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Abstract

In this thesis, the main aim is to improve the flight control performance for a ca-

ble suspended payload with single and two quadrotors based on optimised control

techniques. The study utilised optimal controllers, such as the Linear Quadratic

Regulator LQR, the Iterative based LQR (ILQR), the Model Predictive Control

MPC and the dynamic game controller to solve tracking control problems in terms

of stabilisation, accuracy, constraints and collision avoidance. The LQR control

was applied to the system as the first control method and compared with the

classical Proportional-Derivative controller PD. It was used to achieve the load

path tracking performance for single and two quadrotors with a cable slung load.

The second controller was ILQR, which was developed based on the LQR control

method to deal with the model nonlinearity. The MPC technique was also ap-

plied to the linearised nonlinear model LMPC of two quadrotors with a payload

suspended by cables and compared with a nonlinear MPC (NMPC). Both MPC

controllers LMPC and NMPC considered the constraints imposed on the system

states and control inputs. The dynamic game control method was developed based

on an incentive strategy for a leader-follower framework with the consideration of

different optimal cost functions. It was applied to the linearised nonlinear model.

Selecting these control techniques led to a number of achievements. Firstly, they

improved the system performance in terms of achieving the system stability and re-

ducing the steady-state errors. Secondly, the system parameter uncertainties were

taken into consideration by utilising the ILQR controller. Thirdly, the MPC con-

trollers guaranteed the handling of constraints and external disturbances in linear

and nonlinear systems. Finally, avoiding collision between the leader and follower

robots was achieved by applying the dynamic game controller. The controllers were

tested in MATLAB simulation and verified for various desired predefined trajec-

tories. In real experiments, these controllers were used as high-level controllers,

which produce the optimised trajectory points. Then a low-level controller (PD

controller) was used to follow the optimised trajectory points.
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Chapter 1

Introduction

1.1 Introduction

Autonomous flying objects have been the subject of extensive research in control

systems of Unmanned Aerial Vehicle (UAV) in terms of the latter’s cost and effi-

cient design. The quadrotors have been designed in a way that provides them with

effective prioritisation to perform many applications safely and precisely compared

with fixed-wing UAVs. The advantages of these quadrotors, in comparison with

those of fixed wing plane, are presented by position and orientations in terms of

their capability to perform specific actions in a limited space, such as taking off,

landing and hovering vertically over a static point or dynamic targets [1], [2]. This

makes these quadrotors best able to perform many complicated tasks with various

applications. Among these applications are critical situations in civil and military

fields, such as dam cracks, oil and power lines inspections, injured soldiers rescue

from a war field, fire rescue, mail transport, and medical transportation such as

blood, kidneys, hearts and emergency products between hospitals. These quadro-

tor applications are still in progress due to the fields’ increasing requirements

worldwide, which has encouraged the development of the system technology and

control automation protocols [3], [4].

1
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Furthermore, utilising cable suspended payloads with single and two quadrotors

has advantages over the individual quadrotor in that they implement their trans-

portation missions that cannot be performed with an individual quadrotor. More-

over, they achieve their tasks with high performance in terms of system stability

and high accuracy, while a minimum number of sensors are utilised to disseminate

them to the quadrotors [5], [6],[7]. This progress is presented in many ways such as

localisation achievement, obstacles avoidance, path planning, and control design.

Research has been mainly focused on controller development in the quadrotors

carrying a payload with cables autonomously. This field is still facing challenges

in carrying load controlled by cables with single and two quadrotors. These chal-

lenges have persisted because of the modelling complexities due to system structure

design. The system dynamic equations are represented in four input forces and

six output states with the system under actuation. Moreover, there have been

considerable difficulties in utilising Lagrange equation considering suspended pay-

load and control estimation architecture, and limitations in communication are

not uncommon. In the past few years, researchers have been motivated to design

and develop quadrotors’ components, such as sensors, electronics and other parts

in terms of reducing cost value, size and weight.

Transporting a suspended load with two quadrotors has advantages over utilising

a quadrotor with carrying a load. While autonomous flying control of a cable

suspended payload with a quadrotor has several restrictions, such as large swing

angles, system high nonlinearity and constrained environments, the control prob-

lems of multiple quadrotors carrying a payload by cables include the initial equi-

librium point, communication delay between two quadrotors, large ropes angles

and stability, as addressed by [8], [9], in addition to avoiding collisions between the

quadrotors while maintaining the operational point and transporting the load, as

well as avoiding immobile or moving obstacles. To the best of my Knowledge, this

is the first use of two quadrotors with a suspended load by cables. In this thesis,

the focus is on control design of the single, two quadrotors with suspended pay-

load by cables, while avoiding collisions between two quadrotors. Furthermore, the

study examines the possibility of maintaining the distance between them through
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selecting a proper operational point. The first scenario introduces a single quadro-

tor and a suspended payload with its centre of gravity by a cable length 1m. The

control architecture is applied on the slung load to track a desired trajectory. This

controller is implemented in order to prevent large angles of the load resulting

from payload swinging during hovering and transporting tasks. The controller

aims are comprised of different main goals to improve the required results. This

can be summarised as realising a small error, gaining better performance, achiev-

ing stability, avoiding collisions, in addition to having constraints and robustness.

Advanced control theory is reviewed in different types which have been used to

control the autonomous tasks.

In the second scenario, however, two quadrotors are carrying a payload by cables.

Both quadrotors have a centralised controller considering the suspended load while

keeping the desired safe distance between them by relying on the equilibrium

point. This operational position is considered to be an initial stage to proceed to

the next stage, which relies on the selected appropriate swing angle values. Two

quadrotors with the payload collaboratively maintain the system formation based

on eight control inputs’ forces, 26 states’ positions and orientations in 13 degrees

of freedom.

In the third scenario, the leader-follower quadrotors with the suspended load by

cables are almost similar to the case in the second approach. One of the quadrotors

functions as a leader quadrotor while the other vehicle is the follower. The leader

quadrotor is in charge of tracking a reference trajectory, whereas the follower

quadrotor is responsible for preserving small swing angles to achieve load stability.

Moreover, both quadrotors keep a certain distance between each other in the same

plane. In addition, both quadrotors have their own control input in the same

architecture, where each control input is affected by the other but with a separate

decision-making ability because of the values for their weight matrices. Each

vehicle has its own flexibility in terms of considering the state, but increasing the

mean of the follower control weight and decreasing the leading one can minimise

the cost when achieving the system performance.
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In order to guarantee the performance, an efficient controller must be proposed

to handle the constraints and then achieve the system stability while transporting

the suspended load. Both accuracy and stability are the important performance to

be considered in this thesis. Therefore, in this thesis many control techniques are

addressed for the performance in the MATLAB simulation and C++ experiment.

Firstly, the LQR controller has been nominated in this thesis due to the high

demand for flight control to handle the system optimal performance by achiev-

ing stability, and capturing accuracy with minimum cost value. Employing the

optimal LQR controller has several advantages. First, this controller is able to

tune the weight parameters easily compared with the classical PID control, which

leads to determining the better parameters. Second, in the LQR optimal control

objective, the performance criterion is included to test the system efficiency. Due

to these reasons, this controller is developed to stabilise the suspended payload

and minimise the swing angles and quadrotor attitudes while tracking a predefined

trajectory by determining the best ratio between the states cost and control input

cost via the Lyapunov function. Another advantage is that this controller over-

comes the model nonlinearity by performing the optimisation recursively. For this

reason, an optimal iterative linear quadratic regulator ILQR controller is suggested

based on the LQR control approach.

The optimal ILQR control is applied to the nonlinear dynamic model and then it

is linearised at each sampling time with an operational point. The main feature of

this controller is that it recursively performs the tracking control at each sample in

order to find the best optimised payload position, reduce swing angles and achieve

the system stability while the quadrotors orientations are being considered.

In addition, a constrained model predictive optimal control MPC is chosen then

applied to two quadrotors with suspended payload via cables in both linear and

nonlinear dynamic model representations. The beneficial points of the optimal

MPC are focused on handling the states and control inputs constraints, optimising

the tracking problem for all time steps along the predefined path, and improving

the system performance. Finally, a cooperative incentive dynamic game controller

is designed for the leader-follower technique with a non-centralised control scenario,
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where each quadrotor makes its own decision based on its knowledge from the

other. This provides the system with formation change due to the individual

control decision and improves its tracking accuracy, as well as avoiding collision.

All these aforementioned controllers are tested utilising simulations and evaluated

indirectly in experiments via planning the trajectory. The control design depends

on the system model. The dynamic model is a high-level complex model and is

presented based on using the Euler angles technique.

The pitch and roll angles can be represented in a way that evaluates the infinite

value (singularity situation), which comes from the pitch angle divided by zero for

a single quadrotor. In the case of two quadrotors with a suspended load, however,

there is no need to consider avoiding singularity due to the model formation since

the payload is not in the centre of gravity for either quadrotor. The dynamic

model is comprised of all the states’ parameters and control input including pay-

load position, swing angles and quadrotor’s orientation, while the control input

includes forces and moments which can affect one another while achieving the

transportation task.

In 2003 the Ascending Technology company was established by a group of students

in Germany and started the first step to build a simple model of the quadrotor.

This quadrotor is called Hummingbird and consists of the low-level microcontroller

which is in charge of the stabilisation of its attitude and orientation while the high-

level microcontroller is responsible for the quadrotor’s position (see Chapter 7).

Moreover, this quadrotor is able to carry a payload with limited weight and it has

been used in this thesis (see Figures 1.1 and 1.2), where the ropes are used as

cables and the payload is a car toy.
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Figure 1.1: Single quadrotor with a suspended payload with

Figure 1.2: Two quadrotors carrying payload with cables
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1.2 Motivations

Recently, a cable suspended payload with the quadrotor model has achieved sig-

nificant growth due to the high demand on single and cooperative two quadrotors

to handle the transporting applications that the naked quadrotors cannot be able

to achieve. Thus, the researchers have been focusing on a control design to con-

trol a payload’s stable or moving position and swing angles and the quadrotor’s

orientations in order to improve the system performance so that the tasks can be

achieved efficiently. The control of cable suspended load with a quadrotor can

solve the problem of reducing the swing angles, achieving the system stability and

preserving the two quadrotors while implementing their transportation.

In this study, the advantages are taken by the permissibility of increasing the

weight, sensors sharing, formation maintaining and energy compatibility. The

control design of single, two quadrotors transporting a cable suspended load are

introduced. First, a single quadrotor is presented to improve the controllability of

accurate transportation to address the previous limitations and difficulties. Sec-

ond, a control system is constructed which is comprised of multiple quadrotors

connected with a rigid body suspended by links to perform transportation of pay-

load. These controllers detect the errors to improve the required performance in

order to promote and realise the final goal. This thesis focuses on developing an

optimal controller in order to improve the performance of the non-linear dynamic

model through achieving quadrotor-payload position and orientation stabilisation

during the transportation task. In the case of leader-follower quadrotors with a

suspended load, one of the quadrotors is selected as a leader to track a desired

predefined trajectory while the second is considered as a follower quadrotor to

follow the leader. Moreover, all the three relative distances represented by two

ropes’ lengths and the relative space between the leader-follower quadrotors are

maintained according to payload positions, swing angles and leader-follower ori-

entations, where the computer gives the reference trajectory position information

to both the leader and the follower quadrotors to be tracked by the payload. Each

leader-follower behaviour can be obtained based on the relative weighted control
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action in order to maintain the system formation, collision avoidance and accuracy

achievement.

In this thesis, the control design for a cable suspended payload with a single, two

quadrotors is introduced to achieve the system transportation performance. This

is achieved through a reducing steady-state errors, making the payload track a

predefined path, stabilising the quadrotors’ orientations, considering constraints,

and avoiding collision. The efficient control design for the cable suspended pay-

load with quadrotors relies on the quadrotors-load aerodynamics, which includes

a number of rotors and the payload’s weight, and position.

1.3 Thesis Scope

The control of the quadrotors with a suspended payload is a challenging task.

Firstly, the location of the quadrotors and the payload should be known and

provided to the control system. However, obtaining the location information in

nature environments is still an unsolved problem. there are various algorithms

using different sensors to the problem, but they are far from being employed in

transportation applictions where high accuracy and reliability are required. The

work in this thesis assumes the location information is available and in our exper-

iment the system operates in indoor environment where a vision tracking system

(Vicon) is available to provide the required information. Secondly, both system

parameter uncertainty and external environment disturbances are not considered

in this thesis. With the consideration of these uncertainties, it would definitly

make gains on the system robustness. But they are out of the scope of this the-

sis, and left for future work. Thirdly, the operating environment is assumed to

be static, no moving obstacles. Only the collision between two quadrotors and

payload are consideredin the cost function. This thesis is focuses on the design of

the controllers to control the system. The stability, optimal cost and constraints

are the main factors to be investigated.
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1.4 Contributions

This thesis is focused on four optimisation controllers, which are LQR, ILQR,

MPC and dynamic game controllers. The substantial contributions in this work

are the development of a dynamic model for cable suspended payload with two

quadrotors and the implementation of the aforementioned controllers in simulation

and experimental tests. The thesis contributions are summarised in the following

points:

1. Two dynamic models have been established based on Lagrange equation, and

these models are presented by (i) a cable suspended load with a single quadro-

tor and (ii) two quadrotors carrying a payload by cables. In the second model,

each constant state and control input is taken into consideration to guarantee a

satisfying operational point. As these models are in high level of complexity, and

a linearisation procedure is executed based on a nonlinear model system to be

convenient for the optimised controllers.

2. An LQR controller is developed for the systems as one of the contributions

made in this thesis. This controller is to show less state errors can be achieved for

the systems compared with a popular PD controller. These errors are clarified as

a payload position RMSE values and improved to be 0.0123(m) for LQR controller

compared with 0.086(m) for PD controller. It is implemented by linearising the

nonlinear system models and applying the standard LQR control technique.

3. Due to the high nonlinearity of the dynamic models, it is necessary to handle

them in order to improve the system performance. Since a recursive technique

is required, an ILQR is developed for the control problem of a cable suspended

payload with quadrotors according to the LQR approach. The main advantage of

utilising the ILQR controller is to eliminate the high nonlinearity of the dynamic

system while tracking the desired trajectory. Moreover, provide less RMS load

position errors while tracking the trajectory based on the iterative technique and

reach 0.0026(m).
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4. A model predictive controller is developed and performed via MATLAB simu-

lation within two approaches, linear MPC and nonlinear MPC. They are used to

deal with the constraints of the states and inputs, which are caused by the lim-

itations of environments and the motor powers. The optimisation algorithm QP

and YALMIP are used inside of the linear and nonlinear MPC controllers. The

control performance has been ameliorated to demonstrate a worthy reduction of

the RMSE to 0.0012(m) for the payload position.

5. A dynamic game controller has been designed using an incentive strategy to

solve the Leader follower dynamic control problem, where one of the quadrotors is

involved as a guide leader and the second to follow the leader while both carrying

a payload by cables. While the leader keeps the load tracking the predefined path

and achieving load position and stability and the leader’s attitudes, the follower is

kept following the leader and maintaining the payload position, reducing the errors

of the state and controlling the follower’s orientations. It is worth noting that both

the leader and the follower consider reducing the swing angles. The advantage

of using the leader-follower method is its ability to determine the best control

parameters suitable for the required situation and avoid the collision. Furthermore,

this controller was enhanced by improving the RMS errors of the load position

along the desired path.

1.5 Thesis Structure

The remaining structure of this thesis is as follows:

Chapter 2: reviews various control techniques for single and multiple quadrotors

with suspended payload. A full coverage of the state of the art linear and nonlinear

control techniques used for payload transportation system are provided.

Chapter 3: describes the dynamic models of cable suspended payload with sin-

gle and two quadrotors using Lagrange equation based on Euler angles approach.

The nonlinear derivation equations are provided in detail, then the state space
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matrices are evaluated, considering 16 feedback states and eight degrees of free-

dom for a single quadrotor with the slung load; whereas in the significant cable

suspended payload using two quadrotors is outlined for thirteen degrees of freedom

and presents 26 system states. Lastly, the nonlinear dynamic model is linearised

in order to prepare for linear controller design.

Chapter 4: includes a description of two optimal LQR and ILQR control methods,

where the ILQR control technique is developed based on the LQR controller. This

control technique is verified to stabilise the payload position and reduce swing

angles and quadrotors’ orientations by utilising MATLAB simulation. Then the

results are provided for both models and compared with those of the LQR control

method.

Chapter 5: reviews the linear and nonlinear predictive optimal MPC control ap-

proaches with their simulation results. The optimal MPC control technique is

implemented using a Matlab simulation for two quadrotors with a load suspended

by cables according to the control horizon. This controller is used on both the

nonlinear Euler angles presentation and the linearised model to handle the system

constraints, which are involved in the control design. Furthermore, the chapter

discusses the achievement of the system attitudes stability, load position accuracy

and the control tracking problem for this high nonlinearity model.

Chapter 6: presents the dynamic game control approach based on the derivation

of its equations followed by the stability results for leader-follower with the sus-

pended payload. This controller is built and developed depending on the incentive

principle. In other words, each leader and follower quadrotor can be able to achieve

its stability, swing angles and load stability based on its knowledge of the other’s

information. Avoiding collisions in a strict environment is made while both the

leader and the follower make a convenient team optimal decision.

Chapter 7: presents the real hummingbird quadrotors with their accessories, pay-

load, communication Xbee and Vicon system tracker. The experimental indoor
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tests are based on a real system by utilising PID to follow the optimised tra-

jectory provided from the MATLAB simulator and using an optimised controller

compared with the classical PID control.

Chapter 8: concludes the findings and summarises the results obtained in the

previous chapters. Moreover, the chapter includes suggestions for future work.



Chapter 2

Literature Review

2.1 Introduction

Transporting a cable suspended payload with quadrotors has been addressed as

the main area for control tasks. Flight control techniques have recently utilised

four-rotor UAVs to achieve stability for system position and orientations. The be-

haviour quality of the UAVs has been approved by implementing several classical

and modern control systems. The proposed controllers in this survey are presented

to eliminate the dynamic model uncertainty, lack of stability and limitations re-

garding structure complexities in the controller. This survey is divided into four

categories. It starts from the nonlinear control of single and multiple UAVs with

suspended payload. Then it moves on to optimal control methods, including LQR,

MPC and game controllers. The survey provides the information on how to apply

these optimal controllers in various robotic applications.

2.2 UAV Payload Transportation

UAVs, have become common aerial robotics for researchers and they have been im-

plemented in different applicable situations. Furthermore, research into this area

has witnessed significant growth to the development of control theory applications.

13
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The progress in this field has included simplicity of mechanical design, position

correction, dynamic modelling and exerted power as real strong steps for the future

of control. In [10] a robust controller was proposed using H∞ nonlinear optimal

approach to solve the attitude control problems for quadrotors. A Lyapunov func-

tion was selected and a state feedback controller was derived based on quadrotor

attitude dynamics. Quadrotor attitude was represented by unit quaternion and

disturbance was considered.

Position stabilisation control methods for quadrotors based on vision feedback

have been proposed. A nested saturation control technique was introduced in [11]

which improved smoothing behaviour of UAV and energy conservation compared

with backstepping and sliding mode techniques when the authors tested it in real

time to stabilise the UAV.

In [12] a simulation was presented to stabilise the take-off and landing tasks of

a single quadrotor UAV using the Newton-Euler technique of backstepping PID

together with PD controllers. The best simulation results came from the nonlinear

backstepping based on PID control in comparison with the linear PD controller to

solve the yaw angle control problem. Two controllers were used in [13] to compare

the simulation and real-time stabilisation for a quadrotor using the LQR controller

and the robust H∞ controller through a trajectory tracking test in high speed. The

results showed that the H∞ controller could not track the trajectory in real time

while the LQR gave a good tracking in both the simulation and real-time tests.

[14] presented a comparison of the simulation results between the PID controller

and the fuzzy logic one in take-off, hovering and landing stabilisation of a quadrotor

UAV for a constant angle of each rotor. The results revealed that the system

became stable within a short time of performing. A PD controller was introduced

to handle the dynamic changes problem when the vehivle tuch the land in [15] and

achieve the robustness of the quadrotor UAV’s take-off and landing in a simulation.

[16] presented a mechanical design, dynamic modelling, sensing, and control sys-

tem (PID) for an autonomous micro quadrotor. The results indicated that the

quadrotor had the ability to perform many actions in a challenging environment
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with high level of accuracy, which gives them efficiency in applications. A path

tracking strategy was implemented to achieve this task by tracking reference tra-

jectory signals. A comparison between two nonlinear control techniques, backstep-

ping and sliding-mode, was administered through an open-and-closed-loop simu-

lation to reinforce control laws [17].

The specific characteristic of UAV enables difficult or/and impossible executions in

applications, such as rescue missions, transportation, surveillance, and industrial

and military applications. The field of aerial transportation has maturated in

recent years to implement such applications. The full dynamic model of the system

consists of the essential mathematical model, which represents the equations of

quadrotors with four input forces and six output states in addition to the dynamic

model of payload and links.

This complexity in the model structure and controller makes it difficult to perform

tasks. In [18], a full control model of a quadrotor UAV was implemented, and

attitude, altitude and position controls were proposed to excute the autonomous

take-off, hovering, landing, and collision avoidance based on integral back-stepping

control. The results were demonstrated in a simulation, and sensor noises were

taken into consideration.

To sum up the aforementioned studies, the advantages of quadrotor UAVs are

not only improving the performance in take-off, hovering, forward movement, side

movement, and landing vertically in a limited space but also carrying different

types and sizes of the payload.

2.2.1 Cable-suspended Payload with Single Quadrotor

Recently, many researchers have focused on the design and improvement of UAVs

in many ways for the controller to implement different tasks for individual and

team cooperation. These applications include emergency missions such as indus-

trial and military applications, where delivering equipment and flying with carry-

ing the suspended load safely is a necessity. Therefore, these applications require
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stability of implementing tasks by adapting to disturbances and changes in the

dynamic model parameters. Adaptive control has been utilised to maintain the

centre of gravity and reduce the suspended load swing-free trajectory during the

manoeuvring task.

Flying control of the quadrotor with a suspended payload was challenging due to

the large swing angles and change of quadrotor characteristics during the trans-

portation task. Authors in [19] proposed a baseline controller for the quadrotor

with the suspended load to generate a trajectory with swing free manoeuvre and

an adaptive control approach. The simulation and experiment results were veri-

fied for control validity and swing free tracking based on quadratic programming.

A differential flatness hybrid system was employed in [20] with experimental re-

sults in order to find nominal trajectories to improve the limited swing for the

suspended load with a quadrotor. Moreover, the control design was proposed to

achieve tracking the payload position and system attitudes by handling a zero ca-

ble tension case. Tracking was enabled for both the quadrotor and load attitude.

In [21], however, the desirable trajectories were determined for both the suspended

rigid body payload as a point payload and the quadrotor through using differential

flatness control.

An adaptive controller was added to cover the change in the centre of gravity,

and a batch reinforcement learning approach was implemented in [22] to over-

come the problem of swing-free trajectory generation. This predefined path was

demonstrated to be feasible for autonomous quadrotors with suspended payload

characteristics learning through reinforcement. Similarly, a technique based on

dynamic programming was presented in [23] for obtaining desired waypoints and

swing-free trajectory tracking problem of a quadrotor with the cable-suspended

load.

Sadr, S. et al.[24] developed a dynamic model system using the Newton-Euler for-

mulation compared with the Lagrange method and designed a nonlinear controller

for the position and attitude of a quadrotor with slung load based on an anti-swing

algorithm. The aim was to control the quadrotor position and attitudes to the
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desired path and reject the swing angles, and the simulation results demonstrated

control validity.

An adaptive control technique was designed based on a combination between the

least-square estimation and the geometric control to transport the unknown pay-

load mass from one point to the other [25], where the geometric control relied on

the online estimator to evaluate the system parameters to track a prescribed path.

Reasonable results were obtained with slight placement changes of the suspended

payload over the basis. Similarly, a combination of an adaptive PD and neural net-

work controller was proposed in [26] to cancel the effect of unmodeled dynamics,

while a nonlinear PD controller was presented in [27] for stabilisation and trajec-

tory following. The effect of the payload mass uncertainty was compensated for

using a retrospective cost adaptive controller. The proposed controller was tested

in a real vehicle to verify its validity. A vision-based extended kalman filter control

was addressed by [28] in three dimensions closed loop. The load’s states were es-

timated due to the camera detection placed downward with respect to that of the

quadrotor, and an onboard controller was set up to handle aggressive manouvers

to achieve large swing angles. Promising results were obtained with the largest

agile load angle 53o. In [29] a coordinate-free dynamical model was derived for a

quadrotor carrying a load by a flexible cable with a spring. The geometric control

was developed to solve the tracking control problem for a payload position with

an elastic cable using singular perturbation to validate the proposed controller.

2.2.2 Cable-Suspended Payload with Multiple Quadrotors

Another distinct load transportation approach is comprised of a cooperation of

multi-quadrotors, in which one load is suspended by more than one vehicle in dif-

ferent ways. Cooperative aerial transportation of multiple UAVs has been used

for transporting a payload suspended by a fixed cable, which is characterised by

high accuracy in the equilibrium of position and orientation over individual quad-

rotors. This dynamic model is more challenging due to the system complexities
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with a high degree of freedom; and because of some hazardous missions, a sig-

nificant fluctuation of load swing angles is ensured. This situation may lead to a

change of the flight system characteristics. In spite of this, it is essential that this

system dynamic can be able to overcome the difficulties and inconvenient changes.

In the previous works, researchers concentrated on solving the control problem of

a part of the multiple flight robots with suspended payload by cables.

The Euler-Lagrange equation was used in [30] for an arbitrary number of quadro-

tors transporting a rigid body. A geometric controller was used to transport a pay-

load carried by the quadrotors with flexible cables to the required fixed point, and

the control problem was the payload position and system stability to be achieved.

[31] presented the design and construction of a controller of an arbitrary number

of quadrotor UAVs with a rigid body payload suspended via rigid links. This con-

troller ensured the implementation of safe transportation of the payload by cooper-

ative quadrotors using a coupled dynamic between payload, links, and quadrotors.

This geometric controller was introduced based on coordinate-free equations and

derived using the Lagrange method to solve the system stability issue during the

tracking task. By utilising a popular technique, another model was able to control

not only a flexible payload ring to the desired position and attitude with multi-

agent systems but also suppress the deformations to zero and proof the system

controllability and observability using LQR controller [32].

Tracking control methods have been implemented for multiple quadrotor UAVs

connected with a point mass, which tracks visible trajectory asymptotically via

massless links. A three stages geometric nonlinear control strategy have been

implemented for quadrotors with suspended load path tracking. A simple PD

controller was presented in [33] for tracking and controlling a team of quadrotors

with a suspended point mass load. The coupling effects between the quadrotors

and the suspended payload were considered based on the designed controller to

reject the load fluctuations. The quadrotor dynamic model was represented in

eight degrees of freedom and it was based on a differential flatness. The hybrid

control system stability analysis was guaranteed for stabilisation and path tracking
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tasks. Cooperative control laws were designed by [34] to control an arbitrary

number of aerial towing robots manipulating and transporting a payload in three

dimensions.

A nonlinear control technique based on the dynamic model has also been pro-

posed for a swing free stabilisation and trajectory tracking of quadrotors with

a suspended load. Authors in both [35] and [36] proposed a differential flatness

method for trajectory planning of quadrotors with a suspended load transportation

problem. In their works, both a three-dimensional rigid body and a point mass

load were suspended by multiple quadrotors via flexible cables. A coordinate-free

dynamic was used based on the linearisation of the system equations. In [36], both

single and multiple quadrotors with slung load were considered to track a desired

trajectory.

A geometric feedback controller was implemented in [37] to track a predefined tra-

jectory of the load attitude and position. Furthermore, a geometric controller was

constructed to improve the performance of controlling a cable suspended payload

with multiple quadrotors following the desired trajectory. Where a coordinate-

free dynamical model was developed based on equations of motions and then a

geometric feedback controller was designed. The load was suspended by multiple

quadrotors as a point mass, while the proposed controller was used to control the

quadrotors yaw angle. Another problem to solve with more than one UAV us-

ing fault free sliding mode control (SMC) was introduced by [38], where a fault

tolerant control strategy was adopted to investigate and solve the issue of fire

detection and tracking faults in forest monitoring. Similarly, a cooperative forma-

tion of two quadrotors UAVs was proposed in [39] using a nonlinear underactuated

controller based on partial feedback linearisation to track a trajectory. Rejecting

load disturbance for lateral xz-plane was achieved in the simulation.
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2.3 Linear Quadratic Regulator (LQR) and It-

erative (ILQR)

A review of the literature shows that an optimal linear quadratic regulator LQR,

a Sequential Linear Quadratic SLQ, a linear quadratic Gaussian LQG and an

Iterative Linear Quadratic ILQR controller have been applied on the cable sus-

pended payload with quadrotors in order to solve the problem of stabilisation and

accuracy.

A linear quadratic control technique LQR was introduced for addressing the tra-

jectory tracking problem in [40] and a zero steady-state error was obtained based

on the integrated D-methodology with the anti-wind-up technique. This strategy

was adopted in order to rely on the linearised model of UAV quadrotor to track a

predefined 3D trimming trajectory by the LQR controller. The experimental test

results of this controller demonstrated small errors. Likewise, a practical test was

implemented in [41] to track a predefined trajectory using an LQR controller. This

controller was implemented with and without the Model-Free Control (MFC) algo-

rithm and tested practically. The test results showed the augmented effectiveness

of the system performance.

An iterative linear quadratic regulator ILQR using feedback gain control was pre-

sented in [42]. This control gain resulted in a better solution by yielding faster

convergence to the nominal trajectory according to the optimal feedback control

law, which was computed via LQR modification. It is worth mentioning that non-

linear dynamical systems were linearised for three applied models. The first model

was a 2-link musculoskeletal arm model, where the angle of a joint was achieved to

facilitate convergence to the goal (i.e. reach movement representation) and energy

efficiency was obtained. The second nonlinear dynamic model was realistic muscle

actuators added to the arm, and a swing-up simple inverted pendulum was intro-

duced as a third nonlinear dynamic model. In [43] a global trajectory generation, a

trajectory control, and a linearisation technique kinematic model of 3-dimensional

configuration for a wheeled mobile robot system were presented. The proposed
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control method was used to design accurate trajectory tracking for two courses of

trajectories “S” and “8” to improve the control sequences for linear and angular

velocities iteratively. This controller was the iterative linear quadratic regulator

ILQR, which improved performance in simulation and practical application.

A demonstration was applied in [44] to improve the convergence of the third re-

quired iteration on nonlinear control problems. This was achieved through simu-

lating a quadrotor with obstacles and physical differential drive robots using iter-

ative LQR. The smoothing concept of LQR controller was tantamount to Kalman

smoothing. An iterative computation technique was applied with nonlinear dy-

namics and non-quadratic cost in order to achieve the faster convergence and

construct locally optimal feedback control. This controller was improved with the

forward pass and backward pass implementations by the standard LQR Riccati

equation. The Riccati equation were constructed to compute cost-to-come and

cost-to-go functions. The aggregate of both functions gave the total cost func-

tion, which provided natural points for the capable linearised dynamics and cost

quadratic.

Another distinct control approach of payload lifting, and transportation has been

proposed in different scenarios. In [45], lifting and transporting a payload was

performed for a quadrotor carrying the load with a cable. The proposed con-

troller was a linear quadratic regulator LQR control algorithm. Two modes were

presented: the starting mode through taking-off without the load influence and

the switching mode with the effect of the load. The simulation results for LQR

controller were compared with the PD controller results. However, in other works,

different tasks were approved with a linear controller. In [46] an LQR controller

was designed for a quadrotor to maintain the position and attitude equilibrium

in spite of losing a single propeller, two opposite or even three propellers, while a

combination control of linear quadratic regulator LQR and sliding mode control

(SMC) was used for leader and follower formation maintenance [47]. It was found

that the inner and outer loops for position and attitudes were improved for the

trajectory tracking simulation.
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In recent years, the difficulties of performing a nonlinear design have acquired in-

creasing attention in order to improve the system stability. Among these problems

are manual control derivation, complexity in design and combination of different

tasks, time-consuming and difficult implementation of different specific controllers.

For instance, a dynamic model was developed based on the Udwadia-Kalaba Equa-

tions for a slung load lifted by a quadrotor in [48]. Appropriate neural network

and adaptive control were proposed to improve the attitude, then numerical sim-

ulations were performed. In [49], a hybrid dynamical system was modelled to

navigate a quadrotor with a slung load in known obstacle environments, and two

challenges were presented. The first challenge was that the full system had to

guarantee obstacle avoidance and the second challenge was giving permission to

manoeuvres through the adaptation between subsystems.

Furthermore, nonlinear controllers have been presented in many specific approaches

to obtain and maintain better results for position and attitude. These controllers

have been applied through many techniques such as the backstepping controller

for a payload connected with the quadrotor centre of gravity. Kane’s method was

modelled for tracking the trajectory and verifying the simulation results in [50].

Therefore, a linear control strategy has been considered in order to overtake limi-

tations in different publications. A Sequential Linear Quadratic SLQ control, for

example, was employed by [51] and an iterative LQG algorithm ILQG was used

in [52] for a hybrid model quadrotor and slung load to perform two approaches.

The first was passing through an unfair high window for the payload pass by im-

plementing aggressive manoeuvres. The second was to demonstrate a go-to-goal

task with the failure of one and two rotors.

Moreover, some researchers have published papers to compare between a linear and

nonlinear controller for quadrotors with a slung load. For example, a Nonlinear

Model Predictive Control NMPC was proposed by [53] to actively track waypoints

precisely and restrain large oscillations for the slung load and then compare the

performance with a linear-quadratic regulator LQR controller to improve the sim-

ulation results considering aggressive manoeuvres. In [54], however, the proposed

controllers were tested through simulation to verify their validity for the precise
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and safe operation of a heavy slung load. Authors in [55] proposed an iterative

Linear Quadratic Gaussian (ILQG) control for a stochastic nonlinear system. Such

a method was applied by eliminating approximation to the optimal cost function.

2.4 Model Predictive Control (MPC)

The most important priority for researchers in terms of designing an optimal con-

troller has been to improve the performance and guarantee the system robustness

in difficult conditions based on complex non-linear dynamic models. Therefore,

MPC controllers have commonly been executed to tackle the performance of the

system states.

The MPC controller has been attracted by many applications due to the beneficial

efforts such as the constraints included in the control design and the specific hori-

zon where the control action is enabled. Moreover, this controller was performed

in the linear and nonlinear forms based on using the linearised equations of motion

via the nonlinear model. To this end, this survey below presents a review of the

previous works on linear and nonlinear controllers.

2.4.1 Linear Model Predictive Control

In [56], a linear MPC scheme was designed for a multi-rotor system with a slung

load. The simulation results for the MPC were compared with those of the LQR

algorithm and the experiment test was verified in real flight. Similarly, in [57] both

control algorithms LQR and MPC were introduced based on a linear model and

performed on a quadrotor testbed (Qball-X4) in order to control against the control

loss with a fault-tolerant control strategy. Furthermore, a fault-tolerant controller

was designed in order to compare the performance. A linear MPC was proposed in

[58] and the model was simplified with only a two-dimensional movement based on

the least square identification. The authors maintained convergence in a circular
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path around the desired point, and an interface was provided with the actual

quadrotor in real time using MATLAB.

Cooperative UAV control in a form of multiple team formation was accomplished

under a linear MPC control law [59] using the Qball-X4 quadrotor. This approach

was implemented without constraints and no load was considered. The contribu-

tion of this controller was to make velocity matching and prevent collisions. The

encirclement situation was applied for multi quadrotors team formation around

the target based on a linear MPC to improve encirclement and collision avoid-

ance between Qball X4 quadrotors [60]. In [61] an MPC controller was presented

with PID for a quadrotor to autonomously track a predefined trajectory without

constraints. This control design was based on inner and outer loops, and on lon-

gitudinal and lateral control feedback law. Each controller utilised a decomposed

control signal, then a test of control performance was conducted to obtain satisfac-

tory results. These results were based on a simple test, forward flight and hovering

tests. An optimal flight control MPC for a quadrotor with a suspended load was

presented in [62] using visual feedback to compute the load position accurately.

The state vector and control vector constraints were applied, utilising an onboard

processor, so that the load position can be calculated and connected through a

wireless network. However, the results were based on the insignificant effect of

the system behaviour through the tracking method. In [63], however, a visual

method was presented for trajectory generation of a quadcopter in real time by

solving a convex optimisation. On the other hand, in [64] an unconstrained MPC

controller was proposed to track a trajectory for quadrotors based on three levels

of control, and the structure of the feedback equivalent system led to a decrease

in the complexity of MPC in real time.

In terms of UAV stabilisation and desired trajectory tracking, an LMPC was pro-

posed using a hierarchical strategy to achieve the system stability and obstacle

avoidance in [65]. The results showed the ability to control the state constraints

and the flexibility of trajectory planning by using the LMPC and decentralised

LMPC controller [66]. Likewise, a robust MPC controller was designed based

on piecewise affine linear systems (PWA) to control a quadrotor’s attitudes in
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severe environmental conditions [67]. The models were simplified, and the wind-

disturbance was considered as a challenging issue when implementing sudden ma-

noeuvres. The control input constraint was imposed on the system.

2.4.2 Nonlinear Model Predictive Control MPC

Due to the system’s high requirements to solve the control problem under challeng-

ing environments, a nonlinear MPC has been applied in several areas. An integral

MPC controller was executed for a single quadrotor to improve the tracking per-

formance in [68]. The dynamic model was presented based on piecewise affine

(PWA) systems with the consideration of physical system constraints. A con-

strained robust MPC technique was applied over the constrained environments for

a single quadrotor manoeuvring with fixed payload in [69], while an autonomous

multi-copter slung load system was presented in [70] based on a constrained MPC

approach and PID controller to follow a desired derived trajectory.

A MPC was presented in [71] for manoeuvres at very constrained environments.

In this study, a quadrotor position control was addressed based on implementing

the extended kalman filter for translation velocity estimation and switching the

MPC Controller for angular rates and accelerations. In [72], a MPC was used

to minimise the predicted tracking attitude errors of a quadrotor with a fixed

payload. This strategy was applied for take-off, hovering, and landing tasks with

a reactive safety mode.

The implementation of an MPC controller in a tilt-rotor UAV with a suspended

payload was reported in [73] and [74]. Moreover, a horizon motion planning was

integrated, and an obstacle avoidance ability was achieved by M. Saska et al.

[75] for micro aerial vehicles (MAV) using MPC control for maintaining leader-

follower formation mechanism with follower stabilisation. Similarly, the authors

in [76] introduced an MPC controller for leader-follower UAVs to avoid collision

in a restricted area, and the results showed zero steady-state position error. Path

tracking and obstacles avoidance were tackled in [77] by using a nonlinear guidance
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logic for a MAV, where the MPC controller was tested and then the predictive path

and obstacles avoidance were achieved.

An automation flight control was presented in [78] and it relied on MPC imple-

mentation for UAVs indoors. The Vicon system was employed for tracking the

formation system to apply flight control and record data based on MPC in order to

verify the system performance. An indoor demonstration was implemented in the

concept of air traffic management (ATM) and geo-facing environment [79]. Exper-

imental results were provided, and they described the modification of a learning-

based MPC technique to improve the dynamic response and guarantee robustness,

then converge by applying the quadrotor on an ultra-low-voltage processor in real

time.

Comparing the results of linear and nonlinear MPC control to track a trajectory

using MAVs under wind disturbance, [80] shows that the difference between them

was not significant. To increase online optimisation time, a high-level MPC and

low-level linear control framework were introduced for helicopter autonomous flight

control in [81]. The simulation results were verified using the proposed control.

2.5 Stackelberg Games

This section focuses on one of the most important control aspects. It has been

presented by non-cooperative and cooperative game control. In the first aspect, a

non-cooperative game theory was adopted using a new suitable algorithm. This

algorithm was described in [82] to improve the game design for a multi-agent

based on AI approach. The N-Tuple Bandit algorithm was developed to improve

exploration and exploitation balancing using bandit approach. Indeed, better

robust results were obtained from the application of this algorithm and these were

compared with both Biased Mutation and Mutation Hill Climber.

Another application for a target tracking control for multi-agent robots was the

dynamic Stackelberg game framework. This framework was applied to multiple
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robots for target tracking control in team formation based on semi-cooperative

Stackelberg game theory [83], where fuzzy logic was used to adjust the weighting

parameters in the cost functions and enhanced robustness was achieved. This al-

gorithm was used to enhance the system robustness by achieving the cost function

convergence. In [84], the non-cooperative Stackelberg game approach for formation

robot coordination was used to solve the tracking problem and avoid collision.

In the form of Stackelberg games, the power control for the quality optimising

service (QOS) in wireless networks was solved [85], while the cognitive radio power

was used to change transmission power level [86] and the transportation networks

were utilised to maximize toll revenue in [87]. A wireless body area network was

proposed to increase the value of healthcare service with high-security in [88] based

on a non-cooperative Stackelberg security game theory. In security domain with

leader player as a patrol and follower as a robber in [89], an optimal leader strategy

was found.

In terms of energy management, a controller was studied based on a Stackelberg

game for electric vehicle charging in [90] by achieving a beneficial trade-off between

battery charging and the cost. An energy management controller was developed

for hybrid electric vehicles (HEVs) in [91] to penalise fuel consumption, battery

state of charge deviation and NOx emissions under a game framework. In order

to control pollution caused by these emissions in each country, a simple model

pollution control was introduced in [92]. This controller was put based on non-

cooperative differential game theory to minimise the cost function for the linear

combination of pollution and friendly cost of environmental policies. A proba-

bilistic game scenario was implemented in simulation and experiment in [93] using

a fleet of UAVs and UGVs based on a hierarchical architecture in two policies.

These policies were presented by local-max and global-max pursuit-evasion with

expected capture time to catch the evaders.

A coordination control approach has been presented in many publications, where

multiple robots perform their tasks in a complex environment structure using the

Nash equilibrium concept. Based on N-person game approach, an elementary task



Chapter 2. Literature Review 28

planning method was presented, and a hybrid system architecture was designed

in order to control the team of robots performing a non-cooperative game task

[94]. An effective exploration test was presented in simulation and carried out

in a complex structure of environments. However, in this transportation task,

performance could not be guaranteed using a one-step-ahead plan. In [95], where

the tracking target problem was proposed, achieving the required task could be

approved by avoiding robot collision with a target robot or obstacles in the sys-

tem configuration. This was due to the competitive situation between agents in

tracking the target robot. Therefore, a switch of the method was proposed using

the non-cooperative Nash and the semi-cooperative Stackelberg equilibrium. By

comparing the results with those of single leaders in terms of social welfare, the re-

searchers concluded that the equilibrium point was subjected to the multi-leaders.

In the case of multiple leaders, presented by Wi-Fi, SCSP and MSP, with multiple

followers, the Stackelberg game approach was proposed for more complex situa-

tions in order to improve high social welfare [96]. Similarly, in [97], a Stakelberg

security game control was applied for multiple defenders and attackers based non-

cooperative approach. In addition, a Stackelberg game was introduced to swarm

robot converge control in [98].

On the other hand, the cooperative game controller has been studied and tested

theoretically and experimentally in various environments. Stackelberg security

aspects were presented based on intelligent players in the realistic performance of

the transportation and computation system [99]. A roundabout test-bed situation

was introduced in [100], making use of two agents’ cooperative strategy to solve

the conflict case. This strategy was based on Prisoner’s Dilemma approach to

implement vehicle to vehicle (V2V) decision making autonomously in roundabouts.

This technique was proposed between two agents to achieve better reward of the

system behaviour through analysing the agents’ actions and their influence on

one another. The test results of (V2V) cooperative decision making showed an

improvement in terms of managing and decreasing the delay time (waiting time)

for autonomous agents.
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The non-zero-sum game theory was applied in real time and dynamic environ-

ment in [101], and a game method based on multi-agents was proposed using

dynamic-programming to optimise the searching strategy [102]. A different game

theory modelling was developed between a human and a vehicle [103]. In this

latter study, four paradigms were categorised based on the interaction between

a driver’s steering and vehicle collision avoidance control model to follow the de-

sired path and maintain various optimisation problems. These paradigms were

named as decentralised, non-cooperative Nash, non-cooperative Stackelberg and

cooperative Pareto paradigms. Incentive dynamic Stackelberg games allow the

leader and follower players to work cooperatively through an incentive mechanism

by which the leader encourages the follower to cooperate on minimising the team

cost (leader’s cost). They were used in security domain [104] and in robot team

navigation [105].

2.6 Summary

Most of the aforementioned studies have focused on novel methodologies for the

trajectory quadrotor or payload control on standard position and attitude for

single and multi-quadrotors with or without slung load.

Nonlinear controllers can stabilise the systems. But the control performance can

not be optimized. Optimal controllers, such as LQR,ILQR, MPC, and game con-

trollers, are able to stabilise the systems and optimise the performance. Although,

LQR,ILQR and MPC controllers have been applied to the systems of quadrotors

with suspended payload in one way or another, no explicitly applications of ILQR

and Game controllersto the two quadrotors withsuspended payload have been

found. No applications of the MPC controllers to two quadrotors with suspended

payload under the consideration of both input and state constraints have been

found. The following chapters will explore how to use these optimal controllers

in single and two quadrotors with suspended payload and reveal what the control

ferformance could be achieved under these optimal controllers.
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Dynamic Models for Single and

Two Quadrotors with Suspended

Payload

3.1 Introduction

In this chapter, dynamic models for single and two quadrotors with suspended

payload are introduced. Two dynamic systems are suggested in this thesis to

test the proposed controller and handle the system complexities. Two models are

chosen: one where the payload is suspended by a cable from a single quadrotor

and another where the payload is suspended by two cables from two quadrotors.

The single UAV quadrotor is connected to the suspended payload by a cable from

the centre of gravity. This model is built based on Euler angles considering payload

position, and quadrotor and payload’s attitudes. Relying on the rope angles, the

operating point can be analysed. A heavyweight load is taken into account by

creating a new model system to deal with this load. In the two quadrotors model,

however, the payload position, two quadrotors’ orientations and four swing angles

are employed as the system states, while the control inputs are presented by two

quadrotors’ forces and six moments.

30
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Figure 3.1: Single quadrotor carrying a payload

3.2 Single Quadrotor with Suspended Load

3.2.1 Nonlinear Dynamic Model Description

The point mass load suspended with a single quadrotor is described by a derivation

of a dynamic model in this section. Figure 3.1 illustrates the representation of the

dynamic model which consists of the quadrotor carrying a payload suspended by

a cable. There are two coordinate reference frames, an inertial frame (earth fixed

frame) denoted by e and a rigid body fixed frame denoted by b. Their coordinate

positions are denoted as xe, ye, ze and xb, yb, zb respectively. The payload attitude

is represented in three dimensions and its position is considered with respect to

the inertal frame. The system description is presented in Figure 3.1 including

the inertial frame, intermediate frame, and body-fixed frame. The vertical and

horizontal forces generated by each propeller and swing angles of the cable with

respect to the intermediate frame are also shown, where the intermediate frame is

the translation result from the inertial frame to the centre of quadrotors [106].

To simplify the problem, some reasonable hypotheses are given as follows:

1. The quadcopter is considered as a symmetrical rigid body.
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2. The payload is considered as a point mass and is attached at the centre of

the quadcopter.

3. The cable tension is always non-zero.

4. The air drag of the propellers is negligible.

Coordinates of different unit orthogonal vectors in appropriate frames are:

E1 = [1, 0, 0]T

E2 = [0, 1, 0]T

E3 = [0, 0, 1]T

(3.1)

The following relationships are available:

ρ = [−sin(β),−cos(α)cos(β), sin(α)cos(β)]T

ξP = xPE1 + yPE2 + zPE3

ξQ = ξP + Lrρ

(3.2)

The rotational velocity Jacobian is

Ω=η̇=


1 0 −sin(θ)

0 cos(φ) sin(φ)cos(θ)

0 −sin(φ) cos(φ)cos(θ)



φ̇

θ̇

ψ̇

 (3.3)

3.2.2 Euler-Lagrange Equation

The cable suspended load is modelled with eight degrees of freedom, which are

comprised of six for the quadrotor as a rigid body and the rest for the spherical

pendulum. Choosing q = [xP , yP , zP , α, β, φ, θ, ψ]T as the generalised coordinates

will not only be convenient while controlling the trajectory of the payload but

also be helpful for extending to multi-vehicle situations. Because of the change

of the cable tension from slack to taut, two mathematical models are taken into
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account: a quadrotor with no load and a quadrotor with cable-suspended load.

A switching process is used to transfer the operation from the first to the second

model depending on the cable tension. As a result, the Lagrangian L is composed

by subtraction of the kinetic and potential energies denoted by T and U as clarified

in the equations below:

T =
1

2
mP (ξ̇P )T · ξ̇P +

1

2
mQ(ξ̇Q)T · ξ̇Q +

1

2
(Ω)TIQΩ

U = mPgξP ·E3 +mQgξQ ·E3

L = T− U.

(3.4)

Then the Euler-Lagrange equation is

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= Q (3.5)

where L is the Lagrangian and the generalised force Q defined here is based on the

choice of the generalised coordinates q ∈ R8 and the external conservative force

F is [F T
Q ,M

T
Q ]T ∈ R4.

However, Q cannot be calculated directly via D’Alembert’s Principle as a trans-

formation is required beforehand. The D’Alembert’s Principle is a fundamental of

theoretical physics based on the Newton’s laws of motion, which was discovered by

the French scientist named Jean le Rond d’Alembert [107]. This is the principle of

virtual work obtained by applied forces on the dynamic equilibrium system along

a virtual displacement. It states that the sum of the external real forces f applied

on the body system minus the body system mass m times acceleration a reacting

by this system as projected along the system displacement is zero f −ma = 0.

In this chapter the main contribution of utilising this approach lies in the fact

that it eliminates the system dynamic problem under the body equilibrium con-

sideration using inertial forces and moments. Indeed, at the centre of gravity the
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forces must apply while the moments can be able to act at any point, which sim-

plifies calculation and eliminates forces from unselected points from the moment

equations [108].

Firstly, the thrust of a quadrotor should be transformed from the body frame into

the SKb frame,

FQ = Fze3. (3.6)

Define the unit orthogonal vectors of Sb:

eI = Te2bEI , I = 1, 2, 3 (3.7)

Secondly, the torques of the quadrotor should be transformed from Sb into an

appropriate frame in terms of Euler angles by velocity Jacobian matrix. As MQ

is not defined based on Euler angles, a transformation from MQ to its generalised

form in terms of Euler angles is Mη = [Mφ,Mθ,Mψ]

Mη = TMQ. (3.8)

Due to the following identical equations of power flow through the joint

Mη · η̇ = MT
η η̇ =

(
TMQ

)T
η̇ = MQ ·Ω,

the generalised force Q is given by equation (3.9).

Qi = F · ∂ξQ
∂qi

+Mη ·
∂η

∂qi
, i = 1, 2, ...4. (3.9)

Taking the generalised forces and Eq (3.4) into Eq (3.5), the Euler-Lagrange equa-

tion based on G ∈ R8×8 matrix is denoted by a symmetric matrix, and the system

model function f can be rewritten in



Chapter 3. Dynamic Models for Single and Two Quadrotors with suspended
payload 35

Gq̈ = g(F , q, q̇) = f(x,u.) (3.10)

In the trajectory tracking control, the operating point is considered as the balance

situation where the Euler angles of the quadrotor are equal to zero and the cable

angles are equal to the designed constants. The state x and control u of the

system are defined as below:

x =
[
xP , ẋP , yP , ẏP , zP , żP , α, α̇, β, β̇, φ, φ̇, θ, θ̇, ψ, ψ̇

]T
∈ R16,

u = [Fz,Mx,My,Mz]
T ∈ R4.

As for the control vector inputs, a non-linear state space equation is then given as

ẋ = f(x,u.) (3.11)

3.2.3 Equilibrium Points and Linear Time Varying Model

In order to utilise linear control strategy, equilibrium points and the correspond-

ing linear models must be given beforehand. Generally, the equilibrium points

(xeq,ueq) are recognised as stationary points as they satisfy the following equa-

tion:

0 = f (xeq,ueq) . (3.12)

With Taylor’s series expansion, equation (3.11) can then be approximated by a

linear equation around (xeq,ueq) and the linearised model is obtained in equation

(3.13):

ẋ≈f (xeq,ueq)+
∂f

∂x

∣∣∣∣
xeq

(x−xeq)+
∂f

∂u

∣∣∣∣
ueq

(u−ueq)

⇒ δẋ=Aδx+Bδu

(3.13)
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where, δx = x−xeq , δu = u−ueq , δẋ = ẋ = Gq̈.

Where G = M , the linearised model is obtained in equation (3.14):

q̈ = M−1 ∂f

∂x

∣∣∣∣
x0

δx+M−1 ∂f

∂u

∣∣∣∣
u0

δu. (3.14)

Furthermore, equation (3.13) can be transformed into a discrete form:

xk+1 = Akxk +Bkuk (3.15)

and Ak ∈ R16×16 , Bk ∈ R16×4

where the generalised forces, Q, matrix M and f(x,u) are detailed in (3.17),

(3.16) and (3.18), respectively:

Generalized forces:

Q1 = Fz(C(φ)C(ψ)S(θ) + S(φ)S(ψ))

Q2 = Fz(−C(ψ)S(φ) + C(φ)S(θ)S(ψ))

Q3 = FzC(θ)C(φ)

Q4 = FzLrC(β)(C(α)C(θ)C(φ) + S(α)(−C(ψ)S(φ) + C(φ)S(θ)S(ψ)))

Q5 = FzLr(−C(θ)C(φ)S(α)S(β) + C(α)S(β)(−C(ψ)S(φ)

+ C(φ)S(θ)S(ψ))− C(β)(C(φ)C(ψ)S(θ) + S(φ)S(ψ)))

Q6 = Mx

Q7 = MyC(φ)−MzS(φ)

Q8 = −MxS(θ) + C(θ)(MzC(φ) +MyS(φ))

(3.16)

Hereafter, C stands for cos, S stands for sin.
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Matrix M can be given as:

M =

 M11 05×3

03×5 M22

 (3.17)

where M11 and M22 are defined as follows:

M11 =



mP +mQ 0 0 0 −LrmQC(β)

0 mP +mQ 0 LrmQC(β)S(α) LrmQC(α)S(β)

0 0 mP +mQ LrmQC(α)C(β) −LrmQS(α)S(β)

0 LrmQC(β)S(α) LrmQC(α)C(β) L2
rmQC(β)2 0

−LrmQC(β) LrmQC(α)S(β) −LrmQS(α)S(β) 0 L2
rmQ



M22 =


Ix 0 −IxS(θ)

0 IyC
2(φ) + IzS

2(φ) (Iy − Iz)C(θ)C(φ)S(φ)

−IxS(θ) (Iy − Iz)C(θ)C(φ)S(φ) IxS
2(θ) + C2(θ)(IzC

2(φ) + IyS
2(φ)

 .
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Function f(x,u) can be defined as:

f1(x,u) = FzC(φ)C(ψ)S(θ) + FzS(φ)S(ψ)− LrmQS(β)β̇2

f2(x,u) = −FzC(ψ)S(φ) + FzC(φ)S(θ)S(ψ)

+ LrmQ

(
2S(α)S(β)α̇β̇ − C(α)C(β)

(
α̇2 + β̇2

))
f3(x,u) = −g(mP +mQ) + FzC(θ)C(φ)

+ LrmQ

(
2C(α)S(β)α̇β̇ + C(β)S(α)

(
α̇2 + β̇2

))
f4(x,u) = LrC(β)(C(α)(−gmQ + FzC(θ)C(φ))

+ FzS(α)(−C(ψ)S(φ) + C(φ)S(θ)S(ψ)) + 2LrmQS(β)α̇β̇)

f5(x,u) = −Lr((−gmQ + FzC(θ)C(φ))S(α)S(β)

+ Fz(Cα()S(β)(C(ψ)S(φ)− C(φ)S(θ)S(ψ))

+ C(β)(C(φ)C(ψ)S(θ) + S(φ)S(ψ))) + LrmQC(β)S(β)α̇2)

f6(x,u) = Mx + (−Iy + Iz)C(φ)S(φ)θ̇2 + C(θ)(Ix + (Iy − Iz)C(2φ))θ̇ψ̇

+ (Iy − Iz)C2(θ)C(φ)S(φ)ψ̇2

f7(x,u) = MyC(φ)−MzS(φ) + (Iy − Iz)S(2φ)θ̇φ̇

+ C(θ)ψ̇
(
−(Ix + (Iy − Iz)C(2φ))φ̇+ S(θ)

(
Ix − IzC2(φ)− IyS2[φ]

)
ψ̇
)

f8(x,u) = −MxS(θ) + C(θ)(MzC(φ) +MyS(φ))

+ (Iy − Iz)C(φ)S(θ)S(φ)θ̇2 + (−Iy + Iz)C(θ)2S(2φ)φ̇ψ̇

+ θ̇
(
C(θ)(Ix + (−Iy + Iz)C(2φ))φ̇+ S(2θ)

(
−Ix + IzC

2(φ) + IyS
2(φ)

)
ψ̇
)
.

(3.18)
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The linearized model can be presented in the following matrices:

A =



0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0.8909 0 0 0 10.6909 0 0 0

0 0 0 1.0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −0.8909 0 0 0 −10.6909 0 0 0 0 0

0 0 0 0 0 1.0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1.0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −21.3818 0 0 0 −21.3818 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1.0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −21.0 0 0 0 −21.3818 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1.0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1.0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



B =



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1.6667 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 434.7826 0 0

0 0 0 0

0 0 357.1429 0

0 0 0 0

0 0 0 217.3913


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Figure 3.2: Two quadrotors carrying a payload

3.3 Two Quadrotors with Suspended Load

3.3.1 Model Description

Figure 3.2 displays the full system, including the inertial frame, intermediate

frame, and body-fixed frame. The vertical and horizontal forces generated by each

propeller and swing angles of the cable with respect to the intermediate frame are

also shown, where the intermediate frame is the result of the translation from the

inertial frame to the centre of quadrotors.

Coordinates of different unit orthogonal vectors in appropriate frames are given

as:

E1 = [1, 0, 0]T

E2 = [0, 1, 0]T

E3 = [0, 0, 1]T

(3.19)
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The following relationships are available:

ρK =
[
cos(αK)cos(βK), cos(αK)sin(βK), sin(βK)

]T
ξP = xPE1 + yPE2 + zPE3

ξKQ = ξP + LKr ρ
K

(3.20)

The rotational velocity Jacobian is

ΩK=K ˙ηK=


1 0 −sin(θK)

0 cos(φK) sin(φK)cos(θK)

0 −sin(φK) cos(φK)cos(θK)




˙φK

˙θK

˙ψK



3.3.2 Euler-Lagrange Equation

There are 13 degrees of freedom in the quadrotor-payload system. Choosing q =

[xP , yP , zP , α
1, β1, φ1, θ1, ψ1, α2, β2, φ2, θ2, ψ2]

T
as the generalised coordinates will

not only be convenient for controlling the payload trajectory but also help in

extending to multi-vehicle situations. As a result, the Lagrangian L is composed

by subtraction of the kinetic and potential energies denoted by T and U, as shown

in the equations below:

T =
1

2
mP (ξ̇P )T · ξ̇P +

1

2
m1
Q(ξ̇1Q)T · ξ̇1Q +

1

2
(Ω1)TI1QΩ1

1

2
m2
Q(ξ̇2Q)T · ξ̇2Q +

1

2
(Ω2)TI2QΩ2

U = mPgξP ·E3 +m1
Qgξ

1
Q ·E3 +m2

Qgξ
2
Q ·E3

L = T− U.

(3.21)

Then the Euler-Lagrange equation becomes

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= Q (3.22)
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where L is the Lagrangian, and the generalised force Q defined here is based on

the choice of the generalised coordinates q ∈ R13 and the the external conservative

force F is [FKT
Q ,MKT

Q ]T ∈ R8. However, the Euler-Lagrange equation cannot be

directly utilised to calculate Q via D’Alembert’s Principle as a transformation is

required in advance.

Firstly, the thrust of each quadrotor should be transformed from the body frame

into the Se frame

FKQ = FKz e
K
3 .

Define the unit orthogonal vectors of SKb :

eKI = TKe2bEI , I = 1, 2, 3. (3.23)

Secondly, the torques of each quadrotor should be transformed from SKb into an

appropriate frame in terms of Euler angles by velocity Jacobian matrix

MηK
Q = KTMK

Q .

According to the following identical equations of powerflow through the joint,

Mη
Q · η̇ = MηT

Q η̇ =
(
TMQ

)T
η̇ = MQ · η̇ = MQ ·Ω.

Thus, the generalised force Q is presented by equation (3.24), where

Qi =
∂
(∑2

K=1 F
K
Q · ξKQ +MηK

Q · ηK
)

∂qi
, i = 1, 2, ...8. (3.24)

Applying the generalised forces and equation (3.21) to equation (3.22), the Euler-

Lagrange equation becomes based on G ∈ R13×13 matrix denoted by a symmetric

matrix, and the system model function f can then be rewritten as
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Gq̈ = g(F , q, q̇) = f(x,u.) (3.25)

In the trajectory tracking control, the operating point is regarded as the balance

situation where the Euler angles of both quadrotors are equal to zero and the cable

angles are equal to the designed constants. The state x and the control vector

input u of the system are defined as

x =
[
xP , ẋP , yP , ẏP , zP , żP , α

1, α̇1, β1, β̇1, φ1, φ̇1, θ1,

θ̇1, ψ1, ψ̇1, α2, α̇2, β2, β̇2, φ2, φ̇2, θ2, θ̇2, ψ2, ψ̇2
]T
∈ R26

u =[F 1
z ,M

1
x ,M

1
y ,M

1
z , F

2
z ,M

2
x ,M

2
y ,M

2
z ]T ∈ R8 (3.26)

and a non-linear state space equation is then given as

ẋ = f(x,u). (3.27)

The nonlinear discrete dynamic model is

xk+1 = f(xk,uk). (3.28)

3.3.3 Equilibrium Points and Linear Time Varying Model

To make use of the linear control strategy, equilibrium points and the correspond-

ing linear models must be provided in advance. In general, the equilibrium points

(xeq,ueq) are recognized as stationary points since they satisfy the following equa-

tion:

0 = f (xkeq,ukeq) . (3.29)
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By utilising Taylor’s series expansion, it is possible for equation (3.27) to be ap-

proximated by a linear equation around (xkeq,ukeq) and the linearised model is

obtained in equation (3.30):

q̈ = f (xkeq,ukeq)+
∂f

∂xk

∣∣∣∣
xkeq

(xk−xkeq)+
∂f

∂uk

∣∣∣∣
ukeq

(uk−ukeq) (3.30)

where, δx = x−xeq , δu = u−ueq , δẋ = ẋ = Gq̈.

Equation (3.31) gives the linearised model below:

Gq̈ = M−1 ∂f

∂x

∣∣∣∣
x0

δx+M−1 ∂f

∂u

∣∣∣∣
u0

δu (3.31)

Furthermore, equation (3.31) can be transformed into the following discrete form:

xk+1 = Akxk +Bkuk (3.32)

and Ak ∈ R26×26 , Bk ∈ R26×8.

In this system, however, there are an infinite number of equilibrium points as well

as the linear models, which mainly depend on the team formation heading angle

αF .
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Figure 3.3: (Top View) Two quadrotors (Q1 and Q2) carrying a cable-

suspended payload. P : unbalanced position of payload, P ∗: stationary position

of payload.

As can be seen in Figure 3.3, if the system remains stationary, where the quadrotors

and the payload must stay in the same vertical plane (Q1, Q2 and P ∗), then the

formation heading angle can be denoted by αF . Thus, the following relationships

can by yielded:

α1 = αF

α2 = αF + π.
(3.33)

The other swing angles β1 and β2 are considered to keep staying close to a fixed

constant operational point. Thus, equation (3.31) can be restated in the following

linear-time-varying form:

xk+1=Ak (αF )xk +Bk (αF )uk (3.34)
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where the generalised forces Q are given below in equation 3.35:

Q1 = Fz1C(φ1)C(ψ1)S(θ1) + Fz2C(φ2)C(ψ2)S(θ2) + Fz1S(φ1)S(ψ1) + Fz2S(φ2)S(ψ2)

Q2 = −Fz1C(ψ1)S(φ1)− Fz2C(ψ2)S(φ2) + Fz1C(φ1)S(θ1)S(ψ1) + Fz2C(φ2)S(θ2)S(ψ2)

Q3 = Fz1C(θ1)C(φ1) + Fz2C(θ2)C(φ2)

Q4 = −Fz1Lr(β1)(C(α1 − ψ1)S(φ1) + C(φ1)S(θ1)S(α1 − ψ1))

Q5 = Fz1Lr(C(β1)C(θ1)C(φ1) + S(β1)(−C(φ1)C(α1 − ψ1)S(θ1) + S(φ1)S(α1 − ψ1)))

Q6 = M1
x

Q7 = M1
yC(φ1)−M1

zS(φ1)

Q8 = −M1
xS(θ1) + C(θ1)(M1

zC(φ1) +M1
yS(φ1))

Q9 = −Fz2LrC(β2)(C(α2 − ψ2)S(φ2) + C(φ2)S(θ2)S(α2 − ψ2))

Q10 = Fz2Lr(C(β2)C(θ2)C(φ2) + S(β2)(−C(φ2)C(α2 − ψ2)S(θ2) + S(φ2)S(α2 − ψ2)))

Q11 = Mx2

Q12 = M2
yC(φ2)−M2

zS(φ2)

Q13 = −M2
xS(θ2) + C(θ2)(M2

z 1C(φ2) +M2
yS(φ2))

(3.35)

and the M matrix can be defined as:

M =


M11 M12 05×3 M14 05×3

03×3 03×2 M23 05×2 05×3

M31 05×3 05×3 M34 M35

 (3.36)

where, M11, M12, M14, M23, M31, M34 and M35 are defined as follows:

M11 =



mP +mQ1 +mQ2 0 0

0 mP +mQ1 +mQ2 0

0 0 mP +mQ1 +mQ2

−LrmQ1C(β1)S(α1) LrmQ1C(α1)C(β1) 0

−LrmQ1C(α1)S(β1) −LrmQ1S(α1)S(β1) LrmQ1C(β1)





Chapter 3. Dynamic Models for Single and Two Quadrotors with suspended
payload 47

M12 =



−LrmQ1C(β1)S(α1) −LrmQ1C(α1)S(β1)

LrmQ1C(α1)C(β1) −LrmQ1S(α1)S(β1)

0 LrmQ1C(β1)

Lr2mQ1C(β1)2 0

0 L2
rmQ1



M14 =


−LrmQ2C(β2)S(α2) −LrmQ2C(α2)S(β2)

LrmQ2C(α2)C(β2) −LrmQ2S(α2)S(β2)

0 LrmQ2C(β2)



M23 =


I1x 0 −I1xS[θ1]

0 I1yC(φ1)2 + I1zS(φ1)2 (I1y − I1z )C(θ1)C(φ1)S(φ1)

−I1xS(θ1) (I1y − I1z )C(θ1)C(φ1)S(φ1) I1xS(θ1)2 + C(θ1)2(I1zC(φ1)2 + I1yS(φ1)2)



M31 =



−LrmQ2C(β2)S(α2) LrmQ2C(α2)C(β2) 0

−LrmQ2C(α2)S(β2) −LrmQ2S(α2)S(β2) LrmQ2C(β2)

0 0 0

0 0 0

0 0 0



M34 =



Lr2mQ2C(β2)2 0

0 Lr2mQ2

0 0

0 0

0 0



M35 =


I2x 0 −I2xS(θ2)

0 I2yC(φ2)2 + I2zS(φ2)2 (I2y − I2z )C(θ2)C(φ2)S(φ2)

−I2xS(θ2) (I2y − I2z )C(θ2)C(φ2)S(φ2) I2xS(θ2)2 + C(θ2)2(I2zC(φ2)2 + I2yS(φ2)2)


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and the function f(x,u) is presented in:

f1(x,u) = F 1
zC(φ1)C(ψ1)S(θ1) + F 2

zC(φ2)C(ψ2)S(θ2) + F 1
z S(φ1)S(ψ1)+

F 2
z S(φ2)S(ψ2) + Lr(−2mQ2S(α1)S(β1)(α̇1)(β̇1) +mQ1C(α1)C(β1)

((α̇1)2 + (β̇1)2)− 2mQ2S(α2)S(β2)(̇α2)(̇β2) +mQ2C(α2)C(β2)((α̇2)2 + (β̇2)2))

f2(x,u) = −F 1
zC(ψ1)S(φ1)− F 2

zC(ψ2)S(φ2) + F 1
zC(φ1)S(θ1)S(ψ1)+

F 2
zC(φ2)S(θ2)S(ψ2) + Lr(2mQ1C(α1)S(β1)(α̇1)(β̇1) +mQ1C(β1)

S(α1)((α̇1)2 + (β̇1)2) + 2mQ2C(α2)S(β2)(α̇2)(β̇2)+

mQ2C(β2)S(α2)((α̇2)2 + (β̇2)2))

f3(x,u) = −g(mP +mQ1 +mQ2) + F 1
zC(θ1)C(φ1) + F 2

zC(θ2)C(φ2) + LrmQ1S(β1)

(β̇1)2 + LrmQ2S(β2)(β̇2)2

f4(x,u) = LrC(β1)(−F 1
z (C(α1 − ψ1)S(φ1) + C(φ1)S(θ1)S(α1 − ψ1))+

2LrmQ1S(β1)(α̇1)(β̇1))

f5(x,u) = −Lr(C(β1)(gmQ1 − F 1
zC(θ1)C(φ1)) + F 1

z S(β1)(C(φ1)C(α1 − ψ1))

S(θ1)− S(φ1)S(α1 − ψ1)) + LrmQ1C(β1)S(β1)(α̇1)2)

f6(x,u) = M1
x + (−I1y + I1z )C(φ1)S(φ1)(θ̇1)2 + C(θ1)(I1x + (I1y − I1z )C(2φ1))

(θ̇1)(ψ̇1) + (I1y − I1z )C(θ1)2C(φ1)S(φ1)(ψ̇1)2

f7(x,u) = M1
yC(φ1)−M1

zS(φ1) + (I1y − I1z )S(2φ1)(θ̇1)(φ̇1) + C(θ1)

(ψ1)(−(I1x + (I1y − I1z )C(2φ1))(φ̇1) + S(θ1)(I1x − I1zC(φ1)2 − I1yS(φ1)2)(ψ̇1))

f8(x,u) = −M1
xS(θ1) + C(θ1)(M1

zC(φ1) +M1
yS(φ1)) + (I1y − I1z )C(φ1)S(θ1)

S(φ1)(θ̇1)2 + (−I1y + I1z )C(θ1)2S(2φ1)(φ̇1)(ψ̇1) + (θ̇1)(C(θ1)

(I1x + (−I1y + I1z )C(2φ1))(φ̇1) + S(2θ1)(−I1x + I1zC(φ1)2 + I1yS(φ̇1)2)(ψ̇1))

f9(x,u) = LrC(β2)(−F 2
z (C(α2 − ψ2)S(φ2) + C(φ2)S(θ2)S(α2 − ψ2)) + 2LrmQ2S(β2)(α̇2)(β̇2))

f10(x,u) = −Lr(C(β2)(gmQ2 − F 2
zC(θ)2)C(φ2)) + F 2

z S(β2)(C(φ2)C(α2 − ψ2)

S(θ2)− S(φ2)S(α2 − ψ2)) + LrmQ2C(β2)S(β2)(α2)2)

f11(x,u) = M2
x + (−I2y + I2z )C[φ2]S(φ2)](θ̇2)2 + C(θ2)(I2x + (I2y − I2z )C(2φ2))

(θ̇2)(ψ̇2) + (I2y − I2z )C(θ2)2C(φ2)S(φ2)(ψ̇2)2

f12(x,u) = M2
yC(φ2)−M2

zS(φ2) + (I2y − I2z )S(2φ2)(θ̇2)(φ̇2) + C(θ2)

(ψ̇2)(−(I2x + (I2y − I2z )C(2φ2)(φ̇2) + S(θ2)(I2x − I2zC(φ2)2 − I2yS(φ2)2)(ψ̇2))

f13(x,u) = −M2
xS(θ2) + C(θ2)(M2

zC(φ2) +M2
yS(φ2) + (I2y − I2z )C(φ2)S(θ2)

S(φ2)(θ̇2)2 + (−I2y + I2z )C(θ2)2S(2φ2)(φ̇2)(ψ̇2) + (θ̇2)(C(θ2)

(I2x + (−I2y + I2z )C(2φ2)(φ̇2) + S(2θ2)(−I2x + I2zC(φ2)2 + I2yS(φ2)2)(ψ̇2))

(3.37)
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Linearized model matrices are presented as follows:

A =



0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −1.3066 0 0 0 3.5933 0 0 0 0 0 1.3066 0 0 0 3.5933 0 0 0

0 0 0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 4.900 0 0 0 0 0 0 0 0 0 −4.900 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1.3066 0 0 0 3.5933 0 0 0 0 0 1.3066 0 0 0 −3.5933 0 0 0

0 0 0 0 0 0 0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −9.4495 0 0 0 0 0 0 0 2.5199 0 6.9296 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −4.3677 0 0 0 −9.4495 0 0 0 0 0 0 0 0 0 5.0817 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1.0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 6.9296 0 0 0 0 0 0 0 0 0 −9.4495 0 0 0 16.5718 0 0 0 2.5199 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −4.3677 0 0 0 9.4495 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



B =



0 0 0 0 0 0 0 0

0.7602 0 0 0 −0.7602 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0.7602 0 0 0 −0.7602 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1.0752 0 0 0 −1.0752 0 0 0

0 0 0 0 0 0 0 0

0 434.7826 0 33.4448 0 0 0 0

0 0 0 0 0 0 0 0

0 0 357.1429 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 219.9489 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

−1.0752 0 0 0 1.0752 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 434.7826 0 −33.4448

0 0 0 0 0 0 0 0

0 0 0 0 0 0 357.1429 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 219.9489


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3.4 Summary

In this chapter, a single quadrotor carrying a payload by a cable is modelled first.

The payload position, the quadrotor attitudes and the swing angles are chosen as

the states. A transformation matrix is involved to convert the system coordination

from the body frame to the initial frame in order to represent the generalised forces.

The non-linear dynamic model is derived first, then the equilibrium point is found,

and the system is linearised.

Two quadrotors carrying a payload by two cables are modelled next. The mod-

elling procedure is the same as the first one. Only the dimensions of states and

inputs are increased.

The main contribution to the modelling process is the selection of the system

states. If quadrotor positions are chosen as the states, instead of payload position,

the dimension of the state vector becomes larger and the dynamic models become

more complex. Due to the model complexities, the Wolfram Mathematica software

is used to produce the mathematic model in order to guarantee its correctness.

The linearised models will be used in the following chapters. The non-linear model

will be used in Chapter Six, where a non-linear MPC controller will be developed.



Chapter 4

Linear Optimal Controllers

4.1 Introduction

In the previous chapter, the dynamic models were established. As the models

had high non-linearity, it was difficult to develop non-linear controllers from them,

and the performance could not be optimised under most existing non-linear con-

trol techniques. This chapter aims to develop linear optimal controllers for the

linearised dynamic systems.

The first controller is defined by a linear quadratic tracking controller LQR. This

controller is applied to both models in order to be tested in comparison with a

classic PD controller. Furtheremore, an iterative LQR controller is next developed

to improve the performance and handle the high nonlinearity of the models.

The LQR controller is able to optimise the control performance. However, the

changes in the operating point when non-linearity is high, and the changes induced

by the slung load for linearised systems should not be ignored. The iterative LQR

is able to reduce the changes in the operation point via multiple iterations. In this

chapter, the ILQR optimal controllers with quadratic approximation are developed

via dynamic programming approach for the transportation task. The design of the

ILQR controller is based on the LQR method. The control objective is to control

the point mass payload to follow a desired trajectory in position and attitude.

51
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The test of system performance is conducted in various aggressive trajectories to

demonstrate the complexities and challenges of the nonlinear system.

The ILQR controller is derived in the next section. When the iteration loops once,

the ILQR controller becomes an LQR controller. In the simulation section, the

performance of both the LQR and ILQR controllers is tested.

4.2 LQR controller

Linear Quadratic Regulator LQR is a linear state feedback optimal controller. It

is presented based on dynamic model linearization of the quadrotor with cable-

suspended load system in order to achieve minimum cost of the desired parame-

ters. The error minimisation of the dynamic model is enforced by the convenient

parameters of weight matrices [13] using cost objective function J of the form

J =

∫ tf

to

1

2
((x− x∗)TQ(x− x∗) + uTRu)dt (4.1)

Where the initial and final time of the control horizon are to and tf , matrices

Q ≥ 0 and R > 0 are the cost of the state x and control input u gain of the linear

system represented in state space as follows

x = Ax+Bu,y = Cx+Du (4.2)

The goal is to minimize the cost function J via a calculated control input

u? = −Kx = −R−1BTPx (4.3)

Where P can be calculated from the continuous Ricatti equation

Ṗ (t) + P (t)A+ATP (t)− P (t)BR−1BTP (t) +Q = 0 (4.4)
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Consequently, the state feedback optimal control gain K can be calculated using

the following formula

K = lqr(A,B, Q,R) (4.5)

The LQR controller is designed by choosing positive parameters for Q and R matri-

ces to determined the desired thrust and orientations. This controller is presented

to estimate state feedback tuning parameter, which is similar to individually tun-

ing as in PD controller parameters[109].

4.3 Iterative LQR Controller

The objective of this thesis is to develop an ILQR optimal controller, which it-

eratively linearises the non-linear dynamic model and cost function around the

nominal optimal result. Then it implements the LQR technique in order to cal-

culate the optimal feedback control. Initially, a nominal control sequence and

the corresponding state sequence represented by xk and uk, respectively, are pro-

duced. The nominal state is acquired from applying uk to the open loop dynamical

model iteratively. Through each iteration, the improved sequence uk is obtained

by linearising the nonlinear dynamics of the system around the nominal control

uk and state xk. Then by keeping iteratively refined, the modified LQR problem

is solved and the convergence is achieved due to the control δuk and state δxk

deviations from the nominal [42] and [43]. The discrete-time non-linear dynamical

model is

xk+1 = f(xk,uk). (4.6)

The quadratic form cost function is
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J =
1

2
(xN − x∗N )TQf (xN − x∗N )

+
1

2

N−1∑
k=0

((xk − x∗k)TQ(xk − x∗k) + uTkRuk)
(4.7)

where the final and target states are denoted by xN and x∗N with N steps re-

spectively. The final state cost weighting matrix Qf is a semidefinite symmetric

positive matrix and R is a positive definite control cost matrix.

The linearised system is

δxk+1 = Akδxk +Bkδuk (4.8)

where the matrices Ak and Bk are denoted by the Jacobians. These are evaluated

along xk and uk with respect to x and u respectively. Solve the iterative LQR

problem by computing the second order Taylor of the cost J based on the linearised

model (4.8).

J =
1

2
(xN + δxk − x∗k)TQf (xN + δxN − x∗k)

+
1

2

N−1∑
k=0

(xk + δxk − x∗k)TQ(xk + δxk − x∗k)

+ (uk + δuk)TR(uk + δuk).

(4.9)

Based on a constraint added to the cost equation (4.9), the value function is formed

as

V =
1

2
(xN + δxN − x∗N )TQf (xN + δxN − x∗k)

+
1

2

N−1∑
k=0

(xk + δxk − x∗k)TQ(xk + δxk − x∗k)

+ (uk + δuk)TR(uk + δuk)

+ δλTk+1(Akδxk +Bkδuk − δxk+1)
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where the Lagrange multiplier is denoted by δλTk+1. The Hamiltonian function is

a first step for the implementation of the optimal control δuk represented as

Hk =(xk + δxk − x∗k)TQ(xk + δxk − x∗k)

+ (uk + δuk)TR(uk + δuk)

+ δλTk+1(Akδxk +Bkδuk).

The required derivatives of the Hamiltonian function according to the minimum

approval of the value equation are:

∂Hk

∂(δxk)
= δλk,

∂Hk

∂(δuk)
= 0,

∂Hk

∂(δxN )
= δλN .

The result costate equation is

δλk = AT
kδλk+1 +Q(xk + δxk − x∗k). (4.10)

The stationary condition of the Hamiltonian function is

R(uk + δuk) +BT
k δλk+1 = 0. (4.11)

The boundary condition is

δλN = Qf (xN + δxN − x∗N ). (4.12)

From the boundary equation, we assume that

δλk = Skδxk + υk (4.13)

where the boundary conditions are
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SN = Qf , υN = Qf (xN − x∗N ). (4.14)

Based on the boundary equation (4.11) and using (4.13), the optimal control error

equation is presented as

δuk = −R−1BT
k δλk+1 − uk. (4.15)

By solving the equations (4.8), (4.11) and (4.13), The thrust and torque control

error equations of the system are considered in the following:

δuk = −Kδxk −Kυυk+1 −Kuuk. (4.16)

Consequently,

K = (BT
kSk+1Bk +R)−1BT

kSk+1Ak (4.17)

Kυ = (BT
kSk+1Bk +R)−1BT

k (4.18)

Ku = (BT
kSk+1Bk +R)−1R. (4.19)

The backward recursion equations used to solve the entire sequences Sk and υk

are

Sk = AT
kSk+1(Ak −BkK) +Q (4.20)

υk = (Ak −BkK)Tυk+1 −KTRuk +Q(xk − x∗k) (4.21)
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Symbol Definition Value Units
Ix Roll Inertia 4.4× 10−3 kg.m2

Iy Pitch Inertia 4.4× 10−3 kg.m2

Iz Yaw Inertia 8.8× 10−3 kg.m2

mQ Mass 0.5 kg
mL Mass 0.2 kg
g Gravity 9.81 m/s2

l Arm Length 0.17 m
L Cable Length 1 m
Ir Rotor Inertia 4.4× 10−5 kg.m2

Table 4.1: Quadrotor Parameters

where the gains K and Ku rely on the Riccati equation while the gain Kυ is reliant

on auxiliary sequence (4.21).

The improved nominal control can be found in

u∗
k = uk + δuk. (4.22)

4.4 LQR and PD Simulation Results

A MATLAB simulator of a quadrotor with a cable-suspended load was imple-

mented to test the stability of the proposed controller. Table 4.1 shows the pa-

rameters used in this simulation [109].

The ILQR controller with one iteration was implemented as an LQR controller. In

order to show how the LQR performs in a tracking task, the proposed LQR con-

troller was tested and the results were compared with a PD controller. The error

minimisation of the tracking control was enforced by the parameters of weight ma-

trices Q and R [13]. The weight matrices for the system based on the generalised

coordinates sequence and the control sequence are q = [xP , ẋP , yP , ẏP , zP , żP ,

α, α̇, β, β̇, φ, φ̇, θ, θ̇, ψ, ψ̇ ]T and u = [Fz,Mx,My,Mz]
T in the form of diagonal ma-

trices as



Chapter 4. Attitude and position Stabilization for Quadrotor and load
transportation 58

Q = Qf =diag([0.039, 5, 0.039, 5, 10, 50, 1.44, 0.00001,

0.65, 0.035, 0.65, 0.035, 1, 1, 1, 1])

R = diag([10, 10, 1, 1]).

Applying these cost matrices, the following state feedback controller parameters

are obtained

K =



0.716 0.0624 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0.716 0.0624 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 3.162 7.29 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0.806 0.205 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0.806 0.205 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1.2 0.145 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0.1 0.1043 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0.1043


(4.23)

The first simulation test of the LQR controller is to track a 3D square trajectory

shown in red color in Figure 4.4 with a payload height between 0.2m and 1.2m.

The rotation is φ∗ = θ∗ = ψ∗ = 0o and the desired swing angles are α∗ = 90o and

β∗ = 0o.

The blue line shown in all the figures is clarified to describe the system behaviour

when employing the LQR tracking controller. The tracking performance is illus-

trated in Figures 4.1-4.6. Figure 4.1 shows the payload positions performance,

while Figures 4.2 and 4.3 illustrate the swing angles and quadrotor attitude per-

formance respectively. These results describe a stable performance with a small

steady-state error for payload position and quadrotor and load attitudes. The

vehicle and load angles are stabilised between 90◦ ≤ α ≤ 91.5◦, −4.5◦ ≤ β ≤ 4.5◦,

−10◦ ≤ φ ≤ 10◦, −4.5◦ ≤ θ ≤ 4.5◦ and −0.3◦ ≤ ψ ≤ 0.3◦.
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RMSE xP (m) yP (m) zP (m)
LQR 0.026 0.0238 0.0123
PD 0.093 0.106 0.086

Table 4.2: Payload RMSE values for 3-doors trajectory under LQR and PD
Controllers

Figures 4.4, 4.5 and 4.6 show the load path to pass through the three doors placed

in different locations. These results are shown in blue in Figures 4.3 and 4.4 and

in green in Figure 4.5.

The load position RMSE values for the 3-doors path using single quadrotor was

demonstrated in Table 4.2
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Figure 4.1: Payload positions, LQR Controller
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Figure 4.3: Quadrotor angles, LQR Controller
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Figure 4.4: Payload position in two dimensions, LQR Controller
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Figure 4.6: Payload position animation in three dimensions, LQR Controller

A simulation of a PD controller was tested in a transporting task for the compar-

ison purpose. In the tracking task with the same desired trajectory, the results

with the PD controller are illustrated in Figures 4.7 - 4.12. Figure 4.7 shows the

payload positions performance using the PD controller. The quadrotor attitude

angles and swing angles performance are illustrated in Figures 4.8 and 4.9. These

angles are stabilised between 89.6◦ ≤ α ≤ 90◦, −2◦ ≤ β ≤ 2◦, −2◦ ≤ φ ≤ 2◦,

−1◦ ≤ θ ≤ 1◦ and −0.02◦ ≤ ψ ≤ 0.04◦. The load position plots in Figures 4.10

and 4.11 and the 3D trajectory in Figure 4.12 show that the payload in the track-

ing task cannot pass the three doors properly when the PD controller is used. It

is obvious that the performance of the LQR controller is better than that of the

PD controller in terms of steady-state error.
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Figure 4.7: Payload positions, PD Controller
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Figure 4.9: Quadrotor angles, PD Controller
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Figure 4.12: Payload position animation in three dimensions, PD Controller
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4.5 ILQR Simulation Results for Single Quadro-

tor

In this section, the simulation of the ILQR controller is tested. It is compared with

the LQR controller to see how nonlinearity is being handled. The first tracking

trajectory is presented by an eight shape with x∗ = sin(2π/t), y∗ = sin(2π/t),

z∗ = 0.1 ∗ t, where t is started from 0 with a sampling time of 0.02 sec to 40 sec.

The tracking results are compared with the results of the LQR controller.

The second scenario is to track more aggressive trajectories in order to make the

stability more challenging during the transporting task. A spiral trajectory is used

x∗ = sin(2π/t), y∗ = cos(2π/t), z∗ = 0.1 ∗ t.

The performance of the first desired trajectory for the quadrotor and load are

illustrated in Figures 4.13-4.16, where the payload position performance compari-

son between the LQR and the ILQR controllers is shown in Figure 4.13. It can be

clearly seen that the load position using the ILQR controller in the fourth itera-

tion, represented by a blue colour line, is closer to follow the desired path than the

LQR controller represented in a black line, which means that the ILQR overcomes

the system’s high nonlinearity very effectively. The quadrotor attitude simulation

results are displayed in Figure 4.14 and the swing angles results are illustrated

in Figure 4.15. These orientations show fast steady results compared with those

of the LQR controller. The desired trajectory in three dimensions is clarified in

Figure 4.16.

In general, the load position for the eight desired path in two and three dimen-

sions is clarified in Figure 4.16, where the first iteration is performed by the LQR

tracking controller while the fourth iteration belongs to the ILQR controller.



Chapter 4. Attitude and position Stabilization for Quadrotor and load
transportation 67

0 5 10 15 20 25 30 35 40
-1

0

1

x p
[m

]

LQR
iLQR
des

0 5 10 15 20 25 30 35 40

-1

0

1

y p
[m

]

0 5 10 15 20 25 30 35 40

Time (seconds)

0

2

4

z p
[m

]

Figure 4.13: Payload position using the LQR and ILQR controllers

Figure 4.14: Payload angles using LQR and ILQR controllers
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Figure 4.15: Quadrotor angles using the LQR and ILQR controllers
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Eight Spiral
RMSE xP (m) yP (m) zP (m) xP (m) yP (m) zP (m)
ILQR 0.0026 0.0049 0.005 0.013 0.021 0.004
LQR 0.0126 0.057 0.059 0.083 0.054 0.046

Table 4.3: Payload position RMSE values for the two trajectories under ILQR
and LQR Controllers

Similarly, the second simulation result is presented by Figure 4.17 for load tra-

jectory, where the system stability is achieved in the first trajectory test. Both

trajectory results show the improvement in performance with small steady-state

errors. The same conclusion can be drawn from the result, that is, the ILQR

controller outperforms the LQR controller.
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Figure 4.17: Quadrotor trajectory using the ILQR controller

The load position RMSE values for the two paths are demonstrated in Table 4.3
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4.6 ILQR Simulation Results for Two Quadro-

tors

In this section, the ILQR controller is tested with two quadrotors for the trans-

portation task to track the desired eight shape trajectory using the MATLAB

simulator. The equilibrium point for the system is α1 = 90, α2 = 90, β1 = 45 and

β2 = −45. The desired eight shape trajectory is presented by x∗ = sin(2π/t), y∗ =

sin(2π/t), z∗ = 0.1 ∗ t. The ILQR simulation results are compared with those of

the LQR controller, where the sampling time is 0.02 sec and the running time

is 40 sec. Furthermore, the weight matrices Q , R and Qf for the system are

chosen based on the generalised coordinates sequence q = [xP , ẋP , yP , ẏP , zP , żP ,

α1, α̇1, β1, β̇1, φ1, φ̇1, θ1, θ̇1, ψ1, ψ̇1 α2, α̇2, β2, β̇2, φ2, φ̇2, θ2, θ̇2, ψ2, ψ̇2
]T

and control

weight matrix based on the control sequence u = [F 1
z ,M

1
x ,M

1
y ,M

1
z , F

2
z ,M

2
x ,M

2
y ,

M2
z ]T in the form of diagonal matrices as

Q =diag([1000, 100, 1000, 100, 1000, 100, 100, 0, 100, 0, 1000,

0, 1000, 0, 1000, 0, 100, 0, 100, 0, 1000, 0, 1000, 0, 1000, 0])

Qf =diag([1000, 10, 1000, 10, 1000, 10, 100, 0, 100, 0, 1000,

0, 1000, 0, 1000, 10, 100, 0, 100, 0, 1000, 0, 1000, 0, 10, 0])

R = diag([0.0001, 0.001, 0.0001, 0.001, 0.0001, 0.001, 0.0001, 0.001]).

The performance of transporting the cable suspended payload with two quadrotors

is illustrated in Figures 4.18-4.23. The payload position in Figure 4.18 shows a

more stable performance and converges more quickly to the desired trajectory

using the ILQR controller than the LQR controller. The first and second quadrotor

attitudes are shown in Figures 4.19 and 4.20. Although all the Euler angles are
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RMSE xP (m) yP (m) zP (m)
ILQR 0.0027 0.0041 0.0055
LQR 0.035 0.040 0.017

Table 4.4: Payload RMSE values for spiral trajectory under ILQR and LQR
Controllers

not very close to the desired ones, the yaw angles from both quadrotors are more

stable when using the ILQR controller than the LQR controller. The payload

angles with respect to the first and second quadrotors are shown in Figures 4.21

and 4.22, respectively. Again, these angles, which are controlled by the ILQR

controller, outperform the ones controlled by the ILQR controller as they have

fewer oscillations.

The 3D animation trajectory using the ILQR controller is shown in Figure 4.23. It

clearly shows that the payload is able to track the desired red trajectory. To com-

pare the ILQR controller with the LQR one, the 3D trajectories are projected onto

a 2D space in Figures 4.24 and 4.25. It is obvious that the trajectory controlled

by the ILQR controller is better than that controlled by the LQR controller.

The load position RMSE values for the spiral path using two quadrotors was

demonstrated in Table 4.4.

In summary, the ILQR controller performance is more stable and faster and pro-

duces smaller steady-state errors than the LQR controller. However, it requires

more computational time due to the iteration.
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Figure 4.18: Payload position using the LQR and ILQR controllers

Figure 4.19: The first quadrotor angles using the IQR and ILQR controllers
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Figure 4.20: The second quadrotor angles using the LQR and ILQR Con-

trollers
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Figure 4.21: The angels of the first quadrotor-load rope using the LQR and

ILQR controllers
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Figure 4.22: The angels of the second quadrotor-load rope using the LQR

and ILQR Controllers

Figure 4.23: 3D load position using the ILQR Controller
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Figure 4.24: 2D load position using the LQR Controller

Figure 4.25: 2D load position using the ILQR Controller

4.7 Summary

This chapter presented the LQR and ILQR controllers in an attempt to stabilise

the quadrotor with a cable-suspended load in transporting tasks. The simulation
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results show that the LQR controller efficiently minimises the steady state error

and time consumption to reach stability. However, in order to handle the high

non-linearity, the ILQR controller is applied to the system and the results are

verified.

The results show that the ILQR controller is stable and outperforms the LQR

controller. This indicates that the iteration of the ILQR controller is able to

compensate for the payload impact on the underlying system dynamics and the

changes in the operating point induced by the slung load. The next chapter will

consider various constraints imposed on the system, and MPC controllers will be

developed.



Chapter 5

Constrained Model Predictive

Controllers (MPC)

5.1 Introduction

In the previous chapter, it was shown that the classical PD controller produces

a weak performance in terms of accuracy and system stability achievement when

compared with the LQR controller. It was also revealed that the ILQR controller,

when applied to the linearised model, achieves a better performance than that of

the LQR controller due to the former’s capability of handling high non-linearity

via multiple iterations.

However, the main drawback of the LQR and ILQR controllers is their incapability

of handling physical limitations of the system states and the control inputs. It is

well known that handling the required state and control constraints and achieving

the system stability are the main priority needs for tracking a trajectory by the

high non-linear dynamic models. Therefore, we propose and develop a constrained

Model Predictive Control (MPC). In this chapter, this suggested controller is the

most common controller used to overcome the drawback.

The MPC controller has emerged as the most popular and valuable control tech-

nique since the 1980s, known as Receding Horizon controller as well. It is a worth

77
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describing the method based on the principle of prediction to a finite horizon at

each sampling time starting from the current state. This idea is called receding

horizon. Subjected to the state and control constraints of the system dynamics,

the optimisation problem is solved to determine the optimal control input. Then,

the first optimised control input is applied to the system [110], [111].

In this chapter, two controllers, linear model predictive control LMPC and non-

linear model predictive control NMPC, are designed to improve the performance

with respect to the constraints. Firstly, an LMPC controller is used for the trans-

portation task with two quadrotors. It is compared with the LQR controller in

terms of stability. Secondly, an NMPC controller is designed with the considera-

tion of handling high non-linearity in the dynamic model within the constraints.

The constraints to be considered include input saturation, swing angle limitation,

and payload position constraint.

5.2 Constrained Linear Model Predictive Con-

trol

In this chapter, an optimal tracking controller is considered for the suspended

payload with two quadrotors by two cables. The linear model predictive control

LMPC approach is designed by relying on the linearisation of the dynamic model.

Then suitable weight matrices and horizons parameters are selected. The discrete-

time dynamical model description for the system with two quadrotors carrying a

cable-suspended payload is shown in equation (5.1).

xk+1 = Akxk +Bkuk (5.1)

where, Ak ∈ R26×26 , Bk ∈ R26×4.

The finite horizon optimal controller solves the following constrained optimisation

problem at each time instant k to implement the MPC algorithm. The cost
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function is presented by:

J =(xN − x∗
N)TQf(xN − x∗

N)

+

N+k−1∑∑∑
t=k

[(xt − x∗
t )
TQ(xt − x∗

t ) + uTt Rut]
(5.2)

where the terminal state and its desired state are denoted by xN and x∗
N , respec-

tively, and the reference state is denoted by x∗
k. The prediction horizon is denoted

by N . Qf and Q are positive semidefinite matrices and R is a positive definite

matrix.

The constrained optimisation problem for linear MPC at each time instant k is

min
uk

J

Subject to

xk+1 = Akxk +Bkuk

xk ∈ X, the state constraints

uk ∈ U, the control constraints

where the state and input constraints are presented as

X = {xkmin ≤ xk ≤ xkmax}

U = {ukmin ≤ uk ≤ ukmax}

The linear optimisation algorithm is implemented to obtain a minimum finite

horizon cost of the desired trajectory states and control inputs while the constraints

are satisfied. The optimisation problem is solved for the LMPC controller. The

YALMIP solver is a high-level numerical solution of the optimisation problem,

which is focused on effective modelling with high-level algorithms in [112] and

[113].
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The main principle of the YALMIP solver relies on an external low-level numerical

solution solver. A quadratic programming (QP) algorithm is used to solve the low-

level optimisation problem at each time instant k, which can produce an input

sequence {uk|k,uk+1|k,uk+N−1|k}. Then the true input at k is uk = uk|k. This

solver is applied to solve the tracking optimisation problem of the high dimensional

model presented by the suspended payload with two quadrotors by cables.

5.3 Constrained Non-linear Model Predictive Con-

trol

A Non-linear Model Predictive Control NMPC approach is proposed in this chap-

ter to handle the high non-linearity based on prediction method at each sampling

time subjected to the state and control constraints. For each sampling k, the opti-

mal control sequence can be found by solving the optimisation problem including

constraints in order to perform the NMPC method. This controller is implemented

using high-level sophisticated algorithms. An Advanced Process Monitor (APM)

is a high-level mathematical optimization software and coupled with a nonlinear

programming or a quadratic programming (QP) algorithm can be used to solve

the above constrained optimisation problem at each time instant k.

The constrained optimisation problem for non-linear MPC at each time instant k

is

min
uk

J

subject to

xk+1 = f(xk,uk)

xk ∈ X, the state constraints

uk ∈ U, the control constraints .
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5.4 MPC Simulation

In this section, a linear and a non-linear MPC controllers are implemented to

achieve the system optimal performance. In the first part, the proposed LMPC

control performance is tested and compared with that of the unconstrained LQR

controller in terms of load position path tracking and attitude stabilisation utilising

a numerical MATLAB simulator.

In the second part, an NMPC controller is performed and compared with that of

the LMPC controller to test the system performance. To show how nonlinearity

is handled in the NMPC controller, the changes of the model parameters are

considered and same external disturbances are applied. The design parameters

based on the suspended load with two quadrotors by a cable used in the simulator

are listed in Table 4.1.

5.4.1 LMPC Simulation Results

The simulations are conducted in MATLAB with the state and control input con-

straints. These restrictions are considered so that they can minimise errors in

terms of payload position, swing angles and quadrotor’s orientations while trajec-

tory tracking. Two spiral and one eight shape trajectories are introduced in order

to provide a strong proof of improving the performance of the system.

The operational point for the suspended load with two quadrotors by cables for

four angles of two ropes are α1 = 90o, β1 = 45o, α2 = 90o, β2 = −45o. The desired

payload spiral trajectory is defined by x∗ = cos(2π/t), y∗ = sin(2π/t), z∗ = 0.1t,

where t is started from 0 with a sampling time of 0.02s, and the tracking time

is up to 30s. The MPC prediction horizon is selected as 900 steps and the

control horizon as 120 steps. The weight matrices of the cost function are se-

lected based on the generalised coordinates sequence q = [xP , ẋP , yP , ẏP , zP , żP ,
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α1, α̇1, β1, β̇1, φ1, φ̇1, θ1, θ̇1, ψ1, ψ̇1 α2, α̇2, β2, β̇2, φ2, φ̇2, θ2, θ̇2, ψ2, ψ̇2
]T

for two quadro-

tors with suspended load by cables and the control sequence u = [F 1
z ,M

1
x ,M

1
y ,

M1
z , F

2
z ,M

2
x ,M

2
y ,M

2
z ]T in the form of diagonal matrices as

Q = Qf =diag([100, 1, 100, 1, 100, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1])

R = diag([0.01, 0.1, 0.01, 0.1, 0.01, 0.1,

0.01, 0.1]).

With regard to the constraints on control inputs, the maximum saturation limit

is considered to reflect the limitation of the practical rotor’s power. The con-

straints are presented by the maximum angular velocity for all the rotors in both

quadrotors F k
i ≤ 700rad/s.

With regard to the constraints on state vectors, the maximum and minimum limits

are considered to reflect the limitation of the environment. This includes the

payload position limit in x direction, and the payload swing angle limit to avoid

the possible collisions. The desired load trajectory is shown in Figure 5.1 and

represented by the red trajectory starting from (1, 0, 0). The constraints includes

xk ≤ −0.5 and 88◦ ≤ α1 = α2 ≤ 92◦, 40◦ ≤ β1 = β2 ≤ 50◦.

The desired trajectory in Figure 5.1 is followed by the actual blue path. It starts

from (0, 0, 0), then moves towards the desired initial point (1, 0, 0) and closely

tracks the desired spiral path. It can be clearly seen that the payload position

points along the followed trajectory show accurate and stable behaviour while the

state and control constraints are applied.
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Figure 5.1: 3D load position using the LMPC controller

The LQR trajectory is shown in Figure 5.2 represented by the blue trajectory. It

starts from (0, 0, 0), then moves towards the desired one, but fails to move close to

it due to the limits applied to angular velocities. Thus, the actual blue trajectory

shows a steady state error and weak stability.
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Figure 5.2: 3D load position using the LQR controller with the control limi-

tation

Four angular velocities of the first quadrotor using the LMPC controller are shown

in Figure 5.3. It is clearly indicated that all of them are capped at 700rad/s, i.e.

the constraints on control inputs are utilised to keep against the power consumed

by the motors. Four angular velocities of the second quadrotor have a similar

performance and are ignored here.
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Figure 5.3: Angular velocities of the first quadrotor using the LMPC controller

The rope angles with the first quadrotor using the LMPC controller and the LQR

controller are shown in Figures 5.4 and 5.5, respectively. It can be seen that the

constraints on the angles are utilised by the LMPC controller, but not by the LQR

controller. In terms of the swing angles constraints, the limitation range of the α1

was two degrees for both minimum and maximum values. The reference value of

this angle is equal to 90◦, thus the upper and lower limits are presented from 92◦

to 88◦ within four degrees. Regarding the LQR controller, both swing angles are

unable to be constrained.
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Figure 5.4: Rope angles with the first quadrotor using the MPC controller
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Figure 5.5: Rope angles with the first quadrotor using the LQR controller
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The comparisons between the LMPC and LQR controllers on the payload position

and the Euler angles of the first quadrotor are shown in Figures 5.6, 5.7, 5.8, and

5.9. Regarding the payload position, Figures 5.6 and 5.7 show that the LMPC con-

troller performs better than the LQR controller in terms of handling the payload

position constraints, reducing the steady state errors and stabilising the system

states. Figures 5.8 and 5.9 show that the LMPC controller has a smoother pose

compared with that of the LQR controller, which proves again the ability of the

LMPC controller to process the system accuracy and stability behaviour while the

constraints are applied.
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Figure 5.6: Payload position using the LMPC controller
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Figure 5.7: Payload position using the LQR controller
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Figure 5.8: Eular angles of the first quadrotor using the LMPC controller
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Figure 5.9: Eular angles of the first quadrotor using the LQR controller

The desired eight-shape trajectory is shown in red in Figures 5.10 and 5.11, where

the desired initial position is (0, 0, 0). It can be seen that the LQR tracking

trajectory tried to move closer to the desired one in Figure 5.11, but failed due

to the constraint imposed on the thrust. Furthermore, we cannot impose the

constraints on the state variables.

Tracking the eight shape trajectory utilising the LMPC controller is shown in

Figure 5.10, where the input thrust and state constraints, including xk ≤ −0.4

and −1.0 ≤ yk ≤ 1.0, are imposed. It has a very slight overshoot from the

desired trajectory at the initial position. Then the tracking performance works

very well. The x direction constraint is clearly observed and considered. In general,

a much better performance has been demonstrated by the LMPC controller when

compared with the LQR controller.
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Figure 5.10: 3D load position using the LMPC controller
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Figure 5.11: 3D load position using the LQR controller
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Eight Spiral
RMSE xP (m) yP (m) zP (m) xP (m) yP (m) zP (m)
LMPC 0.0032 0.0025 0.0012 0.0061 0.0043 0.0037
LQR 0.083 0.055 0.009 0.067 0.044 0.048

Table 5.1: Payload position RMSE values for the two trajectories under LMPC
and LQR Controllers

The load position RMSE values for the two paths are demonstrated in Table 5.1

5.4.2 NMPC Simulation Results

The tracking task of the suspended load with two quadrotors is performed in

MATLAB simulation. In this task, the system performance is tested in terms

of handling constraints, accuracy, stability and robustness during the reasonable

time. This test is implemented to compare between the LMPC controller and

the NMPC controller by demonstrating the effect of system constraints applied to

control inputs and state vectors and with input disturbance.

The reference spiral path is considered and defined by x∗ = 0.2tcos(0.3t), y∗ =

0.2tsin(0.3t), z∗ = 0.1t, where the tracking simulation time t is up to 30s. The

prediction horizon of both LMPC and NMPC controllers is chosen as 10, and the

cost function weight matrices are selected as

Q = Qf =diag([100, 1, 100, 1, 100, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1])

R = diag([0.01, 0.1, 0.01, 0.1, 0.01, 0.1,

0.01, 0.1]).

With regard to the constraints applied on the system states, the maximum and

minimum saturation limits are performed by the motors. This also includes the
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payload position upper and lower limits on x and y directions, and the swing angle

limits of the payload α1, β1, α2 and β2.

The desired payload trajectories of both NMPC and LMPC controllers are the

same and are shown in Figures 5.12 and 5.13 in red. They start away from the

original point (0, 0, 0). Then, a disturbance is added to the system thrust 1.5 to

test the system robustness from time 20s.

The payload position constraints include −1.0 ≤ xk ≤ 1.0, −1.4 ≤ yk ≤ 1.7, and

the angle constraints are 70◦ ≤ α1, α2 ≤ 100◦, 20◦ ≤ β1 ≤ 70◦ and −70◦ ≤ β2 ≤

−20◦. In addition, the two quadrotors’ attitudes are constrained by −20◦ ≤ φ1 ≤

20◦, −20◦ ≤ θ1 ≤ 20◦, −20◦ ≤ ψ1 ≤ 20◦, −20◦ ≤ φ2 ≤ 20◦, −20◦ ≤ θ2 ≤ 20◦ and

−20◦ ≤ ψ2 ≤ 20◦. Both LMPC and NMPC controllers are subjected to the same

situation with regards to the constraints, disturbances, starting points, parameters

and desired reference trajectory.

The blue trajectory is produced by the NMPC controller and shown in Figure 5.12,

while the green one is made by the LMPC controller and displayed in Figure 5.13.

They are both started from the selected initial point (−1.0, 1.5, 0). While the

NMPC controller moves closer to the desired starting point (0, 0, 0) and begins

to track the desired red path, the LMPC controller fails not only to converge

accurately to the desired red trajectory but also to lose tracking control due to

the disturbance applied to its model.
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Figure 5.12: Load position using the NMPC controller

Figure 5.13: Load position using the LMPC controller
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Two rope angles utilising the NMPC and LMPC controllers are shown in Figures

5.14 and 5.15 for the first quadrotor and in Figures 5.16 and 5.17 for the second

quadrotor. It is clearly indicated that the constraints on the angles are consid-

ered by both LMPC and NMPC controllers. It can be seen that the rope angles

produced by the NMPC controller have less and smaller fluctuations than those

of the LMPC controller. This result indicates that the non-linearity is handled

well by the NMPC controller. The large changes from t = 20s are caused by the

disturbance applied to the system. Again, the NMPC controller recovers better

than the LMPC controller.
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Figure 5.14: Rope angles of the first quadrotor using the NMPC controller
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Figure 5.15: Rope angles of the first quadrotor using the LMPC controller
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Figure 5.16: Rope angles of the first quadrotor using the NMPC controller
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Figure 5.17: Rope angles of the first quadrotor using the LMPC controller

The comparisons of the NMPC controller with the LMPC controller on the payload

position and the Euler angles of the first quadrotor are shown in Figures 5.18 and

5.19. It can be seen that the NMPC controller has a better response to maintain

the accuracy and robustness against the disturbances than the previous LMPC

controller.
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Figure 5.18: Eular angles of the first quadrotor using the NMPC controller
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Figure 5.19: Eular angles of the first quadrotor using the LMPC controller
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Similarly, the system performance is clarified by using the eight shape trajectory

under the same environment in Figures 5.20 and 5.21. In Figure 5.20 the NMPC

controller fails to complete the tracking tasks, because of the applied disturbances

while the constraints are employed. In Figure 5.21, the LMPC controller has

a better performance in handling the disturbances with the control and state

constraints.
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Figure 5.20: 3D payload position using the NMPC controller
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Eight Spiral
RMSE xP (m) yP (m) zP (m) xP (m) yP (m) zP (m)
NMPC 0.00125 0.00172 0.00241 0.0052 0.0032 0.00152
LMPC 0.0024 0.0073 0.0027 0.0054 0.0042 0.00331

Table 5.2: Payload position RMSE values for the two trajectories under
NMPC and LMPC Controllers
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Figure 5.21: 3D payload position using the LMPC controller

The load position RMSE values for the two paths are demonstrated in Table 5.2

5.5 Summary

In this chapter, two constrained MPC controllers were applied for tracking control

of cable suspended payload with two quadrotors: the LMPC controller and the

NMPC controller. The applied constraints on the control input and state vectors

were considered.
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The simulation results show that the LMPC controller is better in controlling the

system than the LQR controller under the consideration of constraints. The con-

straints are an important factor in handling the environmental limitations and

quadrotors’ power consumptions. Therefore, applying a controller while consider-

ing constraints is beneficial to the practical system. The simulation results also

show that the NMPC controller outperforms the LMPC controller when external

disturbance is applied.

In general, a much better performance is demonstrated by the NMPC controller

compared to the LMPC controller, which is due to the ability of the NMPC con-

troller in handling external disturbances under the constraints. The LMPC con-

troller is struggling to handle the disturbances because of the system linearisation.

So far the system is controlled by using a single cost function. In the next chapter,

multiple cost functions are considered in order to gain more flexibility in controlling

the two quadrotors with payload.



Chapter 6

Leader-Follower Dynamic Game

Controller

6.1 Introduction

Dynamic game theory is a mathematical approach to design a playable system

based on analysing interaction behaviour between intelligent agents without hu-

man involvement. The agents are working in non-cooperative and cooperative

manners and consistently making a decision based on information knowledge be-

tween players and task management to achieve the target. Stackelberg is presented

to solve problems in many fields to obtain an optimal performance based on non-

cooperative and cooperative approaches in competitive environments.

A cooperative Stackelberg game theory is proposed for leader and follower quadro-

tors with suspended payload using an optimal strategy based on the form of linear

quadratic game approach in this chapter. Two quadrotors cooperate as a team

making their decisions independently, where the first announcement is given by

the leader quadrotor as a punishment or a prize in a way that this decision has

sufficient information about the right final desired target and follower control. The

follower quadrotor receives this announcement from the leader as an incentive or

threat to create its own projected decision.

101
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Separate control inputs are obtained based on the leader and follower quadrotors

cooperatively in order to determine the best performance in terms of rejection

steady-state errors and system stability achievement. The main advantage of

utilising Stackelberg game approach is to achieve the task while avoiding motion

deadlock, solving conflict situations between the team agents and escaping inef-

ficient behaviour [104] and [105]. The Stackelberg game controller is designed to

track desired trajectories where the leader tries to follow the reference path and in

charge of stabilising it’s orientations. While the follower is in charge of following

the leader quadrotor and stabilising the suspended load as well as the leader’s

attitudes utilising the incentive cooperation strategy.

6.2 Game Methodology and Implementation

Dual control scenarios are presented to perform the Stackelberg game method for

two quadrotors carrying payload by cables to track the desired trajectory and

achieve the requirements of the desired environment. In this chapter, the leader-

follower collaboration strategy based on game theory method is examined. In

this method, an efficient formulation is offered by Stackelberg game approach to

find an equilibrium point of the involved leader-follower own decisions with the

suspended load. The contributions of this work are presented by designing a new

mathematical model based on the proposed game method through solving the

discrete time of the dynamic model and its cost function. Furthermore, this work

attempts to avoid the deadlock state avoidance obtained by wrong decisions from

the leader-follower quadrotors, through maintaining a suitable team formation for

a specific environment [105]. The incentive concept is designed through relying on

the leader quadrotor’s first action announcement, whereas the follower quadrotor

responds to the leader in order to achieve system stability. The discrete-time

dynamical model description for the system with two quadrotors carrying a cable-

suspended payload is shown in (6.1)
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xk+1 = Akxk +Bkuk. (6.1)

6.3 Linear Dynamic Game Control

A system configuration of the leader and follower and suspended load model can

be considered in the following state equation:

xk+1 = Akxk +
2∑
i=1

[Bikuik] (6.2)

where k is the current instant, xk is the system state vector (m×1) at step k time

and uTik for i = 1, 2 are (p × 1) decision control vectors generated by the leader

and follower quadrotors respectively. Assuming both control vectors have the same

dimension, each quadrotor can choose its own strategy from an admissible set of

strategies denoted by Γi in order to achieve a minimum cost function Ji.

Ji = 1/2
N−1∑
k=0

xTkQikxk + uTikRiikuik

+ uTjkRijkuik.

(6.3)

Subscripts i, j = 1, 2, where (i 6= j) represents quadrotor desecion, Riik and Rijk

are symmetric (p × p) and positive definite matrices, Qik is (m ×m) symmetric

positive semi-definite matrix at k sampling time.

The system state equation described by (6.2) and (6.3) becomes

xk+1 = Akxk +B1u1k +B2u2k (6.4)

where Ak is a (m×m) system transition matrix and Bik (i, j = 1, 2) are (m× p)

control matrices for the leader quadrotor and the follower quadrotor. In order to

achieve the team optimum subject to the leader quadrotor, an incentive approach
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is studied using certain policies, where the team optimal control of the leader and

follower quadrotors are denoted by ut1 and ut2 respectively; and xt is the state

trajectory.

6.3.1 Team Optimal Solution

After assuming that the first quadrotor is a leader, the incentive strategy can

be started. The main idea of motivation is to induce the second player (fol-

lower quadrotor) to choose a strategy where the team optimum leadership can

be achieved. The first step in improving team optimal solution for the leader is

calculated on a derivation basis. In order to achieve team optimisation, the leader

and follower quadrotors are responsible for optimising the objective function of

the leader quadrotor J1.

J1 = 1/2
N−1∑
k=0

[xk − xrk]
TQ1k[xk − xrk]

+ uT1 kR11ku1k + uT2 kR12ku2k.

(6.5)

The system Hamiltonian is presented as

H1 =1/2[xk − xrk]
TQ1k[xk − xrk]+

1/2uT1 kR11ku1k + 1/2uT2 kR12ku2k+

λT1k+1 × [Akxk +B1ku1k +B2ku2k].

(6.6)

by using the minimum principle

λ1k =
∂H1

∂xk
=Q1k[xk − xrk] +AT

kλ1k+1 (6.7)

and

0 =
∂H1

∂u1k

(6.8)
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and

0 =
∂H2

∂u2k

(6.9)

where the boundary condition is

λ1N =Q1k[xN − xrN ]. (6.10)

The first stage is to obtain the team optimal control of the leader and follower

ut1 and ut2 based on standard optimal control theory. Using equations (6.8) and

(6.9), the following optimal control expressions are obtained:

u1k = −R−111kB
T
1kλ1k+1 (6.11)

u2k = −R−112kB
T
2kλ1k+1. (6.12)

The optimal team trajectory is

xk+1 =Axk −B1kR
−1
11kB

T
1kλ1k+1

−B2k+1R
−1
12kB

T
2kλ1k+1.

(6.13)

From the boundary (6.10), it is assumed that for all k ≤ N

λ1k =Skxk − Vk. (6.14)

The expressions Sk and Vk are the matrix and vector with proper dimensions,

respectively. Substitute λ1k+1 in (6.13) with (6.14), then the following equation

is obtained:
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xk+1 =K−1k Axk +K−1k [B1kR
−1
11kB

T
1k]Vk+1

+K−1k [B2k+1R
−1
12kB

T
2k]Vk+1

(6.15)

where K−1k is defined as

K−1k = I +B1kR
−1
11kB

T
1kSk+1 +B2kR

−1
12kB

T
2kSk+1 (6.16)

and I is an identity matrix. From equation (6.7), by substituting both λ1k and

λ1k+1, we have:

Skxk − Vk =Q1k[xk − xrk] +AT
kSk+1xk+1 −AT

kVk+1. (6.17)

Substituting xk+1 into the above equation and it must hold for all xk, then Sk
and Vk are obtained:

Sk =Q1k +AT
kSk+1K−1k Ak (6.18)

and

Vk =Q1kx
r
k −AT

kSk+1K−1k B1kR
−1
11kB

T
1k

× Vk+1 −AT
kSk+1K−1k B2kR

−1
12kB

T
2k

× Vk+1 +AT
kVk+1

(6.19)

with the boundary conditions:

SN =Q1N

VN =Q1Nx
r
N .

(6.20)

Given Sk and Vk, the λ1k can be found. Then the team optimal strategies ut1k

and ut2k are represented as follows:

ut1k = −F11kx
t
k−F12kVk+1 (6.21)
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Also the follower team optimal control ut2 is presented

ut2k = −F21kx
t
k−F22kVk+1 (6.22)

where

F11k = R−111kB
T
1kSk+1K−1k Ak

F21k = R−112kB
T
1kSk+1K−1k Ak

(6.23)

F12k = R−111kB
T
1kSk+1K−1k B1k

×R−111kB
T
1k +R−111kB

T
1kSk+1K−1k B2k

×R−112kB
T
2k −R−111kB

T
1k

F22k = R−112kB
T
2kSk+1K−1k B1k

×R−111kB
T
1k +R−112kB

T
2kSk+1K−1k B2k

×R−112kB
T
2k −R−112kB

T
2k.

(6.24)

6.3.2 Follower Incentive Response

In the previous stage the team optimum is obtained. In the next stage the follower

can be induced by the following incentive strategy:

u1k = ut1k + P Tk [xk − xtk] + UT
k . (6.25)

To achieve the incentive feedback, the incentive matrices P T
k and UT

k have to be

chosen. The follower cost function is

J2 = 1/2
N−1∑
k=0

[xk − xrk]
TQ2k[xk − xrk]

+ uT1 kR21ku1k + uT2 kR22ku2k.

(6.26)

From the Hamiltonian
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H2 =1/2[xk − xrk]
TQ2k[xk − xrk]+

1/2uT1 kR21ku1k + 1/2uT2 kR22ku2k+

λT2k+1 × [Akxk +B1ku1k +B2ku2k]

(6.27)

and by using the minimum principle

λ?2k =
∂H2

∂xk

=Q2k[x?k − xrk]− PkR21k[F11k + P T
k ]xtk

+ [Ak +B1kP
T
k ]Tλ?2k+1 − PkR21kF12kVk+1

+ PkR21kU
T
k ,

(6.28)

The boundary condition becomes

λ2
?
N =Q2k[x?N − xrN ] (6.29)

and

0 =
∂H2

∂u2k

(6.30)

where x?k is the state vector when u1k and u?2k are applied to the system.

When considering the leader team optimal control u1k and the follower reaction

u?2k in the system, the state sequence is x?k. Therefore u?2k can be found from

equation (6.30) as follows:

u?2k = −R−122 kB
T
2kλ

?
2k+1 (6.31)

where λ?2k can be assumed as:

λ?2k =Mkx
t
k + Yk[x?k − xtk]−Dk (6.32)

M, Y and D are convenient matrices.
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When applying ut1k and ut2k on the system, the state vector is xtk

xtk+1 =Axtk −B1k[F11kx
t
k + F12kVk+1]

−B2k[F21kx
t
k + F22kVk+1].

(6.33)

By representing the equation (6.31), then u?2k becomes

u?2k =−R−122 kB
T
2k[Mk+1x

t
k+1

+ Yk+1[x?k+1 − xtk+1]−Dk+1].

By substituting equation (6.33), we obtain

u?2k =−R−122 kB
T
2kMk+1 × [Akx

t
k]

+R−122 kB
T
2kMk+1B1k × [F11kx

t
k + F12kVk+1]

+R−122 kB
T
2kMk+1B2k × [F21kx

t
k + F22kVk+1]

−R−122 kB
T
2kYk+1 × [x?k+1 − xtk+1]

+R−122 kB
T
2kDk+1.

(6.34)

When the follower acts exactly as the leader expected, u?2k = ut2k = −F21kx
t
k −

F22kVk+1 and x?k = xtk. When equation (6.34) must hold for all the states, we

have:

F21k =R−122 kB
T
2kMk+1 × [Ak

−B1kF11k −B2kF21k]

R−122 kB
T
2kDk+1 =R−122 kB

T
2kMk+1

× [[B1kF12k +B2kF22k]− F22k]Vk+1.

(6.35)

Based on ut2k, the follower strategy u?2k, is obtained:

u?2k = ut2k −R−122 kB
T
2kYk+1[x?k − xtk+1]. (6.36)
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To determine the value of Yk+1, applying both u1k and u?2k to the state equation

can give:

x?k+1 =Akx
?
k −B1k[F11kx

t
k + F12kVk+1]−B1k[P T

k

[x?k − xtk] + UT
k ]−B2k[F21kx

t
k + F22kVk+1]−

B2kR
−1
22 kB

T
2kYk+1[x?k+1 − xtk+1]

=[Ak +B1kP
T
k ][x?k − xtk] +Akx

t
k+1

−B1k[F11kx
t
k + F12kVk+1]

−B2k[F21kx
t
k + F22kVk+1]

−B1kU
T
k −B2kR

−1
22 kB

T
2kYk+1

[x?k+1 − xtk+1]

(6.37)

or

x?k+1 =[Ak +B1kP
T
k ][x?k − xtk]−B1kU

T
k

+ xtk+1 −B2kR
−1
22 kB

T
2k

Yk+1[x?k+1 − xtk+1].

(6.38)

x?k+1 − xtk+1 can be found in terms of x?k − xtk:

x?k+1 − xtk+1 = [I +B2kR
−1
22 kB

T
2k

Yk+1]−1 × [Ak +B1k

P T
k ][x?k − xtk] + [I +B2k

R−122 kB
T
2kYk+1]−1 ×B1kU

T
k .

(6.39)

By substituting (6.32), (6.33) and (6.39) into equation (6.28), we obtain:
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Mkx
t
k + Yk[x?k − xtk]−Dk

= Q2k[x?k − xrk] + [Ak +B1kP
T
k ]Yk+1

− PkR21kF12kVk − PkR21k[F1k + P T
k ]xtk+

+ PkR21kYk+1[x?k+1 − xtk+1]

= Q2k[x?k − xrk] + PkR21kU
T
k

+ [Ak +B1kP
T
k ]T [Mk+1x

t
k+1 −Dk+1]

+ [Ak +B1kP
T
k ][Yk+1[I +B2kR

−1
22 kB

T
2kYk+1]−1]

× [Ak +B1kP
T
k ][x?k − xtk]− PkR21kF12kVk

− PkR21k[F11k + P T
k ]xtk + [Ak +B1kP

T
k ]

Yk+1 × [I +B2kR
−1
22 kB

T
2kYk+1]−1 ×B1kU

T
k .

(6.40)

The above equation is true for all the values of x?k and xtk when the following

conditions hold. For all the values of xtk term,

Mk − Yk = −PkR12k[F11k + P T
k ]

+ [Ak + PkB
T
1k]Mk+1

× [Ak −B1kF11k −B2kF21k]

+ [Ak +B1kP
T
k ]Yk+1

× [I +B2kR
−1
22 kB

T
2kYk+1]−1

× [Ak +B1kP
T
k ].

(6.41)

For all the values of x?k term

Yk = Q2k + PkR21kP
T
k

+ [Ak +B1kP
T
k ]TYk+1

× [I +B2kR
−1
22 kB

T
2kYk+1]−1

× [Ak +B1kP
T
k ].

(6.42)

Based on the equation (6.40), all constant values are considered in
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−Dk = −Q2kx
r
k − PkR21kF12kVk+1

+ PkR21kU
T
k [x?k − xrk]

− [Ak +B1kP
T
k ]TMk+1

× [B1kF12k +B2kF22k]Vk+1

−Dk+1 + [Ak +B1kP
T
k ]TYk+1

× [I +B2kR
−1
22 kB

T
2kYk+1]−1B1kU

T
k

(6.43)

where the gain matrix UT
k can be calculated from equation (6.43). By substituting

equation (6.42) into (6.41), the resultant equation is

Mk =Q2k − PkR21kF11k

+ [Ak +B1kP
T
k ]T ×Mk+1

[Ak −B1kF11k −B21kF2k].

(6.44)

If the matrices P T
k and UT

k can be found by the leader agent to achieve the optimal

follower strategy, then this matrix satisfies all the above mentioned equations [105].

The Stackelberg equilibrium strategy is responsible for presenting the state feed-

back results, which is the main goal of the leader’s team optimal solution. In the

case of x?k = xtk, the follower’s control reaction is u?2k = ut2k. When adding a

special function f(x?k,x
t
k) to the follower’s reaction such as in equation (6.36),

this function is chosen such that the follower control is optimal and the system is

stable.

The procedure of solving a trajectory tracking error based on the Stackelberg

game control is summarised as below. The first step is started to achieve the team

optimal control and optimise the leader’s cost function J1 by both the leader and

the follower quadrotors ut1k and ut2k , respectively, while the leader quadrotor

has a total knowledge of the follower. Then the control reaction of the follower

quadrotor can be induced to cooperate with the leader quadrotor and adopt ut2k to
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minimise the follower cost function J2. The dominating strategy of this algorithm

procedure can be concisely introduced as follows.

Firstly, after obtaining both the Sk+1 matrix and Vk+1 vector, calculate the values

of F11k,F12k,F21k and F22k from the following equations (6.23), (6.24). Secondly,

find the value of Mk from the equation (6.35) and the incentive weight matrix

Pk using the equation (6.44). Then the values of both matrices Yk and Dk can

be determined utilising the equation (6.42). Finally, the additional term Uk is

calculated from equation (6.43)

6.4 Simulation Results

The validation of the dynamic game controller is implemented through conducting

a Matlab simulation. The dual cost tracking controller is tested in simulation to

verify the behaviour of the system. A cable suspended load with two quadrotors

by two cables is utilised to track potential desired trajectories. These trajecto-

ries are presented with different challenges associated with coordination vectors

and are introduced in star, eight shape and combined circle-square trajectories.

The multi-sharp edges (star) trajectory is presented as a first desired trajectory

used to assess the controller stability achievement. Tracking the desired path is

managed by following desired three-star coordinates. These coordinates are pre-

sented by six steps for x∗ = [xs1;xs2;xs3;xs4;xs5;xs6], y desired vector y∗ =

[ys1; ys2; ys3; ys4; ys5; ys6] and z desired height z∗ = 0.1 ∗ t. Each step consists of

a step function such that this function is comprised of a starting point, an ending

point, a time and a simulation frequency [xs] = step(xsstart, xsend, time, traj.T ).

In one step of each vector, all the desired points can be obtained at each sampling

time by starting from the first point of this desired step to the desired ending

point of this specific step along the time vector, where the time vector of the three

trajectories is started from the initial zero operating point with step sampling

0.02s.lead to the final 30s as in time = (0 : 0.02 : 30)T . This time includes 1500
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control points through all these trajectories and the required sampling frequency

is 50Hz.

The second reference trajectory is eight shape trajectory. This is presented in

x∗ = 0.1tsin(0.3t), y∗ = 0.1tsin(0.3t) and z∗ = 0.1 ∗ t. In the third trajectory,

the circle-square path is proposed to show the system behaviour utilising new

potential trajectory coordinate vectors. These vectors are presented in 8-steps of

each vector considering all curves and lines in the combined reference path. The

operational point of the two quadrotors with slung load system is proposed with

rope angles α1 = 45o, β1 = 0o, α2 = 135o, β2 = 0o. The system weight matrices

are the states and control weight matrices based on the generalised coordinates

sequence q = [xP , ẋP , yP , ẏP , zP , żP , α1k, α̇1k, β1k, β̇1k, φ1k, φ̇1k, θ1k, θ̇1k, ψ1k, ψ̇1k

α2k, α̇2k, β2k, β̇2k, φ2k, φ̇2k, θ2k, θ̇2k, ψ2k, ψ̇2k
]T

and control sequence u = [F 1k
z ,

M1k
x ,M1k

y ,M1k
z , F 2k

z ,M2k
x ,M2k

y ,M2k
z ]T in the form of diagonal matrices as:

Q1k =diag([100, 1.4286, 100, 0.5882, 10, 1.4286, 5.7296,

5.7296, 1.1459, 0.1146, 0.1146, 0.1146, 1.1459,

0.1146, 0.1146, 0.1146, 0.1146, 0.2865, 0.1146, 0.1146,

0.1146, 0.1146, 0.1146, 0.2865, 0.1146, 0.1146])

Q2k =diag([1000, 143, 33, 0.0001, 100, 0.1, 573, 6, 0.0001,

0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001,

0.0001, 573, 6, 115, 0.0001, 0.0001, 0.0001,

0.0001, 0.0001, 0.0001, 0.0001]).
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Also the leader and the follower weight matrices are as follows:

R11 = diag([1, 0.01, 0.01, 0.01])

R12 = diag([0.1, 0.001, 0.001, 0.001])

R21 = diag([0.1, 0.001, 0.001, 0.001])

R22 = diag([1, 0.01, 0.01, 0.01]).

The results are clarified by Figures 6.1 - 6.8 for star trajectory, Figures 6.17 for

eight shape trajectory and Figures 6.19 and 6.20 for a combined circle-square

trajectory, where the generated thrust of each quadrotor is transformed in Figure

6.1 to become F k
Q = F k

z e
k
3 utilising the body to inertial frame Se. The payload

position is show through decreasing the tracking steady-state errors compared with

LQR controller as presented in Figures 6.2 and 6.10. Meanwhile, both quadrotors

are trying to maintain both their orientations as shown in Figures 6.3 and 6.4

with the two rope angles. This is required to meet the minimum swing angles

α1 = 45o, α2 = 135o, β1 = β2 = 0o from the reference paths as clarified in Figures

6.5 and 6.6. As in all these figures, the errors are reduced to the minimum at each

tracking point and the system stability is achieved. Handling tracking errors with

game control implementation can be seen in the top view and three dimensions in

Figures 6.7, 6.8, 6.15 and 6.16.
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Figure 6.1: System thrusts for star trajectory using the dynamic game con-

troller
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Figure 6.2: Payload position representation for star trajectory using the dy-

namic game controller
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Figure 6.3: Angles of the first quadrotor for star trajectory using the dynamic

game controller
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Figure 6.4: Angles of the second quadrotor for star trajectory using the dy-

namic game controller
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Figure 6.5: Rope angles of the first quadrotor-load for star trajectory using

the dynamic game controller
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Figure 6.6: Rope angles of the second quadrotor-load for star trajectory using

the dynamic game controller
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Star Eight
RMSE xP (m) yP (m) zP (m) xP (m) yP (m) zP (m)
Game 0.0053 0.0009 0.0011 0.00136 0.0054 0.0028
LQR 0.0124 0.0373 0.0132 0.0154 0.0142 0.0331

Table 6.1: Payload position RMSE values for the two trajectories under Game
and LQR Controllers

The load position RMSE values for the two paths are demonstrated in Table 6.1

In the case of the single decision maker LQR controller, the animation results

are obtained for all proposed trajectories using the same system model. The

model thrusts and parameters are tested compared with the incentive dynamic

game controller in order to verify the best model stability. Figure 6.9 shows the

leader and follower thrusts using the LQR controller, while the payload position

is displayed in Figure 6.10. In Figures 6.11 and 6.12 both the leader and follower

quadrotor’s behaviours are presented. The rope angles for all given paths can be

clearly identified in Figures 6.13, and 6.14.

Figures 6.16, 6.18 and 6.22 show 3D trajectories. They are used to illustrate that

the LQR controller is incapable of automatically taking a cooperative decision for

each of the quadrotors, which shows this controller to be less effective than the

game controller. The strategy adopted in the game controller allows the leader

and the follower quadrotors to take individual decisions automatically in a way

that meets the requirements of the strategic decisions for both quadrotors.

Using the LQR controller, the results of a star trajectory are clarified in Figures

6.9-6.16:
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Figure 6.9: System thrusts for star trajectory using LQR controller
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Figure 6.10: Payload position representation for star trajectory using LQR

controller
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Figure 6.11: Angles of the first quadrotor for star trajectory using LQR con-

troller
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Figure 6.12: Angles of the second quadrotor for star trajectory using LQR

controller
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Figure 6.13: Rope angels of the first quadrotor-load for star trajectory using

LQR controller
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Figure 6.14: Rope angles of the second quadrotor-load for star trajectory

using LQR controller
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Figure 6.15: Load position for star trajectory using LQR controller
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Likewise, the simulation results of the dynamic game controller are obtained

through relying on different predefined paths subjected to different challenges,

namely an eight-shape and a mixed circle-square reference paths. These two refer-

ence paths are presented to examine the accuracy of the game controller in tracking

the trajectories and its capacity to achieve stability of the suspended payload in

comparison with the LQR controller. The proposed trajectories are presented in

Figures 6.17, 6.18, 6.19, 6.20, 6.21 and 6.22.
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Figure 6.17: Load position for eight trajectory using the dynamic game con-

troller
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Figure 6.19: Load position for circle-square trajectory using the dynamic

game controller



Chapter 6.Leader-Follower Dynamic Game Controller 127

-0.5

1

0.5

10

Y[m]

0.5

0

-0.5 0

X[m]

-0.5-1

Z
[m

]

-1
-1.5 -1.5

0.5

1

Figure 6.20: 3D load position for circle-square trajectory using the dynamic

game controller
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Figure 6.21: Load position for circle-square trajectory using LQR controller
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Figure 6.22: 3D load position for circle-square trajectory using LQR controller

6.5 Summary

A dynamic game controller was designed for a cable suspended load with two

quadrotors to achieve the system stability during the trajectory tracking task in

this chapter. Three paths were applied to test the system performance using

the game controller and the LQR controller. Both controllers were used to make

comparisons in different aspects of the payload transportation task. In comparison,

the game controller was introduced to reduce the divergence of the system state

relying on the mathematical consistency in a way that it can develop two automatic

decision makers. This strategy motivated the need for two quadrotors’ behavior

choices to be achieved efficiently. Both the leader and the follower quadrotors

made their own individual decisions. However, the LQR consisted of one cost

function for the dynamic system to achieve stability.
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The game performance showed an accurate following behavior for all the reference

trajectories in terms of small errors of swing angles and stability achievement due

to the flexibility in the dynamic game control parameter, whereas the parameters

in the LQR caused the individual decision maker to produce inaccurate system

performance and hinder the improvement of the system stability.



Chapter 7

Experimental Evaluation for Path

Planning

7.1 Introduction

In the experimental work, the arena robot laboratory was provided with all prac-

tical platform requirements in the University of Essex (see Figure 7.1). These

requirements are essential to be used in order to perform the tests in a suitable

environment. In this chapter, a Vicon tracker system, Hummingbird quadrotors,

payload and cables, XBee wireless communication and a computer were used. The

capturing system (Vicon) was utilised in order to determine the navigation infor-

mation for quadrotors and suspended load. The XBee sensor was used to transmit

and receive the data collected from the real system to the computer.

As will be explained next, the experimental evaluation conducted in this chapter

cannot test the controllers developed in the previous chapters directly, as the

Hummingbird quadrotors are not allowed to access the low-level control system.

Instead, the controllers developed in the previous chapters will be used as a path

planner, which can generate a trajectory with the consideration of the model

dynamics and constraints. Then a PD controller is used to control the quadrotors

130
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to track the generated trajectory. In this way, the experiments will provide indirect

results to justify the controllers developed in this thesis.

In this chapter, the optimised controllers are used in real experiments as a path

planner. This planning procedure is implemented based on the two levels of mi-

crocontrollers. The low-level microcontroller, which is responsible for stabilizing

the quadrotors and considered as an block box to which the IMU sensor is pro-

viding the speed and the angular velocity information. Whereas, the high-level

microcontroller is considered to have a validity to be controlled directly using the

quadrotor’s estimated position information received from the Vicon tracker sys-

tem. The indirect experiments are executed in this work based on the optimised

controllers. These controllers are performed as a planner for the desired path to

be followed by the PD controller. Where the system states, including the system

speeds and positions, are optimised in MATLAB simulation. Then the optimised

data of the predefined trajectory is imported into the C++ code created on the

computer to be followed by the PD controller. This path planning method is

providing the validity to control the high-level microcontroller through achieving

the state optimisation and the system performance. In the real tests, the path

planning results of two quadrotors with a suspended load by cables are clarified

in this chapter to show the experimental trajectory planning using optimise con-

trollers compared with a direct PD controller. Moreover, this way of path planning

gives an efficient method to handle linear controllers and complexities of nonlinear

controllers to be implemented, easy to meet the model dynamics of the planned

trajectory.
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Figure 7.1: University of Essex lab

7.1.1 Vicon System

The Vicon system is an optical tracking device which allows the cameras to find

and obtain the system altitude, positions and attitudes of moving bodies in three-

dimensional space in Figure 7.2. This capturing system employs 24 fixed tracking

cameras distributed to cover the arena laboratory used for experimental tests. The

information received from the actual system positions and attitudes are calculated

by the Vicon capture system at 100 Hz, which is used to solve the tracking control

problems in the computer device.
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Figure 7.2: University of Essex Vicon cameras

7.1.2 UAV Quadrotors (Hummingbird)

Hummingbird unmanned aerial vehicles (UAVs) are commercial German brand

aircraft which were designed in Ascending Technology Company and developed

to support researchers in different applications (Figure 7.3). For example, these

UAVs are equipped with efficient indoor and outdoor sensors, which are presented

as processing units, communication units, and inertial measurement units (IMU)

[114], [115], [116] and [117]. The processing units are comprised of two levels

of microprocessors on board of the quadrotors. The first level is defined by a

low-level processor (LLP) which can use the transmitted data from the remote

sensor to control the UAV quadrotor’s behaviour, while the second level works

as a programmable high-level processor (HLP). The high level can be controlled

autonomously by using data received by a computer.
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Figure 7.3: Asc. Tec. Hummingbird quadrotor

The Hummingbird quadrotor has four motors placed at the end of each arm,

which generate a vertical thrust and momentum at the centre of gravity for each

propeller. The force Fi consists of two complements fiz and fih as in equation (7.1)

and equation (7.2), which are related to the angular speed Ωi of propeller i:

F k
i = fkiz + fkih, i = 1, 2, 3, 4

fkiz = kF (Ωk
i )2, i = 1, 2, 3, 4

(7.1)

while the momentum equation is presented as

fkih = kM(Ωk
i )2

mk
ih = fkih

(7.2)

where both the thrust and momentum of each propeller depend on its angular

velocity. The dynamic parameters of the force and momentum are created by the

propellers as kF ≈ 6.11× 10−10 N
rpm2 and kM ≈ 1.5× 10−9 Nm

rpm2 .
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The slung load is presented by a point mass toy car and suspended from the top

centre by cables and connected to the centre of gravity for each quadrotor. The

setup positions and attitudes of single and two quadrotors with suspended payload

in the experimental test were provided in Chapter 3.

7.1.3 Communications

The communication between the DELL computer placed in the robotic laboratory

and the quadrotors with cable suspended payload was implemented via four serial

link XBee modules (Figure 7.4). This standard equipment XBee-Pro 802.15.4OEM

wireless link was used in two parts. The first two modules were connected with a

computer to transmit the data, while the second two modules were mounted on

the quadrotors to receive the data. The rate of transmission for the information

between the computer and the actual system is 100 Hz.

Figure 7.4: XBee wireless module
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7.2 Path Generation Evaluation

The Hummingbird quadrotors are controlled by two onboard microcontrollers. The

low-level microcontroller is used to stabilise the quadrotor. It takes the feedback

from onboard IMU sensor and outputs the propeller rotation velocities. The high-

level microcontroller is used to deal with the wireless communication model. The

low-level microcontroller is not allowed to access. Thus, we cannot use the optimal

controllers developed in the previous chapters to directly control the quadrotor.

The optimal controllers developed in the previous chapters are used as a path

planner, which generates a trajectory for the quadrotor to track. The generated

trajectory meets the model dynamics. Then PD controller is used to control the

quadrotor to track the generated trajectory, see Figure 7.5. The experimental

results from this setting will be used to evaluate the path generation performance

using the optimal controllers. Based on the optimised data of the predefined

trajectories obtained by the MATLAB simulation, the resulting tested data was

included in the C++ code to be followed by the PD controller. Where these data

was presented by the optimised states of both quadrotors obtained based on the

planned control inputs in simulation and the states are used as input values in the

experimental C++ code.
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Figure 7.5: Experimental evaluation for path planning block diagram

7.3 Control Performance

The experimental tests were executed based on the optimised simulation data. The

optimised simulation information was exported then imported into the experiment

C++ code to be followed. This practical tracking process was performed with

two scenarios. The first scenario was carried out to implement a load position

tracking control in different proposed trajectories using a PD controller. The

second scenario was represented by path planning data to be followed by using

the PD controller. We want to show the control performance improvement when

the path generated from the optimal controllers are used, compared with no path

plan data is used. The planned paths were proposed to be followed by a cable

suspended payload with quadrotors, where these trajectories are: eight, star and

spiral trajectories.

The origin point located in the middle of the robotic laboratory arena was con-

sidered by all the trajectories when taking off to the altitude 1.2m. This height
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was increased accumulatively depending on the required altitude of the trajectory

to be followed. For instance, in the spiral path, the desired hovering altitude was

1.6m, which meant that before starting the tracking process, the accumulation

had to become 1.2m+ 0.4m = 1.6m.

Experimentally, the promising results are illustrated in Figures 7.6− 7.18, where

the red line (–) is the reference trajectory, while the blue (–) represents the actual

testing performance. Figures 7.6, 7.7, 7.8 and 7.9 show the PD and the LQR track-

ing controllers for two quadrotors with suspended payload respectively, where a

eight predefined path was selected to be followed with 30s time consuming. Figures

7.6 and 7.7 illustrate in three dimensions the performance of a cable suspended

payload with a quadrotor using PD controller directly, while Figures 7.8 and 7.9

present the LQR optimal controller, where the desired path was defined by eight

trajectory. Figures 7.10 and 7.11 clarify the system performance tracking eight ref-

erence trajectory optimized by ILQR controller, while Figures 7.12 and 7.13 were

investigated using game controller. The Figures 7.14, 7.15 and 7.16 demonstrate

the system behaviour when following a star predefined path using the LQR, ILQR

and the game controllers. By implementing the NMPC controller, the results are

illustrated in Figures 7.17 and 7.18 considering constraints in simulation.

The tracking control results of the NMPC controller compared with that of the

LMPC are illustrated in Figures 7.17 and 7.18. These figures show the ability of

the NMPC controller to handle states and control constraints with limited input

external disturbances. The results of the dynamic game controller were compared

with those of the LQR controller. In the depicted results, the optimal controllers’

accomplishment was good enough to achieve small steady-state errors and stability

payload transportation by performing small load swing angles. Moreover, the

results show that the MPC controller was able to handle the system state and

control input constraints.
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Figure 7.6: 3D for the eight trajectory using the PD controller
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Figure 7.7: 2D for the eight trajectory using the PD controller
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Figure 7.8: 3D for the eight trajectory using the LQR controller
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Figure 7.9: 2D for the eight trajectory using the LQR controller
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Figure 7.10: 3D for the eight trajectory using the ILQR controller
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Figure 7.11: 2D for the eight trajectory using the ILQR controller
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Figure 7.12: 3D for the eight trajectory using the dynamic game controller
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Figure 7.13: 2D for the eight trajectory using the dynamic game controller
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Figure 7.14: 3D for the star trajectory using the LQR controller
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Figure 7.15: 3D for the star trajectory using the ILQR controller
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Figure 7.16: 3D for the star trajectory using the dynamic game controller
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Figure 7.17: 3D for the spiral trajectory using the NMPC controller
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Figure 7.18: 2D for the spiral trajectory using the NMPC controllers

7.4 Summary

In this chapter, the optimal controllers were examined on a real Hummingbird

quadrotors carrying a payload by cables. But they were not directly used to the

quadrotors. Instead, they were used to generate feasible paths for the quadrotors to

follow. These paths were previously planned using a simulation tracking test and

then the optimised data obtained from the simulation output was imported into

the practical code. The classical PD controller was implemented based on C++

code to follow these data. In this experimental flight test, the optimal controllers

demonstrated the ability to achieve stability and accuracy in performance, and

handle the constraints.
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Conclusions and Future Work

8.1 Conclusions

This research aimed at investigating two main issues in cable suspended payload

with multi-quadrotors, namely control of stabilisation and path tracking, through

a number of simulations and tests. In particular, the study focused on designing

four controllers: LQR, ILQR, MPC, and game controller. The LQR controller

was responsible for achieving system stability, while the ILQR’s task was to cover

the system’s nonlinearity while tracking the desired trajectory and consequently

reduce the system state errors. The MPC controller was in charge of handling

the system state and control constraints. Finally, the game controller was re-

sponsible for individual decision making due to considerations of the multiple cost

function and for providing flexible behaviour. Each of the above controllers was

illustrated by theoretical derivation, stability achievement, simulations results and

experimental tests. In addition, all these controllers were verified by comparing

their simulation results with each other and with those of the PD controller. Two

dynamic models were presented in this research, cable suspended load with single

and two quadrotors, while considering dynamic system nonlinearities.
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This chapter includes a summary of the results and contributions of the study.

It also highlights its limitations and offers suggestions and guidelines for future

research.

8.2 Research Summary

LQR Controller The simulation results showed that the performance of the

LQR control was generally good. This controller displayed an optimal solution

while showing very marginal steady state errors. One significant feature of using

the LQR controller lies in the fact that it ensures stability and even automatically

guarantees the controller when the two parameters are carefully selected. However,

one shortcoming of this controller is that the system becomes linearised under one

operating condition, thus posing a problem that needs to be overcome.

ILQR Controller This controller was utilised to address the aforementioned

problem, i.e. the linearisation of the system. An ILQR controller is primarily

based on an LQR controller with an iteration. In the current study, the ILQR con-

troller outperformed the LQR controller when tracking the Eular Angles, tracking

different paths for cable suspended payload with multi-quadrotors and preserving

the leader-follower distance with regards to the speed of catching the desired tar-

get and reducing steady state errors. These results are due to the linearisation

method used for the ILQR controller compared to the single operation point lin-

earisation technique employed in the LQR algorithm. After four iterations, there

was evidence of a slight improvement in the performance as a whole.

MPC Controller This controller was applied in this thesis twice, once on a

linearised model LMPC and another on a nonlinear model NMPC for tracking

cable suspended payload with two quadrotors. Upon considering the constraints

on the control input and state vectors, it was found that the LMPC controller

outperformed the LQR controller in controlling the system. Applying this con-

troller proved to be of a great benefit for the system since the constraints play an

important role in dealing with the limitations of the environment and the power
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consumption of the quadrotors. Moreover, utilising the constraints in this con-

troller had the advantage of avoiding the replanning of a new trajectory for the

system. The simulation results for this controller also revealed that the NMPC

controller performed better than the LMPC when external disturbances were im-

posed, suggesting that the LMPC struggled in dealing with these disturbance

when subjected to the constraints. It is worth noting that this controller adopted

a single cost function.

Game Controller, the game controller used a multi-cost function in order to give

flexibility to the system for marking decisions in the tracking process. The results

of applying this controller to the system were compared to those obtained from

the LQR controller. In comparison, the game controller was able to reduce the

divergence of the payload position from the reference by relying on mathematical

consistency and developing two decision makers. By virtue of this controller, both

the leader and the follower quadrotors were able to make individual decisions. In

other words, the flexibility which the game controller enjoyed led to small errors

in swing angles and consequently improved the follower’s tracking accuracy.

To summarise, the LQR controller made significant improvement in terms of sys-

tem stability in comparison with the PD controller. As for the ILQR, it proved

very effective in compensating for the system nonlinearity and increasing stability.

The LMPC, however, was able to handle the constraints efficiently, while the LQR

was not. Among all the controllers, the NMPC was perhaps the most useful as

it was able to handle the disturbances while maintaining constraints in order to

test the nonlinearlity in comparison with the LMPC. Finally, the game controller

managed to increase the system’s flexibility to a significant extent based on the

multi-cost function.

8.3 Summary of Research Results

In summary, the performance of the LQR controller compared with the PD con-

troller has been demonstrated in terms of load position RMS error values. These
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errors are clarified in Table 4.2, where the minimum LQR payload RMSE val-

ues, such as 0.0123(m) and 0.086(m), are verified for the PD controller using a

single quadrotor. The ILQR controller shows significant error reduction for the

suspended payload position to become 0.0026(m)- 0.0027(m) using single and two

quadrotors and is then compared with the LQR controller in Tables 4.3 and 4.4.

In the other circumstances, the system constraints validation is accompanied with

maintaining small RMSE 0.0012(m) using LMPC, compared with the linear opti-

mized LQR controller in Table 5.1, whereas the nonlinear control action NMPC

controller is tested based on handling the system constraints and robustness by

applying disturbances to achieve control performance and improve the system sta-

bility through reducing RMSE to 0.0012(m) in Table 5.2. In the game controller,

the incentive strategy is based on the uncentralized player decisions, which provide

flexible information change, and this leads to improving the system stability by

dropping the RMSE to become 0.0009(m) in Table 6.1.

8.4 Future Work

Despite the very important findings of this research, represented by the stability

and accuracy of the optimal controllers and the robustness of the NMPC and its

ability to handle constraints, there are a number of limitations in the current study

which could be addressed in future research.

One of these limitations lies in the fact that external disturbances were not in-

cluded in the control design due to the high non-linearity of the dynamic model.

Including these disturbances after designing the controllers would have aggravated

the complexity of control development, which was already complicated. One possi-

bility for future research is to incorporate these disturbances in the control design

in order to guarantee robust performance of the controller.

Another suggestion for future research is to implement the experimental tests

outdoors using GPS or visionary equipment, such as cameras and laser sonars, to

avoid limited applicability. In this case, it would be very interesting to practically



Chapter 8. Conclusions and Future Work 150

apply the optimal controllers on real vehicles to further illustrate the validity of

the simulation results.

Moreover, in this thesis, only two quadrotors with a relatively heavy payload were

used in the simulations and the experimental tests. Further studies may replicate

the experiment with more than two quadrotors and a heavier payload in order to

check the consistency of the findings.

Additionally, As an optimal performance with the use of the LQR, ILQR, MPC

and Game controllers were found, stability was achieved and handling the high

nonlinearity and constraints. The future step toward uncertainty issue is to per-

form a fuzzy logic controller by gathering with the MPC controller to overcome

the system constraints indoor and handling the noise presented in the real world

and especially in outdoor environments.

Finally, one area for further study is apply more than one controller in the system

and use these in a hybrid way for better stability and accuracy outdoors. In line

with this, more nonlinear controllers could be utilised to improve the performance

of the system.
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[9] T. Lee, “Geometric control of quadrotor UAVs transporting a cable-

suspended rigid body,” IEEE Transactions on Control Systems Technology,

vol. 26, no. 1, pp. 255–264, 2018.

[10] W. Jasim and D. Gu, “H infinite for quadrotor attitude stabilization,” in

Control (CONTROL), 2014 UKACC International Conference on, pp. 19–

24, IEEE, 2014.

[11] L. R. G. Carrillo, A. Dzul, and R. Lozano, “Hovering quad-rotor control: A

comparison of nonlinear controllers using visual feedback,” Aerospace and

Electronic Systems, IEEE Transactions on, vol. 48, no. 4, pp. 3159–3170,

2012.

[12] A. Azzam and X. Wang, “Quad rotor arial robot dynamic modeling and con-

figuration stabilization,” in Informatics in Control, Automation and Robotics

(CAR), 2010 2nd International Asia Conference on, vol. 1, pp. 438–444,

IEEE, 2010.

[13] A. Sorensen, “Autonomous control of a miniature quadrotor following fast

trajectories,” Control Engineering Master’s Thesis, Aalborg University, Den-

mark, 2010.

[14] A. Sharma and A. Barve, “Controlling of quad-rotor UAV using PID con-

troller and fuzzy logic controller,” International Journal of Electrical, Elec-

tronics and Computer Engineering, vol. 1, no. 2, pp. 38–41, 2012.

[15] D. Cabecinhas, R. Naldi, L. Marconi, C. Silvestre, and R. Cunha, “Robust

take-off and landing for a quadrotor vehicle,” in Robotics and Automation

(ICRA), 2010 IEEE International Conference on, pp. 1630–1635, IEEE,

2010.



Chapter 8. Conclusions and Future Work 153

[16] S. Bouabdallah, P. Murrieri, and R. Siegwart, “Design and control of an

indoor micro quadrotor,” in Robotics and Automation, 2004. Proceedings.

ICRA’04. 2004 IEEE International Conference on, vol. 5, pp. 4393–4398,

IEEE, 2004.

[17] S. Bouabdallah and R. Siegwart, “Backstepping and sliding-mode techniques

applied to an indoor micro quadrotor,” in Proceedings of the 2005 IEEE

International Conference on, pp. 2247–2252, IEEE, 2005.

[18] S. Bouabdallah and R. Siegwart, “Full control of a quadrotor,” in Inteligent

robot and systems, IEEE/RSJ international conference on, pp. 153–158,

IEEE, 2007.

[19] I. Palunko, P. Cruz, and R. Fierro, “Agile load transportation: Safe and ef-

ficient load manipulation with aerial robots,” Robotics & Automation Mag-

azine, IEEE, vol. 19, no. 3, pp. 69–79, 2012.

[20] K. Sreenath, N. Michael, and V. Kumar, “Trajectory generation and control

of a quadrotor with a cable-suspended load a differentially-flat hybrid sys-

tem,” in Robotics and Automation (ICRA), 2013 IEEE International Con-

ference on, pp. 4888–4895, IEEE, 2013.

[21] F. A. Goodarzi, D. Lee, and T. Lee, “Geometric stabilization of a quadro-

tor UAV with a payload connected by flexible cable,” in American Control

Conference (ACC), 2014, pp. 4925–4930, IEEE, 2014.

[22] A. Faust, I. Palunko, P. Cruz, R. Fierro, and L. Tapia, “Learning swing-free

trajectories for UAVs with a suspended load,” in Robotics and Automation

(ICRA), 2013 IEEE International Conference on, pp. 4902–4909, IEEE,

2013.

[23] I. Palunko, R. Fierro, and P. Cruz, “Trajectory generation for swing-free

maneuvers of a quadrotor with suspended payload: A dynamic programming

approach,” in Robotics and Automation (ICRA), 2012 IEEE International

Conference on, pp. 2691–2697, IEEE, 2012.



Chapter 8. Conclusions and Future Work 154

[24] S. Sadr, S. A. A. Moosavian, and P. Zarafshan, “Dynamics modeling and

control of a quadrotor with swing load,” Journal of Robotics, vol. 2014, 2014.

[25] P. Cruz and R. Fierro, “Autonomous lift of a cable-suspended load by an

unmanned aerial robot,” in Control Applications (CCA), 2014 IEEE Con-

ference on, pp. 802–807, IEEE, 2014.

[26] C. Raimúndez and J. L. Camaño, “Transporting hanging loads using a scale

quad-rotor,” in CONTROLO’2014–Proceedings of the 11th Portuguese Con-

ference on Automatic Control, pp. 471–482, Springer, 2015.

[27] C. Raimúndez and J. L. Camaño, “Transporting hanging loads using a scale

quad-rotor,” in Decision and Control (CDC), 2014 IEEE 53rd Annual Con-

ference on, pp. 6149–6154, IEEE, 2014.
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[75] M. Saska, Z. Kasl, and L. Přeucil, “Motion planning and control of forma-

tions of micro aerial vehicles,” IFAC Proceedings Volumes, vol. 47, no. 3,

pp. 1228–1233, 2014.

[76] A. Mancini, A. Benini, E. Frontoni, P. Zingaretti, and S. Longhi, “Coali-

tion formation for unmanned quadrotors,” in Proceedings of the 7th Inter-

national ASME/IEEE Conference on Mechatronics, Embedded Systems, Ap-

plications, pp. 315–320, 2011.

[77] G. Vasan, A. K. Singh, and M. Krishna, “Model predictive control for mi-

cro aerial vehicle systems (MAV) systems,” arXiv preprint arXiv:1412.2356,

2014.

[78] S. Mao, W. K. Tan, and K. H. Low, “Autonomous formation flight of indoor

uavs based on model predictive control,” in AIAA Infotech@ Aerospace,

pp. 0515, 2016.

[79] A. Aswani, P. Bouffard, and C. Tomlin, “Extensions of learning-based model

predictive control for real-time application to a quadrotor helicopter,” in

American Control Conference (ACC), 2012, pp. 4661–4666, IEEE, 2012.

[80] M. Kamel, M. Burri, and R. Siegwart, “Linear vs nonlinear MPC for trajec-

tory tracking applied to rotary wing micro aerial vehicles,” arXiv preprint

arXiv:1611.09240, 2016.

[81] C. Liu, W.-H. Chen, and J. Andrews, “Piecewise constant model predic-

tive control for autonomous helicopters,” Robotics and Autonomous Systems,

vol. 59, no. 7, pp. 571–579, 2011.

[82] K. Kunanusont, R. D. Gaina, J. Liu, D. Perez-Liebana, and S. M. Lucas,

“The N-tuple bandit evolutionary algorithm for automatic game improve-

ment,” arXiv preprint arXiv:1705.01080, 2017.



Chapter 8. Conclusions and Future Work 161

[83] I. Harmati and K. Skrzypczyk, “Robot team coordination for target track-

ing using fuzzy logic controller in game theoretic framework,” Robotics and

Autonomous Systems, vol. 57, no. 1, pp. 75–86, 2009.

[84] I. Harmati, “Multiple robot coordination for target tracking using semi-

cooperative stackelberg equilibrium,” in IEE International Control Confer-

ence, 2006.

[85] Y. Liu, T. Wu, J. Huang, and S. Jia, “A stackelberg-game-based power con-

trol algorithm for wireless mesh networks,” in Abstract and Applied Analysis,

Hindawi Publishing Corporation, 2013.
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[98] K. Stanková, B. Ranjbar-Sahraei, G. Weiss, and K. Tuyls, “Staco:

Stackelberg-based coverage approach in robotic swarms,” in The Fifth In-

ternational Conference on Adaptive and Self-Adaptive Systems and Applica-

tions (ADAPTIVE), pp. 71–76, 2013.



Chapter 8. Conclusions and Future Work 163
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