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Abstract

This paper develops consistency and asymptotic normality of parameter esti-

mates for a higher-order spatial autoregressive model whose order, and number

of regressors, are allowed to approach infinity slowly with sample size. Both least

squares and instrumental variables estimates are examined, and the permissible rate

of growth of the dimension of the parameter space relative to sample size is studied.

Besides allowing the number of estimable parameters to increase with the data, this

has the advantage of accommodating explicitly some asymptotic regimes that arise

in practice. Illustrations are discussed, in particular settings where the need for such

theory arises quite naturally. A Monte Carlo study analyses various implications of

the theory in finite samples. For empirical researchers our work has implications

for the choice of model. In particular if the structure of the spatial weights matrix

assumes a partitioning of the data then spatial parameters should be allowed to vary

over clusters.
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1 Introduction

Correlation in cross-sectional data poses considerable challenges, complicating both mod-

elling and statistical inference. When information on geographical locations is available,

it may be possible to extend models developed for time series data. However, when

locations are irregularly-spaced serious difficulties arise, and frequently only information

on economic (not necessarily geographic) distances is available. Spatial autoregressive

(SAR) models, due to Cliff and Ord (1973), have become widely used in this setting.

Given a sample of size n, these employ a known n × n spatial weights matrix whose

(i, j)-th element is frequently inversely related to some measure of economic distance

between units i and j. The elements may also be binary, for instance taking equal val-

ues 1 when two units are contiguous and 0 otherwise, but many other other specifications

are possible.

To be specific, for an n × 1 vector of observations yn, an n × k matrix of regressors

Xn and n× n weight matrices Win, i = 1, . . . , p, it is assumed that there exist unknown

scalars λ1, λ2, . . . , λp and an unknown k × 1 vector β such that

yn =
p∑

i=1

λiWinyn + Xnβ + Un, (1.1)

where Un is an n × 1 vector of disturbances. In this paper we will refer to the above as

the SAR model while the SAR model without Xn will be the pure SAR model.

Weight matrices need not be symmetric and can contain negative elements, but their

diagonal elements are normalised to zero, and they are frequently row-normalised such

that each row sums to 1. If Win has non-negative elements, this implies that ‖Win‖R = 1,

where for any s×q matrix A = [aij ] we define ‖A‖R = maxi=1,...,s
∑q

j=1 |aij |, which is the

maximum absolute row-sum norm. In this case, taking p = 1 for illustrative purposes,

the (i, j)-th element of W1n can be interpreted as wij,1n = dij,1n/
∑n

h=1 dih,1n, where

dij,1n measures distance between units i and j. Thus elements of the Win are allowed to

depend on n, so those of yn form a triangular array. Kelejian and Prucha (2010) study

some implications of row normalisation for parameter interpretation. Since Xn may also

depend on spatial weights, we also allow its elements to depend on n. See e.g. Arbia

(2006) for a review of spatial autoregressions.

By far the most popular version of (1.1) takes p = 1, when we write

yn = λWnyn + Xnβ + Un. (1.2)
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Due to the spatially lagged yn on the right, ordinary least squares (OLS) estimation

of λ and β is problematic, but Lee (2002) showed that under suitable conditions such

estimates can be consistent, and asymptotically normal and efficient. In particular,

for a divergent positive sequence hn that is bounded away from zero uniformly in n,

consistency follows if wij,n = O
(
h−1

n

)
and asymptotic normality if also n

1
2 /hn → 0 as

n → ∞.

Instrumental variables (IV) estimation (see Kelejian and Prucha (1998)) is n
1
2 -

consistent under less restrictive conditions than the OLS estimate, but is inefficient.

On the other hand, it is computationally simpler than estimates which may have better

statistical properties, such as the generalized method of moments estimates of Kelejian

and Prucha (1999) and Lee and Liu (2010), the optimal IV estimate of Lee (2003), the

(Gaussian) pseudo maximum likelihood estimate studied by Lee (2004), and the adap-

tive estimate of Robinson (2010). Additionally, desirable asymptotic properties of OLS

and IV estimates require Xn to contain at least one non-intercept regressor.

In this paper we allow the spatial lag order p in (1.1) and the number of regressors k

to increase slowly with n, as opposed to being fixed. This scheme reflects the practical

reality that the richness of a parametric model often deepens with sample size, and

has been explored previously in various settings. In the present context, it can arise

from a natural extension of the weight matrix employed by Case (1991, 1992). In her

scenario data are recorded in p districts, each of which contains m farmers, implying

n = mp. Farmers within each district impact each other equally and there is inter-

district independence between farmers so that in (1.2)

Wn = Ip ⊗ Bm, with Bm =
1

m − 1

(
lml′m − Im

)
, (1.3)

where prime denotes transposition, lm is the m-dimensional vector of ones (1, . . . , 1)′, Im

is the m-dimensional identity matrix and ⊗ denotes Kronecker product. An extension

to (1.1) takes

Win = diag




0, . . . , Bm︸︷︷︸

ithdiagonal block

, . . . , 0




 , i = 1, . . . , p, (1.4)

so SAR parameters are allowed to vary across districts, perhaps due to geographic or

demographic differences, say. In asymptotic theory for estimates of λ and β in (1.2) with

(1.3), p is often allowed to increase, perhaps slowly, with n. Indeed if only m increases

and p remains fixed, the undesirable situation of ‘infill-asymptotics’ arises. Allowing the
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number of districts to increase with n in (1.1) with (1.4) entails increasingly many λi.

As in the statistical literature on regression models, we also allow k to increase slowly

with n. This theme has been pursued in a variety of models (see e.g. Huber (1973), Berk

(1974), Portnoy (1984, 1985), Robinson (1979, 2003)). We know of no such literature

dealing with SAR models, however.

The following section introduces some assumptions that are basic to our theoretical

results. Further assumptions, and theorems, for the consistency and asymptotic normal-

ity of IV and OLS estimates are presented in Sections 3 and 4 respectively. In Section 5

we consider some illustrations and then conduct a Monte Carlo study in Section 6, while

Section 7 concludes. Proofs may be found in appendices.

2 Model and basic assumptions

We rewrite (1.1) to stress the possible dependence of the parameter dimension, and the

parameters themselves, on n:

yn =
pn∑

i=1

λinWinyn + Xnβ(n) + Un, (2.1)

where λ(n) = (λ1n, . . . , λpnn)′ and β(n) = (β1n, . . . , βknn)′. We may write (2.1) as

Snyn = Xnβ(n) + Un (2.2)

where Sn = In −
∑pn

i=1 λinWin, or equivalently yn = Rnλ(n) + Xnβ(n) + Un with Rn =

(W1nyn, . . . ,Wpnnyn). We now introduce some basic assumptions.

Assumption 1. Un = (u1, . . . , un)′ has iid elements with zero mean and finite variance

σ2.

Assumption 2. For i = 1, . . . , pn, the diagonal elements of each Win are zero and the

off-diagonal elements of Win are uniformly O
(
h−1

n

)
, where hn is some positive sequence

which is bounded away from zero and which may be bounded or divergent, with n/hn → ∞

as n → ∞.

Different hin sequences for each of the Win may be used. However for least squares

estimation, even for fixed p, Lee (2002) demonstrated that consistency requires diver-

gence so that mini=1,...,pn hin → ∞ must be assumed and Assumption 2 entails no loss of
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generality. He also provides a detailed discussion of this assumption. In IV estimation,

any mixture of bounded and divergent hin sequences may be employed. However bound-

edness away from zero is crucial as even consistency of the error variance estimate based

on IV residuals may fail if this does not hold. Indeed, in the ‘farmer-district’ setting

discussed in the previous section, hn = m − 1, i.e. it is the number of neighbours of a

unit and it is rather odd to allow this to go to zero as the sample size increases.

Assumption 3. Sn is non-singular for sufficiently large n.

This assumption ensures that (2.2) has a solution for yn. In certain special cases such

as the farmer-district setting presented above, a sufficient condition can be provided for

Assumption 3. The proof of the following can be found in the appendix.

Proposition 2.1. A sufficient condition for invertibility of Sn(λ(n)) when, for each

i = 1, . . . , pn, ‖Win‖R ≤ 1 and each Win has a single non-zero diagonal block structure

is that |λin| < 1 for each i = 1, . . . , pn.

Assumption 4.
∥
∥S−1

n

∥
∥

R
,
∥
∥S′−1

n

∥
∥

R
, ‖Win‖R and ‖W ′

in‖R are uniformly bounded in n

and i, i = 1, . . . , pn, for sufficiently large n.

This assumption is standard, the parts pertaining to S−1
n ensuring that the spatial

correlation is curtailed to a manageable degree because the covariance matrix of yn is

σ2S−1
n S′−1

n , while those for the Win are satisfied trivially if one unit is assumed to be

a ‘neighbour’ of only a finite number of other units, and more generally satisfied if, for

each i, the elements of Win decline fast enough with n, as is natural if they are inverse

distances. The final assumption is also standard.

Assumption 5. The elements of Xn are constants and are uniformly bounded, in ab-

solute value, for all sufficiently large n.

3 Instrumental variables estimates

Because of the endogeneity of the Winyn, i = 1, . . . , pn, IV estimation has been employed

for estimation of SAR models. Let Zn be an n×rn matrix of instruments, with rn ≥ pn

for all n, and introduce
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Assumption 6. The elements of Zn are constants and are uniformly bounded in absolute

value.

For the model (1.2), Kelejian and Prucha (1998) noted that WnE (yn) can be written

as an infinite linear combination of the columns of the matrices Xn, WnXn, W 2
nXn,

W 3
nXn,. . ., assuming the existence of a convergent power series for (In − λWn)−1. The

existence of such a series is guaranteed if ‖λWn‖M < 1, where ‖∙‖M denotes any matrix

norm (see e.g. Kreyszig (2011), pg. 398). It was suggested that the instrument matrix

be constructed from linearly independent subsets of the columns of

Xn,WnXn,W 2
nXn, . . . ,W s

nXn, for some s ≥ 1.

Our theory allows the number of instruments to increase with sample size and provides

a new result for the case when pn is fixed while rn is allowed to diverge with n.

Write η̄(B) (respectively η(B)) for the largest (smallest) eigenvalue of a square matrix

B. For a rectangular matrix A, define the spectral norm ‖A‖ = {η (A′A)}
1
2 . For the

specification (2.1),

E (yn) = S−1
n Xnβ(n) =




∞∑

k=0

(
pn∑

i=1

λinWin

)k


Xnβ(n), (3.1)

assuming that the power series is well-defined, for which a sufficient condition is

∥
∥
∥
∥
∥

pn∑

i=1

λinWin

∥
∥
∥
∥
∥

< 1. (3.2)

For example, when the Win take the form (1.4), then

pn∑

i=1

λinWin = diag (λ1nBm, λ2nBm, . . . , λpnnBm) , (3.3)

implying that ‖
∑pn

i=1 λinWin‖ ≤ max
i=1,...,pn; n≥1

|λin| ‖Bm‖. Bm has one eigenvalue equal

to 1 and also −1/(m−1) as an eigenvalue with multiplicity m−1. Hence ‖Bm‖ = 1 and

max
i=1,...,pn; n≥1

|λin| < 1 suffices for (3.2). See also Proposition 2.1 for a similar result. If

the power series in (3.1) is indeed valid then instruments may be constructed as subsets
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of the linearly independent columns of

Xn,W1nXn,W 2
1nXn, . . . ,W2nXn,W 2

2nXn, . . . ,WpnnXn,W 2
pnnXn, . . . (3.4)

Columns of Xn pre-multiplied by cross-products of the Win may also be employed in

view of (3.1). Other choices of instruments from outside the model may be available to

the practitioner.

Denoting θ(n) =
(
λ′

(n), β
′
(n)

)′
, define the IV estimate of θ(n) as

θ̂(n) =
1
n

Q̂−1
n K̂ ′

nJ−1
n

[
Z ′

n

X ′
n

]

yn = θ(n) + Q̂−1
n K̂ ′

nJ−1
n qn, (3.5)

where Q̂n = K̂ ′
nJ−1

n K̂n and

K̂n =
1
n

[
Z ′

n

X ′
n

]

[Rn, Xn], Jn =
1
n

[
Z ′

n

X ′
n

]

[Zn, Xn] , qn =
1
n

[
Z ′

n

X ′
n

]

Un.

Since (2.2) and Assumption 3 imply that yn = S−1
n Xnβ(n) + S−1

n Un we can write Rn =

An + Bn where

An = (G1nXnβ(n), . . . , GpnnXnβ(n)), Bn = (G1nUn, . . . , GpnnUn),

and Gin = WinS−1
n for i = 1, . . . , pn. Also define

Kn =
1
n

[
Z ′

n

X ′
n

]

[An, Xn], Qn = K ′
nJ−1

n Kn, Ln =
1
n

[
A′

n

X ′
n

]

[An, Xn].

Denote limit superior (respectively limit inferior) by lim
n→∞

( lim
n→∞

), and introduce

Assumption 7. lim
n→∞

η(Jn) < ∞ and lim
n→∞

η(K ′
nKn) > 0.

Assumption 8. lim
n→∞

η(Jn) > 0 and lim
n→∞

η(K ′
nKn) < ∞.

These are asymptotic non-multicollinearity and boundedness conditions, which can

to some extent be checked. For instance, if Xn contains a column of ones (i.e. the model

(2.1) has an intercept) and there exists a row-normalised Win with equal off-diagonal
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elements (such as (1.4) defined below) then Winyn is asymptotically collinear with the

intercept. In this case lim
n→∞

η(K ′
nKn) > 0 fails, and in fact so does Assumption 10,

introduced later. This problem is discussed further in Kelejian and Prucha (2002). A

necessary condition for both Assumption 10 and lim
n→∞

η(K ′
nKn) > 0 to hold is that,

for all i = 1, . . . , pn, Win are linearly independent for sufficiently large n, failing which

some of the λin are not identified. It is clear that identification of the λin is particularly

transparent when the Win have a single non-zero block structure, a situation that we

have discussed in detail in Section 1.

Lemma 3.1. Under Assumptions 7 and 8 respectively

(i) lim
n→∞

η (Qn) > 0.

(ii) lim
n→∞

η (Qn) < ∞.

Theorem 3.1. Let Assumptions 1-7 hold and

1
pn

+
1
rn

+
1
kn

+
pn (rn + kn)

n
→ 0 as n → ∞. (3.6)

Then w
w
wθ̂(n) − θ(n)

w
w
w

p
−→0, as n → ∞.

Condition (3.6) details the restrictions on the rate of growth of the number of instru-

ments and regressors, and implies a restriction on the rate of growth of the parameter

space because pn ≤ rn. Slightly weakened conditions yield the same result for the just

identified case pn = rn, where K̂n and Kn are square matrices so that θ̂(n) = K̂−1
n k̂n and

Q−1
n = K−1

n JnK ′−1
n .

Corollary 3.2. Let pn = rn, Assumptions 1-6 hold,

lim
n→∞

η(K ′
nKn) > 0, (3.7)

and
1
pn

+
1
kn

+
pn (pn + kn)

n
→ 0 as n → ∞. (3.8)

Then w
w
wθ̂(n) − θ(n)

w
w
w

p
−→0, as n → ∞.

A natural estimate of σ2 is

σ̂2
(n) =

1
n

(
yn − (Rn, Xn) θ̂(n)

)′ (
yn − (Rn, Xn) θ̂(n)

)
. (3.9)
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Assumption 9. lim
n→∞

η(Ln) < ∞.

Theorem 3.2. Let Assumptions 1-7 and 9 hold, and

1
pn

+
1
rn

+
1
kn

+
(pn + kn) (rn + kn)

n
→ 0 as n → ∞. (3.10)

Then

σ̂2
(n)

p
−→ σ2 as n → ∞.

A similar theorem holds in the just identified case pn = rn but we omit the statement

for brevity. Here the requirement that hn be bounded away from zero is crucial (see

(A.8)), with consistency possibly failing otherwise. We can also record a central limit

theorem for finitely many arbitrary linear combinations of θ̂(n) − θ(n) under stronger

conditions which restrict the growth of pn and rn relative to n further.

Theorem 3.3. Let Assumptions 1-9 hold and

1
pn

+
1
kn

+
1
rn

+
pn

(
r2
n + k2

n

)

n
+

kn (rn + kn)
n

→ 0 as n → ∞. (3.11)

Then, for any s×(pn + kn) matrix of constants Ψn with full row-rank,

n
1
2

(pn + kn)
1
2

Ψn

(
θ̂(n) − θ(n)

)
d

−→ N

(

0, lim
n→∞

σ2

pn + kn
ΨnQ−1

n Ψ′
n

)

, as n → ∞.

The asymptotic covariance matrix may be consistently estimated by

σ̂2
(n)

pn + kn
ΨnQ̂−1

n Ψ′
n.

Corollary 3.3. Let pn = rn, Assumptions 1-6, 8, 9, (3.7) hold and

1
pn

+
1
kn

+
p3

n

n
+

pnk2
n

n
→ 0 as n → ∞. (3.12)

Then, for any s×(pn + kn) matrix of constants Ψn with full row-rank,

n
1
2

(pn + kn)
1
2

Ψn

(
θ̂(n) − θ(n)

)
d

−→ N

(

0, lim
n→∞

σ2

pn + kn
ΨnK−1

n JnK ′−1
n Ψ′

n

)

as n → ∞.
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The asymptotic covariance matrix may be consistently estimated by

σ̂2
(n)

pn + kn
ΨnK̂−1

n JnK̂ ′−1
n Ψ′

n.

Note that in Theorem 3.3 the condition pnr2
n/n → 0 implies pnk2

n/n → 0 so long

as kn = O (rn) i.e. the number of regressors increases no faster than the number of

instruments. In particular if rn is fixed (implying that pn is fixed), kn = O (rn) is not

satisfied unless kn is also fixed. Similarly rnkn/n → 0 implies k2
n/n → 0 if kn = O (rn).

The n
1
2 / (pn + kn)

1
2 -norming is needed to ensure a finite asymptotic covariance ma-

trix, and implies a slower than n
1
2 rate of convergence due to the increasing parameter

space dimension, while conditions (3.11) and (3.12) restrict the growth of the parameter

space. Indeed, if only n
1
2 -norming was employed the rows of Ψn would have to be as-

sumed to have uniformly bounded norm, which implies a similar normalisation as these

rows have increasing dimension. The norming can change if the rows of Ψn contain many

zero elements, indeed the number of non-zero elements can even be allowed to increase

at a rate slower than the rate of increase of the parameters. In particular, Theorem 3.3

may be easily rewritten if the interest is in obtaining a central limit theorem for a fixed

number of the parameters rather than an increasing number. Suppose without loss of

generality that we are interested in, say, the first l elements of θ(n). In this case we take

Ψn to be a 1× (pn +kn) non-null row vector of constants with all elements after the l-th

entry equal to zero. We then recover a n
1
2 -consistency result which indicates that the

definition of simple t-statistics does not change from the fixed-dimension model (1.1) to

(2.1).

Corollary 3.4.

(i) Let Assumptions 1-9 and (3.11) hold. Then

n
1
2

(
θ̂(n) − θ(n)

)

l

d
−→ N

(

0, σ2
(

lim
n→∞

Qn

)−1

l

)

, as n → ∞,

where
(
θ̂(n) − θ(n)

)

l
denotes the first l elements of θ̂(n)−θ(n) while the top-left l× l

block of (limn→∞ Qn)−1 is denoted (limn→∞ Qn)−1
l .

(ii) Let pn = rn, Assumptions 1-6, 8, 9, (3.7) and (3.12) hold. Then

n
1
2

(
θ̂(n) − θ(n)

)

l

d
−→ N

(

0, σ2

[(
lim

n→∞
Kn

)−1
lim

n→∞
Jn

(
lim

n→∞
K ′

n

)−1
]

l

)

, as n → ∞,
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where
[
(limn→∞ Kn)−1 limn→∞ Jn (limn→∞ K ′

n)−1
]

l
denotes the top-left l × l block of

(
lim

n→∞
Kn

)−1
lim

n→∞
Jn

(
lim

n→∞
K ′

n

)−1
.

The asymptotic covariance matrices are estimated as in Theorem 3.3.

The setting of Case (1991, 1992) was discussed in Section 1 as a natural motivation

for the work in this paper. From an applied point of view a parsimonious model may

be quite desirable, and so some districts can be allowed to have the same λi on the

basis of some homogeneity e.g. geography or demographics. There are other reasons to

allow for a slower increase of the λi than with p. For instance, consider the condition

p3
n/n → 0 (we keep kn fixed for simplicity). In this setting this translates into requiring

that p2/m → 0. For finite samples an approximation to this would be that the ratio

p2/m be small, but this may not be reasonable if, say, p = 10 and m = 100. It would

be natural then to allow a slower increase of the parameter space than p, and attempts

can be made to combine some λi to reduce the ratio p2/m. Section 6 illustrates the

behaviour of estimates in this setting.

4 Least squares estimates

Define the OLS estimate of θ(n) as

θ̃(n) =
1
n

L̂−1
n

[
R′

n

X ′
n

]

yn = θ(n) + L̂−1
n wn, (4.1)

where

L̂n =
1
n

[
R′

n

X ′
n

]

[Rn, Xn], wn =
1
n

[
R′

n

X ′
n

]

Un.

Analogous to the IV case, we also have an asymptotic non-multicollinearity condition

given by

Assumption 10. lim
n→∞

η(Ln) > 0.

Theorem 4.1. Let Assumptions 1-5, 10 hold, and

1
pn

+
1
kn

+
pnk2

n (pn + kn)
n

+
pn

hn
→ 0 as n → ∞. (4.2)
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Then w
w
wθ̃(n) − θ(n)

w
w
w

p
−→0, as n → ∞.

Lee (2002) demonstrated consistency of least-squares estimates for the model (1.1),

for p = 1, when hn → ∞. This condition ensures that the endogeneity problem caused by

the spatially lagged yn vanishes asymptotically. Our condition (4.2) is suitably strength-

ened to also account for the increasing pn and kn. Let C denote a generic, arbitrarily

large but positive constant that is independent of sample size n. To obtain a central

limit theorem, we additionally assume

Assumption 11. E
(
u4

i

)
≤ C for i = 1, . . . , n.

We first introduce the least squares residual based estimate of σ2, defined as

σ̃2
(n) =

1
n

(
yn − (Rn, Xn) θ̃(n)

)′ (
yn − (Rn, Xn) θ̃(n)

)
. (4.3)

Theorem 4.2. Let Assumptions 1-5, 9-11 hold, and

1
pn

+
1
kn

+
pnk2

n (pn + kn)
n

+
pn

hn
→ 0 as n → ∞. (4.4)

Then

σ̃2
(n)

p
−→ σ2 as n → ∞.

Theorem 4.3. Let Assumptions 1-5, 9-11 hold, and

1
pn

+
1
kn

+
p2

nk4
n (pn + kn)

n
+ n

1
2
p

1
2
n

hn
→ 0 as n → ∞. (4.5)

Then, for any s×(pn + kn) matrix of constants Ψn with full row-rank,

n
1
2

(pn + kn)
1
2

Ψn

(
θ̃(n) − θ(n)

)
d

−→ N

(

0, lim
n→∞

σ2

pn + kn
ΨnL−1

n Ψ′
n

)

as n → ∞.

The asymptotic covariance matrix may be estimated consistently using

σ̃2
(n)

pn + kn
ΨnL̂−1

n Ψ′
n.
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Corollary 4.1. Let Assumptions 1-5, 9-11 and (4.5) hold. Then

n
1
2

(
θ̃(n) − θ(n)

)

l

d
−→ N

(

0, σ2
(

lim
n→∞

Ln

)−1

l

)

, as n → ∞,

where
(
θ̃(n) − θ(n)

)

l
denotes the first l elements of θ̂(n)−θ(n) while the top-left l× l block

of (limn→∞ Ln)−1 is denoted (limn→∞ Ln)−1
l and the asymptotic covariance matrix is

estimated as in Theorem 4.3.

The theory also supports enrichment of models with further data availability. Kolym-

piris, Kalaitzandonakes, and Miller (2011) attempt to explain the level of venture capital

funding (provided by venture capital firms (VCFs)) for dedicated biotechnology firms

(DBFs) with a SAR model. In particular, the hypotheses are that the level of VC fund-

ing for a DBF increases with the number of VCFs located in close proximity to the DBF

and with the number of other DBFs located in close proximity to the DBF. To model

this, (1.1) is employed, where the dependent variable is the natural logarithm of the

amount invested by VCFs in each of the n = 816 observed DBFs. Weight matrices are

defined using a binary neighbourhood criterion and then row-normalised. In particular,

three weight matrices are employed (i.e. p = 3) with each based on one of 3 sequential

10-mile rings from the origin DBF. The set of DBFs situated less than 10 miles from the

origin DBF are considered one set of neighbours, those situated 10.1-20 miles from the

origin form the second set and the third set of neighbours is defined in the obvious way.

Because the number of neighbours may be taken to increase with sample size, OLS was

used. Our theory is relevant here, since if data on more DBFs were to become available

it would be attractive to reduce the radius of the rings used in defining neighbours. As

discussed earlier, more parsimonious specifications may still be attractive to the practi-

tioner but various models can be employed and relevant statistical tests run to arrive at

a more informed choice.

5 Illustrations

5.1 Panel data SAR models with fixed effects

Consider a balanced spatial panel data set with N observations in each of T individual

panels, so that the sample size is n = NT . Let yt,N be the N × 1 vector of observations

on the dependent variable for the t-th panel, where t may correspond to a time period

or a more general spatial unit like a school, village or district. Also let Xt,N and FN

be N × k1 and N × k2 matrices of regressors respectively. Xt,N contains panel-varying

13



regressors while FN does not. Let WiN , i = 1, . . . , p, be a set of spatial weight matrices

and consider the model

yt,N = lNαt + Xt,Nβ + FNγt +
p∑

i=1

λiWiNyt,N + Ut,N , t = 1, . . . , T (5.1)

where Ut,N is the N × 1 vector of disturbances for each panel, which we take to be

formed of iid components. The αt, t = 1, . . . , T , are scalar parameters that control for

fixed effects with respect to panels, the λi, i = 1, . . . , p, are scalar spatial autoregressive

parameters and β is a k1×1 panel-invariant parameter vector. On the other hand γt is a

k2×1 parameter vector that varies over panels. For this reason, the variables in FN may

be thought of as controlling for ‘quasi’ fixed-effects. Denote yn =
(
y′1,n, . . . , y′T,n

)′
, Xn =

(
X ′

1,n, . . . , X ′
T,n

)′
, Un =

(
U ′

1,n, . . . , U ′
T,n

)′
, α = (α1, . . . , αT )′ and γ = (γ1, . . . , γT )′. We

can then stack (5.1) to obtain

yn = (IT ⊗ lN ) α + Xnβ + (IT ⊗ FN ) γ +
p∑

i=1

λi (IT ⊗ WiN ) yn + Un. (5.2)

This model is an extension of that considered in Kelejian, Prucha, and Yuzefovich (2006),

and was employed by Yuzefovich (2003). We allow both T → ∞ and N → ∞ for

our asymptotic theory. This implies that the number of regression parameters in (5.2)

increases asymptotically. Not only this, since the IT ⊗ WiN are block diagonal it would

be natural to fear that spatial autoregressive parameters differ for each panel, or at least

among subsets of the panels. To illustrate, suppose for the moment that p = 1. Allowing

a separate spatial parameter for each panel implies the model

yn = (IT ⊗ lN ) α + Xnβ + (IT ⊗ FN ) γ +
T∑

i=1

λiW
i
Nyn + Un (5.3)

where

W i
N = diag




0, . . . , WN︸︷︷︸

ithdiagonal block

, . . . , 0




 .

The model (5.3) has k1 + T (k2 + 1) regression parameters and T spatial parameters,

making it fit naturally into the asymptotic regime discussed in Sections 3 and 4. As

in the ‘farmer-district’ setting a point of concern may be that conditions such as p3
nk4

n

diverging slower than n (needed for asymptotic normality of least squares estimation in

14



Section 4) translate here into requiring that

T 6

N
→ 0 as N,T → ∞. (5.4)

In finite samples we would like the above ratio to be somewhat small, but this may be

impossible to achieve. Even for T = 2, T 6 = 64, which may not be small compared

to N . A solution is to use a smaller number of spatial parameters in (5.3), consistent

with the number of spatial parameters increasing more slowly with T . For example, if

t represents monthly observations we may allow the spatial parameters to change on a

quarterly basis so that we have T/4 spatial parameters, assuming that T is divisible by

4 for simplicity. Then we would need

T 6

256N
→ 0 as N,T → ∞

as opposed to (5.4). The last two displayed conditions are asymptotically the same but

in finite samples the last displayed ratio is smaller.

5.2 Models with circulant weight matrices

For any natural number i, define W ∗
in as the symmetric circulant matrix with first row

elements given by

w∗
1j,in =

{
0 if j = 1 or j = i + 2, . . . , n − i;

1 if j = 2, . . . , i + 1 or j = n − i + 1, . . . , n.
(5.5)

Thus the weight matrix W ∗
in encapsulates a binary neighbourhood criterion for i neigh-

bours on either ‘side’ of a unit. For instance, with n = 4 we will have

W ∗
1n =









0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0









.

Now define

Win =
1

‖W ∗
in‖

W ∗
in, (5.6)

where symmetry of W ∗
in implies that ‖W ∗

in‖ = η (W ∗
in). Because W ∗

in is a circulant matrix

its eigenvalues are given by
∑i+1

j=2 ωj−1
k +

∑n
j=n−i+1 ωj−1

k , where wk = exp(2πı(k− 1)/n)
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with ı2 = −1 and k = 1, . . . , n (see e.g. Davis (1979) pg. 73). Thus η (W ∗
in) = 2i,

implying that the normalisation in (5.6) is equivalent to row-normalisation. Then Win

is also a symmetric circulant matrix with first row elements given by

w1j,in =

{
0 if j = 1 or j = i + 2, . . . , n − i;
1
2i if j = 2, . . . , i + 1 or j = n − i + 1, . . . , n.

(5.7)

The maximum number of neighbours is determined by sample size. From (5.7), we

must have i < dn/2e where, for any real number a, dae denotes the smallest integer

greater than or equal to a. The set of weight matrices Win is easily seen to be linearly

independent. To prove this it is sufficient to show linear independence of the first rows.

Indeed take any finite set {Win : i = 1, . . . , s, s a natural number}, and suppose that
∑s

i=1 ξiw
′
1,in = 0, where w′

1,in denotes the first row of Win and ξi are scalars. By (5.7) it

is immediately obvious that ξs = 0. This implies
∑s−1

i=1 ξiw
′
1,in = 0, which in turn implies

ξs−1 = 0. Proceeding in this manner we conclude that ξi = 0 for each i = 1, . . . , s.

Note that OLS cannot be used to estimate (2.1) with these weight matrices, because

as the number of neighbours increases with sample size this is reflected in additional

weight matrices rather than more elements in existing weight matrices. It is possible

to obtain consistent and asymptotically normal IV estimates, but only if i is restricted

further. If this is not the case we have the model yn =
∑n/2

i=1 λinWinyn +Xnβ(n) +Un for

even n and yn =
∑(n−1)/2

i=1 λinWinyn +Xnβ(n) +Un for odd n, implying that pn increases

like n in (2.1). Introduce a positive real valued function g defined on the set of natural

numbers such that g(n/2) is either bounded in n or diverges with n and consider the

model

yn =
dg(n/2)e−1∑

i=1

λinWinyn + Xnβ(n) + Un. (5.8)

Then consistent, and asymptotically normal, IV estimates may be obtained (with kn

fixed and pn = rn for simplicity) if (g(n/2))2 /n → 0 and (g(n/2))3 /n → 0 as n → ∞,

respectively. The function g(m) = m
1
4 for any natural number m, where we take the

positive root, satisfies both conditions, as does g(m) = (log m)
1
3 . As a guideline for the

former case, for n/2 = 50 we may use up to i = 2 while for n/2 = 50000 we can use up

to i = 14.
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6 Monte Carlo experiments

A set of Monte Carlo experiments was carried out with three aims. First, to verify the

claim that more data indeed leads to substantial improvement in the precision of esti-

mates despite increasing the dimension of the parameter space, and also to understand

the rate at which this happens. Second, to check the relative performance of the OLS

and IV estimates for various values of p2
n/n. Third, to examine the rate of change of the

precision of estimates as the ratio p2
n/n changes.

We employed the spatial scenario of Case (1991, 1992), so that Win given by (1.4) and

(1.3) were employed. The number of regressors was kept fixed at kn = 2 for simplicity,

and we experimented with three values of p: 2, 6 and 18. For each value of p three

different values of m were chosen: 50, 150 and 450. Note that in this setting we have

pn = p and n = pm so that p2
n/n = p/m. The explanatory variables in Xn were

generated from a uniform distribution on (0, 1), and kept fixed throughout to adhere to

the non-stochastic aspect of Assumption 5. The ui were generated as iid draws from

a standard normal (σ2 = 1) distribution, and instruments were constructed as in (3.4)

using only first-order spatial lags of the regressors. The vector yn was generated using

(1.1) and (1.4) in each of the 1000 replications. We chose β1 = 1 and β2 = 0.5 and the

following values for the spatial autoregressive parameters:

p = 2; λ1 = 0.7; λ2 = 0.8

p = 6; λ3 = 0.5; λ4 = 0.8; λ5 = 0.3; λ6 = 0.6

p = 18; λ7 = 0.7; λ8 = 0.8; λ9 = 0.5; λ10 = 0.8; λ11 = 0.3; λ12 = 0.6;

λ13 = 0.7; λ14 = 0.8; λ15 = 0.5; λ16 = 0.8; λ17 = 0.3; λ18 = 0.6,

where higher dimensional true parameter vectors inherit the initial entries from the

preceding case. For our analysis of finite sample properties we employ a measure called

Monte Carlo average mean-squared error (AMSE). For any s-dimensional parameter

estimate this is the simple average of the Monte Carlo mean-squared errors, e.g. for the

IV estimate we define it as

AMSE
(
θ̂(n)

)
=

1
s

s∑

i=1

MSE
(
θ̂in

)
,

with MSE
(
θ̂in

)
denoting the the Monte Carlo MSE for the IV estimate of the i-th

element in the parameter vector. This is a compact way of comparing performance for
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m 50 150 450

p

2 AMSE
(
θ̂(n)

)
0.0693 0.0219 0.0076

AMSE
(
θ̃(n)

)
0.0714 0.0232 0.0076

AMSE(θ̂(n))
AMSE(θ̃(n))

0.9706 0.9450 1.0000

6 AMSE
(
θ̂(n)

)
0.0243 0.0071 0.0022

AMSE
(
θ̃(n)

)
0.0283 0.0074 0.0023

AMSE(θ̂(n))
AMSE(θ̃(n))

0.8594 0.9599 0.9663

18 AMSE
(
θ̂(n)

)
0.0115 0.0033 0.0010

AMSE
(
θ̃(n)

)
0.0184 0.0038 0.0011

AMSE(θ̂(n))
AMSE(θ̃(n))

0.6250 0.8479 0.9218

Table 6.1: Monte Carlo AMSE and RAMSE of IV and OLS estimates

high-dimensional parameters.

Table 6.1 presents AMSE and relative AMSE (RAMSE) of the IV and OLS estimates,

the latter defined as the ratio AMSE
(
θ̂(n)

)
/AMSE

(
θ̃(n)

)
, for various combinations of p

and m. The AMSE for both estimators reduces for fixed p and increasing m. Interest-

ingly this happens also for fixed m and increasing p, indicating that the claim of being

able to precisely estimate increasingly many parameters is reasonable. The RAMSE

indicate that even though the OLS estimator is asymptotically efficient the IV estimator

outperforms it in many cases. Additional simulations (not reported here) indicate that

the OLS estimate tends to perform better for larger values of m. For instance, when

p = 2 and m = 3000 the RAMSE is 1.0301. Recall that in this setting hn = m − 1, so

that this observation supports the theory that hn → ∞ is required for the consistency
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Figure 6.1: Monte Carlo RAMSE for IV estimates θ̂(n)

of the OLS estimate with a fast rate of divergence required for asymptotic normality,

while the properties of IV estimate do not depend on the divergence of hn.

Figures 6.1(a)-(c) and 6.2(a)-(c) plot the RAMSE for θ̂(n) and θ̃(n) for all possible

ratios p/m. Figure 6.1(a) illustrates RAMSE for the IV estimate θ̂(n) when p = 2.

The points on the horizontal axis correspond to all choices of p/m and the vertical axis

measures RAMSE on a logarithmic scale, but for simplicity we will just refer to the

vertical values as RAMSE. Each solid dot on the figure marks out the RAMSE of θ̂(n)

for a particular value of m relative to that of θ̂(n) for the corresponding ratio on the

horizontal axis. The solid line joins the RAMSE for m = 50, the heavy dotted line for

m = 150 and the light dotted line for m = 450. Figures 6.1(b), (c) repeat the analysis for
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Figure 6.2: Monte Carlo RAMSE for OLS estimates θ̃(n)

p = 6 and p = 18 respectively, again the solid lines joining the RAMSE for m = 50, the

heavy dotted lines for m = 150 and the light dotted lines for m = 450. Figures 6.2(a)-(c)

do exactly the same for the OLS estimate θ̃(n). Because the vertical axes in each case

measure the logarithm of RAMSE, the RAMSE of an estimate with itself corresponds

to a value of zero. Negative RAMSE values indicate that the estimate for which a line is

plotted outperforms the comparator indicated on the horizontal axis, while the opposite

holds true for positive values. For ease of interpretation a thin solid horizontal line is

passed through zero.

We now analyse Figure 6.1(a) in detail. The solid line increases through RAMSE

comparisons for estimates with p = 2 but higher values of m. While the value of RAMSE
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then dips for p = 6 and m = 50, it is still positive. This indicates that 8 parameters

are more accurately estimated with 300 observations as opposed to 4 parameters with

100 observations. The RAMSE then increase in the p = 6 range, before dropping and

then increasing again in the p = 18 range. This indicates two findings, reflective of the

discussion of Table 6.1 above. First, estimates become more precise for given p with

increasing m. Second, many more parameters can be estimated much more accurately

with increasing data. The first point implies that in practice, when a dataset of a given

size is available, researchers should try to reduce the number of parameters to obtain

more precise estimates. This may be achieved in a variety of ways, as discussed earlier.

The heavy dotted (m = 150) and light dotted (m = 450) line behave in the same way,

the difference being that the initial values of RAMSE are negative. This is because, for

instance, the first point on the heavy dotted line corresponds to the log RAMSE of the

estimate with p = 2 and m = 150 to the estimate with p = 2 and m = 50. This is simply

the log of the reciprocal of the value whose log is the second point on the solid line. The

analysis of all the other figures indicates exactly the same pattern in the rate of change

of the RAMSE.

7 Conclusion

We have presented asymptotic theory for a general class of spatial autoregressive models

with increasingly many parameters, and with non-intercept regressors. The theory is

thus not applicable to the pure SAR model, though analogous theory for this can be

developed using other parameter estimates. Another natural question that arises as

a result of this work is that of testing for the equality of spatial parameters. The

implication of failing to reject equality is a more parsimonious model, potentially one of

finite dimension. These two questions are addressed in Gupta (2013), which also provides

an empirical example illustrating directions that the applied literature can follow.
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Appendices

We denote an = pn + kn, bn = rn + kn, cn = pnk2
n + kn and τn = n

1
2 /a

1
2
n to conserve

space.

A Proofs of results in Sections 3 and 4

Proof of Proposition 2.1: Since Sn(λ(n)) is block-diagonal, invertibility can be proved by

showing that each block is invertible. Let Bin denote the ith diagonal block in Win, i.e.

this is the only non-zero block in Win. Then Sn(λ(n)) = In−diag(λ1nB1n, ....., λpnnBpn).

By the normalization of diagonal elements of each Win in Assumption 2, the diagonal

elements of Sn(λ(n)) are 1. Consider the ith block in Sn(λ). Then

∑

s 6=r

|λin||wrs,in|
∑

m 6=l

|λin||wlm,in| < 1

if λ2
in < 1, due to absolute row-sum norms being uniformly bounded by 1. The claim

follows from Horn and Johnson (1985), page 381, Corollary 6.4.11 (b)).

Proof of Lemma 3.1.

(i) For any an × 1 vector xn satisfying ‖xn‖ = 1,

x′
nK ′

nJ−1
n Knxn ≥ η

(
J−1

n

)
x′

nK ′
nKnxn ≥

η (K ′
nKn)

η (Jn)
≥ c,

for large enough n by Assumption 7, where c denotes a positive but arbitrarily

small real number that does not depend on n.

(ii) Similar.

Proof of Theorem 3.1. Write

θ̂(n) − θ(n) =
(
Q̂−1

n − Q−1
n

)
K̂ ′

nJ−1
n qn + Q−1

n K̂ ′
nJ−1

n qn

= Q−1
n

(
Qn − Q̂n

)
Q̂−1

n K̂ ′
nJ−1

n qn + Q−1
n

(
K̂n − Kn

)′
J−1

n qn

+ Q−1
n K ′

nJ−1
n qn

= Q−1
n

(
Qn − Q̂n

)(
θ̂(n) − θ(n)

)
+ Q−1

n

(
K̂n − Kn

)′
J−1

n qn
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+ Q−1
n K ′

nJ−1
n qn. (A.1)

By elementary norm inequalities

w
w
wQ̂n − Qn

w
w
w ≤

w
w
wK̂n − Kn

w
w
w
w
wJ−1

n

w
w
(ww
wK̂n − Kn

w
w
w+ 2 ‖Kn‖

)
, (A.2)

where E
w
w
wK̂n − Kn

w
w
w

2
is bounded by

σ2

n2

bn∑

i=1

pn∑

j=1

∣
∣p′inGjnG′

jnpin

∣
∣ ≤

σ2

n2

bn∑

i=1

‖pin‖
2

pn∑

j=1

‖Gjn‖
2 ≤ C

pnbn

n

by Assumptions 5 and 6 and Lemma B.1, denoting by pin the i− th column of (Zn, Xn).

We conclude that
w
w
wK̂n − Kn

w
w
w = Op



p
1
2
n b

1
2
n

n
1
2



 (A.3)

by Markov’s inequality. Then

w
w
wQ̂n − Qn

w
w
w = Op



max





pnbn

n
,
p

1
2
n b

1
2
n

n
1
2








 = Op



p
1
2
n b

1
2
n

n
1
2



 , (A.4)

by Assumption (8) because
w
wJ−1

n

w
w =

(
η (Jn)

)−1 and ‖Kn‖
2 = η (K ′

nKn). Likewise

E ‖qn‖
2 = E

w
w
w
w
w

1
n

n∑

i=1

ainui

w
w
w
w
w

2

=
σ2

n2

n∑

i=1

‖ain‖
2 = O

(
bn

n

)

,

where a′in is the i− th row of (Zn, Xn), since the elements of a′in are uniformly bounded

by Assumptions 5 and 6. By Markov’s inequality

‖qn‖ = Op



 b
1
2
n

n
1
2



 . (A.5)

From (A.1),

(
1 −

∥
∥Q−1

n

∥
∥
∥
∥
∥Q̂n − Qn

∥
∥
∥
)∥∥
∥θ̂(n) − θ(n)

∥
∥
∥ ≤

∥
∥Q−1

n

∥
∥
∥
∥
∥K̂n − Kn

∥
∥
∥
∥
∥J−1

n

∥
∥ ‖qn‖

+
∥
∥Q−1

n

∥
∥ ‖Kn‖

∥
∥J−1

n

∥
∥ ‖qn‖ .

(A.6)
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By (A.4) the first factor on the LHS converges in probability to one by (3.6) and Lemma

3.1 (i), and because bn = rn +kn. This also ensures that the first factor in the first term

on the RHS of (A.6) is bounded, as well as the third factor by Assumption 8. The second

and fourth factors have orders given in (A.3) and (A.5) respectively, implying that the

first term is Op

(

p
1
2
n bn/n

)

. The order of the second term on the RHS is determined

similarly to be Op

(

b
1
2
n/n

1
2

)

so that

w
w
wθ̂(n) − θ(n)

w
w
w = Op



max





p

1
2
n bn

n
,
b

1
2
n

n
1
2








 = Op



 b
1
2
n

n
1
2



 . (A.7)

This is negligible by Assumption 3.6. The proof of Corollary 3.2 is similar.

Proof of Theorem 3.2. Write

σ̂2
(n) =

1
n

(
Un − (Rn, Xn)

(
θ̂(n) − θ(n)

))′ (
Un − (Rn, Xn)

(
θ̂(n) − θ(n)

))

=
1
n

U ′
nUn −

2
n

(
θ̂(n) − θ(n)

)′
[

R′
n

X ′
n

]

Un

+
1
n

(
θ̂(n) − θ(n)

)′
[

R′
n

X ′
n

]

[Rn, Xn]
(
θ̂(n) − θ(n)

)

=
1
n

U ′
nUn − 2

(
θ̂(n) − θ(n)

)′
wn +

(
θ̂(n) − θ(n)

)′
L̂n

(
θ̂(n) − θ(n)

)
.

From Assumption 1, U ′
nUn/n = σ2 + op(1). Also by (A.7) and (A.16) the modulus of the

second term is bounded by
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while the third term has modulus bounded by
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which is negligible by (3.10) and because hn is bounded away from zero, noting that

bncn ≤ C
(
pnrnk2

n + pnk3
n

)
.

Proof of Theorem 3.3. Let α be any non-null s × 1 vector of constants and write
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)
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n qn. (A.9)

We first show that first term on the RHS of (A.9) is negligible in probability. It has

modulus bounded by
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w
w
wθ̂(n) − θ(n)

w
w
w
w
wQ−1

n

w
w
w
w
wQ̂n − Qn

w
w
w = Op



p
1
2
n bn

n
1
2



 ,

from (A.4), (A.7) and Assumption 8. This is negligible by (3.11) because b2
n ≤ 2

(
r2
n + k2

n

)
.

Similarly the second term on the right side of (A.9) is bounded in absolute value by
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so we have to prove asymptotic normality only for the third term on the RHS of (A.9).

25



Now
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We now verify the Lindeberg condition for cinui. With 1(∙) denoting indicator function,
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i are uniformly integrable, it suffices to show that max
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the last factor on the RHS of the above displayed inequality equals 1/σ2. Consider
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The denominator of (A.10) equals σ2 times

α′ΨnQ−1
n K ′

nJ−1
n

n∑

i=1

aina′inJ−1
n KnQ−1
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for sufficiently large n by Lemma 3.1 (ii), noting that
∑n

i=1 aina′in = nJn, so (A.10) is

O (bn/n) by Assumptions 5 and 6, which is negligible by (3.6). The Lindeberg condition

is then satisfied.

The asymptotic covariance matrix exists, and is positive definite, by Lemma 3.1. The

proof of the consistency of the covariance matrix estimate is omitted, while the proof

of Corollary 3.3 is similar. For the latter the existence and positive definiteness of the

asymptotic covariance matrix is guaranteed by Assumptions 7 and 8.

Proof of Theorem 4.1. We can write

θ̃(n) − θ(n) =
(
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)
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It is clear that
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w
w
w
w
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+
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. (A.12)

Now

E

w
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w
w
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1
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2

= O
(cn

n

)
, (A.13)

as in the proof Theorem 3.1, since the elements of An are uniformly O (kn) (Lemma

B.4). Under Assumption 11, the square of the second term on the RHS of (A.12) has

expectation
1
n2

pn∑

i=1

E
(
U ′

nG′
inUn

)2
, (A.14)
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which, by the iid property of the ui, equals
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by Lemma B.2, where grs,in denotes the (r, s)-th element of Gin and denoting E
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=

μ4. Hence
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so that
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However, under Assumption 1 we have
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by calculations used for bounding the first term on the RHS of (A.19) and so
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Also
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+
1
n

[
A′

n

X ′
n

]

([Rn, Xn] − [An, Xn])

+
1
n

([
R′

n

X ′
n

]

−

[
A′

n

X ′
n

])

[An, Xn]

=
1
n

[
B′

n

0

]

[Bn, 0] +
1
n

[
A′

n

X ′
n

]

[Bn, 0] +
1
n

[
B′

n

0

]

[An, Xn]

so we have
w
w
wL̂n − Ln

w
w
w ≤

1
n
‖[Bn, 0]‖2 +

2
n

w
w
w
w
w

[
A′

n

X ′
n

]

[Bn, 0]

w
w
w
w
w

. (A.19)

The first term on the RHS has expectation bounded by
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using Lemmas B.2 and B.3. For the second term in (A.19) note that
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Note that the bound derived above required only second order moments for the ui and

29



using fourth order moments (Assumption 11) will not improve the bound because
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By (A.20) the first factor on the LHS above converges in probability to one by (4.2) and

Assumption 10, the last being useful since
∥
∥L−1

n

∥
∥ = (η(Ln))−1. Again, the first factor

on the RHS of (A.21) is bounded by Assumption 10 for sufficiently large n and so we

have
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by (A.16) under Assumptions 1 and 11 but
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by (A.18) under Assumption 1 only. These are both negligible by (4.2).

Proof of Theorem 4.2. As in the IV case, we write

σ̃2
(n) =

1
n

U ′
nUn − 2

(
θ̃(n) − θ(n)

)′
wn +

(
θ̃(n) − θ(n)

)′
L̂n

(
θ̃(n) − θ(n)

)
.

From (A.22) and (A.16) the second term has modulus bounded by

w
w
wθ̃(n) − θ(n)

w
w
w ‖wn‖ = Op





max



 c
1
2
n

n
1
2

,
p

1
2
n

hn









Op





max



 c
1
2
n

n
1
2

,
p

1
2
n

hn










= Op



max





cn

n
,
pn

h2
n

,
p

1
2
n c

1
2
n

n
1
2 hn










30



while the modulus of the third term is bounded by
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using (A.22), (A.20) and Assumption 9. We conclude that
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This is negligible by (4.4).

Proof of Theorem 4.3. With α any non-null s × 1 vector, write
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We first show that first term on the RHS of (A.25) is negligible in probability. This term

has modulus bounded by τn times
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by (A.20). The total order of the first term on the

RHS of (A.25) is the order of the last displayed expression times τn, which is
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The second term on the RHS of (A.25) is
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The modulus of the second term on the RHS of (A.26) is bounded by τn times
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The second factor on the RHS above is O
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, the third is bounded for sufficiently

large n by Assumption 10, and the fourth is Op
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. Under (4.5) this is negligible in probability and so we need to compute

only the asymptotic distribution of the first term in (A.26). Now
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i=1

(α′ΨnL−1
n tin)2

} 1
2

=
n∑

i=1

finui,
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where

fin =
α′ΨnL−1

n tin

σ

{
n∑

i=1

(α′ΨnL−1
n tin)2

} 1
2

.

We now verify the Lindeberg condition for finui. We have

n∑

i=1

E
{
(finui)

21(|finui| > ε)
}
≤ max

1≤i≤n
E





u2

i 1



u2
i >

ε2

max
1≤i≤n

f2
in










n∑

i=1

f2
in

Since u2
i are uniformly integrable it suffices to show that max

1≤i≤n
f2

in→0 as n → ∞, as the

last factor on the RHS of the above displayed inequality equals 1/σ2. Consider

max
1≤i≤n

f2
in = max

1≤i≤n

(α′ΨnL−1
n tin)2

σ2

n∑

i=1

(α′ΨnL−1
n tin)2

≤

∥
∥L−1

n

∥
∥2 ‖Ψ′

nα‖2 max
1≤i≤n

‖tin‖
2

σ2

n∑

i=1

(α′ΨnL−1
n tin)2

. (A.28)

For the denominator of (A.28), note that

n∑

i=1

(α′ΨnL−1
n tin)2 = α′ΨnL−1

n

n∑

i=1

tint′inL−1
n Ψ′

nα

≥ n
∥
∥Ψ′

nα
∥
∥2 (η(Ln))−1 ≥ nc

∥
∥Ψ′

nα
∥
∥2

,

using Assumption 9. Thus (A.28) is O (cn/n) by Assumptions 5, 9 and Lemma B.4.

This is negligible by (4.5) and therefore the Lindeberg condition is satisfied.

The asymptotic covariance matrix exists, and is positive definite, by Assumptions 9

and 10. The proof of the consistency of the covariance matrix estimate is omitted.

B Technical lemmas

Lemma B.1. Let Assumptions 3 and 4 hold. Then ‖Gin‖R and ‖G′
in‖R are uniformly

bounded for all i = 1, . . . , pn and n ≥ 1.
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Proof. For any i = 1, . . . , pn,

‖Gin‖R =
w
wS−1

n Win

w
w

R
≤
w
wS−1

n

w
w

R
‖Win‖R ≤ C

where the last inequality follows from Assumption 4. The claim for G′
in follows similarly.

Lemma B.2. Let Assumptions 2, 3 and 4 hold. Then, for all i = 1, . . . , pn, the elements

of Gin are uniformly O
(
h−1

n

)
as n → ∞.

Proof. Denote by w′
j,in the j-th row of Win. Then the (j, k)-th element of Gin is given

by w′
j,inS−1

n ek,n, where ek,n is the n-dimensional vector with unity in the k-th position

and zeros elsewhere. Then


w′

j,inS−1
n ek,n


 =

w
ww′

j,inS−1
n ek,n

w
w

R
≤ ‖wj,in‖R

w
wS−1

n

w
w

R
‖ek,n‖R = O

(
1
hn

)

.

where the last inequality follows from Assumptions 2 and 4.

Lemma B.3. Let Assumptions 2, 3 and 4 hold. Then, for all i = 1, . . . , pn, the elements

of a product consisting of any finite number of the Gin or their transposes are uniformly

O
(
h−1

n

)
as n → ∞. In particular G′

inGjn and G′
inGjn have elements that are O

(
h−1

n

)

uniformly in i, j = 1, . . . , pn as n → ∞.

Proof. Similar to proof of Lemma B.2.

Lemma B.4. Let Assumptions 3-5 hold. Then the elements of An are uniformly O(kn).

Proof. Let g′i,jn be the i − th row of Gjn. Then a typical (i, j) − th element of An is

g′i,jnXnβ. Now
∣
∣
∣g′i,jnXnβ

∣
∣
∣ ≤

w
w
wg′i,jn

w
w
w

R
‖Xnβ‖R = O(kn) since ‖Gjn‖R is uniformly

bounded by Lemma (B.1) and by Assumption 5.
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