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Abstract

Autoregressive spectral density estimation for stationary random fields on a regu-

lar spatial lattice has many advantages relative to kernel based methods. It provides

a guaranteed positive-definite estimate even when suitable edge-effect correction is

employed, is simple to compute using least squares and necessitates no choice of ker-

nel. We truncate a true half-plane infinite autoregressive representation to estimate

the spectral density. The truncation length is allowed to diverge in all dimensions

in order to avoid the potential bias which would accrue due to truncation at a fixed

lag-length. Consistency and strong consistency of the proposed estimator, both

uniform in frequencies, are established. Under suitable conditions the asymptotic

distribution of the estimate is shown to be zero-mean normal and independent at

fixed distinct frequencies, mirroring the behaviour for time series. A small Monte

Carlo experiment examines finite sample performance. We illustrate the technique

by applying it to Los Angeles house price data and a novel analysis of voter turnout

data in a US presidential election. Technically the key to the results is the covari-

ance structure of stationary random fields defined on regularly spaced lattices. We

study this in detail and show the covariance matrix to satisfy a generalization of the

Toeplitz property familiar from time series analysis.
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1 Introduction

We are concerned with nonparametric estimation of the spectral density of a zero-mean

stationary scalar random field xt, t = (t1, . . . , td)
′ with tj ∈ Z, j = 1, . . . , d, where Z

denotes the set of integers, using an autoregressive technique. Such data may be found

in environmental, agricultural, regional and urban economics settings, and are likely

to become more prevalent with the rapid advances in remote sensing and GIS software

capabilities. The analysis of spatial data has seen a great deal of recent econometric work.

In particular, models for lattice data have attracted interest, but primarily in the spatial

domain. Robinson (2008) considers tests of spatial correlation for lattice data among

a host of other settings while Hidalgo (2009) considers testing for correct parametric

covariogram specification. Roknossadati and Zarepour (2010) provide theory for M -

estimation (in a class of unilateral models) and Hidalgo and Seo (2014) propose omnibus-

type specification tests. Jenish (2014) also considers a nonlinear autoregressive model

on a regular lattice as a motivating example in her analysis of a spatial semiparametric

model. The natural analogies between lattice and time series data suggests a more

central role for frequency domain analysis. The well established study of cycles in

time series data via the frequency domain has spatial counterparts. High frequency

spatial components may be interpreted as corresponding to phenomena (possibly noise

phenomena) that change rapidly over the space, while low frequency components that

change less frequently are more structural. For Tokyo land price data Matsuda and

Yajima (2009) argue that accurately estimating the spectrum over low frequencies is

more desirable than over high frequencies, interpreting the latter as noise and the former

as the structural factors of interest. In this context they specify that high frequency noise

can include environmental factors, air and noise pollution and sunshine. In this paper

we analyse an example with house price data from Los Angeles, and also voting turnout

data for US counties in a presidential election. In the second setting high frequency

components affecting turnout include weather and demographics which will change very

frequently over space. Low frequency components include voting laws, type of election

and closeness of the race which can be easily seen to to not change very frequently over

space. Thus the spectral density can be informative about the power of the low and

high frequency components, which will be reflected in the strengths of the peaks.

Recent statistical contributions for lattice data include Robinson (2012), McElroy

and Holan (2014) and Abramovich and Lahav (2015), to name a few. Frequency do-

main techniques are commonly employed and irregular spatial lattices also considered

(cf. Matsuda and Yajima (2009), Bandyopadhyay et al. (2015)), but we focus on the

regular case. Irregular spacing will disturb the Toeplitz property of the covariance ma-

trix that we exploit for our results, but a more practical reason suggests itself. Many

economic data sets can be gridded into cells and the analysis of properties carried out

as if the data is observed on a regular lattice of size determined by the number of
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grid cells, thereby avoiding many of the problems with irregular data summarized in

Bandyopadhyay et al. (2015). Bronars and Jansen (1987) use this method to build a

spatial model of unemployment rates in US counties. Our empirical example of pres-

idential election voter turnout data across US counties is in this spirit, but we also

grid data in our house price example. Chen and Nordhaus (2011) use regular grid-

ded measures of nighttime lights visible from space as a proxy for economic statistics

in countries where such data may not be reliably collected. Statistics Finland col-

lects data by map grid for the whole of Finland, from 250m×250m to 5km×5km cells,

while the Geographically based Economic data project seeks to expand gridding globally,

cf. http://www.stat.fi/tup/ruututietokanta/index en.html, http://gecon.yale.edu/ and

Nordhaus (2008). Examples of gridding irregularly spaced data also arise in statistics,

cf. Fuentes (2007) and references therein.

Nonparametric spectral estimates for spatial data have typically focused on tapered

autocovariance or periodogram based techniques, see e.g. Yuan and Subba Rao (1993),

Politis and Romano (1996), Robinson (2007) and Vidal Sanz (2009). Our autoregressive

approach allows us to consider nonparametric estimates of the spectral density without

the practitioner having to choose a taper or kernel. She simply needs to fit autoregressive

models by least squares. For lattice processes autoregressive estimation has another

advantage, connected with the edge-effect, which matters when d = 2 and worsens with

increasing d (cf. Section 2). Guyon (1982) suggested a version of the covariance estimates

which eliminates the bias (asymptotically), but this was criticised by Dahlhaus and

Künsch (1987) as it could yield possible negative kernel based spectral density estimates.

The latter suggested tapering the covariance estimates, but introduced ambiguity arising

from the choice of an appropriate taper. Robinson and Vidal Sanz (2006) propose an

alternative, but again there is an element of ambiguity due to the practitioner having

to choose a function. On the other hand, autoregressive spectral estimation delivers a

guaranteed non-negative estimate even when using edge-effect correction.

For the case of regularly-spaced time series (d = 1), Berk (1974) assumes an infinite,

one-sided autoregressive representation for xt, driven by white noise, and provides results

on the consistency and asymptotic normality of spectral density estimates with the

order of the autoregression allowed to diverge with sample size. We seek to extend

this approach to spatial processes. There is some related work in the signal processing

literature, see e.g. Tjøstheim (1981), McClellan (1982) and Wester et al. (1990), but

under the assumption that the true model is finite, which is a parametric approach that

may lead to bias.

The results in this paper overcome two technical hurdles that arise in the transition

from d = 1 to d > 1: the structure of the covariance matrix of stationary spatial process

and the number of unique covariances that occur in such a matrix. For the benefit

of readers primarily interested in applying the techniques, we treat these hurdles in

appendices. Readers interested in the technical details may refer to the appendices.
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We also mention here that the asymptotic normality result established by us serves to

stress that the difference between the time series and spatial cases is not merely that of

extension. The sufficient condition restricting the growth rate of the parameter space

when d = 1 cannot be regarded as simply a particular case of our theorem for d > 1, as

we discuss in detail in Section 4.

The paper is structured as follows: Section 2 contains some preliminary results used

throughout the paper and theorems on consistency and strong consistency of the trun-

cated AR predictors. Section 3 introduces the spectral density estimate and establishes

its uniform consistency and uniform strong consistency. Section 4 records results on the

asymptotic distribution of the truncated AR predictors as well as the spectral estimate.

Section 5 contains a small Monte Carlo study of finite sample performance, also com-

paring our estimates with periodogram based ones. Section 6 applies our techniques

to two economic data sets. In Appendix A we derive bounds for absolute moments of

partial sums of rather general lattice processes, while Appendix B demonstrates that

when the spatial process is stationary and has a finite half-plane AR representation

the covariance structure satisfies a generalisation of the Toeplitz property familiar from

the theory of stationary time series. It also provides an upper bound on the number

of unique autocovariances that occur in the covariance matrix of finite, stationary and

unilateral processes. Proofs of theorems and lemmas are contained in Appendices C and

D respectively.

2 Consistency of truncated AR predictors

Whittle (1954) observed that the estimation of the parameters of multilateral autore-

gressive processes by least squares leads to inconsistency. This is due to the presence in

the likelihood function of a Jacobean term which depends on the parameters. A repre-

sentation on a ‘half-plane’ permits least squares estimation, however, while in general

Whittle likelihood based estimates lack a closed form. He showed, quite generally, that

multilateral spatial processes have a (possibly infinite) unilateral representation. Helson

and Lowdenslager (1958, 1961) showed that even more generally all stationary, purely

non-deterministic spatial processes have a half-plane (i.e. unilateral), infinite, moving-

average representation. Whittle (1954) points out that the recovery of the parameters

of the original multilateral scheme from the unilateral representation is not as straight-

forward as with, say, a bilateral d = 1 model, indeed even impossible. On the other

hand, the unilateral representation is extremely useful if our interest is in prediction or

spectral density estimation. As in Tjøstheim (1983) we define the half-plane as all t in

the set

S∞
1+ = {t1 > 0; t1 = 0, t2 > 0; ∙ ∙ ∙ ; t1 = ∙ ∙ ∙ = td−1 = 0, td > 0} ∩ Zd. (2.1)

The special case with ti ≥ 0, i = 1 . . . , d, is referred to as a quarter-plane. Write
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z = (z1, . . . , zd)
′ with complex-valued elements and s = (s1, . . . , sd)

′ with integer-valued

elements, and zs =
∏d

j=1 z
sj

j . Define the rational function (see Rosenblatt (1985), p.

228) B(z) =
∑

s∈S∞
1+∪0 bsz

s, with 0 the d-dimensional zero vector. Then we assume

Assumption A. There exist unknown scalars bs and iid random variables εt, t ∈ Zd with

Eεt = 0 and Eε2
t = σ2 such that

xt =
∑

s∈S∞
1+∪0

bsεt−s,
∑

s∈S∞
1+∪0

|bs| < ∞, b0 6= 0. (2.2)

B(z) is bounded away from zero for |zi| = 1, i = 1, . . . , d.

Martingale assumptions can replace the iid imposition on εt, but we choose to avoid these

as they rely on notions of ordering that can be arbitrary. Writing Π = (−π, π]d, denote

by f(λ) the spectral density of xt, λ ∈ Π. If
∫
Π log f(λ)dλ > −∞, then, e.g., Helson and

Lowdenslager (1958) and Korezlioglu and Loubaton (1986) prove that Assumption A

will hold, extending the Wold decomposition of time series analysis. Under Assumption

A

f(λ) =
σ2

(2π)d

∣
∣
∣
∣
∣
∣

∑

s∈S∞
1+∪0

bse
iλ′s

∣
∣
∣
∣
∣
∣

2

, λ ∈ Π. (2.3)

∣
∣
∣
∑

s∈S∞
1+∪0 bse

iλ′s
∣
∣
∣ being bounded and bounded away from zero guarantees the invert-

ibility of xt i.e. the existence of ds, s ∈ S∞
1+, such that

xt =
∑

s∈S∞
1+

dsxt−s + εt, t ∈ Zd,
∑

s∈S∞
1+

|ds| < ∞. (2.4)

Writing D(z) = 1 −
∑

s∈S∞
1+

dsz
s, Wiener’s Lemma (Rudin (1973) p. 266), implies that

if D(z) 6= 0 for |zi| = 1, i = 1, . . . , d, and B(z) is bounded away from zero for |zi| = 1,

i = 1, . . . , d, then
∑

s∈S∞
1+∪0 |bs| < ∞, implying a regularity condition on f(λ). By

Assumption A and (2.3) there exist real numbers m,M satisfying 0 < m ≤ M < ∞,

such that

m ≤ f(λ) ≤ M. (2.5)

As xt is stationary, we define the autocovariances γ(k) = Extxt+k with t, k ∈ Zd.

Lemma 2.1. Suppose Assumption A holds. Then
∑

k∈Zd |γ(k)| < ∞.

We denote by C a positive, arbitrarily large but finite generic constant, independent of

N .

Assumption B. For some v ∈ (1, 2], E |εt|
2v ≤ C for all t ∈ Zd.

Expressing the moment condition in terms of v delivers conditions restricting the rate of

growth of the parameter space relative to sample size that become more stringent as v →

1. We observe xt on the rectangular lattice L =
{
t ∈ Zd : −nLi ≤ ti ≤ nUi , i = 1, . . . , d

}
,

nUi , nLi ≥ 0, i = 1, . . . , d. Define ni = nLi + nUi + 1, i = 1, . . . , d, and N =
∏d

i=1 ni.
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Consistency in our setting is only possible if sample size increases in all directions, and

mild regularity in this increase is implied by

Assumption C. For each nLi , i = 2, . . . , d, and nUi , i = 2, . . . , d, and sufficiently large

N , there exists χ > 0 and c1 > 0 such that

nU1(N) ≥ c1N
χ, ni(N) ≥ c1N

χ. (2.6)

Robinson and Vidal Sanz (2006) point out that χ ≤ 1/d always. We will first ob-

tain a least squares predictor for xt based on a truncated autoregression of order p =

(pL1 , pU1 ; . . . ; pLd
, pUd

), for non-negative integers pLi , pUi , i = 1, . . . , d. In view of the

half-plane representation we can a priori set, say, pL1 = 0. Now define

S [−pL, pU ] = {t ∈ L : −pLi ≤ ti ≤ pUi , i = 1, . . . , d} ∩ S∞
1+, (2.7)

which is the truncated set of dependence ‘lags’. Denote pi = pLi + pUi , i = 1, . . . , d.

Let h(p) denote the total number of autoregressive parameters to be estimated in the

truncated predictor. Then

h(p) = pUd
+

d−1∑

j=1

d∏

i=j+1

(pi + 1) pUj . (2.8)

Our asymptotic theory consists of finding divergent (as N → ∞) functions pLi =

pLi(N), pUi = pUi(N), i = 1, . . . , d such that we can consistently approximate the infi-

nite representation with truncated predictors. Thus ni(N) ≥ c1N
χ in Assumption C is

taken to hold as both nLi and nUi diverge with N . We emphasize the dependence of the

orders on N , but for notational convenience suppress explicit reference to this. The prac-

titioner may prefer to choose only one truncation length for each dimension. In this case

pLi = pUi = pU1 = p∗, i = 2, . . . , d, and (2.8) indicates that h(p∗) =
(
(2p∗ + 1)d − 1

)
/2.

A more flexible approach to modelling can be to choose a divergent sequence p̄ (depen-

dent on N , and diverging slower than N) and take pLi = pUi = pU1 to be the sequence

[(ni/N) p̄], i = 2, . . . , d, where [x] denotes the integer part of x.

Write ns =
∏d

i=1 (ni − si) for non-negative integers si, i = 1, . . . , d and introduce

the covariance estimates

γ̂(k) = n−1
p

∑

t(p,n)

′′
xtxt+k, k ∈ S [−pL, pU ] ,

where it is assumed that ni > pi ≥ 0 for i = 1, . . . , d and the sum
∑′′

t(p,n) is defined

analogously to Section A with respect to n and p (see (A.3) for range of summation).

It contains np terms by definition. The estimates γ̂(k) incorporate the device for edge-

effect correction suggested by Guyon (1982). Consider instead the estimates γ̃(k) =

N−1
∑′′

t(|k|,n)xtxt+k, where |k| = (|k1| , . . . , |kd|)
′. Then for fixed k, as the ni → ∞,
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the bias of γ̃(k) for γ(k) is of order
∑d

i=1 n−1
i . The inequality between arithmetic and

geometric means indicates that
∑d

i=1 n−1
i ≥ dN− 1

d with equality implying that the ni

all increase at the same, N
1
d , rate. This inequality implies that the bias of γ̃(k) is

of order no less than N− 1
d . It is clear that this worsens with increasing d, but for

d = 1 gives the usual ‘parametric’ rate of bias. We assumed that xt has zero mean, but

this may be relaxed to Ext = α, t ∈ Zd. In this case lag k covariance estimates can

be γ∗(k) = n−1
p

∑′′
t(p,n) (xt − x̄) (xt+k − x̄) , where x̄ = N−1

∑
t∈L xt, and the latter is

readily shown to be N
1
2 -consistent for α.

Lemma 2.2. With n = (n1, n2, . . . , nd)
′, for such positive integers ni and integers ki

that satisfy ni > |ki| for i = 1, . . . , d, let

Skn = n|k|
−1
∑

t(|k|,n)

′′
ut, ut =

∑

r∈Zd

∑

s∈Zd

ξrs,t, t ∈ L, (2.9)

with the ξrs,t zero mean, independent (over t ∈ L) random variables. For some w′ ∈

(1, 2], suppose there exist η1,r, η2,r, r ∈ Zd, such that

E |ξrs,t|
w′

≤ |η1,rη2,s|
w′

,
∑

r∈Zd

|ηj,r| < ∞, j = 1, 2, (2.10)

for all r, s ∈ Zd and t ∈ L. Then E |Skn|
w′

≤ C n1−w′

|k| .

Lemma 2.3. If Assumptions A and B hold, E |γ̂(k) − γ(k)|v ≤ C n1−v
p .

Denote by ψh(p) (Ψh(p)) the h(p) × 1 vector (h(p) × h(p) matrix) with typical element

γ(k) (γ(k − j)), j, k ∈ S [−pL, pU ], and by ψ̂h(p) (Ψ̂h(p)) the h(p) × 1 vector (h(p) × h(p)

matrix) constructed in exactly the same way but using γ̂(k) in place of γ(k). Also write

ΔC(p) = Ψ̂h(p)−Ψh(p) and δh(p) = ψ̂h(p)−ψh(p), with C(p) denoting an upper bound for the

number of unique covariances in Ψh(p) (see Proposition B.1). For a generic rectangular

matrix B, we will denote by ‖B‖R and ‖B‖ the largest absolute row-sum of B and

square root of the largest eigenvalue of B′B respectively.

Lemma 2.4. If Assumptions A and B hold, E
∥
∥δh(p)

∥
∥v ≤ C h(p)vn1−v

p .

Lemma 2.5. If Assumptions A and B hold, E
∥
∥ΔC(p)

∥
∥v ≤ C C(p)vn1−v

p .

The d > 1 case differs from d = 1 in the number of unique covariances in Ψh(p), these

numbering h(p) in the latter case but at most C(p) ≥ h(p) in the former. More details

are in Appendix B.2.

Lemma 2.6. Let ρ be any eigenvalue of Ψh(p). Then, under Assumption A, (2π)dm ≤

ρ ≤ (2π)dM.

This lemma is a d > 1 generalization of the statement in Grenander and Szegö (1984),

p. 64.
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Corollary 2.7. Under the conditions of Lemma 2.6,
∥
∥
∥Ψ−1
h(p)

∥
∥
∥ ≤ C.

Writing dh(p) for the h(p) × 1 vector with elements ds, s ∈ S [−pL, pU ], we identify

dh(p) = Ψ−1
h(p)ψh(p). (2.11)

For ni and pi satisfying ni > pi, i = 1, . . . , d, define a least squares predictor of order

h(p) by d̂h(p) = arg min
as,s∈S[−pL,pU ]

n−1
p

∑

t(p,n)

′′



xt −
∑

s∈S[−pL,pU ]

asxt−s





2

. Then

d̂h(p) = Ψ̂−1
h(p)ψ̂h(p), (2.12)

and we denote the elements of d̂h(p) by d̂s,h(p), s ∈ S [−pL, pU ]. Denote by ds,h(p) the

scalars

arg min
as,s∈S[−pL,pU ]

E



xt −
∑

s∈S[−pL,pU ]

asxt−s





2

, (2.13)

and the minimum by σ2
h(p). By a predictor of order l < h(p), we will mean d̂l with the l

lags corresponding to the first l subscripts in the first row of Ψh(p) as ordered in Section

B. Throughout the sequel we assume that h(p)−1 + C(p)−1 → 0, as N → ∞.

Theorem 2.1. Let Assumptions A, B and C hold, the sequence p be chosen as a function

of N such that
C(p)

N
v−1

v

−→ 0, as N → ∞, (2.14)

and ∑

t∈S∞
1+\S[−pL,pU ]

|dt| −→ 0 as N → ∞. (2.15)

Then ∥
∥
∥d̂h(p) − dh(p)

∥
∥
∥

p
−→ 0, as N → ∞.

Condition (2.15) says that the dependence from ‘distant’ lags must decline sufficiently

fast. The result for d > 1 differs from the case d = 1 in one important sense. In the

latter condition (2.14) applies to the dimension of the parameter space, because this

dimension equals the number of unique covariances in Ψh(p). Now this is not the case

due to (B.4). By restricting the growth of C(p) relative to N further, we can strengthen

the mode of convergence to almost-sure convergence.

Theorem 2.2. Let Assumptions A, B, C and (2.15) hold, the sequence p be chosen as

a function of N such that

C(p) = O

(
N

v−1
v

(log N)
v+1

v (log log N)v

)

and C(p) < K2m as N → ∞, (2.16)
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for some integer m such that 2m ≤ N and some K < 1. Then

∥
∥
∥d̂h(p) − dh(p)

∥
∥
∥

a.s.
−→ 0, as N → ∞.

Define the error variance estimate as

σ̂2
h(p) = n−1

p

∑

t(p,n)

′′



xt −
∑

s∈S[−pL,pU ]

d̂s,h(p)xt−s





2

.

Theorem 2.3. Under the conditions of Theorem 2.1, σ̂2
h(p)

p
−→ σ2, while under the

conditions of Theorem 2.2, σ̂2
h(p)

a.s.
−→ σ2, both as N → ∞.

3 Uniform consistency of AR spectral density estimates

We now introduce spectral density estimates. First, for λ ∈ Π, the spectral density of

xt under (2.4) is given by f(λ) = σ2(2π)−d
∣
∣
∣1 −

∑
s∈S∞

1+
dse

is′λ
∣
∣
∣
−2

, and we estimate this

using

f̂h(p)(λ) =
σ̂2
h(p)

(2π)d
∣
∣
∣1 −

∑
s∈S[−pL,pU ] d̂s,h(p)eis′λ

∣
∣
∣
2 .

Berk (1974) established pointwise consistency of such an estimate when d = 1, and

Bhansali (1980) proved that the convergence is uniform under the same conditions.

Theorem 3.1. Let Assumptions A, B and C hold, the sequence p be chosen as a function

of N such that
C(p)h(p)

1
2

N
v−1

v

→ 0, as N → ∞, (3.1)

and

h(p)
1
2

∑

t∈S∞
1+\S[−pL,pU ]

|dt| → 0, as N → ∞. (3.2)

Then

sup
λ∈Π

∣
∣
∣f̂h(p)(λ) − f(λ)

∣
∣
∣

p
−→ 0, as N → ∞.

The conditions imposed for this theorem were stronger than those for results in Section

2 in two ways. First, the condition restricting the rate of growth of the parameter

space relative to sample size is stronger than the one imposed for Theorems 2.1 and 2.3.

For example, if v = 2 then (2.14) required C(p)/N1/2 → 0 whereas (3.1) in Theorem

3.1 requires C(p)h(p)1/2/N1/2 → 0. Note that for d = 1 the latter reduces to the

condition established by Berk (1974), which is, in fact, a particular case of the condition

in Robinson (1979). The second aspect of difference is the requirement in (3.2) that the

dependence on ‘distant’ lags decline sufficiently fast to overcome norming by h(p)
1
2 .

9



Theorem 3.2. Let Assumptions A, B, C, (3.2) hold, and choose the sequence p as a

function of N such that

C(p)h(p)
1
2 = O

(
N

v−1
v

(log N)
v+1

v (log log N)v

)

and C(p) < K2m as N → ∞, (3.3)

for some integer m such that 2m ≤ N and some K < 1. Then

sup
λ∈Π

∣
∣
∣f̂h(p)(λ) − f(λ)

∣
∣
∣

a.s.
−→ 0, as N → ∞.

4 Asymptotic normality

In this section we take v = 2 in Assumption B, this being standardly imposed for central

limit theorems in such settings. For any index t in the sum
∑′′

t(|p|,n) we write Xt(p) for

the h(p)×1 vector with typical element xt−s, s ∈ S [−pL, pU ]. Denote by α(p) an h(p)×1

vector of constants, not all zero.

Lemma 4.1. Let Assumptions A, B, C and (3.1) hold, with v = 2, and

N
1
2

∑

s∈S∞
1+\S[−pL,pU ]

|ds| −→ 0, as N → ∞, (4.1)

Then, as N → ∞,

N
1
2 α(p)′

(
d̂h(p) − dh(p)

)
/h(p)

1
2 − N

1
2

∑

t(p,n)

′′α(p)′Ψ−1
h(p)Xt(p)εt/nph(p)

1
2

p
−→ 0. (4.2)

Lemma 4.2. Write Dh(p)(z) = 1 −
∑

s∈S[−pL,pU ] ds,h(p)z
s and let Assumption A hold.

Then limh(p)→∞ Dh(p)(z) = D(z) for |zi| ≤ 1, i = 1, . . . , d.

Lemma 4.3. Let the conditions of Lemma 4.2 hold. Write π = (π, . . . , π)′, let w1 =

ū1, . . . , wq = ūq be complex numbers for some positive integer q, w0 and u0 real numbers,

for t ∈ S∞
1+, λi ∈ (0, π)d define

βt = w0 + w1e
it′λ1 + ∙ ∙ ∙ + wqe

it′λq + w0e
it′π + u1e

−it′λ1 + ∙ ∙ ∙ + uqe
−it′λq , (4.3)

and α(p) be the h(p) × 1 vector with typical element βs, s ∈ S [−pL, pU ]. Then

lim
h(p)→∞

h(p)−1α(p)′Ψ−1
h(p)α(p) = μ,

where μ = w2
0/(2π)df(0)+2w1u1/(2π)df(λ1)+ ∙ ∙ ∙+2wquq/(2π)df(λq)+u2

0/(2π)df(π).

Lemmas 4.1, 4.2 and 4.3 are lattice extensions of results in Berk (1974). The next theo-

rem establishes the asymptotic distribution of a linear combination (with trigonometric

10



coefficients) of the autoregression coefficient estimates. The distribution is analogous to

that derived when d = 1.

Theorem 4.1. Let Assumptions A, B and C hold, with v = 2 and d ≥ 2, and α(p) be

as in Lemma 4.3. Choose the sequence p as a function of N such that (2.14) holds and

h(p)

N
χ
4

+ N
1
2

∑

s∈S∞
1+\S[−pL,pU ]

|ds| −→ 0, as N → ∞. (4.4)

Then, as N → ∞,

(
N

1
2 /h(p)

1
2

)
α(p)′

(
d̂h(p) − dh(p)

)
d

−→ N
(
0, σ2μ

)
, as N → ∞.

It is straightforward to extend the argument to allow for the asymptotic distribution of

finitely many linear combinations by replacing α(p) with an s × h(p) matrix with full

row rank, s fixed, but we consider s = 1 for simplicity. Condition (4.4) presents an

important difference from the case when d = 1, where the first term on the LHS of the

limit is replaced by the much sharper h(p)/N
1
2 . On the other hand, (4.4) can never be

this sharp as χ = 1 at most when d = 1, thus reflecting the difference in proof techniques

for time series and lattice cases noted by Robinson and Vidal Sanz (2006), and imposing

a considerable tightening on the rate of growth of h(p) that strengthens with increasing

d. Define

Ĉh(p)(λ) = 1 +
∑

s∈S[−pL,pU ]

d̂s,h(p) cos
(
s′λ
)
, C(λ) = 1 +

∑

s∈S∞
1+

ds cos
(
s′λ
)
,

Ŝh(p)(λ) =
∑

s∈S[−pL,pU ]

d̂s,h(p) sin
(
s′λ
)
, S(λ) =

∑

s∈S∞
1+

ds sin
(
s′λ
)
,

the 2(q + 1) × 1 vector th(p) to have elements

(
Ĉh(p)(0) − C(0)

)
,
(
Ĉh(p)(λ1) − C(λ1)

)
, . . . ,

(
Ĉh(p)(λq) − C(λq)

)
,

(
Ĉh(p)(π) − C(π)

)
,
(
Ŝh(p)(λ1) − S(λ1)

)
, . . . ,

(
Ŝh(p)(λq) − S(λq)

)
, (4.5)

and the 2(q + 1) × 2(q + 1) matrix

Γ =
(
σ2/ (2π)d

)
diag (1/f(0), 1/2f (λ1) , . . . , 1/2f (λq) , 1/f(π),

1/2f (λ1) , . . . , 1/2f (λq)) . (4.6)

Lemma 4.4. Under the conditions of Theorem 4.1,

(N/h(p))
1
2 th(p)

d
−→ N(0, Γ), as N → ∞.

Lemma 4.4 is analogous to results in the time series literature, cf. Parzen (1969), Berk

11



d = 2 d = 3
τ 0.05 0.075 0.10 τ 0.0075 0.015 0.03

n∗ p MISE MISE MISE n∗ p MISE MISE MISE

5 1 0.1819 0.3873 0.7297 3 1 0.2878 0.9122 0.8654
7 1 0.1217 0.2923 0.5764 4 1 0.1469 0.2439 0.3832
9 1 0.1132 0.2706 0.5301 5 1 0.1330 0.2329 0.3818
9 2 0.0478 0.0691 0.1166 6 1 0.1391 0.2407 0.3933

11 1 0.1092 0.2717 0.5064 7 1 0.1374 0.2405 0.3835
11 2 0.0287 0.0534 0.1052 8 1 0.1364 0.2387 0.3852
11 3 0.0682 0.0890 0.1056 8 2 0.1381 0.2530 0.5170

Table 5.1: Monte Carlo MISE of f̂h(p)(λ̄), λ̄ ∈ G

(1974). Now define the (q + 2) × 1 vector sh(p) to have elements

f̂h(p)(0) − f(0), f̂h(p)(λ1) − f(λ1), . . . , f̂h(p)(λq) − f(λq), f̂h(p)(π) − f(π), (4.7)

and the (q + 2) × (q + 2) matrix

Ω = 2 diag
(
2f2(0), f2 (λ1) , . . . , f 2 (λq) , 2f2(π)

)
. (4.8)

Theorem 4.2. Let the conditions of Theorem 4.1 hold with (2.14) replaced by (3.1).

Then

(N/h(p))
1
2 sh(p)

d
−→ N(0, Ω), as N → ∞.

The asymptotic distribution of the spectral density estimates at various frequencies

mirrors that in the time series case (cf. Anderson (1971), ch. 9, Berk (1974)), albeit

under the stronger condition (4.4) and different condition (3.1).

5 Monte Carlo simulations

We examined finite-sample behaviour in a set of Monte Carlo simulations. As in Robin-

son and Vidal Sanz (2006) and Robinson (2007) we generated xt using

xt = σεt + στ
1∑

s1=−1

∙ ∙ ∙
1∑

sd=−1
s 6=0

εt−s, (5.1)

for d = 2, 3, similar to one considered in Haining (1978). Then

f(λ) =
σ2

2πd
{1 + τνd (λ)} , (5.2)

12



d = 2
τ 0.05 0.075 0.10

n∗ p Bias Std. Dev. Bias Std. Dev. Bias Std. Dev.

5 1 0.0238 0.0665 0.0681 0.3063 0.1496 0.4834
7 1 0.0121 0.0312 0.0367 0.0661 0.0876 0.1523
9 1 0.0112 0.0228 0.0321 0.0513 0.0739 0.1024
9 2 0.0090 0.0830 0.0014 0.0551 −0.0028 0.0495

11 1 0.0105 0.0200 0.0317 0.0434 0.0678 0.0838
11 2 0.0023 0.0268 0.0002 0.0317 −0.0063 0.0383
11 3 0.0212 0.1978 0.0263 0.1191 0.0319 0.1165

d = 3
τ 0.0075 0.015 0.03

n∗ p Bias Std. Dev. Bias Std. Dev. Bias Std. Dev.

3 1 0.0064 0.1164 0.0023 0.0161 0.0728 0.8927
4 1 −0.0001 0.0021 0.0003 0.0032 0.0041 0.0094
5 1 −0.0002 0.0013 0.0000 0.0019 0.0029 0.0058
6 1 −0.0004 0.0010 −0.0002 0.0014 0.0028 0.0041
7 1 −0.0003 0.0008 −0.0002 0.0010 0.0024 0.0037
8 1 −0.0003 0.0007 −0.0002 0.0008 0.0022 0.0033
8 2 0.0003 0.0020 0.0027 0.0049 0.0207 0.0314

Table 5.2: Monte Carlo bias and standard deviation of f̂h(p)(0)

with νd (λ) =
∏d

i=1 (1 + 2 cos λj) − 1. Robinson and Vidal Sanz (2006) show that a

sufficient condition for invertibility of (5.1) is

|τ | <
(
3d − 1

)−1
. (5.3)

We took L = {t : −n∗ ≤ ti ≤ n∗, i = 1, . . . , d}, i.e. nLi = nUi = n∗ for all i = 1, . . . , d,

implying N = (2n∗ + 1)d, and generated NID(0,1) εt (so σ2 = 1) on L in each of the

500 replications. We experimented with more values of τ and n∗ than Robinson (2007),

using the following specifications:

d = 2 : τ = 0.05, 0.075, 0.10; n∗ = 5, 7, 9, 11

d = 3 : τ = 0.0075, 0.015, 0.03; n∗ = 3, 4, 5, 6, 7, 8.

We maintained pLi = pUi = pU1 = p, i = 2, . . . , d and for d = 2 took p = 1 for n∗ = 5, 7;

p = 1, 2 for n∗ = 9 and p = 1, 2, 3 for n∗ = 11 , while for d = 3 we took p = 1 for

n∗ = 3, 4, 5, 6, 7; p = 1, 2 for n∗ = 8. The choices of τ satisfy (5.3).

Π was discretized with gaps of 0.10 in each dimension and we call this grid G. In

Table 5.1 we report Monte Carlo mean integrated squared error (MISE), which we define
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Figure 5.1: Spectral estimates for d = 2, n∗ = 11, τ = 0.05. (a) True spectrum (b) AR estimate with
p = 1 (c) AR estimate with p = 2 (d) AR estimate with p = 3

as the Euclidean norm of f̂h(p)(λ̄) − f(λ̄) evaluated at frequencies in G, i.e. MISE =
{
∑

λ̄∈G

(
f̂h(p)

(
λ̄
)
− f

(
λ̄
))2
} 1

2

.

Regardless of the value of d, MISE is smaller for smaller values of τ . As n∗ increases

MISE decreases for each value of τ , but not monotonically when d = 3. In the following

discussion any triple is to be read as (n∗, d, p). The MISE for (9, 2, 1) dominates that

for (9, 2, 2) for any value of τ , and likewise the MISE for (11, 2, 1) compared to (11, 2, 2).

However there is a cost in allowing increase of p and that is reflected in the MISE for

(11, 2, 3) dominating that for (11, 2, 2). Similar patterns are seen for other values of n∗

but the results for bigger p than those shown are not worth reporting for either value

of d. The case (8, 3, 1) exhibits very little change from (7, 3, 1), while (8, 3, 2) performs

worse than (8, 3, 1) for all values of τ .

Table 5.2 reports Monte Carlo bias and standard deviation (SD) at λ = 0. The biases

decrease monotonically for all values of τ when d = 2, while for d = 3 the decrease is

not monotonic always, although the values seem quite acceptable. The biases are much

smaller for d = 3, almost vanishing for larger n∗ and smaller τ . These features match

those of the untapered and tapered periodogram based estimates in Robinson (2007),

but there other features that differ from that paper. All biases there are negative, but we

find that they are mostly positive. For d = 2 our biases sometimes dominate (in absolute

value) those in Robinson (2007) but can become better than untapered estimates e.g.

for n∗ = 9. We experimented with more values of n∗ (not reported) for both d = 2 and
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Figure 5.2: Spectral estimates for d = 2, n∗ = 11, τ = 0.075. (a) True spectrum (b) AR estimate with
p = 1 (c) AR estimate with p = 2 (d) AR estimate with p = 3

d = 3 and find that the biases are acceptable for small values of p. Unlike Robinson

(2007) we find that the SD also reduces monotonically with n∗ and for d = 3 becomes

zero up to two decimal places when n∗ ≥ 4 for all τ , with just one exception for (8, 3, 2).

For d = 2 such behaviour is not observed, but SD does decline as n∗ increases.

The behaviour of estimates relative to true spectra for d = 2 is illustrated graphically

over G with n∗ = 11 for τ = 0.05, 0.075, 0.10 in Figures 5.1, 5.2 and 5.3 respectively.

In each figure the top-left surface, labelled (a), plots the true spectral density. The

figures labelled (b), (c), (d) show plots of the autoregressive spectral density estimate

computed using p = 1, 2, 3, respectively. All spectra are plotted on a log10 scale. Figure

5.1 shows that the estimated spectrum when τ = 0.05 has too sharp a peak for p = 1,

but this flattens to one resembling the true peak for p = 2. As seen in Tables 5.1 and

5.2, estimates worsen for p = 3, illustrated by the choppy and very sharp-peaked surface

in Figure 5.1(d). For τ = 0.075, Figure 5.2 exhibits similar features, with p = 2 giving

the best estimate. Finally, for τ = 0.10 we see again from Figure 5.3 that p = 2 does

best but compared with Figures 5.1(c) and 5.2(c) the contours of the true spectrum are

not as well estimated, as observed numerically in Tables 5.1 and 5.2. For p = 3 the

estimated surface exhibits poor properties by flattening, as opposed to the sharp peaks

exhibited by Figures 5.1(d) and 5.2(d).
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Figure 5.3: Spectral estimates for d = 2, n∗ = 11, τ = 0.10. (a) True spectrum (b) AR estimate with
p = 1 (c) AR estimate with p = 2 (d) AR estimate with p = 3

6 Empirical examples

Data for both our examples is available at www.spatial-statistics.com.

6.1 Los Angeles house price data

We use median house price data for census blocks in California from the 1990 census

from Pace and Barry (1997). We confine our analysis to the city of Los Angeles. The

data is gridded as follows: an 8 × 20 grid of square cells, each with about a 4.8 km

edge is superimposed on Los Angeles, from 33.752◦N to 34.152◦N and 117.439◦W to

118.439◦W. The grid covers a total of 5450 observations. The average of the median

house values for each cell is calculated and the 160 such observations form our sample.

There are 8 empty cells, to which we assign the value zero in the spirit of the time series

missing data literature. The gridding is shown in Figure 6.1. Smaller grid cells would

lead to more empty cells, and Bronars and Jansen (1987) note that while choice of cell

size is somewhat arbitrary it is analogous to selecting quarterly, monthly or weekly data

in time series analysis. House price data is not a zero mean process, so we subtract the

sample mean using the whole sample from each cell as remarked in Section 2.

Our lag order choices are pU1 = 1, pL2 = pU2 = 5, which enable clear identification

of peaks. Some spatial generalisations of various time series information criteria for

selecting lag orders have been discussed in the literature for the quarter-plane case, c.f.

Tjøstheim (1981) for a generalisation of the Final Prediction Error (FPE) criterion of
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Figure 6.1: Gridded Los Angeles median house price data
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Figure 6.2: Spectral density estimate for Los Angeles median house price data

Akaike (1970) and the Bayesian Information Criterion (BIC) of Schwarz (1978). However

half-plane extensions seem to be unavailable in the literature and ad hoc extensions we

tried do not work very well. To be precise using FPE = σ̂2
h(p)(N +h(p))/(N −h(p)) leads

to overfitting and makes it hard to identify peaks clearly, in this example suggesting

pU1 = 1, pL2 = pU2 = 7. This is clearly an area for future research.

The estimated spectrum is plotted on a log10 scale in Figure 6.2. Due to symmetry

we only plot the results over (−π, π] × [0, π]. There are very clear and strong peaks at

low frequency, illustrating power in structural low frequency components. As discussed

in the introduction these correspond to components that change infrequently over the

space. High frequency peaks are not very strong, but clear ripples are visible indicating

moderate power in noise components that change frequently over space such as pollution,

sunshine, crime rate and proximity to busy roads.
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Figure 6.3: Gridded county level US voter turnout data
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Figure 6.4: Spectral density estimate for county level US presidential election data

6.2 US presidential election voter turnout data

In this example we study county level voter turnout (defined as votes cast divided by

total population) data from the 1980 US presidential election, used in Pace and LeSage

(2003). Following a strategy similar to Bronars and Jansen (1987) we grid the data over

a 16× 29 grid of square cells, each with about a 69.3 km edge, from 30.20◦N to 41.72◦N

and 81.52◦W to 102.4◦W. As Figure 6.3 illustrates, the choice of coordinates gives the

largest possible sample size while accounting for the irregular border and coastline of

the US, as well as the relative sparsity of observations west of our imposed North-South

border that runs from Nebraska to Texas. The grid covers a total of 1539 counties, and

the voter turnout is taken as recorded at the centroid of each county. The average of the

voter turnout for the centroids that lie in each cell is calculated, and the sample mean

subtracted from each cell, yielding 464 observations. There are no empty cells and since

a centroid can only appear in one cell there is no overlap. We take pU1 = pL2 = pU2 = 3,

noting again that the FPE suggested pU1 = pL2 = pU2 = 5 leads to an uninformative

spectrum.
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The estimated spectrum is plotted in Figure 6.4, again over half of the frequency

plane and on a log10 scale. There is a very strong peak at low frequency, indicating the

power in low frequency structural components. The 1980 election was a historic one,

with Ronald Reagan defeating Jimmy Carter in a landslide victory. Thus the closeness

of the race could be interpreted to not change very frequently over space, contributing

to a strong low frequency component. However there are high frequency ripples and

one strong high frequency peak, though not as strong as the low frequency one. Our

analysis suggests that turnout rates in this election were influenced quite strongly by

factors that change with high frequency over space, such as weather and demographic

composition of the electorate. The latter includes age distribution, racial distribution,

gender distribution and socio-economic distribution in the various counties. This seems

reasonable in an election in which an incumbent Democratic candidate was heavily

defeated by a Republican challenger.
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A Bounds for moments of partial sums of lattice processes

In this appendix we establish bounds for w-th absolute moments of partial sums of a

class of lattice processes, with w ∈ (1, 2]. The class of processes under consideration

is one that arises in many applications, so the result may be of independent interest

due to its generality. Consider a scalar lattice process {ζt : t ∈ L} defined by ζt =
∑

s1∈Zd . . .
∑

sq∈Zd ξssst, t ∈ L, where sss =
(
s1, . . . , sq

)
. This definition covers situations

where certain statistics of spatial processes may be expressible in terms of products of

sums of random variables. Assume that this process satisfies the following conditions:

Assumption D. ξssst are mean-zero and independent over t ∈ L.

Assumption E. For some w ∈ (1, 2] positive constants
{
ηks : s ∈ Zd, 1 ≤ k ≤ q

}
, {at : t ∈ L}

exist such that

E |ξssst|
w < ηw

sss aw
t , (A.1)

where ηsss =
∏q

k=1 ηksk and

∑

s∈Zd

ηks < ∞, 1 ≤ k ≤ q. (A.2)

The result in this section is similar to Lemma 1 of Robinson (1978) for d = 1, but he

allowed for martingale ξststst, but as discussed earlier we avoid this.

Before we can introduce our result, we need to establish some more notation and

illustrate it with examples. Write L = (L1, . . . , Ld)
′, 0 < Li ≤ nLi +nUi for i = 1, . . . , d,

and define SL =
∑′

t(L)ζt, where
∑′

t(L) runs over t satisfying −nLi < ti ≤ Li − nLi .

There are
∏d

i=1 Li summands in this sum. For any multiple index t ∈ Zd, write |t| =

(|t1| , . . . , |td|)
′. Also write M = (M1, . . . ,Md)

′, Mi possibly negative, with |Mi| < Li,

and define SML =
∑′′

t(|M |,L)ζt, where
∑′′

t(|M |,L) runs over t satisfying

−nLi < ti ≤ Li − |Mi| − nLi ; if Mi < 0,

Mi − nLi < ti ≤ Li − nLi ; if Mi ≥ 0, (A.3)

indicating that there are
∏d

i=1 (Li − |Mi|) summands in this sum. If Mi ≥ 0 for each

i = 1, . . . , d then, unlike in time series, SML 6= SL − SM . In the d-dimensional lattice

case we may write SML = SL − S∗
ML with S∗

ML =
∑∗

t(M,L)ζt,
∑∗

t(M,L) running over

t satisfying −nLi < ti ≤ Li with at least one i = 1, . . . , d for which ti ≤ Mi − nLi .

There are
∏d

i=1 Li −
∏d

i=1 (Li − Mi) summands in this sum. For d = 2, SL con-

sists of the sum of observations at those points in the intersection of points to the

north-east of (−nL1 + 1,−nL2 + 1) and to the south-west of (L1, L2). SM is visualised

similarly. SML consists of the sum of observations at those points in the intersec-

tion of points to the north-east of (−nL1 + M1 + 1,−nL2 + M2 + 1) and to the south-

west of (L1, L2). Figure A.1 illustrates these definitions for d = 2; nL1 = nL1 = 0;

nU1 = nU2 = 6; (L1, L2) = (4, 4) and (M1,M2) = (2, 2). Observations summed in SL
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(0, 0)

Figure A.1: Illustration of SL, SM , S∗
ML and SML, d = 2, nL1 = nL2 = 0; nU1 = nU2 = 6; (L1, L2) =

(4, 4) and (M1, M2) = (2, 2).

are those recorded at points within the solid-bordered boxed area. For SM , S∗
ML and

SML the points of observation are in the solid-bordered circular area, dashed polygo-

nal area and dotted circular area respectively. An alternative way of writing
∑′′

t(|M |,L)

is
∑

t,t−M∈LL
where LL =

{
t ∈ Zd : −nLi ≤ ti ≤ Li − nLi , i = 1, . . . , d

}
. Now define

bwL = 0 if L = (L1, . . . , Ld), Li ≥ 0 for i = 1, . . . , d with at least one Li = 0, and

bwL =
∑′

t(L)a
w
t if L = (L1, . . . , Ld), Li > 0 for i = 1, . . . , d. Similarly define bwML = 0

if L − |M | = (L1 − |M1| , . . . , Ld − |Md|), Li − |Mi| ≥ 0 for i = 1, . . . , d with at least

one Li − |Mi| = 0, and bwML =
∑′′

t(|M |,L)a
w
t if L − |M | = (L1 − |M1| , . . . , Ld − |Md|),

Li − |Mi| > 0 for i = 1, . . . , d. We are now in a position to prove the main result of this

section.

Lemma A.1. Let Assumptions D and E hold. Then E |SML|
w < C bwML.

Note that we did not impose stationarity of ζt, nor did we use any half-plane represen-

tation for ζt. In view of this Lemma A.1 is quite general.

B Properties of covariance matrices of autoregressive lat-

tice processes

B.1 A spatial generalisation of the Toeplitz property

In this appendix we generalize the Toeplitz property of covariance matrices for stationary

time series with finite autoregressive representations to stationary spatial processes with

finite half-plane or quarter-plane representations. It is necessary to introduce an ordering

of the elements of Zd in order to write the objects of interest in matrical and vectorial

form. Such an ordering can be carried out in many ways and as long as a consistent

ordering is followed it should not matter which particular one is used. However certain

orderings may be more beneficial in obtaining a clearer picture of the structure of the

covariance matrix. We consider the cases d = 2 and d = 3, and then discuss the situation

for general d. We also illustrate the relevant quarter-plane situations first and then build

on this treatment to explain the differences in the half-plane case, the latter being more
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complicated due to negative entries in the indices. The definitions are recursive in nature.

d = 2

This case is discussed quite extensively in the signal-processing literature for instance in

Tjøstheim (1981) and Wester et al. (1990).

Quarter-plane representations

Here pL2 = 0. For each l = 0, . . . , pU1 , define ψ̌
(1)
l (p) to be the (pU2 + 1)× 1 vector with

typical i-th element γ(l, i), i = 0, . . . , pU2 , and ψ̌(2)(p) =
(
ψ̌
′(1)
0 (p), ψ̌′(1)

1 (p), . . . , ψ̌′(1)
pU1

(p)
)′

,

the latter a nested vector of dimension (pU2 + 1)× (pU1 + 1). Finally denote by ψh(p) the

(pU1 + 1) (pU2 + 1) − 1 × 1 vector got by removing the first element of ψ̌h(p), which has

dimension h(p)×1. For each l = 0, . . . , pU1 , define Ψ̌(1)
l (p) to be the (pU2 + 1)×(pU2 + 1)

Toeplitz matrix with typical (i, j)-th element γ(l, i − j), i, j = 0, . . . , pU2 , Ψ̌h(p) to be

the block-Toeplitz matrix of (block) dimension (pU1 + 1) and (i, j)-th block Ψ(1)
i−j(p),

i, j = 0, . . . , pU1 , so

Ψ̌h(p) =










Ψ̌(1)
0 (p) Ψ̌(1)

−1(p) . . . . . . Ψ̌(1)
−pU1

(p)

Ψ̌(1)
1 (p) Ψ̌(1)

0 (p) . . . . . . Ψ̌(1)
−pU1

+1(p)
...

...
...

...

Ψ̌(1)
pU1

(p) Ψ̌(1)
pU1

−1(p) . . . . . . Ψ̌(1)
0 (p)










.

Denote by Ψh(p) the (pU1 + 1) (pU2 + 1) − 1 × (pU1 + 1) (pU2 + 1) − 1 matrix formed by

deleting the first row and first column of Ψ̌h(p). Then the dimension of Ψh(p) is h(p)×h(p).

Half-plane representations

Here we have pL2 > 0. For each l = 0, . . . , pU1 , define ψ̌
(1)
l (p) as the (p2 + 1) × 1

vector with typical i-th element γ(l, i), i = −pL2 , . . . , pU2 , and ψ̌h(p) as the (p2 + 1) ×

(pU1 + 1) × 1 nested vector with i-th block ψ̌
(1)
i (p), i = 0, . . . , pU1 . ψ̌h(p) has dimension

(pU1 + 1) (p2 + 1) × 1 with (pU1 + 1) (p2 + 1) = h(p) + pL2 + 1. Therefore, unlike in

the quarter-plane situation, we will now denote by ψh(p) the h(p) × 1 vector formed

by deleting the first pL2 + 1 elements of ψ̌h(p). For each l = 0, . . . , pU1 , define Ψ̌(1)
l (p)

to be the (p2 + 1) × (p2 + 1) Toeplitz matrix with typical (i, j)-th element γ(l, i − j),

i, j = 0, . . . , p2. Now, define Ψ̌h(p) to be the block-Toeplitz matrix of (block) dimension

(pU1 + 1) × (pU1 + 1) and (i, j)-th block Ψ̌(1)
i−j(p), i, j = 0, . . . , pU1 . So we have

Ψ̌h(p) =










Ψ̌(1)
0 (p) Ψ̌(1)

−1(p) . . . . . . Ψ̌(1)
−pU1

(p)

Ψ̌(1)
1 (p) Ψ̌(1)

0 (p) . . . . . . Ψ̌(1)
−pU1

+1(p)
...

...
...

...

Ψ̌(1)
pU1

(p) Ψ̌(1)
pU1

−1(p) . . . . . . Ψ̌(1)
0 (p)










.
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Ψ̌h(p) has dimension (pU1 + 1) (p2 + 1) × (pU1 + 1) (p2 + 1) with

(pU1 + 1) (p2 + 1) = h(p) + pL2 + 1. Again, unlike in the quarter-plane case, we will

denote by Ψh(p) the h(p) × h(p) matrix formed by deleting the first pL2 + 1 rows and

columns of Ψ̌h(p).

d = 3

Quarter-plane representations

In this case pL2 = pL3 = 0. We build the definitions analogously to the d = 2 case. For

l = 0, . . . , pU1 and m = 0, . . . , pU2 , define ψ̌
(1)
l,m(p) to be the (pU3 + 1) × 1 vector with

typical i-th element γ(l,m, i), i = 0, . . . , pU3 and ψ̌
(2)
m (p) as the (pU3 + 1)× (pU1 + 1)× 1

nested vector with i-th block ψ̌
(1)
i,m(p), i = 0, . . . , pU1 , and finally ψ̌h(p) as the twice

nested
∏3

i=1 (pUi + 1) × 1 block vector with i-th block ψ̌
(2)
i (p), i = 0, . . . , pU2 . Then

denote by ψh(p) the
∏3

i=1 (pUi + 1) − 1-dimensional vector formed by deleting the first

element of ψ̌h(p), which is h(p) × 1. We now define the matrices. For l = 0, . . . , pU1

and m = 0, . . . , pU2 , define Ψ̌(1)
l,m(p) to be the (pU3 + 1)× (pU3 + 1) Toeplitz matrix with

typical (i, j)-th element γ(l,m, i − j), i, j = 0, . . . , pU3 and Ψ̌(2)
m (p) to be the block-

Toeplitz with Topelitz blocks matrix of (block) dimension (pU1 + 1) and (i, j)-th block

given by Ψ̌(1)
i−j,m(p), i, j = 0, . . . , pU1 , and then write Ψ̌h(p) for the (thrice) block-Toeplitz

matrix of (block) dimension (pU2 + 1) × (pU2 + 1) and (i, j)-th block given by Ψ̌(2)
i−j(p),

i, j = 0, . . . , pU2 . Now denote by Ψh(p) the
∏3

i=1 (pUi + 1)−1-dimensional matrix formed

by deleting the first row and first column of Ψ̌h(p). Then the dimension of Ψh(p) is

h(p) × h(p).

Half-plane representations

Now pL2 > 0 or/and pL3 > 0. For l = 0, . . . , pU1 and m = −pL2 , . . . , pU2 , define ψ̌
(1)
l,m(p)

to be the (p3 + 1)×1 vector with typical i-th element γ(l,m, i), i = −pL3 , . . . , pU3 , ψ̌
(2)
m (p)

to be the (p3 + 1)×(pU1 + 1)×1 nested vector with i-th block ψ̌
(1)
i,m(p), i = 0, . . . , pU1 and

ψ̌h(p) to be the
∏3

i=1 (pi + 1)×1 nested vector with i-th block ψ̌
(2)
i (p), i = −pL2 , . . . , pU2 .

ψ̌h(p) has dimension
∏3

i=1 (pi + 1) and also
∏3

i=1 (pi + 1) = h(p)+ pL3 + pL2 (p3 + 1)+1.

Therefore, unlike in the quarter-plane situation, we will now denote by ψh(p) the h(p)×1

vector formed by the following procedure:

1. Delete each of the ψ̌
(1)
0,m(p), m = −pL2 , . . . ,−1.

2. Delete the first pL3 + 1 elements from ψ̌
(2)
0 (p).

The total elements then deleted are pL2 (p3 + 1)+pL3 +1 in number, and the dimension

of ψh(p) follows. For the matrices, we again proceed similarly. For l = 0, . . . , pU1 and

m = −pL2 , . . . , pU2 , define Ψ̌(1)
l,m(p) to be the (p3 + 1) × (p3 + 1) Toeplitz matrix with
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typical (i, j)-th element γ(l,m, i − j), i, j = −pL3 , . . . , pU3 , Ψ̌(2)
m (p) to be the block-

Toeplitz with Toeplitz blocks matrix of (block) dimension (pU1 + 1) and (i, j)-th block

Ψ̌(1)
i−j,m(p), i, j = 0, . . . , pU1 , and Ψ̌h(p) to be the (thrice) block-Toeplitz matrix of (block)

dimension (p2 + 1) × (p2 + 1) and (i, j)-th block Ψ̌(2)
i−j(p), i, j = −pL2 , . . . , pU2 . Now

denote by Ψh(p) the
∏3

i=1 (pUi + 1) − 1-dimensional matrix formed by deleting those

rows and columns of Ψ̌(3)(p) corresponding to the elements of Ψ̌h(p) deleted earlier. For

instance, if the i-th element of ψ̌h(p) was deleted then we delete the i-th row and i-th

column of Ψ̌h(p). We repeat this for each deleted element of ψ̌h(p). Then the dimension

of Ψ̌h(p) is h(p) × h(p).

General d

Quarter-plane representations

In this case we have pL2 = pL3 = . . . = pLd
= 0. For li = 0, . . . , pUi , i = 1, . . . , d − 1, de-

fine ψ̌
(1)
l1,...,ld−1

(p) to be the (pUd
+ 1)×1 vector with typical i-th element γ(l1, . . . , ld−1, i),

i = 0, . . . , pUd
, for li = 0, . . . , pUi , i = 1, . . . , d − 1 define ψ̌

(2)
l2,...,ld−1

(p) to be the nested

vector of (nested) dimension (pU1 + 1) and i-th block ψ
(1)
i,l2,...,ld−1

(p), i = 0, . . . , pU1 , and

proceeding in this manner, for ld−1 = 0, . . . , pUd−1
define ψ̌

(d−1)
ld−1

(p) to be the nested

vector of (nested) dimension
(
pUd−2

+ 1
)
× 1 and i-th block ψ̌

(d−2)
i,ld−1

(p), i = 0, . . . , pUd−2
.

Finally, define ψ̌h(p) to be the nested vector of (nested) dimension (pUd
+ 1) and i-

th block ψ̌
(d−1)
i (p), i = 0, . . . , pUd−1

. Now denote by ψh(p) the
∏d

i=1 (pUi + 1) − 1-

dimensional vector formed by deleting the first element of ψ̌h(p). Then the dimension

of ψh(p) is h(p) × 1. For the matrices, for li = 0, . . . , pUi , i = 1, . . . , d − 1, we define

Ψ̌(1)
l1,...,ld−1

(p) to be the (pUd
+ 1)-dimensional Toeplitz matrix with typical (i, j)-th ele-

ment γ(l1, . . . , ld−1, i − j), i, j = 0, . . . , pUd
, for li = 0, . . . , pUi , i = 2, . . . , d − 1 define

Ψ̌(2)
l2,...,ld−1

(p) to be the block Toeplitz with Toeplitz blocks matrix of (nested) dimen-

sion (pU1 + 1) and (i, j)-th block Ψ̌(1)
i−j,l2,...,ld−1

(p), i, j = 0, . . . , pU1 , and, proceeding

recursively, for ld−1 = 0, . . . , pUd−1
we define Ψ̌(d−1)

ld−1
(p) to be the nested block-Toeplitz

matrix of (block) dimension
(
pUd−2

+ 1
)
×
(
pUd−2

+ 1
)

and (i, j)-th block Ψ̌(d−2)
i−j,ld−1

(p),

i, j = 0, . . . , pUd−2
. The next step consists of defining Ψ̌h(p) to be the block-Toeplitz

matrix of (block) dimension
(
pUd−1

+ 1
)
×
(
pUd−1

+ 1
)

and (i, j)-th block Ψ̌(d−1)
i−j (p),

i, j = 0, . . . , pUd−1
. Now denote by Ψh(p) the

∏d
i=1 (pUi + 1) − 1-dimensional square ma-

trix formed by deleting the first row and first column of Ψ̌h(p). Clearly the dimension of

Ψh(p) is h(p) × h(p).

Half-plane representations

Now pLi > 0 for some i = 1, . . . , d. For li = −pLi , . . . , pUi , i = 1, . . . , d − 1; pL1 = 0,

define ψ̌
(1)
l1,...,ld−1

(p) to be the (pd + 1) × 1 vector with typical element γ(l1, . . . , ld−1, i),

i = −pLd
, . . . , pUd

. Next, for li = −pLi , . . . , pUi , i = 2, . . . , d − 1 define ψ̌
(2)
l2,...,ld−1

(p)

24



to be the nested vector of (nested) dimension (pU1 + 1) and i-th block ψ̌
(1)
i,l2,...,ld−1

(p),

i = 0, . . . , pU1 . Proceeding in this manner, for ld−1 = −pLd−1
, . . . , pUd−1

we define

ψ̌
(d−1)
ld−1

(p) to be the nested vector of (nested) dimension (pd−2 + 1) × 1 and i-th block

ψ̌
(d−2)
i,ld−1

(p), i = −pLd−2
, . . . , pUd−2

. Finally, define ψ̌h(p) to be the nested vector of

(nested) dimension (pd + 1) and i-th block ψ̌
(d−1)
i (p), i = −pLd−1

, . . . , pUd−1
. Now ψ̌h(p)

is
∏d

i=1 (pi + 1) × 1 where we note that pL1 = 0, so
∏d

i=1 (pi + 1) = h(p) + pLd
+

pLd−1
(pd + 1) + . . . + pL2 (p3 + 1) . . . (pd + 1) + 1. Define ψh(p) as the h(p) × 1 vector

formed using the following procedure:

(1) Delete each of ψ̌
(1)
0,l2,...,ld−1

(p), l2 = −pL2 , . . . ,−1 and li = −pLi , . . . , pUi , i = 3, . . . , d−

1.

(2) Delete each of ψ̌
(2)
0,l3,...,ld−1

(p), l3 = −pL3 , . . . ,−1 and li = −pLi , . . . , pUi , i = 4, . . . , d−

1.
...

(d − 2) Delete each of the ψ̌
(d−2)
0,ld−1

(p), ld−1 = −pLd−1
, . . . ,−1.

(d − 1) Delete the first pLd
+ 1 elements of ψ̌

(d−1)
0 (p).

Thus pL2 (p3 + 1) . . . (pd + 1) + . . . + pLd−1
(pd + 1) + pLd

+ 1 elements are deleted, and

the dimension of ψh(p) is h(p) × 1. By construction ψh(p) has elements γ(s), s ∈

S [−pL, pU ].We now define the matrices. For l1 = 0, . . . , pU1 and li = −pLi , . . . , pUi ,

i = 2, . . . , d − 1, define Ψ̌(1)
l1,...,ld−1

(p) to be the (pd + 1)-dimensional Toeplitz matrix

with typical (i, j)-th element γ(l1, . . . , ld−1, i − j), i, j = −pLd
, . . . , pUd

. Next, for li =

−pLi , . . . , pUi , i = 2, . . . , d− 1 define Ψ̌(2)
l2,...,ld−1

(p) to be the block Toeplitz with Toeplitz

blocks matrix of (nested) dimension (pU1 + 1) and (i, j)-th block Ψ̌(1)
i−j,l2,...,ld−1

(p), i, j =

0, . . . , pU1 . Proceeding in this manner, for ld−1 = −pLd−1
, . . . , pUd−1

we define Ψ̌(d−1)
ld−1

(p)

to be the nested block-Toeplitz matrix of (block) dimension (pd−2 + 1) × (pd−2 + 1)

and (i, j)-th block Ψ̌(d−2)
i−j,ld−1

(p), i, j = −pLd−2
, . . . , pUd−2

. Finally, define Ψ̌h(p) to be the

block-Toeplitz matrix of (block) dimension (pd−1 + 1) × (pd−1 + 1) and (i, j)-th block

Ψ̌(d−1)
i−j (p), i, j = −pLd−1

, . . . , pUd−1
. So in this (most general case) case we obtain the

general form of the covariance matrix as

Ψ̌h(p) =










Ψ̌(d−1)
0 (p) Ψ̌(d−1)

−1 (p) . . . . . . Ψ̌(d−1)
−pd−1

(p)

Ψ̌(d−1)
1 (p) Ψ̌(d−1)

0 (p) . . . . . . Ψ̌(d−1)
−pd−1+1(p)

...
...

...
...

Ψ̌(d−1)
pd−1 (p) Ψ̌(d−1)

pd−1−1(p) . . . . . . Ψ̌(d−1)
0 (p)










.

Now denote by Ψh(p) the matrix formed by deleting those rows and columns of Ψ̌h(p)

corresponding to the elements deleted from ψ̌h(p) above. Then the dimension of Ψh(p) is

h(p) × h(p).

We can straightforwardly extend a representation for Ψ−1
h(p) given for d = 1 by Akaike

(1969) and Kromer (1970). Label the indices of the elements of the first row of Ψh(p)
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from left to right as j0, . . . , jh(p)−1, j0 ≡ 0. Define Σh(p) = diag
(
σ2

0 , . . . , σ
2
h(p)−1

)
, with

σ2
l , l = 0, . . . , h(p)−1, defined as in (2.13). The lag indices in the predictor for a generic

l are defined by the first l indices in the first row of Ψh(p). Defining

Lh(p) =









1 0 0 . . . 0

dj1,1 1 0 . . . 0

. . . . . . . . .

djh(p)−1,h(p)−1 . . . djh(p)−1,h(p)−1 1









, (B.1)

we have

Ψ−1
h(p) = L′

h(p)Σ
−1
h(p)Lh(p). (B.2)

B.2 Counting covariances in stationary and unilateral lattice autore-

gressive models

Autoregressive models on d-dimensional lattices can generate covariance matrices of the

form Ψh(p) which differ from those in the time series case in the number of unique

covariances amongst their elements. Consider a stationary time series xt with an AR(k)

(here h(k) = k) representation xt =
∑k

j=1 ajxt−j + εt for which Ψk is a Toeplitz matrix

with k unique autocovariances, which is also the dimension of the matrix. On the other

hand, consider a 2-dimensional lattice process xt with an AR(0, 1; 1, 1) representation.

In this case

Ψh(0,1;1,1) =









γ (0, 0) γ (−1, 0) γ (−1, 2) γ (−1, 1)

γ (0, 0) γ (0, 2) γ (0, 1)

γ (0, 0) γ (0,−1)

γ (0, 0)









,

which is a 4×4 matrix with 6 unique covariances. While the above may suggest that the

number of unique covariances in such matrices is
∏d

i=1 (pi + 1), this is in fact incorrect

as the following example shows. A 2-dimensional lattice process xt with an AR(0, 2; 1, 1)

representation has Ψh(0,2;2,1) given by
















γ (0, 0) γ (−1, 0) γ (−2, 0) γ (−1, 2) γ (−2, 2) γ (−1, 1) γ (−2, 1)

γ (0, 0) γ (−1, 0) γ (0, 2) γ (−1, 2) γ (0, 1) γ (−1, 1)

γ (0, 0) γ (1, 2) γ (0, 2) γ (1, 1) γ (0, 1)

γ (0, 0) γ (−1, 0) γ (0,−1) γ (−1,−1)

γ (0, 0) γ (1,−1) γ (−1, 0)

γ (0, 0) γ (−1,−1)

γ (0, 0)
















,

which is a 7 × 7 matrix with 11 unique covariances, and the latter obviously does not

equal (p1 + 1)×(p2 + 1) = 12. We will provide an upper bound for the number of unique
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covariances in Ψ̌h(p) for general d.

Proposition B.1. Suppose that {xt : t ∈ L} is a stationary random field with the rep-

resentation (2.4). Then the number of unique covariances in Ψ̌h(p) does not exceed

C(p) = 1 +
d−1∑

l=1

2d−l−1
∑

#(l=0)

d∏

k=1
�0l

d

pk + 2d−1
d∏

k=1

pk, (B.3)

where
∑

#(l=0) sums over all the possible ways in which (p1, p2, . . . , pd)
′ can have l entries

equal to 0 and the product
∏d

k=1,�0l
d

multiplies over k such that the l zero entries of

(p1, p2, . . . , pd)
′ are excluded.

The proof follows by counting combinations across dimensions and is omitted. Also, it

is clear from the formulae (2.8) and (B.3) that

h(p) ≤ C(p), (B.4)

for all d. We now illustrate the formula with examples. For d = 1 with p1 = k (an

AR(k) specification) Ψ̌k is Toeplitz with first row (γ(0), . . . , γ(k)), and the formula (B.3)

delivers a bound that holds with equality. For d = 2 the formula indicates a maximum of

1+20 (p1 + p2)+21p1p2 = 1+p1 +p2 +2p1p2 unique covariances, delivering bounds of 8

and 13 for the AR(0, 1; 1, 1) and AR(0, 2; 1, 1) models respectively, while for d = 3 there

are at most 1+20 (p1 + p2 + p3)+21 (p1p2 + p1p3 + p2p3)+22p1p2p3 unique covariances.

If equal truncation lengths are chosen in each dimension, so that pUi = pLi = p for each

i = 1, . . . , d, we have p1 = p and pi = 2p for i = 2, . . . , d. Then the formulae become

1 + 3p + 4p2 and 1 + 5p + 20p2 + 16p3 respectively.

C Proofs of theorems

Proof of Theorem 2.1. We have

d̂h(p) − dh(p) = Ψ̂−1
h(p)

(
ψ̂h(p) − Ψ̂h(p)dh(p)

)

= Ψ̂−1
h(p)

(
δh(p) − ΔC(p)dh(p) + ψh(p) − Ψh(p)dh(p)

)

so that the norm of the LHS above is bounded by

∥
∥
∥Ψ̂−1
h(p)

∥
∥
∥
(∥∥δh(p)

∥
∥+

∥
∥ΔC(p)

∥
∥
∥
∥dh(p)

∥
∥+

∥
∥Ψh(p)dh(p) − ψh(p)

∥
∥) . (C.1)

Now
∥
∥
∥Ψ̂−1
h(p)

∥
∥
∥ ≤

∥
∥
∥Ψ̂−1
h(p) − Ψ−1

∥
∥
∥+

∥
∥
∥Ψ−1
h(p)

∥
∥
∥ ≤

(∥∥
∥Ψ̂−1
h(p)

∥
∥
∥
∥
∥ΔC(p)

∥
∥+ 1

)∥∥
∥Ψ−1
h(p)

∥
∥
∥ , so

∥
∥
∥Ψ̂−1
h(p)

∥
∥
∥
(
1 −

∥
∥
∥Ψ−1
h(p)

∥
∥
∥
∥
∥ΔC(p)

∥
∥
)
≤
∥
∥
∥Ψ−1
h(p)

∥
∥
∥ . Using Markov’s inequality and Lemma 2.5 it
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follows that
∥
∥ΔC(p)

∥
∥ p
→ 0 if

C(p)vn1−v
p → 0, i.e., C(p)vN1−v

(
d∏

i=1

(

1 −
pi

ni

))1−v

→ 0,

which is true by (2.14). Thus plim
N→∞

∥
∥
∥Ψ̂−1
h(p)

∥
∥
∥ ≤ limN→∞

∥
∥
∥Ψ−1
h(p)

∥
∥
∥ < ∞, from Corollary

2.7. Now we deal with the factor in parentheses in (C.1). By Lemma 2.4, Markov’s

inequality and (2.14),
∥
∥δh(p)

∥
∥ p
→ 0. For the second term, we have

∥
∥ΔC(p)

∥
∥ p
→ 0 and

also
∥
∥dh(p)

∥
∥ =

(∑
s∈S[−pL,pU ] d

2
s

) 1
2
≤
∑

s∈S[−pL,pU ] |ds| ≤
∑

s∈S∞
1+

|ds| < ∞. Thus the

second term converges to zero in probability. Finally, for the third term note that

(2.2) implies that Eεtxt−k =
∑

s∈S∞
1+∪0 bsEεtεt−k−s = 0, k ∈ S∞

1+, t ∈ L, because

k + s = 0 is not possible due to our definition of half-plane (2.1). This indicates that

γ(k) = Extxt−k =
∑

t∈S∞
1+

dtγ(t − k), k ∈ S∞
1+, so

∥
∥Ψh(p)dh(p) − ψh(p)

∥
∥2 is

∑

s∈S[−pL,pU ]




∑

t∈S[−pL,pU ]

dsγ(t − s) − γ(s)





2

=
∑

s∈S[−pL,pU ]




∑

t∈S[−pL,pU ]

dsγ(t − s) −
∑

t∈S∞
1+

dtγ(t − s)





2

=
∑

s∈S[−pL,pU ]




∑

t∈S∞
1+\S[−pL,pU ]

dtγ(t − s)





2

≤
∑

s∈S[−pL,pU ]




∑

t∈S∞
1+\S[−pL,pU ]

d2
t








∑

t∈S∞
1+\S[−pL,pU ]

γ(t − s)2





=




∑

s∈S[−pL,pU ]

∑

t∈S∞
1+\S[−pL,pU ]

γ(t − s)2








∑

t∈S∞
1+\S[−pL,pU ]

d2
t





≤ C
∑

s∈Zd

γ(s)2
∑

t∈S∞
1+\S[−pL,pU ]

d2
t = C

∑

t∈S∞
1+\S[−pL,pU ]

d2
t ,

using Lemma 2.1. Thus
∥
∥Ψh(p)dh(p) − ψh(p)

∥
∥ ≤ C

∑
t∈S∞

1+\S[−pL,pU ] |dt|, which converges

to zero as N → ∞ due to (2.15), completing the proof. Note that we have also shown

that ∥
∥
∥d̂h(p) − dh(p)

∥
∥
∥ = Op

(
C(p)

N
v−1

v

)

, (C.2)

by Markov’s inequality.

Proof of Theorem 2.2. We first prove that
∥
∥ΔC(p)

∥
∥ a.s.
→ 0 and

∥
∥δh(p)

∥
∥ a.s.
→ 0, as N → ∞.
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E
∥
∥ΔC(p)

∥
∥v is bounded (as in the proof of Lemma 2.5) by a constant times

C(p)vN1−v ≤ C
{

(log N)v+1 (log log N)v
}−1

≤ Cm−v, (C.3)

by (2.16), so that
∥
∥ΔC(p)

∥
∥ converges completely to zero, and therefore almost surely. An

identical proof holds for
∥
∥δh(p)

∥
∥, whence the proof follows that of Theorem 2.1.

Proof of Theorem 2.3. Note that γ̂(0) = n−1
p

∑′′
t(p,n)x

2
t . Using standard algebraic ma-

nipulation and the definition of least squares we may write σ̂2
h(p) − σ2 as

n−1
p

∑

t(p,n)

′′



xt −
∑

s∈S[−pL,pU ]

d̂s,h(p)xt−s





2

− σ2

= γ̂(0) − d̂′h(p)ψ̂h(p) − σ2

= γ̂(0) −
(
d̂h(p) − dh(p)

)′
ψ̂h(p) − d′h(p)ψ̂h(p) − γ̂(0) +

∑

t∈S∞
1+

dtγ(t)

= γ̂(0) − γ(0) −
(
d̂h(p) − dh(p)

)′
ψh(p) − d′h(p)ΔC(p)

−
(
d̂h(p) − dh(p)

)′
ΔC(p) − d′h(p)ψh(p) +

∑

t∈S∞
1+

dtγ(t).

Since d′h(p)ψh(p) =
∑

s∈S[−pL,pU ] dsγ(s), we can write

σ̂2
h(p) − σ2 = (γ̂(0) − γ(0)) −

(
d̂h(p) − dh(p)

)′
ψh(p) − d′h(p)ΔC(p)

−
(
d̂h(p) − dh(p)

)′
ΔC(p) +

∑

t∈S∞
1+\S[−pL,pU ]

dtγ(t).

The first term on the RHS converges to 0 in probability by Lemma 2.3 and Markov’s

inequality, the second by Theorem 2.1 and Lemma 2.1, the third term by Lemma 2.4,

(2.14) and Assumption A and the fourth term by Theorem 2.1, Lemma 2.4 and (2.14).

For the fifth term, convergence to zero follows by (2.15) and Lemma 2.1. Note that we

have also proved

σ̂2
h(p) − σ2 = Op



 C(p)

N
v−1

v

+
∑

t∈S∞
1+\S[−pL,pU ]

d2
t



 , (C.4)

because h(p) ≤ C(p) and limN→∞ N/np = 1. The almost sure convergence proof is

similar and omitted.

Proof of Theorem 3.1. We recall D
(
eiλ
)

= 1 −
∑

s∈S∞
1+

dse
is′λ and define D̂h(p)

(
eiλ
)

=
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1 −
∑

s∈S[−pL,pU ] d̂s,h(p)e
is′λ. Then

f̂h(p)(λ) − f(λ) =
σ2

(∣
∣
∣D̂h(p)

(
eiλ
)∣∣
∣
2
−
∣
∣D
(
eiλ
)∣∣2
)

−
∣
∣D
(
eiλ
)∣∣2
(
σ̂2
h(p) − σ2

)

(2π)d |D (eiλ)|2
∣
∣
∣D̂h(p) (eiλ)

∣
∣
∣
2 . (C.5)

Because D
(
eiλ
)

= σ2
{
(2π)df(λ)

}−1
, by (2.5) we have

c ≤ D
(
eiλ
)
≤ C, uniformly in λ ∈ Π. (C.6)

On the other hand D̂h(p)

(
eiλ
)

= σ̂2(p)
{

(2π)df̂(λ)
}−1

, so that

sup
λ∈Π

∣
∣
∣D̂h(p)

(
eiλ
)∣∣
∣ ≤ sup

λ∈Π

∣
∣
∣D̂h(p)

(
eiλ
)
− D

(
eiλ
)∣∣
∣+ sup

λ∈Π

∣
∣
∣D
(
eiλ
)∣∣
∣ (C.7)

and

inf
λ∈Π

∣
∣
∣D̂h(p)

(
eiλ
)∣∣
∣ ≥ inf

λ∈Π

∣
∣
∣D
(
eiλ
)∣∣
∣− sup

λ∈Π

∣
∣
∣D̂h(p)

(
eiλ
)
− D

(
eiλ
)∣∣
∣ . (C.8)

∣
∣
∣D̂h(p)

(
eiλ
)
− D

(
eiλ
)∣∣
∣ is bounded by

∑

s∈S[−pL,pU ]

∣
∣
∣d̂s,h(p) − ds

∣
∣
∣
∣
∣
∣eis′λ

∣
∣
∣+

∑

s∈S∞
1+\S[−pL,pU ]

|ds|
∣
∣
∣eis′λ

∣
∣
∣

≤ h(p)
1
2

∥
∥
∥d̂h(p) − dh(p)

∥
∥
∥+

∑

s∈S∞
1+\S[−pL,pU ]

|ds| ,

(C.9)

by the Cauchy Schwarz inequality. By (3.1) and (3.2), we conclude from (C.2) that

h(p)
1
2

∥
∥
∥d̂h(p) − dh(p)

∥
∥
∥ = Op

(
C(p)h(p)

1
2

N
v−1

v

)

,

implying that (C.9) is negligible. We have then shown that

sup
λ∈Π

∣
∣
∣D̂h(p)

(
eiλ
)
− D

(
eiλ
)∣∣
∣

p
→ 0. (C.10)

Using (C.6), (C.7) and (C.8) together with (C.10) implies that

c ≤ D̂h(p)

(
eiλ
)
≤ C, uniformly in λ ∈ Π, (C.11)

with probability approaching 1 as N → ∞. The identity a2 − b2 = (a − b)2 + 2b(a − b)
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implies

∣
∣
∣
∣

∣
∣
∣D̂h(p)

(
eiλ
)∣∣
∣
2
−
∣
∣D
(
eiλ
)∣∣2
∣
∣
∣
∣ is bounded by

(
D̂h(p)

(
eiλ
)
− D

(
eiλ
))2

+ 2
∣
∣
∣D
(
eiλ
)∣∣
∣
∣
∣
∣D̂h(p)

(
eiλ
)
− D

(
eiλ
)∣∣
∣ , (C.12)

where the RHS converges to 0 in probability uniformly in λ by (C.10) and (C.11) so that

sup
λ∈Π

∣
∣
∣
∣

∣
∣
∣D̂h(p)

(
eiλ
)∣∣
∣
2
−
∣
∣
∣D
(
eiλ
)∣∣
∣
2
∣
∣
∣
∣

p
→ 0. (C.13)

Because (C.5) implies that

∣
∣
∣f̂h(p)(λ) − f(λ)

∣
∣
∣ ≤

σ2

∣
∣
∣
∣

∣
∣
∣D̂h(p)

(
eiλ
)∣∣
∣
2
−
∣
∣D
(
eiλ
)∣∣2
∣
∣
∣
∣+
∣
∣D
(
eiλ
)∣∣2
∣
∣
∣σ̂2
h(p) − σ2

∣
∣
∣

(2π)d |D (eiλ)|2
∣
∣
∣D̂h(p) (eiλ)

∣
∣
∣
2 ,

the theorem now follows by (C.6), (C.11), (C.13) and Theorem 2.3.

Proof of Theorem 4.1. By Lemma 4.1 and (2.2), we need to establish the asymptotic

distribution of

(
N

1
2 /nph(p)

1
2

) ∑

r∈S∞
1+∪0

br

∑

s∈S[−pL,pU ]

α(p)′Ψ(s)
h(p)

∑

t(p,n)

′′εt−r−sεt, (C.14)

with Ψ(s)
h(p) denoting a typical column of Ψh(p). Fixing η > 0, in view of (2.2) we can

choose a positive integer M such that

∑

r/∈S[−M,M ]

br < η/h(p)
1
2 , (C.15)

where S[−M,M ] = {ti : |ti| ≤ M, i = 1, . . . , d}. Note that r /∈ S[−M,M ] if and only if

r ∈ S∞
1+\S[−M,M ]. The difference between (C.14) and

gh(p),M =
(
N

1
2 /nph(p)

1
2

) ∑

r∈S[−M,M ]

br

∑

s∈S[−pL,pU ]

α(p)′Ψ(s)
h(p)

∑

t(p,n)

′′εt−r−sεt (C.16)

is readily shown to have mean zero and variance that is O
(
η2Nn−1

p

)
= o (1), as η → 0,

because N/np = O(1). Thus we establish asymptotic normality of gh(p),M . A martingale

central limit theorem of Scott (1973) can be applied by mapping Zd into Z+, as in

Robinson and Vidal Sanz (2006). They denote by C
(d)
k the lattice points of on the

surface of the d-dimensional cube with vertices (±k, . . . ,±k), and arbitrarily order them

as t
(k)
(1) , . . . , t

(k)

m
(d)
k

, with m
(d)
k = (2k +1)d − (2k−1)d. Introduce the function φ : Zd → Z+,
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defined as

φ(0) = 1

φ
(
t
(1)
(1)

)
= 2, . . . , φ

(
t
(1)

3d−1

)
= 3d

...
...

φ
(
t
(k)
(1)

)
= (2k − 1)d + 1, . . . , φ

(

t
(k)

m
(d)
k

)

= (2k + 1)d,

and θN (t) = φ(t) − # {s : s /∈ L; φ(s) < φ(t)} , t ∈ L. Having thus ordered on the

integer vertices of a hypercube containing L, we drop points outside L and re-label

after closing gaps and preserving order. Now define the triangular array δN (j), j =

1, . . . , N , of iid random variables with zero mean, variance σ2 and finite fourth moment

by δN (θN (t)) = εt, t ∈ L. For each summand in
∑

t(p,n) εt−r−sεt either φ(t−r−s) < φ(t)

or φ(t− r − s) > φ(t), and there are a total of N −O
(
N1−χ

)
summands, each of which

can be written as δN (j)δN (j − `j,N (s, r)) for suitable j and `j,N (s, r) ∈ Z+ (possibly

after finite translation across Zd). Define

υN (j) =
(
N/nph(p)

1
2

) ∑

r∈S[−M,M ]

br

∑

s∈S[−pL,pU ]

α(p)′Ψ(s)
h(p)δN (j)δN (j − `j,N (s, r)) ;

thus by uncorrelatedness of υN (j) over j, gh(p),M differs by Op

(
h(p)N−χ

2

)
= op(1) from

N− 1
2
∑N

j=1 υN (j) . We now show that

lim
N→∞

N−1
N∑

j=1

Eυ2
N (j) = σ2μ + o(η). (C.17)

The uncorrelatedness and identity of distribution of δN (j) implies that

Eυ2
N (j) =

(
N2σ2/n2

ph(p)
)
α(p)′Ψ−1

h(p)Ψh(p),MΨ−1
h(p)α(p), any j,

where, with s, t ∈ S [−pL, pU ], Ψh(p),M denotes the symmetric matrix with elements

σ2
∑

r∈S[−M,M ] brbr+s−t. Elementary inequalities together with (C.15) imply that the

latter differ from a typical element of Ψh(p) by σ2
∑

r/∈S[−M,M ] brbr+s−t = O(η2/h(p)),

whence
∥
∥Ψh(p),M − Ψh(p)

∥
∥ = O

(
η2
)

= o(η), as N → ∞. (C.18)

Now N−1
∑N

j=1 Eυ2
N (j) is bounded by

(
N2σ2/n2

ph(p)
)
‖α(p)‖2

∥
∥
∥Ψ−1
h(p)

∥
∥
∥

2 ∥
∥Ψh(p),M − Ψh(p)

∥
∥+ σ2μ + o(1),

because N/np → 1 as N → ∞. The first term on the RHS above is easily seen to be

o(η) as N → ∞, by (C.18). Thus (C.17) is established. The υN (j) form a martingale
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difference array. Denote by Fk,N the σ-field of events generated by δN (j), j ≤ k. Writing

uN (j) = υN (j)/σμ
1
2 , Theorem 2 ofScott (1973) implies that if

N−1
N∑

j=1

E
{

u2
N (j)1

(
|uN (j)| ≥ %N

1
2

)}
→ 0, all % > 0, (C.19)

N−1
N∑

j=1

[
E
{
u2

N (j) |Fj−1,N

}
− Eu2

N (j)
] p

→ 0, (C.20)

then N− 1
2
∑N

j=1 υN (j)
d
→ N(0, σ2μ).

By (C.17), E
(
N−1u2

N (j)
)

= σ−2μ−1
(
σ2μ + o(η) + o(1)

)
= O(1) uniformly in j, im-

plying that N−1u2
N (j) is a uniformly integrable array, whence (C.19) follows on noticing

that the LHS of this is bounded above by maxj=1,...,N E
{
u2

N (j)1
(
u2

N (j) ≥ %2N
)}

. Next,

(C.20) is proved if we show

N−1
N∑

j=1









h(p)−

1
2

∑

r∈S[−M,M ]

br

∑

s∈S[−pL,pU ]

α(p)′Ψ(s)
h(p)δN (j − `j,N (s, r))






2

− E





h(p)−

1
2

∑

r∈S[−M,M ]

br

∑

s∈S[−pL,pU ]

α(p)′Ψ(s)
h(p)δN (j − `j,N (s, r))






2

 p
→ 0.

(C.21)

Fix s(i) ∈ S[−M,M ] and r(i) ∈ S [−pL, pU ], i = 1, 2, define

`j,N,i = `j,N

(
s(i), r(i)

)
and consider

N−1
N∑

j=1

{δN (j − `j,N,1) δN (j − `j,N,2) − EδN (j − `j,N,1) δN (j − `j,N,2)} . (C.22)

Clearly (C.22) has mean zero, while its variance is

N−2
N∑

j=1

N∑

k=1

[EδN (j − `j,N,1) δN (k − `k,N,1) EδN (j − `j,N,2) δN (k − `k,N,2)

+ EδN (j − `j,N,1) δN (k − `k,N,2) EδN (j − `j,N,2) δN (k − `k,N,1)

+ cum {δN (j − `j,N,1) , δN (k − `k,N,1) , δN (j − `j,N,2) , δN (k − `k,N,2)}] ,

(C.23)

where cum {x, y, z, w} denotes the joint cumulant of x, y, z, w. Robinson and Vidal Sanz

(2006) noted that, for d > 1, the s 6= t terms have a non-zero contribution to (C.23)

because `j,N,i depend on N . They show that (C.23) is O
(
N−χ

2

)
, whence (C.21) is

O
(
h(p)N−χ

4

)
= o(1), unlike when d = 1, when (C.23) is O

(
N−1

)
and (C.21) is

O
(
h(p)N− 1

2

)
(cf Berk (1974)). The theorem now follows by Bernstein’s Lemma (see
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e.g. Hannan (1970) pg. 242).

Proof of Theorem 4.2. By (C.4), (3.1) and (4.4), (N/h(p))
1
2

(
σ̂2
h(p) − σ2

)
= op(1). Be-

cause f̂h(p)(λ) = σ̂2
h(p)(2π)−d

(
Ĉh(p)(λ)2 + Ŝh(p)(λ)2

)−1
the proof is standard by Lemma

4.4 and the delta method, so we omit the details.

D Proofs of lemmas

Proof of Lemma 2.1. Standard.

Proof of Lemma 2.2. The result follows from Lemma A.1 taking N = n, M = k, q = 2

and at = 1 for all t ∈ L.

Proof of Lemma 2.3. For γ̂(k) − γ(k) to be of the form of Spn in Lemma 2.2, define

ξrs,t = brbr−k

(
ε2t−r − σ2

)
, s = r − k; = brbsεt−rεt−k−s, s 6= r − k. Then the ξrs,t are

clearly zero-mean. They are independent because the εt are. Therefore, they satisfy

Assumption D. By the cr-inequality, Cauchy-Schwarz inequality and Assumption B,

E |ξrs,t|
v ≤ 2 |brbr−k|

v
(
E |εt−r|

2v + σ2v
)
≤ C |brbr−k|

v , s = r − k,

E |ξrs,t|
v ≤ |brbs|

v
(
E |εt−r|

2v E |εt−s|
2v
) 1

2
≤ C |brbs|

v , s 6= r − k,

verifying that (2.10) holds since the br are absolutely summable. The result follows

immediately from Lemma 2.2.

Proof of Lemma 2.4.

E
∥
∥δh(p)

∥
∥v ≤ E




∑

s∈S[−pL,pU ]

|γ̂(s) − γ(s)|





v

≤ h(p)v−1
∑

s∈S[−pL,pU ]

E |γ̂(s) − γ(s)|v

≤ C h(p)v−1
∑

s∈S[−pL,pU ]

n1−v
p = C h(p)vn1−v

p ,

using Hölder’s inequality and Lemma 2.3.

Proof of Lemma 2.5. Write Δ̌C(p) = ˆ̌Ψh(p) − Ψ̌h(p), where ˆ̌Ψh(p) is constructed in the ob-

vious way using estimated covariances. Using the inequality ‖B‖ ≤ ‖B‖R for symmetric

matrices B, we have
∥
∥ΔC(p)

∥
∥ ≤

∥
∥ΔC(p)

∥
∥

R
≤
∥
∥Δ̌C(p)

∥
∥

R
. (D.1)
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We will now bound the absolute row-sums of Δ̌C(p) uniformly over all rows. Consider a

typical row of Δ̌C(p). This consists of

γ̂
(
l1 − l̄1, l2 − l̄2, . . . , ld − jd

)
− γ

(
l1 − l̄1, l2 − l̄2, . . . , ld − jd

)
; jd = 0, . . . , pd,

for some l1, . . . , ld, li = 0, . . . , pi and all l̄1, . . . , l̄d−1, l̄i = 0, . . . , pi. It follows that a

typical absolute row sum is

∑̄

d−1

pd∑

jd=0

∣
∣γ̂
(
l1 − l̄1, l2 − l̄2, . . . , ld − jd

)
− γ

(
l1 − l̄1, l2 − l̄2, . . . , ld − jd

)∣∣ (D.2)

with
∑̄

d−1 running over l̄1, . . . , l̄d−1, l̄i = 0, . . . , pi. Since the summands are absolute

values of the elements of a row of a Toeplitz matrix (by construction), (D.2) is bounded

by

2
∑̄

d−1

pd∑

kd=−pd

∣
∣γ̂
(
l1 − l̄1, l2 − l̄2, . . . , kd

)
− γ

(
l1 − l̄1, l2 − l̄2, . . . , kd

)∣∣

which in turn is bounded by

2
∑

unique covariances

|γ̂(k) − γ(k)| ,

there being C(p) terms in the sum by Proposition B.1. This bound is clearly uniform

over all possible rows. So using Hölder’s inequality and Lemma 2.3

E
∥
∥Δ̌C(p)

∥
∥v

R
≤ 4vE




∑

unique covariances

|γ̂(k) − γ(k)|





v

≤ 8 C(p)1−v
∑

unique covariances

E |γ̂(k) − γ(k)|v

≤ C C(p)1−v
∑

unique covariances

n1−v
p = C C(p)vn1−v

p .

Then the result follows from the above and (D.1).

Proof of Lemma 2.6. Eigenvalues of Ψh(p) are determined by the generalized Toeplitz

form
∑

j,k∈S[−pL,pU ] ξjγ(j−k)ξk, for real numbers ξs, s ∈ S [−pL, pU ],
∑

s∈S[−pL,pU ] ξ
2
s =

1, summing over j, k ∈ S [−pL, pU ] by construction of Ψh(p). This equals

∑

j,k∈S[−pL,pU ]

∫

Π
ei(j−k)′λf(λ)dλ ξjξk =

∫

Π

∣
∣
∣
∣
∣
∣

∑

j∈S[−pL,pU ]

eij′λξj

∣
∣
∣
∣
∣
∣

2

f(λ)dλ
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∈

∣
∣
∣
∣
∣
∣

∑

j∈S[−pL,pU ]

ξj

∣
∣
∣
∣
∣
∣

2 [

m

∫

Π
dλ , M

∫

Π
dλ

]

=
∑

j∈S[−pL,pU ]

ξ2
j

[

m

∫

Π
dλ , M

∫

Π
dλ

]

=
[
(2π)dm , (2π)dM

]
,

using γ(j − k) =
∫
Π ei(j−k)′λf(λ)dλ and (2.5).

Proof of Corollary 2.7. If
∥
∥
∥Ψ−1
h(p)

∥
∥
∥ exists, it is the reciprocal of the smallest eigenvalue,

say μ, of Ψh(p). Using Lemma 2.6 we get
∥
∥
∥Ψ−1
h(p)

∥
∥
∥ = μ−1 ≤ (2π)−dm−1 ≤ C.

Proof of Lemma 4.1. Define ε̄t,h(p) = xt −
∑

s∈S[−pL,pU ] dsxt−s. Then

ε̄t,h(p) − εt =
∑

s∈S∞
1+\S[−pL,pU ]

dsxt−s,

so that the LHS of (4.2) equals

N
1
2 α(p)′Ψ̂−1

h(p)ΔC(p)Ψ
−1
h(p)

∑

t(p,n)

′′Xt(p)ε̄t,h(p)/nph(p)
1
2

+ N
1
2 α(p)′Ψ−1

h(p)

∑

t(p,n)

′′Xt(p)
∑

s∈S∞
1+\S[−pL,pU ]

dsxt−s/nph(p)
1
2 . (D.3)

Now, α(p)′Ψ−1
h(p)Xt(p)/h(p)

1
2 is a linear process in lags of εt, with mean 0 and variance

h(p)−1α(p)′Ψ−1
h(p)α(p) = O(1), by Lemma 2.7. Thus the square of the second term in

(D.3) has expectation bounded by a constant times N
1
2 n

1
2
p
∑

s∈S∞
1+\S[−pL,pU ] d

2
s → 0, by

Lemma 2 of Berk (1974), which also implies that

E

∥
∥
∥
∥
∥
∥

′′∑

t(p,n)

Xt(p)ε̄t,h(p)

∥
∥
∥
∥
∥
∥

2

= O



h(p)N
1
2 n

1
2
p

∑

s∈S∞
1+\S[−pL,pU ]

d2
s



 ,

so the first term in (D.3) is

Op



h(p)
1
2

∥
∥ΔC(p)

∥
∥N

1
4 n

1
4
p

∑

s∈S∞
1+\S[−pL,pU ]

|ds|



 = Op

(

h(p)
1
2C(p)/n

1
2
p

)

op(1),

by Lemmas 2.5, 2.7, (4.1), and is negligible by (3.1).

Proof of Lemma 4.2. We can take λ = 0 in Theorem 2.2 of Baxter (1962), as in Berk

(1974), and obtain

∑

r∈S[−pL,pU ]∪0

∣
∣
∣dr,h(p)/σ2

h(p) − dr/σ2
∣
∣
∣ ≤ C

∑

r∈S∞
1+\S[−pL,pU ]

|dr| /σ2, (D.4)
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with d0 = d0,h(p) = 1. Also,

σ2
h(p) − σ2 = γ(0) − d′h(p)ψh(p) − σ2 =

∑

r∈S∞
1+\S[−pL,pU ]

drγ(r) → 0, (D.5)

as h(p) → ∞, by (2.4) and Lemma 2.1. Combining (D.4) and (D.5) yields the result.

Proof of Lemma 4.3. The proof is a straightforward extension of Theorem 3 of Berk

(1974). Label the indices in the first row of Ψh(p) (these are identical to those in the

first row of Ψ̂h(p)) from, left to right, as as j0, j1, . . . , jh(p)−1, with j0 ≡ 0. Take

ν(p) =
(
1, eij′1λ, . . . , e

ij′
h(p)−1

λ
)′

, η(p) =
(
1, eij′1μ, . . . , e

ij′
h(p)−1

μ
)′

; λ, μ ∈ Π.

In view of (B.2) it is sufficient to evaluate limh(p)→∞ h(p)−1ν(p)′Ψh(p)η(p), which equals

lim
h(p)→∞

h(p)−1

h(p)−1∑

l=0

Dl

(
e−iλ

)
Dl

(
e−iμ

)
eij′l(λ+μ)/σ2

l , (D.6)

where ez = (ez1 , . . . , ezd)′ for any s ∈ Cd. If λi = −μi or λi = μi = π, i = 1, . . . , d, the

RHS of (D.6) equals liml→∞
∣
∣Dl

(
eiλ
)∣∣2 /σ2

l =
∣
∣D
(
eiλ
)∣∣2 /σ2 = 1/ (2π)d f(λ), by Lemma

4.2.

If eij′l(λ+μ) 6= 1 for all jl write Dl

(
e−iλ

)
Dl

(
e−iμ

)
/σ2

l = Ul, eij′l(λ+μ) = Vl, where

Vl =
∑l

r=1 Vr. Then the RHS of (D.6) equals

lim
h(p)→∞

h(p)−1




h(p)−2∑

l=1

(Ul − Ul+1) Vl + Uh(p)−1Vh(p)−1





= lim
h(p)→∞

h(p)−1

h(p)−2∑

l=1

(Ul − Ul+1) Vl, (D.7)

because limh(p)→∞ Uh(p)−1 = D
(
e−iλ

)
D
(
e−iμ

)
/σ2 < C, by Lemma 4.2, and Vh(p)−1 =

(
1 − eih(p)(λ+μ)

)
/
(
1 − ei(λ+μ)

)
= O(1). Then, by Lemma 4.2 it follows that the RHS of

(D.7) equals 0.

Proof of Lemma 4.4. Since (N/h(p))
1
2
∑

s∈S∞
1+\S[−pL,pU ] dse

is′λ → 0 as N → ∞, any

λ ∈ Πd, we can replace C(λ) and S(λ) in (4.5) by Ch(p)(λ) = 1+
∑

s∈S[−pL,pU ] ds cos (s′λ)

and Sh(p)(λ) =
∑

s∈S[−pL,pU ] ds sin (s′λ) respectively. Lemma 4.1 and Theorem 4.1 im-

mediately provide the joint asymptotic normality of (4.5), by the Cramér-Wold de-

vice. The asymptotic variance of (N/h(p))
1
2

(
Ĉh(p)(0) − C(0)

)
is obtained by taking

w0 = 1 and others zero in Lemma 4.3, while for (N/h(p))
1
2

(
Ĉh(p)(π) − C(π)

)
we

take u0 = 1 with others zero. For j = 1, . . . , q, take wj = uj = 1/2 and others

zero for (N/h(p))
1
2

(
Ĉh(p) (λj) − C (λj)

)
, and wj = −i/2, uj = i/2 and others zero for
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(N/h(p))
1
2

(
Ŝh(p) (λj) − S (λj)

)
. It is easy to show using this method that the asymp-

totic variance of the sum of any pair of terms (4.5) is the sum of the asymptotic variances,

implying that the asymptotic covariance matrix is diagonal.

Proof of Lemma A.1. SMN =
∑′′

t(|M |,N)

∑
s1∈Zd . . .

∑
sq∈Zd ξssst, which is rewritten as

SMN =
∑

s1∈Zd . . .
∑

sq∈Zd η
1−1/w
1s1 η

1/w
1s1

∑′′
t(|M |,N) (ξssst/η1s1) whence from Hölder’s in-

equality

|SMN |w ≤




∑

s∈Zd

η1s





w−1
∑

s1∈Zd

η1−w
1s1

∣
∣
∣
∣
∣
∣

∑

s2∈Zd

. . .
∑

sq∈Zd

∑

t(|M |,N)

′′
ξssst

∣
∣
∣
∣
∣
∣

w

.

Similarly
∣
∣
∣
∑

s2∈Zd . . .
∑

sq∈Zd

∑′′
t(|M |,N) ξssst

∣
∣
∣
w

is bounded by




∑

s∈Zd

η2s





w−1
∑

s2∈Zd

η1−w
2s2

∣
∣
∣
∣
∣
∣

∑

s3∈Zd

. . .
∑

sq∈Zd

∑

t(|M |,N)

′′
ξssst

∣
∣
∣
∣
∣
∣

w

.

After q applications of Hölder’s inequality and using (A.2) we obtain

|SMN |w ≤ C
∑

s1∈Zd

. . .
∑

sq∈Zd

η1−w
sss

∣
∣
∣
∣
∣
∣

∑

t(|M |,N)

′′
ξssst

∣
∣
∣
∣
∣
∣

w

. (D.8)

Also, from von Bahr and Esseen (1965) and (A.1)

E

∣
∣
∣
∣
∣
∣

∑

t(|M |,N)

′′
ξssst

∣
∣
∣
∣
∣
∣

w

≤ C
∑

t(|M |,N)

′′
|ξssst|

w ≤ C ηw
sss

∑

t(|M |,N)

′′
aw

t .

Taking expectations of (D.8) and applying the above and (A.2) we conclude

E |SMN |w ≤ C
∑

s1∈Zd

. . .
∑

sq∈Zd

ηsss

∑

t(|M |,N)

′′
aw

t ≤ C
∑

t(|M |,N)

′′
aw

t = C bwMN ,

establishing the lemma.
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