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Dynamic Resource Scheduling in Mobile Edge
Cloud with Cloud Radio Access Network
Xinhou Wang, Kezhi Wang, Song Wu, Member, IEEE, Sheng Di, Senior Member, IEEE,
Hai Jin, Senior Member, IEEE, Kun Yang, Member, IEEE, Shumao Ou, Member, IEEE

Abstract—Nowadays, by integrating the cloud radio access network (C-RAN) with the mobile edge cloud computing (MEC)
technology, mobile service provider (MSP) can efficiently handle the increasing mobile traffic and enhance the capabilities of mobile
devices. But the power consumption has become skyrocketing for MSP and it gravely affects the profit of MSP. Previous work often
studied the power consumption in C-RAN and MEC separately while less work had considered the integration of C-RAN with MEC. In
this paper, we present an unifying framework for the power-performance tradeoff of MSP by jointly scheduling network resources in
C-RAN and computation resources in MEC to maximize the profit of MSP. To achieve this objective, we formulate the resource
scheduling issue as a stochastic problem and design a new optimization framework by using an extended Lyapunov technique.
Specially, because the standard Lyapunov technique critically assumes that job requests have fixed lengths and can be finished within
each decision making interval, it is not suitable for the dynamic situation where the mobile job requests have variable lengths. To solve
this problem, we extend the standard Lyapunov technique and design the VariedLen algorithm to make online decisions in consecutive
time for job requests with variable lengths. Our proposed algorithm can reach time average profit that is close to the optimum with a
diminishing gap (1/V) for the MSP while still maintaining strong system stability and low congestion. With extensive simulations based
on a real world trace, we demonstrate the efficacy and optimality of our proposed algorithm.

Index Terms—Cloud radio access network; Mobile edge computing; Power-performance tradeoff; Lyapunov optimization; Scheduling.

F

1 INTRODUCTION

N OWADAYS, in order to meet the mobile traffic demand
generated by increasing mobile devices, the existing cellular

network is facing high pressure to improve the capacity by
building more base stations (BSes) [1]. However, due to rapid
technological changes in competitive marketplace, mobile service
providers (MSPs) are challenged with deployment of traditional
BS [2]. For example, the MSP needs to spend very high cost
to deploy a new BS even though the revenues gained from the
increasing requests are very low.

Cloud radio access network (C-RAN) has been proposed to
address this challenge and received significant attention in both
academia and industry [3], [4]. C-RAN divides the traditional
BS into three parts, i.e., remote radio heads (RRHs), baseband
unit (BBU) pool, and the fronthaul link [2]. In C-RAN, RRHs
only need to compress and forward the received signals from
mobile devices and transmit them to the BBU pool while most
of the intensive network computational tasks, such as baseband
signal processing, precoding matrix calculation, channel state
information estimation are moved to the BBU pool.

However, resource-hungry applications such as face recog-
nition and gaming appeared in our daily life, give resource-
constrained and battery-limited mobile devices much pressure [5].
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Mobile cloud computing (MCC) has been proved as a promising
approach to address such a challenge [6], [7]. MCC augments the
capabilities of mobile devices by offloading tasks to the powerful
platforms in the cloud. Normally, public clouds (e.g., Google
Compute Engine [8] and Amazon EC2 [9]) are used to form
the mobile cloud platform. However, such kind of remote public
clouds may suffer from long latency due to data transmission
through wide area network (WAN) [10].

By pushing the cloud into the edge of the network, mobile
edge cloud computing (MEC) [11] has been proposed to tackle
the limitations of MCC. As shown in Fig. 1, MEC can provide
cloud resources at the edge of the network that is close to mobile
users. The edge cloud provides resource-rich cloud computing
infrastructures deployed by MSPs (e.g., AT&T and China Mobile)
[10]. In this way, not only can MSP handle the increasing mobile
traffic by using C-RAN technology, but it can also enhance the
capabilities of mobile devices with the powerful edge cloud.
Although cloud computing for both access network (i.e., C-RAN)
[3], [4], [12] and end devices (i.e., MEC) [10], [13], [14] has been
largely studied, these two important areas have traditionally been
addressed separately in the literatures. The research of integration
of C-RAN with MEC is still a gap.

However, the latency caused by computation in MEC and
network in C-RAN both affect customers’ experience [15]. For
example in Fig. 1, when a mobile user offloads a job to the edge
cloud, the system needs to allocate both network and computation
resources. If the system allocates high wireless bandwidth and
few computation resources, the job would be transferred into
the edge cloud very fast but takes long time to execute thus
incurring high latency, vice versa. If the system allocates both
high wireless bandwidth and too many computation resources, the
job request would obtain its result very fast, but the system can
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Fronthaul

Fig. 1: The overview of mobile system with C-RAN and MEC.

only accommodate few jobs and gain little profit. Therefore, it is
necessary to jointly consider these technologies for MSP.

For MSP, on the one hand, the electricity cost of power
consumption has become skyrocketing [2]. For example, China
Mobile has to spend more than one billion dollars for the elec-
tricity every year [2]. Hence, a facing problem of MSP is to
minimize the power consumption of the whole system. On the
other hand, as analyzed with a real world mobile usage trace in
Sec. 2.1, the arrival of job requests from mobile devices are always
dynamic and unpredictable. In addition, the jobs from different
users usually have variable lengths. Such kind of mobility feature
introduces huge challenges for the scheduling of both computation
and network resources, leading to fluctuating revenues for MSP
over time [16].

Under the unpredictable job requests from mobile users and
the skyrocketing electricity cost of power consumption, the ob-
jective of the mobile system is to maximize the profit of MSP
by scheduling the fronthaul links to accept as many requests as
possible (i.e., increasing throughput) while minimizing the power
consumption of fronthaul links in C-RAN and servers in edge
cloud. In order to optimize such a tradeoff between performance
and power, the mobile system needs to tackle the following
scheduling challenges: (1) how to schedule each fronthaul link
by turning to active state for transmitting requests into the BBU
pool and sleep state to decline users’ requests for fronthaul
power conservation; (2) how to dispatch the received requests
from different users to its corresponding containers in different
servers in the edge cloud; (3) how to schedule each container to
running state1 for requests processing or shutdown state for power
conservation.

To tackle the above-mentioned challenges, we apply the
Lyapunov technique [18] to design an unifying optimization
framework which makes decisions for the fronthaul links, BBU
Dispatcher and servers in edge cloud independently and concur-
rently, solely based on the current system state. Specifically, we
have designed (1) a threshold-based scheduling policy for the
fronthaul links to improve the throughput as much as possible
while guaranteeing system stable; (2) a load balancing policy
for request dispatching in the BBU Dispatcher to reduce the
delays of the admitted job requests; and (3) an optimal scheduling
policy to guide the containers when to keep shutdown for power
conservation and how to process job requests more efficiently.

1In docker [17], one can use the command docker create/run to create a
container. After that, one can use the command docker start to start a container
to up state (i.e., running state) for processing requests, or turn to down state
(i.e., shutdown state) by using docker stop. Those down state containers will not
consume resources and power. For convenience, we use running (shutdown)
state to replace the up (down) state for the whole paper.

Note that the standard Lyapunov optimization framework [18]
critically assumes that job requests have fixed lengths and can
be finished within each decision making interval. However, as
analyzed with the real world mobile usage trace in Sec. 2.1, mobile
jobs from different users always have variable lengths which may
even exceed a time slot. A highlight of this paper is that we can
allow a job request with length longer than the time required for an
online decision making. In this way, the decisions in consecutive
time intervals are strongly correlated while the standard Lyapunov
technique cannot handle [18], [19]. By extending the standard
Lyapunov technique, we design an algorithm, VariedLen, to make
online decisions in consecutive time for job requests with variable
lengths.

Our main contributions can be summarized as follows:

• We present an unifying optimization framework for max-
imizing the profit of MSP which manages both network
system (i.e., C-RAN) and computing system (i.e., edge
cloud).

• By using Lyapunov technology, we design efficient poli-
cies for joint optimization of fronthaul link scheduling,
requests dispatching and cloud servers scheduling, which
can efficiently handle unpredictable mobile job requests.
In particular, unlike the standard Lyapunov technology, we
allow job requests’ lengths to be longer than the length of
online decision making, such that the decisions in consec-
utive time slots are strongly correlated. By extending the
standard Lyapunov technique, we design the VariedLen
algorithm to make online decisions in consecutive time
slots for job requests with variable lengths.

• With extensive evaluations based on a real world mobile
app usage trace, we demonstrate that the time average
profit gained by the VariedLen is close to the optimum
with a diminishing gap (1/V ) for MSP while the system
stability is still strong and the congestion is low for mobile
users.

The organization of this paper is as follows. We propose
the power-performance tradeoff model in Sec. 2 and design the
VariedLen algorithm to dynamically schedule all resources in the
mobile system for profit maximization in Sec. 3. We evaluate the
performance of our proposed algorithms in Sec. 4 and discuss the
related work in Sec. 5. Finally, we conclude our work and discuss
the future work in Sec. 6.

2 SYSTEM MODEL AND
POWER-PERFORMANCE TRADEOFF

In this section, we first give a brief analysis for a real world mobile
app usage trace [20] to show the dynamics and unpredictabilities
of mobile users’ job requests. Then we give the architecture of the
mobile system with C-RAN and MEC, as shown in Fig. 1. After
that, we present the dynamic scheduling and model the power-
performance tradeoff into a stochastic optimization problem.

2.1 Real World Mobile Trace Analysis

Due to the mobility of mobile devices, mobile users’ job requests
are always dynamic and unpredictable. Here we take a real world
mobile app usage trace from Livelab dataset [20] to show this.
The trace contains about 1.4 × 106 job requests from 34 users
spanning about 13 months. We first randomly select six users and
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Fig. 2: The arrival of job requests for six sample users from [20].
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Fig. 3: The mean and variance of number of job requests over time in [20].

plot the arrival of job requests in Fig. 2. Then, we extract the
number of job requests for each user over time and plot the mean
and variance of request number in Fig. 3. As shown in the figure,
the number of requests from different users have different mean
and variance values. The fluctuating and high variance values
indicate that the job requests from mobile users in practice are
highly dynamic and unpredictable. Such kind of mobility feature
introduces huge challenges to the scheduling of computation and
network resources for the MSP [16].

2.2 System Architecture

As shown in Fig. 1, the system architecture includes two parts,
i.e., C-RAN and edge cloud. There are M RRHs distributed
in different geographic locations, and each RRH i serves and
receives job requests from a set of mobile users that are close
to this RRH. Such a set of users is denoted as a representative
user set Ui [21]. Accordingly, the mobile system has M sets of
users U ≜ {1, 2, · · · ,M}. In this paper, a discrete time slotted
system has been applied [22], in which the length of a time
slot can be several milliseconds or minutes. In every time slot
t, t = 0, 1, 2, · · · , we model the job requests received by RRH i
at time slot t as (Typeij(t), Sizeij(t)) where Typeij(t) is the
job type and Sizeij(t) is the input data size. By utilizing the
approaches provided in [23], we can obtain the total number of
the CPU cycles to be accomplished for each job. Then, we can
obtain the running time of each job on a container with fixed
resource configuration. After that, we can model job requests
for RRH i at time t as (Ai(t), wi), where Ai(t) denotes the
number of job requests with a time average rate λi = E{Ai(t)}.
wi ∈ [wmin, wmax] denotes the number of time slots needed for

a job received by RRH i and can be referred to as the workload of
the job.

Similar to previous work in mobile networking [24], we
consider a quasi-static scenario where mobile devices remain
unchanged during a time slot. Hence, we can assume that mobile
users served by one RRH will not influence other users served by
another RRH, without loss of generality. Then over time slots,
each variable Ai(t) is independent and identically distributed.
Without loss of generality, we use Amax

i to denote the maximum
of job requests Ai(t). Thus, we have Ai(t) ≤ Amax

i , ∀i ∈ U , ∀t.
As analyzed in Sec. 2.1, mobile job requests are dynamic and
unpredictable. Hence, no priori knowledge of Ai(t) has been
assumed in this paper.

The RRHs are connected to the BBU pool via a fronthaul
network which consumes power to transmit requests. Dai and
Yu’s work [25] simply assumes the fronthaul consumption is the
accumulated data rates of all users served by RRH and model the
fronthaul capability as

C̄ ≤ C̄max (1)

then, for a time slot, the i-th fronthaul constraint can be modeled
as the maximum number of requests, i.e., Ci ≤ Cmax

i , ∀i ∈ U .
In the BBU pool, we implement one of the BBUs as a

Dispatcher1 which can receive requests from fronthaul links and
route them across several servers in the edge cloud located with
the BBU-pool.

Edge cloud consists of N servers S ≜ {1, 2, · · · , N}. Each
server j,∀j ∈ S creates containers2 which can process the job
requests transmitted from the Dispatcher in the BBU pool. We
assume that each server creates a container i to process requests
from Ui, i.e., container i on server j only serves requests from
Ui. This is reasonable because different users have different
requirements of hardware/software resources [26]. So container
i could misfit other users. In addition, the system can start a
container for other users if needed within 1 second [26]. Given
a fixed length of each time slot, a container can process a fixed
number of job requests. Equivalently, a time slot for computation
can be viewed as the process capacity of a container during each
time slot. Note that the BBU pool also has many other jobs to do
in the C-RAN system (e.g., baseband signal processing, precoding
matrix calculation, channel state information estimation [2]), but
this is beyond the scope of our paper.

The key notations have been summarized in Table 1.

2.3 Dynamic Scheduling
Fronthaul Scheduling: In every time slot t, t = 0, 1, · · · , the
mobile system needs to transmit a subset of each user’s job
requests Ri(t) into the BBU pool through the fronthaul links:

0 ≤ Ri(t) ≤ Ai(t) (2)

The fronthaul scheduling policy is to schedule each fronthaul
link in time slot t, by tuning to active state for transmitting
requests from the RRH i to the BBU pool and sleep state to
decline the requests from mobile users’ devices. In C-RAN, the
RRH only receives signals from mobile users and then transfers

1In the future, the Dispatcher can be implemented as a Controller or
Manager which can allocate both bandwidth and computational resources.

2Since edge cloud needs to be close to mobile users, it has limited
resources compared with remote public clouds while container technology can
be more effective than servers with virtual machines (VMs) [26].
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TABLE 1: Key Notations

Notation Description
M number of users
N number of servers
U all user sets, including Ui, 1 ≤ i ≤ M
S all servers in edge cloud, including Sj , 1 ≤ j ≤ N
Ai(t) arrival job requests for RRH i at time slot t
wi the number of time slots for user i with maximum wmax

λi time average rate of Ai(t) with maximum Amax
i

Ci fronthaul capability of fonthaul link i with maximum Cmax
i

ai(t) fronthaul scheduling policy
Ri(t) requests transmitted by fronthaul link i at time slot t
Dij(t) job requests dispatched from user i to server j
Xi(t) queue backlog of buffer queue for users i
bij(t) container scheduling policy in edge cloud
bij(t)

− left-over container scheduling policy in edge cloud
Qij(t) queue backlog of each container i in each server j
ri time average throughput
ai time average transmission capacity for each fronthaul link i
bij time average consumed capacity for each container i in server j
pf
i time average power consumption of fronthaul link i

ps
j time average power consumption of server j

Cl
j(t) container set with left-over jobs running at time slot t on server j

Cs
j (t) container set can finish the job from user i in n-th time interval

Cu
j n(t) container set cannot finish the job from user i in n-th time interval

T time interval in VariedLen
V control parameter in Lyapunov technique
αi non-negative normalized parameter for Ui

µ fronthaul link state
ϕ normalized CPU speed
β non-negative normalized parameter for fronthaul link
γ non-negative normalized parameter for edge cloud
1 − η normalized power consumption of an idle server

to the BBU pool [2]. The RRH would not undertake computation
tasks and cannot buffer job requests. Therefore, for the denied
requests, the system can send negative response signals back to
the corresponding mobile user. Mobile users can re-send their
requests [22] or execute these requests locally [27]. If mobile users
still choose to re-send the requests, it means that the local mobile
devices are very short of resources. In this way, mobile users are
either willing to pay a high price or bear a long latency. Such
fronthaul scheduling policies ai(t) are denoted as the l0-norm of
Ri(t) (i.e., ai(t) = ||Ri(t)||0), which can be indicated by the
following function for ∀i ∈ U ,∀t:

ai(t) = ||Ri(t)||0 =

{
1 fronthaul link i is on active state
0 fronthaul link i is on sleep state

As mentioned in Sec. 2.2, Cmax
i refers to as the capacity

constraint of each fronthaul link i. Hence, the transmitted requests
Ri(t) also need to satisfy the following constraint:

Ri(t) ≤ ai(t)C
max
i , ∀i ∈ U ,∀t (3)

Obviously, more requests, i.e., high performance, can be trans-
mitted to the system when turning more fronthaul links to active
state. But a larger amount of power will be consumed by the
fronthauls. Such a tradeoff between power and performance will
be characterized in the Sec. 3.1.1.

BBU-based Requests Dispatching: After the subset of requests
of each user Ri(t),∀i ∈ U are transmitted to the BBU pool,
the Dispatcher in the BBU pool will route those requests to the
corresponding container hosted in the edge cloud. We assume that
the amount of admitted requests Ri(t) are queued in the buffer
for each user set i in the BBU pool before dispatching to the
corresponding queue for each container in the edge cloud. Let
Xi(t) denotes the backlog of this buffer queue i at time slot t. Also
let Dij(t), ∀i ∈ U , ∀j ∈ S, ∀t denotes the requests dispatched

from user i to server j. We have the following queuing dynamics
[18] for the backlog Xi(t),

Xi(t+ 1) = max{Xi(t)−
N∑
j=1

Dij(t), 0}+Ri(t) (4)

Initially, Xi(0) = 0, ∀i ∈ U . For each user i, at most Xi(t)
requests can be dispatched to servers in the edge cloud. Hence,
the dispatching decisions Dij(t) should satisfy the following
constraint:

N∑
j=1

Dij(t) ≤ Xi(t), ∀i ∈ U (5)

Cloud Server Scheduling: After dispatching requests Dij(t) to
the corresponding container i on each server j, the last scheduling
policy is to schedule each container in time slot t, by stopping
the container to shutdown state to keep the requests waiting in
this container’s queue, without processing them in the current
time slot, or starting the container to running state to process
the dispatched user requests that are waiting in this container’s
queue. Note that the system will allocate edge servers once they
are available and mainly consider the scalability [28] of container
in this paper. The reason is that mobile users are more sensitive
to the latency and can not wait for the long rebooting time for a
server.

Once the container i on server j has started to running state
to process the job request from user i, the job will occupy this
container for different time slots based on the length of the job
request. Hence, the scheduling policy bij(t) is to schedule each
container in time slot t by starting the container to running or stop-
ping to shutdown state. However, since job requests with varied
lengths need to be executed in consecutive time slots, we introduce
bij(t)

− to denote the job scheduled before t, which is still running
on container i on server j in t. That is to say, bij(t)− = 1 means
that a left-over job is running on this container. Once container i
is scheduled to serve a job from user i, the job will run for wi

consecutive time slots, i.e., bij(t+ k)− = 1, k = 1, · · · , wi − 1.
At the same time, the container i will be running state for the
following wi − 1 time slots and cannot serve other jobs for user
i, i.e., bij(t+ k) = 0, k = 1, · · · , wi − 1. The server scheduling
policies for ∀i ∈ U , ∀j ∈ S,∀t can be given as the following
indicator function:

bij(t) =

{
1 container is running state and bij(t)

− = 0

0 container is shutdown state or bij(t)− = 1

Accordingly, we can derive the queue backlog, arrival rate and
service rate of each container as follows. We assume the servers
from the edge cloud are homogeneous1. In each server, we create
the same container for each user. At every time slot t, the container
can process one job request from mobile users. Let Qij(t) denotes
the total unprocessed workloads of container i on server j. At the
beginning of time slot t, Qij(t) workloads are waiting in the queue
with Qij(0) = 0. The service rate of Qij(t) can be quantified as
bij(t) + bij(t)

−, where bij(t) denotes the newly scheduled job
from user i at the beginning of time slot t and bij(t)

− denotes
the unfinished job (or left-over job) for user i. The arrival rate is
wiDij(t).

1In the future, we can easily extend the edge cloud to the heterogeneous
environment by considering more complicated model.
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Apparently, we can have the following queuing dynamics over
time for each container hosted in each server as follows:

Qij(t+ 1) = max
{
Qij(t)− bij(t)− bij(t)

−, 0
}
+ wiDij(t)

(6)
Obviously, more job requests (high performance) can be pro-

cessed when starting more containers (i.e., on the running state)
in edge cloud. But a larger amount of power will be consumed
by servers. Such a tradeoff needs to characterize in the following
subsection.

Now we have modeled the dynamic scheduling for both
network resources in C-RAN and computation resources in MEC.
Then, we will propose the tradeoff between power consumption
and performance in the next section.

2.4 Power-Performance Tradeoff
2.4.1 Time Average Throughput
In the mobile system, the overall system throughput (i.e., the pro-
cessing jobs) is one of the most significant performance metrics.
Especially, we define the time average throughput ri for each user
Ui as follows,

ri = lim
t→∞

1

t

t−1∑
τ=0

E{wiRi(τ)}, ∀i ∈ U (7)

Together with ri, we define the time average transmission
capacity ai for each fronthaul link i:

ai = lim
t→∞

1

t

t−1∑
τ=0

E{ai(τ)},∀i ∈ U (8)

Then we can define the time average consumed capacity bij
for each container i on server j:

bij = lim
t→∞

1

t

t−1∑
τ=0

E{bij(τ) + bij(τ)
−}, ∀i ∈ U ,∀j ∈ S (9)

Then the overall MEC throughput is
∑M

i=1 ri, which is con-
strained as follows: (1) ri/wi ≤ λi, i.e., the time average through-
put cannot exceed the time average arrival rate for any mobile user
i; (2) ri/wi ≤ aiC

max
i , as the time average throughput cannot

exceed the capacity of the fronthaul link between RRH i and the
BBU pool; (3) ri/wi ≤

∑N
j=1 bij , as the time average throughput

ri cannot exceed the overall processing capacity allocated for user
i, ∀i ∈ U ,∀j ∈ S .

2.4.2 Time Average Power Consumption
We analyze two power consumption models in this part. The first
one is the power consumption of the fronthaul links connecting
each RRH with the BBU pool, as fronthaul capacity is one of
the most important limitations in C-RAN [2]. The other one is
servers’ power consumption in the edge cloud which process all
job requests.

For the power of fronthaul, it consumes a constant power
when it is on active state [25], [29]. Without loss of generality,
we consider a normalized power consumption P f (µ) ∈ {0, 1},
where µ = 0 represents the sleep state of a fronthaul link while
µ1 = 1 represents the active state:

P f (µ) = µ (10)

Based on the fronthaul power model above, for a fronthaul
link i ∈ U that transmits the requests from the RRH to the BBU

pool with the scheduling policy ai(t) described in Sec. 2.3, its
normalized power consumption in time slot t is given as follows:

P f
i (t) = P f

i (ai(t)) = ai(t) (11)

Accordingly, for each fronthaul link ∀i ∈ U in the C-RAN,
we have the normalized power consumption pfi as follows,

pfi = lim
t→∞

1

t

t−1∑
τ=0

E{P f
i (τ)} (12)

then,
∑M

i=1 p
f
i is the overall time average power consumption of

all fronthaul links.
For the power of server, it has been widely studied [30], [31]

that a server’s power consumption is principally related to the
running CPU speed ϕ. So we follow this fact and ignore the other
resource of power consumption in the servers (e.g., memory and
network) and employ a very basic server power model to character
the normalized power consumption as follows,

P s(ϕ) = ηϕv + (1− η) (13)

Without loss of generality, a normalized speed 0 ≤ ϕ ≤ 1
and its corresponding normalized power consumption P s(ϕ)
are considered in this paper. Intuitively, the container stops to
shutdown state when ϕ = 0 and starts to running state with
maximum CPU speed ϕ = 1. Hence, the normalized CPU speed
of server j for the cloud server scheduling model can be given
as ϕj(t) =

∑M
i=1

bij(t)+bij(t)
−

M . For parameter v, we set it
empirically as v > 1 in practical [31]. With another parameter
0 ≤ η ≤ 1, we denote 1 − η as an idle server’s power
consumption. In this paper, we will schedule the container between
running and shutdown state while the container with shutdown
state will not consume computation resources (e.g., CPU). This
is different from our previous version [32] that switches VMs
between running and idle state. The main difference is that the
startup of a container is very fast [17] but VM requires consider-
able startup overhead [33]. Hence, we can stop the container to
shutdown state without processing requests and start the container
to running state very fast. But if we shut down a VM, it needs
significant time to boot-up again. It is worth noting that it also
needs a lot of time to start a server. Hence, we will not power off
a server even when it is idle.

Based on the above power consumption model, the power
consumption for server j are given as follows,

P s
j (t) = η(ϕj(t))

v + (1− η) (14)

Accordingly, the time average of normalized power consump-
tion of each server j in the mobile system can be defined as
follows,

psj = lim
t→∞

1

t

t−1∑
τ=0

E{P s
j (τ)} (15)

then the overall servers’ power consumption in the edge cloud is∑N
j=1 p

s
j .

For the MSP, power for both fronthaul links and servers is
hopefully being minimized as these power incurs a large amount
of electricity cost.
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2.4.3 Time Average Profit Maximization
Now, we have obtained the MEC throughput metric ri in Eq. (7),
the fronthaul power consumption metric pfi in Eq. (12) and the
server power consumption metric psj in Eq. (15). We define our
scheduling objective as the MSP’s time average profit as follows:

Time average throughput revenue: MSP’ revenue gained from
all mobile users can be effected by multiple factors, e.g., the
throughput and the usage of data for transfer job requests. We
measure MSP’s time average revenue gained from all mobile users
as

ēt =
M∑
i=1

αiri +
M∑
i=1

di (16)

where αi is a non-negative normalized parameter for each Ui.
The parameter αi allows us to reply to different scenarios. For
example, we can set the values the same for all users if we treat
them equally. Also, we can assign priorities [34] for different mo-
bile users by choosing appropriate values of αi. In this situation,
we can assign high priority to mobile users who have to offload
their requests to edge cloud due to the limited computing resource.
While for mobile devices with powerful capacity, low priority can
be assigned. Moreover, we can design dynamic pricing [21] for the
requests as some mobile users are willing to pay more to process
their job requests in MEC. di denotes the cost of the data usage
goody-bag, e.g., 1 Gigabytes per month , purchased from MSP for
each user i [35]. Other factors such as bandwidth between users
and the mobile system may also affect MSP’ profit. But from the
perspective of mobile users, they can not decide the bandwidth.
Thus, they are probably not willing to pay for the bandwidth. To
make our model traceable, we assume the revenue is related to
the throughput and the usage of data, but without much loss of
generality.

Time average fronthaul electricity cost: The electricity cost of
fronthaul power in C-RAN can be measured as ēf =

∑M
i=1 βp

f
i ,

where β = Pricef × PUEf is a non-negative normalized
parameter. Pricef is the electricity market price of each unit of
the normalized power consumption of fronthaul. PUEf is the
the power usage efficiency (PUE) defined as the ratio of the total
facility power used by the entire equipment to the actual power
consumed for the IT equipment (fronthaul) [22].

Time average server electricity cost: Similarly, the electricity
cost of server power can be measured as ēs =

∑N
j=1 γp

s
j , where

γ = Prices×PUEs is a parameter for the server power. Prices
is the electricity market price of each unit of the normalized power
consumption of server while PUEs is the PUE for servers j in
edge cloud. We assume the values of PUEs for all servers are the
same as they are managed by the same MSP.

Given the above time average revenue brought by the through-
put and cost for both fronthaul and server power, we formulate the
maximization of time average profit as the following stochastic
optimization problem:

P : max
ai,Dij ,bij ,

ēt − ēf − ēs (17)

s.t. (2), (3), (5)

It is very difficult to solve the above Problem (P) in an
offline and centralized manner. This is because it requires offline
future information about mobile users’ requests. Since mobile
users always follow their own mobility [16] and the arrival of job
requests are unpredictable, we cannot get the future information

about mobile users’ requests. Meanwhile, it suffers from “the
curse of dimensionality” and is computationally intractable when
the problem scales up. Our considerations on power consumption
and queue stability lead us to design online resource scheduling
algorithms based on the Lyapunov optimization framework [18],
which has been widely used in power consumption optimization
problem [19], [22].

3 ONLINE ALGORITHM FOR JOBS WITH VARIED
LENGTHS

In this section, to address the challenges of optimization Problem
(P), we take advantage of the Lyapunov optimization technique
[18] to design a resource online scheduling algorithm called
VariedLen. Our VariedLen algorithm designs scheduling policies
including the fronthaul scheduling, requests dispatching and server
scheduling simultaneously. It can be proved that the algorithm
can achieve a time average profit that is close to the optimum of
Problem (P).

3.1 Problem Transformation Using Lyapunov Optimiza-
tion

3.1.1 Characterizing the Stability-Profit Tradeoff

Denoting Q(t) = (Qij(t)) and X(t) = (Xi(t)) as the matrixes
of queues maintained by containers in the edge cloud and the
buffer queues for mobile users in the BBU pool. After that, we use
Θ(t) = [Q(t);X(t)] to represent the combined matrix of queues.
Since X(t) and Q(t) have different scales (X(t) corresponds to
the number of job requests (Eq. 4), while Q(t) corresponds to
the request length wi (Eq. 6)), we assign queue Xi(t) and Qij(t)
with different weights wi and 1 and have the Lyapunov function
L(Θ(t)) as Eq. (18).

L(Θ(t)) =
1

2
{
∑
i∈U

w2
iX

2
i (t) +

∑
i∈U

∑
j∈S

Q2
ij(t)} (18)

This function is a scalar metric of congestion [18] for the
edge cloud. Intuitively, all queue backlogs are small when L(Θ)
is small. That is, the corresponding mobile system has strong
stability. Based on Eq. (18), we define the conditional 1-slot
Lyapunov drift [18] as follows:

∆(Θ(t)) = E{L(Θ(t+ 1))− L(Θ(t))|Θ(t)} (19)

Under the Lyapunov optimization, the scheduling policies
ai(t), Dij(t) and bij(t) should be chosen to minimize the
infimum bound on the following drift-minus-profit [18] in every
time slot t:

∆(Θ(t))− V E{
∑
i∈U

αiwiRi(t) +
∑
i∈U

di

−β
∑
i∈U

P f
i (t)− γ

∑
j∈S

P s
j (t)|Θ(t)} (20)

The parameter V ≥ 0 is used to balance the tradeoff between
the profit maximization and the drift. For example, a high value of
V indicates that the mobile system prefers to achieve more profit
rather than keep the system queue backlogs at a low level.
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3.1.2 Bounding the Drift-Minus-Profit

We need the following Lemma to derive the infimum bound of the
drift-minus-profit given in Eq. (20),

Lemma 1. Given any scheduling policies at any time slots, the
following inequality for drift-minus-profit (Eq. 20) can be
derived:

∆(Θ(t))− V E{
M∑
i=1

αiwiRi(t) +
M∑
i=1

di

−β
M∑
i=1

P f
i (t)− γ

N∑
j=1

P s
j (t)|Θ(t)} ≤ B

−
M∑
i=1

E{Ri(t)(V αiwi −Xi(t)w
2
i )− V βai(t)|Θ(t)} (21)

−
M∑
i=1

N∑
j=1

E{Dij(t)(w
2
iXi(t)− wiQij(t))|Θ(t)} (22)

−
N∑
j=1

E{
M∑
i=1

Qij(t)(bij(t) + bij(t
−))− V γP s

j (t)|Θ(t)} (23)

where B =
[MN+3

∑M
i=1(max{Amax

i ,Cmax
i })2]

2 − V
∑M

i=1 di.

Proof: See Appendix A.
Now we have transformed the stochastic optimization problem

(P) into the bounding of Drift-Minus-Profit by using Lyapunov
optimization. By minimizing the infimum bound in Lemma 1, we
can design an optimal resource online scheduling algorithm in the
next section.

A highlight of this paper is that previous work using standard
Lyapunov optimization [18], [22], [36] usually assume each job
request can be completed in one time slot, while we model
a more general scenario and allow a job request with length
longer than a time slot. In this way, job requests can not be
prematurely terminated once scheduled to run on the containers.
This constrains the scheduling decisions in the current time slot.

3.2 Optimal Resource Online Scheduling Algorithm
(VariedLen)

In this subsection, VariedLen has been proposed to minimize the
infimum bound in Lemma 1 by equivalently maximizing the terms
(21) (22) (23) on the right-hand-side (RHS). In each time slot
t, t = 0, 1, 2, · · · , our VariedLen schedules resources in MEC
and C-RAN by maximizing the terms (21) (22) (23), includ-
ing fronthaul scheduling Problem (P1.1) in Sec. 3.2.1, requests
dispatching Problem (P1.2) in Sec. 3.2.2 and server scheduling
Problem (P1.3) in Sec. 3.2.3. After that, we update all queues by
using Eq. (4) and Eq. (6).

3.2.1 Fronthaul Scheduling

In this subsection, we will solve the first challenge in the resources
scheduling, i.e., how to schedule each fronthaul link. For every
mobile user set Ui, i ∈ U shown in Fig. 1, we can maximize the
term (21) in Lemma 1 to derive the fronthaul scheduling policies
ai(t), i = 1, 2, · · ·M . Recall that different mobile devices served
by different RRHs cannot influence each other in our system
(see Sec. 2). Therefore, the fronthaul scheduling policy ai(t) for
different Ui are independent which means that the maximization

of (21) can be decomposed to compute the following Problem
(P1.1) concurrently.

P1.1 : max
ai(t)

Ri(t)(V wiαi − w2
iXi(t))− V βai(t) (24)

s.t. (2), (3)

Problem (P1.1) includes two parts, the first one
Ri(t)(V wiαi − w2

iXi(t)) is a simple linear programming prob-
lem. But the second one V βai(t) (i.e., V β||Ri(t)||0) is a l0-norm
problem which is hard to solve. However, inspired by compressive
sensing, l1-norm is the best convex relaxation of the l0-norm since
l1-norm is the convex envelop of l0-norm [37], [38]. By applying
l1-norm relaxation to the Problem (P1.1) and rearranging the
terms, we have the following relaxed problem,

max
ai(t)

Ri(t)(V wiαi − V β − w2
iXi(t)) (25)

s.t. (2), (3)

The above problem is a simple linear programming problem
and we can derive the optimal value of Ri(t) as:

Ri(t) =

{
min{Ai(t), C

max
i }, Xi(t) <

V wiαi−V β
w2

i

0, else
(26)

then we can have the fronthaul scheduling policies for Problem
(P1.1) as:

ai(t) = ||Ri(t)||0 =

{
1, Xi(t) <

V wiαi−V β
w2

i

0, else
(27)

The optimal solution of Problem (P1.1) is a simple threshold-
based scheduling policy. When the backlog Xi(t) of the buffer
queue for Ui is smaller than a threshold Xi(t) <

V wiαi−V β
w2

i
, the

fronthaul will transmit as many job requests (newly received by
RRH i) as possible, but it cannot exceed the capacity limitation
of the fronthaul link i. When Xi(t) is higher than the threshold,
it means that the system is overloaded and it will decline all the
requests to make the system stable. The intuition of this policy is
two-fold: when the backlog of the buffer queue for Ui is smaller
than the threshold Xi(t) < V wiαi−V β

w2
i

, then MEC throughput
increases by transmitting as many requests as possible into the
BBU pool which can improve the profit. On the other hand, when
the backlog of the buffer queue is larger than the threshold, the
system will decline all the requests to make the mobile system
stable. By doing so, the scheduling policy can prevent the BBU
pool with reasonable backlogged requests from being overloaded
by newly received requests.

If one wants to focus on the latency, the system can tune a high
value of V to increase the value of threshold. At the same time,
more containers will be scheduled to running state for requests
processing according to the greedy policy for cloud servers (see
Section 3.2.3 for details). In this way, the system can guarantee
the latency requirement of each request.

3.2.2 BBU-based Requests Dispatching
While in this part, we will solve the job requests dispatching
challenge for different mobile users. For each Ui, i ∈ U shown in
Fig. 1, we can maximize the term (22) in Lemma 1 to derive
the BBU-based dispatching policies Dij(t), j = 1, 2, · · ·N .
Similar to the fronthaul scheduling policies, mobile users are
independent from each other. Therefore, the requests dispatching
policies Dij(t) of different Ui are also independent which means
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that the maximization of (22) can be decomposed to compute the
following Problem (P1.2) concurrently.

P1.2 : max
Dij(t)

N∑
j=1

Dij(t)(w
2
iXi(t)− wiQij(t)) (28)

s.t. (5)

The above Problem (P1.2) is a weighted linear programming
problem, in which the dispatched requests to server j for Ui’s
buffer queue is weighted by w2

iXi(t) − wiQij(t). Note that for
each Ui at time slot t, the value Xi(t) is constant. Hence, the
optimal dispatching strategy for each Ui tends to dispatch as many
buffered request as possible to the container with the least backlog:

Dij(t) =

{
Xi(t) j = ji(t) and Xi(t) >

Qiji(t)
(t)

wi

0 otherwise
(29)

where ji(t) = arg min
∀j∈S

Qij(t) means the queue with the shortest

backlog in all N queues on N containers for Ui. Such a dispatch-
ing policy is accord with the join-the-shortest-queue (JSQ) policy
for load balancing in cluster computing [39]. The intuition of JSQ
policy is to reduce the response delay of newly received requests
by preferentially dispatching to the shortest queue.

3.2.3 Mobile Server Scheduling
In this subsection, we will address the challenge about how to
schedule all containers hosted on each server j for each time slot
t. The running or shutdown state of each container on server j can
be scheduled by maximizing the term (23) in Lemma 1. Recall
that the power consumption model is based on the individual
server in Sec. 2.4.2, therefore the indicator function bij(t) are
independent among different servers. The maximization of term
(23) can be decomposed into the following subproblem (P1.3)
for every individual server j:

P1.3 : max
bij(t)

M∑
i=1

Qij(t)(bij(t) + bij(t)
−)− V γP s

j (t) (30)

s.t. (6)

The above Problem (P1.3) can be solved by using enu-
meration method, i.e., switching all the possible combination of
containers to running state and searching the maximized value of∑M

i=1 Qij(t)(bij(t) + bij(t)
−) − V γP s

j (t) in Problem (P1.3).
But the exponential complexity is impracticable when the contain-
ers in edge cloud scale up to hundreds and thousands. Hence, we
seek to design a greedy strategy as follow.

For Problem (P1.3), we not only have to schedule the con-
tainers on server j at time slot t, but also consider the container
with running left-over jobs before time slot t. Hence, we first need
to distinguish the container whether it has left-over job running
or not on server j. We denote the subset containers of all M
containers on server j with left-over jobs running at time slot t as
Cl

j(t) = {k|bkj(t)− = 1, 1 ≤ k ≤ M}. For those containers
in Cl

j(t), we have bij(t) = 0 according to the scheduling policy
of bij(t) in Sec. 2.3. For Problem (P1.3), we need to schedule
the containers that are not in Cl

j . Then we can change Problem
(P1.3) into the following problem,

max
bij(t)

G1 +
∑

i/∈Cl
j(t)

Qij(t)bij(t)

−V γη(G2 +

∑
i/∈Cl

j
bij(t)

M )v (31)

s.t. (6)

# running

containers

The second term in 

Eq. (31)

The third 

term in Eq. (31)The maximization 

term in Eq. (31)
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Fig. 4: The illustration of optimal solutions for Problem (P1.3), which reflects
the shape of the second term, the third term and the maximization of term in
Eq. (31).

where G1 =
∑

i∈Cl
j(t)

Qij(t) + 1− η is a constant for a specific

server j at time slot t. G2 = 1 − M ′

M is also a constant with
M ′ = |Cl

j |.
Intuitively, the solution of the above problem remains the

same if we remove the constant G1. At the same time, we find
that the scheduling policy bij(t) in server j is weighted by the
queue backlog Qij(t) of container i while the power consumption
growth incurred by starting each container is the same under our
server power consumption model (recall the model of P s

j (t) =

η(
∑M

i=1 bij(t)/M)v+(1−η) in Sec. 2.4.2). Therefore, if we rank
all containers hosted on server j according to their queue backlog
in descending order (i.e., Q1j(t)

′ ≥ Q2j
′(t) ≥ · · · ≥ QMj

′(t)),
then Fig. 4 can illustrate the optimal solution of Problem (P1.3).
One can search from the container with the most backlog (i.e.,
Q1j

′(t)) to the container with the least backlog (i.e., QMj
′(t)).

First, if the container is running with a left-over job, then this
container is running state now and can not schedule to run a
new job request, i.e., bij(t) = 0. If the container is shutdown
state now, we then check whether the growth of the second term∑

i/∈Cl
j(t)

Qij(t)bij(t) exceeds the power consumption growth

(i.e., the third term V γη(G2+

∑
i/∈Cl

j
bij(t)

M )v) incurred by starting
a container i or not. If it is true, container i needs to schedule to the
running state. Once the growth of the second term is smaller than
the growth of the third term for container i, we need to schedule
container i and the other containers to the shutdown state.

The above solutions for Problem (P1.1-P1.3) can make
decisions on fronthaul link scheduling, BBU-based dispatching
and the server scheduling in the edge cloud at every time slot.
In the standard Lyapunov optimization framework, as used in
many previous studies [22], [32], it critically assumes that all job
requests have fixed length equivalent to the length of a time slot.
However, in this paper, we consider a more realistic and general
scenario in which mobile jobs have variable lengths denoted as
wi time slots in our model. The cloud server scheduling decisions
made in time slot t directly affect the server scheduling in later
time slots (i.e., time slot t + 1, · · · , t + wi − 1). Such kind
of decisions in consecutive time slots is beyond what standard
Lyapunov technique can handle. Hence we need to design a new
resource online scheduling algorithm, VariedLen, to handle job
requests with varied lengths as follows.

We first divide the total time slots into several time intervals
and each time interval In has T time slots with T > wmax. Then,
we can make decisions for each time slot in each time interval.
Since the fronthaul scheduling and BBU-based request dispatching
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have not involved with the consecutive scheduling of container in
the edge cloud, the solutions of fronthaul scheduling Eq. (27) and
BBU-based request dispatching Eq. (29) remain unchanged. While
for the mobile server scheduling, at each time slot t, we divide the
containers for different mobile users into two subsets. At time slot
t of a time interval In, we will start containers to running state to
run jobs from user i only when the job can be finished in this time
interval. We denote these containers as a container set Cs

j (t) , i.e.,
Cs

j (t) = {i|nT ≤ t ≤ (n + 1)T − wi}. The other containers
will not be scheduled at time slot t and we denote them as a
container set Cun

j (t), i.e., Cun
j (t) = {i|(n + 1)T − wi + 1 ≤

t ≤ (n+1)T − 1}. After that, we use the solutions described for
Problem (P1.3) to make decisions among the container set Cs

j (t).
The detailed algorithm of VariedLen has been presented in Alg. 1.

Algorithm 1 VariedLen
Input: V , αi, β, γ, η, Ai(t), wi.
Output: ai(t), Dij(t), bij(t), i ∈ U , j ∈ S.
1: Get Xi(t) and Qij(t) at the beginning of each time slot t, .
2: Get the optimal fronthaul scheduling policies ai(t) as Eq. (27), BBU-

based requests dispatching policies Dij(t) as Eq. (29).
3: for each server j do
4: Get container sets Cs

j (t) and Cun
j (t).

5: Set bij(t) = 0 if i ∈ Cun
j (t).

6: for containers in Cs
j (t) do

7: Use the solution for Problem (P1.3)
8: end for
9: end for

10: Update Xi(t) and Qij(t) according to Eq. (4) and Eq. (6), respectively.

Finally, the queues Xi(t) can be updated according to Eq. (4)
based on the optimal values of Ri(t) and Dij(t). The queues
Qij(t) for each container in the edge cloud can be updated with
Eq. (6) by using the optimal values of Dij(t) and bij(t).

For a given time slot t, the fronthaul scheduling policies ai(t)
with Eq. (27) cost O(M), and the dispatching policies Dij(t)
with Eq. (29) cost O(MN). While for the cloud server scheduling
policies bij(t), it costs at most O(MlogM) to sort M queue
backlogs for each server. Thus the time complexity of Alg. 1 is
O(MNlogM).

Since the edge cloud is at the edge of network and close to
mobile users, the resource is limited and N is small compared with
the number of mobile users (i.e., M ). Hence, the complexity of
algorithm can approximate to O(MlogM) and be implemented
in an online way. When the requests rush into a peak load, the
edge cloud can use mature cloud scalability techniques, such as
autoscaling [28], to increase the processing capacity.

3.3 Optimality Analysis
Theorem 1. For any arrival rate in any time slot Ai(t) ≤ Amax

i ,
∀i ∈ U ,∀t, implementing the VariedLen with any V ≥ 0
satisfies the following performance bounds:
(1) The queue backlog Xi(t) for Ui buffered in the BBU
pool and Qij(t) for Ui on any server j are upper bounded
as follows,

Xi(t) ≤ V αi +min{Amax
i , Cmax

i } (32)

Qij(t) ≤ V αi + 2min{Amax
i , Cmax

i } (33)

(2) The time average profit gained by Alg. 1 is close to the
optimal value within a gap (B/V ):

lim
t→∞

inf{
M∑
i=1

αiri − β
M∑
i=1

pfi − γ
N∑
j=1

psj} ≥ η∗ − B

V
(34)

where η∗ =
∑M

i=1 αir
∗
i − β

∑M
i=1 p

f∗
i − γ

∑N
j=1 p

s∗
j , and

r∗i , pf∗i and ps∗j are the optimal values of Problem (P) and

B =
[MN+3

∑M
i=1(max{Amax

i ,Cmax
i })2]

2 − V
∑M

i=1 di.

Proof: See Appendix B.

4 EVALUATION

In this section, we evaluate our proposed algorithm, VariedLen,
by conducting simulations with a real world mobile app access
trace from Livelab dataset [20]. In the following, we first intro-
duce our experimental setup and methodology, then present the
experimental results.

4.1 Experimental Setup

LiveLab [20] is a methodology to measure real-world smartphone
usage and wireless networks with a reprogrammable in-device
logger designed for long-term user studies in Rice University.
The dataset includes 34 students with different devices, e.g.,
phones and tablets, from Rice University and Houston Community
College during February 2010 to February 2011. It consists about
1.4 × 106 jobs from variety of mobile apps, e.g., social network
services, video and mobile games. Each job request in the dataset
has information about the name of the application, the start time
and the duration.

Table 2 presents the details of the mobile app usage trace
LiveLab [20]. For each mobile user, we extract the number of
requests as Ai(t) at each time slot t. The length of each time slot
is 1 second. In this way, we can get a maximum request number
from all users for all time slots as Amax

i . After that, we will
conduct simulation with 3.3× 107 time slots in total.

TABLE 2: Description of LiveLab dataset

Source Rice University
Time Duration 13 months

# of job requests 1.4 × 106

# of users 34
# of time slots 3.3 × 107

Table 3 shows all parameters used in the following experi-
ments. Due to the limited resources in the edge cloud, we set the
server number N as 40 and create a container for each mobile
user on each server in the edge cloud. Mobile user can offload
requests to at most 40 containers across servers, with a maximum
processing capacity of 40. For the workload wi of each user i,
we randomly select a value from [wmin, wmax] = [2, 20]. We
set di = 10 as the same price of China Mobile for 1 Gigabytes
per month [2]. We set the parameter v = 2, η = 0.5, β = 0.6
and γ = 2 empirically in this paper [22], [31]. For the parameter
α, we first set them as 1 for all users. For the length of the time
interval T , we first set T = wmax.

TABLE 3: Parameters used in the simulation

M 34 v 2
N 40 η 0.5

wmin 2 αi 1, · · · , 1
wmax 20 β 0.6

T 20 γ 2

In the following part, we will import the job request infor-
mation from the LiveLab dataset and implement the VariedLen
algorithm by using C language with Microsoft Visual C++ 6.0.
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4.2 Experimental Methodology
The proposed VariedLen algorithm includes three scheduling poli-
cies, i.e., threshold-based policy for fronthaul links, JSQ policy
for the BBU dispatching, and greedy strategy for cloud server
scheduling. We compare these methods to three classic scheduling
methods as follows,

• Best-effort (B). For the fronthaul links scheduling, we
compare the threshold-based (T) with this method which
transfers job requests as much as possible.

• Round-robin (R). For the BBU dispatching, we compare
the JSQ (J) policy with this classic scheduling method
which dispatches job requests to servers in circular order.

• First-come-first-served, FCFS (F). For the mobile server
scheduling, we compare the greedy (G) strategy with this
method which runs the job requests waited in the queue
one by one.

The above classic scheduling algorithms have been widely
used in the literature [40]–[42]. Meanwhile, when utilizing the
Lyapunov technique, the state-of-the-art research often derive or
compare with the above classic scheduling algorithms [22], [43],
[44]. For example, Zhou et al derived the JSQ scheduling when
using Lyapunov technique in SaaS cloud [22]. Nan et al used
Lyapunov technique to design algorithms in Cloud of Things
system and compared them with the round-robin algorithm [43],
[44].

In the following part, we first conduct several experiments to
compare VariedLen with the mixture of the above methods in Sec.
4.3. Then, we show the effectiveness of scheduling policies in Sec.
4.4.

Since mobile job requests always have varied lengths while
standard Lyapunov technique can not handle, we design the Var-
iedLen algorithm by extending the standard Lyapunov technique
used in our preliminary work [32]. To demonstrate the novelty of
this paper, we compare the VariedLen algorithm with the RICH
algorithm proposed in [32] in Sec. 4.5.

At last, we conduct experiments to show the sensitivity of
parameter αi, β, γ and η in time average profit maximization
Problem (P) for VariedLen algorithm in Sec. 4.6.

4.3 Algorithm Optimality and System Stability
Our proposed VariedLen consists three scheduling methods, i.e.,
the threshold-based, the JSQ and the greedy method shown in
Sec. 3.2. For comparison purpose, we compare these methods
with three classic scheduling in computing, i.e., best-effort, round-
robin and FCFS. We mix these methods and form eight scenarios,
from TJG to BRF. For example, BRF means we use best-effort,
round-robin and FCFS methods respectively. Obviously, TJG is
equivalent to our VariedLen algorithm. Fig. 5 shows the time
average profit for all scheduling methods under different V , while
Fig. 6 shows the congestion.

From Fig. 5 we can see, (1) the time average profit increases
and converges to the optimum for larger values of V . This verifies
Theorem 1 in that the profit gained by VariedLen is close to the
optimal profit captured by Eq. (34) with a diminishing gap (1/V ).
However, with an excessive high of V , the improvement starts
to diminish which can aggravate the congestion of queues in the
system (captured by Eq. (18)). The profit grows rapidly when V <
10000 and slows down when V > 10000. This is because when
the system sets a higher V to achieve more profit, VariedLen will

transmit more job requests to the system. However, to guarantee
queue stability, VariedLen has to schedule more containers for job
processing under suboptimal situation, thus making the growth
slower when V > 10000. (2) The time average profit is lower
than 0 (i.e., with no profit) when V = 0 for VariedLen. This
is because the drift-minus-profit expression (Eq. (20)) reduces to
∆(Θ(t)). According to the fronthaul scheduling policy Eq. (27),
the system will decline all the requests to minimize the system
congestion when V = 0.

The proposed VariedLen algorithm increases the profit of MSP.
As shown in Fig. 5, VariedLen outperforms other scheduling
methods on profit. However, with respect to the congestion,
VariedLen will incur higher congestion compared with other four
mixture of methods. These method mixtures are TJF, BJF, TRF
and BRF. Through analyzing, we find the key difference is the
mobile server scheduling method. Our VariedLen uses a greedy
scheduling method to balance the profit and congestion instead of
the FCFS method. The later will execute job requests once they
arrive on the server. In this way, the congestion incurred by FCFS
will be lower than that incurred by the greedy method.

We then verify the mobile system stability here. Fig. 6 shows
the time average queue congestion [18] captured by Eq. (18)
under different V . As shown in the figure, we find: (1) When
V increases, the time average queue congestion also increases
for VariedLen. This phenomenon, together with Fig. 5, reflects
the tradeoff between profit maximization and system stability
shown in Sec. 3.1.1 under VariedLen. (2) Similar to VariedLen,
the congestions incurred by TJF, TRG and TRF also increase
when V increase. while for the other four mixtures of methods
(BJG, BJF, BRG and BRF), the congestion varies very little
when the parameter V changes. The reason is that when the
fronthaul scheduling method is best-effort, the fronthaul links will
transfer job requests to the BBU pool without considering the
tradeoff between profit and congestion. Besides, we plot the profit
increment of VariedLen over other mixture of scheduling policies
when V = 9000 in Fig. 7.

At last, we plot the decline requests proportion under differ-
ent V for VariedLen compared to other mixture of scheduling
algorithms in Fig. 8. As expected, the declined requests decrease
when V grows when using the threshold-based policy (VariedLen,
TJF, TRG, TRF). However, the system still declines a few requests
even with an excessive high V . This phenomenon conforms to the
fronthaul scheduling policy designed in Sec. 3.2.1. That is, the
transmitted requests through the fronthaul links cannot exceed the
capacity constraint of each fronthaul links. This can be verified by
the declined requests of other mixture of scheduling with Best-
effort policy (BJG, BJF, BRG and BRF) which has the same
constraint.

4.4 The Effectiveness of Scheduling policies

As our VariedLen algorithm includes three optimal scheduling
policies, we evaluate the effectiveness of these three policies here.
The first scheduling policy is fronthaul link scheduling, we plot the
number of active fronthaul links for VariedLen when V = 10000,
30000 and 50000 over time slots in Fig. 9. Also, we plot the CDF
of active fronthaul links in Fig. 10. From both figures we can see,
the fronthaul links are dynamically scheduled in our VariedLen
and more fronthaul links have been switched to active state when
V increases. When V is excessively high, VariedLen schedules
all fronthaul links to active state due to the fronthaul scheduling
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policy in Eq. (27). That is, Xi(t) < V wiαi−V β
w2

i
holds for each

fronthaul link i.
The fronthaul scheduling will decline some requests from

mobile users based on Eq. (27). We plot the proportion of declined
requests under different time slots in Fig. 11 and the CDF of
proportion of declined requests over time slots in Fig. 12. From
the figures we can see, the mobile system declines fewer requests
when the V increase. But it still declines requests with a high
parameter V due to the capacity limitation of fronthaul links
described in Sec. 2.2.

Then we evaluate the server scheduling in edge cloud, we
plot the number of running containers for VariedLen when
V = 10000, 30000 and 50000 over time slots in Fig. 13. Also,
we plot the CDF of running containers in Fig. 14. From both
figures we can see, more containers are scheduled to running state
when the time slots increase. That is because the backlog of queue
maintained by each container in edge cloud increase and more
containers have to be scheduled to running state based on the
solution described in Sec. 3.2.3.

4.5 Extended vs. Standard Lyapunov Technique

As mentioned in Sec. 3, VariedLen has extended the standard
Lyapunov technique [18] to deal with job requests with varied
lengths. While in our preliminary work [32], we only leverage the
standard Lyapunov technique to design an algorithm, i.e., RICH,
to handle job requests with fixed length. To show the novelty of
this paper, we compare the VariedLen with the RICH by using the
same mobile LiveLab trace [20] in this part. Note that the RICH
simply assumes that each job request can be finished in one time
slot and only incurs αi×1 revenue for the MSP. But the VariedLen
has considered the length of each job request. In this way, each job
request will incur αi×wi for the MSP. Therefore, we multiply the
profit gained by RICH with the mean length of all job requests and

plot the result in Fig. 15. From the figure we can see, VariedLen
achieves about 2× higher profit than that for RICH.

By extending the standard Lyapunov technique, we introduce
another parameter, i.e., the time interval length T , when designing
the VariedLen algorithm in Sec. 3.2. We need to evaluate the
sensitivity of the time interval length T on time average profit
for VariedLen. We plot the time average profit under different
control parameters V and time interval T evaluated by VariedLen
in Fig. 16 and Fig. 17, respectively. From Fig. 16 we can see, the
profit with a longer time interval is a little bit higher than that with
a shorter time interval. But when the length of a time interval T
grows, the gap diminish to zero. While in Fig. 17, for a given value
of V , the profit grows very slowly with the growth of time interval
T . These two figures suggest that the length of time interval T has
little impact on profit, which means that VariedLen is not sensitive
to the length of time interval T .

4.6 The Sensitivity of Parameters

In this subsection, we show the sensitivity of parameter αi, ∀i ∈
U , β, γ and T in time average profit maximization Problem (P)
for VariedLen algorithm. In previous evaluations, we set all the
parameters αi the same (i.e., all equal to 1), which means that
we treat all user the same. But in reality, we can flexibly assign
different users by choosing appropriate values of αi, as discussed
in Sec. 2.4.3.

We choose to change the values of half of αi and compare
the profit under different situations to show the effectiveness of
our fronthaul scheduling. We have set four types of parameters,
Type 1 is the same as previous evaluations, and Type 2 denotes
as αi = (1, 2, · · · , 1, 2) while Type 3 for αi = (1, 4, · · · , 1, 4)
and Type 4 for αi = (1, 8, · · · , 1, 8). The effectiveness of our
fronthaul scheduling can be illustrated by comparing MSPs profits
under different types of αi. For example, we expect to achieve the
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profit of Type 2 as (1+2)/2 = 1.5× than that of Type 1. However,
the experiment result shown in Fig. 18 is about 2×. However, the
experiment result shown in Fig. 18 is about 2×. Similar results
appear for Type 3 and Type 4. The reason is that the system will
schedule fronthaul links to transmit more requests with higher αi,
e.g., higher priorities or prices, to improve the profit as expected.

Then, we evaluate the sensitivity of parameter β, and plot
the time average profit for various values of β in Fig. 19. From
the figure we can see, the profit decreases with the growth of β
when the control parameter V is given. This reflects that more
power consumption needed for the fronthaul, less profit achieved
by the MSP. Meanwhile, in order to achieve the maximum level
of profit, MSP has to set a larger V when β grows. This reflects
the importance of fronthaul in C-RAN system.

We plot the time average profit for various values of γ in
Fig. 20. It can be seen that the time average profit decreases
when γ grows for a given V . Note that the parameter γ equals
to Price × PUEs in Sec. 2.4.2. Therefore, Fig. 20 reveals that
the time average profit decreases when the electricity market price
increases. Meanwhile, the system can improve the PUE of servers
to achieve higher profit.

At last, we evaluate the sensitivity of parameter η, and plot the
time average profit for different η in Fig. 21. As can be seen from
the figure, the profit increase with the growth of η when the control
parameter V is given. Recall that 1 − η denotes the idle server’s
power consumption. Therefore, Fig. 21 indicates that one can
reduce the power consumption by increasing the parameter η, i.e.,
to design more power efficient servers which consume less power
in its idle state. According to the above evaluation results, MSPs
can set proper values for each parameter in VariedLen algorithm.

5 RELATED WORK

In order to cope with the growth of mobile traffic, mobile edge
computing (or Fog computing) has been proposed and received
much interest in the literature [10], [13], [14]. For example, in
[10], a game theory had been used to efficiently schedule the
computation resource in MEC for multi-user. Also, many surveys
on MEC have emerged [45], [46]. In [45], a research outlook with
an integration of mobile computing and wireless communications
in MEC had been discussed.

At the same time, C-RAN had been presented as a new
promising network and received much interest in both industry
and academia [3], [4], [47]. However, there are fewer studies
of integration between MEC and C-RAN. Cai et al [27] had
studied the topology configuration and rate allocation in C-RAN
with the objective of optimizing the end-to-end TCP throughput
performance of mobile computing. A cross-layer resource allo-
cation model for C-RAN to minimize the overall system power
consumption in both the BBUs and RRHs had been investigated
[29]. But none of them has considered the power-performance
tradeoff in the mobile system consisting of C-RAN and MEC.
In this paper, we design the VariedLen algorithm to optimize the
power-performance tradeoff by using the Lyapunov optimization
[18]. We dynamically schedule resources including fronthaul links
in C-RAN, the Dispatcher in BBU pool and mobile servers in
edge cloud to achieve a time average profit maximization. The key
difference between this work and other studies is that we conduct
research at different levels. For example, Cai et al [27] focused
on the TCP network from the physical layer and optimized the
TCP throughput performance. Tang et al [29] focused on a cross-
layer resource allocation, including the incoming traffic rate from
the application layer and wireless channel state information from
the physical layer. While in our work, we mainly focus on the
application level with respect the throughput of the whole system
of MSP. Hence, our work is orthogonal to these studies.

It is worth noting that MEC has a strong relationship with
another mobile computing paradigm (i.e., MCC). MCC has also
gained a lot of attention in recent years [48], [49]. For exam-
ple, Kumar et al [7] had investigated the feasibility for saving
energy and extending battery lifetimes by offloading tasks to the
cloud. Zhang et al [49] considered the energy optimization under
stochastic wireless channel with theoretical framework while Chen
[48] investigated efficient offloading by utilizing game theoretical
approach in MCC.

There also exist many online solutions [19], [22], [30], [34],
[36] for power management and dynamic resource allocation
in datacenters. For example, in SaaS cloud, Zhou et al [22]
investigated the power management in the datacenter by using
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admission control and request routing approaches while Xiang
et al [36] studied the problem of greening the SaaS clouds by
VM scheduling and routing in both intra- and inter-datacenter
in a geo-distributed scenario. In [19], online algorithm had been
designed to dynamically price the VM resources, schedule jobs
and provision servers across datacenters in a geo-distributed cloud.

Different from these work mentioned above, we particularly
adjust Lyapunov optimization technique for dynamic resource
scheduling in the context of the mobile system with C-RAN and
MEC. After transforming the original optimization problem to
new problems, we have designed scheduling policies for fronthaul
links, the Dispatcher and edge servers in the whole mobile system.
The scheduling policy of fronthaul is a l0-norm problem which
is hard to solve, so we use l1-norm to relax it. Meanwhile, for
the power usage, we take the fronthaul power introduced in C-
RAN into consideration along with the servers in edge cloud.
Meanwhile, we have extended the standard Lyapunov technique
to handle the situation that users’ job can exceed the length of the
online decision making interval which cannot be handled by the
standard Lyapunov technique. The proposed algorithm, VariedLen,
can make decisions in consecutive time slots and still ensure its
performance that is close to the optimum.

While in conventional cloud datacenter, there exist many
studies [31], [39], [50], [51] for power management and dynamic
resource allocation. In [31], a dynamic speed scaling method
had been proposed to reduce the energy consumption. While
in a cloud environment, Zhang et al [50] proposed a dynamic
and heterogeneity-aware capacity provisioning for resource man-
agement. Maguluri et al [39] considered the resource allocation
problems with a stochastic model in the cluster computing. Liu et
al [51] integrated renewable supply, dynamic pricing and cooling
supply to reduce the electricity cost and environmental impact.

6 CONCLUSION

In this paper, we propose an unifying optimization framework
for maximizing the profit of MSP. The framework can jointly
schedule computation resources in MEC and network resources in
C-RAN, and handle dynamic and unpredictable requests of mobile
users due to their mobilities. Specially, we allow job requests
from different mobile users have variable lengths which can
not be handled by the standard Lyapunov technique. Hence, we
extend the standard Lyapunov technique to design the VariedLen
algorithm which consists a threshold-based scheduling policy for
the fronthaul links, a load balancing policy for request dispatching
in the BBU Dispatcher and a greedy scheduling policy to optimally
schedule the containers. Our algorithm can achieve time average
profit which is close to the optimum for MSP, while the system
stability is still strong.

In the future, we would like to extend our research in two
directions. The first direction is to consider the interference of
fronthaul transmission among all users. The other one is to design
a pricing strategy of mobile users to process their requests in MEC.
Now we only use tunable parameters for each mobile users in this
paper. While in the future, we can design a more sophisticated
pricing strategy for the mobile system.
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