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Abstract

Environment maps are essential for robots and intelligent gadgets to autonomously carry out

tasks. Traditional maps built by visual sensors include metric ones and topological ones. These

maps are navigation-oriented and not adequate for service robots or intelligent gadgets to in-

teract with or serve human users who normally rely on conceptual knowledge or semantic con-

tents of the environment. Therefore, semantic maps become necessary for building an effective

human-robot interface. Although researchers from both robotics and computer vision domains

have designed some promising systems, mapping with high accuracy and how to use semantic

information for localization remain challenging.

This thesis describes several novel methodologies to address these problems. RGB-D visual

data is used as system input. Deep learning techniques and SLAM algorithms are combined

in order to achieve better system performance. Firstly, a traditional feature based semantic

mapping approach is presented. A novel matching error rejection algorithm is proposed to in-

crease both loop closure detection and semantic information extraction accuracy. Evaluational

experiments on public benchmark dataset are carried out to analyze the system performance.

Secondly, a visual odometry system based on a Recurrent Convolutional Neural Network is

presented for more accurate and robust camera motion estimation. The proposed network de-

ploys an unsupervised end-to-end framework. The output transformation matrices are on an

absolute scale, i.e. true scale in the real world. No data labeling or matrix post-processing tasks

are required. Experiments show the proposed system outperforms other state-of-the-art VO sys-

tems. Finally, a novel topological localization approach based on the pre-built semantic maps

is presented. Two streams of Convolutional Neural Networks are applied to infer locations.

The additional semantic information in the maps is inversely used to further verify localiza-

tion results. Experiments show the system is robust to viewpoint, lighting condition and object

changes.
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Chapter 1

Introduction

This research is focused on building a semantic map through low-cost cameras and using the

map for localization. Both feature based and deep learning based methods are studied. Novel

approaches are proposed. This chapter describes the research motivations, objectives, chal-

lenges, research methodologies, thesis contributions and thesis outline.

1.1 Motivations
In recent years, the steady increase in life expectancy and lower birth rate, all together, have

caused a significant raise in the percentage of the elderly and disabled people in the world.

This has, in turn, led to a major challenge for both developed and developing countries to

enable them to remain at a state of independence. Therefore, numerous projects, which aim to

improve the quality of life for people suffering from a loss of autonomy through age, illness or

accidents, are carried out globally, such as Sweet-Home [6], SYSIASS [7], COALAS [8], etc.

These projects involve interaction of various electromechanical components and systems which

are coordinated. To some extent, these projects have potentially promoted the development in

service robots, some of which are even designed to become a part of the life of ordinary people

[9] and have the ability to communicate with us.

On the other hand, wearable technology has expended rapidly [10]. At first, researchers

focused on solutions proposed for the detection of risk situations and the automatic analysis

of behavioral disorders. Most of these solutions are based on embedded technology, in which

case electronic gadgets are embedded into the belts and clothes of users, e.g., Tadiran [11] and

Vigilio [12]. In this approach, the gadgets may contain a combination of different measuring

1



2 1.1. MOTIVATIONS

sensors, such as temperature, heart rate, accelerometers and gyroscopes. These devices facilitate

pertinent analysis of a fragile state of a person. More recently, research on wearable products

becomes a new trend, some of which are even able to communicate with people. For example,

the electronic travel aids [13] can provide the blind with the ability of localization and navigation

as well as semantic guidance.

It becomes very clear that robotics is working its way into our lives in an attempt to fulfill

our needs for household servants, health tracking devices and even cognitive companions. Apart

from accurate navigation and manipulation performance, robots are also required to understand,

interpret and represent dynamic environments autonomously. Furthermore, they also have to

interact with people in a human-compatible way. Thus the acquisition of spatial models of

physical environments, as well as the interpretation from sensor data to semantic information

are the prerequisites to the pursuit of building truly autonomous robots and assistive devices.

The human-robot interface has always been a challenging topic in the field of robotics. A

truly intelligent robot should have the capability of perceiving, understanding, interpreting and

representing the dynamic and complex environments in order to communicate with us. Gener-

ally, semantic mapping is regarded as an efficient solution to address this problem. A semantic

map plays a key role and meets the demand by representing not only spatial dimensions but

also conceptual knowledge of the environment. A direct method to obtain rich information is

through visual data since humans perceive the world through our eyes.

In order to build a semantic map of a scene with visual data, camera poses need to be

estimated and sequentially connected first. The objects or places in an environment are then

detected and recognized, which serve as semantic information in a semantic map. Traditional

solutions for both processes rely on image features. Global or local image features are designed

or selected, detected and described by feature descriptors. However, traditional visual features

are hand-crafted and thus quite limited to appearance such as edges, corners, which are difficult

to be generalized. In addition, such systems have to be carefully designed and fine-tuned to

achieve optimal performance. This normally requires huge engineering effort. These limitations

suggest us to seek other less labour intensive solutions.

The deep learning technique developed in recent years has shown some promising results.

Inspired by information processing and communication patterns in biological nervous systems,

a deep learning based network can learn from large amount of data by creating a more abstract,
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general and robust representation as the network grows deeper. As a result, the model automat-

ically extracts features and yields higher accuracy results, thus making deep learning dominate

many tasks, e.g., object recognition and detection, natural language processing, mobile adver-

tising, etc. In this thesis, deep learning is leveraged to address some challenging issues.

In conclusion, the motivation of my research is to build a semantic map for mobile robots

or people suffering from vision loss based on visual data in order to help them move around or

carry out tasks more easily. The additional semantic information in a map can then be further

utilized to boost localization accuracy.

1.2 Objectives and Challenges
Motivated by the importance of semantic mapping and localization, this thesis aims at using 3D

visual data to build a semantic map and then using the semantic map for topological localization.

Both theoretical and experimental analyses are provided on the proposed methodologies.

To achieve this goal, this thesis will focus on the following objectives.

• High accuracy: Scientific research should be conducted accurately. Accuracy measures

how close the performance of a proposed method comes to its true value. It is one of

the most important criteria to evaluate the quality of a system. Therefore, one objective

of this thesis is to achieve high accuracy for both semantic mapping and localization

methods [14].

• Strong robustness: When a robotic system is put into practice, the raw input can be

noisy. Therefore, the system should have strong robustness, i.e., the capacity to cope with

erroneous input and remain unaffected during normal usage [15]. Robustness measures

the reliability of a system, which is another objective of this thesis.

• Good autonomy: Before a system can be applied, its structure needs to be carefully

designed. The parameters need to be auto-tuned, especially when a system is used in a

unfamiliar new environment. Even in a deep learning based system, manually labeling

training data is sometimes inevitable. Engineering effort evaluates how easy a system can

be used and how autonomous a system is, which is also one of our objectives to minimize

[16].

• Low cost and small in size: Robotic systems need to be low cost and small in size if they
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can be widely used in our daily life [17]. It is extremely important to create such sensors

and robotic devices for general public to use, which is one of our research objectives.

In order to achieve the aforementioned objectives, various challenges emerge and have been

addressed in this thesis.

(1) How to generate semantic information with high accuracy.

Traditional object or place recognition methodologies are based on the features detected

and described by feature descriptors. During semantic mapping, local visual features

which are robust to geometric transformations and illumination changes are widely ap-

plied. However, the features are quite limited to the appearance of objects such as edges,

corners and their relations [18]. Matching errors inevitably exist. Moreover, a robot which

can answer the question “Is this my kitchen?” has been addressed by several works us-

ing diverse sensor data. However, a truly autonomous robot should be able to answer a

harder and more general question “Is this a kitchen?” The problem then comes down to

the design of a more general classifier which can classify objects and places by concep-

tualization. This might be the first definite step to enable a robot to behave in a manner

that is compatible with humans [19].

(2) How to improve the camera pose estimation performance.

Generally speaking, the performance of the mapping process is highly dependent on the

accuracy of the camera pose estimation algorithm [20] as a global environment map is

built by connecting sequential images. Traditional pose estimation systems adopt a clas-

sic pipeline, i.e., feature detection and description, feature matching, transformation es-

timation, loop closure detection, global pose graph optimization [21]. Researchers have

proposed various algorithms for this pipeline. Each step has significant influence on the

overall system performance. Such systems are usually computationally efficient since

only the features of an image are involved in calculation. However, designing a traditional

feature based system requires intensive labour and some hidden features of an image are

abandoned from the beginning [22]. Thus, we need to seek other end-to-end solutions for

camera pose estimation.

(3) How to use additional semantic knowledge to enhance localization capability.

Semantic knowledge allows us to explicitly account for perceptual aliasing when merging
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the metric data into the global spatial layer. Map building is a continuous long-time

process during which precise metric data is obtained from visual sensors. Similar scenes

inevitably exist, thus localization errors appear if similar image features are detected when

we revisit a scene [23]. This may result in a significant jump in the topological map, i.e.,

localizing the robot in another irrelevant location with highly similar appearances to the

current location. Apart from the geometrical optimization methods that have already been

published, the additional semantic knowledge in a semantic map should also be utilized

to infer locations based on the relations between detected objects and places zcite[24, 25,

26]. Once an object is detected and inferred irrelevant to the current place on the basis of

common sense knowledge, the robot should be able to reason about potential localization

errors.

1.3 Research Methodologies
In order to conquer the challenging issues outlined in the previous section, a number of novel

research methodologies are proposed in this thesis.

To extract semantic information with higher accuracy, we try to improve the performance

of traditional feature based semantic mapping systems. Image features are extracted before-

hand for camera pose estimation and object recognition. However, matching accuracy during

object recognition is quite low, even when the experiments are carried out in a small envi-

ronment. Therefore, a novel matching error elimination algorithm is introduced for both loop

closure detection and object recognition, which increases the performance of traditional seman-

tic mapping approach. Moreover, deep learning is also leveraged for object recognition, which

improves object recognition accuracy during semantic information extraction. On the other

hand, it expands the range of identifiable items in an environment. The size of the database is

significantly minimized since only object names are stored in the database rather than object

images.

To address the second challenge, a novel monocular visual odometry system using an unsu-

pervised end-to-end Recurrent Convolutional Neural Network is proposed. Fine-tuning hyper

parameters and data labeling tasks, which can be quite time-consuming and labour intensive are

not required. The RCNN consists of a CNN and a LSTM network. 2D and 3D spacial losses

are designed based on warping and inverse warping technique. We evaluate the system perfor-
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mance on KITTI Odometry dataset. Both qualitative and quantitative analyses are carried out

and results show that the proposed system not only saves engineering effort, but also improves

the camera pose estimation accuracy.

To tackle the third challenge and boost the topological localization performance, a novel sys-

tem consisting of two streams of CNNs is proposed. The two CNNs are separately trained. One

is used for place recognition and the other one is used for object detection. In this way, when an

accurate semantic map is obtained, the semantic information can be employed to further verify

the localization result by detecting distinctive objects within the input image. Experiments are

carried out in two indoor environments and the localization performance in terms of appear-

ance variations such as viewpoint, lighting condition and object changes are analyzed in detail.

Results show that both the precision and recall rates are improved.

1.4 Thesis Contributions
The major contributions of this thesis are briefly listed as follows.

(1) To create a feature based semantic mapping system. The geometrical mapping pipeline

consists of SURF feature extraction, feature matching, camera pose estimation, loop clo-

sure detection and global pose graph optimization. Semantic information is extracted by

matching a new key-frame to the object images in the database.

(2) A novel matching error elimination method is proposed for loop closure detection and

semantic information extraction. The ratio of good matching numbers in the current key-

frame to those in the neighbouring key-frames is used for outlier rejection. Experiments

have shown the proposed method can improve the semantic mapping performance.

(3) A novel deep learning based visual odometry system is developed, which is composed

of a CNN and a RNN. The training strategy is based on an unsupervised end-to-end

manner. Thus, no labeling task is needed and no ground truth camera poses are required

for training. Experiments have shown the proposed system outperforms other state-of-

the-art VO systems.

(4) Absolute scale recovery is achieved from only monocular images. Since both monocular

images and depth information are used for training, absolute scale is thus injected into

the RCNN. Therefore, no pose post-processing is required. 2D and 3D spacial losses are
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both deployed to punish the output deviation from the truth. In this way, we maximize

the benefit of the input RGB-D data.

(5) A semantic information extraction method is developed based on deep learning technique.

Hence, the recognition accuracy is increased, the range of identifiable items is broadened

and the size of the semantic information database is reduced.

(6) A novel topological localization approach is created based on pre-built semantic maps.

Two CNN steams are used and semantic information in the maps are inversely deployed

to further verify the localization results. Experiments have shown the proposed approach

improves the localization performance in terms of both precision and recall.

1.5 Thesis Outline

A high level overview of the structure of this thesis is presented in Figure 1.1. This chapter gives

the research motivations, objectives, challenges addressed, research methodologies. Chapter 2

form the base of this work. The main work and contributions are presented in Chapter 3, 4 and

5. Chapter 6 concludes the thesis.

Chapter 2 reviews recent research and development of semantic mapping and localization

based on visual sensors. Both traditional feature based approaches and recent deep learning

based approaches are presented. Semantic information extraction approaches are discussed.

Semantic representation methods are subsequently outlined. Finally, some real-world indoor

and outdoor applications are given.

Chapter 3 describes a traditional feature based semantic mapping approach. A classic map-

ping pipeline is introduced. A novel matching error elimination algorithm is then introduced for

both loop closure detection and object recognition. Finally, we carry out some experiments in a

student accommodation and compare the proposed method to other state-of-the-art algorithms

on the public TUM RGB-D SLAM dataset.

Chapter 4 proposes a novel monocular visual odometry system based on an unsupervised

end-to-end RCNN framework. The network is introduced and the loss functions are detailed.

Training strategy is then presented including image augmentation methods, hyper parameters

and some training tricks. Finally, we evaluate the system performance on KITTI Odometry

dataset.
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Figure 1.1: Structure of this thesis.

Chapter 5 introduces a novel topological localization method based on deep learning tech-

nique. Semantic information extraction and representation approaches are first presented. The

topological localization method based on two separately trained CNNs is then presented. Ex-

periments are carried out in two indoor environments. Results of the proposed method are

compared to those of other state-of-the-art algorithms.

Chapter 6 summarizes the presented work and major contributions. The conference and
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journal papers published or submitted during this research are then listed. Finally, potential

works that can be carried out in the future are given.
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Chapter 2

Background Review

2.1 Introduction

Traditionally, robotic mapping is broadly divided into two categories - metric and topological

mapping. Metric maps describe the geometric features of an environment, whereas topological

maps involve the connectivity of different places and are used for robots to navigate from one

place to another [27]. Figure 2.1 and Figure 2.2 show a metric map and a topological map

respectively. An early representative of the metric mapping approach is based on occupancy

grids that model the occupied and free space. In contrast, the topological mapping approach

uses nodes to represent distinct places or landmarks, and curve lines to describe the paths

between nodes. Recently, a new hybrid mapping method that combines metric and topolog-

ical paradigms is developed to compensate for the weaknesses of individual approaches. This

mapping approach applies a metric map for accurate navigation in a local space, and a global

topological map for moving from one place to another.

All these traditional mapping approaches are navigation-oriented and enable mobile robots

to navigate around and plan a path to reach a goal [28]. The maps built by traditional map-

ping approaches are relatively low-level since they are unable to interpret scenes or encode

semantic information. To serve people, service robots should be able to communicate with

humans through semantic information such as human speech commands, “Can I have a cup

of coffee?” or “Please open the window”, so that they are able to interact with humans in a

human-compatible way [29].

In a semantic map, nodes representing places and landmarks are named by linguistic words.

11
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(a) (b)Figure 2.1: Metric map [1].

Examples of these include names and categories of different objects, rooms and locations. More

specifically, a semantic map can be regarded as an extension of a hybrid map, which contains

geometric description, topological connectivity and semantic interpretation [30]. It provides a

friendly way for robots to communicate with humans. This section reviews numerous publi-

cations in visual based semantic mapping and attempts to provide an overview of the state-of-

the-art methodologies in this field. It is mainly focused on how to extract semantic information

from visual data, including feature extraction, object/place recognition and semantic represen-

tation and deep learning based methods. It differs from other existing comprehensive surveys

on traditional robot mapping approaches [27] or general semantic mapping methodologies [31].

Recently, using semantic data to represent environments has become a popular research

domain and drawn enormous attentions from different fields [32, 33]. The application of visual

data in semantic mapping systems seems to be a sensible decision as humans perceive the world

through eyes. Visual data allows the representation of both low-level features such as lines,

corners and shapes, and high-level features such as colours, relations and texts. In this way, a
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(a) (b)Figure 2.2: Topological map [2].

wider variety of objects can be recognized, which can highly enrich semantic maps.

In general, a traditional visual based semantic mapping system consists of three parts. At

first, the specific features are pre-selected based on sensor type, and feature descriptors are

computed and obtained. Subsequently, features or descriptors are classified in terms of prior

knowledge so that objects and places can be recognized. Finally, properties are endowed with

semantic meanings on the basis of topological and metric maps. Figure 2.3 presents the gen-

eral process for semantic mapping. Note that a metric map is considered as a complementary

attribute of a semantic map. In addition, some systems rely on direct image segmentation to

obtain semantic information rather than using feature descriptors to represent objects or scenes.

Many types of visual sensors have been developed to provide a variety of interpretations of

the world. In addition, the subsequent processing methods are highly dependent on the data

type used. To some extent, the visual sensor applied plays a key role in a semantic mapping

system. The visual sensors used for robot mapping include conventional monocular cameras,
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Figure 2.3: Overview of the general process for semantic mapping.

omni-directional cameras, stereo cameras and RGB-D cameras. At first, visually recognizing

objects or places was normally done by using conventional cameras that record two dimensional

images. In recent years, extracting semantic information from 3D point clouds has become a

new trend due to the availability of low-cost and light-weighted 3D point cloud capturing de-

vices such as stereo cameras and RGB-D sensors, which allow the application to small robot

platforms or even wearable devices easily. Compared with 2D images, 3D point clouds over-

come the limitation in the data-stream itself by providing additional depth data. Moreover,

humans recognize and perceive a 3D world in terms of our eyes. Therefore, object recognition

through capturing 2D projections of the 3D world is inevitably inaccurate and might be even

misleadingly suggested, especially when it comes to a large variety of goods in our daily life

[34].

The rest of this section is organized as follows. In Section 2.2, visual feature extraction

methodologies are outlined and classified in terms of global and local features. Section 2.3

describes three basic recognition approaches in semantic mapping, namely global, local and

hybrid approaches. More direct deep learning based approaches developed in recent years are

given in this section. Subsequently, how to generate semantic representations of the environ-

ment is outlined in Section 2.4 and some typical real-world applications are presented in Section
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2.5. Finally, a brief conclusion and discussion are given in Section 2.6.

2.2 Visual Features Used in Semantic Mapping Systems

In the last decade, some researchers have reported systems in which semantic interpretation

of certain scenes were obtained [35, 36]. However, the acquisition was done through conver-

sations between humans and robots or even hand-coded into the systems rather than using the

robots’ own sensors [37]. Visual features describe the elementary characteristics such as shapes,

colours, textures, motions and relations between pixels in raw visual data and can be broadly

divided into two categories: global and local features [38].

Global features represent an image as a whole without directly describing the spatial layout

of the properties in the image. More specifically, the statistics of all the pixels in a movable

fixed-size bounding box are extracted to generate feature vectors which can determine the like-

lihood for image matches. Such features are suitable for large scale environment recognition,

e.g. roads, lawns in outdoor environments and rooms in buildings. However, global features are

sensitive to cluttered background and occlusion due to their essential attributes. Therefore, their

performance drops relatively in the case of object recognition in indoor environments where

direct specification of the content in an image is required or when an object is not enclosed by

the bounding box. Local features on the other hand rely on individual pixels or discrete regions.

Typically, salient features of highly textured objects are extracted by feature detectors and rep-

resented by compendious feature descriptors. The representation of the content in an image is

thus more robust to scale, viewpoint or illumination changes.

2.2.1 Global Features

Despite the limitation of global features, they are still useful in cases where a rough place or

object classification is required. Global features consist of the statistics extracted from a whole

image or a bounding box, such as contour, shape, texture, colour or a combination of them

[39]. They generally represent an image with a single high-dimensional feature vector, and

thus can be easily applied with any standard classification methods [40]. Moreover, thanks

to the compact representation and low computational cost, they have been employed by some

semantic mapping systems in real-time. Table 2.1 presents the differences and similarities of

the global features used for object recognition in semantic mapping systems.



16 2.2. VISUAL FEATURES USED IN SEMANTIC MAPPING SYSTEMS

Table 2.1: Global features for object recognition in semantic mapping systems.

Feature Performance

Detector Texture Haar-like [41] Robust to illumination changes

Descriptor Color Color histograms [42] Robust to viewing angles

Template HOG [43]
Robust to illumination and

shadowing changes, sensitive
to object orientations

Combination
High dimensional

composed receptive
field histograms [44]

Robust to illumination
and minor scene changes

GIST [45]
Robust to occlusion and

viewpoint changes, noise in
isolated regions is ignored

Inspired by the application of Haar-like feature in human face detection [41], a small number

of objects were first recognized as landmarks in [46]. The recognized objects were then applied

as supplementaries to the geometrical features in order to distinguish rooms that had similar

geometrical structure and could only be further identified by the objects found there. The Haar

wavelets presents the average intensity differences between regions, and likewise can be used

to compare the differences between the sum of pixel values in bounding boxes, which allows

relatively high robustness to illumination changes.

Ulrich and Nourbakhshthus implemented colour histograms for place recognition by com-

paring query images with limited images of an entire dataset [47]. Applying colour histograms

for image matching was first conducted by Swain and Ballard [42]. The number of colour

histograms is based on the number of the colour bands used, e.g. red, green and blue. Each

histogram is built by simply counting the number of pixels with a specific intensity in different

colour bands. Such feature is robust to viewing angle changes in the case when properties in the

environment remain fixed. Furthermore, it provides a highly compact representation of an im-

age and thus requires less memory space. However, it fails to describe spatial relations, which

limits its applicability. Filliat et al. also adopted this feature to discriminate identical chairs of

different colours [48].

Spatial information such as feature location was not included by the holistic methods pre-

sented above due to the lack of a segmentation step. Some features divide an image into small

discrete regions and then one can compute the global statistics within individual regions in or-
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der to obtain some rough spatial information. Grimmett et al. used the Histogram of Oriented

Gradient descriptor (HOG) [43] to represent training data in order to detect parking space [49].

HOG describes objects by concatenating histograms of the gradient directions computed from

the pixels within individual regions divided from an image, called cells. Each histogram is

then contrast-normalized across a group of cells, called a block, to decrease the susceptibility

to illumination or shadowing changes, except for object orientations. Such feature has a high

performance for pedestrian detection if they maintain a roughly upright position.

Global features have also been combined in some systems to provide richer representations

of the environment. A high dimensional composed receptive field histogram was applied in

[44], which consists of normalized Gaussian derivatives, differential invariants and chromatic

cues. Siagian et al. attempted to incorporate context using the GIST descriptor [45] for scene

classification [50, 51]. Orientation, colour and intensity channels are employed by GIST to

filter input images with Gabor filters at multiple spatial scales to extract the gist of images.

Hinterstoisser et al. presented another 3D feature as a complement for DOT feature, named

LINE-MOD, by computing object surface normal with a depth sensor [52]. These methods

tend to be relatively more robust than using a single global feature since the random noise

produced by individual features can be averaged out.

2.2.2 Local Features

Local features that are widely used in semantic mapping systems for object and place recogni-

tion can be further divided into three categories: edge, corner and blob based approaches [53].

Figure 2.4 shows the definition of local visual features in computer vision. An edge is a set of

pixels with strong gradient magnitudes or located where the image intensities change sharply.

This normally refers to the boundaries between distinguishable regions. A corner is a pixel at

which two edges intersect or has edges with two or more directions in the neighborhood. The

term corner is additionally used in some cases which differ from our common sense, e.g. a

small white spot (corner) on black background, since apart from relying on explicit edge detec-

tion, a corner can also be computed from the curvature in image gradient. A blob is a group of

connected pixels with similar characteristics. It refers to an interest point as well because many

interest point detection methods are essentially based on corner detection at multiple scales.

In this section, the local features are presented accordingly. Table 2.2 presents the differ-
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(a) Original image. (b) Edge.

(c) Corner. (d) Blob.

Figure 2.4: Definition of local visual features in computer vision.

ences and similarities of the local features used for object recognition in semantic mapping

systems.

Edge Based Approaches

The primary characteristic of edges in an image is the sharp change, which is commonly

used and captured by classical differentiation based edge detectors. Currently, such edge de-

tectors are only used to generate fundamental cues to construct more robust features or provide

complementary information for semantic mapping systems [67]. Ranganathan and Dellaert
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Table 2.2: Local features for object recognition in semantic mapping systems.

Feature Performance

Detector Edge
Differen-

tiation Sobel
Computationally efficient,

high error rate

Canny [54]
High accuracy,

computationally expensive

Corner Gradient Harris [55]
Sensitive to noise,

computationally expensive

KLT [56]
Computationally efficient,

sensitive to noise

Template FAST [57]
Computationally efficient,

low level of generality

AGAST [58]
High level of generality,
computationally efficient

Blob PDE CenSurE [59]
High accuracy,

computationally efficient

Intensity MSER [60]
Robust to affine transformations,

computationally efficient

Descriptor Blob PDE SIFT [61]
Robust to scale and transformation
changes, computationally expensive

SURF [62]
Robust to scale and transformation
changes, computationally efficient

Template BRIEF [63]
Computationally efficient,

sensitive to viewpoint rotations

ORB [64]
Computationally efficient, robust

to viewpoint rotations

BRISK [65]
Robust to scale changes,
computationally efficient

FREAK [66]
Computationally efficient,

robust to scale changes

[68] converted each training image to a set of regions of interest with Canny edge detector [54].

Clustered edges were obtained to facilitate modelling texture-less objects like desks. The Canny

edge detector sets three general criteria for edge detection: low error rate, precise localization

on the centre of edges and a given edge in an image should only be marked once. Owing to

these criteria, it is one of the most strictly defined methods that provides robust and reliable edge

detection. Wu et al. attempted to filter each input image with Sobel operator beforehand since

they were interested in the spatial structure property of an image rather than detailed textural

information [25].

In recent years, edge detection in computer vision have been extended to a broader concept,
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which is quite similar to object segmentation, named boundary detection. Boundary detection

considers an object as a whole. It suppresses the internal edges extracted from the textures

within objects and only presents the edges between objects and background. Multiple low-level

features are combined to detect boundaries based on machine learning algorithms. However,

simply using 2D images tend to be computationally more expensive or less reliable than apply-

ing an additional depth channel for them, since it is relatively straightforward to obtain object

boundaries from a 3D image. Thus boundary detection using only 2D images is rarely imple-

mented in semantic mapping.

Corner Based Approaches

Primitive corner based approaches rely on gradient assessment, which is a theoretical con-

cept abstracted from our common sense understanding for the term corner. In [68, 69], Harris

corner detector [55] was used to facilitate training a database and compute the differential of au-

tocorrelation according to directions directly. A similar detector named Kanade-Lucas-Tomasi

(KLT) [56] was employed in [70] for efficient and continuous tracking. Compared to Harris

detector, KLT has an additional greedy corner selection criterion, thus is computationally more

efficient. However, these corner detectors are not reliable in all circumstances during semantic

mapping since gradient assessment method is highly sensitive to noise.

In order to decrease the complexity of gradient assessment and increase computational effi-

ciency, some methods based on template have been implemented. Such features extract corners

by comparing the intensity of a pixel with other pixels in the local neighborhood, i.e. a pre-

defined template. Henry et al. [71] and Gálvez-López et al. [72] attempted to apply Features

from Accelerated Segment Test (FAST) [57] for indoor mapping and loop closure, respectively.

Based on machine learning algorithms, FAST yields a large speed increase, thus is widely em-

ployed by real-time systems. FAST uses a circular template of 16 pixels to evaluate whether a

candidate pixel is actually a corner. The candidate pixel is classified as a corner in cases when

a certain number of contiguous pixels in the circle are all brighter than the intensity of the can-

didate pixel plus a threshold value or all darker than the intensity of the candidate pixel minus

a threshold value. During the high-speed test for rejecting non-corner points, a decision tree is

applied to address the correct rules of the chosen detector. However, FAST suffers from a low



2.2. VISUAL FEATURES USED IN SEMANTIC MAPPING SYSTEMS 21

level of generality, since it has to be trained for specific scenes before applied. FAST-ER [73]

and Adaptive and Generic Accelerated Segment Test (AGAST) [58] increase the performance

of FAST in terms of repeatability and generality, by widening the thickness of the Bresenham’s

circle and training a set of decision trees rather than relying on one tree, respectively.

Blob Based Approaches

Blob based approaches rely on identifying the unique regions in an image by comparing

local properties (e.g. intensity and colour) to their neighboring regions. In a blob, specific

properties of all the points remain constant or approximately constant, i.e. to some extent,

the points are similar to each other. Blob based approaches can be further divided into two

categories: keypoint and interest region based approaches. Keypoint based approaches are

focused on finding local extrema in scale spaces, whereas interest region based approaches aim

at segmenting regions. A scale space is a representation of gradually smoothed images obtained

by the rules that can describe basic properties of interest. The scale space presents an image

with an additional third dimension. Note that a corner can also be regarded as a keypoint at a

specific scale.

Classical interest point based methods are based on Partial Differential Equations (PDE),

among which the Laplacian of Gaussian (LoG) is one of most widely used methods. An input

image is first convolved by a Gaussian function at a certain scale to represent the image in

a Gaussian scale space. The Laplace operator is then applied to obtain strong responses for

bright and dark blobs. Compared with LoG, the Difference of Gaussians (DoG) computes the

Laplacian of Gaussian operator by the difference between two continuous images smoothed

by Gaussian function. DoG can also be viewed as an approximation of the Laplacian operator,

thus is computationally more efficient. A hybrid blob detector Hessian-Laplacian combining the

Laplacian with the Determinant of the Hessian (DoH) blob detectors has also been proposed,

where spatial selection is done by the determinant of the Hessian matrix and scale selection is

performed with the scale-normalized Laplacian.

Based on DoG and Hessian matrix, Lowe proposed Scale Invariant Feature Transform

(SIFT) [61], which was widely applied by robot SLAM and object recognition systems [29,

74, 75, 76]. The original image is convolved with DoG to identify potential interest points
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that are invariant to scale and orientation changes. The points selected from the training image

which usually lie on high-contrast regions of images such as edges and corners are detectable

even under changes in image scale, noise and illumination. Another property of these points

is that the relative positions between them in the original image remain stable from one image

to another. Subsequently, low contrast and unstable points are rejected based on their locations

and scales. Orientations are then assigned to the points based on gradient directions, thus pro-

viding invariance to transformations. Finally, SIFT computes a descriptor vector (histogram

of oriented gradient) as a representation for each keypoint. Compared with other feature de-

scriptors, SIFT is highly robust to scale and transformation changes, but is computationally

expensive. A refinement of SIFT was proposed by Mikolajczyk and Schmid named Gradient

Location and Orientation Histogram (GLOH) [77], which proves to be more distinctive than

SIFT, yet requires even more computational cost.

Riazuelo et al. initially extracted Speeded Up Robust Features (SURF) from each image and

stored them for latter object recognition in the RoboEarth database, which is a knowledge-based

system providing web and cloud services [78]. SURF has claimed to be several times faster

than SIFT and its accuracy remains relatively acceptable. SURF employs integral images and

uses square-shaped filters to approximate the determinant of Hessian matrix during Gaussian

smoothing, thus is more computational efficient. Morisset et al. used Centre Surround Extrema

(CenSurE) [59] to obtain a visual odometer in real-time [79]. CenSurE is another approximation

of LoG. Compared with SIFT and SURF, CenSurE features are evaluated for all the pixels across

all scales in raw images. This leads to higher accuracy. Moreover, even seeking extrema at all

scales, it still maintains a relatively low computational cost by adopting a set of simple centre-

surround filters. Implementations of these refinements in semantic mapping systems can also

be found in [48, 80, 81].

Due to the high demand for real-time applications, Gálvez-López and Tardós adopted Bi-

nary Robust Independent Elementary Features (BRIEF) [63] to find the best frame-to-frame

matches for real-time localization over long periods [72]. BRIEF is a binary string constructed

by classifying image patches according to pairwise intensity comparisons, which leads to a

small memory usage and is highly computational efficient during recognition.

Inspired by FAST and BRIEF corner detector based on template, Rublee et al. presented

Oriented FAST and Rotated BRIEF (ORB) by estimating the patch orientation [64], thus is
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invariant to viewpoint rotations. The scale pyramid is also applied to increase its robustness to

scale changes. Such method was employed in [82] to generate photometric feature for RGB-

D mapping. Grimmett et al. used Binary Robust Invariant Scalable Keypoints (BRISK) [65]

to build maps for automated parking [49]. BRISK applies AGAST detector in both image

plane and scale space to classify keypoints so that it is invariant to scale changes. A keypoint

detector motivated by human retina and derived from BRISK was presented by Alahi et al. [66],

named Fast Retina Keypoint (FREAK), which was applied in [83] for facial point detection and

emotion recognition. Compared to BRISK, FREAK has a higher density of points near the

centre of the sampling grid.

Meger et al. [74] and Sun et al. [84] applied Maximally Stable Extremal Region (MSER)

[60] in their systems to provide object location information for an attentive system and to ex-

tract lane marking features, respectively. MSER is one of the most widely used methods for

interest region detection. It is robust to affine transformations and is highly computationally

efficient. However, it is sensitive to image blurry changes. Moreover, MSER is a region de-

tector in essence, thus is only suitable to distinguish objects with little variation in colour from

high-contrast scenes.

Discussion

One of the most important factors in evaluating the feature detectors and descriptors imple-

mented in semantic mapping systems is their accuracy (reliability). To assess it, a repeatability

criterion presented by Schmid et al. measures whether or not the same feature is detected in

two or more different images of the same scene under varying viewing conditions [85]. The

repeatability is a ratio between the accurate pairing number and the minimum number of key-

points detected in the given images. The repeatability of some local features is shown in [38].

Three image transformations are considered: zoom factor, viewpoint and rotation.

With respect to some SLAM or object recognition systems running in real-time, the com-

putational complexity of the applied feature detectors also plays a key role. Canclini et al.

[38] also evaluated the efficiency of some widely used keypoint detectors in semantic mapping

systems. More specifically, the average processing time was assessed based on the number of

keypoints detected. FAST and AGAST are computationally more efficient than other detectors.



24 2.3. RECOGNITION APPROACHES

Another noticeable difference is that the processing time of CenSurE and ORB remains con-

stant, whereas with the increase of the keypoint number, the processing time of other detectors

grows linearly. The influence of image scale changes on the detectors was also presented. The

processing time for all the detectors raises as a quadratic function with the increase of image

scale. Again, SIFT and SURF are several times more time-consuming.

2.3 Recognition Approaches

This section presents some basic object/place recognition approaches in semantic mapping sys-

tems, namely global, local and hybrid approaches [86]. Object recognition methods based on

global features are classified into global approaches. Such approaches also consist of some

place recognition methods which employ image segmentation algorithms directly rather than

referring to the properties in the environment. Local approaches include pixel-wise operations

on the basis of local feature extraction and the straightforward sampling of pixel contributions.

Some systems combine global approaches with local approaches to achieve a more robust per-

formance, which is discussed in hybrid approaches. In addition, information that is retrieved to

distinguish individual instances within an object class (e.g. shampoo or conditioner, someone’s

office) is also discussed. We finally summarizes some recent deep learning based approaches.

2.3.1 Global Approaches

Based on the global statistic features retrieved from texture, Hidden Markov Model (HMM)

was applied in [87] for place recognition and new place categorization. For HMM, the states

which represent different locations are not directly visible, whereas the output acquired from the

states is visible. Compared by using a uniform transition matrix, HMM provides a significant

increase in recognition performance. Furthermore, the computational cost is quite low and can

be neglected during mapping. However, it is only applicable for a small database. Mozos et

al. implemented a cascade of classifiers [88] which depended on boosting to detect 8 different

objects in order to recognize 6 places [46]. Boosting is a supervised learning-based method

combing several simple weak classifiers to achieve a relatively high performance. For each

of the weak classifiers used, the requirement is that its accuracy should be better than random

guessing. The accuracy of the weak classifiers leads to their distributions once they are added.

The cascade of classifiers is essentially a degenerated decision tree which rejects non-object
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regions at each stage and retains interest regions for further classification. Although the training

time is long, the prediction can be run in real-time. Gentle AdaBoost was also applied by

Murphy et al. for object and scene recognition [45].

In the case of colour histogram features, Ulrich and Nourbakhsh used a simple unanimous

voting scheme to classify places [47]. The input images were voted by each colour band with

the smallest minimum matching distance. A certain place was classified when the colour bands

unanimously voted for the same place and the total confidence was above a threshold. Such a

method is quite straightforward and computationally efficient. However, one important prereq-

uisite is that the visible properties in scenes should remain relatively fixed and its performance

drops when it comes to a large database (over 100 images).

Support Vector Networks (SVM) [89] was applied with HOG feature by Dalal and Triggs

[43]. SVM is a set of supervised models with associated learning algorithms widely used for

data analysis and pattern recognition. The training process tries to build a model by the given

examples to assign new examples into two categories, making it a non-probabilistic binary

linear classifier. This step is essentially a process to find a model with high performance, i.e.

a clear gap that is as wide as possible. In [43], positive examples (images which contained

pedestrians) and negative examples (person-free images) were provided for SVM training. The

implementation of linear SVM rather than using a kernel decreased the computational cost of

the system. Pronobis et al. also applied SVM to recognize places [44] based on a kernel [90],

which proved to achieve better performance for histogram-like features. Results in this paper

showed that the places were recognized with high precision and robustness even when training

on images from one camera device and testing on another. Inspired by Taylor and Drummond

[91], the Streaming SIMD Extensions (SSE) were applied to efficiently compute error functions

[92].

2.3.2 Local Approaches

Apart from the approaches mentioned above, one of the most promising works has been done

by Lowe [61]. Once the SIFT features are detected and described, recognizing objects becomes

a problem of finding groups of similar descriptions that have all undergone the same transfor-

mation. More specifically, an interest point in the test image is compared to an interest point

in the reference image by the differences between their description vectors, which is based on
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Euclidean distance. For rapid computation against large databases, the features are put in a

KD-tree, which is a data structure based on nearest neighbor searching for large databases. The

Hough transform is used to cluster the features that belong to the same object. Clusters of at

least 3 features that agree on the object and its pose are identified as candidate matches. A

least-square approximation is then made to obtain the best estimated affine projection param-

eters, which are further applied to decide whether to keep or reject the matches. This method

has been widely implemented in robot semantic mapping systems [75, 74, 29] thanks to its high

robustness. However, due to the complexity of the SIFT feature, the recognition process still

suffers from high computational cost.

In the case of the binary features inspired by modern computer architectures, such as BRIEF,

BRISK, ORB and FREAK, the Hamming distance is used for matching. The Hamming distance

between two feature vectors is the number of positions at which the corresponding symbols are

different. Such matching method is highly computationally efficient. However, the accuracy is

lower than the method presented by Lowe.

2.3.3 Hybrid Approaches

Some systems adopted global features, local features and depth information to generate a more

robust recognition performance. Depth information additionally provides spatial dimensions

of objects and represents objects in more detail, thus leads to a higher recognition accuracy

compared to using solely 2D features. Histograms of Oriented Energy and colour were directly

applied for object detection in [93]. Stückler et al. employed region features in both colour and

depth space and applied object-class segmentation algorithms for semantic mapping [94], based

on Random decision Forests (RFs), which is an ensemble learning method for classification and

has been demonstrated to achieve comparable performance to SVM [95]. In this work, a subset

of images from the training set was randomly selected as a sample to train the decision trees.

Small objects were better sampled for training, thus the actual individual distributions of class

labels were reassigned according to this. One advantage of RFs is the high computational

efficiency during outputting, yet the training time is still relatively long.

Filliat [96] and Martínez-Gómez et al. [97] employed a Bag of Binary Words (BoW) model

[98] to incrementally learn to recognize different rooms from any robot position. BoW is in-

spired by a technique in document classification and consists of two phases, namely representa-
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tion (indexing) and recognition (retrieval). Image features that are robust to intensity, rotation,

scale and affine are detected and described by independent feature descriptors with vectors,

such as SURF and FAST (SIFT, colour histograms and normalized gray level histogram in this

paper). Subsequently, the vectors are clustered by vector quantization algorithms, e.g. K-means

clustering [99]. The predefined codewords (words in documents) are then assigned to the clus-

ters to generate a codebook (a word dictionary), thus the images are represented by a histogram

of codewords. In the case of the recognition stage, generative or discriminative models such

as Naive Bayes classifier, SVM and AdaBoost are applied as the classifiers. Such a method is

quite flexible in terms of both applicable features and recognition approaches. However, the

spatial relationships among the clusters are ignored when BoW is used alone, which has been

compensated by Lazebnik et al. [18].

Text or signs can provide location information directly. Most text recognition systems im-

plemented Optical Character Recognition (OCR) for classification [100, 101, 102], which is an

off-the-shelf technology to convert images of typed, handwritten or printed text into machine-

encoded text. Sami et al. [101] adopted a back-projection of the colour histogram to locate

interest regions and applied Canny edge detector to remove background. A pan/tilt/zoom cam-

era was used in [102] to provide better focusing performance on potential text regions in the

wild. However, text retrieval still suffers from low performance in cluttered environments,

which limits its practicability.

2.3.4 Deep Learning Based Approaches

Convolutional Neural Networks (CNNs) have recently been widely used as robust visual fea-

ture extractors in the computer vision and machine learning domain and have shown better

performance in terms of changing environments, viewpoints, lighting conditions, objects, etc.

[103, 104]. Sharif Razavian et al. [104] have shown that CNNs outperform BoW in most

recognition tasks in terms of large datasets.

Although most CNNs are trained for object recognition, some researchers have managed to

modify these models for other related but different tasks such as place recognition and object

detection [104, 105, 106] since the generic features learned by different models from holistic

images in different datasets are versatile and transferable [107, 108].

Moveover, the descriptive features extracted and the extremely large and diverse data used
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for training also benefit visual odometry. PoseNet proposed by Kendall et al. [109] shows the

first implementation on pose estimation, which directly generates the six degrees of freedom

(6-DoF) of an camera from a single RGB input image. The model GoogLeNet [110] pre-

trained on other classification tasks is leveraged for pose regression. The softmax layers that

originally output classification results are removed and replaced by a seven dimensional pose

vector. The last fully connected layers are also modified. CNNs extract more robust features

than traditional feature detectors and achieve high accuracy even when extreme conditions exist,

such as intense lighting and blurry images. PoseNet can also be easily generalized to other

scenes through transfer learning technique. The model on the new task can thus be trained with

smaller dataset and shorter time. Li et al. [111] incorporated another CNN stream to PoseNet

and fed depth images into this stream to enhance the relocalization accuracy. ORB-SLAM is

used to label the collected images as ground truth. Recurrent Convolutional Neural Networks

[112] were also employed by Wang et al. [113] for pose estimation. However, all of these deep

learning based methods require ground truth poses for training, which can be quite expensive

and labour-intensive to produce.

2.4 Semantic Representation

Semantic representation is the interpretation process from objects or places to a human-compatible

or even human-like language. Some systems presented above apply classification or segmen-

tation methods for the purpose of recognizing specific objects or scenes, thus the semantic

information is directly obtained. In this section, we mainly focus on the semantic information

inferred by robots.

Early systems [37, 29] adopted the idea that a semantic map consists of two separate but

tightly interconnected parts: a spatial part and a terminological part [114]. This is a typical

structure of hybrid Knowledge Representation (KR) systems [115], as shown in Figure 2.5.

The spatial part contains raw images from the sensors, geometric information of the environ-

ment and connectivity between the rooms, whereas the terminological part consists of general

semantic knowledge about the environment, giving meanings to the features of the correspond-

ing properties in the environment in terms of general concepts and relations. These two hierar-

chies are interrelated by the concept of anchoring [116]. In [37], the NeoClassic AI language

was employed to establish the conceptual hierarchy and provided the robot with inference ca-
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pability. However, the conceptual knowledge was hand-coded into the system and uncertainties

about the properties in the environment were not included into the representation.

Vasudevan and Siegwart attempted to classify places based on objects as well [117], and

their system was fully probabilistic. In their system, objects were grouped into predefined

clusters and conceptualised during the training process. A simple Naive Bayesian Classifier

(NBC) was then employed to infer and identify the place categories on the basis of the clusters.

Meger et al. [74] developed an attentive system projecting the location and semantic infor-

mation of the recognized objects back into the grid map. Since the object recognition subsystem

was trained by collecting object model data through submitting text-based queries to internet

image search engines, the semantic information was thus easily incorporated into the object

models. Once an object was observed, the semantic information was directly acquired. A sim-

ilar work [118] built the spatial-semantic object models based on the LabelMe database [119].
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Figure 2.5: The spatial and conceptual hierarchy interrelated by anchoring.
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Bayes’ theorem was applied to define place categories by the recognized objects. More specif-

ically, a cluster model grouped objects on the basis of their locations, thus the place categories

were just another representation of the clusters.

Zender et al. [75] and Capobianco et al. [120] encoded conceptual knowledge into an Web

Ontology Language-Description Logic (OWL-DL) ontology. In [75], a description-logic rea-

soner employed some situated dialogues between a robot and an user to provide new knowledge

for the robot to further infer. In addition, a laser sensor was implemented for place classifica-

tion. More specifically, a navigation node (a marker) was placed in the metric map after the

robot moved 1 metre away from the last node. The nodes were then connected and classified

for room type identification. Pronobis et al. extended such method and applied the doors de-

tected in indoor environments to bound areas [3]. The final map is shown in Figure 2.6. In

[120], a standard methodology for representing and evaluating semantic maps was proposed.

The formalisation consisted of a reference frame, spatial information and a set of logic pred-

icates. With this system structure, the performance of semantic representations can then be

compared against those of other systems.

2.5 Typical Applications

Service robots are gradually working their way into our daily lives to become household ser-

vants, healthcare systems and even cognitive companions. The primary responsibility of service

robots is to obey the orders given by humans and perform tasks with high efficiency and accu-

racy. A semantic map provides a friendly human-robot interface and enables these service

robots to be used by general public without the need of training.

2.5.1 Indoor Applications

Some applications can be found in indoor environments. Galindo et al. presented a typical

autonomous navigation method based on a pre-built semantic map [37]. In their experiment,

the robot was given a command “go to the bathroom”. Following this command, the robot

inference system found a node in the topological map and the spatial information in the metric

map that connected to the node was retrieved by anchoring. Thus, the command was translated

to “go to the node” and then executed between the topological and metric hierarchies. Figure

2.7 describes this navigation method.
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Figure 2.6: The final semantic map obtained by Pronobis et al. [3]
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Figure 2.7: Robot navigation based on semantic map.

The authors in [121] enhanced the inference capability of a robot with a semantic map. The

common knowledge known by almost everyone was applied to detect deviations from normal

conditions. A goal was then autonomously generated by the encoded information about how

things should be, e.g. if a bottle of milk was observed on a table, the robot would set a goal

by itself and bring the milk into a fridge. Crespo et al. also presented a reasoning module to

infer new knowledge for mobile robots [122]. A relational database used for storing objects and

perceiving information was implemented to provide inference capability based on objects links.

Blodow et al. extracted semantic information by a laser scanner and a high-resolution 2D

camera for a PR2 robot to perform tasks in kitchen environments [4]. Segmentation algorithms

were applied to identify and distinguish certain kitchen facilities and their functional compo-

nents. The robot was capable of analysing the task-relevant objects, locating them in the map

and acting on them, e.g. using the handle to open the drawer and close it, as shown in Figure

2.8.

A semantic map can be inversely utilized to further improve robot localization capabilities.

One basic method is to identify room categories by specific objects. For example, the room is

classified as a kitchen once an oven is found inside. Initial localization errors can be reduced by
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Figure 2.8: Interaction between the robot and the kitchen facilities [4].

reasoning about the expected location of the recognized objects [37]. Ko et al. extended such

a method by continuously searching for other memorized objects as landmarks before referring

to spatial relationships since one object may not be enough to infer the accurate location [123].

In addition, the time for searching regions in topological and metric space were largely reduced

by discarding the irrelevant areas. The computational cost in the initial stage during robot

localization were thus be minimized [114].

2.5.2 Outdoor Applications

Semantic maps can also be applied to outdoor environments. Wolf and Sukhatme analysed and

classified terrain to resolve issues relating to non-navigable areas during path planning [28].

Boularias et al. additionally adopted natural language to command a mobile robot for navigation

in outdoor environments, e.g. “Navigate to the building behind the pole” [124]. Bernuy and

Solar presented a graph based topological semantic mapping method for autonomous off-road

driving [125].

Other applications include self-driving cars and augmented reality (AR) as shown in Fig-
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(a) Object identified by a self-driving car [126].

(b) Augmented reality technique pointing out the nearest destination [127].

Figure 2.9: Outdoor applications of semantic maps.
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ure 2.9. Reasoning about environments with additional semantic information plays a key role

for self-driving cars since the cars should be able to recognize roads, pedestrian crossings, hu-

mans, traffic lights, etc. However, current self-driving cars still have difficulty in identifying

some kinds of objects such as plastic bags which are harmless but causing the vehicles to veer

unnecessarily. When a police officer signals them to stop, they may not reacted accordingly.

These problems can be solved by associating the metric map with semantic information. With

respect to AR, the augmentation should be conventional in semantic context with environmental

elements, e.g. directing the way by virtual paths. Semantic maps are necessary for identifying

objects and destinations in real environments.

2.6 Summary
Chapter 2 presented a review on current semantic mapping system architectures. The visual

sensor based approaches to semantic mapping were first introduced, and the features extracted

from images were then detailed. Subsequently, the recognition and classification methods based

on the extracted features were discussed, as well as the direct segmentation methods. Deep

learning based methods were also introduced. Lastly, the semantic representation strategies and

typical applications were presented.



36 2.6. SUMMARY



Chapter 3

Building Semantic Maps for

Human-Robot Interaction

The traditional environment maps built by robots include both metric ones and topological

ones. These maps are navigation-oriented and not adequate for service robots to interact with

or serve human users who normally rely on conceptual knowledge or semantic contents of the

environment. Therefore, the construction of semantic maps becomes necessary for building an

effective human-robot interface for service robots. This chapter aims to build a 3D environment

map with an RGB-D sensor and extract semantic information from RGB images to help blind

people navigate at home. A novel approach is presented to diagnose and eliminate errors during

semantic extraction and loop closure detection.

3.1 Introduction

Nowadays, 285 million people are estimated to be visually impaired worldwide, among which

39 million suffer from total blindness [128]. Guide sticks and dogs have been deployed to lead

blind people around various obstacles. However, the guide sticks are too simple to be effectively

used and the guide dogs are expensive to be trained. Both of them are unable to interpret street

signs or complex outdoor scenery reliably, let alone providing semantic guidance. Thus, it

remains a major challenge for blind people to live independently at home.

To build a robotic system to help blind people, a semantic map is the preliminary require-

ment and can be deployed to guide them around home. Traditional maps, namely geometrical

37
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ones and topological ones, are only navigation oriented, which enable mobile robots to navigate

around and plan a path for reaching a goal [28]. However, these maps are inadequate for blind

people who normally need semantic information interpreted from scenes. Therefore, it is nec-

essary to build a semantic map and provide voice guidance for blind people based on semantic

maps, e.g. “There is a chair in front of you” or “You are in the kitchen now”.

In a semantic map, nodes representing places and landmarks are named by linguistic words.

Examples of these include names and categories of different objects, rooms and locations [21].

More specifically, a semantic map can be regarded as an extension of a hybrid map, which

contains geometric description, topological connectivity and semantic interpretation [30]. It

provides a friendly way for service robots to communicate with users.

More recently, representing environments using semantic data has become a popular re-

search domain and drawn enormous attentions from different fields. In the early stage of its

development, range sensors were widely applied to build 2D projections of scenes or 3D spatial

models of the physical environments and then complemented by further semantic information.

Nüchter and Hertzberg [30] provided a fast plane extraction method in indoor environments with

a 3D laser scanner to distinguish between different architectural components such as ceilings,

floors, doors and walls. In [129], laser range data was used to classify rooms, corridors, door-

ways and hallways in indoor environments. Although these works have undoubtedly promoted

the development of semantic mapping, the recognizable objects and locations were restricted

to a small scope due to the limited features provided by range sensors. Thus, attentions were

drawn to visual sensors which contain richer information than non-visual data. Moreover, the

application of visual sensors in semantic mapping seems to be a sensible decision since we

humans perceive the world through our eyes. Visual data allows the representation of not only

low-level features such as lines, corners and shapes, but also high-level features such as colours,

relations and texts. In this way, the additional features lead to a wider variety of objects that can

be recognized, which highly enriches semantic maps.

At first, recognizing objects or places was normally done by using conventional cameras that

record two-dimensional images. In [130], models of indoor Manhattan scenes were acquired

from individual images generated from a 2D camera and then assigned with semantic labels.

Tian et al. addressed door modeling and detection problem to assist blind people to access un-

familiar indoor environments [131]. Wu et al. [25] and Neves dos Santos et al. [132] employed
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2D visual data to tackle the problem of place recognition in semantic mapping. SLAM and

object recognition with monocular cameras were presented by Civera et al. [133] and Riazuelo

et al. [78], respectively. However, these methods only use 2D images to recover scenes, which

inevitably lose the absolute scale of the scenes. An additional post-processing step is needed

to inject scale into the pre-built maps and recover the true scale in real world. Therefore, some

researchers try to seek other solutions to this problem.

In recent few years, mapping environments into 3D point clouds and extracting semantic

information from them have become a new trend [5, 134, 135, 136] due to the availability of

low-cost and light-weight 3D point cloud capturing devices, such as stereo cameras and RGB-D

sensors, which allow the application to small robot platforms or even wearable devices easily.

Compared to 2D images, 3D point clouds overcome the limitation in the data-stream itself by

providing additional depth data. The absolute scale can thus be easily recovered. Moreover,

humans recognize and perceive a 3D world in terms of our eyes, which means recognizing

objects in a 3D world tends to be more natural and accurate, especially when it comes to a large

variety of goods in our daily life [34]. However, how to extract semantic information and detect

loop closure more accurately still remain challenging.

In this experiment, both RGB and depth images are deployed for estimating the sensor

poses and then generating 3D geometrical maps. Semantic information is extracted by matching

the RGB images with the object images in the database. We have also implemented a simple

strategy to detect false positive matches and eliminate recognition errors. The methods are

detailed in Section 3.2 and 3.3.

The rest of Chapter 3 is organized as follows. Our 3D geometrical mapping and semantic

information extraction methods are detailed in Section 3.2 and 3.3. Subsequently, experimental

results are presented and discussed in Section 3.4. A brief conclusion is given in Section 3.5.

3.2 Feature Based Metric Map Building Method
Figure 3.1 presents the block diagram and configuration of the proposed semantic mapping

system. The blue blocks are the inputs (RGB images, depth images and database) and the

output (semantic map) of our system. The orange ones represent the 3D mapping process and

the green ones describe the semantic information extraction process. Algorithm 3.1 presents the

order in which the processes are carried out.
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Figure 3.1: System overview. Blue boxes: inputs and output. Orange boxes: mapping process.
Green boxes: semantic information extraction process.

As for the mapping process, specific features are detected and feature descriptors are com-

puted and obtained from RGB images. The descriptors are then compared with the ones of the

previous key-frame and their 3D coordinates to estimate a rough transformation matrix (rotation

and translation). If the transformation is substantial enough, a new key-frame is added. Subse-

quently, loop closure detection is carried out by matching the current key-frame with some of

the previous key-frames. A pose graph is then built and optimized using g2o [137] in order to

obtain a relatively precise trajectory.

Finally, the point clouds generated from the input RGB and depth images are down-sampled

and projected into a common coordinate frame. A detailed 3D model is thus represented. Dur-
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ing semantic information extraction, the images and names of the objects are first fetched from

the database. We then apply object recognition in each of the key-frames. Once an object is

detected, we calculate its location in the global coordinate and then store it in a file which can

be used for further inferring and navigation.

3.2.1 Feature Extraction

In our system, we adopt SURF (Speeded up Robust Features) [62] for both mapping and ob-

ject recognition. SURF has claimed to be several times faster than SIFT, and the accuracy

still remains relatively acceptable. SURF employs integral images and square-shaped filters

to approximate the determinant of the Hessian matrix during Gaussian smoothing, thus can be

computational efficient.

We have also tested SIFT (Scale Invariant Feature Transform) and ORB (Oriented FAST

and Rotated BRIEF) features. SIFT tends to be more computationally expensive, however

the absolute trajectory error (ATE) remains almost the same. Computing an ORB feature is

several times computationally efficient than SURF, but the number of good matches that provide

correct transformation estimation (inliers) is always not enough. Therefore, we finally decided

to employ SURF in our system.

3.2.2 Transformation Estimation

Due to the distinctive visual features in indoor environments, the motion of the sensor can be

estimated by measuring the similarity or the distance between the feature descriptors extracted

from two sequential key-frames. In this experiment, we apply Perspective-n-Point (PnP) to

solve this problem, which originates from camera calibration. PnP solves the problem of es-

timating the pose of a calibrated camera given a set of n points in the 3D world and their

corresponding 2D projections in a image. The sensor motion which consists of 6 degrees of

freedom (DOF) can thus be estimated and represented by a rotation matrix (roll, pitch and yaw)

and a translation matrix.

Assume Fp and Fq are two RGB images with N pairs of matched points pi and qi,

p = {p1, p2, ..., pi, ..., pN} ∈ Fp, (3.1)

q = {q1, q2, ..., qi, ..., qN} ∈ Fq. (3.2)
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Algorithm 3.1: Feature based semantic mapping.
Input : Consecutive RGB images {I1, I2, ..., IN}

Associated depth images {D1, D2, ..., DN}
Object images in the database {O1, O2, ..., OM}

Output: Semantic map
function generate_Global_Pose_Graph

take I1 as the first key-frame
g2o initialization
for (i = 1; i < N ; i++) do

compute SURF feature Vi from Ii
match Vi to the previous key-frame using FLANN
calculate min_Matching_Distance
thres_Distance = 4×min_Matching_Distance
if distance<thres_Distance then

good_Match++
end
set thres_Good_Match_Number ∈ [10, 20] based on experimental experience
if good_Match<thres_Good_Match_Number then

continue
end
compute point cloud Ci+1 using Ii+1 and Di+1

compute transformation T using Ii and Ci+1

set thres_Transformation = 0.3 based on experimental experience
if T>thres_Transformation then

set Ii as a new key-frame
add a new node and edge to g2o
while j < M do

match Vi to images in the object database
if neighbouring_Good_Match_Number_V erification = true then

add label to Ii
end

end
if loop_Detection = true then

if neighbouring_Good_Match_Number_V erification = true then
add a new node and edge to g2o

end
end

else
continue

end
end

end
global pose graph optimization using g2o
subsample Ck and join Ck together using PCL
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Q = {Q1, Q2, ..., Qi, ..., QN} ∈ FQ are the associated 3D points of p. The 3D point Qi can

be calculated from qi by 
xQi = (uqi − cx) ∗ z/fx
yQi = (vqi − cy) ∗ z/fy
z = dqi/s

, (3.3)

where (xQi, yQi, zQi) are the 3D coordinates of Qi, (uqi, vqi) are the 2D coordinates of qi, fx, fy

are the focal lengths expressed in pixel units, (cx, cy) is the principal point that is usually at the

image centre, s is a scale factor, dqi is the depth reading of point qi. We can then estimate the

camera transformation matrix using

spi = K
[
R̂P,Q T̂P,Q

]
Qi (3.4)

or

s


upi

vpi

1
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0 fy cy

0 0 1
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
xQi

yQi

zQi

1

 (3.5)

where R̂P,Q, T̂P,Q are the expected rotation and translation matrices, respectively.

Although four pairs of points are enough to estimate the transformation, some possible

errors could appear during matching and may affect the result. Therefore, we apply RANSAC

to retain good matches that provide correct estimation and improve the robustness in terms

of outliers. A threshold is set for allowed distance between the observed and computed point

projections in order to verify inliers. The iteration will stop if the RANSAC algorithm at some

stage finds certain number of inliers. Particularly, we minimize the sum of squared distances

between two frames

min
R̂,T̂

N∑
i=1

||Pi − (R̂Qi + T̂ )||2 (3.6)

in order to obtain the accurate transformation matrix. If the transformation is substantial enough,

the current frame is regarded as a new key-frame.
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3.2.3 Loop Closure Detection

A global pose graph can be generated by the transformation estimation process discussed above.

However, the rough individual estimations between pairs of consecutive key-frames are noisy,

especially when few features are detected. Loop closure is thus applied to reduce the accumu-

lated noise and increase the mapping accuracy by comparing the current key-frame with the

previous frames. This inevitably builds up the computational cost linearly due to the increasing

number of processed frames. Although a computer with multi-core processors mitigates such

problem to a certain degree, the comparison of the current key-frame to all the earlier frames is

not feasible.

Moreover, revisiting the same places only occurs occasionally and a successful loop closure

is not always available. Therefore, we adopt a more efficient strategy [5] to select the candidate

frames. In order to reduce the number of candidate frames in our system, they are only selected

from the set of key-frames. We first detect loop closure in several previous neighbouring key-

frames. Subsequently, several key-frames are randomly selected with a preference for much

earlier ones to estimate transformation with the current key-frame. When we revisit the same

scene and a loop closure is found, more key-frames are further explored in the neighbouring

frames of this one to find the best match. Finally the rotation and translation matrix calculated

based on the least transformation distance are applied to the global pose optimization process.

3.2.4 Graph Optimization

The edges in the pose graph are generated by transformation estimation between pairs of key-

frames. However, they may fail to form a globally consistent trajectory due to estimation errors.

In this experiment, we adopt the g2o framework [137] which performs a minimization of non-

linear error function. The optimization result can be directly represented as our global trajectory.

In g2o, nodes represent camera poses and edges describe the transformation between camera

poses. Assume a local or global loop closure is found, a camera pose kl can be obtained from

both ki and kj by

k̂il = R̂l,iki + T̂l,i, (3.7)

k̂jl = R̂l,jkj + T̂l,j. (3.8)
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An error can then be generated by

ei,j = k̂il − k̂
j
l . (3.9)

The global pose graph is thus optimized by

min
R̂,T̂

∑
i,j

||ei,j||22 (3.10)

The error function ei,j is 0 when the estimated transformation matrix is exactly the true

value.

In our system, global pose graph optimization is performed when all the key-frames are

detected. We have found that graph optimization is of great value when the sensor recaptures the

same scene after traveling for a long distance, since the non-linear error function substantially

reduces the accumulated noise.

3.2.5 Point Cloud Generation

In order to view the global geometrical 3D map, we need to generate a point cloud, i.e. a set of

data points in 3D space. In this experiment, the point cloud is saved as the PCD (Point Cloud

Data) file format which can be used by Point Cloud Library (PCL). Similar to a pixel in an RGB

image, a point in a point cloud is called a voxel. We first calculate the 3D coordinates of each

point in the depth images which has meaningful value (between 0.1 and 5 metres). The voxels

in the current point cloud are thus acquired. We then get the colours of the voxels based on

their associated pixels in the corresponding RGB images and assign them to the voxels. In this

way, a RGB image can be mapped to its corresponding depth image and the point cloud of a

key-frame is obtained. We then use the estimated transformation matrix to project the current

point cloud into a common coordinate frame and add it to the global point cloud. Finally, the

generated global point cloud is down-sampled for better presentation.

3.3 Semantic Information Extraction
We first take some pictures of objects in the environment, associate them with natural language

and store them in a database. After extracting SURF descriptors, we take the descriptors of

the images in the database and match them with all key-frames. The number of inliers and
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the Euclidean distance are both used for object recognition, which is similar to loop closure

detection.

However, this strategy is not stable in large environments. Furthermore, SURF is good at

handling images with blurring and rotation, but not good at handling viewpoint change and

illumination change. In Figure 3.2, two key-frames are marked as red dots and their neighbour-

ing key-frames are marked as green dots. A laptop in key-frame A and an error in key-frame

B are both labeled as a laptop. To solve this, we simply verify our recognition result in the

neighbouring key-frames by

ξm =
Nc

Nn

(3.11)

where Nc and Nn are the numbers of good matches in the candidate key-frame and the neigh-

bouring key-frames, respectively. A threshold for ξm is then set to eliminate recognition errors

(in our case the threshold is 1.25). For Key-frame B, ξm is larger than 1.25, thus is an error

label. The same strategy is also applied to loop closure detection since false positive detection

has severe impact on pose graph optimization.

Once an object is successfully detected, the current key-frame is labeled with the object

name. After pose graph optimization, the coordinates of the labeled key-frames are recalculated,

thus the global coordinates of the recognized objects are obtained.

3.4 Experimental Results
In this section, the 3D mapping and object recognition subsystems are both evaluated. For

3D mapping, a test in our lab is first presented. A Vicon motion tracking system is used to

provide the ground truth of our sensor movement. We then test our mapping algorithm on the

TUM benchmark [138] and compare our result with the RGB-D SLAM algorithm presented in

[5]. Subsequently, we test our system in a large-scale home environment to extract semantic

information. We employ a Microsoft Kinect for Xbox One to gather data in our lab and an Asus

Xtion PRO LIVE in the home environment. An Intel Core i7-3632QM with 2.2GHz CPU is

used for all the experiments. No graphics card is used.

3.4.1 3D Mapping

The mapping result in our lab is shown in Figure 3.3. The lab is approximately circular. The

entrance is at the top of the graph. We adopt the benchmark tool provided in [138] to produce
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Figure 3.2: Number of good matches.

a global trajectory. The green line is the ground truth, the blue line is the estimated pose graph

and the red lines show the differences. The top part where the lines intersect indicates when

global loop closure is detected. As we can see from the left part of the graph, the differences

between the estimated trajectory and the ground truth are relatively greater. This is because the

camera was moving too fast, thus the images captured are very blurry.

We have also tested our mapping algorithm on a benchmark dataset. To evaluate our map-

ping performance, we adopt the absolute trajectory error (ATE) which directly calculates the

deviations between pairs of estimated poses and ground truth poses. Both poses are prepro-

cessed and associated using timestamps. In Table 3.1, root-mean-square, mean, median and

maximum of ATE are listed. Figure 3.4 presents the 3D maps obtained and the trajectory devia-

tions. We can see that our algorithm can track almost all of the frames and estimate a relatively

accurate trajectory.

Figure 3.4h shows the best result. The scene was captured by moving a camera around a
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table. The proposed algorithm managed to track almost all camera motions smoothly. Thanks

to the global loop closure detected, the whole trajectory can be optimized. The algorithm also

performed well in Figure 3.4c and 3.4e, as can be seen from Figure 3.4d and 3.4f, respectively.

Both scenes were captured by moving a camera along the horizontal and vertical directions in

front of tables. Thus, both local and global loop closures can be easily detected. From Figure

(a) 3D map.
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(b) Differences between estimated trajectory and ground truth.

Figure 3.3: 3D mapping test in our lab.

Table 3.1: Performance analysis based on the benchmark and our dataset.

Dataset Frames Key-frames RMSE of ATE (m) Mean of ATE (m) Median of ATE (m) Maximum of ATE (m)

fr1/desk 573 119 0.064 0.034 0.026 0.526

fr1/xyz 792 153 0.013 0.011 0.010 0.051

fr2/xyz 3615 139 0.006 0.005 0.004 0.019

fr3/long 2488 447 0.028 0.027 0.026 0.067

our lab 1528 415 0.055 0.050 0.049 0.133

3.4d and 3.4f, we can tell the algorithm omitted some frames during camera pose estimation

and at the same time maintained the accuracy. This is because we set a new frame as a key-

frame only when the norm of the transformation matrix exceeds a threshold, as detailed in

Algorithm 3.1. However, we still failed to track part of the sensor motion in Figure 3.4a, i.e.,

the left part of the fr1/desk scene. One reason is because the camera was facing to a plain wall

when it was capturing the scene, thus there were not enough features extracted from the RGB
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(a) fr1/desk map.

(b) fr1/desk trajectory.
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(c) fr1/xyz map.

(d) fr1/xyz trajectory.
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(e) fr2/xyz map.

(f) fr2/xyz trajectory.



3.4. EXPERIMENTAL RESULTS 53

(g) fr3/long map.

(h) fr3/long trajectory.

Figure 3.4: 3D mapping test on the benchmark dataset.
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Table 3.2: Performance comparison between our algorithm and the one presented in [5] based
on RMSE of ATE values. (unit: meter)

Dataset Our Algorithm Algorithm in [5]

fr1/desk 0.064 0.026

fr1/xyz 0.013 0.014

fr2/xyz 0.006 0.008

fr3/long 0.028 0.032

Figure 3.5: A plain colour box showing the recognized laptop in the 3D map.

images. Another reason is that the rotation speed of the sensor was too high and the scenes in

neighbouring frames suffered from a substantial change. Thus the number of good matches is

smaller than the threshold which is used to launch the motion estimation process.

Another mapping algorithm in [5] is used to compare with our results (see Table 3.2). As

can be seen from the table, our mapping subsystem has comparable performance as the one in

[5]. However, we still need to improve the robustness of our algorithm, especially when the

sensor is rotating at a high speed.
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3.4.2 Semantic Information Extraction

We carried out the semantic information extraction experiment in a student accommodation

including a bedroom, a kitchen and a toilet, as shown in Figure 3.6. In this experiment, 7

objects are added to the database: bed, laptop, toilet seat, stove, kitchen cupboard, kitchen sink

and vacuum cleaner. We rely on the handles on the cupboard to recognize it and the tap to

recognize the sink. A handheld Xtion sensor and a laptop were used to map the environment.

(a) Bedroom. (b) Kitchen.

(c) Toilet. (d) Corridor.

Figure 3.6: Student accommodation.

Since only the centre point of the object features is stored, we place a plain colour box

around the centre point to verify the object location, as shown in Figure 3.5. Each object in the

database has its own colour. The environment 3D map is shown in Figure 3.7. The red line

represents the trajectory of the camera. We started moving the camera from the bedroom, went

into the kitchen, walked along the corridor and finally returned to the bedroom. Global loop
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Figure 3.7: 3D map of the student accommodation with red line representing the trajectory of
the camera.
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closures mainly exist in the corridor.

3.5 Summary
In this chapter, a semantic mapping method was presented to help blind people navigate at

home. The system consists of a 3D camera and a laptop. The mapping and semantic informa-

tion extraction methods were detailed. A novel approach to eliminating errors for loop closure

detection and semantic information extraction was also introduced. The pose estimation ac-

curacy was tested and compared based on a benchmark dataset. Finally, the performance of

semantic information extraction was verified in a home environment.

In the next section, we continue developing efficient and reliable localization algorithms for

semantic mapping. Moreover, deep learning technique will be used in the proposed system to

achieve accurate visual localization result.
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Chapter 4

Using Unsupervised Deep Learning

Technique for Monocular Visual

Odometry

This chapter presents a novel monocular visual odometry system based on an unsupervised

Recurrent Convolutional Neural Network. In recent years, deep learning based visual odometry

systems have already shown promising results compared to traditional feature matching based

methods. However, ground truth poses are required for training, which are not always available.

Moreover, additional knowledge has to be provided during reconstruction in order to obtain

absolute scale from monocular images. To address these issues, we propose a novel visual

odometry system using an unsupervised end-to-end framework. Our first contribution is the

unsupervised training framework. No camera ground truth poses are required for training. They

are only deployed for system performance evaluation. The second contribution is absolute scale

recovering without pose post-processing. To inject scale, depth information of scenes is used

alongside monocular images to train the network. Poses are inferred only from monocular

images, thus making the proposed visual odometry system a monocular one. Experiments have

been conducted and the results have shown that the proposed method performs better than other

monocular visual odometry systems.

59
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4.1 Introduction

Visual odometry (VO) has drawn enormous attentions from both robotics and computer vision

communities during the last decades. It studies how a robot can estimate its movement relative

to a rigid scene through a camera (monocular, stereo or omnidirectional) attached to it [139].

Traditional VO systems consist of image correction, feature extraction and representation, fea-

ture matching, transformation estimation and pose graph optimization. They have shown some

outstanding performance through careful design and adjustment step by step, which are how-

ever very costly [22]. The technique has been widely applied to augmented reality (AR), mobile

robots, wearable devices, etc.

Deep learning based VO systems developed in recent years [109, 113, 111, 140] have al-

ready shown promising performance in terms of both translation and rotation estimation accu-

racy. Ground truth poses of each input frame need be acquired beforehand and fed into these

networks for training. However, ground truth poses are difficult and expensive to obtain. In

some systems, ground truth poses are even inferred and obtained by labeling collected images

with traditional VO or SLAM algorithms, which is an ill-posed problem.

This chapter proposes an unsupervised training framework which does not require the ground

truth poses of a camera in any form for training. Instead, the ground truth poses of the camera

are only used for performance evaluation. Therefore, such unsupervised training eliminates the

need of the labour-intensive image labeling process. In addition, the performance of our system

can be easily improved by further training with larger unlabeled dataset. Figure 4.1 gives an

overview of our proposed VO system. The upper half of the figure shows the training pipeline,

whereas the lower half shows the testing pipeline. The black lines represent the inputs of the

proposed Recurrent Convolutional Neural Network, the blue lines represent the outputs and the

red line represents back-propagation. The training dataset includes a pair of monocular and

depth images. Transformation matrices generated by the network are used to calculate losses.

Parameters in the network are then optimized by minimizing these losses. We use consecutive

monocular images for testing. The network directly yields poses on an absolute scale.

Monocular VO is one of the most popular VO categories depending on the camera setup.

However, the absolute scale can not be obtained based solely on monocular images. Either

external information or prior knowledge (ground truth pose) is required at some stage during
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Figure 4.1: Overview of the proposed visual odometry system.

reconstruction or/and training. In robotics, one typical way of obtaining scale during recon-

struction is by combining a monocular camera with other sensors such as Inertial Measurement

Unit (IMU) and optical encoder. Another solution is by providing depth information of a scene

in some way. This can be achieved via employing RGB-D sensors (Microsoft Kinect, Asus

Xtion Pro, etc.) [141, 142, 143], stereo cameras [144, 145] or 3D LiDARs [146, 147]. This

latter one has been widely deployed in self-driving cars and smart phones.

In this chapter, we feed monocular images and depth information obtained from 3D LiDARs

into the training pipeline to inject absolute scale and only use monocular images during testing.

We focus on the problem of continuously localizing a monocular camera on an absolute scale

for the purpose of locating people or robots. The RCNN is trained based on an unsupervised

end-to-end manner. Experiments have been carried out on KITTI [148] odometry dataset and

results have shown that our VO system can be compared to other state-of-the-art monocular VO

systems in terms of both translation and rotation accuracy even without scale post-processing.

In general, visual odometry tackles the problem of recovering the position and orientation

of an agent or a robot in 3D world from associated images. Based on the type of camera

employed, VO systems can be divided into several categories, namely monocular VO [149],
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stereo VO [150] and omnidirectional VO [151]. Additional sensors are sometimes incorporated

to boost the performance, such as depth sensors [71] (LiDAR or RGB-D camera) and IMU

[152].

Most traditional VO systems are feature based. More specifically, certain image features

are extracted and represented by descriptors first. They are then matched across a sequence

of images and used to calculate transformation matrices between frames. The performance of

these systems depends heavily on the image features deployed. Speeded Up Robust Features

(SURF) and Scale Invariant Feature Transform (SIFT) features were used by Kitt et al. [153]

and Barfoot [154] in their stereo VO systems respectively. Mur-Artal et al. modified Oriented

FAST and rotated BRIEF (ORB) feature and proposed one of the state-of-the-art SLAM systems

[155, 156].

ORB-SLAM is superbly fine-tuned and can be operated in real-time without GPUs. Such

systems are built on the idea of parallel tracking and mapping (PTAM) [157]. They are com-

putationally efficient since a whole image is represented by a sparse set of feature observations

and only the features are involved in calculation. An alternative to feature based method was

brought up by Newcombe et al. [134, 158], namely dense tracking and mapping (DTAM),

which can be viewed as a direct method. DTAM relies on pixel intensity and minimizes an

error directly in sensor space. Therefore, feature extraction and matching are not required.

However, due to the high computational demand of processing every pixel in an image,

GPUs inevitably need to be employed to make the system run in real-time. Engel et al. proposed

a hybrid semi-dense system, namely LSD-SLAM, which is operated in real-time with only a

CPU while maintaining the accuracy and robustness of dense approaches [159, 160]. LSD-

SLAM first builds up an inverse depth map of an image for camera motion estimation. The

inverse depth map is semi-dense, which is estimated from the image regions with severe gradient

changes rather than a whole image. In this way, the texture of the image is preserved and

the computational complexity can be significantly reduced. These systems usually need to

be carefully designed and fine-tuned. In contrast, our method adopts an end-to-end training

framework and requires less engineering effort.

In recent years, Convolutional Neural Networks (CNNs) have been widely used in the

robotics and computer vision domain and have shown remarkable robustness in challenging

environments [107]. This is due to the more descriptive features extracted and the extremely
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large and diverse data used for training. PoseNet proposed by Kendall et al. shows the first

implementation on pose estimation [109], which directly generates the six degrees of freedom

(6-DoF) of a camera from a single RGB input image. The model GoogLeNet pre-trained on

other classification tasks is leveraged for pose regression [110]. The softmax layers that origi-

nally output classification results are removed and replaced by a seven-dimensional pose vector.

The last fully connected layers are also modified.

CNNs extract more robust features than traditional feature detectors and achieve a high accu-

racy even under some extreme conditions, such as intense lighting and blurry images. PoseNet

can also be easily generalized to other scenes through transfer learning technique. The model

on the new task can thus be trained with smaller dataset and shorter time. Li et al. incorpo-

rated another CNN stream to PoseNet and fed depth images into this stream to enhance the

re-localization accuracy [111]. ORB-SLAM is used to label the collected images as ground

truth. Recurrent Convolutional Neural Networks [112] were also employed by Wang et al.

[113] for pose estimation. However, all of these deep learning based methods require ground

truth for training, which can be quite expensive and labour-intensive.

Attentions have been recently drawn to the unsupervised field due to the shortcomings of

the aforementioned supervised methods. Zhou et al. presented an unsupervised deep learning

framework for depth and camera motion estimation [147]. An explainability mask is also trained

to prevent gradient corruption. Their depth prediction and the pose estimation results were

promising. However, this method failed to recovery absolute scale due to the limitation caused

by using monocular images only. A scale factor needs to be calculated from ground truth each

time when a pose is estimated and the value of the scale factor is non-constant.

The rest of Chapter 4 is organized as follows. The proposed network architecture and the

methodologies are detailed in Section 4.2. Training and experimental results are subsequently

presented and evaluated in Section 4.3. Finally, a brief conclusion is given in the last section.

4.2 The Proposed Approach

In this section, we discuss the proposed VO system in detail. The network architecture is given

first. The loss functions used to penalize the system output are subsequently introduced. Finally,

the implementations of the network and loss functions are presented.
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4.2.1 System Architecture

Visual Odometry describes the movement of an agent over time. The global pose graph is

obtained from a sequence of images gradually rather than through a single calculation. Every

element of the image sequence is not independent of each other. Therefore, the deep learning

network needs to consider the previous computations before it outputs the pose of the current

frame. With regard to current neural networks, a CNN, being a feed-forward network, only

learns to differentiate patterns across space, while a RNN learns to recognize patterns across

time. Leveraging both CNN and RNN networks could meet the requirements of the VO task

perfectly. Thus, following the methodology presented by Wang et al. [113] and Donahue et

al. [112], we propose a Recurrent Convolutional Neural Network (RCNN) in this section. The

CNN takes two raw RGB images as input and generates a feature map. The feature map is then

fed into the RNN which finally generates a transformation matrix between the input images.

Figure 4.2 shows the architecture of the Convolutional Neural Network. The network can

be viewed as a feature extractor. We take two consecutive monocular images each time and

feed them into the network for training. The images are resized to 416 × 128 × 3 and then

stacked along colour channels. Conv represents convolutional layers. The blue cubes represent

feature maps with shapes under them. Figure 4.3 shows the architecture of the Recurrent Neural

Network. The network can be viewed as a pose estimator. The network takes the last feature

maps from the CNN and directly outputs translation and rotation matrices. The numbers in blue

and gray boxes represent the size of vectors. The number of hidden units in a LSTM cell is set

as 256.

It becomes clear that CNNs that are originally trained for a specific task can be modified

and reused for other related but different tasks [161, 105] since the generic features learned by

a model, especially from lower convolutional layers, are versatile and transferable [107]. Re-

cently, several models have been proposed and shown promising performance such as AlexNet

[162], GoogLeNet [110] and ResNet [163]. Based on the CNN originates from Visual Geometry

Group neural network (VGG) [164], Table 4.1 lists the specifics of each modified convolutional

layer.

Figure 4.2 uses KITTI dataset as an example input. The CNN model can be regarded as

an image feature extractor and descriptor. Assume that I1, I2, ..., It, ..., IN is a sequence of



4.2. THE PROPOSED APPROACH 67

Table 4.1: Specifics of the convolutional layers.

Layer Filter Size Stride Padding Channel Number

Conv1 7× 7 2 3 16

Conv2 5× 5 2 2 32

Conv3 3× 3 2 1 64

Conv4 3× 3 2 1 128

Conv5 3× 3 2 1 256

Conv6 3× 3 2 1 256

Conv7 3× 3 2 1 512

monocular images used for training. The CNN takes every two consecutive images as input

and yields N − 1 feature maps with the size 4 × 1 × 512. The input images are first resized

to 416 × 128 × 3, stacked along colour channels and then fed into the network. There are

7 convolutional layers in the CNN. We use stride 2 to regulate the movement of all of the

convolutional filters (receptive field or kernel) for pixel-wise operations across image space.

The sizes of the filters in the first two convolutional layers are 7×7 and 5×5, respectively. The

size drops to 3 × 3 for the rest layers. The zero-padding decreases along with the kernel size

from 3 to 2 and then 1 so that the spatial dimension of the input volume can be preserved.

Each convolutional layer is followed by a Rectified Linear Unit (ReLU) nonlinear activation

function. Batch normalization, which is a commonly used technique for improving performance

of neural networks is not employed in our CNN. Instead, it results in slow and unstable loss

convergence in our experiments. One possible reason is because batch normalization normalizes

the input layer by adjusting and scaling the activations. The absolute differences between image

pixels or features are ignored and only relative differences are taken into consideration. In this

way, batch normalization can reduce the training difficulty for classification tasks since it can

retain the structure of an image while highlighting the inconspicuous regions. However, the

contrast information of an image needs to be preserved rather than stretched for VO tasks.

Thus, batch normalization is not applied in our system.

The feature maps generated from the CNN are reshaped and flattened to N − 1 chronolog-

ical vectors. The RNN takes these vectors as input and learns connections in the sequence of

image. However, in practice, it is difficult to train a standard RNN to solve problems that re-
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quire learning long-term temporal dependencies, since the gradient of the loss function decays

exponentially with time until it vanishes or explodes. Thus, we adopt a popular solution by

incorporating Long Short-Term Memory (LSTM) units [165] into the RNN.

Compared to standard RNNs, LSTM networks introduce three gates, namely input, forget

and output, which allow for a better control over the gradient flow and preservation of long-term

temporal dependencies. The key to an LSTM network is updating the cell state through time,

which is represented by the green arrows in Figure 4.3. Only one LSTM layer is applied in the

RNN and the number of memory units is 256. We follow Kawakami’s suggestion [166] and set

the biases of the forget gate to 1 to reduce the scale of forgetting at the beginning of training.

The projection layer is not used in the LSTM cell, thus the dimension of the output is also 256.

The output vectors from the RNN represents high-level features of the transformation infor-

mation between two consecutive frames. We then feed them into two fully connected layers to

learn nonlinear combinations of these features. The fully connected layers have connections to

all activations in the previous layer, thus can realize high-level meaningful reasoning. Unlike

other deep learning based methods which output a single vector representing 6-DoF, two par-

allel streams are introduced in our system to infer translation and rotation independently. This

is due to the fact that rotation is highly nonlinear and is always harder to be trained. A tradi-

tional solution based on practical experience is by raising the weight of rotation loss. We further

extend this idea and use two separate streams to collect different features for estimation. The

dimension of the fully connected layers is 256, followed by a Exponential Linear Unit (ELU)

activation function. Finally, the translation and rotation (represented by Euler angles) vectors

are generated and used for back-propagation.

4.2.2 Loss Function

In this section, we introduce how the loss functions are designed in our system. The loss func-

tions or cost functions describe how far off the pose our RCNN produced is from the expected

result. The loss indicates the magnitude of error our model made on its inaccurate prediction.

We minimize the loss in order to make the output of the network closer to the truth. In our

system, the total loss consists of 2D and 3D spatial losses. The loss is calculated by using

transformation matrices generated by our RCNN and pairs of consecutive monocular images

and point clouds.
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Assume that I1, I2, ..., It, It+1, ..., IN is a sequence of monocular images in chronological

order used for training and D1, D2, ..., Dt, Dt+1, ..., DN are the associated depth images. It and

It+1, (1 ≤ t < t + 1 ≤ N) are two consecutive frames in this image sequence. To compute

2D spatial loss, we first project a point from It to It+1 using the transformation matrix and its

depth value. A new frame Ît can then be reconstructed from the projected point in It+1. Finally,

we compare Ît with It for loss calculation. In terms of 3D spatial loss, we directly swap a point

cloud to its neighbouring frame through the transformation matrix and compare their difference.

2D Spatial Loss

Pairs of consecutive RGB images and point clouds are used to compute 2D spatial loss. We

first rescale the voxel values of the point clouds to 0-255 and project the point clouds to single-

channel 2D depth images. Thus, each pixel in a calibrated depth image represents the depth

value of the corresponding point in the associated monocular image.

Let pt(ut, vt) and dt denote a point in It and its depth value inDt, respectively. We then try to

project pt to the frame It+1 at time t+1. Assume the projected point in It+1 is p̂t+1(ût+1, v̂t+1).

Based on the pinhole camera model, a scene view can be formed by projecting 3D points in the

world coordinate system into the image 2D plane using a perspective transformation

dtpt = KPt (4.1)

or

dt


ut

vt

1

 = K


xt

yt

zt

 , (4.2)

whereK is the camera intrinsic matrix, Pt(xt, yt, zt) is the voxel in the world coordinate system

projected from point pt. Note that in Equation 4.2, dt = zt.

On the other hand, based on 3D linear transformation theory, we have

P̂t+1 = R̂t−>t+1Pt + t̂t−>t+1 (4.3)

or

P̂t+1 = R̂t−>t+1dtK
−1pt + t̂t−>t+1, (4.4)
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where P̂t+1 is the voxel in the world coordinate system projected from p̂t+1. R̂t−>t+1 (converted

from Euler angles) and t̂t−>t+1 are the rotation matrix and translation vector generated by the

RCNN, respectively. The size of rotation matrix R̂t−>t+1 is 3×3, whereas the size of translation

vector t̂t−>t+1 is 3×1. We can then project P̂t+1(x̂t+1, ŷt+1, ẑt+1) to the image 2D plane through

d̂t+1


ût+1

v̂t+1

1

 = K


x̂t+1

ŷt+1

ẑt+1

 , (4.5)

where d̂t+1 is the depth value of p̂t+1(ût+1, v̂t+1) and d̂t+1 = ẑt+1. In this way, we can derive

p̂t+1 from pt by

p̂t+1 =
1

ẑt+1

K(R̂t−>t+1dtK
−1pt + t̂t−>t+1). (4.6)

We then use the framework proposed by Jaderberg et al. [167] to reconstruct It. More

specifically, the value of pt in the reconstructed image Ît is generated by the top left, top right,

bottom left and bottom right neighbours of p̂t+1 in It+1. Similarly, we can reconstruct image

It+1 by

p̂t =
1

ẑt
K(R̂t+1−>tdt+1K

−1pt+1 + t̂t+1−>t), (4.7)

where pt+1 is a point in It+1, p̂t is the projected point in It, dt+1 is the depth value of pt+1,

P̂t(x̂t, ŷt, ẑt) is the voxel in the world coordinate system projected from p̂t, R̂t+1−>t = R̂−1
t−>t+1,

t̂t+1−>t = −R̂−1
t−>t+1t̂t+1−>t.

Finally, the 2D spatial loss can be represented by

L2D =
N−1∑
t=1

(
|It − Ît|+ |It+1 − Ît+1|

)
. (4.8)

3D Spatial Loss

3D spatial loss is computed by using point clouds and transformation matrices generated from

the RCNN. Assume Ct and Ct+1, (1 ≤ t < t+ 1 ≤ N) are two consecutive point clouds which

are inverse-projected from Dt and Dt+1 to the world coordinate system. Let ct denote a point

in Ct, we then project this point to Ct+1 through transformation matrix. Based on 3D linear
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transformation theory, the projected point can be derived by

ĉt+1 = R̂t−>t+1ct + t̂t−>t+1. (4.9)

The reconstructed point cloud Ĉt+1 can thus be obtained. We can also reconstruct Ĉt from

Ct+1 by

ĉt = R̂t+1−>tct+1 + t̂t+1−>t, (4.10)

where ct+1 is a point in Ct+1 and ĉt is the projected point in Ĉt.

Finally, we employ a strategy similar to Iterative Closest Point (ICP) algorithm proposed by

Chen et al. [168] for 3D spatial loss calculation,

L3D =
N−1∑
t=1

(
|Ct − Ĉt|+ |Ct+1 − Ĉt+1|

)
. (4.11)

The total loss can thus be acquired by

L = λ2DL2D + λ3DL3D, (4.12)

where λ2D and λ3D are the weights for 2D and 3D spatial losses, respectively.

4.2.3 Implementation

Figure 4.4 presents an overview of the network and loss function implementations and how

back-propagation operates in the proposed RCNN. In the figure, we use two pairs of consecutive

monocular and depth images for illustration. No ground truth poses are used for training. The

transformation matrix T̂t−>t+1 directly generated from the network and its inverse T̂−1
t−>t+1 are

used for loss calculation. Specifically, we use the monocular image It, depth information Dt at

time t and the transformation matrix T̂t−>t+1 to reconstruct the monocular image Ît+1 at time

t+1. Similarly, the reconstructed monocular image Ît at time t can be obtained by the monocular

image It+1, depth information Dt+1 at time t + 1 and the inverse of the transformation matrix

T̂−1
t−>t+1. The 2D spatial loss L2D can thus be calculated by Equation 4.8. We then use the

depth information Dt at time t and the transformation matrix T̂t−>t+1 to reconstruct the depth

information D̂t+1 at time t+1. Similarly, the depth information D̂t at time t can be obtained by
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Algorithm 4.1: Implementations of the RCNN and loss functions.
Input : Consecutive monocular images {I1, I2, ..., IN}

Associated depth images {D1, D2, ..., DN}
Output: Trained RCNN
function prepare_Training_Data

for i in (1 : N + 1) do
if i > (Nseq − 1)/2 and i < N − (Nseq − 1)/2 then

resize Ii to 416× 128× 3
project Velodyne point cloud to depth image Di

resize Di to 416× 128× 1
stack Ii and Di horizontally
save camera intrinsics matrix file

end
end
split data into two parts for training and testing

end
function build_Training_Graph

prepare training data and camera intrinsics matrix path
design data augmentation based on luminance γ, scale sx, sy and rotation rd
design RCNN
design total loss L = λ2DL2D + λ3DL3D

end
function Train

load hyper parameters
set thres_Epoch = 30 based on experimental experience
if epoch<thres_Epoch then

feed training data into RCNN
compute L
adjust RCNN parameters
if step%500 = 0 then

collect summary
save network

end
else

break
end

end

the depth information Dt+1 at time t + 1 and the inverse of the transformation matrix T̂−1
t−>t+1.

The 3D spatial loss L3D can thus be calculated by Equation 4.11. We then calculate the total

loss L based on Equation 4.12. The total loss is then back-propagated through the network,

adjusting its weights and making it closer to the truth in the next round. The orange arrows
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Figure 4.4: Training overview.

show how a pixel or a voxel can be projected to its neighbouring frame. Depth images are used

for both 2D and 3D spatial loss calculation, thus the absolute scale can be recovered. Algorithm

4.1 presents a detailed implementation scheme.

4.3 Experiments
In this section, we first present the training details and then compare the performance of our VO

system with other state-of-the-art algorithms in terms of both translation and rotation accuracy.

4.3.1 Training

We trained the proposed RCNN on a DELL workstation with an Intel Core i7-4790K @4.0GHz

CPU and a Nvidia GeForce GTX Titan X 12GB Memory GPU. The model implementation

environment is TensorFlow [169], which is an open source software library originating from
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(a) Original monocular image without data augmentation.

(b) Luminance correction.

(c) Image rescale and cropping.

(d) Clockwise image rotation.

Figure 4.5: Data augmentation.

Google’s Machine Intelligence research organization for numerical computation using data flow

graphs. For fair comparison in Section 4.3.2, we adopted the same training dataset presented by
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Zhou et al. [147] based on KITTI dataset only.

Before training, we resized the monocular images to 416 × 128 with 3 RGB channels and

projected associated 3D point clouds to 2D single-channel depth images. Each point in a depth

image represents the depth value of the corresponding point in the monocular image. Since

KITTI data is relatively limited, online data augmentation technique is applied to enlarge the

dataset and the results are shown in Figure 4.5. More specifically, the augmentation processing

includes:

• Luminance: The input monocular images are randomly corrected by gamma γ ∈ [0.7, 1.3].

• Scale: The input monocular and depth images are randomly scaled by scale factors sx ∈

[1, 1.2] and sy ∈ [1.0, 1.2] along X-axis and Y-axis, respectively. The images are then

randomly cropped to 416× 128.

• Rotation: The input monocular and depth images are randomly rotated by rd ∈ [−5, 5]

degrees. Nearest-neighbour interpolation is used.

Note that the camera equipped on the KITTI car has a wider field-of-view than the LiDAR

sensor, thus we only used the cropped region presented in [170] for loss calculation, as shown

in Figure 4.6.

Figure 4.6: Region of interest for loss calculation. Ignored region is grayed out. X-axis: cropped
from 15 to 401. Y-axis: cropped from 53 to 126.

We then fed pairs of monocular and depth images into the RCNN and trained the network

from scratch. No ground truth poses were used during training. We employed the Adam opti-

mization algorithm [171], which is an extension to Stochastic Gradient Descent (SGD) method

and has recently been widely adopted in deep learning. Experiential parameters were used
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Figure 4.7: Training loss. X-axis: training steps. Y-axis: total loss.

(a) Disparity at the beginning of training.

(b) Disparity at the end of training.

Figure 4.8: Change of disparity during training.

with the exponential decay rates for the first and second moment estimates being β1 = 0.9 and

β2 = 0.999, respectively. We set Nseq = 5 and trained the RCNN for 40 epochs in total. The
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batch size is 32. Our learning rate schedule is step-decay based. The initial learning rate was set

to 0.0002 and dropped to 0.0001 after 3/4 of the total training steps. No batch normalization was

used since we found that it resulted in slow and unstable loss convergence in our experiments.

The total loss against training steps is shown in Figure 4.7. From the figure, we can see the

total loss dropped rapidly before 9000 steps and then reduced slowly. Finally, it reached 0.7 at

step 24000. At the same time, the disparity image between a monocular image and its projected

image from its neighbouring frames and the pixel bar chart were used to visualize and monitor

the training process. As can be seen from Figure 4.8, the images grew darker during training,

i.e., the disparity narrowed.

4.3.2 Performance Evaluation

Performance evaluation was carried out on a desktop computer with an Intel Core i7-3370

@3.4GHz CPU and a Nvidia GeForce GTX 980 4GB Memory GPU. Our proposed VO system

was compared to other state-of-the-art VO systems based on KITTI Odometry dataset. The

benchmark includes 22 stereo sequences and ground truth poses are provided for 00-10 se-

quences. The images were captured on a vehicle at 10 Hz which was moving in a city, rural

areas and on highways at speed ranging from 0 km/h to 90 km/h. The scenes in the dataset are

not static. Moving objects include cars and pedestrians. All these factors produce disturbance

to VO systems and make the task more challenging.

Our system can generate VO on an absolute scale without data post-processing. During test-

ing, the network took only consecutive monocular images as input and directly generated poses.

Thus our system is still a monocular VO system. We compare the proposed method to other

state-of-the-art monocular VO systems, namely SfMLearner [147], VISO2-Mono. VISO2-

Stereo [172], which is a stereo VO system is also used as a reference. No loop-closure de-

tection (automatic or manual tagging) was applied and the same parameter set was used for

all sequences. Our system and SfMLearning are unsupervised deep learning based, whereas

VISO2-Mono and VISO2-Stereo are feature based. Since SfMLearning relies on ground truth

poses for scale recovery, we post-processed the SfMLearning results for comparison. VISO2-

Mono recovers absolute scale through a fixed camera height. VISO2-Stereo directly outputs

poses on an absolute scale since it employs stereo sequences for testing. The input image reso-

lution of our system and SfMLearning is 416× 128, whereas VISO2-Mono and VISO2-Stereo
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(a) Sequence 00.

(b) Sequence 02.
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(c) Sequence 03.

(d) Sequence 04.
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(e) Sequence 05.

(f) Sequence 06.
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(g) Sequence 07.

(h) Sequence 08.
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(i) Sequence 09.

(j) Sequence 10.

Figure 4.9: Trajectories of KITTI Odometry Sequence 00 and Sequence 02-10.
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adopt a 1242× 376 setting.

Figure 4.9 shows the trajectories of KITTI Odometry from Sequence 00 to Sequence 10.

The results were generated by our system, SfMLearner and VISO2-Mono. Ground truth tra-

jectories are provided as a reference. Sequence 01 is omitted since the sequence was captured

on a highway with rare features. Thus, all methods including VISO2-Stereo failed to recover

the absolute scale. SfMLearner results are post-processed with ground truth poses for scale

recovery. Only 2D trajectories (X-axis and Z-axis) are provided for clearer presentation. The

vertical Y-axis is omitted. As can be seen from Figure 4.9, the proposed method outperforms

other monocular VO systems. The generated trajectories are the closest to the ground truth

ones. VISO2-Mono generally performs better than SfMLearner because it recovers absolute

scale through a fixed value. SfMLearner has to post-process each transformation matrix with

ground truth to obtain absolute scale. Thus, using a fixed value reduces its performance. All

algorithms perform well on Sequence 03, 09 and 10, as shown in Figure 4.9c, 4.9i and 4.9j.

This is because the car speed changes are small. Thus the trajectories can be well generated

even a constant value is used to recover absolute scale. From Figure 4.9a, 4.9b and 4.9f, we can

tell SfMLearner starts to perform much worse than the other two algorithms because the car

speed changes become bigger. VISO2-Mono performs bad on Sequence 04 and 08, as shown

in Figure 4.9d and 4.9h, because the deviations of the estimated rotation matrices are too large,

whereas Figure 4.9g shows there are significant deviations of the estimated translation matri-

ces. All methods perform bad on Sequence 05 due to shape turns and hard brakes. It should

be noticed that Sequence 09 and 10 are not used for training. However, the results of these two

sequences show the pre-trained model can be generalized and applied to other similar scenes.

The detailed translational and rotational errors are listed in Table 4.2. We adopt Root Mean

Square Error (RMSE) recommended by KITTI for evaluation. The translational errors are mea-

sured in percent (%), whereas the rotational errors are measured in degrees per meter (◦/m).

Each value in the table was obtained by averaging errors of all possible subsequences of length

100, 200,..., 800 meters. From the table we can see our method generated lower errors than

other monocular systems in terms of both translation and rotation and can be compared to a

stereo VO system. We can further reduce the rotational errors by manually increasing the ratio

of the training images captured when the vehicle is turning. Since KITTI dataset is relatively

small, the overall performance of our network can also be improved by employing larger dataset
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(a) Sequence 11.

(b) Sequence 12.
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(c) Sequence 13.

(d) Sequence 14.



4.3. EXPERIMENTS 87

(e) Sequence 15.

(f) Sequence 16.
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(g) Sequence 17.

(h) Sequence 18.
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(i) Sequence 19.

(j) Sequence 20.

Figure 4.10: Trajectories of KITTI Odometry Sequence 11-20.
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for training.

The trajectories of KITTI Odometry from Sequence 11 to 20 are presented in Figure 4.10.

Only 2D trajectories (X-axis and Z-axis) are provided for clearer presentation. The vertical

Y-axis is omitted. VISO2-Stereo trajectories are also provided as a reference. No ground truth

poses are provided for these sequences. Thus, quantitative evaluation can not be carried out.

We can see the performance of our method is close to VISO2-Stereo (our trajectories are closer

to VISO2-Stereo than VISO2-Mono). Figure 4.10f and 4.10j show that both our method and

VISO2-Mono perform well on Sequence 16 and 20. Similar to the previous discussion, the

deviations of the estimated rotation and translation matrices inevitably exist due to significant

speed changes and sharp turns. In addition, in the case when the car bumps, the distance from

the camera to the ground changes. Therefore, using a fixed value to recover absolute scale is

not reliable. From the figures we can tell our method generally outperforms VISO2-Mono in

terms of translation estimation (Figure 4.10a, 4.10d, 4.10e, 4.10g, 4.10h) and rotation estimation

(Figure 4.10b, 4.10c, 4.10i).

Although the proposed method outperforms other monocular VO systems in terms of trans-

lation and rotation accuracy, the processing time is longer. We set batch size to 1 for pose

generation. The processing time is 0.09 second per pose based on a Nvidia GeForce GTX 980

GPU and the input image size being 416× 128× 3, whereas VISO2-Mono and VISO2-Stereo

systems require only a CPU to achieve a similar speed. Compared to other deep learning based

methods, we require no ground truth poses for training or scale post-processing, but still need

depth information for injecting the scale.

4.4 Summary

This chapter proposed a monocular visual odometry system based on deep learning technique.

The system operates in an unsupervised end-to-end training manner. Consecutive monocular

images and depth information are used for training. As no ground truth pose labeling is needed,

the proposed system requires less human effort and is cheap to run. For testing, the proposed

system takes only monocular images as input and directly generates poses on an absolute scale.

Experiments were carried out on KITTI dataset. Results have shown that our system outper-

forms other monocular VO systems in terms of translation and rotation accuracy and can be

compared to stereo VO systems. The pre-trained model can also be generalized to other scenes.
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The performance of the system can be improved by further training.

The proposed method requires high computing power and is difficult to achieve real-time

performance. Computational efficiency based on such unsupervised training manner can be

further improved. Depth information can also be incorporated during testing in order to boost

system performance for real-time navigation of autonomous robots and the visual guidance of

blind people.
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Chapter 5

Indoor Topological Localization Based on

Deep Learning Technique

This chapter presents a novel localization approach to support the indoor localization of people

with vision impairment or robots, which is based on Deep Convolutional Neural Networks.

More specifically, a 3D indoor semantic map is firstly constructed using an RGB-D sensor, and

the constructed map is then deployed to help users conducting indoor topological localization.

The semantic information extracted from the mapping process can be used to diagnose and

eliminate errors and boost topological localization performance despite appearance changes

within the environment. Experiments are conducted to verify that the proposed methods can

increase both precision and recall rates.

5.1 Introduction

Traditional maps built by robotic systems are either geometric or topological, which are nav-

igation oriented and serve obstacle avoidance and path planning well [28]. However, these

maps are passive and cannot provide useful semantic information to visually impaired people

or service robots for assistance. Semantic information interpreted from scenes should also be

included into the map to form a semantic map and provide a friendly human-machine interface

[21]. In other words, a semantic map contains linguistic words representing places, landmarks

and daily objects, which are very useful to assist human users.

This chapter first builds a 3D indoor geometric map using an RGB-D sensor and off-the-
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shelf algorithms. To incorporate semantic information, we adopt deep Convolutional Neural

Networks (CNNs) for daily object detection, rather than the bag-of-visual-words model (BoW)

which is commonly deployed by the SLAM community in recent years. In the case of CNNs,

models trained for the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) can

classify the entire images into as many as 1,000 classes with acceptable error rate [173]. This

enables the objects to be detected in a much broader scope. Moreover, objects in any shape,

form or colour can be classified into one category as long as they have the same name. Thus,

only object names are stored in our database rather than images, which results in a relatively

small database. Once objects are detected, the subordination of the objects to rooms is then

represented by the anchoring method. We then use the acquired semantic map for indoor topo-

logical localization of visually impaired people, i.e., answering their questions such as “Where

am I?” or “Which room am I in?”.

Generally speaking, constant changing appearance can be a significant factor in visual local-

ization failure [108]. For instance, the lighting conditions vary between day and night, and ob-

jects (chair, laptop, curtain or even human) may be in different positions randomly. To address

these problems, this chapter adds additional semantic data into the maps to improve localization

performance. Since object recognition can aid place recognition [24, 25, 26], we use distinctive

objects detected and labeled from the mapping process, as well as the undetected objects that

might exist and can infer the function of a room such as “bedroom” or “lab”, to further verify

the locations. Experiments with long-term operation have also been carried out and shown how

semantic information accounts for appearance changes within the environment. Compared to

other state-of-the-art algorithms, our method generates higher precision and recall rates (recall

is an essential factor for other tasks e.g. online map updating).

In the case of environment construction, most methods are feature based [5, 136]. New-

combe et al. [134] presented a system for real-time indoor mapping with a low-cost, light-

weight Kinect camera. Individual observations from the depth stream were fused into a sin-

gle global surface model. Mur-Artal et al. [155] employed a monocular camera for lifelong

mapping. The construction operation recovers if the scene content changes. Thanks to the bi-

nary ORB feature, this system is highly computationally efficient even without GPUs. Other

researchers deployed both feature points and plane patches for robust pose estimation [174].

Since SLAM is not our focus in this chapter, we adopt an off-the-shelf feature based method for
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environment construction.

Semantic information can be extracted from both range and visual sensors. In indoor en-

vironments, architectural components and room functions were inferred from laser data by

Nüchter [30] and Mozos [129] et al. respectively. Attentions were then drawn to visual sensors

due to the availability of richer features. Grimmett et al. [49] presented a framework which can

extract driving lanes and parking spaces for vision-only automated parking. Random Forests

(RFs) were applied [136] to construct a consistent 3D indoor model from 2D semantic segmen-

tations. BoW approach was also used for object detection [175] by building SURF keypoint and

local colour histogram dictionaries. In this chapter, room functions and objects are considered

as semantic information.

Topological localization tackles the problem of recognizing the place when we revisit a

scene. Ulrich and Nourbakhsh [47] built colour histograms of the acquired images, each of

which voted for the most likely location in the database. Wang et al. [176] used an additional

SIFT descriptor to index the images in the database for image retrieval. BoW model have been

widely used for loop closure detection (detecting already-mapped scenes) during SLAM [177,

178, 143, 179]. Inspired by document classification, BoW represents images by the occurrence

frequency of individual hand engineered features in each dictionary. The performance is highly

dependent on the features selected.

Convolutional Neural Networks (CNNs) have recently been widely used as robust visual

feature extractors in the computer vision and machine learning domains and have shown better

performance in terms of changing environments, viewpoints, lighting conditions, objects, etc.

[103, 104]. Sharif Razavian et al. [104] have shown that CNNs outperform BoW in most

recognition tasks in terms of large datasets.

Although most CNNs are trained for object recognition, some researchers have managed to

modify these models for other related but different tasks such as place recognition and object

detection [104, 105, 106] since the generic features learned by different models from holistic

images in different datasets are versatile and transferable [107, 108]. In this chapter, we adopt

the Inception-v3 model [180] for place recognition and object detection.

Researchers have already shown that place recognition can benefit from object recognition

[24, 25, 26], especially in indoor environments where a location can be revealed by the detected

objects. However, if a recognition method only relies on objects, it fails in the case that no dis-
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tinctive objects are spotted within the camera’s field of view. Moreover, some objects (curtain,

sink, computer, etc.) are not sufficient on their own to infer precise locations. Thus, we combine

object detection with a holistic approach for better localization performance.

The rest of the chapter is organized as follows. Our semantic information extraction and

topological localization method are detailed in Section 5.2. Training and experiment results are

subsequently presented and discussed in Section 5.3. Finally, a brief conclusion is given in the

last section.

5.2 Preliminaries

This section explains our semantic mapping and topological localization methods. We use the

same environment construction methods presented in Chapter 3. The traditional geometrical

mapping method is used, which includes feature extraction and representation, feature match-

ing, transformation estimation, loop closure detection and global pose graph optimization. In

the case of semantic information extraction, we use a deep learning based method rather than

the feature matching based method presented in Chapter 3. The semantic mapping approach

used in this chapter is shown in Figure 5.1 with orange boxes. Figure 5.3 shows a constructed

3D environment map for an office floor at Essex University and Figure 5.2 shows a constructed

environment map for a flat where students live.

5.2.1 Semantic Information Extraction and Representation

The semantic information used in this section consists of indoor places and the daily objects

within them. The place names are hand-coded into the database, whereas object names are

extracted from the aforementioned keyframes. An indoor place constructed by hundreds of

keyframes normally contains various objects. If all objects in each keyframe are identified and

labeled, our database would be intractable.

In fact, we are more interested in distinctive objects which can infer the function of a place.

Moreover, detecting object in a single image inevitably generates errors. Thus, the following

rules are used for object detection.

• Only one object can be identified from each keyframe.

• The output score of the detected object needs to exceed over a threshold.
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Map
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Based on CNN
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Figure 5.1: Semantic mapping process. Blue boxes: 3D scene construction process. Orange
boxes: semantic information extraction process.

• An object can be labeled only if it has been detected in 15 continuous keyframes.

Therefore, semantic information extraction becomes an object recognition problem since it only

involves stating whether an image contains a specific object, not the position of the object inside

the image. Thus, a pre-trained Inception-v3 model [180] is deployed. The model trained for

ImageNet competition can classify objects into 1,000 categories, which is powerful enough for

our system.

Finally, the conceptual knowledge is represented with “has-a” relations [75], as shown in

Figure 5.4. The straight lines from left to right indicate this relationship, and conversely, the

objects on the right can reveal the associated locations on the left. Note that some objects in our
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Figure 5.2: An environment map for a flat

database can infer multiple locations.

5.2.2 Topological Localization

In this section, we explain the proposed topological localization methods in detail. The block

diagram of this method is shown in Figure 5.5. Although in some cases, distinctive objects

in an indoor environment can directly tell us locations, it is still necessary to deploy a holistic

approach since not all observations contain these objects. In addition, some objects can be

discovered in multiple places. Therefore, relying entirely on object detection for localization is

impractical. Thus two Convolutional Neural Networks are trained beforehand and used in this

chapter. Algorithm 5.1 presents a detailed topological localization scheme.

Once a query image is received, we directly feed the holistic image into two CNNs for

place recognition and object detection respectively. A place recognition result consisting of the

predicted score for each location can be firstly obtained. If the object detection score is over a

threshold and a distinctive object in the database can be found, we use this additional semantic

information to rectify the place recognition predicted scores, which can be viewed as a post-
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Figure 5.3: An environment map for an office floor
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Figure 5.4: Semantic information representation.

processing step, otherwise the place recognition result is taken as the localization final result.

The threshold is discussed in the experiment section.

Researches have shown that the generic features learned from different CNNs are transfer-

able. One CNN can be retrained and used for different recognition tasks. Therefore, we adopt

the Inception-v3 model [180] for both place recognition and object detection. The training

methods are detailed in the next section.

If a distinctive object in the database is detected, we then simply use a Bayesian approach

to rectify the place recognition predicted scores. Let L be the location vector

L = {l1, l2, . . . , ln}, (5.1)

where n is the total number of locations in the database, li is the category index of location i.

Given a query image x with object detected within it, the basic Bayesian inference is applied to

estimate the rectified score P (li|x)

P (li|x) =
P (li)P (x|li)

P (x)
, (5.2)
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Figure 5.5: Topological localization method with one query image.

Algorithm 5.1: Topological localization scheme.
Input : Consecutive monocular images {I1, I2, ..., IN}
Output: Location
function generate_Location

load hyper parameters and network parameters for both CNNs
for j in (1 : N + 1) do

feed Ij into the first CNN to compute place recognition score P (li)
feed Ij into the second CNN to compute object detection score Po

set thres_Object_Detection = 0.7 based on experimental experience
if Po>thres_Object_Detection then

compute P (li|x)
return inferred location based on P (li|x)

else
return inferred location based on P (li)

end
end

end

where P (li) is the place recognition predicted score, P (x) is the probability of the object exist-

ing in the image, P (x|li) is the empirical knowledge. Since the denominator P (x) is identical
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to all locations, we have

P (L|x) ∝ P (L)P (x|L), (5.3)

in which P (x|L) is the empirical probability distribution. Finally, we output the normalized

distribution P (L|x) as the final topological localization result.

Each object in the database has its own empirical probability distribution in terms of all

locations. Based on the semantic representation created in the mapping process, assume Lw =

{l1, l2, . . . , lp} is a set of locations with a specific labeled object y in them, whereas Lwo =

{l1, l2, . . . , lq} is a set of locations without this object in them. A ratio is used to obtain the

distribution by

ξ =
P (y|lr)
P (y|ls)

, (5.4)

in which ξ is a given factor, lr ∈ Lw, ls ∈ Lwo.

The factor ξ plays an important role in our system. It controls the weights of the two CNN

stream outputs. On one hand, we want a large factor so that the system still performs well

even though a location suffer from changing appearance or human intervention (Figure 5.6a

and Figure 5.6b, sliding door detected). However, the precision drops if the factor is too large

since object detection errors inevitably exist. Furthermore, some objects randomly appeared

in other locations where they should not belong to would also lead to localization errors. For

example, although a vacuum is found in Figure 5.6d, the location should still be labeled as

accommodation corridor rather than storage room. The factor ξ is further discussed in Section

5.3

5.3 Experiments

5.3.1 Training

The training is carried out on a desktop computer with an Intel Core i7-3370 @3.4GHz CPU

and a GeForce GTX 980 GPU. The software environment is based on TensorFlow [169]. Ten-

sorFlow is an open source software library originating from Google’s Machine Intelligence

research organization for numerical computation using data flow graphs.

The 2D images used for environment construction are directly deployed to train the place

recognition CNN. The training dataset contains 20,298 images from 17 locations. Some of the
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(a) Elevator with the door closed.

(b) Elevator with the door open and a man walking in.

(c) Storage room with a vacuum cleaner.
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(d) Accommodation corridor with a randomly appeared vacuum cleaner.

Figure 5.6: Test images showing the importance of the factor.

training images are shown in Figure 5.7. We have tried three ways to train the Inception-v3

network. Our first attempt is to train the entire network from scratch with random initialization,

which is a computationally intensive task. However, we failed to obtain a decent result after

training for 3 days since our dataset size is not sufficient enough for the depth of the Inception-

v3 network required.

Our second attempt is to use transfer learning strategy to fine-tune a pre-trained model. The

pre-trained model is trained on the ImageNet database. We divide our training dataset into

training, validation and test subsets based on the ratio 8:2:1. We build the exact same model

as Inception-v3 with the number of labels in the final classification layer altered to 17. All

weights from the pre-trained model are restored except the final classification layer is randomly

initialized.

During this fine-tuning process, all previous weights from all layers can be modified. The

smoothed curve in Figure 5.8 evaluates the model precision against training steps. The training

time until 20,000 steps is about 8 hours. The precision increases significantly until 14,200 steps

and reaches 96.2%, however it starts to drop slightly afterwards. On the other hand, we find

the loss generated from the cross-entropy function remains steady after 14,200 steps, as we

can see from Figure 5.9. Thus, the precision drop is caused by over-fitting since the model is

too complex for our dataset and only particular features in the training images that cannot be

applied generally are memorized by the network.
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Figure 5.7: Some of the training images at different locations.

In order to reduce training time, the fine-tuning strategy is deployed and the network ob-

tained is saved for further localization in this chapter. More specifically, we only retrain the

final classification layer from scratch, while leaving all the rest untouched. In other words, the

other layers of the CNN are treated as a fixed feature extractor for our own dataset. This is due to

the fact that lower-level portion of a CNN generates more generic features that can be deployed

for other tasks, whereas top layer contains relatively more specific features of the dataset used

for training. The ratio of the image numbers in training, validation and test subsets is 8:1:1. The

initial learning rate is set to a low value so that we obtain a higher overall precision.

We have tested and found that 0.001 gives the best performance. The entire validation

subset is used for accuracy calculation to reduce the fluctuation among iterations. However,

its drawback is a longer training time. The unsmoothed curve in Figure 5.10 shows the model

precision against training steps. The training time until 8,000 steps with an average precision
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Figure 5.8: Model precision evaluation in the case of fine-tuning among all layers. X-axis:
training steps. Y-axis: precision.

Figure 5.9: Raw cross-entropy loss.

at 97.7% is 24 minutes when a GeForce GTX 980 GPU is used. If only an Intel Core i7-3370

@3.4GHz CPU is used for training, the time is 103 minutes. In this case, the training is much

quicker than fine-tuning among all layers and the precision of the trained model is slightly

higher.



5.3. EXPERIMENTS 107

Figure 5.10: Model precision evaluation in the case of fine-tuning only the final layer. X-axis:
training steps. Y-axis: precision.

In terms of the CNN for object detection, we adopt the pre-trained Inception-v3 model.

Since the model is trained on ImageNet database which has 1,000 labels, we add another linear

classifier to minimize the labels. “Bobtail”, “chow chow”, “tabby cat”, etc. are merged into

moving animals, “police van”, “shark”, “military plane” are merged into “others”, etc. We have

also modified some labels to make them suitable for our task.

5.3.2 Experimental Evaluation

This section describes our experimental results. We compare the performance of our proposed

localization system using distinctive objects for further result verification against the end-to-

end trained CNN. The home and office environments contain 17 locations in total. We have

also considered some locations with similar appearance, such as toilets, corridors, labs and

offices.

The objects detected in the mapping process and used for localization are listed in Table

5.1. Some objects are unique objects that can be found at only one place, while others can infer

multiple locations.
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Table 5.1: Distinctive objects found at each location.

Location Objects

arena
desk, monitor, tripod, Baxter robot, projector

window shade

arena lab desk, desktop computer, monitor, printer

bedroom
umbrella, running shoe, folding chair, quilt

radiator, desk, table lamp, monitor, paper towel
backpack, wardrobe, suit

big office
desk, desktop computer, monitor, file cabinet

printer

hardware lab
desk, desktop computer, monitor, printer

lab chair, oscilloscope

home corridor corridor

home stairway banister, handrail

home toilet washbasin, toilet seat

kitchen
refrigerator, microwave, washbasin, toaster

dining table

lecture room board, desk, folding chair, theater seating

elevator sliding door

office corridor sliding door, corridor

office stairway banister, handrail

office toilet washbasin, toilet seat

shower room bathtub, shower curtain, washbasin

small office
desk, desktop computer, monitor, radiator

file cabinet, bookcase

storage room
file cabinet, space heater, crutch, mop, desk

oscilloscope, croquet ball, project
vacuum cleaner, lab chair

We capture new images for testing rather than modifying the images in the training dataset.

Since the training images are directly obtained from the mapping process and all scenes have

images captured from different viewpoints, the training result indicates the localization accu-

racy with viewpoint change. Topological localization is similar to place recognition. Thus,

precision-recall curves are used to evaluate the performance.

Lighting Condition Change
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This section evaluates the influence of lighting condition on the localization performance.

The number of test images is 6,875. All objects in the environments remain untouched. Training

images are taken in the daytime, while test images are taken at night. For the locations where

there are no windows or use window shades all the time, we switch some of the lights off to

simulate lighting condition change. Examples are shown in Figure 5.11.

Since the experiment is carried out in indoor environment, the lighting condition has lim-

ited impact on both methods. From the precision-recall curves in Figure 5.12, we can see our

method performs slightly better than simply using the Inception-v3 model. Based on the entire

test dataset, our method results in a 96.3% localization accuracy with the maximum recall rate

at 96.0%. Some wrongly identified images are caused by sunlight through windows making

shadows on floors and walls.

Blurry Images

When a camera is placed on a robot or a wearable device, we cannot guarantee all captured

images to be sharp at all times. If the sensor is moving or rotating at a high speed, blurry images

are inevitably produced. In this experiment, we test the robustness of our method to these im-

ages. There are 2316 blurry images captured in the daytime in this test dataset. Some of them

are shown in Figure 5.13. Figure 5.14 shows both methods perform poorly in this experiment.

The two curves are almost coincident. The reason is that no object has a higher score than the

threshold and then be successful detected in the wrongly identified images except the sliding

door of the elevator.

Object Change

One factor that causes obvious appearance change in indoor environment is object change.

We leave all the places for common usage and take test images after 1 month. In this experiment,

5,208 images are used for testing and the following conditions are considered.

• The locations of objects (chair, kitchen utensil, vacuum cleaner, clothes, elevator door,
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(a) Image taken in the daytime for training.

(b) Image taken in the night for testing.

(c) Image taken with the lights on for training.
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(d) Image taken with the lights off for testing.

Figure 5.11: Example images of kitchen with lighting condition change.
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Figure 5.12: Lighting condition change evaluation (ξ = 1.3).
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(a) Shower room.

(b) Bedroom.

(c) Arena lab.
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(d) Small office.

Figure 5.13: Example blurry images for testing.
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Figure 5.14: Blurry image evaluation (ξ = 1.3).
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(a) Training image.

(b) Test image.

Figure 5.15: Example showing how localization results can be verified by detecting objects.

etc.) are changed.

• The deformation of some objects, such as curtain, window shade and quilt.

• New facilities or appliances, such as the stove and oven in the newly refurbished kitchen.

• Randomly appeared humans.

The images in Figure 5.15 gives one example of how the topological localization result is

rectified by semantic information in spite of human intervention. The test image wrongly iden-

tified as “home corridor” by Inception-v3 is rectified as “office toilet” as the object “washbasin”

is detected. Figure 5.16 shows the system performance of these two methods. The precision
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by using Inception-v3 starts to drop significantly from the recall at 48%, whereas our method

starts from 70%. The evaluation on the entire test dataset shows that the precision of using

Inception-v3 is 79.9% with the maximum recall at 73.4%, while our method results in a 91.7%

precision with the maximum recall at 84.1%.
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Figure 5.16: Object change evaluation (ξ = 1.3).

5.3.3 Factor ξ

The factor ξ plays an important role. Generally speaking, it controls how much the object

detection stream is involved in our system. In this section, we evaluate ξ based on the dataset

used for object change evaluation. The result is shown in Figure 5.17. We start increasing the

value of ξ from 1.1 and use precision-recall curves to test the localization performance. When

ξ = 1.0, the output scores from the place recognition stream actually remain unchanged. Thus,

the curve is same as the one generated by Inception-v3. Both the precision and recall rates
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increase when we raise the value of ξ. The precision and recall reach the peak at ξ = 1.3.

However, if we continue raising the value of ξ, the precision and recall begin to drop. We

have also carried out some tests when ξ > 2 and found that the curves are all similar to the curve

produced by ξ = 2. But all of them performs better than the method only using Inception-v3.

Therefore, ξ = 1.3 is used in all the aforementioned experiments.
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Figure 5.17: Evaluation on factor ξ.

5.3.4 Processing Time

The training time is already detailed in Section 5.3.1. In this section, we used a desktop com-

puter with an Intel Core i7-3370 @3.4GHz CPU, a GeForce GTX 980 GPU and 16GB RAM to

test the processing time. The captured image size is 640 × 480 and then resized to 299 × 299

pixels. 32 images are placed into one batch. We have also tested the processing time without

using the GPU. The test result is presented in Table 5.2. Compared to Inception-v3, our method
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Table 5.2: The average processing time of one image.

Processing Time (unit: second)

Inception-v3 with GPU 0.037

Our method with GPU 0.079

Inception-v3 without GPU 1.492

Our method without GPU 3.432

costs more than twice the processing time.

5.4 Summary
In this part, we address how to use two separately trained CNNs to build a semantic map for

vision impaired people and service robots conducting topological indoor localization effec-

tively. The semantic information is used to verify the localization result by detecting distinctive

objects within the environment. The performance of our method is analyzed in terms of ap-

pearance variation in two indoor environments, such as lighting condition change and object

change. Experiments are conducted and the results show that both the precision and recall rates

are improved over Inception-v3, apart from a longer processing time. The system can be a

wearable device for indoor navigation of visually impaired people or an embedded device for

indoor navigation of a mobile robot.

However, the system can not meet real-time requirement without GPUs. In addition, the

system takes only one image each time for localization and outputs a result. Thus the relations

between frames in a sequence images are abandoned, which are also essential to localization

performance.
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Chapter 6

Conclusion

This chapter reviews this research, summarizes the achievements made and proposes future

work to be conducted.

6.1 Research Summary
Aiming at building a semantic map through low-cost cameras and using the map for autonomous

localization, several challenges are addressed and novel approaches are proposed in this thesis.

Both semantic mapping and localization methods rely on RGB-D visual data as input. Firstly,

a traditional feature based geometrical mapping system is presented and objects in the envi-

ronments are recognized as semantic information. Secondly, a Recurrent Convolutional Neural

Network with an unsupervised end-to-end framework is proposed for camera pose estimation.

Lastly, topological localization is carried out when we revisit a scene based on a semantic map

built beforehand.

A traditional feature based semantic mapping system is proposed in Chapter 3. The sys-

tem consists of a 3D camera and a laptop. The metric mapping approach is based on a classic

pipeline, namely feature extraction, key-frame detection, camera pose estimation, loop closure

detection and global pose graph optimization. Object images need to be stored in the database

beforehand. The semantic information extraction approach also relies on SURF feature. The

good matching numbers between a key-frame and its neighbouring key-frames are used to elim-

inate image matching errors. Thus, loop closure detection and object recognition accuracy is

increased. We carry out qualitative and quantitative analyses on pose estimation accuracy by

using both self-collected dataset and public TUM RGB-D SLAM dataset. Results show the

119
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proposed method can be compared to other state-of-the-art algorithms. The performance of

semantic information extraction is also verified in a student accommodation environment. No

GPU is used in this system to show the calculation efficiency.

A novel deep learning based camera pose estimation approach is presented in Chapter 4.

The system adopts an unsupervised end-to-end training approach. A VGG based Convolutional

Neural Network is designed as a feature extractor and a LSTM network is used as a pose esti-

mator. In the case of training, we feed pairs of consecutive monocular and depth images into the

RCNN. No ground truth pose labeling is needed, thus the proposed system requires less human

effort and is cheap to run. Only monocular images are used for testing and the estimated camera

poses are on a absolute scale. Qualitative and quantitative analyses are carried out based on one

of the most popular VO dataset, KITTI. Results have shown that our system can be compared

to stereo VO systems and outperforms other monocular VO systems in terms of both translation

and rotation accuracy. The pre-trained model can also be generalized to other similar scenes

and the performance of the system can be improved by further training with larger dataset.

Compared to feature based systems, this system requires GPUs to run, thus is computationally

expensive.

A novel topological localization approach based on pre-built semantic maps is detailed in

Chapter 5. A CNN is used for object recognition. Only object names are required in the

database rather than object images, thus making semantic information extraction more flexible.

We use two steams of CNNs for topological localization. The system takes one RGB image

and directly outputs the inferred locations. The extracted semantic information is inversely

used to verify localization results. Experiments are conducted in terms of appearance variation

such as viewpoint, lighting condition and object changes. Precision-recall curves are leveraged

to evaluate the proposed approach. Results show that the additional semantic information can

boost localization performance, especially when significant appearance change exists.

6.2 Thesis Contributions
This thesis research has made a number of contributions listed below:

(1) Feature based semantic mapping

We propose a feature based semantic mapping approach using an RGB-D sensor. Camera

poses are estimated through both RGB and depth images, whereas semantic information
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is extracted from only RGB images. SURF feature is adopted for both tasks. We de-

scribe images with descriptors and use the relations between two consecutive frames to

estimate a local transformation matrix. If the transformation is substantial enough, a new

key-frame is added. Loop closure detection is subsequently carried out by matching a

key-frame to some of the previous key-frames. The global pose graph can thus be con-

structed by connecting sequential key-frames and is then optimized by g2o. Finally, we

down-sample each key-frame and project pairs of RGB and depth images into a com-

mon coordinate frame. As for semantic information extraction, we take some pictures of

the objects in the environment, associate them with natural language and store them in a

database beforehand. We then apply object recognition in each of the key-frames along

with geometrical reconstruction. A novel approach is presented to diagnose and elimi-

nate errors during semantic extraction. The approach can also be applied to loop closure

detection. The global semantic map can then be stored and used for further inferring and

navigation.

(2) Visual odometry based on unsupervised deep learning

We present a novel monocular visual odometry system based on an unsupervised Recur-

rent Convolutional Neural Network. The system benefits from an unsupervised end-to-

end framework, thus no ground truth camera poses are required for training. Instead, the

ground truth poses of the camera are only used for performance evaluation. Therefore,

such unsupervised training eliminates the need of the labour-intensive image labeling

task. In addition, the performance of our system can be easily improved by further train-

ing with larger unlabeled dataset. Both CNN and RNN are leveraged for this task. The

CNN, being a feed-forward network, learns to differentiate patterns across space, thus can

be regarded as a feature extractor. The RNN learns to recognize patterns across time and

can be viewed as a pose estimator. The total loss consists of 2D and 3D spacial losses. On

the other hand, absolute scale can be recovered without pose post-processing. To inject

scale, depth information of scenes obtained by a 3D LiDAR is used alongside monocular

images to train the network. Poses are inferred only from monocular images, thus making

the proposed visual odometry system a monocular one. Experiments have been carried

out on KITTI odometry dataset and results have shown that the proposed VO system can

be compared to other state-of-the-art monocular VO systems in terms of both translation
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and rotation accuracy even without scale post-processing.

(3) Topological localization based on deep learning

We present a novel localization approach to support the indoor localization of people with

vision impairment. A 3D indoor semantic map is firstly constructed using an RGB-D sen-

sor. To inject semantic information, we adopt deep Convolutional Neural Networks for

daily object detection, rather than the bag-of-visual-words model (BoW). This enables

the objects to be detected in a much broader scope. Objects in any shape, form or colour

can be classified into one category as long as they have the same name. Thus, only object

names are stored in our database rather than images, which results in a relatively small

database. Once objects are detected, the subordination of the objects to rooms is then rep-

resented by the anchoring method. The constructed map is then deployed to help visually

impairment users conducting indoor topological localization. Distinctive objects detected

and labeled from the mapping process, as well as the undetected objects that might ex-

ist and can infer the function of a room such as “bedroom” or “lab”, are used to further

verify locations. The semantic information can thus be used to diagnose and eliminate

errors and boost topological localization performance despite appearance changes within

the environment. For instance, the lighting conditions vary between day and night, and

objects (chair, laptop, curtain or even human) may be in random shapes or locations. Ex-

periments with long-term operations have also been carried out and shown how semantic

information accounts for appearance change within the environment. Compared to other

state-of-the-art algorithms, our method generates higher precision and recall rates.

6.3 A List of Publications
The academic publications achieved during this PhD study are listed as follows.

(1) Qiang Liu, Ruihao Li, Huosheng Hu and Dongbing Gu. Using Unsupervised Deep Learn-

ing Technique for Monocular Visual Odometry. IEEE Transactions on Cybernetics, 2018.

(Under Review)

(2) Qiang Liu, Ruihao Li, Huosheng Hu and Dongbing Gu. Using Deep Learning Technique

to Build a Semantic Map for Topological Localization. Cognitive Computation, 2017.

(Under Review)
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(3) Qiang Liu, Ruihao Li, Huosheng Hu and Dongbing Gu. Extracting Semantic Information

from Visual Data: A Survey. Robotics 5. no. 1 (2016): 8.

(4) Qiang Liu, Ruihao Li, Huosheng Hu and Dongbing Gu. Using Semantic Maps for Room

Recognition to Aid Visually Impaired People. In the 22th International Conference on

Automation and Computing (ICAC), pp. 89-94. IEEE, 2016.

(5) Qiang Liu, Ruihao Li, Huosheng Hu and Dongbing Gu. Building Semantic Maps for

Blind People to Navigate at Home. In the 8th Computer Science and Electronic Engi-

neering Conference (CEEC), pp. 12-17. IEEE, 2016.

(6) Ruihao Li, Qiang Liu, Jianjun Gui, Huosheng Hu, Dongbing Gu. Indoor Relocalization

in Challenging Environments with Dual-stream Convolutional Neural Networks. IEEE

Transactions on Automation Science and Engineering (T-ASE), 2017.

(7) Ruihao Li, Dongbing Gu, Qiang Liu, Zhiqiang Long, Huosheng Hu. Semantic Scene

Mapping with Spatial-temporal Deep Neural Network for Robotic Applications. Cogni-

tive Computation 10, no. 2 (2018): 260-271.

(8) Ruihao Li, Qiang Liu, Jianjun Gui, Huosheng Hu, Dongbing Gu. A Novel RGB-D SLAM

Algorithm Based on Points and Plane-Patches. In IEEE International Conference on Au-

tomation Science and Engineering (CASE), pp. 1348-1353. IEEE, 2016.

(9) Ruihao Li, Qiang Liu, Jianjun Gui, Huosheng Hu, Dongbing Gu. Night-time Indoor Re-

localization Using Depth Image with Convolutional Neural Network. In the 22th Interna-

tional Conference on Automation and Computing (ICAC), pp. 261-266. IEEE, 2016.

6.4 Future Work
This thesis presents novel semantic mapping and localization methods based on 3D visual data.

Some challenges have be addressed, yet several problems remain and can be summarized as

follows.

• The resolution of the images used for training deep learning networks is important. The

blurry images produced by low accuracy and resolution cameras are hard to use by a

robot to recognize objects in the real-world. Apart from the improvement of hardware,

several software methodologies such as super-resolution or data fusion could be deployed
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for accurate semantic mapping. Super-resolution is a class of techniques that enhance the

resolution of an imaging system. Data fusion is a process of integrating multiple data and

knowledge representing the same scene in order to produce an accurate output.

• The current feature extractors need to be extended. Although features extracted by deep

learning techniques are robust to geometric transformations and illumination changes,

the features are quite limited to the appearance of objects such as edges, corners and their

relations. Extracting the semantic inherent characteristic of objects might be a solution,

e.g. the legs of a chair, the keyboard and display of a laptop, etc.

• Classifiers should be adaptive to the dynamic changes in the real-world. The current

semantic mapping systems need pre-training, and can only recognize the trained objects

or certain scenes. However, the real-world environments are changing dynamically, and

object appearances are changing all the time. Any semantic mapping algorithms need the

ability of self-learning to adapt these changes and recognize new objects. Solutions might

be found in the deep learning domain.

• Depth data can be incorporated during geometrical or topological localization in order

to improve system performance for real-time navigation of autonomous robots and the

visual guidance of blind people. Compared to conventional RGB images, depth data

also has rich information and works well in certain conditions such as in the night or in

bright sunlight. Moreover, the combination of monocular images and depth information

is widely applied recently such as self-driving cars and smart phones, which might be a

standard configuration of the electronic products in the future.

• Semantic mapping systems should be able to detect novelty and learn novel concepts

about the environment continuously and in real time. The conceptual definitions that are

initially encoded by using common sense knowledge should be updated or extended based

on new experience. For instance, a robot operating in a home environment should link its

actions to rooms and objects in order to bridge the gap between metric map and seman-

tic knowledge. Moreover, this conceptual learning performance opens new possibilities

in terms of truly autonomous semantic mapping and navigation. Thus, an incremental

adaptive learning or active learning model should be built.
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