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Abstract: Learning from demonstration (LfD) has been used to help robots to implement manipulation
tasks autonomously, in particular, to learn manipulation behaviors from observing the motion executed
by human demonstrators. This paper reviews recent research and development in the field of LfD.
The main focus is placed on how to demonstrate the example behaviors to the robot in assembly
operations, and how to extract the manipulation features for robot learning and generating imitative
behaviors. Diverse metrics are analyzed to evaluate the performance of robot imitation learning.
Specifically, the application of LfD in robotic assembly is a focal point in this paper.
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1. Introduction

1.1. Robotic Assembly

The industrial robots that are currently deployed in assembly lines are position-controlled and
programmed to follow desired trajectories for conducting assembly tasks [1,2]. These position-controlled
robots can handle known objects within the well-structured assembly lines very well, achieving highly
precise control in position and velocity. However, they cannot deal with any unexpected changes in
assembly operations, and need tedious reprogramming to adapt to new assembly tasks.

For instance, Knepper et al. investigated a multi-robot coordinated assembly system for furniture
assembly [3]. The geometry of individual parts was listed in a table so that a group of robots can
conduct parts delivery or parts assembly collaboratively. For the modeling and recognition of the
furniture parts, the object’s representation was predefined in CAD files so that the correct assembly
sequence can be deduced from geometric data. Suárez-Ruiz and Pham proposed a taxonomy of the
manipulation primitives for bi-manual pin insertion, which was only one of the key steps in the
autonomous assembly of an IKEA chair [4].

In general, a typical robot-assembly operation involves operating with two or more objects/parts.
Each part is a subset of the assembly. The aim of assembly is to compute an ordering of operations that
brings individual parts together so that a new product appears. Examples of assembly tasks can be
summarized below.

• Peg-in-hole, that is, a robotic gripper grabs the peg and inserts it in a hole. Peg-in-hole is the most
essential and representative assembly task that has been widely researched [5–14].

• Slide-in-the-groove, that is, a robot inserts a bolt fitting inside a groove and slides the bolt to the
desired position where the bolt is to be fixed [15].

• Bolt screwing, that is, a robot screws a self-tapping bolt into a material of unknown properties,
which requires driving a self-tapping screw into an unstructured environment [15–17].
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• Chair assembly, that is, a robot integrates chair parts together with a fastener [18,19].
• Pick-and-place, that is, a robot picks up an object as the base and places it down on a

fixture [17,20,21].
• Pipe connection, that is, a robot picks and places two union nuts on a tube [17].

As typical robot-assembly operations need to contact the workpieces to be assembled, it is
crucial to estimate the accompanying force–torque profiles besides position and orientation trajectories.
To learn the execution of assembly operations, a robot needs to estimate the pose of the workpieces
first, and an assembly sequence is then generated by learning from human demonstration. For some
particular objects appearing in the assembly workspace, some specialized grippers should be
designed to grab these parts with various shapes and acquire force–torque data. In particular,
during a screwing task, the material to be screwed is unstructured, which makes the control of
rotating angles more complicated.

Considering these challenges, robotic assembly remains one of the most challenging problems in
the field of robotics research, especially in unstructured environments. In contrast, humans have the
excellent skills to perform assembly tasks that require compliance and force control. This motivates
us to review the current research of learning from demonstration (LfD) in robotics assembly and its
potential future directions.

1.2. Learning from Demonstration

Traditional robots require users to have programming skills, which makes the robots beyond
the reach of the general public. Nowadays, robotics researchers have worked on a new generation of
robots that could learn from demonstration and have no need of programming. In other words, these
new robots could perceive human movements using their sensors and reproduce the same actions that
humans do. They can be used by the general public who have no programming skills at all.

The term learning from demonstration (LfD), or learning by imitation, was analyzed in depth
by Bakker and Kuniyoshi, who defined what imitation is and what robot imitation should be.
From a psychological point of view, Thorndike defined imitation as learning to do an act being
witnessed [22]. Based on this, Bakker indicated that imitation takes place when an agent learns
a behavior from observing the execution of that behavior by a teacher [23]. This was the starting point
for establishing the features of robot imitation: (i) adaptation; (ii) efficient communication between the
teacher and the learner; (iii) compatibility with other learning algorithms; and (iv) efficient learning in
a society of agents [24].

In addition, three processes in robot imitation have been identified, namely sensing,
understanding and doing. In other words, they can be redefined as: observe an action, represent the
action and reproduce the action. Figure 1 shows these three main issues and all the associated current
challenges in robot imitation.

Observation

Execution

Encoding

• Motivation to observe

• Which actions to observe

• Perceiving teacher actions

• Relevant context

• Motivation to reproduce

• When to reproduce

• Adaptation of the action

• Representation of actions

• Mapping observed actions

Figure 1. The three main phases in imitation learning according to [23].
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Mataric et al. defined imitation learning from a biological perspective, that is, a behavior-based
control [25]. They indicated that key challenges are how to interpret and understand observed
behaviors and how to integrate the perception and motion-control systems to reconstruct what is
observed. In other words, there are two basic tasks in imitation learning: (i) to recognize the human
behavior from visual input; (ii) to find methods for structuring the motor-control system for general
movements and imitation learning capabilities.

Current approaches to represent a skill can be broadly divided into two trends: (i) trajectories
encoding—a low-level representation of the skill, taking the form of a nonlinear mapping between
sensory and motor information; (ii) symbolic encoding—a high-level representation of the skill that
decomposes the skill in a sequence of action–perception units [26]. In general, to achieve robot learning
from demonstration, we need to address three challenges: the correspondence problem, generalization,
and robustness against perturbation [27]. Firstly, the correspondence problem means how to map
links and joints from a human to a robot. Secondly, learning by demonstration is feasible only if
a demonstrated movement can be generalized, such as different goal positions. Finally, we need
robustness against perturbation: exactly replaying an observed movement is unrealistic in a dynamic
environment, in which obstacles may appear suddenly.

Most assembly tasks can be represented as a sequence of individual movements with specific
goals, which can be modeled as dynamic movement primitives (DMPs, explained in Section 4.2), where
DMPs are the fundamental blocks of the LfD architecture. In addition, LfD has been suggested recently
as an effective means to speed up the programming of learning processes from the low-level control to
the high-level assembly planning [28]. Therefore, LfD is a preferable approach for robotic assembly.

Recently, LfD has been applied to robotic assembly [29–31]. Takamatsu et al. introduced LfD
to robotic assembly and proposed a method for recognizing assembly tasks by human
demonstration [32]. They defined sufficient subskills and critical transition-assembly tasks,
and implemented a peg-insertion task on a dual-arm robot with a real-time stereo–vision system.
The assembly task is completed with two rigid polyhedral objects recognized by a conventional
6-DOF (degree of freedom) object-tracking system. The assembly tasks are encapsulated into chains
of two-object relationships, such as maintaining, detaching and constraining. In order to make the
process of assembly task smooth, critical transitions are also defined.

The human–robot cooperation in assembly tasks reduces the complexity of impedance control.
Rozo et al. worked one step forward to achieve a multimodal LfD framework, in which a robot
extracted the impedance-based behavior of the teacher recording both force patterns and visual
information in a collaborative table-assembly task [33]. It should be noted that the experiments did
not take into account the independence and autonomy of the robot. For the modeling of assembly
task, Dantam et al. transferred the human demonstrations into a sequence of semantically relevant
object-connection movements [34]. Then, the sequence of movements is further abstracted as motion
grammar, which represents the demonstrated task. It should be noted that the assembly task is
implemented in simulation.

1.3. Outline

Different from the previous survey of learning from demonstration [35], this paper mainly focuses
on the applications of LfD techniques in robotic assembly. The rest of the paper is organized as follows.
Section 2 outlines the major research problems in robotic assembly, which are classified into four
categories. The key issue of how to demonstrate the assembly task to a robot is explained in Section 3,
and how to abstract the features of the assembly task is illustrated in Section 4. Then, we examine the
question of how to evaluate the performance of the imitator in Section 5. Finally, a brief conclusion
and discussion on the open research areas in LfD and robotic assembly are presented in Section 6.
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2. Research Problems in Robotic Assembly

Robotic assembly needs a high degree of repeatability, flexibility, and reliability to improve the
automation performance in assembly lines. Therefore, many specific research problems have to be
resolved in order to achieve automated robotic assembly in unstructured environments. The robot
software should be able to convert the sequences of assembly tasks into individual movements,
estimate the pose of assembly parts, and calculate the required forces and torques. As these are many
challenges in robotic assembly, this section will be focused on four categories which are closely related
to LfD: pose estimation, force estimation, assembly sequences, and assembly with screwing.

2.1. Pose Estimation

In assembly lines, it is often indispensable that the position and orientation of workpieces are
predetermined with a high accuracy. The vision-based pose estimation is a low-cost solution to
determine the position and orientation of assembly parts based on point cloud data [5]. The texture
projector could also be used to acquire high-density point clouds and help the stereo matching process.
Abu-Dakka et al. used a 3D camera Kinect for capturing 3D scene data, and the pose of the known
objects could be estimated based on the point cloud data [11].

Before pose estimation, an object should be recognized by using local features, as this is an
effective way for matching [36]. Choi et al. developed a family of pose-estimation algorithms that use
boundary points with directions and boundary line segments along with the oriented surface points to
provide high accuracy for a wide class of industrial parts [37]. However, in the cluttered environments
where the target objects are placed with self-occlusions and sensor noise, assembly robots require
robust vision to reliably recognize and locate the objects. Zeng et al. used a fully convolutional neural
network to segment and label multiple views of a scene, and then fit predefined 3D object models to
the segmentations to obtain the 6D object pose rather than 3D location [38].

However, the vision-based pose estimation has limitations due to the limited resolution of the
vision system. In addition, in the peg-in-hole task, the peg would usually occlude the hole when the
robot approaches the hole. Therefore, vision-based pose estimation is not suitable for the high-accuracy
assembly tasks in which two parts occlude each other. If the camera is mounted on the robotic
arm, the occlude problem can be eliminated, but additional sensory data is needed to estimate the
camera pose [39].

To correct the pose of assembly parts, Xiao et al. devised a nominal assembly-motion
sequence to collect data from exploratory complaint movements [40]. The data are then used to
update the subsequent assembly sequence to correct errors in the nominal assembly operation.
Nevertheless, the uncertainty in the pose of the manipulated object should be further addressed
in the future research.

2.2. Force Estimation

In assembly tasks, force control could provide stable contact between the manipulator and the
workpiece [5–7,30,41–45]. As human operators perform compliant motions during assembly, the robot
should acquire the contact forces that occur in the process of assembly. During the task execution,
the robot learns to replicate the learned forces and torques rather than positions and orientations
from the trajectory. The force information may also be used to speed up the subsequent operations of
assembly tasks [8,9,12–15,46].

The force applied to the workpiece is usually detected by using the force sensor on the
robot end-effector, or using force sensors on each joint of the robot arm, for example, in the
DLR (German Aerospace Centre) lightweight arm. The problem of using inside force sensors is
that the measured forces must be compensated for disturbance forces (for example, gravity and
friction) before use. The feedback force is then introduced to the control system that generates
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a corresponding translational/rotational velocity command on the robot manipulator to push the
manipulated workpiece.

To enable a robot to interact with the different stiffness, Peternel et al. used the impedance-control
interface to teach it some assembly tasks [47]. The human teacher controlled the robot through haptic
and impedance-control interfaces. The robot was taught to learn how to perform a slide-in-the-groove
assembly task where the robot inserted one part fitted with a bolt into another part. However, the low
movement variability did not necessarily correspond to the high impedance force in some assembly
tasks such as slide-in-the-groove tasks.

The dedicated force–torque sensors can easily acquire the force, but may not be easily able to
mount to the robot hand. Alternatively, Wahrburg et al. deployed motor signals and joint angles to
reconstruct the external forces [42]. It should be noted that force/torque estimation is not a problem
and has been successful in the traditional robotic assembly in structured environments. However,
it is a problem for robotic assembly in unstructured environments. Force/torque estimation is not
only about acquiring force/torque data but also about using these data for a robot to accommodate its
interaction with the different stiffness.

2.3. Assembly Sequence

As an appropriate assembly sequence helps minimize the cost of assembly, the assembly sequences
are predefined manually in the traditional robotic-assembly systems. However, the detailed assembly
sequence defined in [44] significantly holds back the automation of next-generation assembly lines.
To achieve an efficient assembly sequence for a task, an optimization algorithm is required to find the
optimum plan. Bahubalendruni et al. found that assembly predicates (that is, some sets of constraints)
have a significant influence on optimal assembly-sequence generation [48].

Wan and Harada presented an integrated assembly and motion-planning system to search the
assembly sequence with the help of a horizontal surface as the supporting fixture [20]. Kramberger et al.
proposed two novel algorithms that learned the precedence constraints and relative part-size
constraints [8]. The first algorithm used precedence constraints to generate previously unseen
assembly sequences and guaranteed the feasibility of the assembly sequences by learning from human
demonstration. The second algorithm learned how to mate the parts by exploratory executions,
that is, learning-by-exploration.

Learning assembly sequences from demonstration can be tailored for general assembly
tasks [5,8,21,30,31,49]. Mollard et al. proposed a method to learn from the demonstration to
automatically detect the constraints between pairs of objects, decompose subtasks of the demonstration,
and learn hierarchical assembly tasks [19]. In addition, the learned sequences were further refined by
alternating corrections and executions. It should be noticed that the challenge in defining assembly
sequence is how to automatically extract the movement primitives and generate a feasible assembly
sequence according to the manipulated workpieces.

2.4. Assembly with Screwing

Screwing is one of the most challenge subtasks of assembly, and requires robust force control so
that the robot could screw a self-tapping bolt into a material of unknown properties. The self-tapping
screw driving task consists of two main steps. The first step is to insert the screwdriver into the head
of a bolt. The contact stiffness is kept at a constant value such that the screwdriver keeps touching the
head of the bolt. The second step is to fit the screwdriver into the screw head and rotate it for a specific
angle to actuate the bolt into the unstructured material.

To measure the specific force and angle needed for actuating the screwdriver, Peternel et al.
used a human demonstrator to rotate the screwdriver first and captured the correspondence angle by
a Haptic Master gimbal device. The information was then mapped to the end-effector rotation of the
robot [15]. It should be noted that the torque used to compensate the rotational stiffness is unknown,
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so the demonstrator manually commands high rotational stiffness through the stiffness control to
make the robot exactly follow the demonstrated rotation.

There are significant uncertainties existing in the screwing task, such as the screwdriver may
not catch the head of the bolt correctly. In fact, as the complexity of the task increases, it becomes
increasingly common that tasks may be executed with errors. Instead of preventing errors from
happening, Laursen et al. proposed a system to automatically handle certain categories of errors
through automatic reverse execution to a safe status, from where forward execution can be resumed [16].
The adaptation of an assembly action is essential in the execution phase of LfD, as presented in Figure 1.
Besides, the adaptation of uncertainties in robotic assembly still needs further investigation.

In summary, pose estimation, force estimation, assembly sequence, and assembly with screwing
have been partially resolved in limited conditions, but are still far away from the industrial application.
Most of the current assembly systems are tested in the relatively simple tasks, like peg-in-hole.
In addition, a more robust and efficient control strategy is needed to deal with complicated assembly
tasks in an unconstructed environment.

3. Demonstration Approach

Robot learning from demonstration requires the acquisition of example trajectories, which can
be captured in various ways. Alternatively, a robot can be physically guided through the desired
trajectory by its operator, and the learned trajectory is recorded proprioceptively for demonstration.
This method requires that the robot is back-drivable [50,51] or can compensate for the influences
of external forces [52–54]. In the following subsections, we discuss various works that utilize these
demonstration techniques.

3.1. Kinesthetic Demonstration

The advantage of kinesthetic guiding is that the movements are recorded directly on the
learning robot and do not need to be first transferred from a system with different kinematics
and dynamics. During the demonstration movement, the robot’s hands are guided by a human
demonstrator [55–57]. It should be noted that kinesthetic teaching might affect the acquired forces and
torques, especially when joint force sensors are used to estimate forces and torques for controlling of
assembly tasks on real robots. In addition, if the manipulated objects are large, far apart, or dangerous
to deal with, kinesthetic guiding can be problematic.

Figure 2 shows that the robot was taught through kinesthetics in gravity-compensation mode,
that is, by the demonstrator moving its arm through each step of the task. To achieve this, the robot
motors were set in a passive mode so that each limb could be moved by the human demonstrator.
The kinematics of each joint motion were recorded at a rate by proprioception during the demonstration.
The robot was provided with motor encoders for every DOF. By moving its limb, the robot “sensed” its
own motion by registering the joint-angle data provided by the motor encoders. The interaction with
the robot was more playful than using a graphical simulation, which enabled the user to implicitly feel
the robot’s limitation in its real-world environment.

In [58], example tasks were provided to the robot via kinesthetic demonstration, in which the
teacher physically moved the robot’s arm in the zero-gravity mode to perform the task, and used the
button on the cuff to set the closure of the grippers. By pushing the button on an arm, the recording
began and the teacher started to move the same arm to perform manipulation. When the manipulation
was done, the teacher pressed the button again to pause the recording. The teacher simply repeated
the steps to continue the manipulation with another hand and the recording. The signals of arm
activation and the grippers’ state during the demonstration were recorded to segment the tool-use
process into sequential manipulation primitives. Each primitive was characterized by using a starting
pose, an ending pose of the actuated end-effector, and the sequence of the poses. The primitives are
learned via the DMPs framework. These primitives and the sequencing of the primitives constitute the
model for tool use.
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Figure 2. Human demonstrator teaches the Kuka LWR arm to learn peg-in-hole operations by kinesthetic
guiding [11].

3.2. Motion-Sensor Demonstration

The limb movements of a human demonstrator are very complex and difficult to capture.
Computer vision could be used in capturing human-demonstrator motion with a low accuracy [59].
In contrast, the optical or magnetic marker-based tracking systems can achieve high accuracy and
avoid visual overlapping of computer vision [60–63]. Therefore, marker-based tracking devices are
deployed to track the manipulation movements of a human demonstrator for assembly tasks.

Skoglund et al. presented a method for imitation learning based on fuzzy modelling and
a next-state-planner in the learning-from-demonstration framework [64]. A glove with LEDs at
its back and a few tactile sensors on each fingertip was used in the impulse motion-capturing system.
The LEDs were used to compute the orientation of the wrist, and the tactile sensors were to detect
contact with objects. Alternatively, a motion sensor can be used for tracking instead of LEDs.

Color markers are a simple and effective motion tracking technique used in motion-sensor
demonstration. Acosta-Calderon and Hu proposed a robot-imitation system, in which the robot
imitator observed a human demonstrator performing arm movements [65]. The color markers on
the human demonstrator were extracted and tracked by the color-tracking system. The obtained
information was then used to solve the correspondence problem as described in the previous
section. The reference point used to achieve this correspondence is the shoulder of the demonstrator,
which corresponded to the base of the robotic arm.

To capture human movement with whole-body motion data, a total of 34 markers were used in
a motion-capture setup [66]. During the data-collection process, a sequence of continuous movement
data was obtained, for example, a variety of human walking motions, a squat motion, kicking motions
and raising arm motions. Some of the motions are discrete, others are continuous. Therefore,
the learning system should segment the motions automatically. The segmentation of full-body
human-motion patterns was studied in [67]. The human also observed the motion sequence, manually
segmented it and then labelled these motions. Note that the motions segmented by the human were
set as ground truth, and no further criteria were used.

In Figure 3, a motion sensor mounted in the glove is used for tracking the 6D pose (the position and
orientation) relative to the transmitter; the robot then receives a transformed pose on a 1:1 movement
scale. The peg-in-hole experiments show that the data glove is inefficient compared with using an
external device during the teleoperation process. In Figure 4, both hand-pose and contact forces are
measured by a tactile glove. In robotic assembly, the force sensor is essential as the task requires
accurate control of force. Therefore, the motion sensor and force sensor are usually combined together.
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Figure 3. The motion sensor is intergrated in the glove at the back of the hand [68].

Figure 4. A tactile glove is used to reconstruct both forces and poses from human demonstrations,
enabling the robot to directly observe forces used in demonstrations so that the robot can successfully
perform a screwing task: opening a medicine bottle [69].

3.3. Teleoperated Demonstration

During the teleoperated demonstration, a human operator uses a control box or delivers hints to
control a robot to execute assembly tasks, and the robot keeps recording data from its own sensors,
see Figure 5. Similar to the kinesthetic demonstration, the movements performed by the robot are
recorded directly on the robot, that is, the mapping is direct, and no corresponding issue exists.
Learning from teleoperated demonstrations is an attractive approach to controlling complex robots.

Teleoperation has the advantage of establishing an efficient communication and operation
strategy between humans and robots. It has been applied in various applications, including remote
control of a mobile robotic assistant [70–72], performing an assembly task [68,73,74], performing
a spatial-positioning task [75], demonstrating grasp preshapes to the robot [76], transmitting
both dynamic and communicative information on a collaborative task [77], and picking and
moving tasks [78].

In assembly tasks, when a human demonstrator performs the assembly motions, the pose
information is fed into a real-time tracking system so that the robot can copy the movements of
the demonstrator [13]. The Robonaut, a space-capable humanoid robot from NASA, is controlled by a
human through full-immersion teleoperation [79]. Its stereo camera and sound sensor transmit vision
and auditory information to the teleoperator through a helmet worn on his or her head. Although the
full-immersion teleoperation is a good strategy for the Robonaut, its dexterous control is very tedious
and tiring.

During teleoperation, the human operator usually manipulates the robot through a controller,
standing far away from the robot. In Figure 6, the human teaches the robot to perform the
slide-in-the-groove task, as shown in the second column, and then the robot autonomously repeats the
learned skill, as shown in the third column. For the bolt-screwing task, as shown in the right photo,
DMPs are used to encode the trajectories after demonstrations. Sometimes the controller can be a part
of the robot itself. Tanwani et al. applied teleoperation in the robot- learning process where the robot is
required to do the tasks of opening/closing a valve and pick–place an object [80]. The human operator
held the left arm of the robot and controlled its right arm to receive visual feedback from the camera
mounted on the end of the right arm. In the teleoperation demonstration, the left arm of the robot
plays the role of controller and the right arm plays as an effector.
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Figure 5. Human demonstrator performs the peg-in-hole task, in teleoperation mode, as the robot
copies the movements of the human [13].

Delivering hints to robots is another way of teleoperation. Human operators deliver hints to the
robot by repeating the desired tasks many times, or by pointing out the important elements of the skill.
The hints can be addressed in various ways through the whole learning procedure. One of the hints is
vocal deixis, that is, an instruction from a human operator.

Pardowitz et al. used vocal comments given by a demonstrator while demonstrating the task to
speed up the learning of robots [81]. The vocal elucidations are integrated into the weight function,
which determines the relevance of features consisted in manipulation segments.

Generally speaking, the acoustic of speech consists of three main bits information: the
identification of the speaker, the linguistic content of the speech, and the way of speaking. Instead
of focusing on the linguistic content of the vocal information, Breazeal et al. proposed an approach
to teach the robot how to understand the speaker’s affective communicative intent [82]. In the LfD
paradigm, understanding of the intention of the human demonstrator through HRI (Human-Robot
Interaction) is the key point for the robot to learn. Demonstrations are goal-directed, and the robot is
expected to understand the human’s intention and extract the goal of the demonstrated examples [83].

The vocal or visual pattern could be used in anthropomorphic robots [84]. The understanding
of the human intention is transferred from the standpoint of movement matching [85,86] and
joint motion replication [27,56,87–92]. Recent research works believe that robots will need to
understand the human’s intention as socially cognitive learners, even if the examples are not perfectly
demonstrated [93–95]. However, to keep track of intentions to complete desired goals, the imitating
robots need a learning method. The solution could be building a cognitive model of the human
teacher [96,97], or using simulations of perspective [98].

Figure 6. Experimental setups for the slide-in-the-groove assembly task (left and middle photos) and
bolt-screwing task (right photo) [15].
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4. Feature Extraction

When a dataset of demonstration trajectories (that is, state-action examples) has been collected
by using the demonstration approaches mentioned above, we need to consider how to map these
data into a mathematical model. There are thousands of position data points distributing along
a demonstration trajectory, and no need to record every point, as the movement trajectories are
hardly repeatable. In addition, direct replication of the demonstrated trajectories may lead to poor
performance because of the limited accuracy of the vision system and uncertainties in the gripping
pose. Therefore, learning a policy to extract and generalize the key features of the assembly movements
is the fundamental part of LfD.

Hidden Markov models (HMMs) are a popular methodology to encode and generalize the
demonstration examples [99–114]. HMM is a robust probabilistic method to encapsulate human
motion, which contains spatial and temporal variables, through numerous demonstrations [115].
Initially, the training of HMMs is learned offline, and the sample data are manually classified into
groups before learning. To make HMMs become online, Kulic et al. developed adaptive hidden
Markov chains for incremental and autonomous learning of the motion patterns, which were extracted
into a dynamic stochastic model.

The probabilistic approach can also be integrated with other methods to learn robust models of
human motion through imitation. Calinon et al. combined HMM with Gaussian mixture regression
(GMR) and dynamical systems to extract redundancies from a set of examples [112]. The original
HMMs depend on a fixed number of hidden states, and model the observation as an independent
state when segmenting continuous motion. To fix the two major drawbacks of HMMs, Niekum et al.
proposed the beta process autoregressive hidden Markov model, in which the modes are easily shared
among all models [114].

Based on Gaussian mixture models (GMMs), Chernova and Veloso proposed an interactive
policy-learning strategy that reduces the size of training sets by allowing an agent to actively request
and effectively represent the most relevant training data [116]. Calinon et al. encoded the motion
examples by estimating the optimal GMM, and then the trajectories were generalized through
GMR [56]. Tanwani and Calinon extended the semi-tied GMMs for robust learning and adaptation
of robot-manipulation tasks by reusing the synergies in various parts of the task sharing similar
coordination patterns [80].

Dynamic movement primitives (DMPs) represent a fundamentally different approach to motion
representation based on nonlinear dynamic systems. DMP is robust to spatial perturbation and suitable
for following a specific movement path. Calinon et al. [112] used DMPs to reproduce the smoothest
movement, and the learning process was faster than HMM, TGMR (time-dependent Gaussian mixture
regression), LWR (locally weighted regression), and LWPR (locally weighted projection regression).
Li and Fritz [58] extended the original DMP formulation by adding a function to define the shape of
the movement, which could adapt the movement better to a novel goal position through adjusting
the corresponding goal parameter. Ude et al. [92] utilized the available training movements and the
task goal to enable the generalization of DMPs to new situations, and able to produce a demonstrated
periodic trajectory.

Figure 7 gives an overview of the input–output flow through the complete model, and shows how
to extract the feature and how to carry on the whole imitation-learning process. Firstly, the human
demonstrator performed demonstration motions X, then the motions were projected to a latent space
using principal component analysis (PCA), in the what-to-imitate module. After being reduced of
dimensionality, signals ξ were temporally aligned through the dynamic time warping (DTW) method.
The Gaussian mixture model (GMM) and Bernoulli mixture model (BMM) were then optimized to
encode the motion as generalized signals ξ̂ with the associated time-dependent covariance matrix Σ̂s.

In the metric module, a time-dependent similarity-measurement function was defined, considering
the relative weight of each variable and dependencies through the variables included in the optional
prior matrix P. After that, the trajectory of the imitating motion is computed in the how-to-imitate
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module, aiming at optimizing the metric H. The trajectory was generated by using the robot’s
architecture Jacobian matrix Ĵ, and the initial position of the object Os within the workspace taken into
consideration. Finally, the processed data ξ ′ in the latent space is reconstructed to the original data
space X′ before the robot imitation.
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data encoding
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task constraints

Optimal trajectory 
generation
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Figure 7. Information flow across the complete system [56].

Three main models used in the feature extraction of LfD will be analyzed in the following
subsections, namely the hidden Markov model (HMM), dynamic movement primitives (DMPs),
and Gaussian mixture model (GMM).

4.1. Hidden Markov Models

The hidden Markov model (HMM, see Appendix A.1) is a statistical model used to describe a
Markov process with unobserved states. An HMM can be presented as the simplest dynamic Bayesian
network. The key problem in HMM is to resolve the hidden parameters that are used to do further
analyzing (for example, pattern recognition) from the visible parameters. In the normal Markov model,
the state is directly visible to the observer, therefore, the transformation probabilities between states
are the whole parameters. While the states are not visible in the hidden Markov model, some variables
that are influenced by the states are visible. Every state has a probability distribution on the token
of the possible output, and therefore the sequence of the output token reveals the information of the
state’s sequence.

In general, HMM can be simply defined with three tuples as λ = (A, B, π). HMM is the
extension of standard Markov model in which the model is updated with observable state sets and the
probabilities between the observable states and hidden states. In addition, the temporal variation of the
latent representation of the robot’s motion can be encoded in an HMM [55]. Trajectories demonstrated
by human operators consist of a set of positions x and velocities ẋ. The joint distribution P(x, ẋ) is
represented as a continuous HMM of K states, which are encoded by Gaussian mixture regression
(GMR). For each Gaussian distribution of HMM, the centre and covariance matrix are defined by the
equation based on positions x and velocities ẋ.

The influence of different Gaussian distributions is defined by the corresponding weight
coefficients hi,t by taking into consideration the spatial information and the sequential information in
the HMM. In a basic HMM, sometimes the states may be unstable and have a poor solution. For this
reason, Calinon et al. extended the basic control model by integrating an acceleration-based controller
to keep the robot following the learned nonlinear dynamic movements [112]. Kuli’c et al. used HMM
to extract the motion sequences tracked by reflective markers located on various joints of the human
body [66]. HMM is chosen to model motion movements due to its ability to encapsulate both spatial
and temporal variability. Furthermore, HMMs can be used to recognise labeled motions and generate
new motions at the same time, because it is a generative model.

4.2. Dynamic Movement Primitives

Dynamic movement primitives (DMPs, see Appendix A.2) was originally proposed by
Ijspeert et al. [27], and further extended in [58]. The main question of DMPs is how to formulate
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dynamic movement equations to flexibly represent the dynamic performance of robotic joint motors,
without the need of manually tuning parameters and ensuring the system stability. The desired
movement primitives are built on variables representing the kinematic state of the dynamic system,
such as positions, velocities, and accelerations. DMP is a kind of high-dimensional control policy
and has many favorable features. Firstly, the architecture can be applied to any general movements
within the joint’s limitation. Secondly, the dynamic model is time-invariant. Thirdly, the system is
convergent at the end. Lastly, the temporal and spatial variables can be decoupled. Each DMP has
localized generalization of the movement modeled.

DMP is a favorable way to deal with the complex assembly motion by decoupling the motion into
a DMP sequence [6,8,31]. Nemec et al. encoded the desired peg-insertion trajectories into DMPs, where
each position/orientation dimension was encoded as an individual DMP [14]. In the self-tapping
screw driving task, Peternel et al. collected the commanded position, rotation and stiffness variables,
which were used to represent the phase-normalised trajectories [15].

Any demonstrated movements that are observed by the robot are encoded by a set of nonlinear
differential equations to represent and reproduce these movements, that is, movement primitives.
Based on this framework, a library of movement primitives is built by labeling each encoded movement
primitive according to the task classification (for example, approaching, picking, placing, moving,
and releasing). To address the correspondence problem, Pastor et al. [27] used resolved motion rate
inverse kinematics to map the end-effector position and gripper orientation onto the corresponding
motor angles. To pick up an object from a table, the sequence of movement primitives recalled from
the library is approaching–picking–moving–placing.

To increase the end-effector’s range, Li and Fritz proposed a hierarchical architecture to embed
tool use from demonstrations by modelling different subtasks as individual DMPs [58]. In the
learning-from-demonstration framework, the temporal order for dual-arm coordination is learned on
a higher level, and primitives are learned by constructing DMPs from exemplars on the lower level.
The pipeline is shown in Figure 8. The learning process is divided into temporal order at a higher level
and DMPs at a lower level. The solid arrow means the process of modeling, while the dashed arrow is
for the process of repeating the learned skill on the novel task.

Tool use with 
demonstration

Tool use with 
novel setting

Task 
coordination

Primitives replay

Temporal order

Dynamic 
movement  
primitives 
(DMPs)

Left-arm 
controller

Right-arm 
controller

Learning from demonstration

Figure 8. The hierarchical architecture of teaching robots the use of human tools in a
learning-from-demonstration framework [58].

Compared to an end-to-end trajectory model that queries the inverse kinematic solver for the start
and end positions, applying DMPs to every movement primitive significantly improves the success
rate for using tools [58]. Although the end-to-end model provides a motor-position solver, the physical
constraint of the tool is neglected, leading to a failure manipulation.
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4.3. Gaussian Mixture Models

Gaussian mixture models (GMMs, see Appendix A.3) [117] are probabilistic models for clustering
and density estimation. As mixture models, they do not need to know which classification a datapoint
belongs to. Therefore, the model can learn the classification automatically. A Gaussian mixture model
is constituted by two categories of parameters, the mixture component weights, and the component
means and variances/covariances.

GMMs are powerful tools for robotic motion modeling, as the approaches are robust to noise.
While in high-dimensional spaces and the sample data is noisy or the sample amount is not enough,
Gaussian mixture components that have full covariance matrices are confronted with the problem of
overfitting the sample datapoints. By decomposing the covariance into two parts—a common latent
feature matrix and a component-specific diagonal matrix—the mixture components are then forced to
align along a set of common coordination patterns. The semi-tied GMM yields favorable characteristics
in the latent space that can be reused in other parts of the learning skill [80]. Combined with expectation
maximization, GMM is outperforming many assembly modeling approaches, like gravitational
search–fuzzy clustering algorithm (GS–FCA), stochastic gradient boosting (SGB), and classical fuzzy
classifier [43].

In summary, HMMs are suitable for modeling motions with both spatial and temporal variability,
while DMPs are time-invariant and can be applied to any general movement within the joint’s
limitation. GMMs are robust to noise but may lead to overfitting when in high-dimensional spaces or
when the sample data is not good enough. For a better performance, HMMs, DMPs, and GMMs are
usually combined with other optimization algorithms as presented above.

5. Metric of Imitation Performance

Determining a metric of imitation performance is a key element for evaluating LfD. In the
execution phase (see Figure 1), the metric is the motivation for the robot to reproduce. Once the metric
is set, an optimal controller could be found by minimizing this metric (for example, by evaluating
several reproductive attempts or by deriving the metric to find an optimum). The imitation metric
plays the role of the cost function or the reward function for reproducing the skill [118]. In other words,
the metric of imitation quantitatively translates human intentions during the demonstrations and
evaluates the similarity of the robot-repeating performance. In the robotic assembly, the evaluation
of the robot’s performance is intuitive, accomplishing the assembly sequence as demonstrated and
assembling the individual parts together. However, a specific built-in metric is indispensable if we
want to drive and optimize the learning process. Figure 9 shows an example of the use of an imitation
metric, and how to use the metric to drive the robot’s reproduction.

Demonstrated effect 
model

Corresponding effects 
imitator

Relative displacement

Absolute position

Relative position

Figure 9. An example of illustrating how to use three different displacements (relative displacement,
absolute position, and relative position) to evaluate a reproduction attempt and find an optimal
controller for the reproduction of a task [119].
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LfD is a relatively young but rapidly growing research field in which a wide variety of challenges
have been addressed. The most intuitive metric of evaluation is to minimize the difference between
the observed motion repeated by the robot and the teaching motion demonstrated by the human
teacher [120–122]. However, there exists little direct comparison between different feature-extracting
models of LfD currently, since the evaluation is constrained to the specific learning task and robotic
platform. LfD needs a set of unified evaluation metrics to compare the different imitation systems.
The existing approaches mainly consider the variance and correlation information of joint angles,
trajectory paths, and object–hand relation.

5.1. Weighted Similarity Measure

Taking only the position of the trajectory into consideration, a Euclidean distance measure can be
defined as:

D−1

∑
i=1

ωi(ξs,i − ξ̂s,i)
2 = (ξs − ξ̂s)

TW(ξs − ξ̂s), (1)

where ξs is the candidate position of the trajectory reproduced by the robot, ξ̂s is the desired position
of the optimum trajectory, and both position points have the same dimensionality (D− 1). It should
be noted that the optimum trajectory is not equal to the demonstrated trajectory, as the body schema
of the human and robot are very different. W is the time-dependent matrix with dimensionality of
(D− 1)× (D− 1). The matrix’s diagonal variables ωi are the weights defining the influence of each
corresponding point. Generally, W is a full covariance matrix, which represents the correlations across
the different variables.

5.2. Generic Similarity Measure

Generic similarity measure H is a general formalism for evaluating the reproduction of a task,
proposed in [123]. Compared to the weighted similarity measure of Euclidean distance defined in
Equation (1), the similarity measure H takes into account more variables, such as the variations
of constraints and the dependencies across the variables. It should be noted that the matrix is
continuous, positive, and is estimable at any point along the trajectory. In the latent joint space,
given the generalized joint angle trajectories ξ̂θ

s , the generalized hand paths ξ̂x
s , and the generalized

hands–object distance vectors ξ̂
y
s , which are obtained from the demonstrated examples, the generic

similarity measure H is defined as:

H = (ξθ
s − ξ̂θ

s )
TWθ(ξθ

s − ξ̂θ
s ) + (ξx

s − ξ̂x
s )

TWx(ξx
s − ξ̂x

s ) + (ξ
y
s − ξ̂

y
s )

TWy(ξ
y
s − ξ̂

y
s ), (2)

where {ξθ
s , ξx

s , ξ
y
s } represent the candidate trajectories for repeating the movements.

5.3. Combination of Metrics

Calinon et al. used five metrics to evaluate a reproduction attempt x′ ∈ R(D×T) reproduced from
the demonstrated example set x ∈ R(D×M×T) [112]. The last two metrics consider the computation
time of the learning and retrieval process, which partially depends on the performance of the central
processing unit, so here, only the other three metrics will be introduced.

M1: The metric evaluates the spatial and temporal information of the reproduced motion,
where a root-mean-square (RMS) error is calculated based on the position difference:

M1 =
1

MT
ΣM

m=1ΣT
t=1‖x′t − xm,t‖, (3)

where M is the number of demonstrations and T is the moment along the demonstrating processes.
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M2: In this metric, the imitated motion is first temporally aligned with the demonstrations
through dynamic time warping (DTW) [115], and then an RMS based on the position difference similar
toM1 is calculated. However, not likeM1, spatial information has more priorities here, that is, the
metric compares the whole path instead of the exact trajectory along time.

M3: This metric considers the smoothness of the imitated motion by calculating the derivation of
the acceleration extracted from the motion:

M3 =
1
T

ΣT
t=1‖

...
x ′t‖. (4)

The smoothness is very useful, especially for evaluating the transition between different
movement primitives.

Calinon et al. also used the above three metrics to evaluate the stability of the imitation system by
superposing random force along the motion. The combination of the metrics provides a comprehensive
evaluation of the imitation learning system. Most of the current imitative systems are evaluated
through completing particular tasks as demonstrated by the teachers. Pastor et al. demonstrated the
utility of DMPs in a robot demonstration of water-serving [27], as shown in Figure 10. Firstly, a human
operator demonstrates the pouring task, including grasping, pouring, retreating bottle and releasing
movements. Secondly, the robot extracts the movement primitives from the observed demonstrations
and adds the primitives to the motion library. Thirdly, the experimental environment (water and
cups) is prepared. Fourthly, the sequence of movement primitives is manually determined. Fifthly,
appropriate goals are assigned to each DMP. Finally, the robot reproduces the demonstrated motion
with the determined sequence of primitives and learns to apply the skill to new goal positions by
adjusting the goal of the pouring movement.

Figure 10. Example of the movement reproduction and generalization in a new environment with the
Sarcos Slave Arm. The top row shows that the robot executes a pouring task by pouring water into the
inner cup. The bottom row is the reproduction of a pouring task with a new goal, the outer cup [27].

To demonstrate the framework’s ability to adapt online to new goals, as well as to avoid obstacles,
Pastor et al. extended the experimental setup with a stereo camera system. The robot needed to adapt
movements to goals that changed their position during the robot’s movement, as shown in Figure 11.



Robotics 2018, 7, 17 16 of 25

Figure 11. Example of placing a red cup on a green coaster. The top row shows that the robot places
the cup in a fixed position. The middle row shows that the robot places the cup on a goal position
which changes location during placing. The bottom row shows that the robot places the cup with the
same goal as the middle row, while accounting for the interference of a blue ball [27].

6. Conclusions and Discussion

This article presents a comprehensive survey of learning-from-demonstration (LfD) approaches,
with a focus on their applications in robotic assembly. The demonstration approaches are divided into
three categories, in which the characters of each approach have been analyzed, and the theory behind
the feature extraction is reviewed. The extraction is then segmented into three categories according to
how the demonstration is modeled in the robot’s program. Within these models, dynamic movement
primitive (DMP) is highlighted for its favorable features of formalizing nonlinear dynamic movements
in robotic assembly. Next, the metric of imitation performance is used as a cost function for reproducing
the learning skill. The application of LfD in robotic assembly is clearly analyzed, in particular, how
LfD facilitates the accomplishment of assembly tasks.

LfD has the unique advantage of enabling the general public to use the robot without the need of
learning programming skills. Additionally, kinesthetic demonstration of LfD solves the correspondence
problem between human demonstrators and robots. Consequently, LfD is an effective learning
algorithm for robots, and has been used in many robotic-learning systems. There are several promising
areas of LfD, ranging from insufficient data to incremental learning and effective demonstration, to be
further investigated in the future. More specifically:

• Learning from insufficient data. LfD aims at providing non-experts an easy way to teach
robots practical skills, although usually, the quantity of demonstrations is not numerous.
However, the demonstration in robotic assembly may contain noise. Due to the lack of some
movement features and the intuitive nature of interacting with human demonstrators, it becomes
hard for the non-expert users to use LfD. Requiring non-experts to demonstrate one movement
in a repetitive way is not a good solution. Future research work on how to generalize through a
limited number of feature samples is needed.

• Incremental learning. The robot can learn a skill from a demonstrator, or learn several skills from
different demonstrations. The study on incremental learning is still very limited during the past
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research. The skills that the robot has learned are parallel, not progressive or incremental. DMPs are
fundamental learning blocks that can be used to learn more advanced skills, while these skills
cannot be used to learn more complicated skills. Incremental learning features should be given
more attention for robotic assembly in the future research.

• Effective demonstration. When the demonstrator executes any assembly actions, the robot tries to
extract the features from the demonstration. In most cases, the learning process is unidirectional,
lacking timely revision, leading to less effective learning. The most popular approaches adopted
in LfD systems are reward functions. However, the reward functions only give the evaluation of
the given state, and no desirable information on which demonstration can be selected as the best
example. One promising solution is that the human demonstrator provides timely feedback (for
example, through a GUI [19]) on the robot’s actions. More research on how to provide such effective
feedback information is another aspect of future work.

• Fine assembly. Robotics assembly aims at enormously promoting industry productivity and helping
workers on highly repeated tasks, especially in ’light’ industries, such as the assembly of small
parts. The robots have to be sophisticated enough to handle more complicated and more advanced
tasks instead of being limited to the individual subskills of assembly, such as inserting, rotating,
screwing and so on. Future research work on how to combine the subskills into smooth assembly
skills is desired.

• Improved evaluation. A standardized set of evaluation metrics is a fundamentally important
research area for future work. Furthermore, improved evaluation metrics help the learning process
of imitation by providing a more accurate and effective goal in LfD. The formalization of evaluation
criteria would also facilitate the research and development of the extended general-purpose learning
systems in robotic assembly.
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Appendix A

Appendix A.1. HMM

HMM can be described by five elements, namely two state sets and three probability matrices:

• Hidden state S
The states (for example, S1, S2, S3. . . ) are the actual hidden states in HMM which satisfy the Markov
characteristics and cannot be directly observed.

• Observable state O
The observable state O is associated with the hidden state and can be directly observed.
(For example, O1, O2, O3 and so on, the number of observable states is not necessarily the same as
hidden states.)

• Initial state probability matrix Π
Π is the probability matrix of hidden state at the initial moment t = 1. (For example, given t = 1,
P(S1) = p1, P(S2) = p2, P(S3) = p3, then the initial state probability matrix Π =

[
p1 p2 p3

]
.)

• Hidden state transition probability matrix A
Matrix A defines the transition probabilities between different states of HMM,
where Aij = P(Sj|Si), 1 ≤ i, j ≥ N, which means given the time t and state Si, the state is
Sj with probability P at time t + 1.
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• Observable state transition probability matrix B
Assume that N is the number of hidden states, and M is the number of observable states, then:
Bij = P(Oi|Sj), 1 ≤ i ≤ M, 1 ≤ j ≤ N, which means that given the time t and hidden state Sj,
the observed state is Oi with probability P.

Appendix A.2. DMP

In a basic point movement system, the discrete DMP motion can be represented by the
following formulations:

τν̇ = K(g− x)− Dν− K(g− x0)s + K f (s), (A1)

τẋ = ν, (A2)

where g is the desired goal position; x0 is the initial start position; x and ν are position and velocity of
the DMP motion; t is the temporal scaling factor which determines the duration of the movement; K is
the spring constant; and D is a damping term. The nonlinear function f , which changes the rather
trivial exponential and monotonic convergence of the position x towards goal position g, is defined as

f (s) =
Σiψi(s)θis

Σiψi(s)
, (A3)

where ψi(s) = exp(−hi(s− ci)
2) are Gaussian basis functions characterized by a centre ci and

bandwidth hi; θi is the adjustable parameter which differs one DMP from another. s is a ’phase’ value
which monotonically decreases from the start ’1’ to the end ’0’ of the movement and is generated by
a canonical system which is among the most basic dynamic systems used to formulate a point attractor:

τṡ = −αs, (A4)

where α is a known time constant; t is the temporal scaling factor as above.
To encapsulate a primitive movement into a DMP, the kinematic variables such as position,

velocity, and acceleration are computed for each time-step using the recorded movement trajectory.
Then, the corresponding coefficients are deduced according to the above Equations (A1)–(A4), and
represent different DMPs. The discrete DMP then generates various motions with specific sequence
of primitives.

Appendix A.3. GMM

For a dataset of N datapoints {ξ j}N
j=1 with ξ j ∈ RD, which can be either joint angles, hand paths,

or hand–object distance vectors, a Gaussian mixture model with a weighted sum of M components
{Ci}M

i=1 is defined by a probability density function:

p(ξ j|λ) =
M

∑
i=1

ωig(ξ j|µi, Σ i), (A5)

where ξ j is a D-dimensional data vector, ωi, i = 1, . . . , M, are the mixture component weights of
component Ci, with the constraint that ΣM

i=1ωi = 1, and g(ξ j|µi, Σ i), i = 1, ..., M, j = 1, ..., N are the
component Gaussian densities. For each component Ci, the Gaussian density is defined as:

g(ξ j|µi, Σ i) =
1

(2π)D/2|Σ i|1/2 exp{−1
2
(ξ j − µi)

′Σ−1
i (ξ j − µi)}, (A6)

where µi are the component means, Σ i are the covariance matrices. λ = {ωi, µi, Σ i}M
i=1 are the set

of parameters to be estimated in the density function; these parameters define a Gaussian mixture
model. λ is usually estimated by maximum likelihood estimation using the standard expectation
maximization (EM) algorithm [124].
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