na 1 ... as suggested by [23]. The cellular area is 3 times
bigger than the WLAN and the MTs’ special density in the cell. <. network is 8 times bigger than the WLAN. The released
signals propagate on the module hierarchy up to the root . “wors module). As a result of this, a radio listener registered at
a compound module can receive signals from all modules 1. its “'b-module tree. To record simulation results based on the
signals mechanism in OMNET++, we have added or  ~+ morc ‘@statistic properties in a module’s NED definition. In terms
of RSSI, we have considered the following declarati. of a scatistic by recording the average RSSI value measured by
nodes in a wireless network: @statistic[statRSSI](source= . ;siSignal";record=mean). However, placing the statement on
network level would result in a single RSSI valu~ ~~reraged over all RSSI measurements made by the nodes in the network.

Table 4. Parameters of Simulation for Marko -VHO
T

E PR e O g = = N
g :r | 4% £ EZ | 5%
s Definitions of Parameter Ey R < Definitions of Parameter g ; E] g
2 =z | %E g S£| % £
4 = > = r4 > = > =
doe Delay maximum in network i 8 units 8 units D, Average window 0.5m
Jhax Jitter maximum in network i 4 Nits 2 units D Slope distance window Sm 8m
Plrax Packet loss maximum in netv Lix 6 units 4 units T mobite mput | Predefined threshold mobile input -85dbm -
thi,.. Throughput maximum in n .work 8 units 8units T mobile output| Predefined threshold mobile output - -80dbm
bel o Bit error rate maximum in nev.  «i 4 units 2 units NRANs Number of RANs 5
Chiax Cost maximum in netv rk i 2 units 4 units NMN Number of MNs (per SN) 10 | 100
i . . . . . Rate of VHO triggers per mobile
Sinax Security maximum n. ~tv ork i 4 units 4 units A d In range [0.01, 0.1]
node
Cost of switchir m networ. 1 to
ny vork 2 LY ' 03 - BW, Wired Link Bandwidth (Mbps) 1000
networl
Cost of switchii. - from net ork 2 to . . .
n, twork | - 0.3 BWy., Wireless Link Bandwidth (Mbps) 10
ne
cq Cost of ccess to ne vork 1 1 - P Packet Length: (bits) 12000 (1500 x 8)
c, Cost of a ~ess to ne vork 2 - 1 DIS Mean IS Delay: (sec) 0.01
Py Tr _«:ecion power network 100 mW 120 mW DCN Mean Process Delay (CN): (sec) 0.030 | 0.300
Cost of unit packet transmission for
n Pass 1 ¢ .actor 33 33 Uyired . . 0.1
the wired links
D,, Average w adow 0.5m Uy ireless Cost of unit packet transmission for 3.84 x 106
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| | | | | the wireless links | |

MiXiM, a simulation framework for OMNeT++ is able to simulate wireless networks, mob’ e ne.. ~rks and energy
consumption. MiXiM can maintenance wireless and mobile simulations. It can provide several r~~1y-to-use modules such
as Log Normal Shadowing, Simple Path loss and Rayleigh-Fading using the Jakes-model. ™ nis - 10del is applied by a
maximum Doppler shift based on the carrier frequency f,and velocity v of the object with . » b’ zhest level of velocity
which can be applied in the propagation environment, e.g. a moving user. This model of fz 'ing 15 -tablished by utilizing
Rayleigh distributed signal domains that lead to rapidly expanding the distributed SNR v; ; to. *he channel from mobile
terminal i to mobile terminal j rapidly. We have investigated the path loss, the log: .o1. al shadowing with standard
deviation of 8 dB and Rayleigh fading. The path loss models between the base st7 .ion - .1d .. obile station as well as
between relay station and mobile station links, 31 + 40 log 10 d(dB), are acquired from ." - models in [65] which have the
carrier frequency of 2.5 GHz, where d (meters) is the distance from the transmit* . .0 the . ceiver. For shadowing, the
correlation model in [66] is used with the decorrelation length of 50 m and the ".ayleigh "ading is applied using a Jakes
spectrum model.

Table 5. Reward function Parameters

Notations Definition of Parameter CBR FTP
Lp Accessible minimum bandwidth 2 un.. 2 units
required
Up Accessible maximum bandwidth mits 16 units
required
Ly Required Minimum delay 2 8 units
Uy, Required Maximum delay 4 units 16 units
Lp Required Minimum packet loss 7 units 4 units
Up Maximum packet loss required __ Aunits 16 units
Ly Minimum throughput required 2 units 4 units
Ury Maximum throughput required N N 4 units 16 units
Lpgr Required Minimum bit errorrate | 2 units 8 units
Uper Required Maximum bit error ~*~ | \ 4 units 16 units
L¢ Minimum cost required | 2 units 4 units
U, Maximum cost required 4 units 6 units
Lg Minimum security reqr” "~ 2 units 4 units
Ug Maximum security r Jjuired 4 units 8 units
L, Minimum jitter requ.. * 2 units 8 units
U, Maximum jitter :quired 4 units 16 units

We selected utility functions-based app. > nes f r comparison such as TOPSIS, GRA, FMADM and SEFISA. Several
assessments exist based on the workin- s of the | ~ posed scheme versus the TOPSIS [41, 42] decision-making models. The
proposed scheme performance is ¢ .. ~ined in different mobility settings based on TOPSIS and GRA. Both these
techniques offer rankings to the newworks u. * are available according to multiple parameters, such as the network traffic
load, mobile speed and type of - ... ~e. Based on these parameters, the highest-ranked network is chosen. In terms of
mobile communications, these :chn’ jues could be utilized to consolidate the information received during the network
discovery stage to rank all the av..”"» ,le candidate networks wisely according to the present requirements of the application
[68]. The basic concept of t' ¢ TOPS.™ method is that the chosen alternative should have the shortest distance from the
positive ideal solution and .ne f ;thes* distance from the negative ideal solution. The positive ideal solution is a solution
that maximizes the benefit v * ria a- 4 minimizes the cost criteria, whereas the negative ideal solution maximizes the cost
criteria and minimizes t+ “Seneh.  .teria [67].

Table 6 provides tt : sample . ata set of considered users with the constraint parameters fixed namely bandwidths, packet
loss, delay, throughput, ~ost of " it error rate, security, and jitter which are used for RAT selection process (1000 users were
considered). First' , .ne enuie proposed algorithmic approach was rum in MATLABR2014 environment and executed in
Intel Core2 Duo Processc with 2.27 GHz speed and 2.00 GB RAM. Then, the codes and modules are programmed and
translated into C- * code tr implement into the OMNET++.

Table 6. Sar _'~ dataset of mobile users for input parameters (B, P, D, TH, BER, S and J)

S. __WiMAX WiFi UMTS

no B P A TH | BER S J B P D | TH | BER S J B P D TH | BER S J

1 | 4508 ] 58] 66 1.7 09 | 54 109 1219657 1.7 07 167189 |16 |85]73 1.8 08 | 87
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38 109 | 55 6.1 1.6 08 | 42|08 | 14 | 89 | 55 1.4 08 | 64 | 83 | 15 | 76 69 1.7 0.9 | 9.1

55107 |61 |72 1.5 09 | 51 107 ]131]94]5.1 1.8 08 | 63 | 8.1 1.7 | 87 o1 1.9 08 | 79

43 1 08 | 59 | 6.8 1.8 07 | 55|08 |12 ]091 |49 1.7 09 | 59179 |16 |85 _7.5 15 09 | 81

36 | 0.7 | 55|63 1.5 08 | 41 | 08 | 14 |89 |55 1.4 08 | 6.4 | 8.1 1.7 8. ' 171 1.9 08 | 79

38 109 | 55| 66 1.7 09 [ 42 | 06 | 08 | 14 | 89 5.5 14 | 0.8 | 89 | 1.f S 173 1.8 08 | 87

|
55107 |61 | 72 1.5 09 | 511107 |13 ]94]5.1 1.8 08 | 63 | 8.1 LV | 7.1 1.9 0.8 | 7.9
T

S (R[N |h|W|N

8.
43 1 08 | 59 | 6.8 1.8 07 | 55108 |12 1]91]49 1.7 09 | 59 179 | 1o 8 7.5 1.5 09 | 8.1
8

10 | 3.8 | 09 | 55 | 6.6 1.7 09 142|108 | 14 | 89 | 55 1.8 0.8 | 63 7.1 1.9 0.8 | 7.9

5
34 1 08 | 59 | 6.1 1.6 08 | 42 | 0.6 | 1.5 | 9.1 | 45 1.9 07 | 58 |74, 8 | 5| 74 1.9 0.8 | 8.8
Lt ] 2

And so on up to 100 users

For the considered data samples of 100 users with the sample data set as showr . Table ~ to start with proposed MDP
process was applied and the MDP-BBO output for the respective input params .ers are »mputed. The outputs from the
MDP are sent to the BBO algorithm (MDP-BBO module) to select the best RAT ™r heterc seneous network. The proposed
approach targets fast movement of the MN and solves the dynamic decisic»-ma..’ "~ "ssues efficiently. The simulation
parameters of three access networks are shown in Table 7.

Table 7. Sample dataset of

WLAN Access Point Parameters Value
Transmission Power 0.027 W
Receiving Threshold _ 1.17557e-10 W

Throughput 0.3733550
Carrier Sensing Threshold 1.05813 e-10 W
Coverage Radius 150 meters
Radio Propagation Model - Two-Ray Ground
Frequency _ 2.4 GHz
WIMAX Parameters Value
Transmission Power W 30 W
Receiving Threshold 3e-11 W
Carrier Sensing Threshold 24e-11'W
Coverage Radius 1500 meters
Radio Propagation Model Two-Ray Ground
Antenna Type Omni Antenna
Code Rate 12
PHY Mode } 256 OFDM
Maximum Data Rate y 1882 Kbps
UMTS Parameters Yy A Value
Coverage All Simulation Area
Maximum Data Rate 384 Kbps

The working of the proposer sc. *me is tested in both smaller and larger coverage area networks. The movement of
different number of MTs have seen onsidered ranging from 10 to 100 with variable speed in three different networks, i.e.
cellular, WiMAX, and WiFi. The © [ performed several handovers between these networks.

We have conducted per orm: ice comparisons between our algorithm MDP-BBO and other algorithms structured in the
literature, namely SEFIS. [4/ | and FMADM [69]. In a study by Jaraiz-Simon et al. [46], the proposed algorithm was
designed to decide on the besu . ~tv ork to establish connection in a vertical handover process as the SEFISA is based on the
simulated annealing / ,A) alg ~rithm. SEFISA is selected for comparison because it is a heuristic proposition based on the
Simulated Annealing (SA) alg: rithm and SA is a probabilistic technique for approximating the global optimum of a given
function. In addition, . ~ FM’ DM is a multiple attribute decision making algorithm that selects a suitable wireless access
network during “.¢ vertical handover process. The findings show that the proposed mechanism has better performance in
comparison to he SEF.3A, TOPSIS, GRA and FMCDM algorithms according to the metrics based on number of
handover, failea 1O, nur oer of packets loss, throughput and handover latency.

To shov .. ‘'mits of using previous models to select an access network and to motivate the need of optimized selection
method to in. Yo' e seamless handover, several experiments are simulated using OMNET++ that support the MIH modules
implemented b, INET/NAT. To compare MDP-BBO and original MIH results, the same topology of simulation is used
which cited in Fig. 1. The traffic used has a constant bit rate (CBR), which allows for calculating the amount of packet loss.
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It also could be used to simulate voice traffic. Packet size is always constant at 1500 bytes and the thr ughput is determined
by varying the interval of sending packet during simulation.

Fig. 3. demonstrates the simulated results of the total reward using various handoft signe ing J ads. The total reward
reduces as the handoff signaling load rises, as the signaling load increases each time the conne * on causes a drop in the
actual reward. This proposed algorithm reduces the call dropping probability as well as the siy. ~ling «. 1 processing cost by

Total Reward

MDP-BBO ~ \\
~
iy

15| —— GRA

— =7 — SEFISA F

——#%—— FMADM

o 2 4 6 8 10
Avg.velocity(m/s)

considering the velocity of the MT. Thus, the decrease in the tota. -wara 1s less compared to the other algorithms.

10

Fig. 3. Comparisons of total reware. "mae .._ious velocity of the MT

Fig. 4. shows the average number of HOs using variou. . ~nali. ¥ loads. It is observed that when the signaling load for
the handoff goes up, the number of average handoffs goes du vn. The signaling load for the handoff that keeps rising leads
to the candidate network’s real total reward. This is ~_~*fican‘ly reduced compared to the present one in which the MT
stays. Thus, the algorithm that is proposed is able to preve * many unnecessary handoffs.

In addition, several tests were performed at various MN speeds. In the initial simulation, the amount of the MNs was not
much however at the time of simulation, the res arche. tried to increase the MNs slowly to examine the functioning of the
model that is proposed in a high traffic envir nment. T e number of handovers are recorded with the proposed scheme,
GRA, as well as TOPSIS. The handoff rates nsing “RA .nd TOPSIS increased as more MNs joined the network.
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Fig. 1. Comparisons of average numbers of HOs under various signaling loads
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The handoff rates in the proposed scheme in comparison between the MDP-BBO, SEFIS/, TOPSIS, GRA and

250

—_— MDPBBO
—_—— TOPSIS
——— GRA

— =7 — - SEFISA
200 | ———— FMADM /%

100

Handover rate

50

o

o 20 a0 60 20 100
Number of MNs

FMADM are demonstrated in Fig. 5.

Fig. 5. Analysis of hardotft. ‘es

Among the reasons seen during the simulation is the unsuitab!= »~~--= ¢hat is triggered because of the RSS in relation
to GRA and TOPSIS. The technique for the proposed handove. “riggering lowers the rate of handoff significantly. As
shown in Figure 5.12, regardless of number of nodes, the network selec.” >n methods including TOPSIS, GRA, SEFISA and
FADM have very close results and these similarities grow by mcre ... the number of nodes. One of the reasons which can
be identified when observing the simulation is the non-suitab. iandover triggering caused by the RSS in the GRA and
TOPSIS. Despite of other method, MDP-BBO has lowe. . “mbe: ~f handover. The reason for this effect is that proposed
model integrates the MIH model, data rate threshold valuc-. u. MDP and the cost functions to an MDP-BBO handover
decision algorithm.

Likewise, the packet loss is minimized significantly in .= proposed scheme. GRA and TOPSIS have high packet losses
in comparison to the proposed scheme due to the regular switching of various networks. Also, GRA, TOPSIS select the
best network with more time to process, whi' . 10"~ the network with a high number of packets. Also, in RSS-based
approach, handover initiating is based on R .S thresh 1d and RSS degradation during handover leads to increase false
handover trigger alarms. This in turn causes hiy’ nac! ct loss. In general, a scheme with a multi-criteria decision needs a
high amount of handover time in compari on tr a mu tel with a single criteria decision. However, because of the proposed
MDP-BBO method, the MN has addit' ynal imme o scan as well as choose an optimized network in a heterogeneous
network setting. Fig. 6. demonstrates the p. et lo s ratio comparison.
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Fig. 6. Packet losses during handovers

The schemc ‘hat is proposed has also enabled the computation of the throughput gain. The throughput relies on the
indirect loss of ti. packets. The GRA and TOPSIS possess high loss of packets and as such, they offer a low throughput
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gain due to unsuitability in the selection of the handover network. However, the proposed scheme als faces a lower packet
loss due to the optimal network selection and the proposed handover triggering method. The throug . * relies on the delay
of the handover and the needed time to redirect the data via a new network. The handover that is proposc.” ~ffers the MN
sufficient time while the handover occurs. Thus, the data is redirected via a network that is new ... as such, the MN goes
through a high level of throughput. At first, the MN has a low level of throughput, however after . certain duration, the
throughput increases. Two reasons for this increase include 1) the previous throughput (bytes) a. © ing through the present
AP/BS is added to the new bytes arriving from the new AP/BS; ii) the suggested triggering «. “vell a. selection of network
offers the MN with a suitable AP/BS that increases the throughput.

Initially, a short period of time is required to trigger MDP-BBO, after which the ave age < «cco s rate of packet delivery
in MDP-BBO is increased over simulation time dramatically, even though initially u. aroughput experienced by the
mobile node is continuous without any interruption when the MDP-BBO decision < * tion w. ~ employed. This is because
the MDP-BBO selects the best network in a lower level of loss of packets and "h>w dela, in handover due to optimized
network selection, thus increasing the throughput. The loss of packets affects t. voughpu' in an indirect manner. Other
approaches have high packet loss and as such offer low gains in throughput main,, -~ .use of non-suitable handovers.
Delays in handovers and time taken for data redirecting also influence the ‘ wroug*_ -t. Hence, since the MDP-BBO uses
MIH protocol for supporting QoS and for managing connectivity issues, th. “e * also 1igh throughput in the MN. Fig. 7.
shows the throughput gain comparison in the proposed scheme, GRA, and TOPSIS de (sion models.
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Fig. 7 Throughput gains

The proposed scheme outperforms in t ¢ are . of minimizing the rate of handoff and in maximizing the throughput with
the decision models of GRA and TOPSi. S aulat on results in Fig. 8. corresponds to the best costs for TOPSIS, GRA,
SEFISA, FMADM and MDP-BBO fo' numbe. ~f networks = 4 and number of QoS = 15. The datasets consist of several
networks characterized by the follow .._ OoS parameters: B = bandwidth (kbps), E = BER (dB), D = delay (ms), S = (dB),
C = cost (eur/MB) , L = network l.tency \ <), J = jitter (ms), R = burst error, A = average retransmissions/packet, P =
packet loss (%), G = received sigr _ ‘rength indication RSSI (dBm), N = network coverage area (km), T = reliability, W =
battery power requirement (W). .nd ¥ = mobile terminal velocity (m/s). The modification made in the mutation part with
MDP increases the exploration " i .y. Thus the proposed MDP-BBO results in a balanced exploration and exploitation
ability of algorithm.

Fig. 9. shows the impac of r obile speed on handover latency. In this simulation, the total number of mobiles is fixed at
50 nodes. Whenever the mou. ~ ne .e speed rises, the handover latency also rises. The MDP-BBO and SEFISA models
have better performanc wan the 1 JPSIS, GRA and FMADM models because they have high levels of handover time and
thus, increase the hanc sver late: °y.

From the simulation . -t jresented in Fig.9, it is not surprising the handover delay increases in the hybrid MDP-BBO
algorithm assister MI1H and other methods as the moving speed of the MN increases. The original MIH scheme is coupled
with an MDP-B 'O mech: 1ism that updates the audio/video encoding parameters in real time, allowing audio/video QoS
adaptation. The s wulatic 1 results indicate that the proposed framework achieves a lower delay for audio and video
applications ~f 30%, compared to a traditional simple scenario. In this experiment, simulation results show that this
research can . pre /o uie QoS of a real-time application by integrating MDP-BBO algorithm to make an accurate decision.
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Fig. 9. Handover lat~cv vs Mo ile speed

Fig. 10. shows the impact of various mobile nodes densiti. on handover latency. The number of mobile nodes are
adjusted between (10 -100) per mobile node when moviu » a fi. 2d speed (50 m/s). In place of the mobile node density
rise, the handover latency also rises as density causes more ~ong stion. Thus, the handover latency will be increased. The
MDP-BBO and SEFISA models show the best perfo: ... -~ fo.'owed by the TOPSIS, GRA and FMAMD models.
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Fig. 10. Handover latency vs. Mobile nodes densities
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The scheme utilized when selecting a network is based on different parameters namely jitter delay, BER, loss of
packets, cost of communication, time to respond, and network loading. A comparison is made in * «. ~roposed scheme as
well as the TOPSIS and GRA decision models in the context of failed attempts at handovers, handovers .. ~t are frequent,
ratio of packet loss, as well as the throughput. The proposed scheme outperforms in the aree L. 1inimizing the rate of
handoff and in maximizing the throughput with the decision models of GRA and TOPSIS. / mon' these algorithms, the
one based on the hybridization of MDP and BBO demonstrated the best performance, in te. =, of precision and cost
function.

Fig. 11. shows the signalling overhead versus average session arrival rate. Based or w hando.er procedure for each
option, the signalling overhead was evaluated. From the figure, as the average session .rrive ra.. increases, the signalling
overhead for all the possible options increase. This is because more handovers occu. ~ .th the increase of the session
arrivals. The figure also shows that MDP-BBO and SEFISA scenario have lower s* | illing « -erhead than TOPSIS, GRA
and FMADM. This is because the handovers in MDP-BBO and SEFISA do not inv blve rou. ng delays and the IEEE 802.21
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interface introduced between nodes also shortens the delay req. irea to send a signalling message.

Fig. 11. Signalling overhead vcrsus average session arrival rate

The QoS requirements of real-time audio 2 .d video treaming traffic are the factors considered when determining the
QoS of the available networks to provide uninte. nted ‘ ervices to mobile users. Real-time applications such as voice over
IP (VOIP) and video conference (VC) are » sed in te cenario. The holding time of the real-time service is set as 10 min.
For each setting, the simulation is condur ed 1 0 tires and the average is obtained. The proposed model can be used for
real-time simulations up to a data rate of 1. ¥ ps. T can simulate up to 100 nodes without losing its real-time capabilities.
For simplicity, voice and streaming ¢ .ta traftic * e simulated, all bandwidth is assumed to be completely shared by all
traffic flows, and real-time traffic ha: p. ~rity over the data. Simulations show that voice and streaming traffic have similar
performance results. Since the voice trati. requires low bandwidths, it has higher trucking efficiencies and speed
degradation abilities compared te .uc ‘udio/video streaming traffic at the same traffic load. The results indicate that speed
increases the delay as QoS of t' ¢ ree -time traffic. Speed degradations are effective in increasing real-time traffic delays,
and high speed levels are involve. 1 delayed degradations. Fig. 12. and Fig. 13. represent the handover delays for audio
and video services respectiv ly. From "e simulation results, it is not surprising that the handover delay increases in the
MDP-BBO, SEFISA, TOP' S, ¢ RA ~nd FMADM as the moving speed of the MN increases. The original MIH scheme is
coupled with an MDP-Bb ™ mect anism that updates the audio/video encoding parameters in real-time, allowing
audio/video QoS adapt>*’_ 1. The . ".nulation results indicate that the proposed enhanced MIH framework achieves a lower
delay for audio and v deo app ‘cations of 30% and 47%, respectively, compared to other scenarios. In this experiment,
simulation results sho - that th ; research can improve the QoS of real-time applications by integrating the MDP-BBO
algorithm with the MTH . ~".¢ accurate decisions.
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Calculating the computation ti- .. (CT) taken for algorithm completion is especially necessary in the real-time
applications when VHO decision a.gorith.. <hould quickly select the best network during VHO process. In this study, the
stopwatch timer functions, tic an” .. ~, are used to calculate the computation time. Invoking tic starts the timer, and the next
toc reads the elapsed time in M ATL .B. The CPU time returns the total CPU time (in seconds). The line graph compares
the average of computation time » .ne MDP-BBO, SEFISA, TOPSIS, GRA and FMADM in 30 runs. When comparing the
data resulting from the plot the ave.. ~e time needed for SEFISA calculation is approximately 0.6 (s). TOPSIS and GRA
have high computation ti ae ¢ about 0.85 (s), 0.87 (s). The FMADM has highest computation timeabout 0.9 (s). In

contrast, MDP-BBO ha. *.
(s). Figure 14 shows ck-~ges 1.
the  MDP-BBO,  SEFIf A,
methods.
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Fig. 14. Average of computation time

The computational time taken for determining the best networ for the giver uccerogeneous network is reduced to half
the time in comparison with that of the methods available in the literature.

Several comparisons were performed between the MDP-BBO, SEFISA, . "PSIS, GRA and FMADM. The FMADM
has the highest rate of handovers as compared to other models. The TC ®SIS and ¢« RA have the same rates of handover and
MDP-BBO has better performance in terms of handover rate which he. >« pbility management. Generally, SEFISA,
TOPSIS, GRA and FMADM models have shortcomings: they are usuai., not possible to make right VHO decisions timely
because of high packet loss, high latency and low throughput c=in~ A=~ er unfortunate practical problem is the high
volume of calculations for finding the criteria weight for evaluation.

We compare the performance of our proposed model with *he ¢ ..." .g techniques using Monte-Carlo simulations [43].
In Monte-Carlo experimentation for a given velocity (v) and . < given value of probability of handover failure (Pf) or
probability of unnecessary handover (Pu) the threshold v« . (M ¢ N) is obtained using the above threshold Egs. (19 and
21).

- 2a
&2{3W<TSQL4M;GMLO<T57 (19)

0, otherwise

We can achieve the value of M for an accepta. '~ leve  of probability of failure by following formula (20):

vt TP
2a[tanja. ‘7 —— —— ——f]
. > 2 2
40 -V T

M=— ,0<M<T (20)

2
v\/;+kf

_ ('r 2a
&:(PN<TSTH—LVﬁ&MLO<TSU 1)

Lo, otherwise

We obtain the value of . “*0 ".eep - robability of unnecessary handover within desired bounds by following formula (22):

2a[tan[arctan (U—tT> - nTPu]

N - J4a? — v2ti
vy 1+ k2

,0<N<1, (22)

As per Monte-Carlo ...c the experiment is repeated very large number of times and finally we obtain the experimental
value of the rovo ..o  of handover failure or unnecessary handover by dividing the failed or unnecessary attempts with
the total numbe * ,f handover attempts. For each value of v the experiment is repeated until the results are stabilized and a
clear pattern has 'merged. The threshold values for other models are obtained in exactly the same fashion using their
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derived relationship and their assumed probability distributions of their models. The experiments 2 ¢ performed using the
same methodology and results are obtained and compared. The lowest speed and highest speed o. “idered are Sm/s and
35m/s respectively. This is due to the fact that WLAN has a small coverage radius. The coverage ra.’ s of WLAN is
assumed to be 50m. Also, we assumed the total latency for hand-into and hand-out of WI . about T = 2 s. So the
maximum dwell time above 25 m/s speed is less than the sum of handover latencies wk.ch v ould guarantee always
unnecessary handover. Results of Monte-Carlo simulation are presented in Figs. 15 and 16 .- probability of handover
failure and probability of unnecessary handover, respectively.
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Fig. 16. Probability of unnecessary handover

Monte-Carlo simula.’ >~ - sults validate our model and show better performance than other comparable approaches. In
maintaining the .andovr ~ failure probability for our proposed model, the percentage deviation from the desired level is 0%
for the lowest ¢ »served v :locity and remains less than 7%, while the deviation in the other models ranges from 2 to 25%
and 100 to 125% “ the same range of velocity. Likewise, for maintaining the probability of unnecessary handover within
desired bo» ~7< the improvement provided by our proposed model is roughly of the same order. From the graphs, we
observe that s t' ¢ velocity of the MN increases, the probability of unnecessary handover and handover failure increases
and deviates i n the designed level. This indicates that speed has an impact on the calculation of threshold values, which
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are obtained using this probabilistic model. This is because high mobility makes it difficult to ms ntain the connection
between the MT and target network during the handover period and thus reduces the probability of # 5. ~essful handover.

Table 8 shows root mean square error (RMSE) for the models under consideration. The RV .. s a statistical tool that
shows how the models deviate from the predefined benchmark value of 0.02. In both cases the rror for the proposed

model of P; and P, was minimal.

Table 8. Values of RMSE for the models

Model FMADM GRA TOPSIS S’ FIEA . MDP-BBO
P;’s RMSE 0.01367 0.01243 0.00506 o046, 0.00054
Py’s RMSE 0.01784 0.01073 0.00729 0.005¢ 0.00152

We can found that the efficiency of our model in accordance with the fai. we close to the benchmark value. The
efficiency of the proposed model for a benchmark value of 0.02 was 98.85%.

In summary, the simulation results prove the effectiveness of the proposec apr vack as follows:

e This proposed algorithm reduces the call dropping probability as . =l as the signaling and processing cost by
considering the velocity of the MT
e  Many unnecessary handoffs are prevented.

e  The rate of handoff and signaling overhead have been decrease.. “ignificantly and the packet loss is minimized
e  The throughput and performance in terms of precision an. ~ost function. have been improved

e  The proposed work improves the QoS of real-time ap-'ications

7. Conclusion

Wireless communication systems in the future w.." encuupass different forms of networks with wireless access.
Accordingly, seamless vertical handoffs from various ne. -orks are a challenging issue for IIOT. Although several
algorithms for vertical handoff decisions based o~ machine learning are being suggested, many of these do not take into
account the effect of call drops that occur whi'¢ the v -tical handoff decision is taking place. Furthermore, many of the
present multi-attributed vertical handoff algo:. “ms are 1 ot able to dynamically project the circumstances of the MTs. To
ensure the QoS of various MTs, this study h- 3 prop. ~ed 1 MDP-based algorithm for vertical handoff decisions in single and
multi-attributed conditions, in order to ma- imiz the anticipated total rewards and reduce the average amount of handoffs.
Our work took into consideration the velc “ity « (the AT, the cost of the network access, the cost of switching in the vertical
handoff decision and developed a rewa 1 fun. ~n .aat modeled the properties of the QoS. We applied the MDP to measure
the weight of every QoS determinar n the reward function, and an iterative algorithm was adopted using the Markov
decision procedure to gain the max’ num ~lue for total reward and the related optimal policy. Moreover, by considering
the velocity of the MT, unnecessa~ handofts were prevented. We also compared our algorithm with other recent related
algorithms to evaluate the perfc man e of the network. The findings revealed that the MDP-BBO algorithm is able to
outperform other algorithms i, “»rn-, of number of handoffs, throughput, and decision delays. The proposed algorithm
displayed better expected tote” rewai. - as well as a reduced average account of handoffs compared to current approaches.

With regards to future v ork, ve ar planning to conduct studies about the usability of the proposed work for vehicular
ad hoc networks (VANET). . st, w . plan to improve the MDP-BBO optimized code for infrastructure-based VNs rather
than VANET-based sc’...ons. 1. .n, we want to use car-to-car communications protocols such as DSRC and IEEE
802.11pto deliver infr cmation > the MIIS databases. Furthermore, different types of available wireless access networks
with their correspond. ‘¢ QoS alues for mobile terminals will be identified and MDP-BBO will be used to evaluate
performance, behav~rs a. ' .aer possibilities. As part of future work, we will further explore sophisticated methods of
network selectic . based on fog computing. We will extend our mobility management framework to support more
complicated use ases alor 3 with diverse devices in order to measure the effectiveness of our approach with more realistic
test-beds in fog co.. ~utir | environments.

As anothe - cor .. ation for the future, we aim to propose a hybrid model for handover management between the
UAVs. Due tc “s good maneuverability, low cost and versatile preparation, remote-controlled UAVs have recently
attracted significa t interest in the field of wireless communication.
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Highlights

o This works proposes a hybrid intelligent model for network se. <tira in Industrial
Internet of Things.

o The proposed model merges the biogeography-based optir 1zax ~~ (BBO) with the
markov decision process (MDP).

o The MDP is utilized to establish the radio access t chnolc 'y (RAT) selection’s
probability that behaves as the input to the BBO process

o The BBO determines the best radio access technlor, (+ AT) using the described
multi-point algorithm in the heterogeneous netwc -s.




